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Abstract 

Static and dynamic models of the characteristic responses of sliotar cores made of both cork 

and polyurethane were studied in this work in order to understand their constitutive 

behaviour. Data from quasi-static tests at 10 mm/s and from dynamic impacts at speeds from 

5 to 25 m/s were used to develop and evaluate the models. The quasi-static response was 

described well by Hertzian theory. A non-linear HunteCrossley model and a modified linear 

KelvineVoigt model were used to predict the dynamic response with set mass and shape 

coefficient parameters. The HunteCrossley model predicted well both the maximum force 

and maximum deflection for each ball type. The HunteCrossley model generally captured the 

experimental contact times well with a mean difference between experimental and model 

contact times of 8.3%. The mean difference between the KelvineVoigt model and 

experimental contact times was 7.6%, while the corresponding mean difference for the 

coefficient of restitution was 13.1%. Overall, the modified KelvineVoigt model predicted the 

parameters of contact time and coefficient of restitution well. Contact time and coefficient of 

restitution prediction in this linear model were not particularly sensitive to the strain rate. 
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1. Introduction 

Hurling is one of the national Irish sports governed by the Gaelic Athletic Association (GAA) 

inwhich a ball is struck by awooden stick known as a hurley. The ball, known as a sliotar, 

consists of a leather skin and a solid core. The sliotar has a standardised mass of 90 _ 5 g and 

diameter of 67 _ 2 mm (Gaelic Athletic Association, 2008) [1].The materials fromwhich the 

cores are manufactured can be divided into two categories: the more traditional cork wrapped 

in a yarn winding and the more modern polymer foam core. It has been identified that the 

response of the ball when struck by a hurley is dominated by the behaviour of the core 

material (Gaelic Athletic Association, 2004) [2]. This gives rise to the question: how does 

one manufacture a ball such that it exhibits a specific performance? This question remains 

unanswered as, until recently, the exact characteristics of the dynamic response had not been 

sufficiently studied or modelled to allow for sliotar standardisation. This led the GAA to 

commission a study to examine the dynamic behaviour of the ball core (Collins et al., 2011) 

[3]. The aim of this previous study was characterise the performance of different core 

materials in terms of significant impact parameters. To obtain objective and repeatable impact 

parameters, a standard impact configuration was examined rather than actual hurley/sliotar 

contact. The chosen configuration was the direct, normal impact of a non-rotating ball core 
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against a static, rigidly-mounted fixed steel plate. The platewas assumed to be infinitely stiff 

compared to the ball core so that no momentum was exchanged during the impact. Such an 

impact configuration allowed for intrinsic measurement of the mechanical response of the ball 

material. Such a methodology is consistent with similar studies of other types of sports ball 

including tennis, cricket and golf balls (e.g., Carré et al., 2004; Cheng et al., 2008; Cross, 

1999; Fuss,2008) [4e7].Players’ perception of ball performance features subjective attributes 

such as liveliness and ‘feel’. Such non-scientific measures can be quantified in terms of energy 

dissipation and hardness of the ball, which, in theory, may be related to impact parameters 

such as the coefficient of restitution (ratio of ball speeds after and before impact), impact 

duration (contact time), the maximum impact force and deformation of the ball. 

 

 
 

For example, a contact time that is excessively short usually corresponds to a ball being 

considered too lively or ‘bouncy’. Insufficient deformation generally implies that the ball is 

excessively stiff which in turn indicates that an inadvertent collision between the ball and 

player could result in a serious injury. Conversely, excessive ball deformation can affect the 

durability of the sliotar. The coefficient of restitution is the only impact parameter that is 

regulated at present; it must lie between 0.522 and 0.576 when measured from a drop height 

of 1.8 m. This corresponds to an impact speed of around 6 m/s and is the only speed at which 

this coefficient is specified. A coefficient of restitution outside this range generally means 

that the ball will be either too ‘dead’ or too uncontrollable if the coefficient is too low or too 

high, respectively. As 6 m/s is considerably lower than actual impact speeds during play, 

which are typically in the range of 10-40 m/s, the current approval test cannot account for 

variations between approved balls that may become apparent at higher speeds.  

