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Abstract. This paper addresses the problem of fast Human Activity
Recognition (HAR) in visual lifelogging. We identify the importance of
visual features related to HAR and we specifically evaluate the HAR dis-
crimination potential of Colour Histograms and Histogram of Oriented
Gradients. In our evaluation we show that colour can be a low-cost and
e↵ective means of low-cost HAR when performing single-user classifi-
cation. It is also noted that, while much more e�cient, global image
descriptors perform as well or better than local descriptors in our HAR
experiments. We believe that both of these findings are due to the fact
that a user’s lifelog is rich in reoccurring scenes and environments.

1 Introduction

Recent technological development in personal and ubiquitous computing, data
storage and computational power has provided the environment for lifelogging to
become a normative activity [1]. At the same time, Human Activity Recognition
(HAR), a well-established research field is receiving increasing attention, however
much of this attention has been directed towards using fixed cameras observing
people, rather than from the point of view of the wearer. HAR from lifeloggers’
point of view visual context has been described by Steve Mann as “sousveillance”
(di↵erent than the classic surveillance concept) in [2]. In sousveillance we do not
get to observe what the human or lifelogger is doing, but rather the view that
the lifelogger is seeing. This provides a visual context of the user and this visual
context is a source for HAR.

The purpose of this research e↵ort is to examine the feasibility of fully-
automatic, low-cost HAR in lifelogging. When considering HAR in lifelogging
we mean the process of identifying what activity the wearer is performing at
the moment of capture. While HAR may be performed at any point in the
lifecycle of lifelogging data (capture time, processing time, access and feedback
time), our key interest here is in supporting real-time low-cost HAR using visual
lifelog data. Consider the following scenario, a Google Glass wearer, upon the
advice of his doctor, is interested in identifying and logging his dietary habits.
Given current battery considerations, continual capture and upload to a server
for analysis is not feasible. A HAR algorithm, successfully running on his device
would be able to trigger capture of a series of detailed photos upon detection of
and eating event.
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Another scenario is where a lifelogger is interested in storing a record of his
life activities, but due to privacy considerations with wearable cameras, he does
not want to transmit and store wearable camera photos. Such considerations
motivate this paper.

The ability to capture visual user context in real-time would be an enabling
technology for many applications. Considerations of battery life and network-
transport delay means that continual transmission of visual content to a server
for analysis and feedback is far from ideal. In this work, we illustrate how low-
cost HAR can be achieved on a per-user basis and we evaluate this by means of
an experimental evaluation on data gathered from 5 users over 14 days of visual
lifelog data. It is our conjecture that a low-cost implementation of HAR would
be more applicable to on-device deployment than more conventional techniques
such as SIFT. We show that the colour distribution combined with the global
image gradient intensity performs well on low resolution images for a HAR task
for an individual user.

The rest of the paper is as follows: in 2 we outline previous work done on
activity recognition. In section 3 we provide a description of the activities, the
visual data and the features extraced for it. Subsequently in section 4 we describe
our evaluation method, then in section 5 the results we have obtained and in
section 6 what conclusions we can draw from this initial exploration.

2 Related works

Lifelogging represents a phenomenon whereby individuals can digitally record
their own daily lives in varying amounts of detail and for a variety of purposes.
Although there are many definitions in the literature, we define lifelogging to be
a form of pervasive computing which utilises software and sensors to generate a
permanent, private and unified multimedia record of the totality of an individ-
ual’s life experience and makes it available in a secure and pervasive manner.
A key aspect of this definition is that the lifelog should archive the totality of
an individual’s experiences, outlined in Bell and Gemmels’ vision of total cap-
ture [3]. This means that lifelogging will generate a rich set of multimedia data,
gathered from wearable sensors on the lifelogger.

One early attempt in activity recognition in lifelogging is by Doherty, et al. in
[4], where the authors aimed at developing a trait interpreter tool in lifelogging
data. Some of the target traits were activities, such as shopping and using mobile
phone. An average crossover accuracy of 61% was reported. The crossover is
between system output and lifelogger self-report. The authors used MPEG-7
features, namely ScalableColor and ColorLayout.

There is a research direction within the domain of HAR from visual lifelog
data, where certain objects are detected and the co-occurrence of these within
visual images forms the basis of activity recognition, as by Wang and Smeaton
in [5], where they report an average F1-score over all activities, used in their
experiments, of 90% with a baseline object detection accuracy of 65% on av-
erage. A system with such classification framework would be di�cult run in
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real-time context, because it is necessary to determine what objects are needed
to detect in order to determine the activities for a particular user. In practice
human assistance would be needed for that, hence the system would not be fully
automatic.

