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Tomonori Hasegawa

On the Evolution of Genotype-Phenotype Mapping:
Exploring Viability in the Avida Artificial Life System

Abstract

The seminal architecture of machine self-reproduction originally formulated by John von

Neumann underpins the mechanism of self-reproduction equipped with genotype and

phenotype. In this thesis, initially, a hand-designed prototype von Neumann style self-

reproducer as an ancestor is described within the context of the artificial life system Avida.

The behaviour of the prototype self-reproducer is studied in search of evolvable genotype-

phenotype mapping that may potentially give rise to evolvable complexity. A finding of

immediate degeneration of the prototype into a self-copying mode of reproduction requires

further systematic analysis of mutational pathways. Through demarcating a feasible and

plausible characterisation and classification of strains, the notion of viability is revisited,

which ends up being defined as quantitative potential for exponential population growth.

Based on this, a framework of analysis of mutants’ evolutionary potential is proposed, and,

subsequently, the implementation of an enhanced version of the standard Avida analysis

tool for viability analysis as well as the application of it to the prototype self-reproducer

strain are demonstrated. Initial results from a one-step single-point-mutation space of the

prototype, and further, from a multi-step mutation space, are presented. In the particular

case of the analysis of the prototype, the majority of mutants unsurprisingly turn out

to be simply infertile, without viability; whereas mutants that prove to be viable are a

minority. Nevertheless, by and large, it is pointed out that distinguishing reproduction

modes algorithmically is still an open question, much less finer-grained distinction of von

Neumann style self-reproducers. Including this issue, specific limitations of the enhanced

analysis are discussed for future investigation in this direction.



Chapter 1

Introduction

1.1 Thesis Statement

A hand-designed prototype von Neumann style self-reproducer (von Neumann, 1966) in

the context of the artificial life platform known as Avida is investigated with respect

to evolutionary characteristics peculiar to this reproduction architecture by means of a

proposed scheme of mutation analysis. It is hypothesised that mutational pathways to

which such a self-reproducer will give rise are distinct from those of a standard self-copying

type of self-reproducer, especially in respect of the evolvability of the genotype-phenotype

mapping. An analysis method is explored and developed focusing on searching for viability,

or long-term evolutionary potential, of strains that mutants potentially exhibit within a

lineage.

1.2 Motivation and Objectives

The seminal architecture of machine self-reproduction originally formulated by John von

Neumann underpins the mechanism of self-reproduction equipped with genotype and phe-

notype (McMullin, 2000). This architecture is conjectured to play a non-trivial role in

evolvable complexity of self-reproducers equipped with it through allowing room for evolv-

able genotype-phenotype mapping. To date there has been limited understanding of what

potential evolvable genotype-phenotype mapping has in effect. The aim of the investigation

described in this thesis is to provide a stepping stone to better analysis and understand-

ing of the potential of evolvable genotype-phenotype mapping, grounded in a particular

setting of computational agents embedded within the Avida virtual world.

1.3 Course of Investigation

The investigation starts off by implementing a prototype von Neumann style ancestor.

The prototype is observed within Avida as a case study to characterise the behaviour of

the reproduction architecture under perturbation and mutation.

Following observation of the prototype, further analysis of the evolutionary charac-

terisation of the prototype as an ancestor is attempted for better understanding of the

architecture and its potential. In the course of this analysis, the mechanism of an observed

degenerative displacement is explained as a step towards reconsidering and redesigning the

1



1.4. CONTRIBUTIONS

prototype. Subsequently, the investigation mainly revisits the pre-existing tools for analy-

sis of viability in Avida, and on the basis of that, an idea of enhanced analysis is discussed,

developed and evaluated as a step towards a better methodology. Initially, a one-step ex-

haustive analysis of the prototype’s single-point-mutation space is demonstrated, followed

by a multi-step selective analysis.

1.4 Contributions

Considering the ultimate objective of observing the evolution of complexity via the evolu-

tion of genotype-phenotype mapping, the current investigation is essentially foundational

and preliminary. The provided result from the implemented prototype does not, in fact,

demonstrate the elaboration of, or any distinctive mutation in, the mapping over evolu-

tion: the majority of mutants of the prototype are simply infertile, without long-term

viability; whereas mutants selected from the fertile minority prove to give rise to more or

less viable individuals.

Nevertheless, the mutational potential of the prototype ancestor is revealed, prelimi-

narily, but systematically and procedurally. Possible mutational pathways of the designed

ancestor are classified. On the other hand, specific limitations are found to lie in in-

determinacy of lineages faced by the enhanced analysis, and the practical difficulties in

classifying reproduction mode. Ideas for further enhancing the analysis are proposed to

suggest the future direction of this type of investigation.

The characterisation of an instance of von Neumann style self-reproducer provides a

tangible contribution to the field in revealing what tendency and deficiency the particular

design can have and how such a self-reproducer can be better explored in Avida. The

development of new analysis tools enhances the ability to explore the potential of the

reproduction architecture with more practical feasibility.

1.5 Thesis Outline

Chapter 2 provides the background of the current investigation, centred around the theory

of machine self-reproduction formulated by John von Neumann. One of the dimensions of

the significance of this theory is explained, that is, symbol systems in general, especially

those found in molecular biology.

Chapter 3 begins by depicting the architecture of Avida as a platform, and looks at

Avida within the context of the developments of such similar artificial life platforms as

Coreworld. Then the design of a self-reproducer with the von Neumann architecture is

laid out. An observation is made about its evolutionary behaviour.

Chapter 4 elaborates on the mutation analysis to be applied on the prototype ancestor

and reconsiders the efficacy of the pre-existing analysis tools of Avida. The enhancement

of the analysis and the automation of it are described and evaluated. Additionally, the

redesigned prototype is considered under the same scheme of analysis.

Chapter 5 summarises the course taken by the investigation and discusses its signifi-

cance and implications. Future prospects in this line of research within and beyond Avida

follow.

2



1.6. RELATED PUBLICATIONS

1.6 Related Publications

There are several publications associated with the work described in this thesis, con-

tributing to, and formulating, the overall contents and study. These publications are

listed chronologically below with brief comments as to how they are related to the current

thesis:

• McMullin, B., & Hasegawa, T. (2012). Von Neumann Redux: Revisiting the Self-

Referential Logic of Machine Reproduction Using the Avida World. In European

Meetings on Cybernetics and Systems Research.

– Through introducing the degeneration of a particular implementation of the

von Neumann architecture of machine self-reproduction in the Avida world

(as described in Chapter 3), the distinctiveness of the self-referential logic (or

semantic closure, as reviewed in Chapter 2) is highlighted in the context of the

research programme unifying the subsequent publications, and thus that of the

current thesis.

• Hasegawa, T., & McMullin, B. (2012a). Degeneration of a von Neumann Self-

Reproducer into a Self-Copier within the Avida World. In T. Ziemke, C. Balkenius,

& J. Hallam (Eds.), From Animals to Animats, SAB 2012 (pp. 230–239). Berlin:

Springer.

– The design and a particular behaviour (that is, the degeneration) of a

novel, hand-designed von Neumann style self-reproducing ancestor implemented

within Avida (the prototype) are detailed for the first time, as substantiated in

Chapter 3.

• Hasegawa, T., & McMullin, B. (2012b). Revisiting von Neumann’s Architecture

of Machine Self-Reproduction Using Avida. In European Conference on Complex

Systems, ECCS 2012 (pp. 287–293). Berlin: Springer.

– The motivation of this research programme revisiting the von Neumann ar-

chitecture of machine self-reproduction is reiterated (i.e., towards evolutionary

growth of complexity via some evolution of a genotype-phenotype mapping).

Furthermore, the implications of the degeneration of the prototype into a self-

copier are discussed, as reflected in Chapter 3.

• McMullin, B., Baugh, D., & Hasegawa, T. (2012). Von Neumann Reproduction:

Preliminary Implementation Experience in Coreworlds. In European Conference on

Complex Systems, ECCS 2012 (pp. 101–106). Berlin: Springer.

– From a wider perspective than the previous publications, the research pro-

gramme investigating von Neumann reproduction is explained in depth. Within

this scope, implementations using two of coreworld-type platforms (see Chap-

ter 3), Tierra and Avida, are introduced with preliminary results.

3



1.6. RELATED PUBLICATIONS

• Hasegawa, T., & McMullin, B. (2012c). Self-Referential Organisation within the

Avida World. In Frontiers of Natural Computing Workshop. University of York,

UK.

– From a slightly different perspective of natural computing, or towards non-

conventional, alternative computing, the implementation of the prototype von

Neumann style self-reproducer in Avida is looked at again, reinforcing the re-

search motivation as in Chapter 2.

• Hasegawa, T., & McMullin, B. (2013a). Analysing the Mutational Pathways of a

von Neumann Self-Reproducer within the Avida World. In European Conference on

Complex Systems, ECCS 2013.

– An approach to investigate the mutational pathways of the particular prototype

ancestor and an idea of analysis enhancement are first proposed, which was

developed into the framework of mutation analysis described in Chapter 4.

• Hasegawa, T., & McMullin, B. (2013b). Exploring the Point-Mutation Space of a

von Neumann Self-Reproducer within the Avida World. In Advances in Artificial

Life, ECAL 2013 (pp. 316–323). Cambridge, Massachusetts: MIT Press.

– A first attempt of such an approach as proposed in the above publication is

reported. A preliminary examination of the first-step point-mutants of the pro-

totype is presented with results and future directions, which led to the analysis

automation demonstrated in Chapter 4.
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Chapter 2

Background and Related Work

2.1 Overview

In order to form the background to the research of this thesis, this chapter first introduces

the core scheme, the theory of machine self-reproduction by John von Neumann. It is

followed by the review of relevant literature to explain the rationale behind the current

line of research in the discipline of artificial life. To strengthen the motivation, the next

section provides a biological perspective, which is highly relevant to the current context

of artificial life, especially in relation to the more general concept of biological symbol

systems which underlies self-reproduction, which in turn underlies evolution.

2.2 Machine Self-Reproduction and Evolution

Artificial life is a discipline which seeks to shed light on aspects of biological life such as

self-reproduction and evolution. Unlike biology, artificial life focuses more on required

or possible processes (“recipes”) of life’s aspects by in-silico methodology. John von Neu-

mann’s seminal architecture of machine self-reproduction is perhaps the earliest theoretical

contribution to artificial life, attempting to bridge the gap between the systems of designed

physical artefacts or “machines” and the systems of biological organisms (von Neumann,

1951, 1966). The research of this thesis considers questions about evolvability inherent in

a particular style of self-reproduction, referred to as von Neumann style self-reproduction

throughout the thesis.

2.2.1 Architecture of Machine Self-Reproduction

Machine reproduction was originally analysed theoretically by John von Neumann, largely

in the early 1950s. It is recognised as the dawn of the discipline that was formed into

artificial life decades later. In brief, his intention was to bridge the gap between artificial

life and biological life. His theorisation presents an abstract architecture that models

machine reproduction and machine self-reproduction.

As argued by McMullin (2000), one of von Neumann’s motives behind this abstract

model was to realise the evolutionary growth of complexity in a mechanistic world. In-

tuitively, one can compare two situations regarding complexity: the engineering situation

and the biological situation (see Figure 2.1). In the engineering (or artificial-world) situa-

5



2.2. MACHINE SELF-REPRODUCTION AND EVOLUTION

Figure 2.1: Complexity in situations of engineering and evolution (adapted from Mc-
Mullin, 2000). In the diagram, circles denote the degree of complexity in the abstract
sense, with lower complexity inward. Dots and arrows denote machines and construc-
tion in the engineering situation on the left, whereas organisms and reproduction in the
evolution situation on the right. Note that the engineering situation only allows decreas-
ing complexity denoted by centripetal arrows through construction, while the biological
evolutionary situation can also allow maintaining or increasing complexity through repro-
duction, denoted by neutral and centrifugal arrows.

tion, the complexity does not typically increase or even maintain, but rather only decreases

when machines construct other machines. As opposed to this, in the biological (or natural-

world) situation, there are not only cases where the complexity decreases, but also where it

maintains or even increases. To make such a situation be the case in a mechanistic world,

von Neumann set out to formulate an architecture of machine reproduction. He identified

that supporting a mechanical genotype-phenotype mapping in such an architecture may

allow the evolutionary growth of complexity in the world of self-reproducing machines.

Complexity in this context is only roughly and intuitively defined by von Neumann, so

likewise the current research does not go beyond it and endeavour to define or measure

complexity precisely or formally. There are a number of studies with evolutionary and/or

ecological foci that aim at exploring what kind of, and how, complex behaviours can be

achieved by evolving agents in an artificial life world. In this framework, a behaviour of a

system as a whole can be regarded as complex, if the behaviour is not expected from, or

is more than, the “sum” of its components. Although outside the purview of the current

research, there are studies that focus on defining and measuring complexity, for example,

in terms of entropy as in information theory (see Adami et al., 2000). As for the relevant

course taken in defining and measuring complexity in complexity science, a comprehensive

overview with historical aspects is provided by Mitchell (2009).

Formalisation

The von Neumann architecture for general machine reproduction can be schematically

depicted as shown in Figure 2.2. A parent machine reproducer (to the left) reproduces

an offspring machine (to the right). At the highest level, the parent machine is comprised

of two parts: active and passive parts, labelled P and G, respectively. P consists of

a programmable constructor (A), a copier (B), a control (C), and arbitrary “ancillary”

6



2.2. MACHINE SELF-REPRODUCTION AND EVOLUTION

A: Programmable
Constructor

B: Copier

C: Control

D: "Ancillary"
Machinery

P

G = Φ(X)

X

X + Φ(X)

G = Φ(X)

Figure 2.2: The schematic von Neumann style general architecture of machine reproduc-
tion (adapted from the slides of McMullin, 2012). For the sake of convenience, the active
part is labelled as P and the passive part as G. The parent machine reproduces an arbi-
trary offspring machine by decoding and copying the description of an arbitrary machine
X (G = Φ(X)). This is realised by utilising the programmable constructor (A), the copier
(B), and the controller (C); the “ancillary” machinery (D) does not directly engage in
this reproductive process.

machinery (D). G is a tape that describes or encodes an arbitrary machine X, via a

function Φ(X), which is coded in a way A can decode. The parent machine produces an

arbitrary offspring machine, consisting of X and its description Φ(X), by decoding and

copying G. This reproductive process is realised by the components A, B, and C of P ; D

is ancillary and here does not directly engage in this process.

As a special case, the architecture for self -reproduction can then be schematically

depicted as shown in Figure 2.3. A parent machine (to the left) reproduces an offspring

machine (to the right). Now G is chosen to be a tape that describes the machine P (i.e. the

assembly A+B+C+D), again, relative to the specific description language, or “decoding”

implemented by A. In operation, A decodes G to produce another instance of P=A+B+

C +D, B constructs a copy of G, and A and B (and D) are controlled and co-ordinated

by C. C ultimately detaches the complete offspring machine instance, P +G, identical to

the parent, thus realising self-reproduction. As this basic architecture and self-reproducing

functionality will be common for any arbitrary D (within the constructive capabilities of A,

and assuming that D’s operations, whatever they may be, do not interfere with A+B+C),

this implies the existence of an indefinitely large space of self-reproducing machines, all

connected via spontaneous perturbations of the G component (which therefore correspond

to heritable mutations). The labels, A, B, C, D, and Φ, accord to von Neumann’s original

labelling (see von Neumann, 1966). P and G are named after their being analogous to

“phenotype” and “genotype”, respectively (or, in an individual, instantiated machine,

these may be called “phenome” and “genome”).

The von Neumann architecture of machine self-reproduction reflects a similar abstract

structure to that which is now known to support self-reproduction in biological organ-

7



2.2. MACHINE SELF-REPRODUCTION AND EVOLUTION

A: Programmable
Constructor

B: Copier

C: Control

D: "Ancillary"
Machinery

P  

M:  P + Φ(P) = (A+B+C+D) + Φ(A+B+C+D)

A: Programmable
Constructor

B: Copier

C: Control

D: "Ancillary"
Machinery

P  

G = Φ(X) 

G = Φ(X) 

Figure 2.3: The schematic von Neumann style architecture of machine self-reproduction,
when the machine X = P (adapted from the slides of McMullin, 2012). The parent
machine reproduces its identical offspring machine by decoding and copying its description,
by utilising the programmable constructor (A), the copier (B), and the controller (C);
again, the “ancillary” machinery (D) does not directly engage in this reproductive process.
Note that this architecture supports inheritable changes (i.e., mutations) in G.

isms. Based on this understanding, it is reasonable to consider the active machinery as

representing the phenotype and the passive description tape as representing the genotype,

even though von Neumann himself did not emphasise (at least) the analogy between his

proposed architecture and that in biology.

Inheritable Mutation

In theory, any specific strain (more rigorously defined in the context of Avida later in

Chapters 3 and 4) of such a self-reproducing machine can exhibit exponential population

growth, in the absence of resource constraints and perturbation. This potential for ex-

ponential growth, combined with mutation (variation) and resource constraints will give

rise to variety and competition, and hence the conventional, neo-Darwinian selection and

evolution.

It is significant that, in the presence of some perturbation, or inheritable mutation,

the von Neumann style of machine self-reproduction can theoretically exhibit the evolv-

ability of the genotype-phenotype mapping itself (McMullin, 2000; McMullin et al., 2001);

that is, of the “decoding” function implemented by the component sub-machine A. This

possibility arises provided A is itself described (in a self-consistent manner) within the

genotype, G, and in sufficient detail that there exist potential mutations (or perturbations

of G) that do change the decoding function implemented by the (expressed, mutated)

A in the following generation. In general, this mutated A may or may not be capable

of decoding the inherited genome (or description tape) G in a way that still preserves

the self-reproduction functionality, although the prima facie likelihood is that such mu-

tational events will fundamentally disrupt self-reproduction. For a change affecting the
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2.2. MACHINE SELF-REPRODUCTION AND EVOLUTION

genotype-phenotype mapping to be truly inheritable, and for a consequent machine to be

self-reproducing, the reproduction mechanism must somehow survive through mutational

events, sustaining a genotype-phenotype mapping that is still applicable (i.e. “backward

compatible”) to the mutated description, so as to keep self -reproducing.

The current research is concerned precisely with exploring this possibility empirically,

at least for one “toy” example of a von Neumann self-reproducer. In other words, the

effect of a mutation affecting the genotype-phenotype mapping is of particular interest.

This is a much specialised scope, as opposed to the effect of a mutation in general. An

affected genotype-phenotype mapping is much more likely to fail to reproduce or self-

reproduce. More in general (i.e., regardless of whether or not affecting the genotype-

phenotype mapping), it is a fact that von Neumann (p.87, 1966) himself makes a comment

touching on the effect of an inheritable mutation in this architecture, closing his lecture on

self-reproducing automata in 1949: “So, while this system is exceedingly primitive, it has

the trait of an inheritable mutation, even to the point that a mutation made at random

is most probably lethal, but may be non-lethal and inheritable.” Apparently he did not

elaborate on this point any further. Nevertheless, chances are, there may be a distinctive

mutational pathway where an organism with a mutation in the constructor is capable of

self-reproducing (or, breeding true) in a characteristic reproduction mode.

2.2.2 Underlying Influences

Machine reproduction (and machine self-reproduction) with von Neumann’s architecture

hinges upon: (a) the decomposition into active, constructive machinery and a separate,

passive “description tape”; and upon (b) the sub-component A, the programmable con-

structor, which can construct any arbitrary machine from a description tape fed to it. As

von Neumann himself credits, the idea and the design were inspired by (or rather originate

with) Turing’s abstract elaboration of computing machines that are capable of universal

computing (Turing, 1936).

There is a striking resemblance between the architecture of machine self-reproduction

and the biological architecture of genotype and phenotype, but the terminology in von Neu-

mann’s architecture did not employ the terms genotype and phenotype as such. Chrono-

logically, the terms (and the concepts of) genotype and phenotype already existed, coined

and defined by Johannsen in 1911, in the context of genetics; the von Neumann analysis,

in around 1950, actually preceded Watson and Crick’s discovery of the structure of DNA

in 1953 and the subsequent investigation of the mechanism of genotype and phenotype at

a molecular level. One possible interpretation is that the concepts of genotype and phe-

notype were not so prevalent to the extent that these were natural terms to describe the

active machine and the passive description when von Neumann proposed his architecture.

Computation and Turing Machines

Turing machines were a first pure mathematical description of which numbers are, and are

not, computable, and how the computable numbers can be computed. This was a response

to one of the questions about mathematics per se posed by Hilbert in 1928, known as

the Entscheidungsproblem, or the “decision problem”. Preceding questions were solved

in effect by Gödel in 1930, whose theorem concluded that any minimally useful system
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of mathematics is either inconsistent or incomplete. It was in 1935 that Turing defined

Turing machines that work with definite procedures, or algorithms in a modern term,

so as to achieve universal computability; whereas, it was shown that there are certain

limits of undecidability to such computation by demonstrating that the halting problem is

undecidable by a “universal” Turing machine running on it. The proposition of the halting

problem considered by Turing is: “there exists a Turing machine which can algorithmically

decide whether any given Turing machine will halt”. Turing proved that the negation of

this proposition is true, that is, that there exists no such algorithm or Turing machine.

The conclusion can be translated into a modern situation where an arbitrary computer

program cannot reliably detect by itself whether it may end up in an infinite loop or not.

What was remarkable about the machines pictured by Turing is, first of all, that a

Turing machine is formalised as a finite set of states and rules: it is a finite state automaton

provided with an infinite tape that numbers are read from and written to, and a transition

table that defines possible steps for each state and symbol, such as how to transition a

state into another and what to do to the tape at the next time step. By taking steps

according to the tape and the transition table, the automaton can carry out a procedure

of calculation. These steps are defined to be simple enough so that any machines (within

this formalised framework) of different capabilities can perform computation. Second of

all, it was a novel idea of Turing that such a machine itself can be described on the tape, so

in effect a Turing machine can be an input to another. That means that Turing machines

can emulate other machines, and that there exist “universal” Turing machines which can

emulate any such automaton, provided with the description of the target automata. The

halting classification (“decision”) problem, however, cannot be computed and hence is

undecidable by any Turing machine. This proof, conversely, ended up defining what it

means to be computable.

Thus, a universal Turing machine requires the description tape encoding the target

machine in the form that the Turing machine can manipulate (i.e., in natural numbers,

or more primitively, sequences of two digits 0 and 1 that can represent natural numbers,

states and moves). It is a programmable computer, which was an inspiration for von

Neumann’s programmable constructor. Thus von Neumann’s design is analogous to a

universal Turing machine in having the (universal) programmable constructor that can

build any arbitrary machine inasmuch as it is encoded on the tape in a form that the

constructor can decode. Then it is noticeable that, when the description tape encodes the

active component itself which runs on it, the reproduction is tantamount to machine self -

reproduction. As such, the parent machine can produce an identical offspring machine, by

following deterministic, mechanical procedures. The offspring machine is identical unless

the description tape undergoes perturbation in its content; if this occurs, the change

functions as a mutation in the offspring, whereas perturbations in the active component

do not serve as mutation as they are not inheritable.

Regarding the analogy between the two “universalities” of computation (i.e., Turing’s)

and of construction (i.e., von Neumann’s), the interpretation of von Neumann’s concept

of universal computer-constructor embedded in his self-reproductive architecture can be

subtle, as reviewed by McMullin (1993). For the current working purpose, no rigorous

stance is going to be adopted over whether those universalities are necessary or sufficient
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for self-reproduction; but roughly it is assumed that the computation universality and con-

struction universality are basically compatible attributes supported, if implicitly, within

the system used (Avida, which will be overviewed in Section 3.2 in Chapter 3).

Heredity and Evolution

The understanding of evolution as known today had been markedly shaped by the time

Darwin published “On the Origin of Species” in 1859. One of the prevailing views of

evolution before Darwin was by Lamarck, which favours inheritance of acquired traits and

tendency towards progression. This view is invalidated or at least highly modified today.

What Darwin proposed was a mechanism of evolution that is driven by natural selection

with inheritable traits which contribute to variation that is subject to selection, in the

same vein as the contemporary notion on population growth by Malthus and that of the

“invisible hand” by Smith. The exact mechanism of how traits are inherited still remained

unclear until after the 1900 re-evaluation of Mendel’s work. His work on heredity is another

significant pillar of the understanding of evolution that was already established by mid-

1860s, which identified that there are some kinds of discrete units behind inheritable traits.

Subsequently, Schrödinger provided his quantum physics point of view on heredity, in

his lecture series on “What Is Life” in 1943, well in advance of von Neumann’s theory

of machine self-reproduction, dating from the late 1940s and early 1950s. In his lecture,

Schrödinger (1944) discusses the “code-script”, which is a blueprint of an individual or-

ganism, and goes so far as to refer to a physical, molecular mechanism of mutation. It

may not sound quite precise from a contemporary view of molecular biology that matured

after DNA was identified as the substrate carrying genes in 1953, in the sense that there

is not necessarily exact correspondence between genotype and phenotype; nonetheless,

Schrödinger’s explanation is reminiscent of heredity as known today, revealing how muta-

tion occurs and gets expressed, inheritable over generations. Even though it is not certain

if von Neumann was explicitly inspired by Schrödinger, it is striking that his architecture

of machine self-reproduction entails a mechanism of heredity as envisaged by Schrödinger,

and that the decomposition into the description tape and the programmable constructor

(and the other associated components) in the architecture are parallel to the biological

decomposition now generally identified as genotype and phenotype.

2.2.3 Artificial Life Investigations

Self-reproduction and evolution are, among others, central subjects for investigation in the

field of artificial life (ALife). Self-reproduction of organisms is an important component

to realise open-ended evolution in artificial life platforms (T. Taylor, 2013). There are

several classes of abstract machines (automata) that von Neumann used in order to model

machine self-reproduction, capable of evolving, for which he is said to be the founder of

the discipline of ALife. The ideas he proposed include that of a possible class known as the

kinematic automata (KA), and that of a possible class of implementation known as the

cellular automata (CA). These are two characteristic types of automata that influenced

following artificial life studies into logical aspects of self-reproduction and its dynamics.

Although it is not straightforward to define non-trivial self-reproduction, Moore (1962)

mentions one triviality of self-reproduction as found in crystal growth. He follows that
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it is in order to sufficiently overcome such triviality that computational universality was

incorporated in self-reproducers in the CA by von Neumann. At least, there is required

some mechanism in self-reproduction to retain evolvability in a given framework.

In the post-von-Neumann era, Langton is one of the pioneers who contributed to the

establishment of the discipline of ALife (Langton, 1994; Boden, 1996). ALife, on the

whole, is now recognised as a field that aims to shed light on the old question of what

is life by means of artificial, especially computational, systems. By this time, as the

computational abilities had been developed, more artificial life studies taking approaches

from the perspective of artificial chemistry (AChem) appeared. Although spanning a wide

research spectrum, AChem, as the name suggests, generally regards “chemical” reactions

in artificial models as important building blocks of simulated “biological” phenomena,

including, again, self-reproduction and evolution observed in real biology (see Dittrich et

al., 2001, for a general overview).

Automata Investigations: Kinematic and Cellular Automata

Von Neumann sketched out KA before the CA approach. A KA is a world of robot-like

machines that consist of computing elements and primitive action elements, coupled with

an environment. Situated in an environment, the machine self-reproduces by constructing

a machine from the nearby elements diffusing in the environment. In contrast to CA,

however, von Neumann and his successors barely elaborated the KA concept; it lacked

theoretical benefit compared to CA since it was then technically too intricate to design

self-reproducing KA at a meaningful level of detail, whether virtually or physically.

Nevertheless, there have been endeavours to construct such robot-like creatures similar

to KA in a virtual world. In one, Sims (1994) uses an external genetic algorithm (GA) to

obtain desired morphologies of creatures, by optimising their control over body to achieve

certain behavioural purposes in a virtual environment. It is Holland who undertook the

studies towards adaptive systems, which are found among the initial CA investigations as

early as Burks (1970). Holland’s studies would later lead to the framework of GA (1975).

The GA views biological evolution as an optimisation process and enables a form of sim-

ulated evolution. The key feature that has had significant influence in relevant studies is

the fitness function, which is incorporated in the system in a predefined way to calculate

how advantageous each agent is within a population. Due to the fitness value, typically

calculated relative to the rest of the population, the evaluation of individual agents may be

influenced by the population. Genetic operations such as crossover and/or mutations are

repeatedly applied to the agents’ genomes in a population to produce the next generation

population. The Sims’ creatures have genotype (represented as directed graphs) and phe-

notype (embodied as morphologies in the virtual world), and are reproduced externally

by means of the genetic operators, which is rather as a part of an external support frame-

work, than through their own operations or activities within their virtual environment. A

similar study focusing on self-reproduction in a real-world situation was taken by Zykov

et al. (2005). Neither of those agents self-reproduce in the manner of the von Neumann

architecture, specifically in that the relationship between genotype and phenotype is fixed

or immutable in those universes.

More recently, there has been a study using reified quines (Williams, 2011), which can
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be thought of as another example (virtual) implementation of KA. This work is clearly

inspired by von Neumann in its design: agents interact in an environment where there is

the diffusion of primitive components; and they affect each other to engender construction.

Quines are a type of machine self-reproducer coded in a higher-level language. They are

virtually reified in the model, equipped with the mechanism of genotype and phenotype,

thus self-reproducing and undergoing neo-Darwinian evolution. According to Williams,

it is unlike worms, which are defined as a simpler type that is only capable of “copying

the phenotype directly”; worms are rather subject to Lamarckian evolution even if they

are programmed to self-reproduce (in a loose sense that perturbations in the phenotype

would be copied and thus inherited). One would notice that this work’s result is that

such populations of KA exhibit exponential growth as seen in the world of biological cells,

until they reach a saturation. Generally self-reproduction is associated with exponential

population growth, as long as there is no limit to the supply of energy, components, time,

space, and so forth. In his subsequent work, Williams (2013, 2014) further presents a

developed class of self-reproducers of this type in a KA-like universe (distributed virtual

machines), to exploit the potential of evolving from such an ancestor to a more complex

and more efficient style of self-reproduction.

Following the conceptualisation of KA, what von Neumann himself elaborated in most

detail was CA (von Neumann, 1966). A CA is a potentially infinite network of “cells”,

typically organised in a two dimensional grid, each cell of which is a finite state machine.

(Here, “cells” are not intended as analogues of biological cells, but as abstract “atomic”

components defining this particular mechanistic universe.) A CA can be one-dimensional

(as extensively investigated by Wolfram decades later from mid-1980s to late 1990s, for

example); or logically, three- or higher- dimensional CA are conceivable as well. However,

the discussion here will be mainly concerned with two-dimensional CA. Each cell of the

grid in CA is spatially fixed in a two-dimensional world and changes its state according to a

transition rule. The rule normally concerns the states of the cell itself and its immediately

adjacent cells. The interaction of cells is local, in that sense. A pattern of states (or

class of dynamically linked patterns) across a collection of cells can be interpreted as a

machine embedded in the CA. In suitable conditions, such an embedded machine may

exhibit self-reproduction within the world represented by the CA as a whole.

Von Neumann’s original manuscripts on this theme were reviewed by researchers in-

cluding Burks (1970) and complementary works in the same vein have been carried out.

Burks chiefly edited the manuscripts and collected the relevant works to deepen and widen

the scope of its potential. The original design of the 29-state CA by von Neumann had not

been implemented until around four decades later (Nobili et al., 1994; Pesavento, 1995)

when computers became much more capable. In the early CA investigations, Codd (1968)

searched for a possible simplification of von Neumann’s original design, which was later re-

viewed and implemented by Hutton (2010). Similarly, alternative CA designs were sought

after and refined over time; most CA used in such studies are typically homogenous and

symmetrical, spatially fixed, having small neighbourhood, with a relatively small number

of states per cell (see Sipper, 1998, for a general overview of this line of research).

In particular, Langton (1984) used CA as a framework for the implementation of an-
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other form of self-reproducers, so-called “Langton Loops”.1 This work proposes simpler,

but supposedly still non-trivial, self-reproducing machines without a universal constructor

(or a universal computer), in distinction to von Neumann’s original design (or Codd’s

version of it). From one point of view, one can see a spectrum of simple to complex

self-reproducers within CA worlds, with Langton’s design and von Neumann design at the

respective ends. In the self-reproduction of the Langton loops, it is implied that construc-

tion universality (or computation universality) is not necessary, but that adding it might

bring auxiliary functionality to self-reproducers through evolution. Unlike Burks, whose

emphasis seems to be the universal computation and construction for self-reproduction,

Langton looked at the von Neumann style architecture in connection with biology: the

importance was highlighted of the separation and the mapping between genotype and phe-

notype. Langton seems to have been cognisant of the salience of the distinction between

the interpreter and the “interpretee”, and the mapping between them, but he appears

to have held that the self-replicating loop with an explicit but impoverished genotype-

phenotype mapping would be enough for the purpose of artificial life modelling or at least

qualified as “non-trivial”. Langton reinforced the idea that inheritable mutation is essen-

tial, both computationally and biologically; and it is thus implied that evolvability (or,

further, evolution’s “open-endedness”) is one of the key aspects of life.

Artificial Chemistry and The RNA World

The perspective of artificial chemistry (AChem) has been an inspiration for automata

studies, including the KA-like reified quines mentioned above, both in the aim and ap-

proach. Some typical artificial chemistry platforms deal with string-like molecules which

can replicate through interaction (such as binding and alignment of strings, or chemical re-

actions) with each other: Typogenetics (Hofstadter, 1979) (later revisited by Morris, 1987

and Bobrik et al., 2008); and Stringmol (S. J. Hickinbotham et al., 2010; S. Hickinbotham,

Clark, et al., 2011; S. Hickinbotham, Stepney, et al., 2011) are specific examples. There are

molecular biological entities and phenomena which these platforms are to simulate. For

instance, Typogenetics simulates molecular components such as DNA strands, enzymes,

and amino acids, whereas Stringmol simulates proteins and small RNA molecules (rela-

tively shorter RNAs produced by bacteria). Neither of these necessarily aims to imitate

the molecular world in physico-chemical detail, but to construct a reasonably abstracted

version of such a self-contained biological symbol system. Biological molecules, including

DNA, RNA, and proteins, and their coding relationship will be overviewed here and in the

next Section 2.3 from the perspective of the current research. In addition to the platforms

mentioned above, coreworld type systems may also be categorised as artificial chemistry

platforms. These will be introduced in the context of Avida, the target system in the

current research, in Section 3.2 in Chapter 3.

To a certain extent, the modelling of artificial chemistry platforms, particularly in

1With regards to the population growth brought about by self-reproduction, what Langton Loops are
able to observe is at most polynomial population growth (according to Mange et al., 2004), seemingly
unlike the real biological self-reproduction. However, it is rather because of the spatial effect of the two-
dimensional CA world: each self-reproducing loop is fixed in space and when one comes across another,
the former is to be “dead” and stop self-reproducing. Self-reproduction will, naturally, lead to exponential
growth of population if there are no such spatial or other resource restraints.
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relation to self-reproduction, is motivated by the origin-of-life hypothesis called the RNA

world. One of the central questions in the field is: why does life as known today operate on

the foundation of DNA, RNA and protein? Among other explanations2, the RNA world

hypothesis also counts as a realistic scenario. The discovery of the double helix structure

of DNA was a landmark in molecular biology, on which enormous investigations have been

predicated, revealing DNA as a form of genetic information storage.

The RNA world hypothesis (see Gilbert, 1986, for the original idea of the RNA world

hypothesis; and Gollihar et al., 2014, for the latest interpretation in this line of research

of the origin of life) proposes that the prebiotic world started as a situation where only

RNA molecules existed, and through interaction over evolutionary time, they came to spe-

cialise (“division of labour”) into either information storage or catalytic and/or enzymic

functions, which are now roles played by DNA and protein, respectively. The evolution

of the division of labour between templates and catalysts has been further investigated

(Takeuchi et al., 2011). Templates store information while catalysts realise different bio-

chemical functions or transformations. It is suggested that DNA’s lack of catalytic ability

serves as selective pressure for DNA to emerge in the RNA world. Along the same line,

it is suggested that RNA-adapters may help overcome the so-called information thresh-

old (de Boer & Hogeweg, 2012). The information threshold means the trade-off between

the necessary error-correction mechanisms of a genetic code and the decreasing size of it

due to mutational pressure. In their simulated world of RNA molecules, RNA-adapters,

which are conceived as distinctly shorter molecules compared to typical RNA functional

molecules, increase in number with a higher mutation rate, and help diversify functional

(or regulatory) structures of the RNA sequences. In other words, the information threshold

shapes the emergence of coding between genotype and phenotype.

Noticeably, not only at the RNA level, but also at the protein level, there exists the

folded (“secondary” and “tertiary”) structure of proteins which give rise to enzymatic

function, as opposed to that of the (“primary”) sequence of amino acids. As such, many

artificial chemistry models, more or less, are concerned with higher-order structures (e.g.

folding, binding) of molecules. On the other hand, in the Avida system in question,

although sometimes categorised as an artificial chemistry model, genotype and phenotype

can exist one-dimensionally, linearly on the circular memory as described later; there is

apparently no precise analogue for structural functionality like RNA or protein folding.

However, addressing labels can give higher level structure, by redirecting the execution

of programs on the linear memory, which otherwise proceeds just successively from the

starting location. The current research, however, mainly looks into the linear sequences

(strains) of organisms in Avida.

2For example, Kauffman (1993) argued abstractly that there must have been some autocatalytic chem-
ical system in the prebiotic world which possibly and likely led to life forms as known today. Although
outside of the current research scope, it is noteworthy that ALife and complexity science witnessed the ap-
pearance and use of random boolean networks (RBNs) by Kauffman et al., the relatively simple structure
of which is reminiscent of CA. If a CA had cells that have different rules and that are not fixed spatially
but connected arbitrarily, it would be a RBN. RBNs have been used and developed by Kauffman and his
followers since the 1960s, to model genes interacting with and regulating one another. It is a line of research
which deals with evolutionary diversity and interaction of genes, rather than concerning self-reproduction
in evolution like the current research.
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2.3 Biological Symbol Systems

Natural languages, computer programs, and genetic codes are some instances of symbol

systems observable in various levels in the world from micro to macro. In such systems,

generally, “materials” of some substrate become “symbols” that signify something some-

how at a certain point as long as there is a defined rule for interpretation. To be valid,

such a system must comprise a collection of relationships between symbols and what they

“symbolise” (or signify) based on certain materials. Especially, natural languages and ge-

netic codes, which are complex symbol systems shaped and formed by nature, have been

evolved into what are known today over evolutionary time. Such symbol systems can be

regarded as complex coding systems just like computer programs (where there underlies

a certain encoding/decoding mechanism). Likewise, computer programs can be compared

to natural languages or genetic codes, even though artificially shaped and formed. Most

of the above-mentioned are, primarily, symbol systems that may roughly be categorised as

digital, as in communication theory, which involves “discretisation” in one way or another.

Due to the arbitrariness of digital coding behind relationships between symbols and the

symbolised, and between the encoded and the decoded, it is difficult to elucidate how

symbol systems emerge and evolve adequately. That being said, to contrast, the interpre-

tation in biological symbol systems is mutable and evolvable, whereas the interpretation

in conventional computer programs is fixed and immutable by some external entity. This

might be relevant to the distinction between evolution and engineering as abstractly de-

picted in Figure 2.1 in Section 2.2. In this section, biological “counterparts” of computing

systems are detailed.

2.3.1 Evolution of Symbol Systems

The current research was conducted originally as a part of a collaborative project, EvoSym,

involving a collaboration between three research groups3 from three different perspectives

upon the evolution of “biological symbol systems”. The three perspectives are: molecular

biology, artificial life, and biosemiotics. It is expected, by extension, that the more the

emergence of symbol systems can be understood, the more insights into the evolution of

symbol systems will be illuminated, and vice versa.

In this project, the methodology of molecular biology is to look into the world of

biomolecules by modelling the RNA world (similar to that of artificial chemistry) in or-

der to understand how the molecular biological world as we know it has shaped up over

evolutionary time. The methodology of artificial life is to deal with symbol systems in a

pure computational world such as Avida and Tierra (refer to Section 3.2 in Chapter 3 for

the profiles of those systems), focusing on a more abstract architecture of symbol systems.

The methodology of biosemiotics, on the other hand, aims to deepen the understanding

of the nature of meaning that arises (or evolutionarily emerges) in higher-order communi-

cation. That may or may not be used to analyse both the biological symbol systems and

those of artificial life.

3The EvoSym project consists of three work packages conducted by laboratories from three universities:
Universiteit Utrecht, Netherlands (UU); Dublin City University, Ireland (DCU); and Vrije Universiteit
Brussel, Belgium (VUB). The project ran from November 2010 for three years.
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As explained, the current line of artificial life research pays particular attention to

the theory of machine self-reproduction by von Neumann. The architecture provides a

framework characterised by processes of copying and decoding, and the decoding process

literally entails the coding mechanism of a certain symbol system. The von Neumann ar-

chitecture might particularly allow complexity to grow evolutionarily in a computational

world with a mutable genotype-phenotype mapping. Such a symbol system may or may

not turn out to be a substantial advantage for self-reproducers that employ it in an evolu-

tionary sense. Strictly speaking, such mutability is not necessarily guaranteed in the sense

that any mutation can destroy the reproductive cycle; but there is at least the potential

that a mutation, even one altering the genotype-phenotype mapping, can breed true with-

out harming the reproductive cycle: through mutation, a genotype-phenotype mapping

at a certain generation can therefore change into a different one in the next generation.

Theoretically, there can be a variety of genotype-phenotype mappings within mutational

reach. The rationale is that both genotype and phenotype can be enumerated or labelled

with numerical values, and that a genotype-phenotype mapping amounts in that sense to a

mapping between numbers. In this light, what the current research investigates is how one

can (and how far one has to) tread mutational pathways within a certain universe so as to

reach a functionally or behaviourally distinctive, “interesting” genotype-phenotype map-

ping employed by a self-reproducing machine which is otherwise unseen or less accessible

among others.

The potential, that is, the evolvability of the genotype-phenotype mapping and possi-

bly the effect it has upon the growth of complexity, is here investigated within the purely

computational world of an artificial life system. In one platform of Avida,4 a von Neu-

mann style self-reproducer was invented by design in order to study its characteristics

in computational situations. The artificial life platforms like Avida have major concepts

in common with artificial chemistry platforms, in that agents interact on the basis of

given rules and constraints in computer simulation, exhibiting emerging, self-organising,

and evolving entities in populations. Since such artificial life platforms have been used

for evolutionary studies, it is a particular interest to explore the evolutionary potential

which such a genotype-phenotype architecture exhibits. For example, characteristics that

are long-term, open-ended, and dynamical might be attributed to self-reproduction that

incorporates some genotype-phenotype architecture.

In particular, the artificiality of artificial life platforms becomes more apparent espe-

cially when demonstrating abstract characteristics of life, because phenomena observed

in artificial life platforms do not necessarily correspond to particular physical, chemical,

or biological phenomena. In this sense, the focus of this thesis is centred on demonstrat-

ing the rather abstract model, that is, a model of machine self-reproduction proposed by

von Neumann within a purely computational situation. That being said, it would also

be reasonable and appropriate to draw some analogy from biology or from different do-

mains, in order to better compare and contrast understandings of evolutionary potential

of a genotype-phenotype architecture (and especially evolvability of a genotype-phenotype

mapping). The following subsection overviews a kind of genotype-phenotype relationship

4The Tierra system is the other platform chosen by DCU within the EvoSym project. These were chosen
as predominantly used in the relevant field with relatively abundant literatures. Also, von Neumann style
self-reproducers had not been previously investigated within these platforms before this project.
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at a certain level of self-organising system found in molecular biology, and provides a cer-

tain biosemiotic perspective to better understand the significance of such a relationship.

2.3.2 Self-Referential Logic

There underlies a self-referential logic in the world of biomolecules. Hofstadter (1979,

1985), for example, has pointed out and depicted that there is this intriguing relationship

between biomolecules regarding self-reference in relation to self-reproduction. In the same

light, Pattee (1982, 1995, 2005) coined the term semantic closure to refer to the concept

of the intertwined self-referential relationship, with the emphasis on the embodiment of

such a relationship with physical requirements.

Interrelationship of DNA, RNA, and Protein

DNA, passive in itself, not only copies itself through replication, but also undergoes the

processes called transcription and translation so that proteins that DNA codes are pro-

duced. A strand of DNA, to begin with, is transcribed into a distinct form called messenger

RNA (mRNA). Transcription is guided by particular enzymes, which are themselves pro-

teins produced beforehand. The DNA strands are complementary, but transcription itself

is not simply a copying process as it involves specific alteration. A strand of mRNA, then,

is translated into an amino acid sequence, which self-organises (folds) into a functional

protein (see Figure 2.4). Translation, effectively a decoding process, proceeds with the

help of ribosomes and transfer RNAs (tRNAs). Ribosomes are comprised of proteins and

ribosomal RNAs (rRNAs). Molecules of tRNA are floating around in the molecular envi-

ronment and have an anticodon on one end and an amino acid on another end. A ribosome

reads codons sequentially from the strand of mRNA, and, for each codon read, capture

a matching anti-codon that a tRNA molecule has. Then the tRNA molecule releases the

amino acid on the other end and this is appended to the amino acid sequence (protein)

which is under construction. The translation rule, or the combination of a codon and an

amino-acid, is actually implemented by the aminoacyl-tRNA synthetases (AARSs): those

enzymatic protein molecules help load tRNAs with proper amino-acids. The definition of

the code hinges on the work done by AARSs.

On the whole, the translation rule (represented by tRNAs and underpinned by AARSs)

and the translation procedure (represented by ribosomes) are described in the DNA (and

in the mRNA) in the first place, and once they are activated, they behave as encoded. It is

a closed relationship in the sense that DNA, and also mRNA, cannot work in isolation but

with some proteins and ribosomes; however, without ribosomes, which contain proteins,

mRNA cannot translate into proteins. On top of that, the coding relationship between

these molecular components must be self-consistent. Proteins fold differently so as to

have functionality accordingly. Proteins have structures depending on the dimension:

namely, primary, secondary and tertiary structures. Primary and tertiary structures are

noteworthy as they denote the sequence of amino acids and the three-dimensional and

functional shape, respectively.

Hofstadter also points out that these components (i.e., DNA, RNA, and protein) can

have multiple roles comparable to components in a modern computer: program, data,

language processor, interpreter, and so forth. It is not easy to identify the origin of
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Figure 2.4: Schematic process of Translation from a section of mRNA into an amino acid
sequence (adapted from Hofstadter, 1979, chapter 16, figure 96). An mRNA molecule,
drawn as a sequence of letters in the middle, can be delimited into three-letter-long codons,
each of which waits to match an anticodon held by the clover-shaped tRNA molecules
floating around. Ribosomes (drawn as two circles in the centre) facilitate this process,
creating proteins by appending amino acids, which the tRNA molecules hold on the other
end.
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such an interrelationship, or imagine how the mechanism came into existence in a way

capable of “self-bootstrapping”. Nevertheless, this interrelationship analogous to program

execution possesses an intriguing genotype-phenotype mapping in the sense that it can be

interpreted as the translation from an encoded version of information to a decoded version

of information.

Semantic Closure

The semantic closure is a closed system as found in the von Neumann style self-

reproduction, which entails symbols that are used to logically represent a whole “self”

capable of reproducing and materials that are required to physically implement such self-

reproduction. In discussing this notion, Pattee explicitly makes reference to von Neumann

in these respects: firstly, von Neumann was aware that the programmable constructor is

a requirement to reach (and exceed) a threshold of complexity in evolution; and secondly,

that von Neumann’s models exemplify the self-reproduction that requires primitive com-

ponents having both symbolic and material functions (e.g., “logic” functions in KA is

symbolic, and operations such as cutting and moving in KA are material). Here, Pat-

tee reiterates the “matter-symbol” problem, taking a stance that “all symbolic behaviour

must have a material embodiment”, which is clearly different from a view that “symbols

are ‘nothing but’ matter”.

The concept of semantic closure is worth considering as it arguably arises in different

levels from logic and language to molecules and machines to cognition. It is concerned

with the symbolisation that counts as one pervasive characteristic in a biological system,

where the distinction between genotype and phenotype matters (De Beule et al., 2010;

De Beule, 2011). From this point of view, manipulation of genetic symbols can be regarded

as communication between different levels of entities by means of a language. Recent

works in the field have endeavoured to introduce von Neumann’s insights and dynamics

into the discipline. Thus, although rather crudely, it resonates with the language-game

(Wittgenstein, 1953) that argues that meaning emerges nowhere but within a certain

framework or context where players (whether explicitly or implicitly) agree to act in accord

with the given, governing rules.

Although the molecular biological or biosemiotic aspects neither fall in the immediate

scope of the current research nor propose experimental approaches, it is highly relevant

in terms of the general framing of the current research. It is relevant firstly because there

is the separation between genotype and phenotype which a self-reproducer with von Neu-

mann architecture has. In the typical or traditional study of coreworld systems, basically

there is no such reflexive symbolic relationship between genotype and phenotype, which

might potentially allow complexity growth via evolution of genotype-phenotype mapping.

This is why the current research deals with implementation of a von Neumann style self-

reproducer in the first place. Secondly, it is because there is the distinction between a

program on a memory space and a sequence of numbers (or uninterpreted symbols) on

a memory. For example, as described in the following chapters, to code an ancestor in

Avida usually means to compose a program by arranging instructions, but each of the

instructions can be treated as a number, too. This is also about symbolisation, in that

the numbers can be interpreted as instructions in an arbitrary way, either premeditated or

20



2.4. CLOSING REMARK

spontaneous, in the way that materials (in a broad sense) can be interpreted as symbols.

Again, in a typical computing system, the interpretation (the coding from numbers to

instructions) may be arbitrary, but not mutable within the system itself. Other layers of

interpretation, however, may be mutable, including genotype-phenotype mappings. This

kind of mutability, or evolvability, is worth exploring. It might be key to realising open-

ended complexity growth, or the “open-endedness” of evolution, in an artificial system.

The genotype-phenotype mapping introduced in this section and that introduced in Chap-

ter 3 may be limited examples, as there are generally a wide variety of genotype-phenotype

relationships that can be defined in many different levels and domains, with potentially

vast space of evolutionary pathways. However, it is still worthwhile to frame particular

cases (such as the DNA-RNA-protein world or von Neumann style self-reproduction in

Avida) and investigate empirically and analytically.

2.4 Closing Remark

This chapter introduced the core theory by von Neumann and relevant concepts of symbol

systems, self-reproduction, and evolution, through which the context of the current re-

search on evolvability of genotype-phenotype mapping using an artificial life platform was

provided. On the basis of this, the next two chapters elaborate the investigations on a von

Neumann style self-reproducer within the Avida platform. The first investigation (Chap-

ter 3) is from designing to implementing a prototype von Neumann style self-reproducing

ancestor in Avida. The second investigation (Chapter 4) is to explore a methodology for

analysing evolvability through considering developing a mutation analysis tool.
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Chapter 3

Implementation of a von Neumann

Style Self-Reproducer

3.1 Overview

This chapter opens by introducing the Avida world as a modelling and experimental

platform. Then the design of a novel von Neumann style self-reproducing ancestor to be

embedded within Avida (the prototype) is described. The observation of the prototype

behaviour follows as a preliminary step of evolutionary characterisation of such a self-

reproducer.