This test method is similar to the regulatory testing used for other ball types, e.g., the 

International Tennis Federation employs a 100 inch drop test for tennis balls. The inadequacy 

of this means of regulating coefficient of restitution has been recognised in recent studies 

(Carré et al., 2004; Cross, 1999) [4,6]; this test does not represent the full range of conditions 

experienced in play which is problematic due to the non-linear dependence of coefficient of 

restitution on impact speed.There are many continuous contact dynamic models in literature 

that relate force and deformation during impact (Gilardi and Sharf, 2002) [8]. Such models 

have been applied successfully to represent the impact response of other types of solid and 



hollow sports balls (e.g., Cheng et al., 2008; Cochran, 2002; Goodwill and Haake, 2004) 

[5,9,10]. These models generally insert some combination of conceptual springs and dashpots 

at the contact point between bodies. The dashpots dissipate energy while the springs provide 

the required elastic behaviour. A more detailed review of mathematical models in the context 

of sports ball impact has been presented by Collins (2011) [11]. FE models have been used to 

model ball impacts (e.g., Cheng et al., 2008; Tanaka et al., 2006)[5,12]. Primary attractions of 

spring-dashpot based numerical models are that they offer quick and efficient analysis, and 

that model parameters (i.e., spring stiffness and dashpot dissipation)pertain directly to impact 

parameters (i.e., material stiffness and energy dissipation). In this paper, the objective was to 

develop the first model for the sliotar core impact behaviour. 

 

2. Theory 

2.1. Modelling approach 

Many of the impact models which are in use can be summarised as the sum of three terms: an 

inertia term, a damping term and a stiffness term. The impact between the ball and the rigid 

fixed flat plate may be treated as a single degree of freedom problem. The damping and 

stiffness terms are usually proportional to impact velocity and displacement, respectively, and 

can be expressed as: 

 
l* and k* represent generalised damping and stiffness functions, respectively, which may in 

turn be functions of impact velocity and displacement. One common approach in the 

literature is to restrict these functions to having a power law dependence on displacement. 

 
The possible strain rate dependence of k is thus neglected and the fundamental impact model 

becomes: 

 

Three models of ball impact are commonly seen in sports literature, all of which are special 

cases of Eq. (3) for particular choices of n1 and n2: 
 

1) Linear KelvineVoigt Model (n1 = n2 = 0) 

 

The linear KelvineVoigt model is presented in Eq. (4). Parameter l corresponds to the linear 

viscous damping coefficient, commonly denoted by c, while k corresponds to the linear 

spring stiffness, k.The damping term in the KelvineVoigt model is directly proportional to the 

velocity. This linear model was applied to golf balls (Cochran,1998) [13]. This modelwas 

implemented in this work due to its relatively simple nature, the fact that the parameters of 

the model have a physically-meaningful interpretation and that it can be solved analytically 

as a function of time. The linear KelvineVoigt model is determined by substituting n1 = n2 = 

0 into Eq. (3): 

 

 



2) Hertz Impact Model (n1 = n2 = 0.5) 

 

For this model, the parameters l and k are also taken as constants (for all displacements and 

speeds); however, an x0.5 term is included in both the damping and stiffness terms to account 

for 

the Hertzian nature of the contact. Thus, the damping and stiffness terms both vary non-

linearly. This approach was considered by Cochran (2002) [9] in developing simple one-

dimensional models of golf ball impacts. This model was not implemented for comparison in 

this work as although it is a simple model, it presented no clear advantage over results that 

would be  alculated from the modified KelvineVoight model and the HunteCrossley model 

which were implemented. The linear Hertz impact model is determined by substituting n1= n2 

= 0.5 into Eq. (3): 

 
3) HunteCrossley Model (n = n1 = n2 + 1) 

 

This differential equation was originally developed by Hunt and Crossley (1975) [14]. It 

permits impacts between bodies to be modelled in a relatively straightforward manner using a 

small number of model parameters, and yields results which are more consistent with 

experimental findings than the KelvineVoigt model (Gilardi and Sharf, 2002) [8]. The 

HunteCrossley model was selected as the main analytical tool for this study as an 

implicitformulation between velocity and displacement can be determined from this model. 