Another approach is the work by Hamm et al. in [6], where global image
descriptors are combined with other sensory data to form what the authors call
a multi-sensory bag-of-words. The work produces an average F1-score for the
best classifier of 92%, however this is averaged from the F1-scores of the trained
classifiers per activity. The authors do not propose a model, where they fuse
all of the per activity classifiers to form a final activity classification model. If,
for example, two activities were mutually exclusive then the system should be
able to choose only one activity, but not both. The sensors that they use are:
digital camera, accelerometer, audio and GPS. The authors have shown that
fusing di↵erent sensors improves the accuracy and also show that discriminative
models tend to perform better on global descriptors. The visual features used in
[6] are colour histograms in HSV-space.

In this work we aim to provide for a fully automatic, low-cost and fast classi-
fication model for HAR from visual lifelog data that has potential to be deployed
on the lifelogging device. We achieve that by examining a more direct relationship
between the visual context and the activity being performed, thus rendering our
classification process automatic. We employ computationally inexpensive visual
features operating over low resolution images.

3 HAR Technique

Our HAR technique starts with visual feature extraction from image data. The
chosen feature(s) (which can be any or a combination of Colour Histogram,
HOG, SIFT) are the one(s) that yielded the best results. Di↵erent parameters
(such as image resolution, colour bins, number of gradient orientations, etc.)
would also be tuned at this stage. Then the feature set is used for training a
per-activity and per-user SVM classifier (with radial-basis kernel). We aim to
improve the performance of those classifiers. Our experimental data set is divided
into training and evaluation subsets as it is explained later on in section 4.

In developing the HAR technique, we identified five research questions that
we needed to address. Firstly, the experiments that we set up were to determine
whether the amount of training examples a↵ects the classification performance.
This was achieved by comparing the F1-scores per activity for two data sets,
where the second one contained an additional training examples for one activity.
Secondly, given the same configuration, we examined whether this a↵ected the
classification performance for the rest of the activities. Thirdly, we examined
various combinations of features namely colour with texture and local with global
features. Fourthly, we carried out tests to see what feature scaling techniques
would be most appropriate. Finally we compare the computational e�ciency of
extractions of the di↵erent features.
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3.1 Human Activities

In selecting a set of human activities for classification, we turned to the work
of Kahneman, et al. in [7], in which the 15 most enjoyable daily activities of
people were identified by means of a large-scale survey. Of the 15 activities
identified, we have chosen 9 for this work. We purposely excluded 5 activities,
namely ‘intimate relations’, ‘relaxing’, ‘pray/worship/meditate’, ‘napping’ and
‘taking care of children’, because we consider those to be private or intimate
and beyond the scope of our current research. One final activity, ‘exercising’,
is excluded because it was not actually present in the lifelog of the any of 5
users. This is most probably due to the di�culties of wearing a lanyard mounted
camera during exercise.

3.2 Visual Data and Annotations

As mentioned above, this paper focuses on processing the visual input. Those
are lifelog images taken from an OMG Autographer wearable camera1 which is a
fish-eye camera that can be worn on a lanyard around the neck, or clipped onto
clothing. In normal use, it is oriented with the viewpoint of the wearer. We had
the camera configured to capture an image approximately every 20-30 seconds.

The data set consists of 41,397 images from 5 users, with 14 days of lifelog
data per user. The experiments were carried out mainly on one user’s data which
consists of 4,315 images. The rest of the data from 4 other users with a total of
37,082 images was used for validating the cross-user generalisation of the selected
features. It is to be noted that the lifelogging was not continuous and some gaps
may occur, in terms of consecutive days. See Fig. 1 for examples of the visual
lifelog data that we employed. The visual repetition of some human activities
are clearly visible.

We note the unbalanced nature of lifelog data, due to the naturally varying
lifestyle across the users. Refer to Table 1 for a detailed distribution. In Table 1
‘N/A’ stands for Not Available.