3.2 The Avida System

The intention behind the design of Avida is to realise an artificial life system where self-

reproducing organisms can evolve, achieving some complex features. The Avida system can

be conceptually likened to a modern cluster computer, or a collective of micro-controllers,

in design. In short, Avida is a cluster of (virtual) micro-controllers, each of which (when

executing a suitable program) is analogous to an individual biological organism. The ex-

ecution of programs on such virtual micro-controllers running in parallel thus emulates a

population of organisms. Distinct strains of organism may grow in number and may com-

pete with each other for resources such as CPU time and memory space; and accordingly,

the population in the Avida system can exhibit neo-Darwinian evolution. For this reason,

Avida has been widely utilised as an evolutionary, adaptive platform (see Bedau, 2003;

McKinley et al., 2008, for general reviews). There have been a number of evolutionary,

ecological studies using Avida to date, such as Lenski et al. (1999); Ofria et al. (1999);

Wilke et al. (2001); Ofria et al. (2002); Adami (2002); Lenski et al. (2003); Misevic et

al. (2006, 2010), and more recently: Goldsby et al. (2012); Covert et al. (2013); Hessel

& Goings (2013); Knoester et al. (2013); Anderson & Harmon (2014). Some of these use

the platform in order to substitute for evolutionary biological experiments which could

otherwise be expensive or non-repeatable. The platform can also be seen as a virtual

universe which has an ecosystem in and of itself, where some analogies to biology might

be drawn. In general, these prior studies are predominantly characterised by the existence

of externally specified fitness and the self-copying mode of self-reproduction.
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Around the time of the inception of Avida (in the early 1990s), one of the goals specified

for Avidian organisms was to evolutionarily obtain solutions to particular mathematical

problems. It is to achieve this goal that a feature of external fitness function (the concept

of which is briefly mentioned in Subsection 2.2.2 in Chapter 2) was originally introduced:

organisms are given bonus CPU time from the operating system environment, depending

on their achievement of these external mathematical tasks. Every organism has an input

and an output port, via which the interaction with the external task environment is

performed. If an organism harvests abundant CPU time by succeeding in computation

of tasks, then it is able to spend more time to reproduce itself than its competitors can.

Completion of the external tasks thus facilitates the reproduction of the organism (by

increasing available CPU time), but it is not otherwise relevant to the reproduction process

itself. This function of computation of external tasks could be considered analogous to the

functionality of the so-called ancillary machinery of a von Neumann style self-reproducer.

Regarding the version of Avida used, the research of this thesis is based on a fork

of version 2.10.0, released in 2010.1 There is another variation of Avida intended for

educational purpose, called Avida-ED, with a more intuitive GUI. This is optimised for

visualising relatively short organisms and their reproduction process, but with somewhat

limited configurability (and without open source code). Avida-ED was not used in the

current project.

The following subsections describe the Avida system further.

3.2.1 Avida Organism Architecture

An organism in Avida has an architecture of a virtual, abstract computer similar to a

micro-controller (or, even to a GPU utilised for general purpose computing), which consists

of a combination of a CPU and a memory. See Figure 3.1 for the schematic representation

of the organism architecture in the system.

The Avida world is normally configured as a two-dimensional toroidal grid. Nodes

of the grid are interconnected, and each node has 8-neighbours typically (Moore neigh-

bourhood).2 Each node can be either empty or occupied by an organism. The virtual

micro-controllers running concurrently are the population of organisms in Avida.

CPU

The CPU comes with registers and stacks, along with control heads, and executes instruc-

tions stored in the memory. Program execution thus represents the metabolism of the

organism.

1The source codes and precompiled binaries of existing versions including 2.10.0 can be found at http://
sourceforge.net/projects/avida/files/. The current research has been based on this version, mostly
because it was the latest stable version when the research within the EvoSym project (mentioned in
Subsection 2.3.1 in Chapter 2) commenced, and also because it was not certain how exactly the platform
was going to be further developed and modified in subsequent versions. As of 2014, the latest version of
Avida is 2.12.4. The fork on which the current research is based consists of some enhanced functionality of
Avida, as later described and demonstrated in Chapter 4. It would not be particularly difficult to merge
the fork back to the newer versions, as the changes made to the source code were relatively minimal and
local (see Section 4.4 in Chapter 4); but extensive debugging and testing would also be required, as there
may be unexpected bugs or collisions while doing so.

2The neighbourhood can be configured so that each node is connected to all other nodes; in that case,
the world topology is changed.
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3.2. THE AVIDA SYSTEM

Figure 3.1: Schematic architecture of the organism in the Avida world (as it appears
in the documentation distributed along with the version 2.10.0 Avida used, the same
graphic as the latest one used in https://github.com/devosoft/avida/wiki/Default

-Ancestor-Guided-Tour). The Input/Output ports are used for interaction with the
external environment, but are not used in the current study. “Genome” in this diagram
rather refers to memory or memory image in the current context.
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There are three registers, namely AX, BX, and CX, which mainly store numbers that

are currently manipulated by the CPU, or are arguments for instructions. Some instruc-

tions (so-called nop instructions such as nop-A, nop-B and nop-C; see Subsection 3.3.3)

can serve as modifiers of other instructions (effectively act as operands) and vary which

registers to use (e.g., to read operand values from or write a result value in).

Along with registers are two complementary stacks (Stack-0 and Stack-1) for storing

numbers that are not being immediately manipulated by the CPU. Either of the two is ac-

tivated at a time (therefore in practice, these work as one stack). Stack-0 is activated first.

The active stack is switched to the other by executing the special swap-stk instruction

(see Subsection 3.3.3). Unlike stacks in the usual sense, the stack in Avida is not so much

a component of memory as a storage space inside CPU. The stack in Avida is finite. One

stack is fixed and 10 deep, and is not extensible. It is noteworthy that the Avida stack

does not have a mechanism to prohibit seemingly abusive manipulations, such as “pop

off from an empty stack”, or “push on when the stack is full”. When such manipulations

occur, a 0 is popped off from an empty stack, in the first case, or the last word is discarded,

in the latter case. (The fact the storage space for the Avida stack is “filled” with 0s is

important in the mechanism of a hand-designed self-reproducer described in Section 3.3.)

The control heads include the following: (a) The instruction pointer (IP) points at

the location of the instruction to be executed by the CPU; (b) The flow head is used

as a reference point to move another head to; (c) The read head and the write head

indicate the source of and the destination of memory content that are being handled,

respectively; moreover, the read head and the write head specify the range of an offspring’s

memory image to be divided off on execution of the special h-divide instruction (see

Subsection 3.3.3).

Those stacks, registers, and control heads share a basic function: they store numerical

values, but for different purposes. While both registers and stacks are used for numbers

handled in the process of execution of programs, registers are for direct handling (e.g.,

providing arguments to instructions or holding a return value from instructions) and stacks

are for indirect handling (i.e., to store values for later use). So-called control heads are

effectively registers specifically for storing address values.

Memory

The design of the memory in Avida is peculiar (relative to a typical hardware microcon-

troller) in two respects: (a) the memory can be extended dynamically, without explicit

limits, by executing a particular instruction for memory allocation; (b) the memory is

circular, so that every possible address maps validly into it. The feature (a) stems from

the fact that Avida is not built as hardware in a physical world, even though it virtualises

it. A design in a physical setting would require memory to be dynamically added in the

hardware. Commonly, the physical memory is sized relative to the address space, so the

memory falls within the range of the address space, not the other way around. The feature

(b) may not be a necessary one, except that one could argue that such a design would

improve robustness against perturbations.

The memory is a crucial entity for an Avidian organism in that it stores a sequence of

words (or more primitively, numerical values) which constitutes a program. The memory
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image, or the sequence of words on the memory, is composed of certain Avida instructions

(and, possibly, interspersed numerical data). The CPU runs such a program, executing

the instructions accordingly. We will consider the combination of a memory image and an

initial state of the CPU (i.e., a set of values stored in stacks, registers, and working heads)

as defining a specific type or class of organism, or a strain, as this essentially defines the

subsequent dynamic behaviour.

The virtual memory that is dynamically added on demand is reminiscent of the Turing

Machine’s indefinite tape (which was outlined in Subsection 2.2.2 in Chapter 2). Likewise,

the heads working on the memory are reminiscent of the Turing Machine’s head, which is

supposed to be “attached” to a particular location of the infinitely long (i.e. indefinitely

extensible) tape, as opposed to “address registers” which are implicitly fixed in width,

or range of possible addressing. This similarity does not actually imply that an Avidian

organism has the comparable capability of an ideal Turing Machine (e.g., there will al-

ways be an upper limit to the extensible memory in an Avida node, programmatically or

physically imposed). Even for a Turing Machine, there is no knowing algorithmically in

advance how much tape may be required (related to the halting problem in the Turing

Machine context).

In the Avida literature, an initial memory image of an organism (together with an

implied default initial CPU state) is referred to as a genome or genotype. If two organisms

have identical memory images (i.e. identical genomes), they belong to the same genotype.

On the other hand, in the current study, the term strain is used to mean the notion of

a memory image representing a particular sequence of words. If two organisms are of

the same strain, those organisms have identical memory images (and it is not that the

organisms share the same memory). The current work regards only a certain delimited

segment of a memory image as constituting a genome, in general. So, in this sense, the

concepts “genotype” and “genome” are not equivalent in the current work. With respect to

the execution of an organism’s program, Avida excludes any possibility of syntactic error

in program execution: in other words, any sequence of words can be validly interpreted as

a sequence of instructions and executed as a program.

3.2.2 Reproduction Mode

When programmed appropriately, an Avidian organism is able to reproduce itself. By

default, the standard mode3 of self-reproduction of organisms is by self-copying (see Fig-

ure 3.2 and Figure 3.3). A self-copier will self-reproduce by inspecting its entire memory,

one memory location after another, and copying each memory content into its (prospec-

tive) offspring’s memory in making. When a self-reproducer is a seed program in the

Avida world, it is called the ancestor (relative to a particular experimental run). Typ-

ically, an experimenter would design an ancestor based on the standard self-copier for

3The term reproduction mode in this thesis is used to mean the way in which an organism reproduces.
There can be another term production mode, meaning some more general production conducted by an
organism, but the former term reproduction mode will be used throughout the thesis, as it is more central
to the interest of the research. In the context of the current research, the word reproduction connotes, but
does not strictly imply, self-reproduction. The concept of self-reproduction can be subtle and vague, so will
be revisited in Section 4.2 in Chapter 4. Relevant to this, the word style as in von Neumann style or Ray
style appears throughout the thesis, and the context in which it is used is basically about self-reproduction,
and especially the established architecture of self-reproduction.
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Figure 3.2: The flowchart of how a self-copier (or, a Ray style self-reproducer, after the
Tierra creator) self-reproduces.

varied purposes.

With the self-copying reproduction mode, every memory content of a strain (or

“genome” in traditional Avida terminology) is copied, thus carrying over any perturba-

tion. That is, any change that has occurred in a self-copier’s memory image is inevitably

copied into the offspring and thus the changes are inheritable. Such inheritable changes

correspond to mutations in Avida.

Contrary to the usage in Avida, in this thesis, the term “genome” is used for the

most part to mean the component which is complementary to “phenome”, both of which

correspond only to parts of the memory image of a self-reproducing program with the von

Neumann architecture. In brief, genome, as a description tape, corresponds to a passive

part of the memory image, whereas phenome corresponds to an active part of the memory

image, which works on the genome. It follows, in the current case, that a change on a

memory image can mean either an inheritable one (i.e., a change in the genome, or in the

genotype a particular individual may belong to) or a non-inheritable one (i.e., a change in

the phenome, or in the phenotype a particular individual may belong to). In the current

context, therefore, only changes that affect the genome (and that are potentially expressed

in the phenome) should be counted as mutations, for only they are naturally inheritable.

The Avida system works with a number of configuration files. One such configuration

file is for the instruction set. This set is configured by selecting and enabling a subset

as necessary from a wider library of possible instructions which the system incorporates.

The instruction set plays an important role as it defines what instructions can be used to

code a program of an organism, or can appear throughout a particular experimental run
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Figure 3.3: Schematic self-reproduction as observed in the standard Avida self-copier. A
parent organism has a program on a memory coded with a copy loop. It can construct the
memory image of the offspring organism by copying its own memory contents one by one.
In the diagram, the arrow in the middle with the label “C1:read&write” (“C” denoting
“Copy”) signifies that a word at the location the arrow leaves from (in the parent on the
left) is read, and written to the location the arrow goes to (in the offspring on the right).
The offspring will replicate likewise. In this scheme, any occasional perturbation in the
memory image of a parent program (such as a “cosmic-ray” type of error or a carried over
change occurred in a previous copy process) will be copied exactly, or inherited, hence
serving as mutation.
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with Avida. As implied, in the face of perturbation events, it is from the range of numbers

defined by this set that an number replacing a particular memory location is chosen.

The default instruction set contains 26 instructions. Some instructions are not essen-

tial for reproduction, including mathematical operations used for computation done in

the interaction with the external task environment. It is not documented whether this in-

struction set is, or what minimal Avida instruction set is, formally necessary and sufficient

for Turing completeness (or, Turing’s computation universality), although the system is

claimed to support it.4 Note, in particular, that the default 26-instruction set lacks sep-

arate instructions for reading and writing words from and into memory locations, which

makes general data manipulation using this instruction set very cumbersome at best. In

designing a novel ancestor, this led to additionally enabling the read instruction and the

write instruction. This inclusion of read and write applies to all instruction sets that

are experimentally investigated in the current thesis.

Reproduction Cycle

The most general reproduction process of an organism in the Avida world proceeds as

below. The memory allocation and division take place at the beginning and the end of

the process, respectively, as conceptually illustrated in Figure 3.4.

1. Firstly, the parent allocates to itself an additional block of memory where the mem-

ory image of its (prospective) offspring is constructed;5

2. When ready, the parent divides off the offspring’s memory image typically on the

appended part, with any leftover memory space being discarded;

3. A selected neighbouring node is replaced by the offspring, replacing the organism

that was there previously, if any. The location of the node to place the offspring

is typically selected based on the age of the organisms currently occupying each

neighbouring node, with the oldest being replaced.

To execute the reproduction cycle, each organism needs CPU time, which means that

the longer the reproductive program is, the more CPU time the organism needs to self-

reproduce. A CPU time slice is allocated to each organism at each update in an Avida

run, the value of which is configurable. In the current setting, it is 30 instructions on

average per organism per update. With no external fitness function (i.e., no external task

environment) imposed, shorter organisms (i.e., with higher net rate of reproduction) are

intrinsically favoured by the Avida system.

4See, for example, Ofria et al. (2002) or the document at: https://github.com/devosoft/avida/wiki/
Default-Ancestor-Guided-Tour.

5More technically, the system by default extends the memory so that the whole memory length becomes
three times as long as the existing memory image. This allows leeway for an offspring’s memory image to
become up to the double of the parent’s. Generally, one can conceive parents whose reproduction gives
rise to offspring of varied size. Where there are size-changing perturbation events, such as insertions or
deletions, an offspring can also have an increased or decreased size compared to its parent. In the investi-
gation of this chapter, such perturbations have been omitted. Therefore, if any size change is observed, it
is because of the way of reproduction that somehow deterministically leads to a different-sized offspring,
not because of perturbation. In the main configuration file (namely, avida.cfg), there are two variables
to set minimum and maximum memory image lengths (namely, MIN GENOME SIZE and MAX GENOME SIZE)
as shown in Appendix E. In the current configuration, no restraint on the size of legitimate organisms is
explicitly set.
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Figure 3.4: Schematic memory allocation and division in Avida (adopted from the Avida
introductory paper by Ofria & Wilke, 2004). A circular memory of a parent triples (the
multiplier of which is a configurable value; see CHILD SIZE RANGE in the configuration file
shown in Appendix E) as the parent allocates a memory space to create a memory image
of its offspring. Once the memory image of the offspring is ready, the parent divides off
the offspring. Each memory becomes likewise a part of each organism and each (re-)starts
execution accordingly. In general there will be some unused space in allocated memory,
which is discarded upon division. Although not shown explicitly, it is possible that the
parent becomes shorter or longer, and that the offspring is not the same size as its parent.

3.2.3 Avida as a Coreworld-type System

It is on the Avida system that a von Neumann self-reproducer is implemented as described

in the current chapter. The purpose is to study the evolvability of a mutable genotype-

phenotype mapping (which may potentially open up greater potential for evolutionary

growth of complexity). First, the motivation and origin of the Avida system is briefly

provided as an additional background context.

The Avida (Adami, 1997; Ofria & Wilke, 2004) artificial life system has been developed

since 1993, and is widely used as an experimental platform for evolutionary studies. Avida

can allow exponential population growth as part of the neo-Darwinian evolution (Ofria &

Wilke, 2004).

Many of the important features of Avida derive indirectly from the system called Core-

world (Rasmussen et al., 1990). The Coreworld system itself was inspired by Core War

(Dewdney, 1984), which was released as a computer game mainly oriented for program-

mers. The basic idea of the game is that programmers write computer programs that

would beat others in the Core War battle. In the game, programs on a single shared

memory are regarded as interacting and competing (as opposed to programs on multiple

nodes like Avida, where each node has separate, dedicated, memory). These organisms

compete with one another for limited resources such as memory space and CPU time.

Subsequently, Rasmussen et al. made modifications to the Core War framework to invent

the new Coreworld system. They were aware that self-reproduction was crucial for organ-

isms to survive the competition, and that copy errors serve as mutations in the system

with the aim of giving rise to evolution. Its objective was to replace the human program-

mers in Core War by spontaneous natural (or the neo-Darwinian) evolution within the
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core environment. Contrary to the expectation, in fact, what the system exhibited was

anything but an evolving population. This is firstly because there is no memory protec-

tion and organisms can easily overwrite one another, and secondly because when there are

perturbations, they are likely to make organisms sterile.6

The Tierra system developed by Ray in the early 1990s in effect overcame the above

stumbling block that the Coreworld had hit. Like the Coreworld, Tierra has a single shared

memory, in which organisms compete for virtual computational resources. In designing

Tierra, however, Ray (1994) circumscribed carefully the system to prevent the fragility

of organisms by introducing memory protection, which is done by allocating memory as

if each creature has “cellularity”. To prevent the population from simply saturating the

finite available memory, the reaper was introduced to automatically kill organisms so as to

accommodate newly born organisms. Not only did the system enable evolving populations,

it demonstrated diverse evolutionary phenomena including parasitism. Parasites would

successfully keep themselves short and hence be advantageously quick in self-reproducing,

by using some or all of the hosts’ reproductive code. Once they emerge, “arm races” can

begin: the hosts will evolve their defences, whereas the parasites in turn evolve the way to

overcome them, and so forth. Chronologically, the Tierra system was to directly inspire

the development of the Avida system. The way of labelling memory locations in Avida is,

among others, reminiscent of the “template addressing” in Tierra.

Aside from the above systems, the Amoeba system (Pargellis, 1996, 2001, 2003) is

another more recent Coreworld type system, which made its appearance slightly later than

Avida was first released. The Amoeba system is a model specifically designed to study how

self-replicating, evolving programs can emerge from a world of non-replicating programs

(unlike Tierra and Avida, where the main expectations are to observe the diversity that

evolutionarily emerges or the evolution of self-replicators when seeded with an initially

designed self-reproducing organism). The initialisation of the Amoeba world is done not

by seeding an ancestor but organisms are randomly generated in the soup, where variations

emerge and interact. Reproduction is the only task Amoeba organisms have to carry

out and there is no external fitness function as can be seen in Avida. Interestingly, the

organisms in Amoeba do not necessarily share the same instruction set; whereas in Avida,

it is basically fixed for all organisms during an experimental run (though it is configurable

per run). Amoeba, with those features, succeeds in facilitating evolution from non-self-

reproducers to self-reproducers and in forming colonies of them, although the population

does not exhibit further evolutionary dynamics as Tierra does.

Even without introducing the von Neumann architecture of machine self-reproduction,

there can be evolution of complexity to some extent, as seen in various artificial life

studies using such systems overviewed above. Take Tierra for example: it succeeds in

giving rise to diversity in organism functionality through evolution. In Avida’s case, it

can allow interactions between organisms and the external environment so that they can

gain fitness by developing ancillary machinery (e.g., computing ability to gain a more quota

of CPU time, acquired unrelated to self-reproduction itself). Those organisms, however,

6In relation to such fragility of machines in a computational world, a notion of autopoiesis has been
proposed as a crucial feature for continuous biological self-reconstruction along with reproduction and
evolution. The notion refers to some resilience to preempt the fragility that organisms are subject to, but
designing it is not a simple task, as pointed out by McMullin (2004).
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do not allow room for the mutation of genotype-phenotype mapping, hence the evolution

of genotype-phenotype mapping, since they lack the genotype-phenotype architecture as

described by von Neumann.

In such Coreworld type systems, the shorter the reproduction cycle takes, the faster

the organism will self-reproduce, and possibly, the more likely that organism will increase

in number. In general, the fast reproduction rate is likely to be attributed to the shortness

of the size. Suppose that a reproductive cycle is realised by some fixed size of segment of

a memory image, and that there is a hypothetical self-reproducing organism of this size.

Then, organisms longer than that organism may have non-reproductive or non-functional

segments. If that is the case, reproduction cycles of longer organisms would not be affected

(hence the organisms would survive) if such non-reproductive or nonfunctional segments

are perturbed. In this sense, segments that are not involved in the reproduction cycle

may allow room for mutations, and may help give rise to different, possibly more complex,

traits. This, naturally, would depend on the kind of the perturbation, and the composition

of the memory image and the CPU state that runs on it.

One may argue that any self-reproducers could be regarded as embodying a genotype-

phenotype character in a narrower sense. Apparently, their codes can play a twofold role

as either the program (which is itself data) or the data input/output by the program (e.g.,

a genome can be seen as input data, and a memory image of an offspring can be seen

as output data). However, not all genotype-phenotype mappings of self-reproducers exist

in a mutable way (e.g., genotype-phenotype mappings of self-replicators or self-copiers

are hard-wired, even though its usage of memory contents is dual). In this light, the

current research is rather concerned with using an ancestor that is purely and explicitly

designed with von Neumann’s architecture in a manner where the genotype-phenotype

mapping is theoretically mutable, and looking at the evolution of such a self-reproducer.

Particularly, it is to investigate the minimal effect that such an architecture (or a style of

self-reproduction) has on the evolutionary behaviour in Avida.

Embeddedness, Individuality, and Interaction

One of the characteristics of Avida, among other Coreworld systems, is the relationship

between the world structure and individuals which reside in the world. When virtually

represented, it resembles a typical cellular automaton (CA) as it is a two-dimensional,

spatially distributed grid space. The difference is that in Avida each node of the grid

represents a location for an organism to occupy, and that once occupied, the node has an

extended memory component allocated to it. In other words, the grid space is a collection

of pointers that can point to individual organisms. In the space, individual organisms can

interact in the sense they compete locally with each other for nodes (or, another memory

space as resource in the more general sense). Simply put, Avida is a less “embedded”

system, compared to CA (T. J. Taylor, 1999); in Avida, an individual organism is repre-

sented as, and occupies, a single node, unlike typical CA where an individual organism (or

“embedded machine”) is represented as multiple cells working together to achieve some

larger scale function. Multiple nodes in Avida rather correspond simply to a population

of organisms. An Avida node points to a virtual CPU with a virtual memory representing

an organism, which operates according to the relatively complex Avida CPU dynamics;
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Figure 3.5: Frequency (N(τ)/N) distribution of genotype ages (τ) (adopted from Adami
& Brown, 1994). Total of 121,703 “genotypes” have been yielded through 20 runs. The
world size is 40x40 and the mutation rate is 0.002.

whereas a cell in CA operates according to a certain relatively simple set of transition

rules. Qualitatively speaking, in CA, a relatively simple cell suffices with a small state

space compared to a node in Avida; whereas a node in Avida—an individual organism—is

not necessarily made to be relatively simple with a small state space. In Avida, a node’s

memory is extensive (and dynamically extensible), which makes its state space generally

much larger than with a fixed small memory; moreover, the size of a single memory lo-

cation can be larger depending on the data type that is defined in the implementation as

the size of a single memory location.

As a contrast to the CA cells again, which can change the states of neighbouring cells

according to transition rules, the Avida nodes typically cannot read or write neighbouring

nodes,7 except for when a node is replaced and overwritten by a new-born offspring follow-

ing division. After division and replacement, the offspring (and likewise, the parent, too)

starts executing its program with a reset CPU: register and stack values are all set back

to zeros and control heads are positioned back to the beginning address of the memory.

A Re-Creation: Earliest Avida Experiment

One of the earliest experiments in the Avida literature where the system is introduced was

by Adami & Brown (1994). The experiment is concerned with the diversity which Avida

can bring about from a simple ancestor through the spontaneous evolutionary process.

The result of the frequency distribution of genotype ages presented in the original paper

is shown in Figure 3.5.

This particular experiment was re-created by the author as a first attempt towards

implementing a hand-designed, novel ancestor. It was, especially, in order to have a better

grasp as to what a typical Avida experiment looks like, as to how a standard ancestor

7Though not particularly relevant in the current research, there are other features that allow interaction
of organisms in Avida. One is parasitism as in Tierra, which is configurable in Avida. Also, there is
an instruction called inject in the library (see Appendix D). Typical division divides off a prospective
offspring’s memory image and replaces the entire memory image of an adjacent organism with it; whereas
injection, literally, injects a prospective offspring’s memory image into somewhere in the memory image of
an adjacent organism (Ofria & Wilke, 2004).
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Instruction Sets
Default (New) Classic (Old)

nop-A

nop-B

nop-C

if-n-equ

if-less

pop

push

swap-stk

swap

shift-r

shift-l

inc

dec

add

sub

nand

h-alloc if-bit-1

h-divide jump-f

IO jump-b

h-copy call

h-search return

mov-head copy

jmp-head allocate

get-head divide

set-flow get

if-label put

search-f

search-b

Table 3.1: “Default” (new) and “classic” (old) instruction sets (see Appendix 1 of Ofria
& Wilke, 2004, for a more detailed description). 16 instructions are common.

behaves, and as to what instruction set to start designing a new ancestor with.

For this experiment, two minimal, standard ancestors were prepared based on two

different instruction sets and they were run. They were expected to yield diverse organisms

(or genotypes, in the Avida literature) through evolution. The re-creation was made as

faithfully to the original setting as possible, except for the instruction set: it was unknown

from the description in (Adami & Brown, 1994) precisely which instruction set had been

used, the default set (new) or the classic (old) set, both of which were available in the

versions of Avida released around that time.

As shown in Table 3.1, these instruction sets have 16 instructions in common. The

codes of simple, standard ancestors coded in these instruction sets (referred to as the “de-

fault” ancestor and the “classic” ancestor here, respectively) are listed in Listings 3.1 and

3.2 (codes and comments adopted from Appendix 1 of Ofria & Wilke, 2004). Character-

istically, the default instruction set and the “default” ancestor assume the use of control

heads, while the classic set and the “classic” ancestor do not. (The instruction set in the

context of the current work will be explained in more detail in Section 3.3.)
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Listing 3.1 shows how the “default” ancestor self-reproduces with a copy loop. This

ancestor starts by allocating memory for a prospective offspring by executing the h-alloc

instruction (at line 1). It then locates the end of the organism, by executing the h-search

instruction (at line 2), making use of labels. One label is nop-C and nop-A (located at lines

3 and 4), and the complementary one is nop-A and nop-B (located at lines 14 and 15).

Then, this ancestor places the write head to the start address of the offspring segment,

by executing the mov-head instruction (at line 5). This instruction has a modifier, the

nop-C instruction (at line 6), which specifies which head to move (in this case, the write

head). Next, the h-search (at line 7) is executed to mark the start of the copy loop. The

h-copy instruction (at line 8) is the main instruction in the copy loop: it reads one word

from where the read head is located at (by default, at the start of this ancestor’s memory

image) and writes to where the write head is located at (now at the start of the prospective

offspring segment) and moves both of the heads forwards. The copy loop branches by the

if-label instruction (at line 9). This copy loop is supposed to finish after copying the

instructions that constitute the label (nop-A and nop-B at lines 14 and 15) that marks the

end of the segment of this ancestor as a parent. This label is complementary of the label

(nop-C and nop-A at lines 10 and 11) that follows the if-label instruction. This is how

the if-label instruction works: if this is followed by a label corresponding to the most

recently copied label, then it executes the next instruction; but otherwise skips it. In this

case, if the last two words of this organism are certainly copied, the division takes place by

executing the h-divide instruction (at line 12); before that, this organism keeps copying

words using the copy loop, by executing the mov-head instruction (at line 13). For more

details about instructions, labels and modifiers, see Subsection 3.3.3 in Section 3.3.

Listing 3.1: “Default” ancestor

1 h-alloc # Allocate space for child

2 h-search # Locate the end of the organism

3 nop -C # Label alpha

4 nop -A #

5 mov -head # Place write head at the beginning of the offspring

6 nop -C # Nop modifier for mov -head

7 h-search # Mark the beginning of the copy loop

8 h-copy # Do the copy

9 if-label # If we’re done copying ...

10 nop -C # Label alpha

11 nop -A #

12 h-divide # ... divide!

13 mov -head # Otherwise , loop back to the beginning of the copy loop

14 nop -A # Label complementary alpha

15 nop -B #

Listing 3.2 shows how the “classic” ancestor self-reproduces similarly with a copy

loop. This ancestor starts by measuring the distance to the end of its memory image, by

executing the search-f instruction (at line 1), making use of labels (i.e., one is nop-A and

nop-A at lines 2 and 3, and the complementary one is nop-B and nop-B at lines 21 and

22). The distance measured does not include the length of the search-f instruction and

the label, so the add and inc instructions (at lines 4 and 5) the search-f instruction are

executed for this organism to obtain the size of its whole segment (22 in this case). Then,

the allocate instruction (at line 6) allocates the memory for the prospective offspring,

setting the offset (or the relative start address of the offspring segment, 22 in this case)
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in AX. The push and nop-C instructions (at lines 7 and 8), and the pop and nop-C

instructions (at lines 9 and 10) are executed to move the value of the size to CX, signifying

how many words to be copied, or the end address of the memory image of this ancestor

as a parent. Then, the pop instruction sets the value 0 to BX, signifying the “source”

location where the (initial) word is copied from. The start and end of the copy loop of

this ancestor are marked by another pair of labels (i.e., nop-B and nop-C at lines 12 and

13, and nop-A and nop-B at lines 18 and 19). Once the copy loop is entered, the copy

instruction (at line 14) is executed and copies one word (initially, from the start of the

parent segment, at the relative address 0, to the offspring segment, at the relative address

22). The inc instruction (at line 15) is executed to move to the next word. The offset is

used to specify the location to where a word is copied relative to this source location, so in

effect, words are sequentially copied by executing this loop. This copy loop branches using

the in-n-equ instruction (at line 16); in this particular case, before the current source

location is reached at the end of the parent segment, then the loop continues and the next

jump-b instruction (at line 17) is executed; otherwise it is skipped, and (nop-A and nop-B

at lines 18 and 19 are executed, doing nothing in particular, then) the divide instruction

(at line 20) is executed. The memory image from the point specified by the offset turns

into the offspring’s memory image.

Listing 3.2: “Classic” ancestor

1 search -f # Find distance to the end label

2 nop -A # Label alpha

3 nop -A #

4 add # Account for label alpha ’s size

5 inc # Account for the initial search -f

6 allocate # Allocate space for the daughter

7 push # Push size from BX onto the stack

8 nop -B # Nop modifier for push

9 pop # Pop size off of the stack into CX

10 nop -C # Nop modifier for pop

11 pop # Since the stack is empty , pop 0 into BX

12 nop -B # Label beta complementary (copy loop start)

13 nop -C #

14 copy # Copy the current line

15 inc # Move on to the next line

16 if-n-equ # If we aren ’t done copying ...

17 jump -b # ... jump back to the loop ’s beginning

18 nop -A # Label beta

19 nop -B #

20 divide # Done copying; separate the daughter!

21 nop -B # Label complementary alpha

22 nop -B #

As a result of the experiment, almost the same trend was exhibited, except for a peak

in the graph for the “classic” ancestor, which the “default” ancestor does not have (see

Figure 3.6). Strangely, the classic ancestor, which the original experiment seems to have

used, did not produce a closely comparable result, while the default (or newer) ancestor

did. Although the cause was not identified, as the Avida setting and configuration are not

fully provided in the original literature, it is clear that the choice of the instruction set

may have a significant impact on such evolutionary dynamics.
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Figure 3.6: Frequency distribution of genotype ages re-created with the ancestors coded
with the “default” instruction set (top) and the “classic” instruction set (bottom). Totals
of 2,242 and 1,971 “genotypes” have been yielded through 5 runs, respectively. The world
size is set to 40 × 40 and the mutation rate 0.002, in the same manner as the original
(Adami & Brown, 1994).
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3.3 Designing a Prototype Ancestor

As a toy model, a prototype ancestor of the von Neumann style architecture is designed

to seed the Avida world. This section describes the design and implementation of this

prototype.

3.3.1 Genome and Phenome

To design a prototype ancestor, the description by McMullin et al. (2001) was followed as

a guideline. This is as opposed to the standard self-copying architecture in Avida, which

lacks genotype-phenotype distinction, and which presumably leaves no opportunity for a

mutable or evolvable genotype-phenotype mapping.

The present hand-designed prototype ancestor has a top-level decomposition into a

genome and a phenome, corresponding to the passive machinery and the active machinery

of von Neumann’s self-reproductive architecture, respectively. The order in which genotype

and phenotype are placed is not essential (hence the order of genome and phenome, the

instantiated versions of genotype and phenotype). The decomposition or the order might

potentially be re-structured into a different one through evolution. In the present ancestor

design, the phenome is placed first, followed by the genome, as execution naturally starts

from the beginning of the memory image of an Avida organism by default. It could be the

reverse order, with the genome followed by the phenome. Similarly, although procedures

for decoding are conducted before those for copying in the present design, the order of

sequential activities during reproduction could be different.8

The phenome supports the active process of copying and decoding of the description

tape (the genome): from extending the parent memory by allocating memory for creating

the memory image of a prospective offspring, to dividing off that created memory image

as an offspring’s memory image to replace a neighbouring node. In the design of the

prototype ancestor, the genome is a part treated exclusively as “data”, so it is never to be

executed (although it is not enforced by anything in the system); whereas, the phenome

not only necessarily contains executable codes, but also incorporates “data” segments as

necessary.

One may notice that no explicit “ancillary machinery” is included in this design of

the prototype. Having no ancillary machinery means that all the program contributes

to the reproductive process directly, each section from one way to another. By doing so,

unnecessary complication in the design process was avoided, and one can focus on more

essential effects purely from the self-reproductive functionality of the von Neumann style

architecture. If any part of the program that does not necessarily engage in the repro-

ductive process emerges through evolution, then that part may be counted as ancillary

machinery in von Neumann’s architecture.

8In biology, the ways genotype and phenotype are organised can vary significantly and be much more
complex. For example, it may be the offspring’s genotype that is decoded into the offspring’s genotype,
rather than the parent’s genotype. In other words, the genotype is copied first and then, from it, decoded
into the phenotype. Buckley (2008) discusses the equivalent idea of whether to start from the daughter
or the mother. The current thesis adopts the standpoint that, in terms of von Neumann’s design, the
programmable constructor can start decoding either from the parent’s genotype or the offspring’s genotype
after copying.
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The design of the prototype ancestor’s self-reproduction is further explained in the

following subsections.

3.3.2 Copying and Decoding

Copying is a part of the self-reproductive process, in which a putative parent organism

inspects its genome and copies one memory location after another to a memory location

of the memory segment allocated for its prospective offspring. The copy source is read,

and the content directly goes to the copy destination, unchanged. The copied part is to

be the offspring’s genome after division.

Decoding, on the other hand, means the translation process of mapping a genome to a

phenome. In the design phase, it was decided to adopt a mapping where the source memory

contents (of the genome) are translated sequentially word by word into the destination

memory contents of the phenome. Also it was decided to implement the mapping as a

lookup table. As explained later, the lookup table is embedded in the phenome. This type

of mapping was chosen for relative ease of the implementation and the reverse translation

of the phenome. More specifically, decoding was designed so that a putative parent reads

the content of a memory location, translates it using the lookup table, and writes the

resulting content into a memory location of its prospective offspring. The decoded part is

to be the offspring’s phenome after division.

In the parent, only the relevant parts of the memory image are treated exclusively

as data (i.e., the genome is not executed; in the phenome, the lookup table, labels and

modifiers are not executed, as explained later). That is, a content of a memory location

(or, a word) may be interpreted as an instruction, which is predefined in the form of an

instruction set in the system configuration setting; whereas, alternatively, it may not be

interpreted as an instruction but as uninterpreted data, typically represented as a distinct

integer number. In copying, the relevant code in the phenome is executed and copies the

genome (treating this segment as data); whereas in decoding, the relevant code in the

phenome is executed and decodes the genome accessing the lookup table (treating these

segments as data). Only after division does the decoded segment get re-interpreted as

a phenome, and thus, some part of it as instructions. Since both the complete genome

and phenome can be viewed as (indefinitely large, multi-digit) integers, the prototype’s

decoding of the genome into the offspring phenome is abstractly a mapping from an integer

to another. The initial genotype-phenotype mapping was chosen in a way such that the

genome is decoded into the particular phenome which, in turn, is capable of decoding the

same genome into the same phenome.

The designed way that the prototype ancestor conducts the self-reproduction can be

summed up as follows:

1. allocate the memory for creating the offspring memory image;

2. execute various instructions in the copy loop to copy the target genome;

3. execute various instructions in the decode loop to decode the genome into the target

phenome, referring to the embedded lookup table; and
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4. divide off the created memory image as the offspring’s memory image and replace

some neighbouring node with it.

To realise self-reproduction, the parent’s memory image and the offspring’s memory image

must be identical. In order to achieve this, the designed phenome was reverse-translated

(or encoded) into the genome. Thus, the organism with the phenome and the genome, as

a parent, is able to self-reproduce an offspring. They are instantiated as two individual

organisms of the same strain after division.

3.3.3 Instruction Set

Avida supports an assembly-like language for coding organisms’ programs (see Appendix D

for the complete instruction library found in the Avida source code). The instruction set

is configured arbitrarily by an experimenter run by run, in order to determine a list of

instructions that can be used in a single run. It is from the range of numbers defined by

this set that resulting words of mutational events are chosen. The instruction set does not

vary within a single run.

As each line of the instruction set configuration file sequentially corresponds to a

particular natural number (i.e. an index), the instruction set file implicitly provides an

association between instructions and numbers (i.e., 0, 1,... N-1; with N being the fixed

size of the set). In other words, a specific instruction set implicitly defines the set of

word values that are legal on execution (i.e. opcodes). A memory location containing a

number larger than the instruction set size is interpreted (on execution) as the remainder

of the number when divided by the size. Because of this, the finite instruction set file is

capable of associating any memory location value, even beyond the size of the set, to an

instruction.

Biological Operations and Added Instructions

For the purpose of implementing the prototype, a subset of the whole collection of in-

structions defined in the system was chosen and enabled. The 26 instructions included

in the default instruction set were enabled as a starting point.9 Additionally, two further

instructions, namely read and write, were enabled in order to code the decoding process,

as mentioned in Subsection 3.2.2. See Table 3.2 for the instruction set used.

Among the instructions in the default instruction set, the h-copy instruction plays

the memory-to-memory copying role. The prefix h- implies that this instruction relies

on the control heads; what the h-copy instruction does is first to read the value at the

memory location which the read head points at and then to write the same value to

the memory location which the write head points at. It then moves both of the heads

forward (i.e., increment the addresses) so that they point at the (putative) next copy

9The classic instruction set (from the first generation of the Avida system) is not generally used by
default in later distributed versions, and is not used in the current investigation based on the 2.10.0
version of Avida either. Apparently, the classic set had an impact on the default set design. While some
instructions of the classic set are retained in the default instruction set, there are some newly introduced
instructions, mostly related to the reproduction that relies on the control heads. With the classic set,
reproduction process would use somewhat more primitive instructions, which do not rely on the control
heads.
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Word Content Opcode Operation

0 nop-A

No-operations1 nop-B

2 nop-C

3 if-n-equ

Flow Control Operations

4 if-less

5 if-label

6 mov-head

7 jmp-head

8 get-head

9 set-flow

10 shift-r

Single Argument Math

11 shift-l

12 inc

13 dec

14 push

15 pop

16 swap-stk

17 swap

18 add

Double Argument Math19 sub

20 nand

21 h-copy

Biological Operations22 h-alloc

23 h-divide

24 IO
Input/Output and Sensory

25 h-search

26 read
(Additionally Enabled Operations)

27 write

Table 3.2: The instruction set used for the implementation of the prototype. “Operation”
depends on the categories in the actual instruction set configuration file. Along with the
default standard 26 instructions, two more instructions, namely, the read instruction and
the write instruction, are enabled for the purpose of implementing decoding. These 28
instructions are indexed with numbers from 0 to 27 (the corresponding opcodes).
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source and destination locations, respectively. The conventional, standard Avida self-

copying ancestor, relies almost exclusively on this instruction to self-reproduce by copying.

Unlike the h-copy instruction used for copying, the read instruction and the write

instruction were not enabled in the default instruction set. Technically, the read instruc-

tion reads a value from a memory location pointed to by a certain register and stores

the value in a specific CPU register (e.g., reads a value at the location specified by BX

into CX, which can be modified); whereas the write instruction writes a value stored in

a particular register into a memory location pointed to by the combination of the other

two registers (e.g., writes the value in CX into the location specified by AX + BX, the

operand of which can be modified).

The h-divide instruction is used at the end of the reproduction to divide off the

offspring (whose memory image has been created as a part of the parent’s memory),

overwriting and resetting an adjacent node. The memory image between the read head

and the write head at the point when the h-divide instruction is executed is regarded as

the offspring’s memory image.

A self-copying organism using the h-copy instruction (like the default ancestor) starts

self-replication by copying from the beginning of the (putative) parent memory image,

where the read head is initially at, to the beginning of the (prospective) offspring memory

image, where the write head is at (set by the h-search instruction), which is right after

the end of the parent memory image. As it moves the read head and the write head

forward step by step, it sequentially copies the original segment of the parent memory

image, until the end. By this time, the read head and the write head end up being at the

beginning and the end of the offspring memory image, respectively. Then division takes

place using the h-divide instruction, taking off the image between the read head and the

write head, and discarding/de-allocating memory beyond the write head (if there is any).

In terms of implementing decoding, the default 26-instruction set poses two problems

with respect to the h-copy instruction: (a) the h-copy instruction does not allow to access

and process a read value via general purpose arithmetic or logical instructions, which can

operate on register contents or memory contents; (b) the h-copy instruction depends on

the read head and the write head to specify addresses.

The reason the h-copy instruction is not suitable for the implementation of decoding

can be more specifically explained as below:

• On the one hand, by using the mov-head instruction, it is possible to position the

read head, the write head, or the instruction head at a destination memory location

where the flow head is set;

• However, in order to set the flow head somewhere, the set-flow instruction has to

be executed, which uses the value from a certain register, and there is no way to

access and process an arbitrary register value;

• On the other hand, by using the get-head instruction, it is possible to get the

address of the read head, the write head, or the instruction head, and to move the

flow-head to that obtained address;

• However, there is no way to position the read head, the write head, or the instruction

head at an arbitrary address, for above-mentioned reasons.
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Instead of forcibly using the h-copy instruction even for the purpose of decoding

in a novel ancestor, the read instruction and the write instruction were introduced to

alleviate the problems10 posed by the restricted functionality of the h-copy instruction.

The use of these instructions allows to decouple the two more primitive operations that the

h-copy instruction performs. At the cost of taking some extra steps to perform equivalent

operations, now a program can access and process the read content, which is a numerical

value that is originally not loaded into the registers or the stacks. While the h-copy

instruction was not removed from the instruction set, the read instruction and the write

instruction were added to compensate for the difficulty of implementing decoding. Also,

enabling these instructions allows some freedom of pointing at arbitrary addresses without

the help of the read head and the write head. Now the read and the write heads are used

for the operations performed by the h-copy instruction and the h-divide instruction, but

not used for reading a value from, or writing a value in, a certain memory location while

decoding. Those heads are still used for copying and for dividing off the offspring at the

end of the reproduction. The combination use of the h-copy instruction and the h-divide

instruction for copying can be found in the self-reproduction of the “default” ancestor.

The implemented self-reproduction which requires allocation of memory, copying of a

memory content, and division of an offspring organism is implemented based on values

loaded in registers such as important addresses and sizes, not necessarily using the control

heads. Particularly, one crucial thing incorporated in the design of the novel prototype

ancestor is to be able to handle values read in decoding (which influences how the con-

structor decodes and is therefore important), while also minimising the change that had

to be made to the default instruction set.11 Simply put, using the h-copy instruction, the

source and destination values are hardwired, whereas with the use of the read instruction

and the write instruction, they are not.

Modifiers and Labels

For the current purpose of implementing the prototype ancestor, notice that there are

some instructions that input values from or output to registers, and the register to be

used can be changed using a modifier.

As a general rule, the registers AX, BX and CX and can be accessed with the no-

10As mentioned, computational completeness is assumed in Avida. In the case of Tierra, on which Avida
was originally based, a similar question arises, as to whether the instruction set without a read or write

instruction can posit a significant theoretical problem (Maley, 1994). It was found that though the absence
of read and write instructions may cause very significant clumsiness in coding in the language, it does
not affect the Turing completeness; but that adding instructions for reading and writing may be beneficial
to evolution in Tierra. Although there seems not to be an equivalent study for Avida, presumably the
Tierra case is analogous and applicable to some extent. The current investigation relies basically upon the
default instruction set consisting of 26 instructions which the Avida developers claim yields computational
completeness (see Subsection 3.2.2). In any case, regardless of the extent that computational completeness
depends on the choice of the instruction set, from the current point of view it is important that adding
the read and write instructions adds substantial flexibility to the language.

11It is a possibility to consider including, for example, the plain copy instruction of the classic instruction
set. It copies content from a certain memory location to another location specified by values in the registers,
and there is a possibility of copy perturbation. In the current instruction set, it was not included, mainly
because it was not included in the default set and because a minimal change to the default set was
considered. In general, it was not sufficiently clear how to design an instruction set (not to mention how
to design it from scratch) in order to suit the current purpose of implementing a von Neumann style
self-reproducer.
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operation (i.e. so-called nop) instructions, nop-A, nop-B and nop-C, respectively, when

used as modifiers for instructions such as push and pop. When specified with no modifier,

the register BX is used by default. Also, these instructions, nop-A, nop-B and nop-C, have

a complementary relationship: nop-A is complemented by nop-B, nop-B by nop-C, and

nop-C by nop-A. As for the registers, AX, BX, and CX are complementary, likewise: AX is

complemented by BX, BX by CX, and CX by AX. This relationship of registers is relevant

when an instruction accepts two arguments; when one register is used for a first argument,

its complementary register is used for the second; for example, the swap instruction swaps

the values in BX and CX by default (or with a modifier nop-B), but when modified by

nop-A, it is between the values in AX and BX, when modified by nop-C, it is between CX

and AX. In addition, the modifiers nop-A, nop-B and nop-C are associated to heads, IP,

the read head and the write head, respectively, and are used with instructions which make

use of heads (such as the mov-head instruction and the set-head instruction).

Labels serve as markers in an Avidian program, representing particular addresses in

memory. The usage of labels is supported by the complementary relationship of the nop

instructions nop-A, nop-B and nop-C. For example, a pair of nop-A and nop-B in this

order makes a label which is complemented by a label of nop-B and nop-C. As regards

coding labels, technically, a designer has to be careful so that no other same sequence as

a complementary label should appear between a label and an intended complementary

label.

3.3.4 Lookup Table

To implement the decoding process according to the selected initial genotype-phenotype

mapping, a lookup table approach was adopted so that the genome is decoded sequentially

into the phenome on a word-by-word basis, like a substitution cipher in cryptography. The

lookup table was designed as a part of the phenome (incorporated towards the end of the

segment). The word-by-word mapping as expressed in the lookup table provides building

blocks for the translation from genotype into phenotype. Thus, the genotype-phenotype

mapping is underpinned by those sequential decoding steps. Though this approach may be

intuitively simplistic, it at least provides a convenient starting point that can in principle

be extended into a more complex one.

In the decoding process using a lookup table, a read word is treated as a number itself

(or a numerical value) as opposed to an instruction; and then the number is interpreted as

a relative address (or an index) in the lookup table to look up a target number. Although

the choice of the mapping defined by the lookup table is arbitrary, the lookup table in the

current case was created as a simple list of all allowed word values, listed in reverse or

decreasing numerical order. This order is an arbitrary one of the possible permutations

obtained from the set of allowed word values. Each number listed in this lookup table

signifies a target (or destination) number for the source number specified by the relative

address: the 0th entry in the lookup table is the number that a source number 0 will be

translated into, the 1st entry is the number that a source number 1 will be translated into,

and so forth.

As there are 28 instructions indexed from 0 to 27, let a list 27..0 (i.e., descending order)

be the lookup table. If the word read from a location of the parent genome in the decoding
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process is 0, the process first looks up what word is at the relative address of 0 (which is

the 0th word) in the lookup table, which is 27, and then goes on to write the looked-up

word into the corresponding location of the offspring phenome. This means that the value

0 is decoded into the value 27. Likewise, 1 will be decoded as 26, 2 as 25, ..., 26 as 1, and

27 as 0.

Due to the design using a lookup table, there is more arbitrariness to the mapping than

the genetic code in real biology. For example, codons are translated into amino acid chains

(and further, amino acid chains fold into proteins, according to some physical or chemical

constraints and laws as overviewed in Subsection 2.3.2 in Chapter 2). Given codons are

defined by a triplet of four kinds of nucleotide, there could be more than sixty logically

possible combinations (64 = 43), although there are actually fewer kinds of amino acids

(which is commonly 20, in animals including humans). The current lookup table is loosely

inspired by the biological genetic code, but is designed as a one-to-one list of numbers, the

same size as the instruction set.

It is important that the word-by-word mapping of a lookup table has invertible and one-

to-one correspondence, so that it is possible to “encode” an arbitrary ancestor phenome

given a lookup table.12 The prototype phenome is encoded with the inverse of the lookup

table. In practice, the phenome segment was designed first (i.e., the mechanism of copying

and decoding, attached with the lookup table), with the genome segment of the same

length being a “black box”. Then, the fully designed phenome segment was reverse-

translated into the corresponding genome segment using the lookup table, so that the

phenome and genome pair of a parent can produce the identical organism as an offspring.

Simply put, the phenome is the decoded version of the genome, and the genome is the

encoded version of the phenome. Of course, encoding only ever takes place outside the

system, to produce the ancestor; whereas the ancestor itself performs decoding.

In the current design, the lookup table implements an invertible, one-to-one corre-

spondence between all possible genotype words and phenotype words. It follows that the

maximum translation repertoire is available in the mapping. Accordingly, there is no

possibility for mutation to enhance the translation repertoire beyond that. However, it

is possible for mutation to reduce the translation repertoire. If that happens, then the

mapping will also necessarily include redundancy in the coding of one or more phenotype

words. From this point of view, mutants with mutations expressed in a lookup table are of

particular interest. It is noteworthy that in the context of the current study, only one-point

mutation is made available, and mutations such as insertion or deletion are excluded, as

explained in Section 3.4. This means that mutations could not directly bring about du-

plication of a mapping.Subsection 4.4.4 in Chapter 4 provides a relevant discussion based

on a result from some empirical analysis on such mutants of the prototype introduced in

this chapter.