The HunteCrossley model is determined by substituting n = n1 = n2 + 1 into Eq. (3): 

 

 
 

2.2. HunteCrossley model 

It is not possible to obtain an analytical solution for impact displacement, velocity or 

acceleration as a function of time using Eq. (6). However, Marhefka and Orin (1996) [15] 

demonstrated an implicit relationship formulation between velocity and displacement as: 

 
where v0 is the initial impact velocity and other variables are as already noted. Eq. (8) 

presents a relationship for calculating the linear viscous damping coefficient developed by 

Marhefka and Orin, which was derived with the assumption of a low impact velocity. This 

equation relates the damping and stiffness parameters of the model ( and k) to two 

measurable experimental quantities: the initial impact velocity, v0, and the coefficient of 

restitution,   . 

 



Hunt and Crossley (1975) suggested that the most appropriate value for n depends on the 

geometry of the contacting bodies [14].For this situation, the magnitude of n must reflect the 

fundamental geometry of a sphere impacting a rigid fixed flat plate. Therefore, the Hertzian 

value of 1.5 was chosen [14]. Substituting this in for n in Eq. (6), gives the following Hunte-

Crossley impact model: 

 

 
 

The Hunte-Crossley model requires four parameter values; m,  , k and n. Since the mass of 

the ball core is known a priori and the magnitude of n is fixed by the geometry of the contact, 

only two parameters remain to be obtained:   and k. The magnitudes of these two parameters 

are usefully found from analysis of experimental data obtained from impact tests of the ball 

cores. The stiffness parameter, k, is obtained from data-fitting the force deflection curves 

recorded experimentally for physical impacts of the ball cores with a steel plate, i.e., the 

deviations between the experimental force deflection data points and the model predictions 

were minimised by varying k. For each trial value of k, a corresponding value was quantified 

for the damping parameter,  , using Eq. (8) and measurements of the initial impact velocity 

and coefficient of restitution. Hence,   is velocity dependent and has a value that is specific 

both to the ball type and to the incident impact speed. Thus, the stiffness parameter is an 

empirically-fitted factor in the model as the damping term is a function of k and two 

measurable impact quantities. 

It is possible to relate k to the asymptotic Hertzian stiffness parameter
, k

H. As the strain rate 

approaches zero (i.e., at lower impact speeds), the damping term in Eq. (9) becomes 

negligible Furthermore, as the impact displacement or strain also approaches zero, then the 

material stresses train relationship should also be approximately linear. For this situation, the 

generalised Hertzian stiffness of the ball, 
k
H, can be related to the modulus of elasticity of the 

core, E, as follows: 

 

 
where n is Poisson’s ratio and R is the radius of the core (Young,2001) [16]. The Hertzian 

stiffness is the stiffness that the ball would exhibit under quasistatic compression. For typical 

physical impacts (impact speed of approximately 10 m/s and where maximum ball 

deformation at impact is large) the stiffness exhibited by the ball, k, will be considerably 

different due to non-linearity in the material response at high strain and to strain-rate effects. 

However, Eq. (10) supplies some physical interpretation (although not a complete 

explanation) of the physical basis of k. 

 

2.3. Equivalent Kelvine-Voigt model 

The Kelvine-Voigt model (or any model based on it) has a number of advantages: it is 

simple, the parameters of the model have a physically-meaningful interpretation and it can be 

solved analytically for impact velocity and displacement as a function of time. Its main 



weakness is that some of its predictions are both logically untenable and conflict with 

experimental measurements. More specifically, the Kelvine-Voigt model predicts that contact 

forces at the beginning of the impact are discontinuous (due to the damping term being 

proportional to velocity alone), that coefficients of restitution do not vary impact velocity 

(which is inaccurate, as COR has been shown experimentally to decrease with impact speed) 

and that small attractive force terms appear directly prior to the separation of the bodies 

(when from physical reasoning, if the body has expanded back to its original dimensions, no 

net force should act upon it). Such deficiencies were also observed by Haake et al.(2003) and 

Goodwill and Haake (2001,2004) [10,17,18]. None-theless,comparing the Hunte-Crossley 

model predictions to an analogous Kelvine-Voigt model can facilitate understanding of the 

impact process. 

 

Impacts of the sliotar core against a rigid surface may be shown to be always under-damped. 