Table 1. Activity distributions among users’ lifelog data in number of images

Activity User 1 User 2 User 3 User 4 User 5
1.Commuting 1317 2068 2937 373 2566
2.Computer 2140 5223 3969 4961 3337
3.Eating 59 505 538 558 677
4.Housework 63 205 90 57 111
5.On the Phone 23 1087 436 N/A 227
6.Preparing Food 33 130 144 989 12
7.Shopping N/A 98 228 13 408
8.Socialising 680 845 487 525 2800
9.Watching TV N/A 192 386 N/A N/A

1 www.autographer.com
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Fig. 1. Example activities showing the similar visual context of the activities. This
is also shows that some activities occur in the same environment, which a↵ects the
classification process. From left column to right column: commuting, computer, on the
phone, eating, socialising.

3.3 Visual Features

For fast image processing, the resolution of the lifelog images was reduced to
91x68 pixels keeping the original aspect ratio. We chose two features, namely
colour histogram and Histogram of Oriented Gradients (HOG) by Dalal and
Triggs in [8] and we examine the importance of colour and texture and the im-
portance of local and global descriptors and their combination. Colour histogram
is a global image descriptor and provides one colour distribution per image. The
latter feature (HOG) is a local descriptor and provides texture information per
image.

Colour Histogram. For each image colour histograms were extracted, where
the combination of the RGB values are preserved. We extracted Colour His-
tograms at 16 bins, 8 bins and 4 bins per each channel. More detailed colour in-
formation such as 32, 64, 128 and 256 bins per channel, may prove more valuable,
however the feature vectors would be larger, which could have a consequential
impact on the computational time of the SVM classification process. Hence we
compared 4, 8 and 16 bins per channel, giving 64, 512 and 4096 bins respec-
tively. All of them have comparable performance and we can report that 512
bins and 4096 bins give similar performance on the test that we have performed,
therefore we chose the 512 bin histogram due to the considerable reduction in
computation time, which is due to the time complexity of the SVM. We have
subsequently used the 512 bin RGB histogram for all of the experimentation in
this paper, since the colour precision at this point proves to be su�cient.

Histogram of Oriented Gradients. HOG features were extracted. The for-
mat is: 9 orientation bins; 8 by 8 pixels per cell; 2 by 2 cells per block, hence
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16 by 16 pixels per block. Hence a feature vector of length 2,520 is produced,
where 280 cell responses are captured, giving 9 orientations each. The amount of
cell responses is derived from the per-block normalisations, however the blocks
are overlapping, as suggested in [8]. The parameters were also chosen as per
[8], since those have shown to give the best results. The authors’ aim in [8]
was to improve object recognition from a detection window and they suggest
that this gives comparative results to the state-of-the-art object classifiers. We
have chosen HOG as it describes a scene by describing the gradient intensities
in each direction, per cell and those normalised per neighbouring cells. We will
henceforth refer to the original HOG as ‘local’ HOG.

We altered HOG’s locality by constructing a ‘global’ HOG and also evaluated
that. The evaluation of the ‘global’ HOG is done in order to evaluate whether
the locality of a feature a↵ects the classifier. Consider the following scenario:
given several ‘computer’ scenes, the computer may appear at di↵erent locations
in the scenes, which would a↵ect the local HOG, but would not a↵ect the global
HOG. This hypothesis was evaluated by the introduction of ‘global’ HOG.

We did so by modifying the parameters, so that the cell becomes 91 by 68
pixels and there is only 1 by 1 cell per block, thus we allow the algorithm to
only compute the gradient intensity for the entire image, instead of breaking it
down into cells and blocks. This can be seen as global texture descriptor, similar
to but not the same as an edge orientation histogram. In the latter only edges
are counted per direction.

Considering Scale Invariant Feature Transform Scale Invariant Feature
Transform (SIFT) could be considered to be a widely deployed feature extraction
approach. Hence we employed SIFT and we benchmarked the performance of
SIFT when compared to the features employed in this paper. We used dense
sampling on every 6 pixels and OpponentSIFT for a descriptor as suggested
and implemented by Koen van de Sande in [9]. We used the codebook model
to construct a codeword histogram per image and evaluated that with a RBF
SVM. The resulting descriptor of an image is a normalised histogram of all the
visual words encountered in the image, binned into their respective codewords
via clustering. We chose a codebook of size 512, which reported comparable
results to those obtained by RGB and HOG features when using the full sized
image, but lower performance when using low resolution images, where many
visual details might be lost.