Aside from the specification of the lookup table, it is noticeable that the segment of

the genome that encodes the lookup table will always be precisely the sequence of numbers

12Though numbers that can be interpreted as instructions are limited by the range determined by an
instruction set, this fact does not restrict what numeric value a memory word can contain. Suppose,
hypothetically, an ancestor whose memory word contains a numeric value outside the range defined by the
instruction set, which is used purely as data (e.g., used functionally, not interpreted as an instruction),
then such an ancestor would not be “encodable”. That is, not every possible phenome can be encoded.
As the design of the prototype does not call for such a data word, this is not prima facie obvious.
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Figure 3.7: Flowchart of how the von Neumann style prototype self-reproducer operates.

from 0 up to N-1 (where N is the size of the lookup table, or the size of the instruction set,

in the current case N = 28), with the algorithm of the designed decoding process using a

lookup table, regardless of the order of values in the lookup table itself. This is because

each number must denote its own relative address in the lookup table.

3.3.5 Self-Reproduction

Equipped with the von Neumann style architecture of self-reproduction, the designed

prototype decomposes into the phenome, the first half, and the genome, the second half of

the complete memory image (see Figure 3.7 for the flowchart of the self-reproduction by

the prototype ancestor, and Figure 3.8 for the prototype’s schematic layout in memory).

The phenome can be seen as having five functionally separate segments, namely De-

code Preparation, Decode Loop, Copy Preparation, Copy Loop, and Lookup Table (see

Table 3.3 for its segment allocation and correspondence, and Appendix B.1 for the entire

phenome memory image). In terms of the generic von Neumann architecture introduced

earlier, the Decode Loop along with the Lookup Table corresponds to the programmable

constructor A, the Copy Loop corresponds to the copier B, and Decode Preparation and

Copy Preparation correspond to the control C. The prototype does not incorporate the
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Figure 3.8: Designed self-reproduction of the novel prototype ancestor. To obtain an
identical offspring self-reproducer, the parent’s phenome (the active part) decodes and
copies its genome (the passive part), as the program is executed from the start. The
lookup table, a section at the end of the phenome, is referred to when decoding in order
to create the offspring’s phenome. In the diagram, “D1”, “D2” and “D3” denote (high-
level) decode steps, and “C1” denotes a (high-level) copy step. The arrow with the labels
“D1:read” and “D2:look up” signifies that a word at the location this arrow leaves from is
read, and that a word corresponding to the read word is looked up from the lookup table at
the location this arrow goes to (both in the parent on the left). The arrow with the labels
“D2:look up” and “D3:write” signifies that a resulting word (from the steps above) at the
location this arrow leaves from (in the parent on the left) is written to the location this
arrow goes to (in the offspring on the right). The arrow with the label “C1:read&write”
signifies that a word at the location the arrow leaves from (in the parent on the left) is
read, and written to the location the arrow goes to (in the offspring on the right).
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Segment
Address

(in Phenome)
Code Address
(in Genome)

Decode
Preparation

0–27 322–349

Decode
Loop

28–193 350–515

Copy
Preparation

194–245 516–567

Copy
Loop

246–293 568–615

Lookup
Table

294–321 616–643

Table 3.3: The five phenotypic functional segments of the prototype and the corresponding
genotypic segments (that are encoding these phenotypic functional segments). The Lookup
Table segment is only used in the decoding process, not executed like the other four
phenotypic segments.

(arbitrary) ancillary machinery D deliberately, presuming it is not essential for repro-

duction per se (i.e., D can be null, without violating the abstract architecture) and it is

not relevant to the immediate investigation of mutations affecting the genotype-phenotype

mapping (i.e. the programmable constructor A). It may not necessarily hold that ancillary

machinery D can be null, especially if one assumes that there is some interdependency or

even inseparability among components (e.g., between A + B + C and D). If such is the

case, having no ancillary machinery might affect the reproductive function of A+B +C.

The stance adopted in the current study, however, is that the components for reproduc-

tion, A + B + C, and ancillary machinery D are separable enough to the extent that D

can be set null. (This assumption may be interpreted as a “reproduction first” model,

where only a reproduction mechanism with A+B+C precedes “metabolism”, which can

be regarded as part of ancillary machinery D.13)

Once the prototype ancestor is seeded in the Avida world, Decode Preparation and De-

code Loop are initially executed and decode the genome to create the offspring’s phenome.

One step of decoding is as follows:

1. a source word is read from the genome (Decode1),

2. and a target word is looked up via Lookup Table (Decode2)

3. and is written in a corresponding location in the prospective offspring’s phenome

(Decode3).

Subsequently, Copy Preparation and Copy Loop are executed and copy the genome to

create the offspring’s genome as follows:

1. a word is read and written at one step (Copy1).

13Note that this “reproduction first” concept refers to a discussion in the literature on autopoiesis. The
latter generally argues for self-sustaining metabolism as a necessary precondition for reproduction. This
is related to, but not identical to, the debate between “replicator first” and “metabolism first” discussions
in the broader molecular biology literature.
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Then, the final step is division, which is achieved by the h-divide instruction. For a

complete self-reproduction, it takes 52218 Avidian instruction cycles, or steps. This is the

prototype’s gestation time (i.e. reciprocal of reproduction rate).

The four phenotypic segments except for Lookup Table are the executed part, which

is supposed to be executed as pointed at by the IP. The Lookup Table segment is not

executed, but is used as a data structure to support decoding. This division of the segments

is not a strict one, but rather for the sake of convenience of understanding the structure

designed; some instructions do not necessarily belong precisely to one segment or the

other.

The subprocess conducted by the active segments of the decode preparation and the

decode loop can be summarised as follows (for a line-by-line description, refer to Ap-

pendix A).

Decode Phase

The program starts with allocating memory for the creation of the offspring’s memory

image, which is triggered by the h-alloc instruction (see Listing 3.3 for this segment

code, and Table 3.4 for the execution trace). The size of the allocation is double the size

of the prototype itself. At this point, the whole length of the prototype (= 644) and the

label size (= 2 in this case) are collected. The program then starts collecting necessary

values for the process, namely the start address of the lookup table. It is located by

the h-search instruction with the help of the label that follows it, together with the

complementary label located immediately before the lookup table. The stack is used as a

store to save necessary values throughout. The memory space used for the stack is filled

with zeros by default, and here two of these are designed to be used as necessary values,

one as a constant zero for comparison which is to be executed later at the end of the decode

loop, the other as a counter which is to be incremented to point to a relative destination

address in the offspring. Subsequently, the whole length and the label size obtained earlier

are stacked (although the label size could have been omitted as it is not going to be used).

The read head is positioned at the start address of the lookup table obtained earlier. Next,

the start address of the genome is located (again using the h-search instruction), and the

read head is positioned at the start address of the genome. Then the process calculates

the remaining (genome) length to decode (or, a counter to be decremented, to be stored

in the stack) by subtracting the value of the genome start address from the value of the

whole length. At the end of the decode preparation, the flow head is set to mark the

beginning of the decode loop.

Listing 3.3: Decode Preparation

1 h-alloc # Allocate space for child. # AX:Whole Length (WL)

2 h-search # Locate the start of Lookup Table (LT). # BX:distance to LT,CX:labelsize

(l)

3 nop -A # Label Alpha.Looks for nop -B,nop -C.

4 nop -B #

5 push # Push AX:WL.(Stack -0:WL ,c,0 ,..)(c==0: for comparison)

6 nop -A #

7 push # Push CX:l.(Stack -0:l,WL,c,0,..)

8 nop -C #

9 mov -head # Move Read Head to LT.
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10 nop -B # (Read Head)

11 get -head # Get CX:LT

12 nop -B # (of Read Head)

13 push # Push CX:LT.(Stack -0:LT ,l,WL,c,0,..)

14 nop -C #

15 h-search # Locate the start of Genome. # BX:d to G,CX:labelsize

16 nop -A # Label Beta.Looks for nop -B,nop -A.

17 nop -C #

18 mov -head # Move Read Head to G.

19 nop -B #

20 get -head # Get CX:G.AX:WL ,BX:d to G.

21 nop -B # (of Read Head)

22 swap # AX:d to G,BX:WL ,CX:G

23 nop -A # between AX and BX

24 sub # BX:GL (=BX -CX=WL-G) (=" Length to Go before Genome ")

25 push # Push BX:GL.(Stack -0:GL ,LT,l,WL ,c,0 ,..)

26 swap # AX:d to G,BX:G,CX:GL

27 push # Push BX:G.(Stack -0:G,GL,LT ,l,WL ,c,0 ,..)

28 h-search # Set Flow Head to mark the start of the loop. # BX:0,CX:0

By now values stored in the stack are ordered as: [genome start address, remaining

length, lookup table start address, label size, whole length, constant zero for comparison,

0 (filler), ...] (listed from top). The other side of the stack is not active and not used

yet for the first time, but later it is to become: [relative source address in parent genome,

relative destination address in offspring, 0 (filler), ...] (listed from top).

The decode loop segment starts by retrieving the genome start address and a relative

distance from it (see Listings 3.4 and 3.5 for this segment code and the lookup table,

respectively). It is from the source specified by those values that a word (the first word

of the genome to be decoded, namely 5) is read, using the read instruction, into the

register CX. Now another zero, a filler from the stack, is obtained to be used as a counter

to be incremented to point at a relative source address in the genome. At this point

this counter is incremented and stacked. Then the program goes on to get the lookup

table start address as well as a target word (22, meaning the first word of the prospective

offspring memory image, decoded from the word 5 read earlier) into the register (BX

and CX, respectively). Then, the relative destination address in the prospective offspring

memory segment as well as the whole length are retrieved into the registers BX and AX,

respectively. It is in the destination pointed at by those values that the decoded word

is written. The relative destination address in the offspring here gets incremented and

stacked. Then, the constant zero for comparison and the remaining length to decode are

retrieved into the registers CX and BX, respectively. Before the comparison and branch,

the stack is set back to the starting position for the next loop. Lastly, the comparison

is done by executing the if-n-equ instruction. It compares the remaining length to zero

and if it does not match, the execution is looped back (the IP is moved back to where the

flow head is located, by the mov-head instruction) to the beginning of the decode loop (see

Table 3.5); otherwise (when the remaining length is decremented to zero, after repeating

the same decode process to cover the whole genome), it skips and enters the next phase

of the self-reproduction process (see Table 3.6). Within the decode loop, the complete

parent genome is thus decoded word by word to the offspring phenome.
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Listing 3.4: Decode Loop

29 pop # Get G and d,to read word into CX. Pop BX:G.(Stack -0:GL ,LT,l,WL,c,0,..)

30 push # Push BX:G.(Stack -0:G,GL,LT ,l,WL ,c,0 ,..)

31 swap -stk # Stack -1 acitive .(Stack -1:d,D,0,..) (D=" Destination in daughter" used

later)

32 pop # Pop CX:d.(Stack -1:D,0,..) (= distance from G)

33 nop -C #

34 push # Push CX:d.(Stack -1:d,D,0,..)

35 nop -C #

36 add # BX:G+d,CX:d

37 read # Read one word at BX:G+d,then CX:word.

38 pop # BX:d.(Stack -1:D,0,..)

39 inc # BX:d++

40 push # BX:d.(Stack -1:d,D,0,..)

41 swap -stk # Get LT at BX so as to read word ’ (word translated) into CX # Stack -0

active

42 pop # Pop BX:G.(Stack -0:GL,LT ,l,WL ,c,0 ,..)

43 swap -stk # Stack -1 active

44 push # Push BX:G.(Stack -1:G,d,D,0 ,..)

45 swap -stk # Stack -0 active

46 pop # BX:GL.(Stack -0:LT,l,WL,c,0,..)

47 swap -stk # Stack -1 active

48 push # Push BX:GL.(Stack -1:GL ,G,d,D,0 ..)

49 swap -stk # Stack -0 active

50 pop # Pop BX:LT.(Stack -0:l,WL ,c,0 ,..)

51 push # Push BX:LT.(Stack -0:LT ,l,WL,c,0,..)

52 add # BX=LT+word ,CX:word

53 read # Read one word at BX:LT+word ,then CX:word ’

54 swap -stk # Get D at BX. (Preprocess for write) # Stack -1 active

55 pop # Pop BX:GL.(Stack -1:G,d,D,0,..)

56 swap -stk # Stack -0 active

57 push # Push BX:GL.(Stack -0:GL ,LT,l,WL ,c,0 ,..)

58 swap -stk # Stack -1 active

59 pop # Pop BX:G.(Stack -1:d,D,0 ,..)

60 swap -stk # Stack -0 active

61 push # Push BX:G.(Stack -0:G,GL,LT ,l,WL ,c,0 ,..)

62 swap -stk # Stack -1 active

63 pop # Pop BX:d.(Stack -1:D,0,..)

64 swap -stk # Stack -0 active

65 push # Push BX:d.(Stack -0:d,G,GL,LT,l,WL,c,0,..)

66 swap -stk # Stack -1 active

67 pop # Pop BX:D.(Stack -1:0 ,..)

68 swap -stk # Get WL at AX. (Preprocess for write). # Stack -0 active

69 pop # Pop AX:d.(Stack -0:G,GL,LT,l,WL,c,0,..)

70 nop -A #

71 swap -stk # Stack -1 active

72 push # Push AX:d.(Stack -1:d,0,..)

73 nop -A #

74 swap -stk # Stack -0 active

75 pop # Pop AX:G.(Stack -0:GL,LT ,l,WL ,c,0 ,..)

76 nop -A #

77 swap -stk # Stack -1 active

78 push # Push AX:G.(Stack -1:G,d,0,..)

79 nop -A #

80 swap -stk # Stack -0 active

81 pop # Pop AX:GL.(Stack -0:LT,l,WL,c,0,..)

82 nop -A #

83 swap -stk # Stack -1 active

84 push # Push AX:GL.(Stack -1:GL ,G,d,0,..)

85 nop -A #

86 swap -stk # Stack -0 active

87 pop # Pop AX:LT.(Stack -0:l,WL ,c,0 ,..)

88 nop -A #
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89 swap -stk # Stack -1 active

90 push # Push AX:LT.(Stack -1:LT ,GL,G,d,0,..)

91 nop -A #

92 swap -stk # Stack -0 active

93 pop # Pop AX:l.(Stack -0:WL,c,0,..)

94 nop -A #

95 swap -stk # Stack -1 active

96 push # Push AX:l.(Stack -1:l,LT,GL ,G,d,0,..)

97 nop -A #

98 swap -stk # Stack -0 active

99 pop # Pop AX:WL.(Stack -0:c,0,..)

100 nop -A #

101 push # Push AX:WL.(Stack -0:WL ,c,0 ,..)

102 nop -A #

103 write # Write CX:word ’ at AX+BX:WL+D.

104 inc # D++.(D=" Destination in daughter ")

105 swap -stk # Stack -1 active

106 pop # Pop CX:l.(Stack -1:LT,GL ,G,d,0,..)

107 nop -C #

108 swap -stk # Stack -0 active

109 push # Push CX:l.(Stack -0:l,WL,c,0,..)

110 nop -C #

111 swap -stk # Stack -1 active

112 pop # Pop CX:LT.(Stack -1:GL,G,d,0 ,..)

113 nop -C #

114 swap -stk # Stack -0 active

115 push # Push CX:LT.(Stack -0:LT ,l,WL,c,0,..)

116 nop -C #

117 swap -stk # Stack -1 active

118 pop # Pop CX:GL.(Stack -1:G,d,0,..)

119 nop -C #

120 swap -stk # Stack -0 active

121 push # Push CX:GL.(Stack -0:GL ,LT,l,WL ,c,0 ,..)

122 nop -C #

123 swap -stk # Stack -1 active

124 pop # Pop CX:G.(Stack -1:d,0,..)

125 nop -C #

126 swap -stk # Stack -0 active

127 push # Push CX:G.(Stack -0:G,GL,LT ,l,WL ,c,0 ,..)

128 nop -C #

129 swap -stk # Stack -1 active

130 pop # Pop CX:d.(Stack -1:0 ,..)

131 nop -C #

132 push # Push BX:D.(Stack -1:D,0,..)

133 push # Push CX:d.(Stack -1:d,D,0,..)

134 nop -C #

135 swap -stk # Get c at CX. (Preprocess for comparison) # Stack -0 active

136 pop # Pop CX:G.(Stack -0:GL,LT ,l,WL ,c,0 ,..)

137 nop -C #

138 swap -stk # Stack -1 active

139 push # Push CX:G.(Stack -1:G,d,D,0 ,..)

140 nop -C #

141 swap -stk # Stack -0 active

142 pop # Pop CX:GL.(Stack -0:LT,l,WL,c,0,..)

143 nop -C #

144 swap -stk # Stack -1 active

145 push # Push CX:GL.(Stack -1:GL ,G,d,D,0 ,..)

146 nop -C #

147 swap -stk # Stack -0 active

148 pop # Pop CX:LT.(Stack -0:l,WL ,c,0 ,..)

149 nop -C #

150 swap -stk # Stack -1 active

151 push # Push CX:LT.(Stack -1:LT ,GL,G,d,D,0,..)
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152 nop -C #

153 swap -stk # Stack -0 active

154 pop # Pop CX:l.(Stack -0:WL,c,0,..)

155 nop -C #

156 swap -stk # Stack -1 active

157 push # Push CX:l.(Stack -1:l,LT,GL ,G,d,D,0 ,..)

158 nop -C #

159 swap -stk # Stack -0 active

160 pop # Pop CX:WL.(Stack -0:c,0,..)

161 nop -C #

162 swap -stk # Stack -1 active

163 push # Push CX:WL.(Stack -1:WL ,l,LT,GL ,G,d,D,0,..)

164 nop -C #

165 swap -stk # Stack -0 active

166 pop # Pop CX:c.(Stack -0:0 ,..)

167 nop -C #

168 push # Push CX:c.(Stack -0:c,0,..)

169 nop -C #

170 swap -stk # Get GL at BX (Preprocess for comparison) # Stack -1 active

171 pop # Pop BX:WL.(Stack -1:l,LT ,GL,G,d,D,0,..)

172 swap -stk # Stack -0 active

173 push # Push BX:WL.(Stack -0:WL ,c,0 ,..)

174 swap -stk # Stack -1 active

175 pop # Pop BX:l.(Stack -1:LT,GL ,G,d,D,0,..)

176 swap -stk # Stack -0 active

177 push # Push BX:l.(Stack -0:l,WL,c,0,..)

178 swap -stk # Stack -1 active

179 pop # Pop BX:LT.(Stack -1:GL,G,d,D,0,..)

180 swap -stk # Stack -0 active

181 push # Push BX:LT.(Stack -0:LT ,l,WL,c,0,..)

182 swap -stk # Stack -1 active

183 pop # Pop BX:GL.(Stack -1:G,d,D,0,..)

184 dec # BX:GL --.( Decrement as one word is read and written)

185 swap -stk # Stack -0 active

186 push # Push BX:GL.(Stack -0:GL ,LT,l,WL ,c,0 ,..)

187 swap -stk # Prepare for the next loop # Stack -1 active

188 pop # Pop AX:G.(Stack -1:d,D,0 ,..)

189 nop -A #

190 swap -stk # Stack -0 active

191 push # Push AX:GL.(Stack -0:G,GL,LT,l,WL,c,0,..)

192 nop -A #

193 if-n-equ # Branch. # Compare BX:GL to CX:c.Do the next and loop back if BX not= CX

.(while GL >0).

194 mov -head # If BX=CX.(when GL=0),onto the next phase. # AX:GL,BX:GL,CX:c.

Listing 3.5: Lookup Table

295 27 # 0 to 27/ write

296 26 # 1 to 26/ read

297 25 # 2 to 25/h-search

298 24 # 3 to 24/IO

299 23 # 4 to 23/h-divide

300 22 # 5 to 22/h-alloc

301 21 # 6 to 21/h-copy

302 20 # 7 to 20/ nand

303 19 # 8 to 19/sub

304 18 # 9 to 18/add

305 17 # 10 to 17/ swap

306 16 # 11 to 16/swap -stk

307 15 # 12 to 15/pop

308 14 # 13 to 14/ push

309 13 # 14 to 13/dec

310 12 # 15 to 12/inc
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311 11 # 16 to 11/shift -l

312 10 # 17 to 10/shift -r

313 9 # 18 to 9/set -flow

314 8 # 19 to 8/get -head

315 7 # 20 to 7/jmp -head

316 6 # 21 to 6/mov -head

317 5 # 22 to 5/if -label

318 4 # 23 to 4/if -less

319 3 # 24 to 3/if -n-equ

320 2 # 25 to 2/nop -C

321 1 # 26 to 1/nop -B # No other nop -B - nop -A label must exist before this.

322 0 # 27 to 0/nop -A # Also used as Label complemental Beta.

Copy Phase

The copy process is similarly twofold, consisting of a preparation and a loop. The process

is summarised as follows.

The copy preparation starts off by newly getting the remaining (genome) length to

copy (again as a counter) by subtracting the value of the genome start address from the

value of the whole length (see Listing 3.6 for this segment code, and Table 3.7 for the

execution trace). Then the process sets the read head at the genome start address, and

then the write head at the destination (of the address specified by the sum of the value

of the whole length and the value of the genome start address, meaning the offspring’s

genome start address).

By now values stored in the active side of the stack are ordered as: [whole length,

constant zero for comparison, 0 (filler), ...] (listed from top). The other side of the

stack should store: [label size, lookup table start address, remaining length, genome start

address, relative source address in parent genome, relative destination address in offspring,

0 (filler), ...] (listed from top).

The copy loop starts next (see Listing 3.7 for this segment code). The beginning of the

loop is marked, and a word is copied using the h-copy instruction. This instruction, as

executed, automatically moves the read head and the write head forward by one. Following

it, the remaining length to copy as well as the constant zero for comparison are obtained

into the registers BX and CX, respectively. Before the comparison and branch, the stack is

likewise set back to the starting position for the next loop. The comparison is done by again

executing the if-n-equ instruction, comparing the remaining length to zero. If it does

not match, the execution is looped back to the beginning of the copy loop (see Table 3.8);

otherwise (when the remaining length is decremented to zero, after repeating the same

copy process to cover the whole genome), it skips and executes the h-divide instruction,

thereby the offspring memory image is divided off and instantiated as a separate individual

organism (see Table 3.9). After division, the parent now has the remaining memory image

which is the same as what it started with, and as the offspring has, thus having realised

self-reproduction. Again, the CPU states are reset in both organisms after the execution

of the h-copy instruction, so both will start executing again at the start of their respective

memory images. In that sense, it is understood that the starting organism produced two

individuals through division, one of which replaces the node occupied by the starting

organism, the other of which replaced one of the neighbouring nodes. Within the copy

loop, the complete parent genome is copied word by word to the offspring genome.
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Time IP Content Registers Heads Stack

1 0 h-alloc [0,0,0] [0,0,0] *Stk0[0,...]
2 1 h-search [644,0,0] [0,0,0] *Stk0[0,...]

nop-A

nop-B

3 4 push [644,290,2] [0,0,294] *Stk0[0,...]
nop-A

4 6 push [644,290,2] [0,0,294] *Stk0[644,...]
nop-C

5 8 mov-head [644,290,2] [0,0,294] *Stk0[2,...]
nop-B

6 10 get-head [644,290,2] [294,0,294] *Stk0[2,...]
nop-B

7 12 push [644,290,294] [294,0,294] *Stk0[2,...]
nop-C

8 14 h-search [644,290,294] [294,0,294] *Stk0[294,...]
nop-A

nop-C

9 17 mov-head [644,305,2] [294,0,322] *Stk0[294,...]
nop-B

10 19 get-head [644,305,2] [322,0,322] *Stk0[294,...]
nop-B

11 21 swap [644,305,322] [322,0,322] *Stk0[294,...]
nop-A

12 23 sub [305,644,322] [322,0,322] *Stk0[294,...]
13 24 push [305,322,322] [322,0,322] *Stk0[294,...]
14 25 swap [305,322,322] [322,0,322] *Stk0[322,...]
15 26 push [305,322,322] [322,0,322] *Stk0[322,...]
16 27 h-search [305,322,322] [322,0,322] *Stk0[322,...]
17 28 pop [305,0,0] [322,0,28] *Stk0[322,...]
... ... ... ... ... ...
77 102 write [644,0,22] [322,0,28] *Stk0[644,...]
... ... ... ... ... ...

143 192 if-n-equ [322,321,0] [322,0,28] *Stk0[322,...]
144 193 mov-head [322,321,0] [322,0,28] *Stk0[322,...]

194 pop

Table 3.4: Execution trace for the decode preparation until entering the decode loop. The
summary of the snapshots of the states (each right before the execution of the instruction
of the address pointed at by IP at the time step) is shown on the right. Registers are in
the form: [AX value, BX value, CX value]. Heads are in the form: [Read Head, Write
Head, Flow Head]. Stack only shows the top value of the stack active at the time step;
*Stk0 is the active Stack 0, and *Stk1, the active Stack 1.
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Time IP Content

145, 273, ....., 40977 28 pop

...... ... ...
205, 333, ....., 41037 102 write

...... ... ...
271, ..., 40975, 41103 192 if-n-equ

272, ..., 40976, 41104 193 mov-head

194 pop

Table 3.5: Execution trace of the body of the decoding loop (after the first, before the last
execution).

Time IP Content Registers Heads Stack

41105 28 pop [322,1,0] [322,0,28] *Stk0[322,...]
... ... ... ... ... ...

41165 102 write

... ... ... ... ... ...
41231 192 if-n-equ [322,0,0] [322,0,28] *Stk0[322,...]

193 mov-head

41232 194 pop [322,0,0] [322,0,28] *Stk0[322,...]

Table 3.6: Execution trace of the end of the decode loop, about to enter the copying
process.

Listing 3.6: Copy Preparation

195 pop # Get a new GL by doing WL-G. # CX:G.(Stack -0:GL ,LT,l,WL,c,0,..)

196 nop -C #

197 swap -stk # Stack -1 active

198 push # CX:G. (Stack -1:G,d,D,0,..)

199 nop -C #

200 swap -stk # Stack -0 active

201 pop # BX:GL.(Stack -0:LT,l,WL,c,0,..)

202 pop # AX:LT.(Stack -0:l,WL,c,0,..)

203 nop -A #

204 swap -stk # Stack -1 active

205 push # AX:LT.(Stack -1:LT,G,d,D,0,..)

206 nop -A #

207 swap -stk # Stack -0 active

208 pop # AX:l.(Stack -0:WL ,c,0 ,..)

209 nop -A #

210 swap -stk # Stack -1 active

211 push # AX:l.(Stack -1:l,LT ,G,d,D,0,..)

212 nop -A #

213 swap -stk # Stack -0 active

214 pop # AX:WL.(Stack -0:c,0,..)

215 nop -A #

216 push # AX:WL.(Stack -0:WL,c,0,..)

217 nop -A #

218 swap # AX:GL,BX:WL,CX:G

219 nop -A #

220 sub # AX:WL-G (=GL)

221 nop -A #

222 swap -stk # Stack -1 active

223 pop # BX:l.(Stack -1:LT ,G,d,D,0 ,..)
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224 swap -stk # Stack -0 active

225 push # BX:l.(Stack -0:l,WL ,c,0 ,..)

226 swap -stk # Stack -1 active

227 pop # BX:LT.(Stack -1:G,d,D,0,..)

228 push # AX:GL. (Stack -1:GL,G,d,D,0 ,..)

229 nop -A #

230 push # BX:LT.(Stack -1:LT,GL,G,d,D,0,..)

231 set -flow # Set Read Head at G.AX:GL ,BX:LT,CX:G # Set the Flow Head at CX:G.

232 mov -head # Move the Read Head to G.

233 nop -B # Read Head

234 swap -stk # Set Write Head at WL+G. # Stack -0 active

235 pop # BX:l.(Stack -0:WL ,c,0 ,..)

236 swap -stk # Stack -1 active

237 push # BX:l.(Stack -1:l,LT ,GL,G,d,D,0,..)

238 swap -stk # Stack -0 active

239 pop # BX:WL.(Stack -0:c,0,..)

240 push # BX:WL.(Stack -0:WL,c,0,..)

241 swap # AX:GL,BX:G,CX:WL

242 add # CX:WL+G

243 nop -C # (Sum into CX)

244 set -flow # Set the Flow Head at CX:WL+G.

245 mov -head # Move the Write Head to WL+G where Flow Head is at.

246 nop -C # (Write Head)

Listing 3.7: Copy Loop

247 h-search # Mark the start of the loop.AX:GL(debris),BX:0,CX:0. # *(Stack -0:WL,c

,0,..)(Stack -1:l,LT ,GL,G,d,D,0,..)

248 h-copy # Copy a word from Read Head to Write Head; inc both.

249 swap -stk # Get GL into BX and decrement. # Stack -1 active

250 pop # BX:l.(Stack -1:LT ,GL,G,d,D,0,..)

251 swap -stk # Stack -0 active

252 push # BX:l.(Stack -0:l,WL ,c,0 ,..)

253 swap -stk # Stack -1 active

254 pop # BX:LT.(Stack -1:GL,G,d,D,0,..)

255 swap -stk # Stack -0 active

256 push # BX:LT.(Stack -0:LT,l,WL ,c,0,..)

257 swap -stk # Stack -1 active

258 pop # BX:GL.(Stack -1:G,d,D,0,..)

259 dec # BX:GL-- as a counter

260 push # BX:GL.(Stack -1:GL,G,d,D,0,..)

261 swap -stk # Get c into CX. # Stack -0 active

262 pop # CX:LT.(Stack -0:l,WL,c,0,..)

263 nop -C #

264 swap -stk # Stack -1 active

265 push # CX:LT.(Stack -1:LT,GL,G,d,D,0,..)

266 nop -C

267 swap -stk # Stack -0 active

268 pop # CX:l.(Stack -0:WL ,c,0 ,..)

269 nop -C #

270 swap -stk # Stack -1 active

271 push # CX:l.(Stack -1:l,LT ,GL,G,d,D,0,..)

272 nop -C #

273 swap -stk # Stack -0 active

274 pop # CX:WL.(Stack -0:c,0,..)

275 nop -C #

276 swap -stk # Stack -1 active

277 push # CX:WL.(Stack -1:WL,l,LT ,GL,G,d,D,0,..)

278 nop -C #

279 swap -stk # Stack -0 active

280 pop # CX:c.(Stack -0:0 ,..)

281 nop -C #

282 push # CX:c.(Stack -0:c,0 ,..)
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283 nop -C #

284 swap -stk # Prepare for the next loop. # Stack -1 active

285 pop # AX:WL.(Stack -1:l,LT,GL,G,d,D,0,..)

286 nop -A #

287 swap -stk #

288 push # AX:WL.(Stack -0:WL,c,0,..)

289 nop -A #

290 if-n-equ # Branch. # Compare BX:GL to CX:c.Do the next if BX not= CX.(while GL >0).

Otherwise skip.

291 mov -head # Loop back.

292 h-divide # If BX=CX.(when GL=0),divide.

293 nop -B # Label complemental Alpha

294 nop -C # No other nop -B - nop -C must exist before this.

Time IP Content Registers Heads Stack

41232 194 pop [322,0,0] [322,0,28] *Stk0[322,...]

... ... ... ... ... ...

41268 243 set-flow [322,322,966] [322,0,322] *Stk0[644,...]

41269 244 mov-head [322,322,966] [322,0,966] *Stk0[644,...]

245 nop-C

41270 246 h-search [322,322,966] [322,966,966] *Stk0[644,...]

41271 247 h-copy [322,0,0] [322,966,247] *Stk0[644,...]

41272 248 swap-stk [322,0,0] [323,967,247] *Stk0[644,...]

... ... ... ... ... ...

41303 289 if-n-equ [644,321,0] [323,967,247] *Stk0[644,...]

41304 290 mov-head [644,321,0] [323,967,247] *Stk0[644,...]

291 h-divide

Table 3.7: Execution trace for the copy preparation until entering the copy loop.

Time IP Content

246 h-search

41305, 41339, ....., 52151 247 h-copy

41306, 41340, ....., 52152 248 swap-stk

...... ... ...

41337, ..., 52149, 52183 289 if-n-equ

41338, ..., 52150, 52184 290 mov-head

291 h-divide

Table 3.8: Execution trace of the body of the copy loop (after the first, before the last
execution).
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Time IP Content Registers Heads Stack

246 h-search

52185 247 h-copy [644,1,0] [643,1287,247] *Stk0[644,...]

52186 248 swap-stk [644,1,0] [644,1288,247] *Stk0[644,...]

... ... ... ... ... ...

52217 289 if-n-equ [644,0,0] [644,1288,247] *Stk0[,...]

290 mov-head

52218 291 h-divide [644,0,0] [644,1288,247] *Stk0[644,...]

Table 3.9: Execution trace of the final phase of self-reproduction.

Characteristics

The prototype (or even the prototype phenome) is much larger in size and requires more

steps to self-reproduce than the default (minimal, self-copying) ancestor (see 3.9 and 3.10

for comparison). More specifically, the designed prototype organism has a total memory

image of 644 words (i.e., 322 for each half, phenome and genome), whereas the default

ancestor has 15. It is not obvious whether the design of this prototype is minimal or

optimal (and whether its being minimal or optimal is desirable); nevertheless, concerning

the length of a von Neumann style self-reproducing organism, it necessarily will be longer

than a simple self-copier in the first place. This is mostly due to the more complex

procedures for self-reproduction. The copy loop of the prototype phenome can be regarded

as roughly comparable (or “homologous”, one may say in a biological term) to the entire

memory image of the default self-copier. Moreover, compared to a (minimal) self-copier,

the phenome of the von Neumann style self-reproducing organism needs extra instructions

to conduct the decoding and to manage the more complex reproduction cycle (e.g., to judge

when to stop the decoding loop and proceed into the copy loop), and to accommodate the

lookup table. In addition to this, the combination of the small number of working spaces

(i.e., two stacks to store necessary values and three registers to directly handle values) and

the primitiveness of the assembly-like language makes the program structure relatively

cumbersome. This explains, conversely, why the structure and the operation of working

components of the ancestor had to be designed in the first place. In the current case, such

a self-reproducer as the prototype is expected to be at least twice as long as a comparable

default self-copier. Again, this is because the phenome corresponds to the genome on a

sequential, one-to-one basis where one can locate a unique genotypic word corresponding to

any given phenotypic word, hence the genome of prototype, corresponding to the phenome,

should be as long as the phenome.

To compare and contrast, the memory images of the prototype phenome and the

“default” ancestor are depicted in Figures 3.9 and 3.10. The same colours are used where

the copy segment of the prototype and the entire self-reproducing segment of the default

ancestor are comparable. The default ancestor has no such genome-phenome distinction

as that of the prototype ancestor (i.e., without a genome, or a segment which is exclusively

data to be somehow decoded).

Again, this novel program of the prototype relies on the genotype-phenotype mapping,
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0 h-alloc 50 push 100 push 150 push 200 pop 250 swap-stk 300 21
1 h-search 51 add 101 nop-A 151 nop-C 201 pop 251 push 301 20
2 nop-A 52 read 102 write 152 swap-stk 202 nop-A 252 swap-stk 302 19
3 nop-B 53 swap-stk 103 inc 153 pop 203 swap-stk 253 pop 303 18
4 push 54 pop 104 swap-stk 154 nop-C 204 push 254 swap-stk 304 17
5 nop-A 55 swap-stk 105 pop 155 swap-stk 205 nop-A 255 push 305 16
6 push 56 push 106 nop-C 156 push 206 swap-stk 256 swap-stk 306 15
7 nop-C 57 swap-stk 107 swap-stk 157 nop-C 207 pop 257 pop 307 14
8 mov-head 58 pop 108 push 158 swap-stk 208 nop-A 258 dec 308 13
9 nop-B 59 swap-stk 109 nop-C 159 pop 209 swap-stk 259 push 309 12

10 get-head 60 push 110 swap-stk 160 nop-C 210 push 260 swap-stk 310 11
11 nop-B 61 swap-stk 111 pop 161 swap-stk 211 nop-A 261 pop 311 10
12 push 62 pop 112 nop-C 162 push 212 swap-stk 262 nop-C 312 9
13 nop-C 63 swap-stk 113 swap-stk 163 nop-C 213 pop 263 swap-stk 313 8
14 h-search 64 push 114 push 164 swap-stk 214 nop-A 264 push 314 7
15 nop-A 65 swap-stk 115 nop-C 165 pop 215 push 265 nop-C 315 6
16 nop-C 66 pop 116 swap-stk 166 nop-C 216 nop-A 266 swap-stk 316 5
17 mov-head 67 swap-stk 117 pop 167 push 217 swap 267 pop 317 4
18 nop-B 68 pop 118 nop-C 168 nop-C 218 nop-A 268 nop-C 318 3
19 get-head 69 nop-A 119 swap-stk 169 swap-stk 219 sub 269 swap-stk 319 2
20 nop-B 70 swap-stk 120 push 170 pop 220 nop-A 270 push 320 1
21 swap 71 push 121 nop-C 171 swap-stk 221 swap-stk 271 nop-C 321 0
22 nop-A 72 nop-A 122 swap-stk 172 push 222 pop 272 swap-stk
23 sub 73 swap-stk 123 pop 173 swap-stk 223 swap-stk 273 pop
24 push 74 pop 124 nop-C 174 pop 224 push 274 nop-C
25 swap 75 nop-A 125 swap-stk 175 swap-stk 225 swap-stk 275 swap-stk
26 push 76 swap-stk 126 push 176 push 226 pop 276 push
27 h-search 77 push 127 nop-C 177 swap-stk 227 push 277 nop-C
28 pop 78 nop-A 128 swap-stk 178 pop 228 nop-A 278 swap-stk
29 push 79 swap-stk 129 pop 179 swap-stk 229 push 279 pop
30 swap-stk 80 pop 130 nop-C 180 push 230 set-flow 280 nop-C
31 pop 81 nop-A 131 push 181 swap-stk 231 mov-head 281 push
32 nop-C 82 swap-stk 132 push 182 pop 232 nop-B 282 nop-C
33 push 83 push 133 nop-C 183 dec 233 swap-stk 283 swap-stk
34 nop-C 84 nop-A 134 swap-stk 184 swap-stk 234 pop 284 pop
35 add 85 swap-stk 135 pop 185 push 235 swap-stk 285 nop-A
36 read 86 pop 136 nop-C 186 swap-stk 236 push 286 swap-stk
37 pop 87 nop-A 137 swap-stk 187 pop 237 swap-stk 287 push
38 inc 88 swap-stk 138 push 188 nop-A 238 pop 288 nop-A
39 push 89 push 139 nop-C 189 swap-stk 239 push 289 if-n-equ
40 swap-stk 90 nop-A 140 swap-stk 190 push 240 swap 290 mov-head
41 pop 91 swap-stk 141 pop 191 nop-A 241 add 291 h-divide
42 swap-stk 92 pop 142 nop-C 192 if-n-equ 242 nop-C 292 nop-B
43 push 93 nop-A 143 swap-stk 193 mov-head 243 set-flow 293 nop-C
44 swap-stk 94 swap-stk 144 push 194 pop 244 mov-head 294 27
45 pop 95 push 145 nop-C 195 nop-C 245 nop-C 295 26
46 swap-stk 96 nop-A 146 swap-stk 196 swap-stk 246 h-search 296 25
47 push 97 swap-stk 147 pop 197 push 247 h-copy 297 24
48 swap-stk 98 pop 148 nop-C 198 nop-C 248 swap-stk 298 23
49 pop 99 nop-A 149 swap-stk 199 swap-stk 249 pop 299 22

Figure 3.9: The memory image of the prototype’s phenome. The corresponding genome
follows but it is not shown. The copy segment (the copy preparation and the copy loop) is
comparable to the entire segment of the “default” ancestor (the standard self-copier coded
via the default instruction set). The five segments are colour-coded. Framed sections
represents the segments that serve as labels.
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0 h-alloc
1 h-search
2 nop-C
3 nop-A
4 mov-head
5 nop-C
6 h-search
7 h-copy
8 if-label
9 nop-C
10 nop-A
11 h-divide
12 mov-head
13 nop-A
14 nop-B

Figure 3.10: The memory image of the “default” ancestor. The entire segment of this self-
copier is comparable to the copy segment of the prototype’s phenome. The two segments
of the copy segment are colour coded in comparison to that of the prototype’s phenome.

which is analogous to the mapping from a string of words (i.e. genome) to another string of

words (i.e. phenome) underlain by the mapping between individual words that is defined

by the lookup table. Importantly to the scope of the current research, it is at least

possible that a mutant of the prototype turns out to be self-reproducing with a mutated

genotype-phenotype mapping. The possibility hinges on whether the genotype-phenotype

mapping gets mutated in a “backward compatible” manner. If a mutation only affects the

translation of an instruction (for example, one that is not executed by the program of the

prototype), the genotype-phenotype mapping may remain the same to the particular set

of genome and phenome (i.e., backward compatible).

3.4 Observing the Prototype Behaviour

First and foremost, when seeded in Avida with no perturbation or mutation enabled, the

prototype succeeded in self-reproducing. (In summary, perturbation here means a change

within a memory image in general, whereas mutation refers to an inheritable one. The

difference between these concepts is explained in more detail in Subsection 3.4.1.) In other

words, an organism with the decomposition into genome and phenome (i.e., incorporating

a genotype-phenotype mapping) decodes and copies its description as designed so as to

reproduce itself. Thereby, it is demonstrated that a von Neumann style ancestor can be

instantiated in this system.

Regarding evolutionary behaviour, one näıve expectation was that the prototype an-

cestor at least would be able to give rise to a “traditional” Avidian evolutionary process.

More specifically, it was expected that the ancestor could self-reproduce reliably enough

to increase in population under appropriate stochastic effects, such as perturbations that

occur with certain rates and the way that a new offspring replaces the neighbouring nodes.

Following an exponential growth of population, there would be a total population limit as

imposed by the size of the Avida two-dimensional world.
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It was expected that mutants (or, strains of descendant organisms carrying some ac-

cumulation of mutations) that are capable of breeding true while still retaining von Neu-

mann’s architecture may emerge (see Subsection 2.2.1 in Chapter 2). Such mutants may

undergo selection in evolution according to their style and ability of self-reproduction (dif-

ferently than the standard ancestor). Specific strains may or may not be able to survive

in the population over generations.

Since the central interest of implementing the prototype is in characterising the muta-

tional pathways where the genotype-phenotype mapping changes that it can give rise to

when seeded as an instance of a von Neumann style self-reproducing ancestor, the main,

immediate focus was put on what mutants would become dominant in population through

an evolutionary run. Avida was seeded with this instantiated prototype ancestor.

3.4.1 Evolutionary Experiment using Avida

Evolutionary dynamics observed in Avida experiments is essentially affected by config-

urable variables. The configuration settings relevant from the evolutionary perspective

are explained below, followed by the discussion on the concepts of mutation and pertur-

bation within the current study.

Configuration

The Avida configuration allows one to set up variables for normal experiments mainly via

the avida.cfg file. Excerpts of relevant groups of configurable variables from that file are

shown in Appendix E.

There are variables related to the general Avida world attributes. The world size is

a relevant attribute as it determines the carrying capacity of the world. This size can be

set by specifying the width and height of the world (WORLD X and WORLD Y, respectively, in

ARCH GROUP). The size of an update is another relevant one. An update is a unit of time

within an Avida evolutionary run, expressed in CPU steps (or, the number of instructions

executed) per organism. This size is configurable as well (AVE TIME SLICE in TIME GROUP).

For typical evolutionary experiments, variables related to reproduction

(REPRODUCTION GROUP) and division (DIVIDE GROUP) are significant, a few relevant

ones of which are shown below.

• REPRODUCTION GROUP

– BIRTH METHOD: which neighbour to replace with an offspring.

– DEATH METHOD: whether to die of old age.

• DIVIDE GROUP

– CHILD SIZE RANGE: the maximum differential of an offspring relative to a par-

ent.

– MIN COPIED LINES: the minimum code fraction to be executed before division.

Likewise, variables related to mutation are important for typical evolutionary exper-

iments. In the current study, the relevant variable is the permutation rate per write
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operation (COPY MUT PROB in MUTATION GROUP), the rationale behind which is explained

next.

Mutation versus Perturbation

Mutation is an important factor for the neo-Darwinian evolution to occur. Here, the

concepts of mutation and perturbation are further clarified in the light of the current

context.

In order to observe the evolutionary behaviour of the prototype, Avida was deliberately

configured to allow only “single-point perturbations” to occur. Although there are other

types of perturbation, including multi-point, insertion and deletion, they were omitted

in this first instance for simplicity and traceability of mutational pathways; otherwise, it

would be impractical to scrutinise the effect of a single mutational change. This specifically

means that if the size of organism changes, it is likely to be due to a new reproduction mode

that produces offspring of varied size, and not due to such a size-changing perturbation.

A single-point mutation, in the current context, normally means any spontaneous

change of a single memory location within the genome. A change in a memory location

within the phenome will not normally be inherited and therefore is not described as muta-

tion. By contrast, if the standard (or “default”) ancestor in Avida, which is a self-copier,

undergoes any changes anywhere in its memory image, the changes will be all potentially

inheritable and are thus referred to as mutation. On the contrary, in the current imple-

mentation of von Neumann’s architecture of machine self-reproduction, not all changes

in the memory image, but only those in the genome part are expected to be inheritable.

Perturbations in phenome are by definition not mutations, since they will not be inherited.

It is noticeable that a mutation in this architecture of self-reproduction will exhibit

delayed expression compared to the case of a self-copying architecture (see Figure 3.11 for

a high-level schematic diagram of how a mutant is reproduced). Now that there is only a

single-point mutation in the Avida world, once a mutational change in the genome occurs,

it is one generation later that the change will be decoded into an offspring’s phenome.

That is, one generation is needed for a single-point copy mutation to occur (i.e., for a

parent organism to reproduce an offspring), and then another generation is needed for it

to get expressed (i.e., for the offspring to reproduce its offspring). This delay, however,

does not apply in the case of the standard ancestor because when a mutation occurs, it

is inherited and expressed immediately in the offspring. Likewise, such a delay may not

occur if there are other ways available to occasionally perturb the memory content (e.g.,

“cosmic-ray” type of perturbations in the memory image, decoding errors, etc.), because

changes made in the phenome normally end up being temporary.

Even with a mutation expressed in the phenome (as opposed to a mutation inherited

in the genome), the organism can be fertile. Intuitively, the expression of a mutation is

most likely to affect the reproductive process, because all of the prototype’s phenome is

concerned with self-reproduction (with nothing corresponding to ancillary machinery D).

It is still conceivable, however, that somehow the reproductive functions work and succeed

in producing an offspring organism that breeds true (i.e., inheriting the mutation as well

as retaining the self-reproductive functions). It should be emphasised again that the

current research is concerned with exploring the possibility that there might be a mutated
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Phenome Phenome

expressed

Lookup
Table

Genome Genome

mutated inherited

Figure 3.11: The mechanism of how a mutant is reproduced in the case of a von Neumann
style self-reproducer such as the prototype (Generation 0, Generation 1, and Generation 2,
from left to right). The mutated prototype (parent) reproduces the offspring with the mu-
tation expressed. The mutation inherited and that expressed are located at corresponding
relative addresses in the phenome and the genome respectively.
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descendant (or mutant) with some von Neumann style self-reproducibility, even though

the expressed mutation somehow has disturbed the decoding mechanism (corresponding

to the programmable constructor A in the von Neumann architecture). In the current

case, either the mechanism of decoding itself or the word-by-word mapping defined in the

lookup table may be modified, while retaining a von Neumann style self-reproduction.

Conceivably, the von Neumann style self-reproducibility may be lost and replaced with

a different self-reproduction style, where mutation is inheritable. There are possibilities

that some other part is disturbed (either the copier B or the controller C in the current

case), but it is more likely to lead to an offspring which is sterile or not breeding true.

By default in Avida, the h-copy instruction and the write instruction, among the

instructions presented in the instruction set configured, were the only ones that can trigger

“single-point perturbations” whenever they are executed. For that reason, Avida per se

cannot technically distinguish a perturbation in phenotype (i.e., such perturbations as

caused by the write instruction in decoding) and that in genotype (i.e., such perturbations

as caused by the h-copy instruction in copying). What the current research is interested in

is inheritable mutations. So, only the cases with a changed genotype had to be manually

picked up after Avida runs, in order to single out the mutation in the sense of the von

Neumann architecture where it is not the phenotype (i.e., decoded entity) but the genotype

(i.e., copied entity) that undergoes mutations.

With regard to a mutation rate, generally speaking, the value of the rate should be

reasonably low so that a spontaneous neo-Darwinian evolution should occur; but the

rate should not be extremely high so that Malthusian population growth of a strain is

ensured (if the strain is not perturbed). In the current context, the rate of perturba-

tion (COPY MUT PROB) needs to be adjusted according to the organism length, so that the

probability for an organism to have at least one perturbation per reproduction cycle is

approximately equal between the prototype (or designed) ancestor and the standard (or

“default”) ancestor. That is, if the perturbation rate per write operation is Rs for the

standard ancestor, the probability that there is no perturbation in a location is 1 − Rs

and the probability that the ancestor goes without mutation is (1−Rs)
ls , where ls is the

organism length. Therefore, the probability that the standard ancestor has at least one

perturbation is 1 − (1 − Rs)
ls . By the same token, the probability that the prototype

ancestor has at least one perturbation is 1 − (1 − Rp)
lp , where Rp is the perturbation

rate per write operation for the prototype ancestor and lp is the length of the prototype

ancestor. The rate is not intended to be exact, but at least to be reasonably equal for the

prototype ancestor compared to the standard ancestor.

3.4.2 Observation and Examination

Within the Avida framework explained above, a small scale experiment of 30 runs was

conducted. Each run was seeded with the prototype ancestor and set to last for 50000

updates. The world size was set as 60× 60 (WORLD X and WORLD Y are both set to be 60)

so that the carrying capacity is 3600. One update was configured so that it amounts to

30 CPU time steps or instructions to be executed. That means 1,500,000 CPU time steps

are available within a run, approximately 29 times as long as the gestation time of the

prototype, 52218. If a population grows exponentially, the run is long enough to fill up
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the world (in practice, however, there is some spatial effect as an organism can place an

offspring in the neighbourhood only).

As regards reproduction, birth and death methods (BIRTH METHOD and DEATH METHOD,

respectively) were chosen so that an offspring replaces the oldest in the neighbourhood

and that an organism never dies of old age. As for division, CHILD SIZE RANGE was set

to be 2.0, meaning that the size of memory allocated by h-alloc is the double of the

size of the parent (which is as mentioned in 3.2). MIN COPIED LINES was set to be 0.45,

considering the ratio of the prototype genome to the whole length (294÷ 644 ≈ 0.45).

The variable COPY MUT PROB was set to be 0.0001753. To calculate this rate of pertur-

bation per write operation Rp so that these ancestors have the same probability of having

at least one perturbation, the default values for the standard ancestor were considered. For

the standard ancestor Rs = 0.0075 and ls = 15; so for the prototype ancestor (lp = 644)

to have the same probability, it should be Rp ≈ 0.0001753. The whole length of the

prototype ancestor (not half the length that is to be copied) was used as lp knowing that

in the current configuration, both the h-copy instruction (used in the copying) and the

write instruction (used in the decoding) can trigger the perturbation. The probability of

no perturbation is 0.8932 (≈ (1− 0.0075)15 for the default ancestor, ≈ (1− 0.0001753)644

for the prototype).

The configuration explained above can be summarised as follows in the order that it

appears in the avida.cfg file.

• ARCH GROUP

– WORLD X: 60

– WORLD Y: 60

• MUTATION GROUP

– COPY MUT PROB: 0.0001753

• REPRODUCTION GROUP

– BIRTH METHOD: an offspring replaces the oldest in the neighbourhood.