Using the impulse-response technique, the solution to the governing differential equation for 

impact displacement (Eq. (4)) is: 

 

 
 

where,  n is the natural frequency,  d is the damped natural frequency, and   is the damping 

factor. Hence, the duration of impact or contact time, tc, can be quantified in terms of the 

mass, damping and stiffness coefficients as: 
 

 
By differentiating the impact displacement with respect to time to find the impact velocity 

and comparing the magnitudes of velocity at the end of the contact time (the rebound 

velocity) to the 

initial velocity, v0 (the approach velocity), a corresponding expression for the coefficient of 

restitution,   , is obtained: 

 

 
 

Based on the KelvineVoigt model, Eqs. (12) and (13) predict the magnitudes of defining 

impact quantities in terms of intrinsic system constants. 

 

By selecting a representative fixed displacement, xR, for each impact condition, and 

substituting into Eq. (9), the nonlinear Hunt-Crossley model is linearly approximated as: 

 



Hence, an equivalent viscous damping coefficient and equivalent linear stiffness can be 

defined as: 

 
An important parameter to quantify the linear impact model is the dimensionless damping 

factor, x, which relates mass, and equivalent linear stiffness and equivalent viscous damping 

coefficient: 

 
 

3. Materials and methods 

3.1. Sliotar cores 

Four sliotar cores were available for this work, which were labelled as ball types AeD. Table 

1 quantifies the dimensions, masses and compositions of these cores. The experimental 

programme consisted of tests to measure the modulus of elasticity of each ball core, to assess 

its response under quasi-static loading and to measure its performance at full impact 

conditions. The results for one sample of each ball type are presented in this paper. 

 

 
 

3.2. Hertz stiffness parameter tests 

In order to measure the modulus of elasticity of each material (polyurethane for ball A and B; 

cork for ball C and D), blocks (in the shape of rectangular cuboids) were cut centrally from 

randomly sampled ball cores and subjected to quasi-static compression using a Stable Micro 

Systems TA.HD plus texture analyser (Stable Micro Systems Ltd., Godalming, Surrey, UK) 

with a 250 kg (2.452 kN) load cell. Rectangular blocks were preferred to cylindrical samples 

for this work as each sample could be cut precisely from the spherical cores to have 

dimensions which exhibited little variation along the direction of loading, which would be 

considerably more difficult to achieve with cylindrical samples.  

Each block had a height of approximately 31 mm, measured parallel to the direction of 

loading, and cross-sectional dimensions of 22 mm by 24 mm. The contact surfaces of the 

texture analyser were made of stainless steel with a polished surface finish to reduce the 

coefficient of friction. Each block was compressed at 10  m/s until a deflection of 10 mm 

was attained. Blocks were tested once before being discarded, and the Mullins effect was 

neglected. The force and deflection data obtained were used to calculate the modulus of 

elasticity. Poisson’s ratio was taken as 0.4 for all samples. Intact sliotar cores of each type 



were compressed similarly to maximum deflections of 16 mm to determine the force 

deflection behaviour of these spherical bodies. The force (F) and deflection (x) data for each 

ball from these tests were fitted to the equation presented in Eq. (17), with the Hertzian 

stiffness of the ball, kH, and with the exponent fixed at 1.5: 

 

The magnitude of the constant term (the Hertzian stiffness parameter, kH), was found by 

least-squares data fitting using the curve fitting toolbox in MATLAB (v.7.9.0, The 

MathWorks, Natick, MA, USA). Thus the Hertzian stiffness parameter was determined using 

two different methods, one from engineering constants (Eq.(10)) and phenomenologically 

from impact results, and the results compared. 

 

3.3. Full impact experiments 

The four sliotar core types were subjected to rigid-body impacts in the velocity range of 5-25 

m/s (15-90 km/h) using a test system specifically commissioned to characterise the impact 

response of sports balls. Ball speed before and after impact was acquired using high-speed 

imaging at 4000 fps, with the data being extracted using an image processing algorithm 

(Collins et al., 2009) [19]. Viscoelastic properties of the cores were acquired from forceetime 

data obtained using a load-cell integrated within the fixed rigid impact plate. Calibration of 

this system showed all force and impulse measurements to be within _10 N and _3% of actual 

values respectively [20]. The experimentally-measured deflections corresponded to the 

centre-of-mass displacements of the balls, as calculated from the double time integral of the 

force data divided by ball mass. Further details of these experiments are provided in a 

previous publication (Collins et al., 2010) [20]. Fig. 1 illustrates the deformation of a ball 

core upon impact with the fixed rigid steel impact plate. 