For the computing performance comparison, colour histogram and SIFT were
employed as executable binary files, implemented in C/C++, and were ran on
the same machine over the same set of images, performing the same input-output
operations. We report that the average extraction time of SIFT descriptor from
one image is 0.05s, as per the implementation provided [9], whereas using an
RGB histogram extraction, as provided by OpenCV takes about 0.00037s and
a binary executable implementation of HOG extracts the feature in 0.00032s.
Thus the total extraction time of HOG and RGB histograms together is 0.0069,
which make both of these features many times quicker to extract than SIFT. We
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do not consider the codebook creation also, even though it is a lengthy process,
since it is only needed once, whereas the feature extraction process per image is
required for all new input.

For this reason, and given the focus of this research on fast and e�cient local
processing that could be applied to a relatively low-power device (such as Google
Glass), we decided that the overhead of implementing SIFT was too great for
our use-case, so we proceed to compare and evaluate the two prior algorithms.

4 Evaluation

Evaluation was carried out via splitting the data set into 80% training examples
and 20% examples for evaluation. In this instance the original distribution of
data was kept, meaning that for each activity the amount of training examples
is 80% and the amount of evaluation examples is 20% out of the total available
examples of that activity.

The evaluation metric that we used is F1-score. We obtain the F1-score, as
it is expressed in terms of the harmonic mean of precision and recall. However,
we work within a classification context, hence both the precision and the recall
were obtained in that context. In the classification context, TP refers to True
Positives, FP refers to False Positives and FN refers to False Negatives, hence
we calculate the F1-score as:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 = 2 ⇤ Precision ⇤Recall

Precision+Recall

When performing the classification of the various features, we also used feature
scaling, because that improved the performance of all activity classifiers over
the same features. Based on a prior evaluation, the feature scaling outlined in
equation (1) was selected because it had proven to be the most successful in
initial evaluations on colour histograms and HOG.

xj = (xj �mean)/range

xj = xj/max (1)

xj = xj/

X

X

5 Results

We noted that for the visually similar activities, the number of the positive
training examples a↵ected the F1-score, hence the performance of the classifier.
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Whereas for activities whose context is more visually dissimilar that was not
necessarily the case. By dissimilar we mean that the visual context is di↵erent
and vice versa for visually similar.

Table 2. F1-scores of the available activities for User 1. Each activity has its own
classifier.

Activity local HOG RGB Hist global HOG + RGB Hist
1.Commuting 0.82 0.94 0.95
2.Computer 0.88 0.92 0.93
3.Eating 0.59 0.66 0.77
4.Housework 0.27 0.13 0.35
5.On the Phone 0.40 0.66 0.86
6.Preparing Food 0.67 0.57 0.67
7.Socialising 0.57 0.77 0.77

See Table 2 ‘local HOG’ for results. When using global HOG, we had actually
found an F1-score of 0 for all activities except for ‘computer’, where that was
0.66, so this did not perform well at all.
When combining both the HOG features and the colour histograms, we used
both types of HOG. When using the local HOG we had no success whatsoever,
in spite of the promising results from both in Table 2 - F1-scores for User 1
above. We got low F1-score throughout the activities. But when we combined
the RGB histogram with the global HOG descriptor we got an improvement in
the classification performance. The RGB histogram alone gives an average F1-
score of 65%, whereas in combination with the global HOG the average F1-score
becomes 75%. See Table 2 under ‘global HOG + RGB Hist’.

Given the results in Table 2, we can say that colour provides for a greater
discriminative potential than texture when comes to HAR. We can also say
that a global image descriptor in our case could outperform local ones. We have
obtained the best results from using a RGB histogram combined with a global
HOG.

With regards to the SVM for the activity classification process, we used a
radial-basis-function kernel SVM with hyper-parameters C=1.0 and �=1.0 for all
of the results presented, except where stated otherwise. We present a grid-search
optimisation for C being 10 whose exponent ranges from -2 to 2 and � being 10
whose exponent ranges from 2 to -4. This was used purely for exploratory data
analysis in order to understand the relationship between the visual context and
performed activity by the wearer. If we observe a high C, that means that those
activities have similar visual contexts that are di�cult to distinguish between.
Respectively for � where this hyper-parameter is low it means that the data
is diverse, whereas with high values it means that those activities have a less
diverse visual context.
Given Table 3, we can see that in terms of texture as a local descriptor, activi-
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Table 3. C and � optimisation in the SVM Classifier