– DEATH METHOD: an organism never dies of old age.

• DIVIDE GROUP

– CHILD SIZE RANGE: 2.0

– MIN COPIED LINES: 0.45

• TIME GROUP

– AVE TIME SLICE: 30

For a more comprehensive list of configuration variables used in the current study, see

Appendix E.
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Dominance Shift by a Mutant Strain

Firstly, such runs where dominance shift by a mutant strain occurred were singled out.

Dominance shift by a mutant refers to a situation where a population (which starts as a

population of organisms of the prototype strain) gets dominated or outnumbered by, or

even displaced by, organisms of any mutant strain at a later stage. Through run statistics

(such as population snapshots, dominant strain snapshots, and sequence data of strains),

only mutants (i.e. those carrying a perturbation in the genome) which became dominant

were identified and picked up among all those which underwent perturbations regardless

of the segments. Runs with dominance shift only by a non-mutant were ignored as being

irrelevant. Out of 30, there were 6 runs where dominance shift by a mutant took place;

in 4 runs, dominance shift took place but only by a non-mutant; in 20 runs, there was no

dominance shift (the prototype remained dominant).

Next, to better understand the mechanism of dominance shift by a mutant, one of the

6 runs was arbitrarily picked out and examined. (The results from the other 5 runs are

not described here, but briefly reflected in Subsection 3.5.1.) On a closer look into the run,

it turned out that a descendant perturbed in the genome (or a mutant) and a descendant

perturbed in the phenome (or a non-mutant), following the ancestor, became dominant

(see Figure 3.12). Within the 50000-update run, these strains alternately became dominant

two times each.

The observed dynamics of the dominant mutant can be summarised as follows.

1. The prototype ancestor starts self-reproduction and as a result the population of the

organisms of this strain grows.

2. A single-point perturbation perturbs the strain of one of the organisms (so the off-

spring strain is different by one word at a particular memory location in the genome).

3. The offspring organism of this strain inevitably reproduces a mutant offspring which

has the mutation expressed in the phenome.

4. The mutant offspring manages to self-reproduce and later becomes dominant in the

population.14

Execution Profile of the Mutant

The mutant that became dominant was examined via a trace file in order to better under-

stand the mechanism of its self-reproduction. A trace file is a program execution log of an

organism of a particular strain which an Avida experimenter can collect (see its format in

Appendix C). The file contains a log of step-by-step transitions of the virtual CPU states

of an input organism of a particular strain, in other words, snapshots of the configuration

14As opposed to the dominant mutants, dominant non-mutants (i.e., with a perturbed phenome) may
be of interest in its own right, but the current research is more focused on dominant mutants (i.e., with a
perturbed genome); this is because, again, especially mutants with a changed genotype-phenotype mapping
are of interest. In hindsight, some or all of the dominant non-mutants might be the same reproduction
mode as the self-copier described in the rest of this section (i.e., losing the distinction of phenotype
and genotype). As emphasised afterwards in Section 3.5, it is not easy to determine whether two self-
reproducing organisms have the same reproduction mode, and basically case-by-case analysis would be
required to be able to identify a reproduction mode.
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22100 Mutant (ID 13)
... Mutant (ID 13)
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30100 Non-mutant (ID 18)
... Non-mutant (ID 18)
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Figure 3.12: Example population snapshots for a 50000-update run (top) and dominance
shifts of this run (bottom). In the top bar chart, around the update 20000, the prototype
remained dominant, within a relatively small total population (less than 0.2 of the capac-
ity). By the update 30000, a mutant became dominant, while there was a non-mutant,
which closely follows the mutant in number. The total population grew close to 0.4 of
the capacity. By the update 40000, the non-mutant became dominant, with the total
population being over 0.8 of the capacity, and this remains by the update 50000. By
the end of the run, the total population grew to the capacity. There emerged a number
of other strains within the population. The mutant (ID 13) was originally born at the
update 13917, and the non-mutant (ID 18) at the update 14652. In the bottom table, the
updates are shown in multiple of 100. A mutant and a non-mutant became dominant,
alternately, which implies the closeness of the numbers of organisms of each strain over a
certain period of time (approximately from the update 22100 to the update 30100). Note
that ID numbers are given to strains by Avida systematically in the order of appearance,
and that those shown here are valid only for this particular run.
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of the virtual CPU and memory of an Avidian organism, for a certain configurable period

of time or until division.

By studying the transition of the virtual CPU states logged in a trace file, one can

create an execution profile showing a summary of the trace file, or of a given organism’s

behaviour. A trajectory following the instruction pointer (IP) relative to the strain’s

memory image is an important aspect of the execution profile. An execution count of

the write instruction and the h-copy instruction is another. Thus, the execution profile

may suggest something about the underlying mechanism of how the input organism of a

particular strain self-reproduces. Gestation time is another relevant attribute with regard

to the program execution calculated by counting the virtual CPU time steps (or the number

of instructions executed) taken from the time when the program starts getting executed

to the time when the divide instruction is executed. Gestation time is a reciprocal of

reproduction rate. Measuring gestation time indicates how long it takes for an organism

of a particular strain to self-reproduce, and hence how fast it self-reproduces.

See Figure 3.13 for the IP trace of this particular mutant in comparison with the

prototype. Whereas the prototype has 322 instances of write execution and 322 instances

of h-copy execution, the mutant has 2 instances of write execution and 643 instances of

h-copy execution. Whereas the gestation time of the prototype is 52218, it is 22172 for

the mutant.

As a separate experiment, it was confirmed that this mutant was able to displace

the prototype when the two were seeded together, due to its faster self-reproduction (see

Figure 3.14 for the comparison).

3.4.3 Degeneration of the Prototype: the Mechanism

The close-up mechanism of the mutant’s self-reproduction can be described as follows.

This mutant has a mutation expressed at the address 89, inherited at the address 411;

the mutation of the word 13 into 14 at the address 411 gets expressed as the instruction

dec rather than the original push. The location of the modified phenotypic word is in

the middle of the preprocess of setting one of the two arguments for a write instruction

execution, which is the value of the whole length. Figure 3.15 shows a high-level diagram

of how the degenerate mutant self-reproduces by self-copying.

What the mutation caused is, in short, a malfunction in the (previous) decoding loop

that inadvertently decrements and loses a necessary value (namely, the address of the

lookup table) that should be kept stored in the stack. As the number of the originally

intended values stored in the stack is decreased, the designed procedures are disturbed

and they start handling incorrect values stored in stacks. In effect, the loss of a value

caused the wrong use of another value stored in the stack and led to the failure of proper

looping in the decode process.

From what is described above, one can conclude that this mutant reproduces by self-

copying. The observed phenomenon is to be dubbed as degeneration of the von Neumann

style prototype self-reproducer into a self-copier. Judging from this particular case in

question, it is indicated that one step of single-point mutation is sufficient to cause the

degeneration. The behaviour is explained below with relevant code fragments, as examined

in the trace file step by step.
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Figure 3.13: Example of actual IP traces of the prototype and a self-copying mutant (the
one reported in the main text). IP traces can be extracted from original trace files that
contain step-by-step execution of the organism program. The former has gestation time of
52218, the latter 22172. From the trace files, the write and h-copy execution count can
also be extracted. The former has 322 instances of write execution and 322 instances of
h-copy execution; the latter 2 instances of write execution and 643 instances of h-copy
execution.
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Figure 3.14: An example run for 50000 updates, seeded with the prototype and the mutant
in question, with no perturbation. The world is a torus and the size is 60× 60. The two
were seeded diagonally (so that they sit at diagonal vertices of a 30 × 30 square). The
mutant displaces the prototype, before update 40000.

Disrupted Decode Segment Behaviour

The code fragment found in Table 3.10 is taken from the “decode loop” segment, whose

original function is to set up the value necessary for the next process (i.e., the whole length

that is one of the arguments of the write instruction, in this case) from Stack 0 into the

register AX. The function therefore is originally required to move several values stored in

the two stacks one by one to reach and obtain the necessary value, while preserving the

values in order (so as to function as designed).

Here, as shown in the code, the dec instruction at the address 89 is the modified

phenotypic word. Now that the former push instruction disappeared, the value (the start

address of the lookup table) intended to be pushed from the register AX to Stack 1

remains in AX. The dec instruction, whose behaviour is modified by the following nop-A

instruction, decrements the value in AX, subsequently used as the address of the lookup

table. Then from Stack 0 (as swap-stk switches back the active stack from Stack 1 to

Stack 0), another value is popped (the label size) with the following pop instruction; its

destination is AX as the pop instruction is modified by the following nop-A instruction,

replacing the above value (i.e., the start address of the lookup table − 1). As a result, the

number of functional values stored in the stack is one less than designed. This deficiency

is complemented by the next value in the stack; the remaining values likewise shift one

by one, with the last functional values being filled with an extra zero (one of fillers in the

stack).

At the end of the “decode loop” segment, the if-n-equ instruction is used at the

conditional branch by comparing values between BX and CX. This time, the condition is

satisfied and the execution loops back. After the loopback, the instructions around the

expressed mutation get executed for the second time (see Table 3.11).
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Figure 3.15: The schematic self-reproduction of the degenerate self-copying mutant of
the prototype. This mutant self-reproduces essentially by self-copying, even though the
memory image still closely resembles that of the prototype. In the mutant, there is no
such decoding/copying decomposition as originally incorporated in the prototype.
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Time IP Content Registers Heads Stack

17 28 pop [305,0,0] [322,0,28] *Stk0[322,...]
... ... ... ... ... ...
67 86 pop [322,0,22] [322,0,28] *Stk0[294,...]

nop-A

68 88 swap-stk [294,0,22] [322,0,28] *Stk0[2,...]
69 89 dec [294,0,22] [322,0,28] *Stk1[322,...]

nop-A

70 91 swap-stk [293,0,22] [322,0,28] *Stk1[322,...]
71 92 pop [293,0,22] [322,0,28] *Stk0[2,...]

nop-A

... ... ... ... ... ...
143 192 if-n-equ [1,321,0] [322,0,28] *Stk0[1,...]
144 193 mov-head [1,321,0] [322,0,28] *Stk0[1,...]

194 pop

Table 3.10: First execution trace for the code around the modified phenotypic word (high-
lighted), and for the conditional branch at the end of the (previous) decode loop. The
summary of the snapshots of the states (each right before the execution of the instruction
at the address pointed at by IP at the time step) is shown on the right.

Time IP Content Registers Heads Stack

145 28 pop [1,321,0] [322,0,28] *Stk0[1,...]
... ... ... ... ... ...

195 86 pop [321,1,10] [322,0,28] *Stk0[322,...]
nop-A

196 88 swap-stk [322,1,10] [322,0,28] *Stk0[2,...]
197 89 dec [322,1,10] [322,0,28] *Stk1[321,...]

nop-A

198 91 swap-stk [321,1,10] [322,0,28] *Stk1[321,...]
199 92 pop [321,1,10] [322,0,28] *Stk0[2,...]

nop-A

... ... ... ... ... ...
271 192 if-n-equ [1,0,0] [322,0,28] *Stk0[1,...]

193 mov-head

272 194 pop [1,0,0] [322,0,28] *Stk0[1,...]

Table 3.11: Second execution trace for the code around the modified phenotypic word
(highlighted), followed by the execution of the code around the conditional branch. This
“decode loop” segment is executed for the second time, but the mov-head instruction is
skipped as the condition of BX 6=CX is no longer satisfied. The execution then enters the
“copy” phase.
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As the “decode loop” fails the second time, the execution then enters the “copy” phase,

starting from the “copy preparation” segment. This failure is due to the condition branch

of BX 6=CX which is not satisfied now that BX:0 = CX:0.

In terms of word writing during the execution of the mutated decode segment, the

first procedures of the “decode loop” still functions despite the loss of value, and writes

in the first word (the value of 22, corresponding to the h-alloc instruction) correctly at

the start address of the phenome of the (putative) offspring being created. As the loop

condition is satisfied this time, the execution loops back. In the second iteration of the

loop, a second word is written in at the address corresponding to the second word of the

offspring (i.e., at the relative address 1 of the phenome of the intended offspring memory

image). This word is a wrong one, as the word for writing fetched by now turns out to be

the value of 10 (corresponding to the shift-r instruction), not the original second word

(the value of 25, corresponding to the h-search instruction).

Affected Copy Segment Behaviour

After the disrupted decode segment, the execution enters the copy segment. The value

of 1, an inadvertent value, is used to locate the read head, and later the write head as

well. This value comes from one of the “fillers” of the stack (the stack is by default

filled with zeros at the beginning first) and incremented at a later point in the process.

Where it was intended to calculate the remaining length by subtracting the genome start

address from the whole length (i.e., the whole length − the phenome length), it subtracts

the inadvertent 1 from whole length (whereas the whole length properly remains to get

handled).

What is more, that inadvertent 1 is used as a value to locate the read head, instead of

the genome start address (if it were starting the copy process after the decode, it would

have been the genome start address that the first word should be copied from). Right after

it is finished, the write head is located at the address of the whole length plus inadvertent

1, (instead of that of the whole length plus the genome start address, where a word would

have been copied into in the prototype).

Those values implicitly explain how the copy process can start and eventually end up

finishing by copying no more or no less than the rest of the memory image (see Tables 3.12,

3.13, and 3.14 for the code fragments demonstrating how the copy loop starts, how it loops

back, and how it finishes). Up to this point, the value of the remaining length turns out to

be the actual one 643, the remaining times to execute the h-copy instruction, leaving the

correctly written first word so as to be able to start copying from the next one (replacing

the miswritten second word). This is allowed by the fact that the read head is placed at

the address 1, and the write head at the address 645, which turns out to be the source

and the destination for the second word of the phenome, respectively.

Recapitulation

The analysis into this particular mutant which could cause degenerative dominant shift or

degenerative displacement showed that the self-reproduction of the emerged mutant relies

upon the copy process using the h-copy instruction rather than with the help of the read

instruction and/or the write instruction, except for one word. A decisive factor for the
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Time IP Content Registers Heads Stack

310 246 h-search [643,1,645] [1,645,645] *Stk0[644,...]
311 247 h-copy [643,0,0] [1,645,247] *Stk0[644,...]
312 248 swap-stk [643,0,0] [2,646,247] *Stk0[644,...]

... ... ... ... ... ...
343 289 if-n-equ [644,642,0] [2,646,247] *Stk0[644,...]
344 290 mov-head [644,642,0] [2,646,247] *Stk0[644,...]

291 h-divide

Table 3.12: Execution trace of the first copy loop.

Time IP Content

246 h-search

345, 379, ....., 22105 247 h-copy

346, 380, ....., 22106 248 swap-stk

...... ... ...
377, ..., 22103, 22137 289 if-n-equ

378, ..., 22104, 22138 290 mov-head

291 h-divide

Table 3.13: Execution trace of the body of the copy loop (after the first, before the last
execution).

Time IP Content Registers Heads Stack

246 h-search

22139 247 h-copy [644,1,0] [643,1287,247] *Stk0[644,...]
22140 248 swap-stk [644,1,0] [644,1288,247] *Stk0[644,...]

... ... ... ... ... ...
22171 289 if-n-equ [644,0,0] [644,1288,247] *Stk0[644,...]

290 mov-head

22172 291 h-divide [644,0,0] [644,1288,247] *Stk0[644,...]

Table 3.14: Execution trace of the final phase of self-reproduction.
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successful division of this mutant is that the read head and the write head are positioned

correctly when the h-divide instruction is executed (i.e., the read head pointing at the

start address of the offspring, and the write head at the end).

To recapitulate, the mechanism of how the mutant ends up self-producing by copying

can be summarised as follows.

1. The (previous) decode loop using the read and the write instructions is destroyed

by the mutation and that part starts to malfunction, iterating twice, writing two

words (the first one correctly, the second one incorrectly).

2. The subsequent (previous) copy loop using the h-copy instruction, manages to func-

tion, by overwriting the second miswritten word made by the mutated decode loop,

and by continuing to copy the rest of the memory image.

3. The program finishes when it reaches exactly the end of the strain, because the exact

remaining length is set by the time the copy loop starts.

3.5 Reflective Remarks

In the course of designing and observing the prototype von Neumann style ancestor, two

more questions were raised, concerning (a) identification or classification of reproduction

mode and (b) alternative ancestor design. Reflecting the understanding gained through

the study covered in this chapter, approaches towards these questions are discussed in this

section.

3.5.1 Towards Identification of Reproduction Mode

It has been demonstrated that a von Neumann style self-reproducer can degenerate into

a self-copier. The phenomenon of degeneration observed marks the immediate loss of the

decomposition into genome and phenome, hence in particular the loss of the mutable,

evolvable genotype-phenotype mapping.15 That is to say, this particular von Neumann

style self-reproducer could mutate into a self-copier that no longer has a division of labour

between phenome (i.e. the active constructor-copier) and genome (i.e. the passive infor-

mation storage), from the effect of a single one-point mutation.

As mentioned in Section 3.4, one of the six cases where dominance shift took place was

elaborated as an example. To touch briefly on the other five examples than the one that is

reported as a mutant which led to dominance shift, the observed mutants all had mutation

expressed in the decode loop, and had gestation time less than half that of the prototype

ancestor (namely, 22172, 22174, 22078, 22044, and 22172, in no particular order), with

similar execution profile (of 1 or 2 write executions and 643 or 644 h-copy executions).

Judging crudely from the similarity between their attributes, they are conjectured

to also be self-copiers, to the extent the first example of degeneration was concluded

15The mutant studied in Section 3.4 decodes one word (the first word of the offspring memory image; in
this case, the value 22, which corresponds to the h-alloc instruction). However, this decoded word does
not become the phenome of the offspring (as the offspring turns out to have no such decomposition as
genome and phenome as its parent had). Put another way, although it might count as a part of phenotypic
activity in a very weak sense, it does not qualify as an act of “decoding a genome”.
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to generate a self-copier, presumably with a similar mechanism. However, it is not clear

whether they self-reproduce in exactly the same mechanism or reproduction mode; nor is it

clear how similar their ways of self-reproducing are to one another (or how different they are

from one another). It is not clear, either, how one can best classify reproduction modes of

the mutants (or arbitrary mutants in Avida in general) based on similarity or commonality

of self-reproduction mechanism. Even when the program of the organism looks the same,

the use (or interpretation) of the words in the program can be completely different. In the

same sense of the argument by McMullin (1995), a memory image (or a part of memory

image) can be decoded differently depending on the context, and conversely, the same

behaviour can arise from different memory images.

To judge whether any two organisms are using the same reproduction mode, their

step-by-step state transitions in trace files have to be wholly examined and compared on a

case-by-case basis. Describing the self-reproduction mechanism which a particular organ-

ism does employ (and more importantly, finding the organism’s evolutionarily interesting

mutational pathways) can be laborious and cumbersome. As a general rule, to determine

the reproduction mode of an organism, the organism has to be examined on a step-by-step

basis via a trace file. In the case of the prototype, it is difficult especially because of their

relatively large size (e.g., 644, in the above case) and the complexity of their structures

(e.g., the above inadvertent self-copying mechanism). It turned out, in this particular case

study of Section 3.4, that a trace file size can be considerable since it is a step-by-step

log: for this mutant, the trace file size is 55.9MB (in comparison, it is 131.4MB for the

prototype). To produce and compare trace files (such as those for the above-mentioned

mutants) of arbitrary sets of mutants seems to require an additional analysis, which can

probably be computationally expensive and even ineffective, considering the evolutionary

environment of the standard Avida.

In any case, once such a degenerate self-copying strain arises, it is not at all surprising

that it displaces the von Neumann style self-reproducer in the population. Such self-

copiers would be selectively favoured by the Avida system due to their reproduction rate

being much higher than that of such von Neumann style self-reproducers as the prototype

ancestor. The particular self-copier, being the same length as the prototype, takes less than

half of the CPU cycles required by the prototype to self-reproduce. A factor underlying

the difference between the necessary CPU cycles is the fact that the decode process needs

to execute more instructions than the copy process for a word to be written into one

memory location of the offspring. Self-copiers are generally expected to be faster in that

they avoid the procedural cost of the decoding.

The topic of identifying or classifying reproduction modes will be revisited and further

elaborated in Subsection 4.6.2 in Chapter 4, and in Section 5.3 in Chapter 5.

3.5.2 Reconsidering the Design of Ancestor

Ancestor design is an important aspect in any Avida experiments, concerned with setting

up an initial condition of evolution. Not only the structural and functional design, but

also the design of the instruction set on which the ancestor design is based is crucial, as

it determines a part of the law governing the Avida world.

Although the classic set could have been used, the default 26-instruction set was chosen
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to be used as the core of the 28-instruction set upon which the prototype ancestor design

is based. (The classic set can be enabled in the particular version of Avida, as shown in

Section 3.2). Requirements for a design of an optimal instruction set for implementing a

von Neumann style self-reproducer are not clearly defined (with respect to this, whether

the default instruction set is an optimal design as a starter is yet to be known in the first

place). In the current study, two instructions (namely read and write) were additionally

enabled in order to support the reproduction process comprising such phases as copying

and decoding. These were the two simplest instructions for basic reading and writing

available among the instructions listed in the library found in the source code of the

virtual hardware CPU of Avida.

The presented design of the prototype and the configuration of the instruction set were

rather arbitrary.16 These serve to give a valid proof of principle demonstration that can

be used as an example and a springboard for further detailed research. Therefore, there

could be an arbitrary number of different designs of von Neumann style self-reproducing

ancestors based on different design conditions or design requirements, using a differently

configured instruction set. It is clear that the design of the prototype could be recon-

sidered, from the fact that there are several “unemployed” instructions in the instruction

set, namely, those functionally categorised as mathematical operations and input/output

operations. Though not employed in the prototype, these instructions are included as

part of the “default” instruction set and kept enabled in the configuration. Mathemati-

cal or input/output instructions are typically utilised for the computation when there is

external fitness that organisms can gain through interacting with the external task en-

vironment via the input/output components, the effect of which is out of scope in the

research of the current thesis. (In many Avida studies where there is external fitness, the

standard self-copying ancestor can evolve to utilise such instructions to be competitive in

the population.) As opposed to that case, the prototype is intended to start off without

ancillary machinery in order to observe the plain reproductive potential of the von Neu-

mann architecture. Through mutation, such mathematical or input/output instructions

might possibly arise in programs and become utilised for some function; but, more likely,

some functional effect in reproduction cycle may arise.

In retrospect, the method of reproduction which the classic instruction set assumes, is

somewhat similar to the design of the novel prototype ancestor. In the sense that the read

and write heads are utilised to a lesser extent in the implemented reproductive process,

the design of the instruction set used in the current investigation may be considered as

being slightly closer to the design of the classic set, than that of the default (newer)

instruction set is. If that is the case, it is highlighted that the Avida system in the early

stage of development did not very much utilise those heads (or, at least, did not rely on

them as essential components). Most likely, by introducing the use of control heads and

of instructions using them, the Avida system was intended to encapsulate a major series

of procedures so as to lessen the size of an organism’s program. Roughly speaking, an

operation performed by one instruction may be (at least slightly) less prone to mutation

than the same operation performed by multiple instructions (thus, in this sense, the more

16For example, one could design an instruction from scratch, or design a new instruction set. In this
regard, the design of the prototype ancestor can be said to rely more on what are originally provided within
Avida.
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“encapsulated”, the more an instruction is able to avoid malfunctions in the operation

performed by its sub-procedures).

The topic of the effect of an instruction set in designing an ancestor will be re-discussed

in Subsection 4.7.3 in Chapter 4. Along the same line, the encapsulation of the h-copy

instruction is discussed in Subsection 5.3.4 in Chapter 5.

3.6 Closing Remark

The Avida artificial life system as an experimental and modelling platform is overviewed in

Section 3.2. It is followed by Section 3.3, where a prototype ancestor minimally equipped

with the von Neumann style architecture of self-reproduction was designed and imple-

mented in the Avida context. Its behaviour was preliminarily observed in Section 3.4,

which led to a finding of degeneration of the designed ancestor via a step of point-mutation.

Through this first approach taken, it was demonstrated that a von Neumann style

organism is implementable in Avida. The observation suggests a need for a more extensive

and systematic analysis of the prototype’s mutational pathways (mutational analysis).

Naturally, there should ideally be some analytical tool available for general self-reproducers

in Avida. The next Chapter 4 considers what would be required to develop such a tool,

proposes a feasible method, and evaluates the method by demonstrating it using the

prototype ancestor.

Relevant to the reflective remarks in Section 3.5, it is argued in Chapter 4 how fre-

quently degeneration of the prototype occurs, based on a heuristic classification. There,

the difficulties of classification of reproduction modes discussed above are partly tackled

in the context of mutation analysis. From the perspective of the original purpose of the

research, it should be noted that it is not enough to know reproducibility (whether a

strain divides or not) or reproduction mode of mutants of the particular prototype. More

interesting is evolvability of mutants of a von Neumann style self-reproducer in a more

general situation of Avida, particularly, not of mutants that are simple self-copiers, but

those retaining some von Neumann architecture. This point is discussed as well in the

course of the investigation presented in Chapter 4.

79



Chapter 4

Automated Mutational Analysis

4.1 Overview

Overall, this chapter proposes a new analysis method based on the built-in tool of Avida by

revisiting the concept of viability. The chapter opens by discussing the research direction

to be taken, systematic mutational analysis, and its importance, providing a detailed

exposition of it. Then Avida’s original analysis mode is introduced and applied on a set

of mutants of the prototype introduced in Chapter 3 as a starting point of the subsequent

enhancement of analysis. The framework of the enhanced analysis is elaborated and results

from the analysis are presented. The automation of the enhanced analysis follows, where

a method of multi-step mutational analysis is demonstrated. Lastly, the contribution of

this chapter is discussed, outlining remaining research questions as part of the conclusion.

Additionally, an alternative design of the prototype ancestor is considered both in terms

of evolvability compared to the prototype, and in terms of applicability of the developed

analysis method.

4.2 Research Direction and Expositions

The research described in Chapter 3 was a step to characterise a von Neumann style

self-reproducer in Avida. It was an approach to the original research question of finding

changes in a genotype-phenotype mapping of such a self-reproducer with the von Neumann

style architecture in Avida. Following this, within the scope of characterisation of a

particular self-reproducer (the prototype ancestor), there are a few possibilities of further

research directions including: (a) evolutionary characterisation through running standard

Avida experiments; and (b) systematic analysis of specific mutational pathways.

Conducting a number of evolutionary experiments (with mutations and resource lim-

its) using the prototype is one possibility. While it is practical and empirical to start with,

the result may be limited to, or too particular to, a particular ancestor. Though it is

worthwhile in and of itself to characterise a particular ancestor (such as the prototype),

different designs of von Neumann style ancestors would have to be repeatedly run for ex-

periments for a more comprehensive understanding of von Neumann style self-reproducer.

That means, in this line of research, that better guidelines and clarification as to conditions

would be needed for designing alternative ancestors; but it is not straightforward to know

how effectively different ancestors could be designed and how many kinds of ancestors
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should be studied.

Apart from standard, evolutionary Avida experiments, another possible research direc-

tion is a systematic and somewhat abstract investigation: analysis of possible mutational

pathways for a given ancestor, or mutational analysis. It requires the development of

a generic method of analysis of mutational pathways of a particular strain. Mutational

pathways here mean mutants that can be reached from a particular ancestor through

mutations. An advantage of this line of research is that one can attain a foundational

framework of analysis of mutational pathways. That means that a method developed can

potentially be used not only for the existing prototype ancestor, but also for unknown

ancestors of different strains.

In either case, how to classify strains by reproduction mode is a problem to be tackled.

Different strains may have different reproduction modes: some may have a von Neumann

style architecture, others may have another version of von Neumann style architecture.

Even if distinct strains are classified as having the same reproduction mode, they may have

more or less different mechanisms to realise that reproduction mode. There may be not

only self-copying or von Neumann style architectures but may also be mixtures of those

architectures (mixed to different extents). Moreover, strains may produce non-identical

offspring or may not produce any offspring.

The current research takes the direction of investigating and developing a systematic

analysis method for mutational pathways. This will be called mutational analysis for

short. A generic, foundational framework of mutational analysis will be valuable for char-

acterisation of strains based on mutational pathways. Once a mutational analysis method

is developed, it may, in principle, provide a basis for more systematically investigating

changes in genotype-phenotype mapping. This is directly relevant to the characterisation

based on evolvability which strains can potentially give rise to. Mutational analysis will be

useful if redesigned alternative ancestors are to be investigated and characterised. Insights

gained through the development of a mutational analysis method and through character-

isation of the particular hand-designed prototype ancestor using the method may benefit

further research as well. Such insights could also help to plan evolutionary Avida experi-

ments and alternative ancestor designs.

In the rest of this section, first, how strains can be best classified will be considered in

order to revisit the concept of self-reproduction, and second, a research program defining

and exploring the somewhat more general concept of viability will be proposed.

4.2.1 Exposition 1: Self-Reproduction Revisited

From studying organisms in the Avida world to such an extent as in Chapter 3, one might

assume that there is a clear division between self-reproduction and something that is

not. However, whether an organism divides or not, and if it divides, whether an identical

organism is reproduced as a result of division or not, appear to be definitely relevant

to, but not necessarily determinant for, self-reproduction. There is certainly subtlety in

self-reproduction, not to mention “interesting” self-reproduction. The concept of self-

reproduction will now be revisited and unpacked, and strains will be more finely classified.

Intuitively, what can be defined straightforwardly is a simple direct self-reproducer

strain: an organism divides (as a parent) successfully and as a result have two identical
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s

(a) Production graph of a simple
direct self-reproducer strain as a
seed strain. The “s” denotes strain.

o

(b) Production tree of a seed or-
ganism of a simple direct self-
reproducer strain. The “o” denotes
organism.

Figure 4.1: Lineage of direct simple self-reproducer strain.

organisms (as offspring). By “identical”, it is meant that strains of the parent organism

and those of the offspring have the same (initial) memory image, and therefore function or

behave in the same way as long as those memory images are executed by a (reset) virtual

CPU of each organism.

A self-reproducer strain represented as a production graph is shown in Figure 4.1a. A

node represents a strain (as opposed to an individual organism). Distinct nodes would

imply distinct strains. Edges represent production relationships. Each edge is directed,

pointing from parent to offspring. An Avidian organism of a certain strain can be regarded

as having precisely two or zero offspring. So, in the Avida world, each node must have

either 0 or 2 arrows going out from itself. The strain represented by the graph in Fig-

ure 4.1a is called a simple direct self-reproducer, that is, a parent organism of this strain

produces two offspring organisms of the same strain. Production graphs are one way of

representing lineages, from the perspective of distinctive strains. In contrast to this, a

lineage of an organism of a self-reproducer strain can be represented as a tree, as shown in

Figure 4.1b. This representation is referred to as a production tree, describing a lineage

tree generated by a seed organism as a result of production. Here, a network of individual

organisms is a lineage, where nodes denote individual organisms. In this representation,

nodes (individual organisms) are depicted separately regardless of whether or not any two

organisms within a lineage are of the same strain. Production trees are another way of

representing lineages, from the perspective of individual organisms. This chapter mainly

focuses on reproduction graphs, rather than reproduction trees. (Strain classification is

attempted in this subsection, using production graphs, and this representation of produc-

tion graphs is mathematically revisited in Section 4.4 in pursuit of a method for analysing

strains.)

The above case is an example of a simple direct self-reproducer. Naturally, there are

the opposite cases to simple direct self-reproducer strains: simple direct infertile strains

(or simply, infertile unless otherwise specified), as shown in Figure 4.2. If an organism of

a certain strain fails to divide and hence ends up having no offspring, the strain is called

infertile.

Of these cases shown above, a simple direct self-reproducer strain, as a seed strain, is

evolutionarily significant, and may be evolutionarily interesting; whereas a simple direct

infertile strain, as a seed, is of no evolutionary significance or interest. However, there

are conceivably strains that potentially generate different patterns of lineages. To better

clarify what strains can be of evolutionarily significance or interest, the way of classifying

strains is considered and detailed next.
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s

(a) Production graph of a sim-
ple direct infertile strain as a seed
strain.

o

(b) Production tree of a seed or-
ganism of a simple direct infertile
strain.

Figure 4.2: Lineage of direct simple infertile strain.

Strain Classification

If one only looks at a first division of an organism of a certain strain, there are logically

cases other than simple direct self-reproducer or infertile above: namely, a strain repro-

duces (a) one identical, one non-identical offspring, and (b) two non-identical (all different)

offspring. There is, however, more subtlety in classification of strains when reproduction is

looked at from a longer-term perspective. It is conceivable that there are classes of strains

as shown in Figure 4.3. The strain classification depicted in this diagram is intended to

be more conceptual than precise or detailed. Note:

• There is a coarse distinction between infertile and the rest (or fertile, which includes

self-reproducer).

• There is a direct self-reproducer class within the general self-reproducer class. In

such cases, every strain generated from the seed strain (including the seed strain

itself; presume this in this chapter unless otherwise noted) grows exponentially in

time.

• Furthermore, there is a simple/collective distinction in the self-reproducer class.

Simple means exactly one distinct strain involved; whereas collective means more

than one distinct strain. In the simple class, “self” means a single distinct strain,

whereas in the collective class, “self” would mean some group of distinct strains.

In simple self-reproducers, classification by reproduction mode (such as self-copying

and von Neumann style) is relevant, whereas in collective self-reproducer, it is prima

facie unclear how this should be defined: it would depend on much more detailed

examination of the collective interactions or relationships

• There is an indirect self-reproducer class. A seed strain falls in this class if it is

not a direct self-reproducer, but gives rise to one or more strains that are direct

self-reproducers; if all the latter are simple self-reproducers, then this is an indirect

simple self-reproducer; if all are collective self-reproducers, then it is a collective

self-reproducer; otherwise, it is classified as mixed.

To illustrate, a few examples of possible production graphs of the above conceivable

classes are shown. Several strain classes are (roughly) progressively explained, starting

from simple patterns with few strains.1

Figure 4.4 shows again the most straightforward classes: a simple direct infertile strain

and a simple direct self-reproducer strain.

1Note that we present here, in as simple a form as possible, the conclusions from initially relatively
undirected exploration. The methodology adopted involved an iterative process of generating potential
production graphs with progressively more nodes/strains and revising or refining the proposed classification
scheme as new possibilities where identified.

83



4.2. RESEARCH DIRECTION AND EXPOSITIONS

U

Indirect 
Infertile

Simple

Direct
SR

Collective 

Direct 
Infertile

vNSC

Fertile

Exponential

PC

IC

Indirect
SR

Collective 

Simple

Mixed

Figure 4.3: Venn diagram of strain classes. The whole set U is the space of Avidian strains.
Acronyms are used for legibility in the diagram: SC refers to self-copying; vN refers to
von Neumann style; SR refers to self reproducing; PC refers to pathological constructor.
For further explanations of each class, see the main text.

s

(a) Simple direct infertile strain.

s

(b) Simple direct self-reproducer
strain.

Figure 4.4: A simple direct infertile strain and a simple direct self-reproducer strain.
These are the patterns of production graphs involving exactly one distinct strain. The
node marked with an s is the seed strain, or a starting strain.
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s

(a) An indirect simple self-
reproducer strain, with one arrow
leaving, and another looping back
to, the strain s.

s

(b) An indirect simple self-
reproducer strain, with two arrows
leaving the strain s.

Figure 4.5: Indirect simple self-reproducer strains.

s

(a) A 2-strain pattern of a col-
lective self-reproducer strain, with
one arrow leaving, another looping
back to, the strain s.

s

(b) A 2-strain pattern of a col-
lective self-reproducer strain, with
two arrows leaving the strain s.

s

(c) A 3-strain pattern of a collective
self-reproducer strain, with one ar-
row leaving, another looping back
to, the strain s.

s

(d) A 3-strain pattern of a col-
lective self-reproducer strain, with
two arrows leaving the strain s.

Figure 4.6: Collective direct self-reproducer strains.

Indirect self-reproducer is a class that exhibits such production graphs as shown in

Figure 4.5.

Collective self-reproducer is a slightly more complex class. As opposed to simple direct,

this is a class that exhibits such production graphs as shown in Figure 4.6. Here, patterns

that are symmetrical and that involve 2 or 3 strains are shown as examples.

The classes explained so far can be considered as straightforward and most relevant

in the interest of laying a foundation for the subsequent sections of the current chapter.

However, as is implied from Figure 4.3, there can be other strains that do not fall into

the classes described above. Such classes of strains are mentioned below for the sake of

completeness:

• There remains the grey class of “fertile-but-not-self-reproducer” strains within indi-

rect infertile.

• The direct/indirect distinction applies analogously to infertile as well. Direct infertile

strains are easy to classify. But conceivably, there can be strains that are fertile

because they produce something, but that end up producing all infertile strains.

Such strains should be precisely classified as indirect infertile.
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• A notable class of such “fertile-but-not-self-reproducer” strains is the pathological

constructor class, having the potential of indefinite linear population growth. This

class can be defined as having one offspring that is identical to a parent and one

offspring that is infertile. That is, as a result of division of a pathological constructor,

there are a pathological constructor and a sterile offspring. A consequence that this

type of strain can bring about is indefinitely producing (or as the name suggests

“pathologically constructing”) numerous sterile offspring, to the extent that it affects

a finite ecosystem. In this limited sense, this type of strain may have potential

evolutionary significance like self-reproducers.2 That said, this does not give rise to

exponential growth, so is clearly distinguishable from self-reproducer.

• A more general class for pathological construction is conceivable, which can be re-

ferred to as an iterative constructor. Such a seed strain would generate more than two

distinct strains in total, and would somehow iterate the same pattern as a patho-

logical constructor. Qualitatively speaking, the relationship between pathological

constructor and iterative constructor can be likened to that between a simple direct

self-reproducer and a collective direct self-reproducer.

• Apart from the above, there is an infinitely diversifying class, where a seed strain

produces an indefinitely growing set of distinct strains. Some such seeds may be

potentially exponentially growing.

• Practically, there can exist strains that cannot be classified or are unknowable due to

some observation time limit. This is because any observation to determine a strain

class has to be concluded after some period of time.3 Production graphs of such

strains would be open, not closed with a finite membership.

• What was described so far are distinguishable classes. There are of course, combi-

nation of those classes. However, the class that is most relevant in this context is

that of self-reproducer, as being exponentially growing and evolutionarily significant.

There may be found other distinguishable and significant classes, too.

To illustrate, a few examples of possible production graphs of the above (less relevant)

classes are shown.

Figure 4.7 shows the production graph of another characteristic class, a pathological

constructor, together with the production graphs of two strains of iterative constructor,

the general class of pathological constructor.

Figure 4.8 shows two simple examples of indirect infertile. This is a more generalised

class of pathological or iterative constructors, in the sense that strains of this class even-

2Note that pathological constructors also have subtlety. Generally, when seeded in a spatial Avida, it
will keep producing sterile offspring, and it is potentially linear population growth. Multiple pathological
constructors will kill each other and one will survive producing sterile offspring (turnover); especially when
ALLOW PARENT is enabled (which means a parent on a parental node may be killed by an offspring), a
seeded pathological constructors may end up producing sterile offspring surrounding itself, without no
further population growth (see Appendix E for the configuration file).

3For the unclassified strains, there is another aspect to be considered: the length of time to run and
trace an organism of a (single) strain for analysis. Practically, this value can be set relative to the prototype
ancestor (as if in evolutionary experiments). This value must be revisited when in general cases, other
factors (i.e. functions/activities other than self-reproduction) come into play that contribute to fitness
changes (something other than production rate/gestation time).
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s

(a) Pathological constructor strain.

s

(b) An iterative constructor strain.

s

(c) A long iterative constructor
strain.

Figure 4.7: A pathological constructor strain and an iterative constructor strain. The
iterative constructor is a general class of pathological constructor. These are fertile in the
sense they produce something, but identified (or conjectured to be) indirect infertile in
the long run.

s

(a) An indirect infertile strain, with
two arrows leaving the strain s,
leading to one infertile strain.

s

(b) An indirect infertile strain, with
two arrows leaving the strain s,
leading to two infertile strains.

Figure 4.8: Indirect simple infertile strains.

tually lead to all infertile strains; whereas this class is distinguishable in that pathological

or iterative constructors can generate indefinitely many offspring on an indefinitely large

population, which infertile strains (whether direct or indirect) cannot.

See Figure 4.9 for a production graph of a strain of the diversifying class, beside a

similar production graph of an indirect infertile strain. This class does not appear in the

diagram of Figure 4.3, but can also be of interest theoretically as it may or may not grow

exponentially. As mentioned, this class is less relevant compared to the self-reproducer

class, in that a production graph of such a diversifying and exponentially growing strain

would be unclosed, and cannot practically be observed and determined.

Example production graphs of other strains that do not fall in the aforementioned

classes include, but are not limited to, ones in Figure 4.10.

Subtlety in the notion of self-reproduction has now been illustrated. This is what

renders any attempt at automated strain classification non-trivial. Importantly, simple

direct self-reproducer is not the only class of strains that is interesting, or that can lead to

exponential growth (i.e., evolutionarily significant) in the light of the research purpose (of

finding genotype-phenotype mapping changes etc.). What is more, even self-reproducer

strains may be of reproduction modes without genotype-phenotype mapping (e.g., a von

Neumann style architecture that an ancestor has, may disappear through mutation). After

all, the research is not as simple as checking simple direct self-reproducer among a certain

set of strains. That is why this attempt of strain classification, even though it is not fully

precise, is relevant. Through this attempt, it is suggested that there is a way of classifying
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s

(a) A diversifying (and exponen-
tial) strain.

s

(b) An indirect infertile strain
which is seemingly diversifying.

Figure 4.9: Diversifying strains. If the strain continues diversifying indefinitely, then,
theoretically, the number of distinct strains as well as the population size will grow ex-
ponentially. In that case, the production graph will end up being unclosed. If the strain
does not continue diversifying indefinitely, then, vice versa: neither the number of distinct
strains nor the population size will grow exponentially; and the production graph will end
up being closed.

s

(a) A fertile strain. This can be re-
garded as (atypical) collective self-
reproducer.

s

(b) A fertile strain. This can be re-
garded as a combination of (atypi-
cal) self-reproducer and indirect in-
fertile.

Figure 4.10: Other fertile strains. Strains that divide but do not fall in particular fertile
classes would be classified merely as fertile, or other fertile. Such strains include but are
not limited to the above cases.

strains, in a more fine-grained way, and more meaningfully based on its evolutionary

potential which can translate as potential for exponential growth. This potential, viewed

as viability, is elaborated next.

4.2.2 Exposition 2: Viability and Viability Analysis

Generally, for changes in a genotype-phenotype mapping to be detected, changes in re-

production modes would have to be detected; in turn, it would necessitate that a self-

reproducer strain be somehow detected. In other words, self-reproducer strains are at

least relevant, because it is a necessary condition for interesting strains. In this sense, the

concept of being viable or viability in the current context will refer to self-reproduction

as is, implying potential for exponential population growth (that is, under a circumstance

without resource limits or variations), which is a necessary factor for the neo-Darwinian

evolution, hence is evolutionarily significant. Inasmuch as viability is defined as poten-

tial for exponential growth, being a self-reproducer is being viable, but the reverse is not

necessarily true. Thus, it is important and meaningful to be able to analyse viability of

strains.
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To recapitulate the strain classification, the two most straightforward classes are in-

fertile and simple direct self-reproducer. If an organism of a strain fails to divide, the

strain is classified as infertile, whereas if it succeeds to divide, the strain is classified (at

least) as fertile. Some fertile strains may be self-reproducer. Simple direct self-reproducer

is straightforward to classify, and definitely viable (i.e., of interest and significance evolu-

tionarily, if defined qualitatively). Some fertile strains may turn out to be indirect infertile.

Direct or indirect, infertile strains are of no particular interest or significance evolution-

arily. (As explained, there is a class of pathological constructor that can be classified as

indirect infertile and may still have evolutionary impact, but the impact should be neg-

ligible in the presence of any strains of a self-reproducer class in the evolutionary long

run.) The complication here is that simple direct self-reproducer is not the only class that

is viable, and to search for viable strains (or, self-reproducer strains in a broad sense) is

not as straightforward because such strains may exhibit complex patterns of production

graphs involving multiple distinct strains.

Essentially, the notion of self-reproduction turns out to be not as straightforward as

it appears, so here it has to be more rigorously defined. In the first place, an organism

of a certain strain either fails to divide, producing no offspring, or successfully divides to

produce two offspring (or at least there exists a point of view to regard a strain as such).

Among cases where a parent divides and produces two offspring, direct self-reproduction is

a situation where, through division, the parent produces two offspring which are identical.

That means those strains are represented as an identical memory image (consisting of

an identical program and data which will give rise to the same behaviour when executed

in the same way). There are conceivably indirect self-reproduction: a situation where

a strain does not directly self-reproduce, but some descendent strain of it directly self-

reproduces. For example, even if von Neumann reproduction mode is retained, it may

take multiple generations for a genotype-phenotype mapping to stabilise as that of a

direct self-reproducer. There is another class of collective self-reproducer. This may be a

rather abstract class, but it can be defined as a group of multiple strains that mutually

reproduce (again with the constraint that the number of any strain’s offspring strictly

has to be either zero or two). These are examples of strains that should not be simply

excluded as being uninteresting just because they are not direct self-reproducers.

Viability analysis of strains will be one of the foci of the subsequent sections. Qualita-

tively speaking, viability analysis should mean more than organism dividability (or strain

fertility) and strain equality analysis, but rather evolvability analysis. Fertility of organ-

isms of certain strains is relatively straightforward to check. One would need to confirm

whether an organism of a certain strain divides or not (hence reproduces or not) within

a certain period of time. Whereas the word dividability here implies direct reproducibil-

ity, the word fertility is used to mean not only direct but also indirect reproducibility of

something. Analysing equality of strains may be cumbersome especially when the strain

size becomes large, but a comparison between two strains is basically straightforward. On

the other hand, evolvability requires further consideration. Roughly speaking, evolvabil-

ity here means the extent of having evolutionary potential or evolutionary future, such

as potential of exponential population growth, from a lineage perspective. One would

be able to detect a simple direct self-reproducer strain relatively easily, but that class is
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not the only possible pattern that leads to exponential growth or, more generally, has an

evolutionary future. Analyses of dividability of organisms (or fertility of strains) and of

equality of strains are essential for analysis of evolvability, but do not suffice when viability

is considered. In Section 4.4, the viability quantification is discussed and introduced.

Furthermore, not only individual self-reproducer strains but also “collective” self-

reproducer strains (i.e., strains that are self-reproducer viewed from a lineage as a whole)

should be classified as fertile, and even as viable, having evolutionarily potential.4

Mutant Viability Analysis

Viability analysis will first be applied to mutants of a particular ancestor. This is an

approach to lay the foundation of analysis of mutational pathways, and a step towards

analysis of mutation of (and evolution of) a genotype-phenotype mapping as part of char-

acterisation of a von Neumann style self-reproducing ancestor. Viability is not a suffi-

cient condition, but a necessary condition of any evolutionarily interesting and significant

genotype-phenotype mapping. (In particular, organisms that maintain von Neumann style

self-reproduction are of interest from the perspective of the original purpose of this research

stated earlier in Section 2.2 in Chapter 2.) Thus, in the search for viable strains, mutants

are referred to as candidates.

To map out viability analysis of mutants, mutational pathways will be analysed for

viability, starting from first-step single-point mutants, to multi-step mutants. Here, mu-

tational pathways specifically refer to those which include first-step single-point mutants

and subsequent (hypothetical) single-point mutants of generated strains (referred to as

multi-step mutants, as opposed to first-step). See Figure 4.11 for the conceptual diagram

of this analysis. Exhaustive analysis needs to be done wherever necessary and possible,

but practically, scale of analysis has to be considered for the analysis to complete within a

feasible period of time and to focus only on interesting and significant candidates, such as:

how long to wait before determining a strain is direct infertile; how many distinct strains

to trace for one source strain. For multi-step mutant analysis, how and how much of the

spectrum of candidates to prune for further mutational analysis (or a selection mechanism)

also needs be considered.

Thus, in this type of analysis, pruning mutant strains will be an important factor.

Mutational analysis should ideally be able to exhaustively analyse mutant strains on all

the possible mutational pathways over multiple steps of mutations. That is, it should

be able to incubate an arbitrary seed strain and predict its potentially generated strains,

and analyse each of them, recursively. Strains that are expected to be deterministically

generated from mutants (not through additional mutations) should also be targets for

further analysis. However, the more mutational steps are added, the more computationally

expensive it becomes to have to exhaust all mutant possibilities. In other words, this

type of investigation on mutational pathways boils down to mutation space exploration

of Avidian strains. One drawback that it may encounter is the combinatory explosion of

mutants to be analysed that are attained through mutational pathways from an ancestor

as the number of mutational steps increases. There will exist a trade-off between how

4This distinction is similar to that between individual autocatalysis and collective catalysis in artificial
chemistry (Kauffman, 1993).
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Fittest

Mutants
(Seed Strains)

Lineage

Source 
Strain

Pick up

Next Step

Figure 4.11: Conceptual diagram of mutational analysis. (Note that this is a highly
conceptual sketch of the idea.) A source strain is set and its (first-step, single-point)
mutants are systematically generated. Then, each of these mutants is traced as a seed
strain. From a traced lineage (containing a seed strain and any generated strains), a
fittest strain is selected for the next step analysis. From each selected strain, as a source
strain, further-step mutants are systematically generated, and for them analysis is applied
in the same manner. In principle the process can be recursively extended to an indefinite
mutational depth.

deep in mutational pathways one can trace and analyse and how much one resorts to

prune from a spectrum of mutants at a certain mutational step. Generally, the larger the

size of strain and of instruction set, and the more kinds of mutation are enabled, the faster

the combinatorial explosion becomes. It is not clear how many generations to track down

in order to encounter interesting mutant strains either for the particular hand-designed

prototype ancestor, or in more general cases. This is why heuristics are required.

Mutational analysis has to be able to only look to candidates that are interesting by

some qualitative criteria; and to do so practically, it should be able to prune mutant strains

by some quantitative criteria. It is initially worthwhile to estimate how expensive it is

to screen candidates at one first mutational step. Investigation on quantitative pruning

criteria is an effective step to take next, so that more mutational steps can be covered

by analysis. The way to classify strains needs to be considered and explored further.

Additionally, for each incubated mutant, the analysis should be able to pick up which

strain expected to be generated in the lineage is the most interesting to trace further.

Nonetheless, the pruning criteria can be used for this as well. Naturally, such a mutational

analysis method has to have a reasonable way of strain classification as to candidates of

evolutionary significance and interest. For strains to be evolutionarily significant, they

must at least be viable, having potential for exponential growth of population, which

is one of factors for the neo-Darwinian evolution besides self-reproducer population and

mutational variation. On the other hand, for strains to be evolutionarily interesting in

relation to the current research problem, they must be identified as having some kind of von
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Neumann style self-reproduction architecture which has a genotype-phenotype mapping, or

something else other than a pure self-copying style. Again, this identification, as mentioned

in Section 3.5 in Chapter 3, is not straightforward to realise, and in fact is not going to

be resolved in this thesis.

Results generated by using the built-in, pre-existing analysis tool of Avida are discussed

in the next section. This is the initial step to create a framework of mutational analysis and

a preparation leading to the subsequent section covering the enhancement of the analysis.

In these sections, the first-step mutant strains of the prototype ancestor are focused upon.

Following that, the automation of the analysis is described, covering the multi-step mutant

analysis.