 

 
 

4. Results and discussion 

4.1. Modulus of elasticity and Hertzian contact stiffness 

 Fig. 2 compares the force versus deflection curves for experimental quasi-static compression 

tests of intact sliotar cores with the corresponding power law fitted to the data using the 

Hertzian exponent value of 1.5, using Eq. (17). These fitted power law curves are shown as 

red dashed lines on Fig. 2. The moduli of elasticity and Hertzian stiffness parameters are 

directly proportional, as shown by Eq. (10). The data is shown over the range from 0 to 2.5 

mm, as Eq. (10) is valid only for small displacements. The power law fitted the data 

extremely well for both of the modern polymer cores (R
2
 values in excess of 99%) and the fit 

was also good for cores C and D (R2 values were still above 96%). 



 

 
 

The good agreement between theory and experiment indicates that, at least at low load levels 

and strain rates, the contact mechanics of the ball cores were described well by Hertzian 

theory.As discussed in Section 3.2, the moduli of elasticity were calculated from quasi-static 

compression tests of regular blocks cut from each ball core. These results are shown in Table 

2, along with the corresponding predicted Hertzian stiffness parameters (kH, calculated from 

Eq. (10)). 

The cork-based cores C and D had significantly higher moduli of elasticity than the 

polyurethane-based cores of A and B. Core C had the largest modulus of elasticity reflecting 

the fact that its composition was 81% cork while that of core D was only 38% cork. This in 

turn meant that the corresponding theoretical Hertzian stiffness, kH, was greater for these 

cores. For the polyurethanebased cores, there was reasonable agreement between the 

theoretical Hertzian stiffness parameter and the value measured from the experimental quasi-

static tests, while the correspondence was considerably poorer for the cork-based cores. 

However, core C was predicted as the stiffest in both approaches. There were two main 

reasons for the disparity between the theoretical and experimental Hertzian stiffness 

parameters. Firstly, the power law regressions in Fig. 2 were fitted using a 2 mm range of 

displacement (0.5e2.5 mm); if the regression were performed using a different range of 

displacement, this would significantly affect the results. 



 
 

In general, avoiding the non-linearity portions at the start and end sections of these curves 

provided better results. Secondly, initial part of the stress-strain curves showed large 

deviations from linearity, which may be due to effects such as buckling, collapse or 

consolidation of the core microstructure. As for the power law regressions, the calculated 

moduli of elasticity varied depending on the region defined to be linear. 

 

4.2. Non-linear impact parameters 

An algorithm was written in MATLAB to find the optimum value of k for each core to fit the 

Hunte-Crossley model to the impact data. The damping parameter,  , was calculated from 

Eq(8) for each ball and nominal impact speed. Table 3 summarises the magnitudes of k and   

found for each ball core. The Hunte-Crossley stiffness parameter for the ball cores, k, did not 

vary greatly between the four different ball types. This was the case even though the moduli 

of elasticity of the ball cores showed significant differences (Table 2) and the Hertzian 

stiffness parameters are proportional to these moduli (Eq. (10)). Ball C had the largest value 

for k which may reflect the fact that it was the ball with the largest modulus of elasticity. The 

damping parameter, , was particularly sensitive to impact speed, decreasing with higher 

speeds. Again, the magnitude of l for ball C was distinct from the other three core materials. 

As ball C had the largest stiffness and damping parameters, it would be expected to develop 

the largest contact forces during impact. 