local HOG RGB Hist
Activity F1-score C � F1-score C �
1.Commuting 0.89 10 0.1 0.95 1 1
2.Computer 0.92 0.10 0.1 0.93 100 1
3.Eating 0.62 0.01 0.1 0.77 100 1
4.Housework 0.47 0.01 0.1 0.29 0.01 0.1
5.On the Phone 0.66 10 0.1 0.66 0.01 1
6.Preparing Food 0.66 1 0.01 0.80 10 1
7.Socialising 0.58 10 0.1 0.81 10 1

ties 1, 5 and 8 are di�cult to distinguish from the rest of the training examples.
Whereas in the case of the colour histogram, activities 2, 3, 6 and 8 are di�cult
to discriminate from the rest, due to the training examples overlapping with each
other. All activities’ classifiers whose C parameter is above 1 are considered to
generalise poorly for new examples.

We validated the importance of colour for activity recognition over the rest
of the lifelog data provided by the other four users. See the Table 4 for a more
detailed information.

Table 4. F1-scores for the rest of the users on Colour Histograms

User 2 User 3 User 4 User 5
Activity Qty F1 Qty F1 Qty F1 Qty F1
1.Commuting 2068 0.86 2937 0.92 373 0.47 2566 0.81
2.Computer 5223 0.92 3969 0.90 4961 0.96 3337 0.94
3.Eating 505 0.51 538 0.53 558 0.70 677 0.84
4.Housework 205 0.57 90 0.09 57 0.74 111 0.57
5.On the Phone 1087 0.68 436 0.63 N/A N/A 227 0.41
6.Preparing Food 130 0.74 144 0.49 989 0.85 12 0.0
7.Shopping 98 0.5 228 0.60 13 1.0 408 0.73
8.Socialising 845 0.64 487 0.50 525 0.74 2800 0.83
9.Watching TV 192 0.59 386 0.90 N/A N/A N/A N/A

It is our consideration that colour acts as a discriminator between the ac-
tivities that a user can be engaged in during daily life and based on our ex-
perimentation, this has proven to be su�cient to classify the activities within
the data of one user. However, the relation between the user’s activity and the
colour distribution of the visual context is user-dependent. We applied cross-user
validation, meaning that the classifier was trained on one user’s data and then
used for validation on the another user’s data. Training on user 3 and validating
on user 2 has an average F1-score of 19% for all activities. The rest is as follows:
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user 3 on user 4 is 12%; user 3 on user 5 is 18%; user 2 on user 4 is 9%; user 3
on user 5 is 20%.

6 Conclusion

In this paper we examined the importance of texture and colour as well local
versus global image descriptors in order to determine the features with the best
classification performance and low-cost extraction time. We evaluated the per-
formance of HOG, RGB Histograms and combinations thereof and used SIFT
as a benchmark for time tests.

There are several conclusions that we can derive from our results. First, local
HOG descriptors do not always provide the best classification performance in
our scenario. Although what we named local HOG outperformed significantly
what we proposed as global HOG, it (the local HOG) was outperformed by
the colour histogram. Second, we have verified the importance of colour on the
rest of the lifeloggers’ data and we can show that the colour distribution of the
visual context of a lifelogger is related to the activity, which the lifelogger is
performing. Third, texture information is important, and we can confirm that
it a↵ects the performance of the classifier positively as with the global HOG.
Lastly, the trained classifiers are user-dependent, therefore classifier trained on
one lifelogger cannot used for inference on other lifeloggers.

We also demonstrated how real-time HAR is possible with computational and
storage e�cient processing, due to the low resolution that still provides good re-
sults. Finally, we cannot state that the visual aspect for HAR is alone su�cient.
The performance of HAR on low-power devices could potentially be significantly
enhanced by the integration of additional sensors, such as accelerometers, loca-
tion, etc.

Future Work
With regard to limitations of this work, we have noted di↵erent luminance

conditions in the images and we believe that this may lead to misclassification.
Considering alternative colour models, such as HSV, is a further step, where the
idea is to neutralise any shadows that may appear in the visual context due to
di↵erent luminance conditions in the lifelog.

We also recognise the need for a larger sample of people in order to validate
our findings. We also note the necessity for more lifestyle activities. This is due to
a possible direction of the research into fully characterising the day of a lifelogger
as opposed to identifying occasional scenes where the lifelogger is performing a
certain activity.

A further direction of the research may go into a multisensory approach as
that will inevitably increase the classification performance. We also confirm the
need, as suggested by previous research that an ontology for an activity needs
to be defined as that may have a direct impact on the classification framework
and hence the classification performance.
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