4.3 Avida Analyze Mode

The analyze mode is another mode of Avida, which provides various commands for study-

ing organisms observed in the Avida standard mode (as introduced in Chapter 3). In

this section, the original analyze mode is first explained, focusing on one relevant built-in

command called TRACE, followed by the analysis of the prototype’s mutants using this

mode. Then, limitations in the analysis using the built-in TRACE command are identified,

through which ideas for enhancement are spelt out.

4.3.1 Analyze Mode and the TRACE command

In the analyze mode, an experimenter can further study organisms obtained from stan-

dard Avida runs from a number of different aspects. Using provided commands, an ex-

perimenter would code a script in a file called analyze.cfg. Typically, “phenotypes” for

specified “genotypes” are analysed. This mode presumes that “genotype” and strain are

synonymous. In other words, for any seed strain input for analysis (i.e. a memory image,

or a sequence of words), an organism with that strain (i.e., a memory image coupled with

a virtual CPU) will be instantiated. This feature stems from the fact that the main pur-

pose of trace is to analyse strains obtained from organisms that are actually observed in

standard Avida experiments.

For viability research in the current study, an Avida command called TRACE is the

most relevant. The analysis with this command will be referred to as the TRACE analysis,

or simply as trace. Conducting the TRACE analysis with this command on some strain

will be tracing a strain or a lineage which a strain is expected to generate. In brief, this

command is used to trace a lineage of a given strain. Lineage here refers to a series of

distinct strains that the strain is deterministically expected to produce as an ancestor

under no perturbation. The starting strain will be referred to as a seed strain. A seed

strain may turn out to be self-reproducer, or other classes of producers involving other

distinct strains. As discussed in Section 4.2, patterns of lineages are diverse and will

naturally differ depending on the seed strain.

More specifically, what is analysed by tracing a strain with the original analyze

mode is a single branch of a lineage: that is, the analysis is a type of depth-first

analysis, and it is presumed that a parent strain will not change after division, hav-

ing one offspring. (This point is revisited and further discussed in Subsection 4.3.3.)
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Refer to Appendix F for the function for the TRACE command of the original algo-

rithm. In brief, the reproducibility for one organism of a given strain is analysed as

follows:

1: if organism of a given strain does not divide then

2: classify as non-dividing

3: else

4: if the offspring is identical to the parent (immediate ancestor) then

5: classify as direct self-reproducer5

6: else

7: if the offspring is identical to any of the ancestors then

8: classify as indirect self-reproducer6

9: else

10: classify as dividing (but not self-reproducer)

11: incubate the offspring recursively

12: end if

13: end if

14: end if

A single cycle of this algorithm is referred to as an incubation. At a given incubation,

an incubated organism can be classified as either non-dividing (at line 2), direct self-

reproducer (at line 5), indirect self-reproducer (at line 8), and dividing (but not self-

reproducer) (at line 10). A seed strain is an initially incubated strain, and as a result

of a trace (i.e. a series of incubations), it will be classified as either direct or indirect

infertile, direct or indirect self-reproducer, or fertile (but not self-reproducer). With this

algorithm, only if the organism of an incubated strain divides and the offspring is not

identical to any of ancestors, incubation occurs recursively. In practice, a cutoff time, or

a maximum window of time to wait, is set to determine if a strain is infertile (or, if an

organism divides or not). In order for a seed strain to be classified as some class that is

at least fertile, division must have taken place (i.e., the h-divide instruction must have

been executed, in the current context) before the cutoff time is reached; otherwise, the

analysis run terminates classifying the organism of the incubated strain as non-dividing,

and hence the seed strain as (direct or indirect) infertile.

Here, the word descendant is used for whatever strain is generated from a seed strain;

whereas the word ancestor for whatever strain from which a strain (directly or indirectly) is

produced, including a seed strain. In this algorithm, ancestors imply previously incubated

strains. The words parent and offspring are used to describe an immediate relationship

between strains after division. Thus, a parent is an immediate ancestor, and an offspring

an immediate descendant. (This parent-offspring relationship will be revisited later in

Subsection 4.3.3, which is relevant to the way this analysis traces a single branch of a

lineage.)

A trace continues as long as a distinct strain is produced, so a single trace would consist

5Notice that here, only simple self-reproducer strains (as opposed to collective self-reproducer strains)
are dealt with due to the way the analyze mode traces. This point will be revisited later in this section.

6Notice that the class of indirect self-reproducer that an incubation with this algorithm can classify
is a partial class of, and is not necessarily equal to, the class of indirect self-reproducer introduced in
Section 4.2. The relevance of this will be discussed later in this section.
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Figure 4.12: Schematic point-mutation spectrum generation of the prototype.

of incubations of a seed strain and its descendant strains. A trace starts with incubating

a seed strain, possibly classifying it as direct infertile or direct self-reproducer. If the seed

strain is classified as neither of these, the trace continues incubations of descendant strains

recursively, until an incubated strain turns out to be either infertile (thus concluding the

seed strain is indirect infertile) or self-reproducing (thus concluding the seed strain is direct

self-reproducer or indirect self-reproducer, either of which is fertile). In practice, a depth

limit, or a maximum number of incubations, needs to be set for a single trace. If the depth

limit is reached, the seed strain is classified merely as fertile. In this analyze mode, seed

strains that are classified as self-reproducer (whether direct or indirect) are called viable

(i.e., it is a subset of what is qualitatively defined as in Section 4.2).

For each use of the TRACE command of a seed strain, a trace file (see Subsection 3.4.2

in Chapter 3) is generated. A trace file contains full step-by-step CPU state transitions

for distinct strains encountered in a trace of a seed strain. See Appendix C for the original

format of this type of file.

4.3.2 Analyze Mode’s Analysis of First-step Mutants

To evaluate the analysis performed by the TRACE command of the analyze mode, the

prototype’s first-step mutants were analysed.

Here, first-step mutants mean mutants of the prototype possibly obtained through a

single point-mutation. First-step mutants of the prototype were systematically enumer-

ated. The strains of these mutants were obtained from the prototype’s initial memory

image by sequentially replacing a word value in each memory location of the genome with

each of the other possible word values and by expressing this change in a corresponding

phenome. As the prototype size is 644 (the genome size being 322) and as the instruction

set size is 28 (alternative words for each memory location being 27 = 28 − 1), there are

a total of 8694 (= 322× 27) possible one-point mutants (see Figure 4.12 for a conceptual

schematic).

This size of the spectrum (8694) is a much more tractable size of space than the entire

space of possible strains (
∑L

l=1w
l, where w denotes the number of the possible word values

in the current setting (= 28), l the strain length, and L the maximum strain length allowed

in Avida, not explicitly limited), or the subspace of the strains with the same length as the

prototype (28644, the number of the possible word values to the power of the prototype’s
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Class Mutants

Self-Reproducer
Direct 892 (10%)

Indirect 1 ( 0%)

Infertile
Direct 5214 (60%)

Indirect 2587 (30%)

Total 8694

Table 4.1: Mutant classification using the original analyze mode based solely on the trace
on a single branch of each lineage.

length).

For this specific study (and for the subsequent studies in the current chapter), the cutoff

time is set to twice as long as the prototype’s gestation time (i.e. 104436 = 2×52218). This

setting is reasonable considering the fact that the candidates can have varied gestation

times. It is possible that, with a longer runtime, organisms that are classified as non-

dividing might be reclassified as dividing; they are, however, unlikely to be selectively

favoured over the original prototype ancestor in the Avida system, where fitness hinges

on reproduction rate, hence gestation time. On the grounds of this, one can discard these

as non-dividing organisms.

After a few preparatory experiments with the mutants being seed strains, it turned out

that the depth limit= 5 was sufficient for these 8694 mutants, except that, for 2 strains,

a depth limit= 381 was required. So, within this analysis which considers only a single

branch of lineage, there were no seed strain that is unclassified due to the depth limit. See

Table 4.1 for mutant classification based only on the trace on a single branch of lineage.

The majority (90%) of the mutants turned out to be direct or indirect infertile. It is

noticeable that there is 1 indirect self-reproducer mutant. In the analysis, this is classified

as dividing at the first incubation, then as direct self-reproducer at the second incubation.

So, this “indirect self-reproducer” does not correspond to the indirect self-reproducer class

classified within a single cycle of incubation (line 8 in the above algorithm), but rather to

the class classified based on the logical classification introduced in Section 4.2.

4.3.3 Analyze Mode’s Assumption Revisited

As introduced in the previous subsection, the TRACE command is a tool which the analyze

mode provides for viability analysis, but the analysis is somewhat coarse-grained. This is

the reason why the classification based on this original analyze mode is unsatisfactory. If

an offspring is determined to be identical to the initial memory image of the parent, the

parent strain is classified automatically as self-reproducing, regardless of whether the par-

ent itself changes or not. Under the scheme where only a single branch of lineage is traced,

even a truly viable organism could be erroneously classified as non-viable. Moreover, as

classification of self-reproducer strains is based on comparison of strains of a single branch

of lineage, production patterns of strains that can be captured is not satisfactorily precise.

One underlying assumption highlighted in the use of the analyze mode is that any

parent organism which divides, has its final state and one child (i.e. one parent and one

child after division). The same phenomenon, conversely, can also be viewed as having two
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offspring.

Both views appear to be legitimate in the Avida literature. For example, on the one

hand it is stated (Ofria & Wilke, 2004, pp.199-200):

In most natural asexual organisms, the process of division results in organisms

literally splitting in half, effectively creating two offspring. Thus, the default

behaviour of Avida is to reset the state of the parent’s CPU after the divide,

turning it back into the state it was in when it was first born. In other words, all

registers and stacks are cleared, and all heads are positioned at the beginning

of the memory.

On the other hand, in the illustration of the memory allocation and division cycle, referred

to from that paragraph, they also state: “The h-alloc command extends the memory, so

that the program of the child organism can be stored. Later, on h-divide, the program is

split into two parts, one of which turns into the child organism.”

The Avida documentation7 describes division as something configurable. There is an

explanation about it found in a section on how a child is divided as follows:

After a divide, we mark that we no longer have a mal (Memory ALlocation)

active. If the parent is reset (i.e., we have two offspring, not a parent and

child) we need to make sure not to advance the IP of the parent. The reset

parent has its IP placed at the beginning of its genome, and we want to leave

it there to execute the very first instruction.

Finally, we tell the organism to activate the divide and do something with the

child. Give the child to the population (or the test CPU as the case may be)

to be dealt with, and reset the parent if we’re splitting into two offspring.

As described in the documentation, there is a variable in the Avida main configuration

file for divide, which offers several options regarding the divide method including one

where “divide resets state of mother (after the divide, we have 2 children).”

At the source code level, in the definition of the class representing an Avidian organism,

there are variables for the initial memory image, the final memory image, and the child

memory image; and the pair of the final state and the child state can be regarded and

treated as two offspring. However, the way the analyze mode is implemented, does not

regard or treat an organism as having two equivalent offspring (i.e., one of the offspring

is closely associated with the parent, while the other is not). In other words, the initial

memory image is assumed not to change, and as a result, incubation of trace is applied

only to the child memory image (as an initial memory image for a next incubation) and

not to the final memory image also. Even if the option is selected in the configuration for

an organism to have two offspring virtually, the hardwired structure in the trace does not

support the idea.

Although there is a conspicuous view that after division there are two offspring in

Avida, the analyze mode is designed based on an underlying view that a parent has its

final state and one offspring, where the final state of the parent is not regarded or treated as

7In “4. Dividing off the Child” in “Guide to an Avidian Life Cycle” (2006). This is a part of the
documentation included in the package of the version 2.10.0 of Avida. The same text as quoted here can
be found at: https://github.com/devosoft/avida/wiki/Development-%7C-Tutorial-%7C-Life-Cycle.
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another offspring. This discrepancy appears to be a kind of double standard. In effect, the

analyze mode assumption that a parent remains the same and that there is one offspring

and that tracing the offspring suffices even when a parent is regarded as dividing into

two offspring seems to be the reason for the peculiar way of tracing a single branch of

lineage. The analyze mode, too, should hold the view that a parent may change and that

thus division makes two equivalent offspring (as opposed to what used to be called a final

memory image and a child memory image) and should be able to incubate both offspring

and trace both branches of any lineage.

Generally speaking, it is perfectly possible that the offspring that is previously the

final state of the parent (the parent after division) may be somehow different from the

(initial) parent and thus is worth tracing further. The current study adopts the point of

view that “after division there are two offspring”, based on which the analyze mode was

modified. This modification will be discussed in Section 4.4.

Though less relevantly, the original analyze mode’s assumption that a parent (initial

memory image) will remain the same after division also implies that a parent will not

change in size after division either. It is now assumed, to the contrary, that either offspring

may be shorter or longer. In the current condition, this depends on the positions of the

read head and the write head at division, because the h-divide instruction is the only

instruction available that is capable of triggering division and it references the positions

of the read head and the write head to determine the memory image of an offspring (and

indirectly the new memory image of the “parent”) (see Subsection 3.3.3 in Chapter 3).

By default in the setting used in Chapter 3, an offspring is allowed to be up to twice as

long as the parent, and the execution of the instruction for dividing off an offspring will

discard whatever memory image is left after the write head. Thus in fact, the parent may

also be longer or shorter than the original, too, depending on the position of the read head

at division.

Reclassification: Considering Untraced Lineages

The analysis with the analyze mode was based only on a single branch of each lineage.

Therefore, in the sense that it is disregarding untraced branches of lineages (or, untraced

lineages), this classification is incomplete. Those with untraced branches of lineages should

be correctly regarded as unclassified here. Simple direct infertile and simple direct self-

reproducer can be considered as fully traced, as it can be classified straightforwardly.

Conceivably, some of those strains previously classified as direct or indirect self-

reproducer seed strains may be with untraced lineages and require further analysis for

a more precise classification. Similarly, some of those previously classified as indirect in-

fertile seed strains may have untraced lineages and require further analysis. This infertile

group of mutants has to be reconsidered in particular because, for those classified as in-

fertile (whether direct or indirect), there may be some that are incorrectly classified not

only as infertile but also as not viable.

One could analyse and classify first-division patterns manually to find somewhat more

mutants of “fully traced” lineages, but the problem situation does not change because

there are mutants having longer and larger lineages. Naturally, the more distinct strains

are involved within a lineage, the more difficult to analyse the pattern and classify the seed

97



4.3. AVIDA ANALYZE MODE

Class Mutants

Viable 871 (10%)

Non-Viable 5214 (60%)

Unclassified 2609 (30%)

Total 8694

Table 4.2: Mutant classification by viability considering untraced lineages. Simple direct
self-reproducer and simple direct infertile are considered as having fully traced lineages,
whereas other classes are regarded as having untraced lineages, hence unclassified.

strain by viability. So manual classification is not a focus in the current study. That said,

only simple direct infertile strains and simple direct self-reproducer strains are manually

picked out here, since they are ones that are easier to classify and whose evolutionary

significance is obvious. To say the least, simple direct infertile strains are not viable,

and simple direct self-reproducer strains are viable. See Table 4.2 for a new classification

reflecting this consideration of untraced lineages.

It is apparent that the majority of the mutants does not reproduce anything, hence

has no evolutionary future (i.e., the non-viable 60% versus the viable 10%), while there

still remains as many as 30% of unclassifiable mutants. These unclassifiable mutants are

not negligible candidates, since one can not know a priori how frequently they are viable

or even fertile. The classification should be automated as well as systematic, ideally even

applicable to different sets of candidates.

Limitations: Unclassified Patterns

To emphasise the problem situation, the limitation of the current analysis tool surfaces

when it encounters either cases where (a) both of the two offspring that a parent produces

are non-identical from the parent and from each other, or where (b) one of the two offspring

is identical to the parent but the other is non-identical. As identified above, the built-in

analysis tool assumes that tracing one of them suffices to analyse the lineage in effect,

whether an act of division produces two identical offspring or not. Again, when the built-

in analysis tool searches for descendant generations further down, what it recursively

incubates for tracking is only one of the two offspring that is arbitrarily labelled as being

divided off from the parent.

Consider, for example, an organism producing one infertile offspring and one fertile

offspring in a deterministic environment without mutation. If the fertile offspring produces

a self-reproducer offspring, the original organism should be classified as (indirect) self-

reproducer in that it exhibits the lineage with a self-reproducer. However, if the analysis

tool is set to trace one of the offspring at the first division, which happens to be infertile,

then the other offspring, which happens to produce a self-reproducing offspring, is not

further traced, and the original organism ends up being classified as “non-viable”. This

is not a proper viability classification because self-reproducers may be viable, with an

evolutionary potential. In other words, for some candidates which start out producing two

different offspring, only a subset of (or rather, a “branch” of) the whole expected lineage

is revealed through the analysis tool; therefore, viability analysis cannot be guaranteed.
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In sum, the analyze mode’s analysis proceeds with the incubation time limit as well

as with the recursion limit (i.e., how many generations per lineage to track down). In

addition, there is the limitation due to the coarse-grained analysis pointed out above.

Because of these limits, not all of the candidates have been properly analysed for (or

classified by) viability, but rather for strain fertility (or organism dividability), although

the majority of the candidates analysed turned out to be classified as simple direct infertile,

hence non-viable.

4.4 Enhancement of the Analyze Mode

On the basis of the understanding of the analysis using the original analyze mode de-

scribed in Section 4.3, an enhanced analysis method is proposed, and an implementation

of enhanced analysis and its application to first-step mutants of the prototype are demon-

strated. In doing so, a feasible scale of analysis is considered, as the enhanced analysis tool

will now need to be able to handle potentially more numerous strains than the original

analysis. With this being a pilot study, the plausibility of systematic multi-step mutation

analysis is also considered.

The existence of the still unclassified candidates with untraced lineages highlighted the

fact that there is a subtlety in the concept of viability. Specifically, the original analysis

tool turns out to be only capable of revealing a single possible lineage pathway that a strain

is expected to exhibit. To recapitulate, it traces only one (arbitrarily pre-determined as

a “child”) of the two offspring at each division, whereas the sub-lineage extending from

the other offspring is not further traced. In this sense the viability analysis with it is not

complete or comprehensive. It is therefore necessary to enhance the existing classification

of candidates, in a systematic (and automated) way based on viability (and eventually,

towards a way based on the reproduction mode) in the current system.

First and foremost, a function for the TRACE command was to be modified so that it

allows the (breadth-first) creation of the lineage pathways, and the tracing of the lineage,

for a given individual organism. Here, the idea is to represent lineage pathways using

reproductive relationships among strains as production graphs, since analysis of matrices

of production rates will provide more quantitative insights about dynamics of lineages (or

networks of strains) represented by graphs.

4.4.1 Quantifying Viability

In this subsection, viability is defined quantitively. More specifically, viability is quantified

on the basis of analysis of eigenvalues/eigenvectors of production rate matrices. First of

all, to define production rate matrices, let a node denote a distinct strain, a directed edge a

(re-)production, and an edge weight the production rate. Structures of production graphs,

which are directed graphs, were already introduced in Section 4.2. Here, production rates,

represented as edge weights in production graphs, are also introduced, and production

graphs are now weighted directed graphs. In brief, a production graph represents a network

of strains that produce one another. Distinct nodes represent distinct strains. Directed

edges represent acts of production linking nodes of a strain that produces and of another

strain that is produced. Weights of edges are production rates that are determined by
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gestation time. As an organism either has 0 or 2 offspring in Avida, a node either has 0 or

1 edges going out from itself, depending on whether the organism of the strain divides and

produces another or not. Simply put, a network of strains is represented by a production

graph, and by a matrix of production rates, with each element denoting a rate for an

organism of a strain (corresponding a node) to produce another.

If in a production graph (or any subgraph) all the rates are the same and all the

nodes have two edges coming in, then the lineage that the graph represents is expected

to give rise to exponential growth of population (e.g., immediate self-reproducing strains

like the standard Avida self-copiers and the von Neumann style prototype). If not, by

quantitatively analysing production graphs, one can still gain insight into the population

growth and hence analyse the viability.

The term viability is now to be used in a subtle but practical sense, meaning the

potential for exponential growth which is a characteristic of self-reproducer, distinguishable

from other types of population growth8. Under the enhanced analysis proposed in this

chapter, a strain is viable if there is at least one strain that grows exponentially in its

expected lineage.

Eigenvalues and eigenvectors of a production rate matrix indicate the population

growth of the strains which is defined as a function of time. These can be used in order to

distinguish distinct strains which will potentially give rise to exponential growth. In sum-

mary, eigenvalues and eigenvectors are solutions of dynamical systems of population when

population growth is expressed as exponential. Particularly, eigenvalues are coefficients

of the power of exponential functions (representing how population grows in terms of an

exponential function), and corresponding eigenvectors represent proportions of the pop-

ulation of distinct strains involved. Eigenvalues can be complex numbers in general, but

any imaginary part is associated with such population growth as oscillation, and it is not

to be further considered in the current research. This is because, qualitatively speaking,

oscillation is indicative of a “cyclic” kind of population dynamics. Such dynamics would

entail a negative proportion of at least one subpopulation (i.e. at least one component of

an eigenvector with a different sign), and such proportions of subpopulations would not be

actually realised in Avida. Eigenvectors representing such proportions of subpopulations

can reasonably be regarded as invalid in Avida (and in practice, of eigenvalues with valid

corresponding eigenvectors, only real eigenvalues were encountered, as explained later).

Analytically, a positive real eigenvalue is of interest, because it implies viability as the

magnitude of exponential growth. The higher this value is, the faster the production rate,

and vice versa. If there are multiple such eigenvalues from a production rate matrix, these

correspond to multiple exponentially growing strains within a dynamical system. Among

such eigenvalues (i.e. sets of strains), the biggest eigenvalue (i.e. the fittest set of strains)

is expected to displace others in the neo-Darwinian evolution.

Before moving on to illustrations using hypothetical examples of production graphs

(not yet corresponding to any specific cases encountered empirically in Avida), note that

this quantitative analysis applies continuous approximation on the discrete system of in-

dividuals. In other words, this method assumes that population dynamics can be repre-

8For example, there can be constant, linear growth, polynomial growth, exponential decay, oscillation,
etc. (See Szathmáry & Maynard Smith, 1997, for several types of population growth other than exponential,
which is the type dealt with in this chapter.)
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sented as a system of differential equations. Also, this approximation is deterministic as

well (just as much as the analyze mode is deterministic), in the sense that it abstracts ini-

tial condition, and stochastic and spatial effects likewise (which can be observed in normal

evolutionary Avida runs). This type of approximation using algebraic tools is justifiable

on the grounds of principles given by: Maynard-Smith et al. (1989); Hirsch et al. (2004);

Nowak (2006); Jain & Krishna (2006).

In preparation for subsequent examples, let rn denote the production rate of a strain

sn. Let N be the size of a particular production graph, or the number of distinct strains

involved. s0 is a seed strain, and s1..sN−1 are descendant strains generated from s0.

Assume a rate represented by r is positive real value, unless explicitly specified to be

0. Let λ denote a general eigenvalue and v a general eigenvector. So λ1, λ2, ..., λN

are eigenvalues, and v1, v2, ..., vN corresponding eigenvectors. By definition, there can

be as many eigenvalues as, or fewer than (in cases of repeated eigenvalues), the number

of distinct strains in a lineage (N) (which translates as the dimension of the dynamical

system); and eigenvectors, which are non-zero vectors, are as many as, or fewer than (in

cases of linearly dependent eigenvectors), the number of eigenvalues.

Lineages consisting of a single strain (i.e. production graphs involving a single strain),

correspond to 1 × 1 production rate matrices. Naturally, lineages consisting of multiple

distinct strains, hence production graphs involving multiple nodes, correspond to produc-

tion rate matrices larger than 1 × 1. In analyses of such production rate matrices, when

there are multiple eigenvalues, the maximum of the positive real parts of these eigenvalues

is of particular interest as mentioned. This indication is valid only if the components of

the corresponding eigenvector have the same signs (irrespective of zeros), since population

of any strain must be natural numbers (i.e. non-negative) in order to be valid in the actual

Avida world.

Example 1: Simple Direct Strains

The case of the simple direct self-reproducer strain is the most relevant and straightfor-

ward, which serves as the basis of this analysis. See Figure 4.13a for the production graph

of a simple direct self-reproducer strain. The production rate matrix of this is represented

as a 1 × 1 matrix A =
[
r0

]
. For this, the eigenvalue is λ1 = r0, and the corresponding

eigenvector is v1 = k
[

1
]
, where k is a non-zero arbitrary constant.

The population growth of this type of strain (as a seed strain), when written as an

exponential function over time, has the eigenvalue as a coefficient, which is the production

rate. Therefore, the population growth naturally hinges on the production rate in such a

strain. The eigenvector, in this case, signifies the axis corresponding to this (seed) strain’s

population, along which the total population grows.

A special case of the above, where r0 = 0, corresponds to a simple direct infertile

strain. See Figure 4.13b for the production graph. This is represented as a 1 × 1 matrix

A =
[

0
]
. Accordingly, the eigenvalue is λ1 = 0, and the corresponding eigenvector is

v1 = k
[

1
]
, where k is an arbitrary scalar. Now, the eigenvalue is 0, so the population

growth of this type of strain, when written as an exponential function over time, has the

coefficient of 0; that is, the population stays constant. This type of strain, no matter how

many of them might be seeded, does not give rise to a growing population, but a constant

101



4.4. ENHANCEMENT OF THE ANALYZE MODE

s0 r0r0

(a) A simple direct self-reproducer
strain production graph.

s0r0 r0

(b) A simple direct infertile strain
production graph.

Figure 4.13: Production graphs of a simple direct infertile strain and a simple direct self-
reproducer strain. Throughout the discussion, it is assumed r0 ≥ 0. Subfigure 4.13b is a
special case of Subfigure 4.13a where r0 = 0.

s0 s1

r0

r0

(a) A pathological constructor
strain production graph.

s0 s1

r0

r0

(b) An indirect infertile (with
two arrows leaving s0) production
graph.

s0

s1

s2

r0

r0

(c) An indirect infertile (with one
arrow leaving s0, leading to two in-
fertile strains) production graph.

Figure 4.14: Production graphs of indirect simple infertile strains.

population.

Example 2: Indirect Simple Infertile Strains

Next to a simple direct self-reproducer, a pathological constructor is straightforward to

consider. See Figure 4.14a for the production graph. The production rate matrix of a

pathological constructor strain can be represented as a 2× 2 matrix A =

[
0 0

r0 0

]
.

For this, the two eigenvalues are repeated: λ1 = λ2 = 0. As λ1 = λ2, naturally,

the corresponding eigenvectors are linearly dependent: v1 = v2 = k

[
0

1

]
, where k is a

non-zero arbitrary constant.

The population growth of this type of strain, like the infertile strain demonstrated

above, is not exponential, but zero, when seeded with the strain s1 (corresponding to

the second component of the eigenvector, which is a non-zero value). This is what this

quantitative analysis can verify. Qualitatively, however, it is known that this type of strain

may have an impact on a finite population (as mentioned in Section 4.2) as an organism

of the strain s0 constantly produces organisms of the infertile strain s1.

Now examples of indirect infertile, somewhat similar to pathological constructor, are

considered. Production graphs are shown in Figures 4.14b and 4.14c. The production

rate matrix of the production graph of Figure 4.14b, where two offspring are identical

but distinct from the parent that is the seed strain, is represented as a 2 × 2 matrix
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A =

[
−r0 0

2r0 0

]
, eigenvalues: λ1 = 0, λ2 = −r0; eigenvectors: v1 = k1

[
0

1

]
, where k1 is

a non-zero arbitrary constant. v2 = k2

[
1

−2

]
, where k2 is a non-zero arbitrary constant.

The eigenvalue λ1 and the corresponding eigenvector v1 indicate that with the strain

s1 (corresponding to the second component of the eigenvector v1, the value of which is

1), and without the strain s0 (corresponding to the first component of the eigenvector v1,

the value of which is 0), the total population stays constant. The eigenvalue λ2 and the

corresponding eigenvector v2 indicate something that cannot be actually realised in Avida:

the eigenvector v2 has components of different signs, indicating an impossible proportion

of the strains seeded (i.e., s0:s1 = 1 : −2) that can lead to the total population growth to

be exponential decay as indicated by the negative eigenvalue λ2 = −r0, where population

of one of the seeded strains would have to be negative.

Likewise, the production rate matrix of the production graph of Figure 4.14c, where

two offspring are not identical and both are distinct from the parent that is the seed

strain, is represented as a 3 × 3 matrix A =


−r0 0 0

r0 0 0

r0 0 0

. For this, eigenvalues are:

λ1 = λ2 = 0; λ3 = −r0. The corresponding eigenvectors are: v1 = v2 =


0

l

m

, where

l and m are non-zero arbitrary constants; and v3 = k


1

−1

−1

, where k is a non-zero

arbitrary constant.

The eigenvalues λ1 = λ2, and the corresponding eigenvectors v1 = v2, indicate that

there are two infertile strains (i.e. s1 and s2, which do not contribute to population

growth). These eigenvectors indicate that with the arbitrary proportion of these strains,

the total population growth indicated by these eigenvalues (i.e. constant) is realised. The

eigenvalue λ3 and the corresponding eigenvector v3 are not to be further considered, for

the same reason as the above.

Example 3: Indirect Simple Self-Reproducer Strains

Next, two examples of indirect simple self-reproducer are considered. The production

rate matrix of an indirect simple self-reproducer strain shown in Figure 4.15a, where one

offspring is identical to the parent and another offspring is distinct from them and is a

self-reproducer strain, is represented as a 2× 2 matrix A =

[
0 0

r0 r1

]
.

The two eigenvalues are: λ1 = 0, λ2 = r1. The corresponding eigenvectors are:

v1 = k1

[
r1

−r0

]
, where k1 is a non-zero arbitrary component; and v2 = k2

[
0

1

]
, where

k2 is a non-zero arbitrary component.

The eigenvalue λ1 and the corresponding v1 are not considered, as Avida cannot realise

the population growth indicated by them. As for the eigenvalue λ2 and the corresponding

v2, it is indicated that the strain s1 (represented by the second component of the eigen-
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s0 s1

r0

r0

r1

r1

(a) An indirect simple self-
reproducer strain (with one arrow
leaving, another looping back to,
s0) production graph.

s0 s1

r0

r0

r1

r1

(b) An indirect simple self-
reproducer strain (with two arrow
leaving s0) production graph.

Figure 4.15: Production graphs of indirect simple self-reproducer strains.

vector v2) is a self-reproducer exhibiting exponential growth with the rate r1 (represented

by the eigenvalue λ2).

Likewise, the production rate matrix of an indirect simple self-reproducer strain shown

in Figure 4.15b, where two offspring are identical and distinct from the parent and are a

self-reproducer strain, is represented as a 2× 2 matrix A =

[
−r0 0

2r0 r1

]
.

The two eigenvalues of this are: λ1 = −r0; λ2 = r1. The corresponding eigenvectors

are: v1 = k1

[
r0 + r1

−2r0

]
, where k1 is a non-zero arbitrary component; and v2 = k2

[
0

1

]
,

where k2 is a non-zero arbitrary component.

Again, the eigenvalue λ1 and the corresponding v1 are not considered, as Avida cannot

realise the population growth indicated by them (i.e., as both r0 and r1 are positive, one

of the components of v1 is necessarily negative). On the contrary, the eigenvalue λ2 and

the corresponding v2 indicate that with the strain s1 in the absence of the strain s0 (i.e.

s0:s1 = 0 : 1), the population would exponentially growth at the rate of r1 (indicated by

the eigenvalue).

Example 4: Collective Self-Reproducer Strains

Lastly, four examples of collective self-reproducer are considered.

The production rate matrix of a collective self-reproducer strain is shown in Fig-

ure 4.16a, where one offspring is identical to the parent and another offspring is distinct

from them, and where the distinct offspring likewise produces one offspring identical to

itself and another offspring that is identical to the seed strain, is represented as a 2 × 2

matrix A =

[
0 r1

r0 0

]
.

The eigenvalues are: λ1 = +
√
r0r1; λ2 = −√r0r1. The corresponding eigenvectors are:

v1 =

[ √
r1
√
r0

]
; v2 =

[ √
r1

−√r0

]
.

What this quantitative analysis of eigenvalues and eigenvectors shows is that with the

proportion s0:s1=
√
r1 :
√
r0, the total population growth is exponential with the rate of

+
√
r0r1. If r0 = r1, the exponential growth rate is r0 and the proportion of strains in pop-

ulation that realises it is s0:s1=1 : 1. The eigenvalue λ2 and the corresponding eigenvector

v2 indicates exponential decay, but with an illegitimate proportion of subpopulations of

strains.

The production rate matrix of a collective self-reproducer strain shown in Figure 4.16b,
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s0 s1

r0
r0

r1
r1

(a) A 2-strain collective self-
reproducer strain (with one arrow
leaving, another looping back to,
s0) production graph.

s0 s1

r0

r0

r1

r1

(b) A 2-strain collective self-
reproducer strain (with two arrows
s0) production graph.

s0

s1

s2

r0 r0

r1

r1

r2

r2

(c) A 3-strain collective self-
reproducer strain (with one arrow
leaving, another looping back to,
s0) production graph.

s0

s1

s2

r0

r0

r1 r1

r2

r2

(d) A 3-strain collective self-
reproducer strain (with two arrows
s0) production graph.

Figure 4.16: Production graphs of collective direct self-reproducer strains.

where two offspring are identical and distinct from the parent and their produced offspring

are identical to the seed strain, is represented as a 2× 2 matrix A =

[
−r0 2r1

2r0 −r1

]
.

The general eigenvalue λ is given as the solutions of: (λ + r0)(λ + r1) − 4r0r1, and

the corresponding eigenvector v is given in the form of: v = k

[
λ+ r1

2r0

]
, where k is a

non-zero arbitrary component.

For simpler forms of solutions, suppose r0 = r1, then the eigenvalues are: λ1 = r0;

λ2 = −3r0. The corresponding eigenvectors are: v1 = k1

[
1

1

]
, where k1 is a non-zero

arbitrary component; and v2 = k2

[
1

−1

]
, where k2 is a non-zero arbitrary component.

The eigenvector v1 together with the corresponding eigenvalue λ1’s real part implies

that a population of the strains represented by those two components (i.e., the strains

s0 and s1 in the graph) will grow exponentially in a collective way. The eigenvector

v2’s components have different signs, indicating an illegitimate proportion of strains in

population s0 : s1=1 : −1(=−1 : 1). In a hypothetical situation where that proportion

is realised, the population growth would exhibit exponential decay, as indicated by the

eigenvalue λ2.

The production rate matrix of a collective self-reproducer strain shown in Figure 4.16c,

involving three distinct strains, where each mutually produces one identical, one non-

identical offspring, is represented as a 3×3 matrix A =


0 0 r2

r0 0 0

0 r1 0

. There is only one
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real eigenvalue: λ1 = 3
√
r0r1r2. The corresponding eigenvector is: v1 =


r0r1r2

r0λ
2

r0r1λ

.

For simpler forms of solutions, suppose r0 = r1 = r2 then the eigenvalue is: λ1 = r0.

The corresponding eigenvector is: v1 =


1

1

1

.

In this case, if these three strains have the same production rate (r0 = r1 = r2),

the total population growth, where the three strains exist equally (with the proportion

s0 : s1 : s2 = 1 : 1 : 1), is exponential with rate of r0.

The production rate matrix of a collective self-reproducer strain shown in Figure 4.16a,

involving three distinct strains, where each mutually produces two offspring not identical

to itself, is represented as a 3×3 matrix A =


−r0 0 2r2

2r0 −r1 0

0 2r1 −r2

. The general eigenvalue

λ is the solutions of: (λ+ r0)(λ+ r1)(λ+ r2)− 8r0r1r2, and the corresponding eigenvector

v is given in the form of: v = k


2r2(λ+ r1)

(λ+ r0)(λ+ r1)

4r0r2

, where k is a non-zero arbitrary

constant.

For simpler forms of solutions, suppose r0 = r1 = r2, then the real eigenvalue is:

λ1 = r0. The corresponding eigenvector is: v1 = k1


1

1

1

, where k1 is a non-zero arbitrary

constant.

In this case, too, if these three strains have the same production rate (r0 = r1 = r2),

the total population growth, where the three strains exist equally (with the proportion

s0 : s1 : s2 = 1 : 1 : 1), is exponential with rate of r0.

In practice, individual self-reproducers (i.e. simple direct self-reproducer strains) are

searched for in the current analysis. Theoretically, collective exponential growth as op-

posed to individual exponential growth can take place, and it is not algorithmically difficult

to detect collective exponential growth (i.e., a positive real eigenvalue associated with a

valid eigenvector with more than 1 components, as shown so far). However, this type

of reproducers (if there appears any) are not in the scope of this enhanced analysis as

retained for further analysis and investigation. This is because it is not as straightforward

to computationally define a “collective self” (comprised of multiple strains) as to define a

“individual self”, and therefore it is unclear yet how to classify such collective reproduc-

tion by such a self of multiple strains, much less defining “collective von Neumann style

self-reproduction”.

4.4.2 Modifying the Analyze Mode

For the creation of a production rate matrix and the tracing of a network of strains which a

production rate matrix represents, a mechanism to store not only memory image but also

strain relationships was accordingly implemented for the TRACE command. The original

analyze mode adopted a depth-first trace (or more strictly, a first move of a depth-first
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trace), due to which there was both a depth (or recursion) limit and a maximum number of

distinct strains to be configured. As opposed to it, the (newly implemented) breadth-first

trace only requires a maximum number of distinct strains. Refer to Appendix F for the

modified algorithm.

More specifically, a struct was added to help maintain strain statuses such as: whether

it is incubated; whether it divides; and if it does, which strains are its offspring. A queue

structure was made use of in order to implement the breadth-first tree creation and trace

which the new analysis intended to achieve. This queue manages the incubation of strains.

Whenever a strain is instantiated, an organism corresponding to it is instantiated as well.

Strains and organisms are corresponding, but are treated separately (i.e. different classes)

because, as mentioned, each strain is technically embodied as an organism in the analyze

mode.

All the steps in the original code for the environment input/output and external fitness,

and those for unused “phenotype” attributes are basically left unmodified. These are

generally relevant in the normal mode of Avida, but are not used or relevant in the

current context. For example, mutation rates are irrelevant (i.e., no stochastic mutation is

to be considered in the analyze mode) and are left unmodified; whereas gestation time is

relevant, so it is handled and gets assigned a valid value in the process. The code proposed

in this chapter will not be affected under a condition where environment input/output or

external fitness are used.

In the process, offspring with distinct strains get incubated and traced (i.e., to be

marked as fertile or infertile). Whether a strain is distinct or not is determined by testing

for equality of memory images against all previously found distinct strains. If the strain

is confirmed to be unseen, it is determined as a distinct strain and registered as already

seen.

To illustrate conceptually, as an individual organism, an offspring is added to a pro-

duction tree of individual organisms (i.e., without tracing individual organisms of known

strains); whereas, as a strain, it is added to a production graph of strains. The produc-

tion graph structure can be created by following offspring strains of each, which plays an

important role in viability quantification discussed earlier.

The pseudocode for this modified algorithm is as follows.

while queue is not empty do

dequeue

incubate the strain

if strain does not divide then

mark as not divided

mark as having no offspring

else

mark as divided

test the first offspring against each of already seen distinct strains to decide whether

the first offspring is unseen

if the first offspring is unseen then

mark the parent as having this as a first offspring

instantiate and add in the array of distinct strains/organisms

107



4.4. ENHANCEMENT OF THE ANALYZE MODE

enqueue

end if

if the second offspring is unseen then

mark the parent as having this as a second offspring

instantiate and add in the array of distinct strains/organisms

enqueue

end if

end if

end while

Last but not least, to reduce the load of information output, the format of a trace

file was modified as well so that it does not contain all the snapshots of the incubated

organism’s virtual CPU state as in the original version, except for memory images of a

parent and of a first offspring and a second offspring (previously referred to as initial,

final, and child) for each incubated strain (see Appendix C). At the end of the trace file in

the new format was added the production graph represented as a list of strains. A strain

in this list is represented as a 7-tuple denoting index, size, incubation, division, gestation

time, first offspring index, and second offspring index.

4.4.3 Preparation: Estimating a Tractable Analysis Scale

Before applying the enhanced analysis proposed above to the first-step mutants, a tractable

scale of analysis needed to be estimated. This was motivated by the fact that tracing full

lineages of all encountered distinct strains generated from mutants may not be feasible.

The number of distinct strains encountered using the original analyze mode was relatively

small (which was 380 per lineage maximum), because trace was applied on a single branch

of lineage. Now, however, trace is to be applied on full lineages, each of which may

potentially contain more than one such branch, hence more distinct strains. The word

tractable is used here to mean feasible, or more concretely,“traceable” in terms of the

maximum number of distinct strains to be traced, or size of lineage to be traced.

In order to estimate a tractable scale, different values for the maximum number of

distinct strains that can be stored per incubation were tried. It turned out that, even

when relaxing the maximum number of distinct strains up to 37500 (which is rather

arbitrarily determined), 13 mutants were found to be still remaining indeterminate. Being

indeterminate with this analysis means that the lineages are not closed when represented

as a production graph and the evolutionary potential cannot be fully determined. In other

words, indeterminate strains generate indefinitely large production graphs, hence too many

distinct strains. (In comparison to indeterminate, unclassified was used in Section 4.3 to

refer to strains that have untraced lineages, which implied that those lineages are likely

to be closed.) One might instead treat the strains on the edge of the lineage as if they are

all infertile and non-viable, but here they are simply distinguished as indeterminate.

From the analysis with the maximum number of distinct strains being set 37500, the

number of distinct strains generated per mutant strain analysed is distributed as shown

in Figure 4.17. For the remaining indeterminate 13, a greater value of 50000 as the

maximum number of distinct strains was tried separately, but they turned out to be still

indeterminate. Though these mutants may be of interest evolutionarily at least, and might
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usefully be the subject of additional investigation, they are considered as outside of the

scope of the current study.

Runtime Estimation

Now, runtime of the enhanced analysis is considered and estimated in order to determine a

reasonable maximum number of distinct strains per lineage. With the maximum number

of distinct strains being 37500, the actual analysis runtime was approximately 5 hours

in order for the modified Avida analyze mode to produce the whole trace files for one

mutational step on the hardware platform used.9 The total strains incubated during the

trace amounted to 518,811. Using those figures, it can be estimated that the analysis

runtime per incubation is 0.034 [sec.].

The estimated number of incubations within 10 hours (= 36000 seconds) will be

1,058,824 (≈ 36000 ÷ 0.034). For the current set of 8694 mutants, there were 518,811

incubated strains, with the maximum number of distinct strains per lineage being set to

be 37500. It is therefore estimated that about a double-sized analysis can be conducted

within 10 hours: there is a capacity of approximately 548,583 incubations (= 1067394

[estimated maximum incubations for 10 hours] −518811 [actual incubations for the first

step mutant analysis]).

That being so, what size of a set of second-step mutants is most reasonable to aim

at? There are 880 strains that turned out to have potential for exponential growth with

at least one such strain within lineage. Assuming each of the them is exactly as long

as the prototype, each will generate 8694 possible second-step mutants as well. If each

of them requires 518,811 incubations just as the first-step case, then the analysis time

would be intractable with respect to runtime (i.e., 8694 × 518811 = 4, 510, 542, 834 incu-

bations, so the estimated analysis runtime for these incubation is: 0.034 [sec./incubation]

× 4,510,542,834 [incubations] ≈ 153,358,456[sec.] ≈ 1775[days]). Instead, for the whole se-

lection of second-step mutants to be covered, the maximum number of distinct strains per

lineage was decided to be tightened. For example, assume that the capacity for a 10-hour

analysis run is 548,583 incubations and that each first-step mutant generates 8694 possible

second-step point-mutants. From this, the estimated maximum number of distinct strains

per lineage is 63 (= 548583÷ 8694) strains per incubation, that is, in the order of 101 to

102.

The completion rate of analysis over different maximum number of distinct strains

per lineage was estimated. According to the estimation shown in Table 4.3, setting the

maximum number of distinct strains as, say, 100 would complete analysis for 99.7 per cent

of the mutants, leaving 28 indeterminate strains out of the whole set of 8694 mutants. It

follows that solely relaxing the maximum number of distinct strains per lineage would not

proportionally lead to the increase of determinate strains. On the basis of these heuris-

tics, the maximum number of distinct strains was set somewhat arbitrarily to 100, which

should be sufficient for screening interesting strains among the majority of candidates by

heuristically classifying the longest lineages as indeterminate.

9The spec of the computer used (MacBook Pro) is: 2.4 GHz Intel Core2Duo Processor and 4GB RAM.

109



4.4. ENHANCEMENT OF THE ANALYZE MODE

Max. Distinct Strains Determinate Mutants (%)

0 0.0000
1 0.6999
2 0.9055
3 0.9729
4 0.9802
5 0.9853
6 0.9855
7 0.9888
8 0.9890
9 0.9891
10 0.9893

12 0.9894
19 0.9895
22 0.9911
27 0.9913
29 0.9915
33 0.9916
42 0.9917
49 0.9923
61 0.9924
65 0.9925
76 0.9928
77 0.9942
80 0.9945
81 0.9946
82 0.9967
83 0.9968

113 0.9971
126 0.9972
215 0.9974
427 0.9975
431 0.9976
759 0.9978

1814 0.9979
1919 0.9984
2797 0.9985

37500 0.9985

Table 4.3: Estimated analysis completion over maximum number of distinct strains per
lineage. The completion rate is represented as the percentage of determinate mutants of
all being analysed.
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Figure 4.17: Distribution of the 8694 first-step point-mutants of the prototype by total number of distinct strains generated deterministically under the
trace analysis (recursive incubation). The total number of strains generated means a seed strain plus descendant strains; hence the minimum number is
1, meaning the seed strain incubated is either direct infertile or direct self-reproducer, generating no other distinct strain. For legibility, those between
101 and 102 are combined to fall in 101, likewise, those from 102 and 103 in 102, those between 103 and 104 in 103.
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4.4.4 Enhanced Viability Analysis: First-step Mutants

With the modification explained above, the analysis tool was now enhanced with the

ability to fully cover the lineage expected from a given seed strain. As a pilot study, the

first-step 8694 mutants of the prototype were analysed using the enhanced tool. A feasible

analysis scale is considered, because the number of strains that need to be handled will

be obviously increased, compared to the original analyze mode, following which a fitness

distribution is shown based on quantified viability. Then, mutants of more interest are

considered and discussed. A distinctive seed strain found in the analysis is introduced as

a case study. This will serve as a basis for further mutation steps, where more steps will

be covered, but with a limited number of strains for trace, as the number of strains to be

traced at each mutational step needs to be kept within the feasible scale.

Fitness Distribution

Figure 4.18a shows the histogram of the first-step mutants by quantified viability, or the

maximum real part of valid eigenvalues as explained in the previous section. Or, more

simply, this amounts to (hypothetical, deterministic) fitness. There is one cluster at fitness

< 1.000 (normalised to the prototype) which has the great majority (804 out of 879) of the

mutants. The viable 879 mutants distribute as shown in Figure 4.18b by the number of

generated strains including seed strains. There are 871 viable mutants with a total of only

one strain within each lineage. This indicates that their seed strains alone are viable. It

can be inferred that they are themselves self-reproducer strains (of whatever reproduction

mode), because for a single strain to be viable, the strain is necessarily self-reproducer.

Those 871 viable mutants, as seed strains, do not give rise to other distinct strains, not

to mention other viable distinct strains. On the other hand, the remaining 8 (= 1 + 7)

viable mutants give rise to at least one viable (self-reproducer) strain other than the seed

strain. The viable strains (whether they are generated strains or seed strains) are ones

requiring further consideration. Out of the 8694 first-step mutants, there were 3480 fertile

mutants (that is, the rest, 5214 mutants, are infertile or indeterminate). A histogram

by gestation time for the 3480 fertile mutants is shown in Figure 4.18c. A histogram by

gestation time for the viable 879 mutants is shown in Figure 4.18d. In either histogram,

it is apparent that there is a cluster in the middle “40000 < gestation time ≤ 60000”, in

which the prototype’s gestation time 52218 would fall.

From Figure 4.18a, it is noticeable that there is one outstanding leftmost cluster,

while there are other clusters to the right with higher fitness values spread out. From

Figure 4.18b, it is apparent that most of the 879 non-trivial mutants generate only one

viable individual strain that is actually the mutant incubated as the seed strain itself. In

Figure 4.18c, there is one outstanding cluster “40000 < gestation time ≤ 60000”. There are

both clusters of shorter gestation time and of longer gestation time. A natural hypothesis

is that those in clusters of shorter gestation time (to the left, ≤ 40000) include self-

copier mutants, and that the middle outstanding cluster includes von Neumann style self-

reproducer mutants. Whatever the reasons behind the outstanding cluster with gestation

time around the prototype gestation time and the spread of gestation time are, further

investigation would be required to determine whether there is a reasonable correlation
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(a) Histogram of viable first-step
point-mutants of the prototype by
fitness. There were 879 viable mu-
tants (whose quantified viability >
0). The values are normalised to
the prototype.
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(c) Histogram of the first-step
point-mutants by gestation time.
There were 3480 fertile mutants out
of the total of 8694.
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Figure 4.18: Fitness distribution of the first-step mutants.
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Segment Length
Mutant

Group Size

Decode
Preparation

28 756

Decode
Loop

166 4482

Copy
Preparation

52 1404

Copy
Loop

48 1296

Lookup
Table

28 756

Total 322 8694

Table 4.4: Lengths of the five functional segments of the prototype’s phenome and the
corresponding mutant group sizes.

between gestation time and reproduction mode, and if there is, what the correlation is.

Nevertheless, it is possible that interesting strains retaining the von Neumann architecture

may be found in the outstanding cluster (or neighbouring clusters). It is noteworthy that

the first encountered self-copier reported in Chapter 3 should fall on the cluster “20000 <

gestation time ≤ 40000 and ” in Figure 4.18d , as it is a self-copier mutant with gestation

time 22172.

Mutants with a Mutation in the Lookup Table

Here, as part of the mutant characterisation, it is useful to group the first-step mutants

by mutation region. Mutation region means the segment of the phenome where a point-

mutation that was applied is expressed. The size of each group of the mutants can be

calculated from each segment’s length. Length of each segment and size of each mutant

group are shown in Table 4.4. Allow each mutant group to be called in the form of “mu-

tation region” + mutants: namely, Decode Preparation mutants, Decode Loop mutants,

Copy Preparation mutants, Copy Loop mutants, and Lookup Table mutants.

For general understanding of the tendency among mutants, Table 4.5 shows how the

mutants classified by mutation region distribute in terms of viability. Viable and Non-

Viable are determined by whether a mutant has fitness > 0.

Next, Lookup Table mutants are considered. They are of particular interest because

a mutated lookup table may lead to a modified genotype-phenotype mapping. As far

as Lookup Table mutants are concerned, one can think of a phenomenon called word

loss: as the lookup table defines how individual genome words/symbols (or “codons”)

are translated, a mutation expressed in that segment may lose an entry that associates

a codon to another word, causing loss of one codon from the table. This is true because

the lookup table has entries each corresponding to each of possible words defined by the

instruction set, and because a word brought about by a mutation is one of those possible

words. Once this happens, the word associated to a codon lost from the lookup table will

not appear as a decoded word in translation. This is why it is referred to as word loss. As

114



4.4. ENHANCEMENT OF THE ANALYZE MODE

Mutation
Region

V
ia

b
le

In
d
et

er
m

in
at

e

N
on

-V
ia

b
le

Total

Decode
Preparation

45 1 710 756
(6%) (0%) (94%)

Decode
Loop

222 5 4255 4482
(5%) (0%) (95%)

Copy
Preparation

322 2 1080 1404
(23%) (0%) (77%)

Copy
Loop

101 20 1175 1296
(8%) (2%) (91%)

Lookup
Table

189 0 567 756
(25%) (0%) (75%)

Total
879 28 7787 8694

(10%) (0%) (90%)

Table 4.5: Viability of the first-step point-mutants by mutation region.

a consequence of word loss, there will be another codon with one more entry in the table.