 

 
 



4.3. Non-linear analysis of impact response 

Fig. 3 shows plots of force versus deflection at the three impact speeds for each ball type as 

recorded experimentally and as predicted by the model, while Fig. 4 shows equivalent plots 

of deflection versus time. Agreement between experiment and model was generally very 

good. These two figures show only one set of experimental data (in blue) for comparison 

purposes. In all cases,the set chosen for comparison was representative of all the data 

recorded. The maximum contact force was relatively insensitive to ball type, although ball C 

was again most distinct from the others. Unsurprisingly, the maximum contact force was very 

sensitive to impact speed; typically it varied from 750 N at 5 m/s impact to 2500 N at 15 m/s 

and 4500 N at 25 m/s. The maximum impact deflection also varied considerably with impact 

speed: 3 mm at 5 m/s impact, 6 mm at 15 m/s and 10 mm at 25 m/s. 

 

 
 

The model had a slight tendency to over-predict both the maximum force and maximum 

deflection for each ball type at each impact speed.Overall, ball C gave the largest maximum 

impact force but the smallest maximum displacement of the four cores tested; its short and 

hard contact reflected the large stiffness and damping forces that were generated in impact 

(Fig. 5).The contact times are shown on the horizontal axes of Fig. 4. 



 

 
 

The contact times recorded experimentally decreased with increasing impact velocity 

although its sensitivity to speed was not substantial. 

The model generally captured the experimental contact times well, although a tendency to 

under-predict the experimental data was apparent for nine of the twelve points shown. 

However, the maximum difference between the experimental and model contact times was 

low: only 13.5% of the experimental data, while the mean difference was 8.3%. The model 

contact time was quite sensitive to changes in the impact speed: average model contact times 

were 2.14 ms at 5 m/s which reduced to 1.58 ms at 25 m/s. 

 

4.4. Equivalent linear system analysis 

By selecting a representative or characteristic value for impact deflection, xR, an equivalent 

viscous damping coefficient, equivalent linear stiffness and dimensionless damping factor 

can be determined for each ball type using Eqs. (15) and (16). This representative deflection 

was set as the mean of the deflections recorded during an impact. Table 4 summarises the 

representative deflections measured and the results calculated for the equivalent linear 

dynamic model, where the necessary values of k and l are taken from Table 3. 



 
 

The representative deflection was quite dependent on impact speed, typically rising from less 

than 2mm at 5 m/s to over 6mm at 25 m/s, but relatively insensitive to the ball type. The 

calculated equivalent damping and stiffness coefficients increased with impact speed for each 

ball. As expected,  eq and keq were highest for ball C at each impact speed (except  eq at 5 

m/s).  

 

 
 



It is apparent that cores made of traditional materials incorporating cork have greater viscous 

damping and are stiffer than modern polyurethane-based polymer cores. The dimensionless 

damping factor was relatively invariant for all ball types and had a moderate tendency to 

increase with larger impact speeds. 

Using these magnitudes of equivalent linear stiffness and damping, predictions of both the 

contact time and the coefficient of restitution were made, using Eqs. (12) and (13) 

respectively, and compared to the experimental values. These results are shown in Table 

5.For contact time, the closest correspondence between the experimental data and the model 

predictions was obtained at the maximum velocity of 25 m/s, and the predictive ability of the 

equivalent linear model deteriorated somewhat as the impact velocity was decreased.  

 

 
 

The deviations between the experimental coefficients of restitution and the equivalent model 

predictions showed the opposite trend, increasing with impact velocity. The model had a 

tendency to over-predict the coefficients of restitution,which was seen for 11 of the 12 points. 

The mean and largest differences between the model and experimental contact times were 

7.6% and 24.4%, respectively, while the mean differences when the data were partitioned by 

impact velocity were 12.4% at 5 m/s,3.8% at 15 m/s and only 2.5% at 25 m/s. All of these 

percentages are calculated with respect to the experimental data. The corresponding mean 

and maximum differences for the coefficients of restitution were 13.1% and 20.1%, and mean 

differences subdivided by particle velocity were 6.6% at 5 m/s, 12.8% at 15 m/s and 18.3% at 

25 m/s. The primary explanation for the differences between the model and experimental 

coefficients of restitution is the use of only one value of k for each ball core (Table 3) rather 

than separate values for each core type and impact velocity. Therefore the values obtained 

using this approach are a compromise for the three velocities assessed, as is the equivalent 



linear stiffness (Eq. (15)) and hence the coefficient of restitution (Eq. (13)).Overall, the 

equivalent linear model predicted the parameters of contact time and coefficient of restitution 

quite well. 