As a result, the lookup table will have redundancy. The point here is that word loss may

or may not render the prototype, which is viable, non-viable. See Table 4.6 for the word

frequency in the phenome and viability caused by word loss.

As explained in Chapter 3, there are employed words (instructions used to code the

phenotypic segment except for the lookup table) and unemployed words (the others).

In hindsight, it is not surprising that unemployed words can be lost without losing the

strain’s viability, or self-reproducibility. However, it is an interesting fact that that means

employed words are so essential that in the case of being lost from the lookup table, the

strain would be rendered infertile, rather than fertile somehow. One evolutionary sig-

nificance of this observation is that it can be seen as the increased redundancy due to

the repetition of the word through loss of unemployed words, which amounts to a de-

creased repertoire of translation. Although this does represent genuine evolution of the

genotype-phenotype mapping, which is the central topic of the thesis, this particular kind

of change rather represents an evolutionary impoverishment of the mapping, or an appar-

ent regression or reduction in subsequent evolutionary potential. Though changes in the

genotype-phenotype mapping which support wider variety of expression would be of more

interest, that is impossible on this particular measure in the current system considering the

fact that the prototype, which the starting prototype ancestor, already has the maximum,

richest repertoire by design.

Second to Lookup Table mutants, the group of Decode Loop mutants would be of

interest in the context of the evolutionary characterisation of the von Neumann style

prototype. They are, however, not going to be further classified as part of the analysis,

not only because classification by mutation sub-region of the decode loop is a more high-

level task, but because the analysis for mutated decoding style would eventually be more
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Word Opcode Freq. (Active/Phenome) Viable when Lost?

0 nop-A 29 / 30

1 nop-B 7 / 8

2 nop-C 40 / 41

3 if-n-equ 2 / 3

4 if-less 0 / 1 yes

5 if-label 0 / 1 yes

6 mov-head 6 / 7

7 jmp-head 0 / 1 yes

8 get-head 2 / 3

9 set-flow 2 / 3

10 shift-r 0 / 1 yes

11 shift-l 0 / 1 yes

12 inc 2 / 3

13 dec 2 / 3

14 push 54 / 55

15 pop 49 / 50

16 swap-stk 80 / 81

17 swap 4 / 5

18 add 3 / 4

19 sub 2 / 3

20 nand 0 / 1 yes

21 h-copy 1 / 2

22 h-alloc 1 / 2

23 h-divide 1 / 2

24 IO 0 / 1 yes

25 h-search 4 / 5

26 read 2 / 3

27 write 1 / 2

294 / 322

Table 4.6: Word frequency in the prototype phenome and viability affected by word loss.
“Active” in the third column of “Freq.” (Frequency) means the executed segment of the
phenome (phenotypic segment except for Lookup Table), as opposed to the phenome as a
whole including Lookup Table.
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Figure 4.19: Production graph of a first-step mutant (id 2403). The rates shown are
relative to the prototype.

complicated than for mutated word-by-word mapping. It is essentially the same difficulty

as that of reproduction mode classification.

A Case Study: Distinctive First-Division Pattern

A first-step mutant (id 2403) was hand-picked as it was noticeable for having a distinctive

first-division pattern (see Figure 4.19 for its production graph structure) which no other

first-step mutant showed. The mutation is inherited at 411 and expressed at 89. (It is

noticeable that the mutation location is the same as that of the self-copier reported in

Section 3.4 in the previous chapter.)

A closer look clarified the strain’s reproduction mechanism: it produces two non-

identical offspring with a two-word difference in the memory image (i.e., a word in the

lookup table and another one in the genome), and the offspring are of an identical self-

reproducer strain. On the surface (in terms of the execution profile presented in Fig-

ure 4.20) these strains (s0 and s1) appear to be the same, but are two distinct strains in

reality, exhibiting two distinct reproductions. It is evident that the seed strain (s0) is not

a self-reproducer. The descendant strain (s1, generated from s0) is a self-reproducer, and

judging from gestation time, it appears to be a self-copier, if not necessarily purely.

The seed strain s0 is found to be interesting in that it demonstrates “rewriting” of

itself (as a parent) and results in an offspring strain capable of self-reproducing. (Here,

the word “rewriting” is tentatively used in order to mean that a parent modifies some

part of itself by writing something on it; whereas the word “overwrite” would be used if

the parent wrote something over what it had previously written as a part of its putative

offspring.) The organism of this strain actually rewrites elements of its own lookup table

and its own genome (one word for each), as if changing the genotype-phenotype mapping.

(Here, it is stated as “as if”, because the strain’s reproduction mode does not appear to

be von Neumann style self-reproduction.) More specifically, the mutation changed 13 into

0 at the address 411 of this organism. This is expressed as 27 (opcode for the write

instruction) where it was originally 14 (opcode for the push instruction) at the address

89. That means now there are two write instructions in the decode loop.

The behaviour of the organism of this strain (s0) is illustrated in more detail. There are

in total four executions of the write instruction. That is, two write instructions, one as

an expressed mutation and another as an original content, are executed for two iterations.

See Table 4.7 for how two write instructions are executed for the first iteration.

In effect, the mutation ends up causing the rewriting of the lookup table. The former

write with a modifier nop-A goes on to write the value 294 (the content held in AX) into

the address 294 (which is 294 + 0, the sum of the values held in AX and BX). (Without a

modifier, by default, the instruction would write the content held in CX, rather than that

held in AX, into the address at the value held in AX plus that held in BX.) The value to
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Figure 4.20: Execution profiles of strains within the lineage of an example first-step mutant
strain (id 2403) (Top: s0; Bottom: s1). This is a Decode Loop mutant. The top profile
corresponds to the seed strain s0 producing two offspring of the strain s1; the bottom
profile corresponds to the strain s1 self-reproducing. Each strain has gestation time of
22172. This gestation time is noticeably identical to that of the self-copier reported in
Section 3.4 in the previous chapter. The strain s1’s reproduction mode is similar to that
of the self-copying one. In terms of the write and h-copy execution count, each has 4
instances of write execution and 643 instances of h-copy execution.
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Time IP Content Registers

69 89 write [294,0,22]
90 nop-A

70 91 swap-stk [294,0,22]
... ... ...
77 102 write [644, 0, 22]
78 103 inc [644, 0, 22]

Table 4.7: The execution of the first and second write instructions in the first-step mutant
(id 2403). The former write instruction (highlighted) is the expressed mutation, which
replaced the original instruction push at the location. The latter write instruction is the
original one.

be written, 294, is correctly stored or processed in the CPU, but on transfer to memory,

it is handled as 14, because any integer is made to fall within the range of the size of the

instruction set by design of Avida and because 294 mod 28 = 14. Therefore, the original

memory content 27 at the address 294 is replaced with 14. The address 294 is the first

word of the lookup table. The change of the lookup table signifies that now the word 0

will translate as the word 14, instead of 27.

The latter write instruction with no modifier is the original, and writes the value

22 (opcode for the h-alloc instruction) as intended to, the first word of the prospective

offspring memory image, at the address 644.

After the above iteration, the IP loops back (in the way the decode loop normally does)

and the write instruction is executed for the third and fourth times likewise. The third

execution of the write instruction, with a modifier, goes on to write the value 322 (the

content now held in AX) into the address 323 (= 322+1, the sum of the values held in AX

and BX). That value to be written is likewise reduced modulo the instruction set size (28).

This is 14 again as 322 mod 28 = 14. Therefore the current value 2 at the address 323 is

replaced with 14. This is a change in the genome (or, more precisely, in the segment which

used to be the genome, but that the intended von Neumann style architecture now seems

to have been lost). It is the second word of the previous genome, which originally coded

the word 2 so as to be translated into 25 (opcode for the h-search instruction), the second

word of the prospective offspring phenome; but now it has been changed to the value 14,

which would be translated into 13 (opcode for the dec instruction) according to the lookup

table. The fertility of the offspring appears to hinge on the effect of this translated word,

because it is not the originally intended opcode 25 (opcode for the h-search instruction)

that will now be executed as the second word of the offspring’s program, but instead, the

opcode 13 (opcode for the dec instruction). The h-search instruction is crucial for the

reproduction cycle since it will locate the beginning of the lookup table, using the label

following it, as a part of preparation after memory allocation.

The fourth execution of the write instruction, the originally coded one, ends up writing

the value 10 (opcode for the shift-r instruction) next to the value 22 (opcode for the

h-alloc instruction) that had been first written in the previous iteration.

After this total of four executions of the write instruction, the execution inadvertently

proceeds and enters the subsequent segment of the memory image. This turns out to be
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the “copy” phase, where the originally coded h-copy instruction is executed. This instruc-

tion overwrites the most recently written value 10 (opcode for the shift-r instruction),

altering it to 25 (opcode for the h-search instruction), which is in fact the originally

intended word. As a result, once this succeeds, the parent strain ends up being able to

continue its reproduction cycle via copying.

This is reminiscent of the self-copier mutant reported in Section 3.4 in the previous

chapter. Like that case, once executed, the h-copy instruction is so strong as to proceed

with the copying process without interruption, leaving no room for translation/interpre-

tation, and certainly finishing at the right point, as long as the value (of the counter)

which tracks how many words to go until the copy process finishes remains unharmed by

the point where the copy loop (with the h-copy instruction) is entered. Of course, em-

ploying the h-copy instruction is not enough. An instance of the h-copy instruction in

isolation cannot achieve self-reproduction by self-copying; rather, other instructions are

also required so that starting and finishing conditions are somehow satisfied for the h-copy

operation.

In summary, the organism of this mutant strain s0 produces two offspring with a

distinct strain s1 with changes 27 into 14 at the address 294, and 2 into 14 at the address

323, within the lookup table and the genome, respectively. (Note that these two words

of the parent have been “rewritten”.) This can be viewed as the “initial” memory image

changes itself, and the “final” memory image is identical to the “child” memory image,

and these (“final” and “child”) turn out to be self-reproducer. (Recall this distinction by

the original Avida analyze mode pointed out in Section 4.3.)

This mutant strain s0 may not be typical, but is non-trivial in its own right for ex-

hibiting such a reproduction mode. This mutant is viable insofar as giving rise to a

self-reproducer strain s1. The strain s1 is a self-reproducer strain, hence is viable. How-

ever, taking into account its execution profile and short gestation time, this strain is most

likely to be a self-copier strain. It is, again, a subtle judgement because the similarity

in memory image or in attributes such as gestation time does not necessarily imply the

similarity in the reproduction mode.

4.5 Automation of the Analysis

The result from the enhanced analysis for the first-step mutants provided heuristics for

further mutational analysis by clarifying that the vast majority of the mutants of the

prototype are infertile (hence non-viable) and can be excluded from deeper, recursive,

mutational investigation. Another fact is that the indeterminate mutants (i.e., generating

too many distinct strains) were a small minority. Ignoring the infertile and the indeter-

minate strains, it is now necessary to extract strains of interest with viability, according

to some heuristic criteria.

The enhanced analysis is a mutant viability analysis as part of evolutionary characteri-

sation. Viability is defined qualitatively in Section 4.4 as having evolutionarily interesting

potential, and quantitatively as having values that represent the potential of exponential

growth (and viability can be simply referred to as fitness, in a framework limited to this

analysis). With quantified viability, it is naturally possible to regard viability as something
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varying continuously (i.e., the higher the value is, the more viable the strain is considered),

or as something binary by setting a threshold (e.g., strains whose viability is above x are

viable).

Quantified viability is tightly coupled to gestation time, as production rates are cal-

culated from gestation times. So gestation time is one simple but convenient attribute as

discussed in Chapter 3: heuristically, if it is too short or too long, the strain should not

be retained for further investigation in a stronger, qualitative sense. If gestation time is

too short, the strain’s reproduction mode is more likely to be self-copying, and if it is too

long, it is unlikely to be competitive in the Avida world where production rate is the only

fitness. To reflect this idea, it is reasonable to introduce a ranking-based selection method

using that value to determine strains to analyse for a further mutation step. These aspects

of viability are considered in automating the enhanced analysis.

4.5.1 Automation Cycle: Single-step Analysis

The enhanced analysis was automated to realise multi-step mutational analysis. An au-

tomated analysis should take as input, a single ancestral strain, and produce as output, a

set of trace files with lineage information collected from the mutants generated from the

source strain, ideally, iteratively for an arbitrary number of generations. The proposed

algorithm has three stages as follows.

1. Pre-analysis: Generate a set of possible point-mutants from the source strain.

2. Avida trace: Run the (modified) Avida analyze mode and generate trace files.

3. Post-analysis: Extract a set of mutant strains of interest, or worth further, recursive

analysis.

Pre-analysis

Possible point-mutants are enumerated systematically. Suppose a source (input) strain

has an equal decomposition into phenome and genome as the prototype does (i.e., the

first half and the latter half). It is assumed that a lookup table that is as long as the

instruction set is located at the end of the phenome, just like the prototype. The pre-

analysis first generates permutations of each memory location of the genome according

to the applicable instruction set. This serves as mutating the source strain genome in all

possible ways. Then for each, the mutation is expressed in the phenome, generating a

mutant strain. A list of these mutant strains is produced at the end of this process.

This process of generating possible mutants is at best heuristic, especially beyond

the first mutation of a known ancestor. This method may be easily applied to arbitrary

Avidian strains, but the assumption that a strain is a von Neumann style self-reproducer

is not very reasonable (much less that it is the same style as the prototype). Even if the

strain somehow turns out to be a von Neumann style self-reproducer, the precise location

of the genome, or of the existence and location of the lookup table in the phenome would

be uncertain in general.
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Avida Trace

The modified analyze mode of Avida is called and run. As a result, a set of trace files of

the mutants as seed strains are output, each containing all the generated and incubated

strains in the lineage. Naturally, the number of trace files depends on the number of

mutants to be analysed (as generated in the pre-analysis), or hence the genome size of the

source strain.

Post-analysis

Non-trivial, or potentially viable, mutants are selected for further mutational analysis.

Firstly, in order to quantify viability, the post-analysis calculates eigenvalues and eigen-

vectors from the matrix representing the approximate population dynamics for each lineage

containing strains generated from a seed strain. Secondly, the post-analysis produces a

summary of the lineage information for each mutant strain based on the trace files. At the

end of this process, from the seed strains generating at least one individually exponentially

growing strain, those with highest fitness (i.e., a fittest strain in lineage with a highest max-

imum real part of eigenvalues of the matrix gained from the production graph) and with

gestation time longer than the half of the prototype’s gestation time are selected. (These

selection criteria or conditions may vary in the future based on experimenter preferences.)

Notice that here the attention for further analysis is restricted to direct simple self-

reproducer strains which have highest quantified viability, or highest fitness, among the

finite set of distinct strains generated from seed strains. Fittest strains would survive in

the neo-Darwinian evolution, and thus are of interest at least. Ideally, again, the analysis

should be able to determine whether a strain is a von Neumann style self-reproducer strain

and in what way it is realised, but this is difficult and is not what the current analysis

aims at doing, as discussed in Section 4.2. Collectively exponentially growing strains

would arguably be of evolutionary interest, but these are discounted, because the current

analysis focuses on pure von Neumann style self-reproducers (like the prototype). There

is no tool available for analysing a genotype-phenotype mapping or finding changes within

a genotype-phenotype mapping in general, unless analysing on a case-by-case basis. It

would be much more difficult in cases of collective self-reproducer strains, as there is not

a sufficient definition of von Neumann style collective self-reproduction yet.

To recapitulate the selection method, heuristically eliminated as being non-interesting

mutants are:

• indeterminate mutants;

• mutants whose production rate matrix’s eigenvalues and eigenvectors do not indicate

individual exponential growth;

• mutants with extremely short gestation time compared to the prototype; and

• mutants whose production rate matrix’s eigenvalues and eigenvectors do indicate

exponential growth, but collective exponential growth.

This method is illustrated next with a specific experiment.
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4.5.2 Multi-step Analysis

Section 4.4 reveals that the first-step analysis ends up with 879 mutants which are viable

(i.e., having the potential of generating at least one exponentially growing strain), and

871 of them turn out to have no more than one such strain—that is the seed strain itself.

Assuming that only point-mutation exists and that mutants retain the von Neumann style

architecture as the prototype, the automated multi-step enhanced mutational analysis was

run for the second-step mutants and the third-step mutants. Depending on the feasible

scale of analysis, the number of strains that are selected for further mutational step analysis

was varied. Suppose the scale of analysis is fixed, then the more mutational steps the

analysis takes, the larger the proportion of potentially interesting strains that needs to

be pruned (i.e., the smaller proportion of potentially interesting strains that needs to be

selected) for the subsequent step.

For two-step analysis to be completed within a plausible wall-clock time of up to 10

hours in total (the choice of which was not strict, but can be considered as a reasonable

amount of experimental runtime, greater than the order of 1 hour, and less than the order

of 100 hours), a small group of 10 strains were selected for a second-step based on the

ranking of fitness. (Likewise, this choice was heuristic, but it is a reasonable amount

greater than the order of 1 strain and less than the order of 100 strains. Considering that

viable mutants were 10% of 8694, the order of 100, an interesting portion should be less

than this.)

For a two-step analysis of the scale discussed above, the number of strains to be traced

are 11 (= 1 + 10). For a third-step analysis to be of the same scale, the selection size of

3 was chosen, considering the computational tractability, where the number of analysed

strains are 13 (= 1 + 3 + (3 × 3); as the selection size is fixed, this is the closest to 11).

Three strains are selected based on the fitness ranking at the end of each step.

In the selection, the condition was set that gestation time must be longer than the

half of the prototype’s (i.e., 26109 = 52218/2) to reduce the likelihood of self-copiers from

being selected, and shorter than twice of it (= 52218× 2), for a strain to be selected from

among viable strains in lineages for further analysis.

Second-step Mutants

The tree in Figure 4.21 shows the selected top 10 mutants of the prototype, and those of

the top mutant of the first step. Only a part of the whole tree is presented for simplicity:

the actual analysis covered all 10 selected mutants for each of the first-step mutants.

A naming convention is adopted: a strain is uniquely specified by the id number in

such a format as “org-0-3431” and “org-0-3431-7210”, where the numerical mutant

id is consecutively concatenated with a hyphen as the generation increments. The prefix

“org-” is used for the sake of convenience: it comes from the original Avida system where

any strain must be instantiated as an organism internally, and an id number is issued to

each organism.

The ranking of the top 10 mutant strains of the first-step is shown in Table 4.8. They

were analysed for the second-step. Six of them are found to be viable and seed strains

(s0), whereas the other four are viable and descendant strains (all happened to be s1).
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0: Prototype

3431

7210317569377045691369156917691969206921

614762016153619345236150615164756478

Figure 4.21: Excerpt of the tree of mutant strains for trace up to the second mutation
step with a selected top 10 of the ranking of fitness. In the process of the automated
analysis, an identification number is given to a mutant in each generation and is used to
identify a strain within a tree of mutant strains for trace. The leftmost bottom strain,
for example, is uniquely referred to as “org-0-3431-7210”. The mutation generation of
a strain is visible with such a notation of identification.

Mut. ID Strains Viable Fittest Fitness Gest. Time

3431 1 1 s0 1.373 38095
6147 3 1 s1 1.300 40186
6201 3 1 s1 1.295 40314
6153 3 1 s1 1.076 48634
6193 3 1 s1 1.076 48634
4523 1 1 s0 1.003 52090
6150 1 1 s0 1.003 52217
6151 1 1 s0 1.003 52217
6475 1 1 s0 1.003 52217
6478 1 1 s0 1.003 52217

Table 4.8: The selected top 10 first-step mutants of the ranking of the prototype, org-0.
The column “Mut. ID” is the id number given to the mutant strain used as a seed strain.
The column “Strains” shows the total number of strains that have appeared in the lineage
including the seed strain. “Viable” shows the number of viable strains in the lineage (seed
strain and generated strains inclusive). “Fittest” is the strain which is the fittest in terms
of fitness in the lineage. “Fitness” shows the fittest strain’s quantified viability and “Gest.
Time” its gestation time.

Table 4.9 shows the second-step mutant of the first-step mutant org-0-3431, which is the

top of the ranking, as an example.

No difference is found in fitness values of some of the ranked mutants. This implies

that the ranking ended up relying upon the mutant id numbers, and that the selection

may have amounted to extracting a certain number of mutants from a group of equivalent

strains. Nevertheless, those selected mutants can be regarded as some representatives of

the mutant set with high fitness. There may be, however, a bias related to the mutation

region: the proximity of mutant ids roughly signifies the proximity of mutation regions,

and chances are that mutants outside of this ranking might turn out to be of interest. It

is noticeable that the fitness value is recurring in the ranking. So there may be ones with

reasonably high fitness value but not selected, that have fallen out of the ranking (those

with the same value of fitness, with ids from org-6913 to org-6921 in the case of the

org-0-6131’s mutants). Moreover, having the same fitness value does not mean having
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Mut. ID Strains Viable Fittest Fitness Gest. Time

7210 100 1 s0 1.833 37245
3175 1 1 s0 1.781 29345
6937 3 1 s1 1.598 32638
7045 3 1 s1 1.587 32887
6913 3 1 s1 1.572 33223
6915 3 1 s1 1.572 33223
6917 3 1 s1 1.572 33223
6919 3 1 s1 1.572 33223
6920 3 1 s1 1.572 33223
6921 3 1 s1 1.572 33223

Table 4.9: The selected top 10 second-step mutants of the first-step mutant org-0-6131.
The lineage of the top mutant (Mut. ID 7210) has exactly 100 strains within. One can
infer that this as a boundary case, from the fact that the recursion limit is set to be 100
and the mutant instance which reaches the limit is excluded from the ranking; this will
apply to other such mutant instances, too.

0: Prototype

3431

7210

3168 3173 4635

3175 6937

6147 6201

Figure 4.22: Excerpt of the tree of the mutants up to the third-step with a selected top 3
mutants from the ranking.

the same dynamics, the same structure of lineage, and so on. So this ranking method may

be easy to implement, but may not always be the most reasonable method.

To show a profile, the first-step mutant org-0-3431 was found to have second-step

mutants including:

• 43 indeterminate mutants that reach the preset recursion limit of 100;

• 2024 mutants that generate a total of 1 viable strain.

Third-step Mutants

See Figure 4.22 for the tree of selected mutants over three steps of mutation. The top 3

naturally overlaps the top 10 presented above. This analysis looks one-step deeper into

the mutation tree, but with a narrower scope.

Take the second-step mutant org-0-3431-7210 for example, whose top 3 of the ranking

is shown in Table 4.10. As no difference is found in the fitness values of the first and second

mutant instances, the ranking again relied upon the mutant id number; and as for the
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Mut. ID Strains Viable Fittest Fitness Gest. Time

3168 100 1 s0 2.799 35895
3173 100 1 s0 2.799 35895
4635 53 1 s0 2.788 36245

Table 4.10: The selected top 3 third-step mutants of the second-step mutant
org-0-3431-7210.

third mutant instance, the selection may have extracted one from a group of equivalent

strains. At least, just as in Table 4.9, the three selected mutants can be regarded as some

representatives with high fitness of the mutant set. Again, there may be a bias related

to the mutation region, as the proximity of mutant ids roughly signifies the proximity of

mutation regions. That is, there may be ones with the same or reasonably near fitness,

that have fallen outside the top 3 of the ranking (from mutants after id 4635 in the case

of org-3431-7210’s mutants).

This mutant org-0-3431-7210 was found to have third-step mutants including:

• 289 indeterminate mutants that reach the preset recursion limit of 100;

• 2 mutant that generate a total of 5 viable strains;

• 4 mutant that generate a total of 4 viable strains;

• 23 mutant that generate a total of 3 viable strains;

• 121 mutant that generate a total of 2 viable strains;

• 1697 mutant that generate a total of 1 viable strains.

4.6 Reflections on the Methodology of Mutational Analysis

Starting from revisiting the concept of self-reproduction through strain classification, and

redefining viability as potential for exponential growth, a method of effectively analysing

mutational pathways of the prototype, not stochastically (evolutionarily) but determin-

istically (systematically), is explored and investigated in the preceding sections of this

chapter.

4.6.1 Viability Analysis Results Overview

The analysis using the preexisting Avida analyze mode yielded an insight into distinguish-

able viable candidates (see Section 4.3). The viable candidates (10%) are ones that are

direct self-reproducer and need further scrutiny for reproduction mode, while the non-

viable candidates (60%) are ones that need not. At any rate, it was revealed that while

the vast majority (70%) of the candidate set were classified as either viable or non-viable,

the rest (30%) of the candidates remained unclassified. This analytical process suggested

that there is subtlety in the concept of viability. For more concrete mutational analysis,

the concept of viability was revisited and redefined to mean more than an organism’s im-

mediate dividability (or a strain’s direct fertility). In other words, viability is now defined
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as the potential for exponential growth, that is, the ability for any of the possible mutants

(linked through mutational pathways) to generate at least one viable strain within a lin-

eage. This can be interpreted as fitness within a hypothetical, deterministic framework of

the proposed analysis.

An enhanced analysis tool was developed based on the built-in analysis tool of the

original Avida (see Section 4.4). It was at least intended to further classify the candi-

dates remaining unclassified on the basis of the finer-grained strain classification and the

redefined concept of viability. The enhanced analysis shed more light on the mutational

pathways of the prototype, covering previously untraced lineages. Now, only large lineages

are classified as indeterminate. Regarding the power of this analysis tool, it is clear that

the enhanced analysis can noticeably reduce the size of previously unclassified mutants.

The first-step point-mutants of the prototype were reclassified now with 28 indeterminate

mutants (0.3%) and 8666 determinate mutants (99.7%), out of which 879 (10.0%) are

viable with potential of exponential population growth. With either the old analysis tool

or this enhanced tool, the viable ones remains almost the same percentage of 10% of the

mutant set.

With regards to the analysis itself of the first-step mutants, the mutation of genotype-

phenotype mapping in a weaker sense was observed in the form of losing translation reper-

toire. This phenomenon observed in evolutionary process was interesting in its own right,

but limited, as it was not elaboration but rather impoverishment of genotype-phenotype

mapping.

For more mutation steps and for more efficiency, the enhanced analysis was automated

(see Section 4.5). A selection mechanism was incorporated to screen only non-trivial

candidates in applying the enhanced analysis on more mutants beyond the first step, in

order for the analysis scale not to become too large. The second- and third-step mutation

analyses were demonstrated, clarifying that it is still rare for the prototype to give rise to

a non-trivial self-reproducer. At least, within the range up to three mutation steps, the

analysed mutational pathways exhibit diverse strains with varied potential lineages, but

those which lead to evolutionarily non-trivial strains were somehow either seed strains or

the first descendant strains within lineages.

Turning back to the question of degeneration, there are no more than 58 self-copiers

of the same type as first encountered which have fairly short gestation time, and these

are estimated to account for less than 0.7% of the whole, and for less than 6.6% of viable

strains. If this estimation is correct, it can be regarded as rare for the same type of

degeneration to take place. This group may, however, include diverse self-reproducers, not

limited to the standard self-copiers or the original von Neumann style self-reproducers. The

mutants whose gestation time is around or more than the prototype may be von Neumann

style self-reproducers or something unseen, but may arguably include self-copiers as well.

Yet, the style of self-reproduction of such self-copiers should be categorised as different

from the pure self-copying, as having noticeably longer gestation time (e.g., with idling

time).

Overall, although the presented results are rather foundational and preliminary, it

should serve as a minimum platform by proposing an extendable analysis method for

evolutionary characterisation of self-reproducers in Avida, including the prototype von
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Neumann style self-reproducer. For a more general analysis tool, the ability to distinguish

reproduction modes should be investigated and incorporated. As to the design of the

ancestor (and the instruction set), more consideration is recommended, especially with

respect to the design of the lookup table or even the mechanism of translation itself. This

consideration will help this line of research to reveal the evolvability of self-reproducer

strains and of the genotype-phenotype mapping in Avida.

4.6.2 Further Modification and Enhancement of Analysis

Through the investigation in this chapter, more light is shed on a general methodology

of mutational analysis in Avida. That being said, questions regarding further possible

modification and enhancement are raised in the course of this investigation as briefly

discussed here.

Even with reduced trace information output (presented in Section 4.4) and with lim-

ited recursions, limited mutation steps, and limited range of candidates (demonstrated in

Section 4.5), the automated enhanced mutational analysis is still computationally expen-

sive. Nevertheless, one can theoretically extend the proposed automation on an arbitrary

organism’s mutational pathways for any given number of mutation steps in Avida, de-

pending on available computational resource. Parallelisation may be an option for fast

high-performance computing, both for the Avida analysis and the pre- and post-analysis.

From the efficiency point of view, if the number of distinct strains to be incubated

increases considerably, the process of strain equality checking found in each iteration

could be improved using a hash table technique. However, the proportion of the overall

computational cost taken by this check may be small. It is not yet clear either whether

such mutants with a large lineage are necessarily interesting or uninteresting evolutionarily.

For better classification of reproduction mode (raised earlier in Subsection 3.5.1 in

Chapter 3), it is recommended to have more heuristics. A possible enhancement is to in-

corporate an automatic mechanism of execution profiling (e.g., following the IP, following

the write and/or h-copy executions) in the post-analysis. Studying executed parts of the

memory that roughly correspond to the phenome, or the phenome’s active part, would

help guide the decomposition of genome and phenome if there is any. Once reproduction

modes are classified better, one could preclude obviously uninteresting individuals from

being selected as next source strains from which mutants are generated. As suggested, it is

difficult to determine a reproduction mode as there can exist a wide spectrum of reproduc-

ers ranging from a pure self-copier to a pure von Neumann style self-reproducer. Analysis

such as measuring word frequency may be useful, combined with execution profiling, but

would not be sufficient alone.

To briefly spell out a possible approach of determining reproduction modes, one could

algorithmically distinguish certain word level characteristics by profiling memory usage:

executed-only, read-only, written-only, and mixed patterns of these. Patterns can be

described more finely, taking into account how many times executed/read/written or the

order of these. This could be extended to identify blocks or segments with common

characteristics, such as that genotype is a read-only segment, (as opposed to a written or

executed segment, or a never-read segment). This could then heuristically help or guide

an attempt at demarcating genotype (or at least a candidate of genotype) from phenotype.
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Combining this approach to the previously mentioned execution profiling may be a more

reasonable tool for the purpose. Also, in this way, the problematic assumption that the

structure does not change can be relaxed.

Towards the more important analysis, detection of changes in the genotype-phenotype

mapping, it is necessary to distinguish the decomposition of genotype and phenotype.

If such a decomposition is ever detected, it might be useful to classify mutants of any

step explicitly, such as by mutation location and by Levenshtein distance from the input

strain, to the extent that a mutant database could be created. The likelihood of a mutant

experiencing a change in genotype-phenotype mapping presumably varies depending on the

mutation location (or, more specifically, the location(s) where mutation is expressed). In

the design of the prototype, for example, the regions where mutation most likely can cause

any change in genotype-phenotype mapping are the lookup table and the decode loop, both

serving as a part of the programmable constructor A of von Neumann’s architecture. In

a sense, the lookup table is a segment that underpins word-by-word translation (hence

genotype-phenotype mapping as well) while the decode loop is a segment that represents

the organism’s style of translation. In brief, a change in the phenome’s decode loop or

lookup table, if there is any, is more likely to lead to a genotype-phenotype mapping change

than in other segments. Then one might prioritise such mutants for further analysis. Of

course, there may still be times when detailed case studies of individual strains, rather

than automated analysis, are as effective (or more effective), especially when reproduction

modes are expected to be diverse.

4.7 Additional Investigation: Redesigning the Prototype

By now, it has been pointed out that the prototype von Neumann style self-reproducer is

prone to degenerate into a self-copying “look-alike”. Successful self-reproduction of such

mutant self-copiers seems to be particularly facilitated by the h-copy instruction. As

long as the read head and the write head are positioned in such a way that the parent’s

memory image which remains when the execution enters the copy segment, is covered,

such self-copiers can safely start, continue, and finish the copy process so as to reproduce

an identical offspring. Avoiding the cost of decoding, they are advantageous compared to

such self-reproducers as the prototype in Avida, which favours fast reproducers regardless

of the reproduction mode. Since the main challenge was originally to explore viability of

a von Neumann style self-reproducing ancestor, some mechanism might be identified so

as to prevent the degeneration or to mitigate the displacement by self-copiers. A possible

solution is to eliminate the intrinsic advantage of such self-copiers at the Avida system

level. This would be done by executing individual programs of organisms regardless of

the length, rather than by allocating certain CPU time slices. As very long programs

may potentially cause a prolonged run, some cutoff time should be predefined. This way,

one can compare strains of different sizes purely by how they achieve production, without

having to take quickness of production into account. This can be effective because there

is no established algorithm for discriminating self-copying from self-reproduction with a

genotype-phenotype mechanism. Another approach, which is discussed in this section, is

to design a new prototype ancestor which does not rely on the h-copy instruction (see
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Subsection 3.5.2 in Chapter 3 for the point raised with regard to this motivation).

4.7.1 Designing h-copy-free Prototypes

The h-copy instruction per se is not capable of, or sufficient for, self-copying, because many

more conditions need to be satisfied in order to realise self-copying. However, once the

h-copy instruction is successfully executed, it is powerful enough so as to greatly facilitate

the copy process. Hence, it is of interest to design a von Neumann style self-reproducer

without employing the h-copy instruction. On the basis of the prototype von Neumann

style self-reproducer, there are two plausible, progressive steps for such a redesign. A first

step is to recode the copy process within the phenome active segment, substituting with

the read instruction and the write instruction. A second step is to eliminate any word

containing an opcode for the h-copy instruction from the entire memory image, that is, as

found in the phenome passive segment and the genome. The structure with five segments

remains the same. Simply put, the first step has the h-copy instruction in the instruction

set, whereas the second step entirely removes the h-copy instruction from the instruction

set.

However, even if a redesigned prototype does not rely on the h-copy instruction,

the Copy Loop segment may still be exploited to become a self-copier. Or, the copy

segment may become more vulnerable than one using the h-copy instruction, as the

copying without using the h-copy instruction will have an exposed stretch of code to

perform the same function as the original prototype. (That is, it may require a longer

code because it realises the same procedures as the h-copy instruction without using it,

just like unpacking the h-copy instruction.) If that is the case, a redesigned prototype has

a stretch that can potentially be perturbed for codes of the particular procedures which

otherwise an instance of the h-copy instruction would do. Simply put, in a redesigned

prototype, the likelihood that copying is perturbed is different from the prototype.

Version One: The 28-Instruction h-copy-free Prototype

In order to consider how to replace the function performed by the h-copy instruction into

an equivalent using the read instruction and the write instruction, the h-copy instruction

is unpacked here into subprocesses. The defined procedure of the h-copy instruction is as

follows:

1. read a word from the address pointed at by the read head;

2. write the word to the address pointed at by the write head; and

3. move forward both the heads by one memory location.

When recoded using the read instruction and the write instruction, the phenome

active segment becomes 313 words long (see the listing in Appendix A). As the lookup

table is the same as the prototype, 28 words long, the phenome total length is 341 words

long. Hence the whole length is 682 words long, potentially generating 9207 possible point-

mutants. When seeded, this recoded version of the prototype divides with gestation time

59392.
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It should be noted that this 28-instruction h-copy-free prototype seemingly includes

the h-copy instruction’s opcode: in the lookup table (i.e. the phenome passive part), and

in the genome (i.e. the passive description tape). As the lookup table still includes that

instruction’s opcode, the way it encodes the phenome involves encoding a certain word into

the word interpretable as the h-copy instruction (if ever executed), namely, 6 (mov-head)

to 21 (h-copy). Thus within the genome, there appear words interpretable as the h-copy

instruction (if ever executed by any chance) as often as there are mov-head instructions

coded in the phenome active segment, also as often as the numerical value of 6 is found in

the phenome passive part (i.e., in the lookup table). By design, only the phenome active

part gets executed: only the words within that part count as instructions in a strict sense.

Even if a memory location contains the same word, it is interpreted as an instruction only

when executed. Since the lookup table is not to be executed (only accessed by a process)

by definition, the words listed in it do not represent instructions, but numerical values

potentially “interpretable as” certain instructions according to the order in which they

are listed (i.e., they only have potential to be interpreted as an instruction in the event

of/on execution).

In this version, mutation can bring about the change of a word into the word inter-

pretable as the h-copy instruction, without which the prototype ancestor is coded. If

a mutation brings about the word interpretable as the h-copy instruction in the active

segment, and if other conditions for it to get executed and for it to be finished are sat-

isfied, then it may turn out to be a self-copier or a non-reproducer; whereas, if such a

word appears within a passive segment, then the mutant should definitely retain the von

Neumann style reproduction mode.

Version Two: The 27-Instruction h-copy-free Prototype

Following the 28-instruction h-copy-free prototype, it is then conceivable to design a

version of the prototype where neither the h-copy instruction nor a word interpretable

as the h-copy instruction can occur, by employing a 27-instruction set which excludes

the h-copy instruction from the instruction set previously used. Then, nothing can bring

about a word interpretable as the h-copy instruction as it does not exist in that particular

Avida world. Based on the new instruction set with 27 instructions, the genome (i.e. the

encoded phenome) can be coded without any word interpretable as the h-copy instruction.

The whole length of this version is 680 words long (313 words for the phenome active

part plus 27 words for the lookup table, with 340 words for the genome) (see the listing in

Appendix A), which will potentially generate 8840 possible point-mutants. When seeded,

this version of the prototype divides with gestation time 59218.

4.7.2 Analyses of the h-copy-free Prototypes

The same enhanced analysis as described in this chapter was applied to the 28-instruction

h-copy-free prototype, and to the 27-instruction h-copy-free prototype, under the same

condition as the original prototype: top 10 selection for mutational steps 1 and 2, and

top 3 selection for mutational step 3. It was again assumed that the genotype-phenotype

decomposition is retained as dividing the whole memory image into the first half and the

latter half.
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Some settings of the analysis must be changed according to the gestation time. In

the original prototype’s case, the lower bound of gestation time was set to be 52218× 0.5

(in the post-analysis) and the upper bound 644 × 163 (in the Avida main configuration

file). Now, for the redesigned versions, the 28-instruction h-copy-free prototype and the

27-instruction h-copy-free prototype, the lower bound was changed to be the half of each

gestation time: 59392 × 0.5 and 59218 × 0.5, respectively. In addition, the upper bound

was changed to be approximately twice each gestation time: 682 × 174 and 680 × 174,

respectively (note that in the Avida configuration file, the value is to be set as multiple of

the size).

The first-step mutants of the 28-instruction h-copy-free prototype and of the 27-

instruction h-copy-free prototype distribute by total number of strains as shown in Fig-

ure 4.23 and Figure 4.24. Those first-step mutants of these recoded prototypes are dis-

tributed by gestation time as shown in Figure 4.25 and Figure 4.26.
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Figure 4.23: Distribution of the 9207 first-step point-mutants of the h-copy-free 28-
instruction prototype by total number of strains generated. For legibility, those between
101 and 102 are combined to fall in 101.

Judging from the first-step mutational analysis, the h-copy-free 28-instruction proto-

type has:

• 4 indeterminate second-step mutants (< 0.05%);

• 9203 determinate second-step mutants (> 99.95%), out of which 946 (10% of total)

are with potential of exponential growth.

Likewise, the h-copy-free 27-instruction prototype has:

• 10 indeterminate second-step mutants (< 0.2%);

• 8830 determinate second-step mutants (> 99.8%), out of which 917 (10% of total)

are with potential of exponential growth.
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Figure 4.24: Distribution of the 8840 first-step point-mutants of the h-copy-free 27-
instruction prototype by total number of strains generated. For legibility, those between
101 and 102 are combined to fall in 101.

Neither of these versions led to any first-step mutant which generates more than one

exponentially growing strain in this particular setting, just as the original prototype.

Similarly, in those cases, no mutants selected for subsequent analysis were found to be

generating more than one exponentially growing strain, except for one in the 28-instruction

version prototype’s mutational pathways at the second-step level.

Lineage of the h-copy-free 28-instruction Prototype

Among the first-step mutants of the h-copy-free 28-instruction prototype (named

hcf28 org-0) are:

• 4 indeterminate mutants that reach the recursion limit;

• 0 mutant that generates more than 1 viable strain;

• 947 mutants that generate 1 viable strain.

The tree of the mutants analysed is shown in Figure 4.27. The ranking of its first-step

mutants is shown in Table 4.11.

The ranking of the second-step mutants of hcf28 org-0-6131 is shown in Table 4.12.

Among the whole second-step mutants of the first-step mutant hcf28 org-0-6131 are:

• 24 indeterminate mutants that reach the recursion limit;

• 0 mutant that generates more than 1 viable strain;

• 1434 mutants that generate 1 viable strain.
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Figure 4.25: Fitness distribution of the first-step mutants of the 28-instruction h-copy-free
prototype.

The ranking of third-step mutants of hcf28 org-0-6131-6563 is shown in Table 4.13.

Among the whole third-step mutants of the second-step mutant hcf28 org-0-6131-6563

are:

• 24 indeterminate mutants;

• 0 mutant that generates more than 1 viable strain;

• 1462 mutants that generate 1 viable strain.

Lineage of the h-copy-free 27-instruction Prototype

Among the first-step mutants of the h-copy-free 27-instruction prototype (named

hcf27 org-0) are:

• 10 indeterminate mutants;
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Mut. ID Strains Viable Fittest Fitness Gest. Time

6131 2 1 s0 3.742 59392
5901 2 1 s0 3.730 59439
6301 2 1 s0 3.712 59392
6400 2 1 s0 3.201 59392
6184 2 1 s0 3.094 59392
3900 1 1 s0 1.883 31512
4062 1 1 s0 1.883 31512
4224 1 1 s0 1.883 31512
3928 1 1 s0 1.883 31513
1281 1 1 s0 1.883 31558

Table 4.11: The first-step top 10 point-mutants of the ranking of the 28-instruction h-copy-
free prototype hcf28 org-0.

Mut. ID Strains Viable Fittest Fitness Gest. Time

6563 2 1 s0 3.908 58712
2377 3 1 s0 3.754 31512
1021 2 1 s0 3.742 59051
1051 2 1 s0 3.742 59051
1052 2 1 s0 3.742 59051
3504 2 1 s0 3.742 59051
912 2 1 s0 3.742 59051
1002 2 1 s0 3.742 59392
1006 2 1 s0 3.742 59392
1012 2 1 s0 3.742 59392

Table 4.12: The second-step top 10 point-mutants of the ranking of the first mutant
hcf28 org-0-6131.

Mut. ID Strains Viable Fittest Fitness Gest. Time

2377 3 1 s0 3.920 30152
1021 2 1 s0 3.908 58371
1051 2 1 s0 3.908 58371

Table 4.13: The third-step top 3 point-mutants of the ranking of the first mutant
hcf28 org-0-6131-6563.
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Figure 4.26: Fitness distribution of the first-step mutants of the 27-instruction h-copy-free
prototype.

• 0 mutant that generates more than 1 viable strain;

• 918 mutants that generate 1 viable strain.

The tree of the mutants analysed is shown in Figure 4.28. The ranking of its first-step

mutants is shown in Table 4.14.

The ranking of its second-step mutants hcf27 org-0-5904 is shown in Table 4.15.

Among the whole second-step mutants of hcf27 org-0-5904 are:

• 24 indeterminate mutants;

• 0 mutant that generates more than 1 viable strain;

• 1392 mutants that generate 1 viable strain.

The ranking of its third-step mutants of hcf27 org-0-5904-6320 is shown in Ta-

ble 4.16. Among the whole third-step mutants of hcf27 org-0-5904-6320 are:
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Figure 4.27: Tree of selected mutants of the 28-instruction h-copy-free prototype mutants
up to the third mutation generation.
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Figure 4.28: Tree of selected mutants of the h-copy-free 27-instruction prototype mutants
up to the third mutation generation.

• 24 indeterminate mutants;

• 0 mutant that generates more than 1 viable strain;

• 1419 mutants that generate 1 viable strain.

Analysis Results

Qualitatively speaking, both of the redesigned prototype ancestors exhibit similar charac-

teristics to the original prototype ancestor. For example, the distributions of the first-step

point mutants by total number of generated strains of the redesigned prototype ances-

tors showed the same trend as the original prototype ancestor, where the majority of

mutants do not generate descendant strains, and where, as the number of potentially gen-

erated strains increases, the number of such mutants decreases. In terms of fitness, the

redesigned prototype ancestors exhibit the same trend, with almost the same shape of the

histograms. The percentage of viable mutants was approximately 10% for any of these an-

cestors (i.e., 10.3% for the h-copy-free 28-instruction prototype, 10.4% for the h-copy-free

27-instruction prototype, and 10.1% for the original prototype). Of viable mutants, those

with a fitness value equal to or less than the respective prototypes are in the majority.

These are similar to the original prototype ancestor, except that the original prototype

ancestor have somewhat more mutants whose fitness is more than 2.0 but equal to or less
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Mut. ID Strains Viable Fittest Fitness Gest. Time

5904 2 1 s0 3.743 59218
5682 2 1 s0 3.731 59265
6067 2 1 s0 3.713 59218
6163 2 1 s0 3.221 59218
5955 2 1 s0 3.115 59218
3755 1 1 s0 1.883 31420
3911 1 1 s0 1.883 31420
4067 1 1 s0 1.883 31420
3782 1 1 s0 1.883 31421
1233 1 1 s0 1.883 31466

Table 4.14: The first-step top 10 point-mutants of the ranking of the 27-instruction h-copy-
free prototype hcf27 org-0.

Mut. ID Strains Viable Fittest Fitness Gest. Time

6320 2 1 s0 3.908 58540
2289 3 1 s0 3.754 31420
1012 2 1 s0 3.743 58878
1013 2 1 s0 3.743 58878
1375 2 1 s0 3.743 58878
3374 2 1 s0 3.743 58878
878 2 1 s0 3.743 58878
983 2 1 s0 3.743 58878
1000 2 1 s0 3.743 59218
1001 2 1 s0 3.743 59218

Table 4.15: The second-step top 10 point-mutants of the ranking of the first mutant
hcf27 org-0-5904.

Mut. ID Strains Viable Fittest Fitness Gest. Time

2289 3 1 s0 3.920 30064
1012 2 1 s0 3.908 58200
1013 2 1 s0 3.908 58200

Table 4.16: The third-step top 3 point-mutants of the ranking of the first mutant
hcf27 org-0-5904-6320.
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than 3.0, unlike the redesigned prototype ancestors, neither of which have mutants with

fitness within that range. The reason behind this difference may be of interest for future

research.

In terms of gestation time, the majority was those that fall within the same gestation

time range as the respective prototypes, and the farther from this range the gestation

time is, the fewer mutants there are which have such a gestation time. These redesigned

prototype ancestors are, again, very similar to the original prototype ancestor. Assuming

gestation time represents a reproduction mode, the percentage of self-copiers (whose ges-

tation time is half of the respective prototype ancestors among fertile mutants) is nearly

the same as well (i.e., 6.5% and 6.1% for the h-copy-free 28-instruction prototype and

for the h-copy-free 27-instruction prototype, respectively, whereas 5.3% for the original

prototype). The percentages of supposed self-copiers are basically similar.10

In the automation of the analysis spanning a few, two and three, mutational steps, what

was noticeable in the results of the redesigned prototype ancestors is that the captured

fittest mutants were all source strains within lineages, as opposed to the original prototype

ancestor, whose fittest strains within lineages included not only seed strains but also (first)

descendant strains. This dissimilarity between the redesigned and the original prototypes

is interesting in itself, but one would need further investigation in order to tell whether

that this happened by coincidence or not, and if it is not by coincidence, why.

It is difficult to conclude that the h-copy instruction was a decisive factor behind the

degeneration into a self-copier from these results solely. Probably, the exclusion of the

h-copy instruction per se does not substantially affect the likelihood of self-copy muta-

tion. It is presumably because, despite not using the h-copy instruction, the redesigned

prototype ancestors follow the same subroutines as the original prototype ancestor and

the structure of the self-reproductive cycle of them is essentially the same as the original.

Ancestors with different structures should be designed and examined in order to deepen

the understanding on this.

4.7.3 Reflective Remark: Redesigning the Prototype

In the preceding subsections, h-copy-free designs of the prototype, a von Neumann style

ancestor in Avida, are introduced and described. Two different versions of the prototype

were analysed for evolutionary potential under the same analysis tool. As far as the

analysis could reveal, neither of them encounters any more non-trivial self-reproducer

than the original prototype. Nevertheless, to determine whether they are resiliently viable

in evolution compared to the original prototype, analysis deeper than three mutation

steps, ideally with a wider range of candidate selection per generation, would be required.

Analysing those versions, it was also minimally demonstrated that the proposed method

was applicable to other strains, or other von Neumann style self-reproducers.

In the first place, this additional investigation was motivated by the previously discov-

ered mechanism of degeneration to a self-copier (in Chapter 3) which indicated a potential

of a certain instruction specialised for copying (h-copy). It was at least clarified that that

10Or numerically, on the surface, the percentage even increases slightly in those redesigned versions; but
of course this assumption is very approximate in the first place, so concluding that it increases would not
be reliable. At least it is safe to say that these percentages are comparable to each other in terms of the
order, less than 10%.
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type of quick degeneration to a self-copier of a less than half of the prototype gestation

time is estimated to occur approximately in 5% of the viable first-step point-mutants: it

is not the majority, but more like a part of diversity. Other reproduction modes among

the rest of the viable mutants, either between or beyond the standard self-copying and the

von Neumann style self-reproduction, await further observations. It is speculated that the

broader the analysis scope is, the more diverse reproduction modes it may encounter.

It was following the above consideration that the two h-copy-free versions of the pro-

totype were designed. There is an analogous cluster of mutants with gestation time about

half of the gestation time of the h-copy-free 28-instruction prototype, which are spec-

ulated to be cases of the degeneration corresponding to the first encountered one; they

account for approximately 6% of the viable first-step point mutants. For the h-copy-

free 27-instruction prototype as well, there is a corresponding cluster of approximately

6%. Those versions were analysed with the same enhanced analysis as the prototype did.

Within the current limited scope of observation, there was no noticeable difference from

the original prototype in this deterministic analysis framework. In a stochastic framework

as in the standard Avida, either of those h-copy-free von Neumann style self-reproducers

may or may not emerge advantageous in the Avida world.

With regards to redesigning the prototype, the work presented above is only a prelim-

inary, illustrative example. This is a wider scope to explore better or more interesting de-

sign of an ancestral von Neumann style self-reproducer (not necessarily even with the same

phenotypic structure consisting of the five segments). The proposed enhanced analysis is

applicable to them as much as to the original prototype. That being said, in the particular

case studied, the analysis covering a few mutation generations could not find immediately

non-trivial viable mutants generated from those redesigned versions of the prototype: for

example, there was no mutant with more than one distinct exponentially growing strain.

This analysis hinges upon the presumption that the mutants somehow retain the geno-

type phenotype decomposition; however, importantly, this does not necessarily hold. An

additional step has to be taken to be able to distinguish the decomposition. Implementing

it would contribute to the development of a more generic mechanism that distinguishes

reproduction modes. Results regarding gestation time showed a similar tendency to the

original prototype, indicating that there may still be a number of degenerative cases even

where the h-copy instruction does not exist. If that is the case, it is presumably because

of the structural design itself. The effect of these new versions on evolvability could be fur-

ther investigated by seeding these and running experiments over an “evolutionary” period

of time, or by detailed case study examination.

4.8 Closing Remarks

In Chapter 4, mutational analysis that was conducted for evolutionary characterisation

is described. The subtlety of self-reproduction and viability are discussed through con-

ceptually classifying strains in Section 4.2. Section 4.4 makes progress in enhancing the

existing mutational analysis, using mutants of the prototype introduced in Chapter 3 as

a model set for analysis. In it, the modification of the built-in analysis tool of Avida

introduced in Section 4.3 is described, and how the modified analysis can cover the full
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lineage of an incubated individual is explained. Further, viability quantification (fitness)

is introduced as a generic indication of potential for exponential growth. In the following

Section 4.5, the enhanced analysis was automated to be able to cover multiple steps of

mutation. Additionally, preliminary attempts of redesigning the prototype were made in

Section 4.7, and the same enhanced analysis scheme proposed in the previous sections was

applied to two versions of redesigned prototype.

The enhanced analysis tool succeeded in demonstrating a finer-grained classification of

mutants. In the case of prototype’s first-step mutants, 10% were viable. The automation

succeeded in performing multi-step mutational analysis as proposed and picking up more

evolutionarily interesting candidates among others. However, it was not actually able to

discover any particularly interesting mutant in terms of the original research motivation,

partly because of the tool’s incapability of classifying the reproduction mode and pre-

sumably essentially because of some factors inherent in the structure of the prototype.

To partially examine the design of the prototype, two alternative h-copy-free prototype

ancestors were introduced and the same enhanced analysis was applied to them. It was

demonstrated that these alternative designs exhibit mostly similar evolutionary charac-

teristics as far as this analysis tool could reveal. Both in the original prototype’s case

and in the redesigned prototypes’ cases, less than 10% of fertile first-step mutants turned

out to be putative degenerate self-copiers. At the same time, however, it is recommended

that further research in this direction (i.e. reproduction mode classification along with

von Neumann style self-reproducing ancestor design) be conducted for a more proper

understanding of the ancestral design and its effect on how it can direct behaviours on

mutational pathways.

141



Chapter 5

Conclusions and Implications

5.1 Thesis Summary

The significance of the mutable genotype-phenotype mapping of the von Neumann archi-

tecture of machine self-reproduction is introduced in Chapter 2. That is, the evolvability

of the genotype-phenotype mapping and the effect of such a mapping on the evolution

of the self-reproducer that employs it are of interest. Thus, the current research of this

thesis was concerned with: designing and seeding an instance of such a self-reproducer (in

Chapter 3); and in exploring an analysis method, proposing an analysis framework, and

demonstrating how a strain’s evolutionary characteristics can be systematically investi-

gated (in Chapter 4).

Chapter 3 describes and presents the construction of a prototype von Neumann style

ancestral self-reproducer with a genotype-phenotype mapping subject to evolution within

the particular artificial life platform Avida. As part of the investigation, the evolutionary

behaviour and dynamics of the prototype is characterised. It is clarified that mutational

proximity between a self-copying reproducer and a von Neumann style self-reproducer can

indeed be surprisingly close. It would be premature to make large-scale generalisation

from the given results; however, it can be said that it is theoretically possible for a self-

copying reproducer to give rise to a von Neumann style self-reproducer in Avida, in a

way reversing the observed process of the mutation. Although, in practice, that particular

pathway could not evolve, it serves as a proof of principle.

The discovery of the self-reproducer’s quick evolutionary degeneration into a self-copier

raises a question: How likely is it that such degeneration takes place? Accordingly, this

is one of the questions tackled in Chapter 4. Chapter 4, however, takes a more holistic

approach. Firstly, a logical exposition on strain classification and self-reproduction is laid

out in order to investigate mutant strains, focusing on a necessary condition, referred to

as viability. Then a framework where viability is quantified is proposed. Within this

framework, the first-step mutants of the prototype are examined. The investigation of

the spectrum of single-point mutants of the particular self-reproducer prototype in an

attempt to classify viable mutant candidates for evolvable genotype-phenotype mapping

is illustrated. The same analysis method was applied to some multi-step mutants for

demonstration purposes.

142



5.2. CONTRIBUTION AND CONCLUDING REMARKS

5.2 Contribution and Concluding Remarks

A prototype von Neumann style self-reproducer implemented in Avida was characterised

via an automated enhanced analysis tool. The enhanced analysis incorporates detection of

viability which is defined as potential of exponential growth, necessary for any sustained,

neo-Darwinian evolution. A finer-grained mutant classification was achieved. Theoreti-

cally, the framework is scalable and extendable for wider spectra of, and more steps of,

hypothetically possible point-mutant strains of an arbitrary organism. There were some

mutants that have a viable strain generated deterministically but “indirectly” within the

lineage. In most cases, however, seed strains or first descendant strains were the viable

ones.

Again, the original intention was to search for evolutionary elaboration, variation, or

complexification of genotype-phenotype mapping. Simply put, there are two conditions

for this: (a) that there are viable variations; and (b) that there are selectively favoured or

neutral variations. The current research was primarily about the first condition, exploring

the potential viability, and questioned what happens if one does not discount this potential.

It was investigated through a minimal model; and indeed, found unlikely to occur, at least

in this one example case. The result was based on systematic, but heuristic, investigation,

in contrast to actually running evolutionary experiments.

On the other hand, the latter condition about selection was not focused on in the

current research, so the selective performance is one appropriate topic in the future direc-

tion. While one of the current findings is that the reproduction architecture can change

(even to ones with no identifiable genotype-phenotype mapping), ultimately, it is ideal to

be able to locate genotype-phenotype mapping changes. However, even (algorithmically)

determining working components of an arbitrary mutant strain is not a trivial task. (This

situation would presumably be formally undecidable, equivalent to the halting problem,

in general.) Nonetheless, it is recommended to heuristically attempt it. The inspiration

of demonstrating evolutionary complexification of genotype-phenotype mapping has not

yet been found impossible or impractical; and the question whether viable reproduction

(self-consistency in the genotype-phenotype mapping) may be recovered deterministically

is left open.

The current research leads to improved understanding of a von Neumann style self-

reproducer in Avida from two perspectives using the hand-designed prototype ancestor:

mutational pathways and ancestral design.

5.2.1 Mutational Pathways of the Prototype

In the preliminary experiment of observing the behaviour of a prototype von Neumann

style self-reproducer in Avida, displacement of the hand-designed prototype ancestor by

a viable self-reproducer which preserves the von Neumann style architecture was not ob-

served. What was observed, in fact, was the degenerative displacement by self-copiers, not

the alteration or sophistication of the von Neumann style architecture. In other words,

no mutation of genotype-phenotype mapping, or a mutated “programmable constructor”

with a working functionality, was observed, except for loss of repertoire of unemployed

instructions. On the one hand, it signifies the loss of the decomposition of genotype and
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phenotype for the individual ancestor; but on the other hand, it signifies the loss of self-

referential logic, the loss of genotype-phenotype mapping, and the loss of the division of

labour for the lineages derived from the ancestor.

Two slightly similar taxonomic concepts were introduced: unclassified and indetermi-

nate. Unclassified strains refer to ones which have lineages untraced due to the design of

the analysis tool which arbitrarily picks up one of the two lineage paths at each division,

whereas indeterminate strains refer to ones which have lineages untraced due to a large

lineage size. The enhanced analysis succeeded in minimising the number of previously un-

classified individuals of the particular set of mutants, reducing close to zero percent. The

indeterminacy resulted from the existing minority of lineages that can potentially grow

indefinitely diverse, exhausting the memory space for storing distinct strains. Practically,

those cases are treated as exceptions and need case-by-case analysis. Though excluded for

technical reasons, it is ideally worthwhile to include those lineages as viable mutants may

still arise in such a lineage.

Analysing the first-step mutants, determinate ones can be classified as either viable or

non-viable. This finding that viable mutants account for approximately 10% of the whole

is non-trivial in its own right. The percentage can be regarded as high, in the sense that

the designed prototype has its active part whose memory image occupies more than 10%

of the whole memory image; the active part is expected to be vulnerable to a single-point

mutation as the program is coded in a more complicated manner compared to the standard

organism in Avida. On the contrary, the percentage can also be regarded as low, from the

perspective of the typical situation of Avida where an experimenter would use mutation

as the main drive of the evolution of “ancillary machinery” (which was omitted from the

prototype early in the design phase). In any case, the result urges reconsideration on the

design of the prototype for better understanding of the implementation of a von Neumann

style self-reproducer in Avida.

Naturally, the proposed type of systematic analysis suffers from intrinsic combinational

explosion. Current limitations include:

• limited generations for a lineage per incubation;

• limited size of selection of candidates from concurrent mutants;

• limited number of mutation steps covered; and

• limited mutation types other than point mutation.

Furthermore, the analysis tool simply assumes that the reproduction mode it handles is the

same von Neumann style self-reproduction architecture as the particular prototype, the

original design of which is proposed earlier. Further enhancement would at least require

some kind of mechanism for detecting the reproduction mode employed by an organism.

This is short-circuiting the process of generating mutants in the sense that it assumes the

same genotype-phenotype architecture as the prototype with the structure of the lookup

table within the phenome. Even if admitting this assumption, there is another short-circuit

where mutations are enforced to be expressed by the automation in the preparation before

incubation. Ideally, it should be strains that carry a mutation in the genome, but that
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have not expressed it, that should be incubated. That is, the analysis would be better to

take an arbitrary phenome and “attach” a corresponding genome on a case-by-case basis.

5.2.2 Ancestor Design

A single mutation can change the behaviour radically, as in the reported case of degenera-

tion, within the current system. It should be stressed that it is not reasonable to expect a

self-reproducer to acquire significant additional functionality (corresponding to the “ancil-

lary machinery”), especially when no mutation to change the organism’s size takes place.

To support the emergence of such ancillary behaviour, an effective approach may be to

enable more general mutational changes such as insertion, because the prototype initially

lacks any “spare capacity” in its memory image for ancillary machinery. This is analo-

gous to the case of typical standard self-copying ancestors in Avida studies which have

instances of the nop-A instruction at a stretch for the future evolution of computation.

Other possible approaches include: imposing a fitness function (i.e., external, or environ-

mental); or, enabling organisms to interact in a more sophisticated way. These approaches

are reminiscent of those taken by the original Avida. In other words, while the current

research of the von Neumann style self-reproduction is directed towards intrinsic potential

when instantiated in the Avida universe, a future direction of the research may reasonably

be towards extrinsic potential, or the effects of interaction with the environment or with

other individuals.

Some tendency for degeneration was expected, given that self-copiers intrinsically have

an advantage for efficiency, and become dominant once they appear in this particular

system. As the presented result is highly dependent on this advantage intrinsic to the

system, it cannot immediately be extrapolated to other in-silico platforms (much less

in-vitro or in-vivo situations). However, what was remarkable here is the finding of a

surprisingly accessible mutational pathway from the designed ancestor to the self-copier:

the composition of the memory image is changed only by two words.

It is not clear whether the degeneration to a self-copier is peculiar to the designed an-

cestor, or more generic to von Neumann style self-reproducers in Avida. Further research is

therefore recommended in the regard of their evolutionary behaviour and character. Once

again, it will be necessary to develop a method to classify a set of strains by reproduction

mode and combine it as another layer with the enhanced analysis.

More generally, a stochastic framework (as in the standard Avida) can be thought of

as evolutionary search of a kind. This is a framework that, for instance, may eventually

reveal such a mutational pathway that is unexpected (or, “novel”) from an engineering

point of view. So, though less relevantly, the direction of the current research of enhanc-

ing mutation analysis may lead to, or be beneficial for, shedding more light on novelty

search. This is of course not to deny the importance of a systematic framework for better

understanding of the evolutionary characterisation of an organism.

5.3 Future Prospects

The present research work on the implementation of a von Neumann style self-reproducing

ancestor and the associated enhanced analysis is foundational and methodological. The
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research revealed some characteristics of and problems of the design of the prototype

ancestor, and these need to be reconsidered.

Concerning the presented investigation and the proposed framework, there are two

immediate questions to be answered.

• For more effective mutation analysis: What mechanism is best for detecting the

genotype-phenotype mapping mutation and non-trivial evolution, and how can the

automated enhanced analysis be made optimal?

• For more effective ancestor design: What kind of design of a seed von Neumann style

ancestor would have non-trivial evolvability of the genotype-phenotype mapping, and

how can such an ancestor effectively be designed?

Further questions that are not particularly addressed in the current research can be put

as follows.

• For a better evolutionary understanding: What selection pressure can effectively

cause mutation and evolutionary elaboration of the genotype-phenotype mapping?

• For a general understanding: What extrapolation, generalisation and applications

can be speculated from this line of research, outside Avida?

5.3.1 More Effective Mutation Analysis

The mutation analysis could be enhanced with a capability for deeper and large-scaled

viability classification, realised with more computational resource. One straightforward

approach is to apply the proposed analysis for more mutation steps. Heuristics must be

gained about the scale of analysis (i.e. the number of mutational steps) and how to prune

mutants (i.e. the size of selection for subsequent step). Assume that roughly m strains

can be analysed per hour, and that s candidates at the end of each step are selected for

the subsequent analysis. Then, the number of strains to be analysed by the n-th step

can be given as:
∑n

g=0 s
g; and the analysis time in hours as:

∑n
g=0 s

g/m. (Let m = 2,

s = 2, and n = 10 for example, and analysis will take more than 42 days.) The method

of this enhanced analysis may be a costly but effective way to narrow down non-trivial

candidates, or to discard non-viable (hence trivial) candidates.

Moreover, longer evolutionary runs are preferable to get more complete profiles of

mutants. Even looking at a first few generations of fertile mutants would be enough for

the preliminary purpose of judging the mutational effect. In doing so, it would be more

efficient presumably to run multiple Avida simulations in parallel since there are more

than three hundred memory locations in the genome and there are nearly thirty kinds

of instructions in the instruction set from which the after-mutation memory content are

chosen. Besides, enabling parallel simulations will certainly speed up Avida experiments in

general given appropriate hardware support. These are assuming single-point mutations,

but for a more realistic analysis, various mutation types should be introduced.

As mentioned in Chapters 2 and 3, Avida presupposes computation universality in-

formally. As long as this holds, to say that there must be paths to organisms (machines)

with some arbitrary complexity in this Avida universe is valid; but the point here is that
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they are not necessarily accessible within a reasonable time or scale or the neo-Darwinian

selection.

Steps for Reproduction Mode Classification

To discuss steps for reproduction mode identification and classification, it must be reiter-

ated that in the development of the enhanced analysis tool, it was blindly assumed that

the von Neumann style self-reproduction is still present in each self-reproducer (as indi-

cated in Chapter 4). The analysis will be improved if, for any given self-reproducers, it can

automatically distinguish von Neumann style self-reproducers from self-copiers. Although

it is fundamentally difficult to algorithmically determine reproduction modes (as clarified

both in Chapters 3 and 4), a first few steps towards such capability can be heuristically

taken by:

• measuring gestation time and size,

• constructing an execution profile (for the whole program),

• constructing an execution profile of the h-copy instruction (if present),

• constructing an execution profile of the read instruction, and

• constructing an execution profile of the write instruction.

The combination of gestation time and size crudely suggests the superficial efficiency

of self-reproduction. This method may suggest which mutants are self-copiers, which

are generally more efficient than having decoding process, though this is not a definitive

indication. An execution profile for the whole program of a strain helps understand how

the strain is structurally segmented. An execution profile of the h-copy instruction is

indicative of the likelihood that the self-reproducer is a self-copier that utilises the h-copy

instruction. If an organism turns out to be a self-reproducer and to use the h-copy

instruction even once, it may be a self-copier like the reported one, unless it has some

preventive mechanism (moreover, having such a mechanism may or may not increase the

size of the organism). If a self-reproducer has a decode process, an execution profile of

the read instruction will indicate the use of the read instruction, since there is no other

instruction in the instruction set used that can read anything from anywhere in the memory

image. An execution profile of the write instruction may provide useful information when

combined with other execution profiles: if it is found that there are instances of the write

instruction and of the h-copy instruction, then the self-reproducer may have copy and

decode segments; and if, in addition, the write instruction is used as many times as the

h-copy instruction, then the reproduction mode may be similar to the original prototype.

Simply put, the execution of the instructions h-copy, read and write, is key to re-

production, so they naturally deserve attention during reproduction mode detection. The

h-copy and read instructions are the ones that can read from an arbitrary location when

executed, while the h-copy and write instructions are the ones that can write into an

arbitrary location when executed. More heuristics might be obtained for generalisation of

the relationship between the observable reproduction mode and these attributes through

case studies of currently available candidates, looking into trace files produced by the
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original Avida analysis tool. However, any single such attribute does not guarantee the

reproduction mode, so it may not be straightforward to automate the analysis. Detecting

the execution solely of the h-copy instruction to eliminate self-copiers may be an easy first

step. This is, at most, heuristic, because not much is known yet about different repro-

duction modes in Avida comprehensively. With more empirical studies on this, a unifying

view may be obtained.

5.3.2 More Effective Ancestor Design

The minimality or optimality (in terms of size and the number of steps) of the hand-

designed prototype ancestor is unknown. Nonetheless, as described, the prototype was

designed so that it has the constructor, the copier, and the control (A, B and C ) and is

without the ancillary machinery (D) part. So it should be reasonably close to minimal

and optimal for the design, considering the steps it is supposed to take, compared to the

standard Avida ancestor. If the ancestor is to be redesigned, a different initial genotype-

phenotype mapping may be selected. Importantly, it may be necessary to redesign (and

probably enrich) the instruction set to be used, since the default instruction set was

tailored more for observing particular biologically-inspired emergent phenomena. That is,

there seems to be some arbitrariness in the choice of the 26 instructions in the default

instruction set, and one cannot tell a priori whether these are all equally essential for

whatever purposes (e.g. self-reproduction) they are intended for. Furthermore, ideas

for a more human-tractable design scheme, something suitable for manual programming,

should be considered and tested, because ancestors cannot necessarily be automatically or

algorithmically designed easily, and may all have to be hand-designed. (In such cases, one

needs to be aware whether and how much the Avida system is altered from the original.

There may be an argument for building some alternative platform from scratch, but that

is out of the current purview). A good design would be such that would not necessarily

sacrifice evolvability over human-programmability. By extension, there would be a role for

some higher level language “compiler”-type tool to support human programmers in such

a line of research.

Degeneration experienced by the prototype can be regarded as fragility, while it can

also be regarded as adaptation in the Avida world in a sense. In any case, in terms of

the purpose to investigate the von Neumann style self-reproduction architecture in an

evolutionary context, such degeneration is one problem to be overcome. It was partly

overcome by designing the h-copy-free versions of the prototype. The first of these was

initially without any h-copy instruction to execute, albeit was still accessible via mutation.

The second excluded the h-copy instruction instruction completely from the instruction

set. Compared to the prototype, at least, the ease of self-copying based on the h-copy

instruction is impaired in both versions (to a greater extent in the latter version). For

better characterisation, these versions would need to be analysed for more generations, as

well as with a wider scope. The effectiveness can also be verified by seeding either or both

of them together with the original prototype in the standard Avida over sufficient time

steps for sufficient duration. It will clarify whether degeneration is peculiar to the original

prototype employing h-copy, or is essentially generic to the design of the von Neumann

architecture of self-reproduction. Where degeneration is of less frequency, the ancestral
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and derived von Neumann style self-reproducers (more likely) will survive and evolve to

be observed.

The current research aimed towards the evolution of genotype-phenotype mapping, so

the initial choice of genotype-phenotype mapping was crucial. This is likely to hold in

general, as the evolvability probably to a certain extent hinges on the initial mapping, at

least in the sense that the initial condition generally matters in evolutionary dynamics.

The lookup table of the current design is nothing but one of all possible implementations of

translation. Moreover, the lookup table does not have to be a one-to-one substitution code;

this was just for the relative simplicity and ease of reverse engineering and lineage analysis.

Alternatively, it is conceivable that a mapping translates multiple words into one word, in

a similar way to the way in which codons of multiple nucleotides translate into one amino

acid. In that case, genotype and phenotype would be of different sizes. Also, the relative

positioning of genotype and phenotype does not have to be in the order of the prototype,

or even fixed. The copying process could take place prior to the decoding process, and the

decoding source could be the (already copied) offspring’s genome, rather than the parent’s

genome. This would eliminate the typical 1 generation delay in mutations being expressed

(as can be seen in Figure 3.11 in Chapter 3).

Another possible approach of redesigning the prototype is to decouple the segments

(the phenome active segment, the phenome passive segment, and the genome) into separate

components, with each component equally undergoing evolutionary process. By way of

contrast, the original prototype was designed to have all the segments contiguous in a

single memory. (In this sense, the design of the prototype can be said to depend on the

coreworld type of system architecture.) Any design would be compatible with the aim,

as long as genotype-phenotype decomposition is retained and the genotype-phenotype

mapping is designed to be exposed to mutations in some manner.

As mentioned in the motivation of Section 4.7 in Chapter 4, an approach to prevent

degeneration in the standard Avida is conceivable: allocate the CPU time regardless of

the organism size or the reproduction rate, that is, allow the organisms’ reproduction on a

one-by-one basis (skipping infertile organisms by judging with some preset cut-off time).

This approach would offset the advantage of self-copiers (which are faster), even though it

may result in relatively substantial runtime as faster reproducers have to wait for slower

reproducers. Since the original Avida system does not exactly have such a world mode

or a command, some modification at the source code level would be required in order to

realise this type of CPU time allocation.1

At any rate, modifying the Avida system beyond some extent may call instead for

developing a totally new system. However, with such a level of modification into the

Avida world’s operating system, it is questionable if it can still reasonably be called Avida.

Whether the research is exclusively designed for Avida or not, any radical modification of

1There is a configuration variable that may be useful for this purpose (BASE MERIT METHOD). When this
variable is set to 0, every organism gets a constant base merit independent of size. Merit is a value that
signifies a relative speed of an organism’s CPU. Enabling this method may be an option to equalise the rate
of execution, but not exactly allowing organisms of different sizes to finish executing one by one. Setting
the variable SLICING METHOD to 0 so as to give some large constant evenly to every organism might be
similarly a useful idea, but it would require some heuristics in order to determine how large the constant
should exactly be, and it can potentially be computationally costly by giving the same large amount of
CPU time to shorter ones.
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the system itself should be considered and applied with clear and explicit motivation.

5.3.3 Better Evolutionary Understanding

In the previous two subsections, further investigations both of analysis methods for better

characterisation of whatever reproducers, and of design possibilities of von Neumann style

self-reproducers, are recommended. Those lines of research will help reveal what potential

the von Neumann architecture (as a reproduction mode) has, and help clarify what muta-

tional pathways give rise to what kind of unprecedented, non-trivial reproduction modes

(or, more generally, characteristics or behaviours).

Again, apart from the static, deterministic approach of designing the ancestor and the

enhanced analysis, it may be worthwhile to conduct dynamic, stochastic Avida experi-

ments in answering those questions. In such an experiment, an ancestor is seeded and

run over generations for a number of times, just as in the standard Avida experiments.

Mutants of the ancestor that become dominant are ones that deserve the deterministic

mutation analysis or a further evolutionary observation. More generally speaking, in such

an evolutionary context, Popper (1972) argues that “the hopeful behavioural monster”

(as opposed to the anatomical monster) is not necessarily likely to be lethal, and that it

can be a significant change that gives rise to a novel evolutionary pathway by creating a

new niche where subsequent mutations that are otherwise detrimental are now beneficial.

The findings of the current investigation suggest that interestingly there are estimated to

be diverse reproduction modes among the mutationally close strains categorised as viable.

Depending on the stochastic variables of the world in which they are situated, it is possi-

ble that different reproduction modes (different von Neumann style self-reproducers) may

become dominant.

In order to observe a novel, interesting feature emerging or evolving, it might be

necessary to focus not only on individuals separately, but also collectively. The standard

Avida allows local interaction, as in replacing a neighbouring node with an offspring; it

can be configured so that all the organisms are neighbours and can be replaced by any

other organism’s offspring (analogous to a stirred petri dish). Avida is (whether explicitly

or implicitly) fairly configurable even right out of the box, so that organisms have energy

exchange, sexual reproduction, and so on, which are features that involve interaction

with other individuals. However, at any rate, fine-tuning the manner of (or the level

of) the interaction of organisms in the arena of Avida may be effective in order to shed

light on collective style of self-reproduction. As mentioned in Chapter 4, there may be a

reproduction mode of collective (autocatalytic) self-reproducers, which would require to

define what “collective von Neumann style self-reproduction” means.

As suggested in the existing Avida literature where self-copier organisms can evolve

into those with higher complexity (e.g. higher computational ability), the reproduction

mode of self-copying has significant evolvability in its own right. In studies where a fitness

function plays a central role, the interaction with the environment (typically in the form

of calculation of input/output numbers from/to the environment) matters. This would be

more relevant when ancillary machinery is taken into account. Investigation of ancillary

machinery in the initial design contributing to reproduction may be another interesting

topic. However, for the next immediate steps of the current line of research, a redesigned
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ancestor does not necessarily have to have ancillary machinery (though it might emerge in

the course of evolution), since the current research is focused more on the core evolution

exhibited by, or the potential of, one design of von Neumann style self-reproducers. It

is still worth revisiting the self-reproduction using von Neumann’s architecture, as the

potential of the von Neumann style self-reproducer in a computational world has not

been fully revealed. Despite the analysis being unable to identify von Neumann style

self-reproducers of particular interest (much less more arbitrary reproduction modes), a

possibility of mutational pathways where a genotype-phenotype mapping evolves has not

been denied as trivial.

5.3.4 For a General Understanding: Speculative Remarks

On top of those above-mentioned future directions, there are further and associated (and

somewhat more abstract and higher-level) questions posed by the current research within

Avida as below:

• What can be extrapolated from the findings in Avida to other coreworld type or

non-coreworld type platforms?

• What conditions might facilitate or encourage the decomposition into genotype and

phenotype, or a von Neumann style self-reproducer, to emerge spontaneously?

• What high-level or complex features of (self-)reproduction can be achieved as a result

of evolved genotype-phenotype mapping?

Extrapolation beyond Avida?

Among other program-based artificial life platforms, it has been demonstrated that it is

possible to implement in Tierra such a von Neumann style self-reproducer as the prototype

presented in this thesis (Baugh & McMullin, 2012). In the course of evolution, the system

seeded with such an ancestor can produce pathological constructors, which are small-sized

offspring that can lead to ecological collapse by spreading out quickly and displacing the

working ancestor. In Avida this would not happen as each individual organism residing in

a cell cannot read and parasitically rely on another’s memory content, unless considering

switching on the configurable injection feature or allowing parasitism. This phenomenon

may be classified in general as a type of degeneration (as in the degeneration presented

in Chapter 3) induced from the design of the von Neumann style self-reproducer relative

to the system structure. At least reconsidering the design and redesigning it would be

worthwhile in order to effectively protect self-reproducers equipped with the architecture

in the world of the system.

Regarding deterministic analysis of mutational pathways, it is arguably theoretically

possible to develop such a tool for Tierra; but it is more laborious to implement a similar

mechanism to the presented tool simply because the system does not originally come with

a basic analysis tool to start with. Moreover, as implied, the Tierra system, without cells

that separate individual organisms as in Avida, presumes the possibility of interaction

of organisms in the soup by means of reading and utilising one another. Unlike Avida,

where mutants that can exist in the standard Avida world are ones that are theoretically
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predictable and classifiable via a deterministic analysis and vice versa, it is questionable

whether a deterministic characterisation of mutational pathways more effectively adds

to describing the general Tierra dynamics, where any individual organisms can read one

another and can give rise to new individuals, limitlessly. Thus, a deterministic analysis of

mutational pathways in Tierra might have to be something that is closer to an analysis of

soup configuration as a whole rather than of individual organisms.

Apart from the above platform, it is noteworthy that in the context of another plat-

form, Stringmol (mentioned in Subsection 2.2.3 in Chapter 2 in the context of artificial

chemistry), Nellis & Stepney (2011) argue about the importance of “embodying” the copy-

ing process. Although it is not appropriate to use the term “embodiment” of copying in

Avida (since it would be confusing to say embodying some process in a virtually simulated

world of virtual artificial-life organisms), here the concept can probably be understood as

“decomposition” of the copying process. Nellis and Stepney propose “ALife organisms

should not blindly use the copy operations provided by programming languages” and re-

gard copying as “an embodied process, rather than as a computational result”. They

suggest that a decomposed copying process should be used for more evolvability within

such an artificial life framework as Stringmol, instead of a stochastic copying process. This

is reminiscent of the discussion on the use of the h-copy instruction (see Chapters 3 and

4) where the addition of the read and write instructions is justified, saying that although

it did not have to necessarily be these exact instructions (read and write), it was rec-

ommended to include somewhat lower-level (hence somewhat more flexible but perhaps

more primitive in a sense) instruction than the h-copy instruction in the instruction set.

The inclusion of these was originally for the purpose of easing the process of decoding,

but it might have also contributed as one of the factors to increasing evolvability. That

being said, it cannot be concluded yet whether it is the case; with respect to this, further

investigation on evolvability within Avida would be necessary.

Emergence of Genotype and Phenotype?

Emergence of the von Neumann style self-reproduction architecture gives another point

of view to the research. Since it is through one step of a single-point mutation that the

designed von Neumann style ancestor became a self-copier (as demonstrated in Chapter 3),

it is one step as well, conversely, for that particular self-copier to become the von Neumann

ancestor. If such a self-copier is seeded in the Avida world and hit by such a mutation

as to reverse the degeneration (while one has to acknowledge that perturbations affecting

a genotype-phenotype mapping may be genetically irreversible in general), this may be

called emergence of a von Neumann self-reproducer. Of course, the probability that such a

self-copier (as degenerated from the von Neumann style ancestor) configuration emerges in

the first place, when starting from a standard (far shorter, or far less complex) self-copying

ancestor would be vanishingly small. Still, it is interesting to question whether a self-copier

can in general give rise to a von Neumann style self-reproducer, or what selection pressure

might cause such a transformation. As far as a realistic scenario is concerned, it can be

speculated that such emergence would occur segment by segment, rather than through

randomly accumulated mutations.

Loosely, it can be conjectured that the concept of “division of labour” may be a
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key factor to understanding the emergence of the reproduction architecture based on

genotype-phenotype mapping (if it does not emerge spontaneously). While the evolution

of the decomposition of genotype and phenotype may or may not be explained by the

evolutionary potential that it can open, the emergence of it is also intriguing, as the

genotype-phenotype mapping is self-referential by nature (imposing a “chicken-or-the-egg”

kind of causality dilemma: genotype gives rise to phenotype that in turn gives rise to the

genotype). As far as the prima facie structure is concerned, it would be best explained

by the division of labour, because the decomposition is between the (functionally) active

part and the (functionally) passive part of von Neumann’s architecture.

In molecular biology, as introduced in Section 2.3, the interrelationship between DNA,

RNA and proteins is said to be as a result of the division of labour, and, given these three

actors, it evolved as there is certain advantageous robustness in a changing milieu. That

advantage resonates with the advantage derived from different levels of mechanisms such as

error correction and horizontal gene transfer (such as in genetic recombination and sexual

reproduction). Macroscopically, those mechanisms are believed to have evolved as being

advantageous by providing stability and/or by promoting diversity in adapting to radically

changing environments and once such mechanisms appear, they start evolving themselves

at a new level; for example, in a general biological context, sexual reproduction can be

interpreted as a mechanism that emerges as a result of dividing the labour of reproduction,

and resulting sexes with different and interdependent functions then start evolving, for

example, sexual dimorphism, and so forth. For example, see Misevic et al. (2006) for this

line of research in the context of Avida, and Sterelny & Griffiths (2012) for more general

discussion in the wider context of evolutionary biology. Thus, considering the potential

advantages of dividing a particular labour and how it can occur, may be an effective

approach to exploring possible potential of the von Neumann architecture (e.g., further

specialising the divided labour and/or preserving the division and the specialisation).

Evolution by Means of Genotype and Phenotype?

In this thesis, an implementable design of the architecture and the analysis method of

the evolutionary potential of the architecture in a particular artificial life platform, Avida,

are explored and proposed. The whole thesis is a part of a research programme that

may reinforce, or add to, existing evolutionary theories and studies, especially in terms of

the reproduction architecture characterised by the decomposition of genotype and pheno-

type. Therefore, technical and social insights or applications, if any, will be mainly gained

through an enriched model of evolution based on the genotype-phenotype self-reproduction

architecture, examples of which include: evolution of genetic codes (symbol systems, or

communication, more generally); evolution of different levels of systems (immune systems

such as Stepney et al. (2005), or more generally, homeostatic systems); or evolution of

brains and consciousnesses. An example of this line of research about potential of physical

symbol systems is grounded in a model of paired evolutionary arenas by Fernando (2013).

Systems may require a key of physical symbols to attain evolutionary open-endedness.

Similar points are made by Rocha (2001), again emphasising the evolutionary potential of

the von Neumann style architecture of self-reproduction.

These domains are expected to have different evolutionary dynamics as they define
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the notion of “individuality” and “self” in their own arenas differently, hence a different

framework of reproduction modes among them (which may or may not depend on the

genotype-phenotype separation). Relevant to this, technical benefits from further under-

standing of evolution based on genotype and phenotype may include improvements of

novelty search (e.g. Lehman & Stanley, 2011), as studying that reproduction architecture

involves studying diversity and non-trivial, open-ended evolutionary features.

5.4 Final Words

The motivation of the research covered in this thesis originated from the ultimate objective

of observing the spontaneous evolution or any growth of complexity via the evolution of

genotype-phenotype mapping. The provided result from characterising the implemented

von Neumann style prototype ancestral self-reproducer is contrary to the elaboration of

the mapping through evolution, but it was indeed indicated that mutational pathways of

such a self-reproducer are clearly still worth exploring, with a more sophisticated method

of analysing viability. Despite the current research being essentially foundational and

preliminary, the characterisation of an instance of von Neumann style self-reproducer and

the development of enhanced analysis tools provide a substantial contribution to the field.

That is, this research helps reveal what tendency and deficiency the particular design

can have, and how such a self-reproducer can be better explored within, and potentially

outside of, Avida.
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Appendix A

Phenome Design and Mechanism

The mechanism of the hand-designed phenome segment of the prototype is described line

by line. For legibility, the description uses some abbreviations for the values stored in

the stack: “G” for genome start address; “GL” for remaining length; “LT” for lookup

table start address; “l” for label size; “WL” for whole length; “c” for constant zero for

comparison; “d” for relative source address in parent genome; “D” for relative destination

address in offspring (all of which are explained in context in the code listing below). For the

detailed step-by-step state transition of the prototype, refer to the actual (“old”-format)

trace file provided at: http://alife.rince.ie/th phd 2014/. Refer to the appendix of

the article by Ofria & Wilke (2004) for more comprehensive explanation on the behaviours

of instructions.

Listing A.1: Decode Preparation

1 h-alloc # Allocate space for child. # AX:Whole Length (WL)

2 h-search # Locate the start of Lookup Table (LT). # BX:distance to LT,CX:labelsize

(l)

3 nop -A # Label Alpha.Looks for nop -B,nop -C.

4 nop -B #

5 push # Push AX:WL.(Stack -0:WL ,c,0 ,..)(c==0: for comparison)

6 nop -A #

7 push # Push CX:l.(Stack -0:l,WL,c,0,..)

8 nop -C #

9 mov -head # Move Read Head to LT.

10 nop -B # (Read Head)

11 get -head # Get CX:LT

12 nop -B # (of Read Head)

13 push # Push CX:LT.(Stack -0:LT ,l,WL,c,0,..)

14 nop -C #

15 h-search # Locate the start of Genome. # BX:d to G,CX:labelsize

16 nop -A # Label Beta.Looks for nop -B,nop -A.

17 nop -C #

18 mov -head # Move Read Head to G.

19 nop -B #

20 get -head # Get CX:G.AX:WL ,BX:d to G.

21 nop -B # (of Read Head)

22 swap # AX:d to G,BX:WL ,CX:G

23 nop -A # between AX and BX

24 sub # BX:GL (=BX -CX=WL-G) (=" Length to Go before Genome ")

25 push # Push BX:GL.(Stack -0:GL ,LT,l,WL ,c,0 ,..)

26 swap # AX:d to G,BX:G,CX:GL

27 push # Push BX:G.(Stack -0:G,GL,LT ,l,WL ,c,0 ,..)

28 h-search # Set Flow Head to mark the start of the loop. # BX:0,CX:0

A1
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Listing A.2: Decode Loop

29 pop # Get G and d,to read word into CX. Pop BX:G.(Stack -0:GL ,LT,l,WL,c,0,..)

30 push # Push BX:G.(Stack -0:G,GL,LT ,l,WL ,c,0 ,..)

31 swap -stk # Stack -1 acitive .(Stack -1:d,D,0,..) (D=" Destination in daughter" used

later)

32 pop # Pop CX:d.(Stack -1:D,0,..) (= distance from G)

33 nop -C #

34 push # Push CX:d.(Stack -1:d,D,0,..)

35 nop -C #

36 add # BX:G+d,CX:d

37 read # Read one word at BX:G+d,then CX:word.

38 pop # BX:d.(Stack -1:D,0,..)

39 inc # BX:d++

40 push # BX:d.(Stack -1:d,D,0,..)

41 swap -stk # Get LT at BX so as to read word ’ (word translated) into CX # Stack -0

active

42 pop # Pop BX:G.(Stack -0:GL,LT ,l,WL ,c,0 ,..)

43 swap -stk # Stack -1 active

44 push # Push BX:G.(Stack -1:G,d,D,0 ,..)

45 swap -stk # Stack -0 active

46 pop # BX:GL.(Stack -0:LT,l,WL,c,0,..)

47 swap -stk # Stack -1 active

48 push # Push BX:GL.(Stack -1:GL ,G,d,D,0 ..)

49 swap -stk # Stack -0 active

50 pop # Pop BX:LT.(Stack -0:l,WL ,c,0 ,..)

51 push # Push BX:LT.(Stack -0:LT ,l,WL,c,0,..)

52 add # BX=LT+word ,CX:word

53 read # Read one word at BX:LT+word ,then CX:word ’

54 swap -stk # Get D at BX. (Preprocess for write) # Stack -1 active

55 pop # Pop BX:GL.(Stack -1:G,d,D,0,..)

56 swap -stk # Stack -0 active

57 push # Push BX:GL.(Stack -0:GL ,LT,l,WL ,c,0 ,..)

58 swap -stk # Stack -1 active

59 pop # Pop BX:G.(Stack -1:d,D,0 ,..)

60 swap -stk # Stack -0 active

61 push # Push BX:G.(Stack -0:G,GL,LT ,l,WL ,c,0 ,..)

62 swap -stk # Stack -1 active

63 pop # Pop BX:d.(Stack -1:D,0,..)

64 swap -stk # Stack -0 active

65 push # Push BX:d.(Stack -0:d,G,GL,LT,l,WL,c,0,..)

66 swap -stk # Stack -1 active

67 pop # Pop BX:D.(Stack -1:0 ,..)

68 swap -stk # Get WL at AX. (Preprocess for write). # Stack -0 active

69 pop # Pop AX:d.(Stack -0:G,GL,LT,l,WL,c,0,..)

70 nop -A #

71 swap -stk # Stack -1 active

72 push # Push AX:d.(Stack -1:d,0,..)

73 nop -A #

74 swap -stk # Stack -0 active

75 pop # Pop AX:G.(Stack -0:GL,LT ,l,WL ,c,0 ,..)

76 nop -A #

77 swap -stk # Stack -1 active

78 push # Push AX:G.(Stack -1:G,d,0,..)

79 nop -A #

80 swap -stk # Stack -0 active

81 pop # Pop AX:GL.(Stack -0:LT,l,WL,c,0,..)

82 nop -A #

83 swap -stk # Stack -1 active

84 push # Push AX:GL.(Stack -1:GL ,G,d,0,..)

85 nop -A #

86 swap -stk # Stack -0 active

87 pop # Pop AX:LT.(Stack -0:l,WL ,c,0 ,..)

88 nop -A #
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89 swap -stk # Stack -1 active

90 push # Push AX:LT.(Stack -1:LT ,GL,G,d,0,..)

91 nop -A #

92 swap -stk # Stack -0 active

93 pop # Pop AX:l.(Stack -0:WL,c,0,..)

94 nop -A #

95 swap -stk # Stack -1 active

96 push # Push AX:l.(Stack -1:l,LT,GL ,G,d,0,..)

97 nop -A #

98 swap -stk # Stack -0 active

99 pop # Pop AX:WL.(Stack -0:c,0,..)

100 nop -A #

101 push # Push AX:WL.(Stack -0:WL ,c,0 ,..)

102 nop -A #

103 write # Write CX:word ’ at AX+BX:WL+D.

104 inc # D++.(D=" Destination in daughter ")

105 swap -stk # Stack -1 active

106 pop # Pop CX:l.(Stack -1:LT,GL ,G,d,0,..)

107 nop -C #

108 swap -stk # Stack -0 active

109 push # Push CX:l.(Stack -0:l,WL,c,0,..)

110 nop -C #

111 swap -stk # Stack -1 active

112 pop # Pop CX:LT.(Stack -1:GL,G,d,0 ,..)

113 nop -C #

114 swap -stk # Stack -0 active

115 push # Push CX:LT.(Stack -0:LT ,l,WL,c,0,..)

116 nop -C #

117 swap -stk # Stack -1 active

118 pop # Pop CX:GL.(Stack -1:G,d,0,..)

119 nop -C #

120 swap -stk # Stack -0 active

121 push # Push CX:GL.(Stack -0:GL ,LT,l,WL ,c,0 ,..)

122 nop -C #

123 swap -stk # Stack -1 active

124 pop # Pop CX:G.(Stack -1:d,0,..)

125 nop -C #

126 swap -stk # Stack -0 active

127 push # Push CX:G.(Stack -0:G,GL,LT ,l,WL ,c,0 ,..)

128 nop -C #

129 swap -stk # Stack -1 active

130 pop # Pop CX:d.(Stack -1:0 ,..)

131 nop -C #

132 push # Push BX:D.(Stack -1:D,0,..)

133 push # Push CX:d.(Stack -1:d,D,0,..)

134 nop -C #

135 swap -stk # Get c at CX. (Preprocess for comparison) # Stack -0 active

136 pop # Pop CX:G.(Stack -0:GL,LT ,l,WL ,c,0 ,..)

137 nop -C #

138 swap -stk # Stack -1 active

139 push # Push CX:G.(Stack -1:G,d,D,0 ,..)

140 nop -C #

141 swap -stk # Stack -0 active

142 pop # Pop CX:GL.(Stack -0:LT,l,WL,c,0,..)

143 nop -C #

144 swap -stk # Stack -1 active

145 push # Push CX:GL.(Stack -1:GL ,G,d,D,0 ,..)

146 nop -C #

147 swap -stk # Stack -0 active

148 pop # Pop CX:LT.(Stack -0:l,WL ,c,0 ,..)

149 nop -C #

150 swap -stk # Stack -1 active

151 push # Push CX:LT.(Stack -1:LT ,GL,G,d,D,0,..)

A3



152 nop -C #

153 swap -stk # Stack -0 active

154 pop # Pop CX:l.(Stack -0:WL,c,0,..)

155 nop -C #

156 swap -stk # Stack -1 active

157 push # Push CX:l.(Stack -1:l,LT,GL ,G,d,D,0 ,..)

158 nop -C #

159 swap -stk # Stack -0 active

160 pop # Pop CX:WL.(Stack -0:c,0,..)

161 nop -C #

162 swap -stk # Stack -1 active

163 push # Push CX:WL.(Stack -1:WL ,l,LT,GL ,G,d,D,0,..)

164 nop -C #

165 swap -stk # Stack -0 active

166 pop # Pop CX:c.(Stack -0:0 ,..)

167 nop -C #

168 push # Push CX:c.(Stack -0:c,0,..)

169 nop -C #

170 swap -stk # Get GL at BX (Preprocess for comparison) # Stack -1 active

171 pop # Pop BX:WL.(Stack -1:l,LT ,GL,G,d,D,0,..)

172 swap -stk # Stack -0 active

173 push # Push BX:WL.(Stack -0:WL ,c,0 ,..)

174 swap -stk # Stack -1 active

175 pop # Pop BX:l.(Stack -1:LT,GL ,G,d,D,0,..)

176 swap -stk # Stack -0 active

177 push # Push BX:l.(Stack -0:l,WL,c,0,..)

178 swap -stk # Stack -1 active

179 pop # Pop BX:LT.(Stack -1:GL,G,d,D,0,..)

180 swap -stk # Stack -0 active

181 push # Push BX:LT.(Stack -0:LT ,l,WL,c,0,..)

182 swap -stk # Stack -1 active

183 pop # Pop BX:GL.(Stack -1:G,d,D,0,..)

184 dec # BX:GL --.( Decrement as one word is read and written)

185 swap -stk # Stack -0 active

186 push # Push BX:GL.(Stack -0:GL ,LT,l,WL ,c,0 ,..)

187 swap -stk # Prepare for the next loop # Stack -1 active

188 pop # Pop AX:G.(Stack -1:d,D,0 ,..)

189 nop -A #

190 swap -stk # Stack -0 active

191 push # Push AX:GL.(Stack -0:G,GL,LT,l,WL,c,0,..)

192 nop -A #

193 if-n-equ # Branch. # Compare BX:GL to CX:c.Do the next and loop back if BX not= CX

.(while GL >0).

194 mov -head # If BX=CX.(when GL=0),onto the next phase. # AX:GL,BX:GL,CX:c.

Listing A.3: Copy Preparation

195 pop # Get a new GL by doing WL-G. # CX:G.(Stack -0:GL ,LT,l,WL,c,0,..)

196 nop -C #

197 swap -stk # Stack -1 active

198 push # CX:G. (Stack -1:G,d,D,0,..)

199 nop -C #

200 swap -stk # Stack -0 active

201 pop # BX:GL.(Stack -0:LT,l,WL,c,0,..)

202 pop # AX:LT.(Stack -0:l,WL,c,0,..)

203 nop -A #

204 swap -stk # Stack -1 active

205 push # AX:LT.(Stack -1:LT,G,d,D,0,..)

206 nop -A #

207 swap -stk # Stack -0 active

208 pop # AX:l.(Stack -0:WL ,c,0 ,..)

209 nop -A #

210 swap -stk # Stack -1 active
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211 push # AX:l.(Stack -1:l,LT ,G,d,D,0,..)

212 nop -A #

213 swap -stk # Stack -0 active

214 pop # AX:WL.(Stack -0:c,0,..)

215 nop -A #

216 push # AX:WL.(Stack -0:WL,c,0,..)

217 nop -A #

218 swap # AX:GL,BX:WL,CX:G

219 nop -A #

220 sub # AX:WL-G (=GL)

221 nop -A #

222 swap -stk # Stack -1 active

223 pop # BX:l.(Stack -1:LT ,G,d,D,0 ,..)

224 swap -stk # Stack -0 active

225 push # BX:l.(Stack -0:l,WL ,c,0 ,..)

226 swap -stk # Stack -1 active

227 pop # BX:LT.(Stack -1:G,d,D,0,..)

228 push # AX:GL. (Stack -1:GL,G,d,D,0 ,..)

229 nop -A #

230 push # BX:LT.(Stack -1:LT,GL,G,d,D,0,..)

231 set -flow # Set Read Head at G.AX:GL ,BX:LT,CX:G # Set the Flow Head at CX:G.

232 mov -head # Move the Read Head to G.

233 nop -B # Read Head

234 swap -stk # Set Write Head at WL+G. # Stack -0 active

235 pop # BX:l.(Stack -0:WL ,c,0 ,..)

236 swap -stk # Stack -1 active

237 push # BX:l.(Stack -1:l,LT ,GL,G,d,D,0,..)

238 swap -stk # Stack -0 active

239 pop # BX:WL.(Stack -0:c,0,..)

240 push # BX:WL.(Stack -0:WL,c,0,..)

241 swap # AX:GL,BX:G,CX:WL

242 add # CX:WL+G

243 nop -C # (Sum into CX)

244 set -flow # Set the Flow Head at CX:WL+G.

245 mov -head # Move the Write Head to WL+G where Flow Head is at.

246 nop -C # (Write Head)

Listing A.4: Copy Loop

247 h-search # Mark the start of the loop.AX:GL(debris),BX:0,CX:0. # *(Stack -0:WL,c

,0,..)(Stack -1:l,LT ,GL,G,d,D,0,..)

248 h-copy # Copy a word from Read Head to Write Head; inc both.

249 swap -stk # Get GL into BX and decrement. # Stack -1 active

250 pop # BX:l.(Stack -1:LT ,GL,G,d,D,0,..)

251 swap -stk # Stack -0 active

252 push # BX:l.(Stack -0:l,WL ,c,0 ,..)

253 swap -stk # Stack -1 active

254 pop # BX:LT.(Stack -1:GL,G,d,D,0,..)

255 swap -stk # Stack -0 active

256 push # BX:LT.(Stack -0:LT,l,WL ,c,0,..)

257 swap -stk # Stack -1 active

258 pop # BX:GL.(Stack -1:G,d,D,0,..)

259 dec # BX:GL-- as a counter

260 push # BX:GL.(Stack -1:GL,G,d,D,0,..)

261 swap -stk # Get c into CX. # Stack -0 active

262 pop # CX:LT.(Stack -0:l,WL,c,0,..)

263 nop -C #

264 swap -stk # Stack -1 active

265 push # CX:LT.(Stack -1:LT,GL,G,d,D,0,..)

266 nop -C

267 swap -stk # Stack -0 active

268 pop # CX:l.(Stack -0:WL ,c,0 ,..)

269 nop -C #
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270 swap -stk # Stack -1 active

271 push # CX:l.(Stack -1:l,LT ,GL,G,d,D,0,..)

272 nop -C #

273 swap -stk # Stack -0 active

274 pop # CX:WL.(Stack -0:c,0,..)

275 nop -C #

276 swap -stk # Stack -1 active

277 push # CX:WL.(Stack -1:WL,l,LT ,GL,G,d,D,0,..)

278 nop -C #

279 swap -stk # Stack -0 active

280 pop # CX:c.(Stack -0:0 ,..)

281 nop -C #

282 push # CX:c.(Stack -0:c,0 ,..)

283 nop -C #

284 swap -stk # Prepare for the next loop. # Stack -1 active

285 pop # AX:WL.(Stack -1:l,LT,GL,G,d,D,0,..)

286 nop -A #

287 swap -stk #

288 push # AX:WL.(Stack -0:WL,c,0,..)

289 nop -A #

290 if-n-equ # Branch. # Compare BX:GL to CX:c.Do the next if BX not= CX.(while GL >0).

Otherwise skip.

291 mov -head # Loop back.

292 h-divide # If BX=CX.(when GL=0),divide.

293 nop -B # Label complemental Alpha

294 nop -C # No other nop -B - nop -C must exist before this.

Listing A.5: Lookup Table

295 27 # 0 to 27/ write

296 26 # 1 to 26/ read

297 25 # 2 to 25/h-search

298 24 # 3 to 24/IO

299 23 # 4 to 23/h-divide

300 22 # 5 to 22/h-alloc

301 21 # 6 to 21/h-copy

302 20 # 7 to 20/ nand

303 19 # 8 to 19/sub

304 18 # 9 to 18/add

305 17 # 10 to 17/ swap

306 16 # 11 to 16/swap -stk

307 15 # 12 to 15/pop

308 14 # 13 to 14/ push

309 13 # 14 to 13/dec

310 12 # 15 to 12/inc

311 11 # 16 to 11/shift -l

312 10 # 17 to 10/shift -r

313 9 # 18 to 9/set -flow

314 8 # 19 to 8/get -head

315 7 # 20 to 7/jmp -head

316 6 # 21 to 6/mov -head

317 5 # 22 to 5/if -label

318 4 # 23 to 4/if -less

319 3 # 24 to 3/if -n-equ

320 2 # 25 to 2/nop -C

321 1 # 26 to 1/nop -B # No other nop -B - nop -A label must exist before this.