The model confirmed that core C gave the shortest contact time. Furthermore,the model 

predicted that the coefficients of restitution decreased with increasing impact speed for all 

ball cores, typically from 0.64 at 5 m/s to 0.56 at 25 m/s. Core type did not appear to be a 

major 

factor here. As with the contact time, the coefficient of restitution did not display a large 

sensitivity to impact speed. From a practical viewpoint, it is useful to be able to predict the 

contact durations accurately using such a model as it can be problematic to measure short 

contact durations experimentally outside of a controlled laboratory setting. 

 

4.5. Parameter study 

With the developed and validated model of sliotar impact, studies were conducted to 

determine the sensitivity of the impact measurements (force, displacement, and contact time) 

to the stiffness of the ball core. For this study, the sensitivity of the maximum impact force, 

maximum impact displacement and the contact time during impact to the core stiffness 

parameter, k, was examined. The core mass was taken to be fixed at 90 g and one sliotar core 

impact speed was selected of 15 m/s. The mean coefficient of restitution at this impact speed 

for the four cores was 0.5354, which was used in the analysis (standard deviation of 0.0080). 

k was adjusted between 2 _ 106 N/m1.5 and 5 _106 N/m1.5 as this range was realistic and the 

higher values might arise if cores were manufactured from a stiffer material. Fig. 6(a) 

illustrates how force varies with displacement and Fig. 6(b) shows how deflection and contact 

time vary for this range of stiffness parameters. As k increased, the maximum force 

increased, while the maximum deflection and contact time both decreased. The increasing 

nonlinear nature of the contact at greater values of the stiffness parameter was clearly 

evident. More generally, the development of a physically-based model of ball impact can be 

used to indicate how the parameters of stiffness and damping can be selected to improve ball 

performance. 

 

 
 



For example, a desirable aim is to have the coefficient of restitution as invariant as possible to 

promote repeatable behaviour. The coefficient of restitution falls with increasing impact 

velocity. The development of an expression for the coefficient of restitution in terms of 

equivalent linear damping and equivalent viscous damping coefficient can permit the settings 

of damping and stiffness that give the best control over the restitution coefficient to be 

estimated. 

 

5. Conclusions 

The objective of this study was to develop a model for sliotar core impact constitutive 

behaviour that required the minimum number of model parameters whilst achieving as good a 

fit as possible compared to the experimental data. Previous attempts at modelling ball impact 

were heavily reliant upon their phenomenological derivation, i.e., the modelled fit was 

achieved by incorporating parameters of questionable relevance. Therefore, it was regarded 

as highly desirable that the parameters of the model developed in this paper would be 

interpretable in terms of physical characteristics of the ball core. By assuming the relationship 

is known between manufacturing input conditions and resultant product material properties, a 

non-phenomenologically derived model bridges the knowledge gap between ball material 

physical properties and associated impact response for a range of speeds. The formation of 

such a parametrically-intuitive ball model would also be applicable to ball/hurley or 

ball/ground impacts. In this study, impact models to capture the dynamics of a collision 

between a sliotar core and a fixed rigid steel plate were developed and their predictions 

compared to experimental data. While the models required relatively few fitted constants, 

their output compared very well to the experimental results. The quasistatic response was 

described well by Hertzian theory. When the HunteCrossley models were used to predict the 

maximum contact force, the maximum deflection and the contact duration for each ball type 

and impact speed, the model outputs compared well to the measured experimental data. This 

can be seen in that the mean difference between experimental and model contact times was 

only 8.3%. The samewas true for the equivalent KelvineVoigt linear model, for which the 

mean differences between the experimental and model contact durations and coefficients of 

restitution were 7.6% and 13.1%, respectively. 

The linear KelvineVoigt model parameters were more physically interpretable and while this 

model type would not generally give a good comparison with experimental results, the 

parameters from it permitted measured impact quantities to be well related to their effects on 

results. From this model, the impact velocity was found to be an important parameter in 

determining constitutive response. As ball impact speed increased, ball deflection increased 

whereas differences in contact time as a percentage of overall contact time reduced. The 

sensitivity of coefficient of restitution and contact time predictions did not showa significant 

dependence on the initial contact speed of the ball. 
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