322 0 # 27 to 0/nop -A # Also used as Label complemental Beta.

Section 4.7 in Chapter 4 introduced two variations of the prototype, redesigned without

using the h-copy instruction. Below, the code snippets of these two h-copy-free versions

of the prototype are shown. For hcf-28 org-0, which uses the same 28-instruction set, the

decode segment and the lookup table are omitted for they are the same as the prototype’s.
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For hcf-27 org-0, which uses the 27-instruction set excluding the h-copy instruction, the

phenome active part (the decode and the copy segments) is omitted for it is the same as

hcf-28 org-0.

Listing A.6: Copy Preparation of hcf-28 org-0

195 pop # Get a new GL by doing WL-G. # CX:G.(Stack -0:GL ,LT,l,WL,c,0,..)

196 nop -C #

197 swap -stk # Stack -1 active

198 push # CX:G. (Stack -1:G,d,D,0,..)

199 nop -C #

200 swap -stk # Stack -0 active

201 pop # BX:GL.(Stack -0:LT,l,WL,c,0,..)

202 pop # AX:LT.(Stack -0:l,WL,c,0,..)

203 nop -A #

204 swap -stk # Stack -1 active

205 push # AX:LT.(Stack -1:LT,G,d,D,0,..)

206 nop -A #

207 swap -stk # Stack -0 active

208 pop # AX:l.(Stack -0:WL ,c,0 ,..)

209 nop -A #

210 swap -stk # Stack -1 active

211 push # AX:l.(Stack -1:l,LT ,G,d,D,0,..)

212 nop -A #

213 swap -stk # Stack -0 active

214 pop # AX:WL.(Stack -0:c,0,..)

215 nop -A #

216 push # AX:WL.(Stack -0:WL,c,0,..)

217 nop -A #

218 swap # AX:GL,BX:WL,CX:G

219 nop -A #

220 sub # AX:WL-G (=GL)

221 nop -A #

222 swap -stk # Stack -1 active

223 pop # BX:l.(Stack -1:LT ,G,d,D,0 ,..)

224 swap -stk # Stack -0 active

225 push # BX:l.(Stack -0:l,WL ,c,0 ,..)

226 swap -stk # Stack -1 active

227 pop # BX:LT.(Stack -1:G,d,D,0,..)

228 push # AX:GL. (Stack -1:GL,G,d,D,0 ,..)

229 nop -A #

230 push # BX:LT.(Stack -1:LT,GL,G,d,D,0,..)

231 swap -stk # Stack -0 active

232 pop # BX:l.(Stack -0:WL ,c,0 ,..)

233 swap -stk # Stack -1 active

234 push # BX:l.(Stack -1:l,LT ,GL,G,d,D,0,..)

235 swap -stk # Stack -0 active

236 pop # BX:WL.(Stack -0:c,0,..)

237 swap -stk # Stack -1 active

238 push # BX:WL.(Stack -1:WL,l,LT ,GL,G,d,D,0,..)

239 swap # AX:WL,BX:GL,CX:G

240 nop -A #

241 swap # AX:WL,BX:G,CX:GL

242 push # BX:G.(Stack -1:G,WL ,l,LT ,GL,G,d,D,0,..)

Listing A.7: Copy Loop of hcf-28 org-0

243 get -head # # CX:here (242)

244 set -flow # Flow Head to CX:242

245 pop # BX:G.(Stack -1:WL ,l,LT,GL,G,d,D,0,..)

246 read # Read one word at BX:G into CX:word

247 write # Write CX:word at AX+BX:WL+G

248 inc # BX:G++ as a relative address (say "CD" for "copy destination ")
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249 swap -stk # Stack -0 active

250 push # BX: CD.(Stack -0:cD,c,0,..)

251 swap -stk # Stack -1 active

252 pop # BX:WL.(Stack -1:l,LT,GL,G,d,D,0,..)

253 swap -stk # Stack -0 active

254 push # BX:WL.(Stack -0:WL,CD,c,0,..)

255 swap -stk # Stack -1 active

256 pop # BX:l.(Stack -1:LT ,GL,G,d,D,0,..)

257 swap -stk # Stack -0 active

258 push # BX:l.(Stack -0:l,WL ,CD,c,0,..)

259 swap -stk # Stack -1 active

260 pop # BX:LT.(Stack -1:GL,G,d,D,0,..)

261 swap -stk # Stack -0 active

262 push # BX:LT.(Stack -0:LT,l,WL ,CD,c,0,..)

263 swap -stk # Stack -1 active

264 pop # BX:GL.(Stack -1:G,d,D,0,..)

265 dec # BX:GL-- as a counter

266 push # BX:GL.(Stack -1:GL,G,d,D,0,..)

267 swap -stk # # Stack -0 active

268 pop # CX:LT.(Stack -0:l,WL,cD,c,0,..)

269 nop -C #

270 swap -stk # Stack -1 active

271 push # CX:LT.(Stack -1:LT,GL,G,d,D,0,..)

272 nop -C #

273 swap -stk # Stack -0 active

274 pop # CX:l.(Stack -0:WL ,CD,c,0,..)

275 nop -C #

276 swap -stk # Stack -1 active

277 push # CX:l.(Stack -1:l,LT ,GL,G,d,D,0,..)

278 nop -C #

279 swap -stk # Stack -0 active

280 pop # CX:WL.(Stack -0:CD,c,0,..)

281 nop -C #

282 swap -stk # Stack -1 active

283 push # CX:WL.(Stack -1:WL,l,LT ,GL,G,d,D,0,..)

284 nop -C #

285 swap -stk # Stack -0 active

286 pop # CX:CD.(Stack -0:c,0,..)

287 nop -C #

288 swap -stk # Stack -1 active

289 push # CX:CD.(Stack -1:CD,WL,l,LT,GL ,G,d,D,0 ,..)

290 nop -C #

291 swap -stk # # Stack -0 active

292 pop # CX:c.(Stack -0:0 ,..)

293 nop -C #

294 push # CX:c.(Stack -0:c,0 ,..)

295 nop -C #

296 swap -stk # Stack -1 active

297 if-n-equ # Branching. # Compare BX:GL to CX:c.Do the next if BX not = CX.( while GL

>0).Otherwise skip.

298 mov -head # Loop back.

299 set -flow # Proceed to divide # Flow Head to AX:WL

300 nop -A #

301 mov -head # Read Head to Flow Head at WL

302 nop -B # (move Read Head)

303 pop # BX:CD.(Stack -1:WL,l,LT,GL ,G,d,D,0 ,..)

304 swap # AX:c,BX:CD,CX:WL

305 nop -C # (between CX and AX)

306 add # CX:WL+CD.(CX=BX+CX)

307 nop -C # (output into CX)

308 set -flow # Flow Head to CX:WL+CD.

309 mov -head # Write Head to WL where Flow Head is at.

310 nop -C # (move Write Head)
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311 h-divide # Divide at Read and Write Heads.

312 nop -B # Label complemental Alpha

313 nop -C # No other nop -B - nop -C must exist before this.

Listing A.8: Lookup Table of hcf-27 org-0

314 0 # 0 to 26/ write

315 1 # 1 to 25/ read

316 2 # 2 to 24/h-search

317 3 # 3 to 23/IO

318 4 # 4 to 22/h-divide

319 5 # 5 to 21/h-alloc # no h-copy exists

320 6 # 6 to 20/ nand

321 7 # 7 to 19/sub

322 8 # 8 to 18/add

323 9 # 9 to 17/ swap

324 10 # 10 to 16/swap -stk

325 11 # 11 to 15/pop

326 12 # 12 to 14/ push

327 13 # 13 to 13/dec

328 14 # 14 to 12/inc

329 15 # 15 to 11/shift -l

330 16 # 16 to 10/shift -r

331 17 # 17 to 9/set -flow

332 18 # 18 to 8/get -head

333 19 # 19 to 7/jmp -head

334 20 # 20 to 6/mov -head

335 21 # 21 to 5/if -label

336 22 # 22 to 4/if -less

337 23 # 23 to 3/if -n-equ

338 24 # 24 to 2/nop -C

339 25 # 25 to 1/nop -B # No other nop -B - nop -A label must exist before this.

340 26 # 26 to 0/nop -A # Also used as Label complemental Beta.
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Appendix B

Selected Memory Images

The whole memory image (or code) of the prototype is presented. The memory image

of the self-copying mutant degenerated from the prototype reported in Section 3.4 is

presented afterwards.
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0 h-alloc 50 push 100 push 150 push 200 pop 250 swap-stk 300 21
1 h-search 51 add 101 nop-A 151 nop-C 201 pop 251 push 301 20
2 nop-A 52 read 102 write 152 swap-stk 202 nop-A 252 swap-stk 302 19
3 nop-B 53 swap-stk 103 inc 153 pop 203 swap-stk 253 pop 303 18
4 push 54 pop 104 swap-stk 154 nop-C 204 push 254 swap-stk 304 17
5 nop-A 55 swap-stk 105 pop 155 swap-stk 205 nop-A 255 push 305 16
6 push 56 push 106 nop-C 156 push 206 swap-stk 256 swap-stk 306 15
7 nop-C 57 swap-stk 107 swap-stk 157 nop-C 207 pop 257 pop 307 14
8 mov-head 58 pop 108 push 158 swap-stk 208 nop-A 258 dec 308 13
9 nop-B 59 swap-stk 109 nop-C 159 pop 209 swap-stk 259 push 309 12

10 get-head 60 push 110 swap-stk 160 nop-C 210 push 260 swap-stk 310 11
11 nop-B 61 swap-stk 111 pop 161 swap-stk 211 nop-A 261 pop 311 10
12 push 62 pop 112 nop-C 162 push 212 swap-stk 262 nop-C 312 9
13 nop-C 63 swap-stk 113 swap-stk 163 nop-C 213 pop 263 swap-stk 313 8
14 h-search 64 push 114 push 164 swap-stk 214 nop-A 264 push 314 7
15 nop-A 65 swap-stk 115 nop-C 165 pop 215 push 265 nop-C 315 6
16 nop-C 66 pop 116 swap-stk 166 nop-C 216 nop-A 266 swap-stk 316 5
17 mov-head 67 swap-stk 117 pop 167 push 217 swap 267 pop 317 4
18 nop-B 68 pop 118 nop-C 168 nop-C 218 nop-A 268 nop-C 318 3
19 get-head 69 nop-A 119 swap-stk 169 swap-stk 219 sub 269 swap-stk 319 2
20 nop-B 70 swap-stk 120 push 170 pop 220 nop-A 270 push 320 1
21 swap 71 push 121 nop-C 171 swap-stk 221 swap-stk 271 nop-C 321 0
22 nop-A 72 nop-A 122 swap-stk 172 push 222 pop 272 swap-stk
23 sub 73 swap-stk 123 pop 173 swap-stk 223 swap-stk 273 pop
24 push 74 pop 124 nop-C 174 pop 224 push 274 nop-C
25 swap 75 nop-A 125 swap-stk 175 swap-stk 225 swap-stk 275 swap-stk
26 push 76 swap-stk 126 push 176 push 226 pop 276 push
27 h-search 77 push 127 nop-C 177 swap-stk 227 push 277 nop-C
28 pop 78 nop-A 128 swap-stk 178 pop 228 nop-A 278 swap-stk
29 push 79 swap-stk 129 pop 179 swap-stk 229 push 279 pop
30 swap-stk 80 pop 130 nop-C 180 push 230 set-flow 280 nop-C
31 pop 81 nop-A 131 push 181 swap-stk 231 mov-head 281 push
32 nop-C 82 swap-stk 132 push 182 pop 232 nop-B 282 nop-C
33 push 83 push 133 nop-C 183 dec 233 swap-stk 283 swap-stk
34 nop-C 84 nop-A 134 swap-stk 184 swap-stk 234 pop 284 pop
35 add 85 swap-stk 135 pop 185 push 235 swap-stk 285 nop-A
36 read 86 pop 136 nop-C 186 swap-stk 236 push 286 swap-stk
37 pop 87 nop-A 137 swap-stk 187 pop 237 swap-stk 287 push
38 inc 88 swap-stk 138 push 188 nop-A 238 pop 288 nop-A
39 push 89 push 139 nop-C 189 swap-stk 239 push 289 if-n-equ
40 swap-stk 90 nop-A 140 swap-stk 190 push 240 swap 290 mov-head
41 pop 91 swap-stk 141 pop 191 nop-A 241 add 291 h-divide
42 swap-stk 92 pop 142 nop-C 192 if-n-equ 242 nop-C 292 nop-B
43 push 93 nop-A 143 swap-stk 193 mov-head 243 set-flow 293 nop-C
44 swap-stk 94 swap-stk 144 push 194 pop 244 mov-head 294 27
45 pop 95 push 145 nop-C 195 nop-C 245 nop-C 295 26
46 swap-stk 96 nop-A 146 swap-stk 196 swap-stk 246 h-search 296 25
47 push 97 swap-stk 147 pop 197 push 247 h-copy 297 24
48 swap-stk 98 pop 148 nop-C 198 nop-C 248 swap-stk 298 23
49 pop 99 nop-A 149 swap-stk 199 swap-stk 249 pop 299 22

Figure B.1: Prototype Phenome Image
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322 5 372 13 422 13 472 13 522 12 572 11 622 6
323 2 373 9 423 27 473 25 523 12 573 13 623 7
324 27 374 1 424 0 474 11 524 27 574 11 624 8
325 26 375 11 425 15 475 12 525 11 575 12 625 9
326 13 376 12 426 11 476 25 526 13 576 11 626 10
327 27 377 11 427 12 477 11 527 27 577 13 627 11
328 13 378 13 428 25 478 13 528 11 578 11 628 12
329 25 379 11 429 11 479 25 529 12 579 12 629 13
330 21 380 12 430 13 480 11 530 27 580 14 630 14
331 26 381 11 431 25 481 12 531 11 581 13 631 15
332 19 382 13 432 11 482 25 532 13 582 11 632 16
333 26 383 11 433 12 483 11 533 27 583 12 633 17
334 13 384 12 434 25 484 13 534 11 584 25 634 18
335 25 385 11 435 11 485 25 535 12 585 11 635 19
336 2 386 13 436 13 486 11 536 27 586 13 636 20
337 27 387 11 437 25 487 12 537 13 587 25 637 21
338 25 388 12 438 11 488 25 538 27 588 11 638 22
339 21 389 11 439 12 489 13 539 10 589 12 639 23
340 26 390 12 440 25 490 25 540 27 590 25 640 24
341 19 391 27 441 11 491 11 541 8 591 11 641 25
342 26 392 11 442 13 492 12 542 27 592 13 642 26
343 10 393 13 443 25 493 11 543 11 593 25 643 27
344 27 394 27 444 11 494 13 544 12 594 11
345 8 395 11 445 12 495 11 545 11 595 12
346 13 396 12 446 25 496 12 546 13 596 25
347 10 397 27 447 11 497 11 547 11 597 11
348 13 398 11 448 13 498 13 548 12 598 13
349 2 399 13 449 25 499 11 549 13 599 25
350 12 400 27 450 11 500 12 550 27 600 11
351 13 401 11 451 12 501 11 551 13 601 12
352 11 402 12 452 25 502 13 552 18 602 25
353 12 403 27 453 13 503 11 553 21 603 13
354 25 404 11 454 13 504 12 554 26 604 25
355 13 405 13 455 25 505 14 555 11 605 11
356 25 406 27 456 11 506 11 556 12 606 12
357 9 407 11 457 12 507 13 557 11 607 27
358 1 408 12 458 25 508 11 558 13 608 11
359 12 409 27 459 11 509 12 559 11 609 13
360 15 410 11 460 13 510 27 560 12 610 27
361 13 411 13 461 25 511 11 561 13 611 24
362 11 412 27 462 11 512 13 562 10 612 21
363 12 413 11 463 12 513 27 563 9 613 4
364 11 414 12 464 25 514 24 564 25 614 26
365 13 415 27 465 11 515 21 565 18 615 25
366 11 416 11 466 13 516 12 566 21 616 0
367 12 417 13 467 25 517 25 567 25 617 1
368 11 418 27 468 11 518 11 568 2 618 2
369 13 419 11 469 12 519 13 569 6 619 3
370 11 420 12 470 25 520 25 570 11 620 4
371 12 421 27 471 11 521 11 571 12 621 5

Figure B.2: Prototype Genome Image
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0 h-alloc 50 push 100 push 150 push 200 pop 250 swap-stk 300 21
1 h-search 51 add 101 nop-A 151 nop-C 201 pop 251 push 301 20
2 nop-A 52 read 102 write 152 swap-stk 202 nop-A 252 swap-stk 302 19
3 nop-B 53 swap-stk 103 inc 153 pop 203 swap-stk 253 pop 303 18
4 push 54 pop 104 swap-stk 154 nop-C 204 push 254 swap-stk 304 17
5 nop-A 55 swap-stk 105 pop 155 swap-stk 205 nop-A 255 push 305 16
6 push 56 push 106 nop-C 156 push 206 swap-stk 256 swap-stk 306 15
7 nop-C 57 swap-stk 107 swap-stk 157 nop-C 207 pop 257 pop 307 14
8 mov-head 58 pop 108 push 158 swap-stk 208 nop-A 258 dec 308 13
9 nop-B 59 swap-stk 109 nop-C 159 pop 209 swap-stk 259 push 309 12

10 get-head 60 push 110 swap-stk 160 nop-C 210 push 260 swap-stk 310 11
11 nop-B 61 swap-stk 111 pop 161 swap-stk 211 nop-A 261 pop 311 10
12 push 62 pop 112 nop-C 162 push 212 swap-stk 262 nop-C 312 9
13 nop-C 63 swap-stk 113 swap-stk 163 nop-C 213 pop 263 swap-stk 313 8
14 h-search 64 push 114 push 164 swap-stk 214 nop-A 264 push 314 7
15 nop-A 65 swap-stk 115 nop-C 165 pop 215 push 265 nop-C 315 6
16 nop-C 66 pop 116 swap-stk 166 nop-C 216 nop-A 266 swap-stk 316 5
17 mov-head 67 swap-stk 117 pop 167 push 217 swap 267 pop 317 4
18 nop-B 68 pop 118 nop-C 168 nop-C 218 nop-A 268 nop-C 318 3
19 get-head 69 nop-A 119 swap-stk 169 swap-stk 219 sub 269 swap-stk 319 2
20 nop-B 70 swap-stk 120 push 170 pop 220 nop-A 270 push 320 1
21 swap 71 push 121 nop-C 171 swap-stk 221 swap-stk 271 nop-C 321 0
22 nop-A 72 nop-A 122 swap-stk 172 push 222 pop 272 swap-stk
23 sub 73 swap-stk 123 pop 173 swap-stk 223 swap-stk 273 pop
24 push 74 pop 124 nop-C 174 pop 224 push 274 nop-C
25 swap 75 nop-A 125 swap-stk 175 swap-stk 225 swap-stk 275 swap-stk
26 push 76 swap-stk 126 push 176 push 226 pop 276 push
27 h-search 77 push 127 nop-C 177 swap-stk 227 push 277 nop-C
28 pop 78 nop-A 128 swap-stk 178 pop 228 nop-A 278 swap-stk
29 push 79 swap-stk 129 pop 179 swap-stk 229 push 279 pop
30 swap-stk 80 pop 130 nop-C 180 push 230 set-flow 280 nop-C
31 pop 81 nop-A 131 push 181 swap-stk 231 mov-head 281 push
32 nop-C 82 swap-stk 132 push 182 pop 232 nop-B 282 nop-C
33 push 83 push 133 nop-C 183 dec 233 swap-stk 283 swap-stk
34 nop-C 84 nop-A 134 swap-stk 184 swap-stk 234 pop 284 pop
35 add 85 swap-stk 135 pop 185 push 235 swap-stk 285 nop-A
36 read 86 pop 136 nop-C 186 swap-stk 236 push 286 swap-stk
37 pop 87 nop-A 137 swap-stk 187 pop 237 swap-stk 287 push
38 inc 88 swap-stk 138 push 188 nop-A 238 pop 288 nop-A
39 push 89 dec 139 nop-C 189 swap-stk 239 push 289 if-n-equ
40 swap-stk 90 nop-A 140 swap-stk 190 push 240 swap 290 mov-head
41 pop 91 swap-stk 141 pop 191 nop-A 241 add 291 h-divide
42 swap-stk 92 pop 142 nop-C 192 if-n-equ 242 nop-C 292 nop-B
43 push 93 nop-A 143 swap-stk 193 mov-head 243 set-flow 293 nop-C
44 swap-stk 94 swap-stk 144 push 194 pop 244 mov-head 294 27
45 pop 95 push 145 nop-C 195 nop-C 245 nop-C 295 26
46 swap-stk 96 nop-A 146 swap-stk 196 swap-stk 246 h-search 296 25
47 push 97 swap-stk 147 pop 197 push 247 h-copy 297 24
48 swap-stk 98 pop 148 nop-C 198 nop-C 248 swap-stk 298 23
49 pop 99 nop-A 149 swap-stk 199 swap-stk 249 pop 299 22

Figure B.3: The Mutant Image (First Half)
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322 5 372 13 422 13 472 13 522 12 572 11 622 6
323 2 373 9 423 27 473 25 523 12 573 13 623 7
324 27 374 1 424 0 474 11 524 27 574 11 624 8
325 26 375 11 425 15 475 12 525 11 575 12 625 9
326 13 376 12 426 11 476 25 526 13 576 11 626 10
327 27 377 11 427 12 477 11 527 27 577 13 627 11
328 13 378 13 428 25 478 13 528 11 578 11 628 12
329 25 379 11 429 11 479 25 529 12 579 12 629 13
330 21 380 12 430 13 480 11 530 27 580 14 630 14
331 26 381 11 431 25 481 12 531 11 581 13 631 15
332 19 382 13 432 11 482 25 532 13 582 11 632 16
333 26 383 11 433 12 483 11 533 27 583 12 633 17
334 13 384 12 434 25 484 13 534 11 584 25 634 18
335 25 385 11 435 11 485 25 535 12 585 11 635 19
336 2 386 13 436 13 486 11 536 27 586 13 636 20
337 27 387 11 437 25 487 12 537 13 587 25 637 21
338 25 388 12 438 11 488 25 538 27 588 11 638 22
339 21 389 11 439 12 489 13 539 10 589 12 639 23
340 26 390 12 440 25 490 25 540 27 590 25 640 24
341 19 391 27 441 11 491 11 541 8 591 11 641 25
342 26 392 11 442 13 492 12 542 27 592 13 642 26
343 10 393 13 443 25 493 11 543 11 593 25 643 27
344 27 394 27 444 11 494 13 544 12 594 11
345 8 395 11 445 12 495 11 545 11 595 12
346 13 396 12 446 25 496 12 546 13 596 25
347 10 397 27 447 11 497 11 547 11 597 11
348 13 398 11 448 13 498 13 548 12 598 13
349 2 399 13 449 25 499 11 549 13 599 25
350 12 400 27 450 11 500 12 550 27 600 11
351 13 401 11 451 12 501 11 551 13 601 12
352 11 402 12 452 25 502 13 552 18 602 25
353 12 403 27 453 13 503 11 553 21 603 13
354 25 404 11 454 13 504 12 554 26 604 25
355 13 405 13 455 25 505 14 555 11 605 11
356 25 406 27 456 11 506 11 556 12 606 12
357 9 407 11 457 12 507 13 557 11 607 27
358 1 408 12 458 25 508 11 558 13 608 11
359 12 409 27 459 11 509 12 559 11 609 13
360 15 410 11 460 13 510 27 560 12 610 27
361 13 411 14 461 25 511 11 561 13 611 24
362 11 412 27 462 11 512 13 562 10 612 21
363 12 413 11 463 12 513 27 563 9 613 4
364 11 414 12 464 25 514 24 564 25 614 26
365 13 415 27 465 11 515 21 565 18 615 25
366 11 416 11 466 13 516 12 566 21 616 0
367 12 417 13 467 25 517 25 567 25 617 1
368 11 418 27 468 11 518 11 568 2 618 2
369 13 419 11 469 12 519 13 569 6 619 3
370 11 420 12 470 25 520 25 570 11 620 4
371 12 421 27 471 11 521 11 571 12 621 5

Figure B.4: The Mutant Genome Image (Latter Half)
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Appendix C

Trace File Formats

Compare the old and the new trace file formats here. The old format contains the whole

series of the virtual CPU state from the start to the division (or the time-out), plus the

“final” memory image and the “child” memory image (if division occurred). The new

format contains the initial memory, the final memory and the child memory, plus the

adjacency graph representing the lineage graph. This excludes CPU state transitions in

the middle to reduce the file size. Note that sequences of strains are shown in alphabetical

labels internally in Avida (i.e., a, b, c, d, ..., y, z, A, B correspond to 0, 1, 2, 3, ..., 24, 25,

26, 27), which are not used in the body text.

Listing C.1: Old Trace File Example

---------------------------

U:-1

1 IP:0 AX:0 [0x0] BX:0 [0x0] CX:0 [0x0]

R-Head:0 W-Head:0 F-Head:0 RL:

* Stack 0: Ox00000000 Ox00000000 Ox00000000 Ox00000000 Ox00000000 Ox00000000

Ox00000000 Ox00000000 Ox00000000 Ox00000000

Stack 1: Ox00000000 Ox00000000 Ox00000000 Ox00000000 Ox00000000 Ox00000000

Ox00000000 Ox00000000 Ox00000000 Ox00000000

Mem (644): wzaboaocgbiboczacgbibratorozpoqpcocsApmoqpqoqpqoqposAqpqoqpqoq

pqoqpqpaqoaqpaqoaqpaqoaqpaqoaqpaqoaqpaoaBmqpcqocqpcqocqpcqocqpcqocqpcoocqpcq

ocqpcqocqpcqocqpcqocqpcqocqpcocqpqoqpqoqpqoqpnqoqpaqoadgpcqocqppaqoaqpaqoaqp

aoarataqpqoqpoaojgbqpqoqporscjgczvqpqoqpqoqpnoqpcqocqpcqocqpcqocqpcocqpaqoad

gxbcBAzyxwvutsrqponmlkjihgfedcbafcBAnBnzvAtAnzcBzvAtAkBinkncmnlmznzjbmpnlmln

lmlnlmnjblmlnlmlnlmlnlmlmBlnBlmBlnBlmBlnBlmBlnBlmBlnBlmBnBaplmzlnzlmzlnzlmzl

nzlmzlnzlmznnzlmzlnzlmzlnzlmzlnzlmzlnzlmzlnzlmznzlmlnlmlnlmlnlmolnlmBlnByvmz

lnzlmmBlnBlmBlnBlmBnBkBiBlmlnlmnBnsvAlmlnlmnkjzsvzcglmlnlmlnlmonlmzlnzlmzlnz

lmzlnzlmznzlmBlnByveAzabcdefghijklmnopqrstuvwxyzAB

MeritBase :644 Bonus:1 Errors :0 Donates :0

Task Count (Quality):

Input (env): 0x0f13149f 0x3308e53e 0x556241eb

Input (buf):

Output:

---------------------------

ABOUT TO EXECUTE: h-alloc

---------------------------

......
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U:-1

52218 IP:291 AX:644 [0x284] BX:0 [0x0] CX:0 [0x0]

R-Head :644 W-Head :1288 F-Head :247 RL:

* Stack 0: Ox00000284 Ox00000000 Ox00000000 Ox00000000 Ox00000000 Ox00000000

Ox00000000 Ox00000000 Ox00000000 Ox00000000

Stack 1: Ox00000002 Ox00000126 Ox00000000 Ox00000142 Ox00000142 Ox00000142

Ox00000000 Ox00000000 Ox00000000 Ox00000000

Mem (1932): wzaboaocgbiboczacgbibratorozpoqpcocsApmoqpqoqpqoqposAqpqoqpqo

qpqoqpqpaqoaqpaqoaqpaqoaqpaqoaqpaqoaqpaoaBmqpcqocqpcqocqpcqocqpcqocqpcoocqpc

qocqpcqocqpcqocqpcqocqpcqocqpcocqpqoqpqoqpqoqpnqoqpaqoadgpcqocqppaqoaqpaqoaq

paoarataqpqoqpoaojgbqpqoqporscjgczvqpqoqpqoqpnoqpcqocqpcqocqpcqocqpcocqpaqoa

dgxbcBAzyxwvutsrqponmlkjihgfedcbafcBAnBnzvAtAnzcBzvAtAkBinkncmnlmznzjbmpnlml

nlmlnlmnjblmlnlmlnlmlnlmlmBlnBlmBlnBlmBlnBlmBlnBlmBlnBlmBnBaplmzlnzlmzlnzlmz

lnzlmzlnzlmznnzlmzlnzlmzlnzlmzlnzlmzlnzlmzlnzlmznzlmlnlmlnlmlnlmolnlmBlnByvm

zlnzlmmBlnBlmBlnBlmBnBkBiBlmlnlmnBnsvAlmlnlmnkjzsvzcglmlnlmlnlmonlmzlnzlmzln

zlmzlnzlmznzlmBlnByveAzabcdefghijklmnopqrstuvwxyzABwzaboaocgbiboczacgbibrato

rozpoqpcocsApmoqpqoqpqoqposAqpqoqpqoqpqoqpqpaqoaqpaqoaqpaqoaqpaqoaqpaqoaqpao

aBmqpcqocqpcqocqpcqocqpcqocqpcoocqpcqocqpcqocqpcqocqpcqocqpcqocqpcocqpqoqpqo

qpqoqpnqoqpaqoadgpcqocqppaqoaqpaqoaqpaoarataqpqoqpoaojgbqpqoqporscjgczvqpqoq

pqoqpnoqpcqocqpcqocqpcqocqpcocqpaqoadgxbcBAzyxwvutsrqponmlkjihgfedcbafcBAnBn

zvAtAnzcBzvAtAkBinkncmnlmznzjbmpnlmlnlmlnlmnjblmlnlmlnlmlnlmlmBlnBlmBlnBlmBl

nBlmBlnBlmBlnBlmBnBaplmzlnzlmzlnzlmzlnzlmzlnzlmznnzlmzlnzlmzlnzlmzlnzlmzlnzl

mzlnzlmznzlmlnlmlnlmlnlmolnlmBlnByvmzlnzlmmBlnBlmBlnBlmBnBkBiBlmlnlmnBnsvAlm

lnlmnkjzsvzcglmlnlmlnlmonlmzlnzlmzlnzlmzlnzlmznzlmBlnByveAzabcdefghijklmnopq

rstuvwxyzABaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

MeritBase :644 Bonus:1 Errors :0 Donates :0

Task Count (Quality):

Input (env): 0x0f13149f 0x3308e53e 0x556241eb

Input (buf):

Output:

---------------------------

ABOUT TO EXECUTE: h-divide

---------------------------

MeritBase :644 Bonus:1 Errors :0 Donates :0

Task Count (Quality):

# Final Memory: wzaboaocgbiboczacgbibratorozpoqpcocsApmoqpqoqpqoqposAqpqoqpq

oqpqoqpqpaqoaqpaqoaqpaqoaqpaqoaqpaqoaqpaoaBmqpcqocqpcqocqpcqocqpcqocqpcoocqp

cqocqpcqocqpcqocqpcqocqpcqocqpcocqpqoqpqoqpqoqpnqoqpaqoadgpcqocqppaqoaqpaqoa

qpaoarataqpqoqpoaojgbqpqoqporscjgczvqpqoqpqoqpnoqpcqocqpcqocqpcqocqpcocqpaqo

adgxbcBAzyxwvutsrqponmlkjihgfedcbafcBAnBnzvAtAnzcBzvAtAkBinkncmnlmznzjbmpnlm

lnlmlnlmnjblmlnlmlnlmlnlmlmBlnBlmBlnBlmBlnBlmBlnBlmBlnBlmBnBaplmzlnzlmzlnzlm

zlnzlmzlnzlmznnzlmzlnzlmzlnzlmzlnzlmzlnzlmzlnzlmznzlmlnlmlnlmlnlmolnlmBlnByv
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mzlnzlmmBlnBlmBlnBlmBnBkBiBlmlnlmnBnsvAlmlnlmnkjzsvzcglmlnlmlnlmonlmzlnzlmzl

nzlmzlnzlmznzlmBlnByveAzabcdefghijklmnopqrstuvwxyzAB

# Child Memory: wzaboaocgbiboczacgbibratorozpoqpcocsApmoqpqoqpqoqposAqpqoqpq

oqpqoqpqpaqoaqpaqoaqpaqoaqpaqoaqpaqoaqpaoaBmqpcqocqpcqocqpcqocqpcqocqpcoocqp

cqocqpcqocqpcqocqpcqocqpcqocqpcocqpqoqpqoqpqoqpnqoqpaqoadgpcqocqppaqoaqpaqoa

qpaoarataqpqoqpoaojgbqpqoqporscjgczvqpqoqpqoqpnoqpcqocqpcqocqpcqocqpcocqpaqo

adgxbcBAzyxwvutsrqponmlkjihgfedcbafcBAnBnzvAtAnzcBzvAtAkBinkncmnlmznzjbmpnlm

lnlmlnlmnjblmlnlmlnlmlnlmlmBlnBlmBlnBlmBlnBlmBlnBlmBlnBlmBnBaplmzlnzlmzlnzlm

zlnzlmzlnzlmznnzlmzlnzlmzlnzlmzlnzlmzlnzlmzlnzlmznzlmlnlmlnlmlnlmolnlmBlnByv

mzlnzlmmBlnBlmBlnBlmBnBkBiBlmlnlmnBnsvAlmlnlmnkjzsvzcglmlnlmlnlmonlmzlnzlmzl

nzlmzlnzlmznzlmBlnByveAzabcdefghijklmnopqrstuvwxyzAB

Listing C.2: New Trace File Example

---------------------------

# Init Memory: wzaboaocgbiboczacgbibratorozpoqpcocsApmoqpqoqpqoqposAqpqoqpqo

qpqoqpqpaqoaqpaqoaqpaqoaqpaqoaqpaqoaqpaoaBmqpcqocqpcqocqpcqocqpcqocqpcoocqpc

qocqpcqocqpcqocqpcqocqpcqocqpcocqpqoqpqoqpqoqpnqoqpaqoadgpcqocqppaqoaqpaqoaq

paoarataqpqoqpoaojgbqpqoqporscjgczvqpqoqpqoqpnoqpcqocqpcqocqpcqocqpcocqpaqoa

dgxbcBAzyxwvutsrqponmlkjihgfedcbafcBAnBnzvAtAnzcBzvAtAkBinkncmnlmznzjbmpnlml

nlmlnlmnjblmlnlmlnlmlnlmlmBlnBlmBlnBlmBlnBlmBlnBlmBlnBlmBnBaplmzlnzlmzlnzlmz

lnzlmzlnzlmznnzlmzlnzlmzlnzlmzlnzlmzlnzlmzlnzlmznzlmlnlmlnlmlnlmolnlmBlnByvm

zlnzlmmBlnBlmBlnBlmBnBkBiBlmlnlmnBnsvAlmlnlmnkjzsvzcglmlnlmlnlmonlmzlnzlmzln

zlmzlnzlmznzlmBlnByveAzabcdefghijklmnopqrstuvwxyzAB

# Final Memory: wzaboaocgbiboczacgbibratorozpoqpcocsApmoqpqoqpqoqposAqpqoqpq

oqpqoqpqpaqoaqpaqoaqpaqoaqpaqoaqpaqoaqpaoaBmqpcqocqpcqocqpcqocqpcqocqpcoocqp

cqocqpcqocqpcqocqpcqocqpcqocqpcocqpqoqpqoqpqoqpnqoqpaqoadgpcqocqppaqoaqpaqoa

qpaoarataqpqoqpoaojgbqpqoqporscjgczvqpqoqpqoqpnoqpcqocqpcqocqpcqocqpcocqpaqo

adgxbcBAzyxwvutsrqponmlkjihgfedcbafcBAnBnzvAtAnzcBzvAtAkBinkncmnlmznzjbmpnlm

lnlmlnlmnjblmlnlmlnlmlnlmlmBlnBlmBlnBlmBlnBlmBlnBlmBlnBlmBnBaplmzlnzlmzlnzlm

zlnzlmzlnzlmznnzlmzlnzlmzlnzlmzlnzlmzlnzlmzlnzlmznzlmlnlmlnlmlnlmolnlmBlnByv

mzlnzlmmBlnBlmBlnBlmBnBkBiBlmlnlmnBnsvAlmlnlmnkjzsvzcglmlnlmlnlmonlmzlnzlmzl

nzlmzlnzlmznzlmBlnByveAzabcdefghijklmnopqrstuvwxyzAB

# Child Memory: wzaboaocgbiboczacgbibratorozpoqpcocsApmoqpqoqpqoqposAqpqoqpq

oqpqoqpqpaqoaqpaqoaqpaqoaqpaqoaqpaqoaqpaoaBmqpcqocqpcqocqpcqocqpcqocqpcoocqp

cqocqpcqocqpcqocqpcqocqpcqocqpcocqpqoqpqoqpqoqpnqoqpaqoadgpcqocqppaqoaqpaqoa

qpaoarataqpqoqpoaojgbqpqoqporscjgczvqpqoqpqoqpnoqpcqocqpcqocqpcqocqpcocqpaqo

adgxbcBAzyxwvutsrqponmlkjihgfedcbafcBAnBnzvAtAnzcBzvAtAkBinkncmnlmznzjbmpnlm

lnlmlnlmnjblmlnlmlnlmlnlmlmBlnBlmBlnBlmBlnBlmBlnBlmBlnBlmBnBaplmzlnzlmzlnzlm

zlnzlmzlnzlmznnzlmzlnzlmzlnzlmzlnzlmzlnzlmzlnzlmznzlmlnlmlnlmlnlmolnlmBlnByv

mzlnzlmmBlnBlmBlnBlmBnBkBiBlmlnlmnBnsvAlmlnlmnkjzsvzcglmlnlmlnlmonlmzlnzlmzl

nzlmzlnzlmznzlmBlnByveAzabcdefghijklmnopqrstuvwxyzAB

Note: Divided

---------------------------

Index Size Incubated? Divided? GestationTime LeftChildIndex RightChildIndex

0 644 true true 52218 0 0
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Appendix D

Instruction Library Entries

As of the version 2.10.0, the library lists 476 entries of instructions. Below, an overview

of it (i.e., an excerpt from the original Avida source code in C++) is presented with

the comments according to the original wording and terminology. There is no official

instruction-by-instruction description provided in the documentation for them except for

those featured as the default instruction set.

Listing D.1: Instruction Library

1 static const tInstLibEntry <tMethod > s_f_array [] = {

2 /*

3 Note: all entries of cNOPEntryCPU s_n_array must have corresponding

4 in the same order in tInstLibEntry <tMethod > s_f_array ,

5 and these entries must be the first elements of s_f_array.

6 */

7 tInstLibEntry <tMethod >("nop -A", &cHardwareCPU ::Inst_Nop , (nInstFlag :: DEFAULT |

nInstFlag ::NOP), "No-operation instruction; modifies other instructions"),

8 tInstLibEntry <tMethod >("nop -B", &cHardwareCPU ::Inst_Nop , (nInstFlag :: DEFAULT |

nInstFlag ::NOP), "No-operation instruction; modifies other instructions"),

9 tInstLibEntry <tMethod >("nop -C", &cHardwareCPU ::Inst_Nop , (nInstFlag :: DEFAULT |

nInstFlag ::NOP), "No-operation instruction; modifies other instructions"),

10

11 tInstLibEntry <tMethod >("nop -X", &cHardwareCPU ::Inst_Nop , 0, "True no -operation

instruction: does nothing"),

12 tInstLibEntry <tMethod >("if -equ -0", &cHardwareCPU ::Inst_If0 , 0, "Execute next

instruction if ?BX?==0, else skip it"),

13 tInstLibEntry <tMethod >("if -not -0", &cHardwareCPU :: Inst_IfNot0 , 0, "Execute next

instruction if ?BX?!=0, else skip it"),

14 tInstLibEntry <tMethod >("if -equ -0- defaultAX", &cHardwareCPU :: Inst_If0_defaultAX ,

0, "Execute next instruction if ?AX?==0, else skip it"),

15 tInstLibEntry <tMethod >("if -not -0- defaultAX", &cHardwareCPU ::

Inst_IfNot0_defaultAX , 0, "Execute next instruction if ?AX?!=0, else skip it

"),

16 tInstLibEntry <tMethod >("if -n-equ", &cHardwareCPU :: Inst_IfNEqu , nInstFlag ::

DEFAULT , "Execute next instruction if ?BX?!=?CX?, else skip it"),

17 tInstLibEntry <tMethod >("if -equ", &cHardwareCPU ::Inst_IfEqu , 0, "Execute next

instruction if ?BX?==?CX?, else skip it"),

18 tInstLibEntry <tMethod >("if -grt -0", &cHardwareCPU :: Inst_IfGr0),

19 tInstLibEntry <tMethod >("if -grt", &cHardwareCPU :: Inst_IfGr),

20 tInstLibEntry <tMethod >("if ->=-0", &cHardwareCPU :: Inst_IfGrEqu0),

21 tInstLibEntry <tMethod >("if ->=", &cHardwareCPU :: Inst_IfGrEqu),

22 tInstLibEntry <tMethod >("if -les -0", &cHardwareCPU :: Inst_IfLess0),

23 tInstLibEntry <tMethod >("if -less", &cHardwareCPU :: Inst_IfLess , nInstFlag ::DEFAULT

, "Execute next instruction if ?BX? < ?CX?, else skip it"),

24 tInstLibEntry <tMethod >("if -<=-0", &cHardwareCPU :: Inst_IfLsEqu0),
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25 tInstLibEntry <tMethod >("if -<=", &cHardwareCPU :: Inst_IfLsEqu),

26 tInstLibEntry <tMethod >("if -A!=B", &cHardwareCPU :: Inst_IfANotEqB),

27 tInstLibEntry <tMethod >("if -B!=C", &cHardwareCPU :: Inst_IfBNotEqC),

28 tInstLibEntry <tMethod >("if -A!=C", &cHardwareCPU :: Inst_IfANotEqC),

29 tInstLibEntry <tMethod >("if -bit -1", &cHardwareCPU :: Inst_IfBit1),

30 tInstLibEntry <tMethod >("if -grt -X", &cHardwareCPU :: Inst_IfGrX),

31 tInstLibEntry <tMethod >("if -equ -X", &cHardwareCPU :: Inst_IfEquX),

32

33 tInstLibEntry <tMethod >("if -aboveResLevel", &cHardwareCPU :: Inst_IfAboveResLevel),

34 tInstLibEntry <tMethod >("if -aboveResLevel.end", &cHardwareCPU ::

Inst_IfAboveResLevelEnd),

35 tInstLibEntry <tMethod >("if -notAboveResLevel", &cHardwareCPU ::

Inst_IfNotAboveResLevel),

36 tInstLibEntry <tMethod >("if -notAboveResLevel.end", &cHardwareCPU ::

Inst_IfNotAboveResLevelEnd),

37

38 // Probabilistic ifs.

39 tInstLibEntry <tMethod >("if -p -0.125", &cHardwareCPU :: Inst_IfP0p125 , nInstFlag ::

STALL),

40 tInstLibEntry <tMethod >("if -p-0.25", &cHardwareCPU :: Inst_IfP0p25 , nInstFlag ::

STALL),

41 tInstLibEntry <tMethod >("if -p-0.50", &cHardwareCPU :: Inst_IfP0p50 , nInstFlag ::

STALL),

42 tInstLibEntry <tMethod >("if -p-0.75", &cHardwareCPU :: Inst_IfP0p75 , nInstFlag ::

STALL),

43

44 // The below series of conditionals extend the traditional Avida

45 // single -instruction -skip to a block , or series of instructions.

46 tInstLibEntry <tMethod >("if -less.end", &cHardwareCPU :: Inst_IfLessEnd , nInstFlag ::

STALL),

47 tInstLibEntry <tMethod >("if -n-equ.end", &cHardwareCPU :: Inst_IfNotEqualEnd ,

nInstFlag ::STALL),

48 tInstLibEntry <tMethod >("if ->=.end", &cHardwareCPU :: Inst_IfGrtEquEnd , nInstFlag ::

STALL),

49 tInstLibEntry <tMethod >("else", &cHardwareCPU ::Inst_Else , nInstFlag :: STALL),

50 tInstLibEntry <tMethod >("end -if", &cHardwareCPU ::Inst_EndIf , nInstFlag ::STALL),

51

52 tInstLibEntry <tMethod >("jump -f", &cHardwareCPU :: Inst_JumpF),

53 tInstLibEntry <tMethod >("jump -b", &cHardwareCPU :: Inst_JumpB),

54 tInstLibEntry <tMethod >("call", &cHardwareCPU :: Inst_Call),

55 tInstLibEntry <tMethod >("return", &cHardwareCPU :: Inst_Return),

56

57 tInstLibEntry <tMethod >("throw", &cHardwareCPU :: Inst_Throw),

58 tInstLibEntry <tMethod >("throwif =0", &cHardwareCPU :: Inst_ThrowIf0),

59 tInstLibEntry <tMethod >("throwif !=0", &cHardwareCPU :: Inst_ThrowIfNot0),

60 tInstLibEntry <tMethod >("catch", &cHardwareCPU :: Inst_Catch),

61

62 tInstLibEntry <tMethod >("goto", &cHardwareCPU :: Inst_Goto),

63 tInstLibEntry <tMethod >("goto -if=0", &cHardwareCPU :: Inst_GotoIf0),

64 tInstLibEntry <tMethod >("goto -if!=0", &cHardwareCPU :: Inst_GotoIfNot0),

65 tInstLibEntry <tMethod >("label", &cHardwareCPU :: Inst_Label),

66

67 tInstLibEntry <tMethod >("pop", &cHardwareCPU ::Inst_Pop , nInstFlag ::DEFAULT , "

Remove top number from stack and place into ?BX?"),

68 tInstLibEntry <tMethod >("push", &cHardwareCPU ::Inst_Push , nInstFlag ::DEFAULT , "

Copy number from ?BX? and place it into the stack"),

69 tInstLibEntry <tMethod >("swap -stk", &cHardwareCPU :: Inst_SwitchStack , nInstFlag ::

DEFAULT , "Toggle which stack is currently being used"),

70 tInstLibEntry <tMethod >("flip -stk", &cHardwareCPU :: Inst_FlipStack),

71 tInstLibEntry <tMethod >("swap", &cHardwareCPU ::Inst_Swap , nInstFlag ::DEFAULT , "

Swap the contents of ?BX? with ?CX?"),

72 tInstLibEntry <tMethod >("swap -AB", &cHardwareCPU :: Inst_SwapAB),

73 tInstLibEntry <tMethod >("swap -BC", &cHardwareCPU :: Inst_SwapBC),
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74 tInstLibEntry <tMethod >("swap -AC", &cHardwareCPU :: Inst_SwapAC),

75 tInstLibEntry <tMethod >("copy -reg", &cHardwareCPU :: Inst_CopyReg),

76 tInstLibEntry <tMethod >("set_A=B", &cHardwareCPU :: Inst_CopyRegAB),

77 tInstLibEntry <tMethod >("set_A=C", &cHardwareCPU :: Inst_CopyRegAC),

78 tInstLibEntry <tMethod >("set_B=A", &cHardwareCPU :: Inst_CopyRegBA),

79 tInstLibEntry <tMethod >("set_B=C", &cHardwareCPU :: Inst_CopyRegBC),

80 tInstLibEntry <tMethod >("set_C=A", &cHardwareCPU :: Inst_CopyRegCA),

81 tInstLibEntry <tMethod >("set_C=B", &cHardwareCPU :: Inst_CopyRegCB),

82 tInstLibEntry <tMethod >("reset", &cHardwareCPU :: Inst_Reset),

83

84 tInstLibEntry <tMethod >("pop -A", &cHardwareCPU :: Inst_PopA),

85 tInstLibEntry <tMethod >("pop -B", &cHardwareCPU :: Inst_PopB),

86 tInstLibEntry <tMethod >("pop -C", &cHardwareCPU :: Inst_PopC),

87 tInstLibEntry <tMethod >("push -A", &cHardwareCPU :: Inst_PushA),

88 tInstLibEntry <tMethod >("push -B", &cHardwareCPU :: Inst_PushB),

89 tInstLibEntry <tMethod >("push -C", &cHardwareCPU :: Inst_PushC),

90

91 tInstLibEntry <tMethod >("shift -r", &cHardwareCPU :: Inst_ShiftR , nInstFlag ::DEFAULT

, "Shift bits in ?BX? right by one (divide by two)"),

92 tInstLibEntry <tMethod >("shift -l", &cHardwareCPU :: Inst_ShiftL , nInstFlag ::DEFAULT

, "Shift bits in ?BX? left by one (multiply by two)"),

93 tInstLibEntry <tMethod >("bit -1", &cHardwareCPU :: Inst_Bit1),

94 tInstLibEntry <tMethod >("set -num", &cHardwareCPU :: Inst_SetNum),

95 tInstLibEntry <tMethod >("val -grey", &cHardwareCPU :: Inst_ValGrey),

96 tInstLibEntry <tMethod >("val -dir", &cHardwareCPU :: Inst_ValDir),

97 tInstLibEntry <tMethod >("val -add -p", &cHardwareCPU :: Inst_ValAddP),

98 tInstLibEntry <tMethod >("val -fib", &cHardwareCPU :: Inst_ValFib),

99 tInstLibEntry <tMethod >("val -poly -c", &cHardwareCPU :: Inst_ValPolyC),

100 tInstLibEntry <tMethod >("inc", &cHardwareCPU ::Inst_Inc , nInstFlag ::DEFAULT , "

Increment ?BX? by one"),

101 tInstLibEntry <tMethod >("dec", &cHardwareCPU ::Inst_Dec , nInstFlag ::DEFAULT , "

Decrement ?BX? by one"),

102 tInstLibEntry <tMethod >("zero", &cHardwareCPU ::Inst_Zero , 0, "Set ?BX? to zero"),

103 tInstLibEntry <tMethod >("all1s", &cHardwareCPU :: Inst_All1s , 0, "Set ?BX? to all 1

s in bitstring"),

104 tInstLibEntry <tMethod >("neg", &cHardwareCPU :: Inst_Neg),

105 tInstLibEntry <tMethod >("square", &cHardwareCPU :: Inst_Square),

106 tInstLibEntry <tMethod >("sqrt", &cHardwareCPU :: Inst_Sqrt),

107 tInstLibEntry <tMethod >("not", &cHardwareCPU :: Inst_Not),

108

109 tInstLibEntry <tMethod >("add", &cHardwareCPU ::Inst_Add , nInstFlag ::DEFAULT , "Add

BX to CX and place the result in ?BX?"),

110 tInstLibEntry <tMethod >("sub", &cHardwareCPU ::Inst_Sub , nInstFlag ::DEFAULT , "

Subtract CX from BX and place the result in ?BX?"),

111 tInstLibEntry <tMethod >("mult", &cHardwareCPU ::Inst_Mult , 0, "Multiple BX by CX

and place the result in ?BX?"),

112 tInstLibEntry <tMethod >("div", &cHardwareCPU ::Inst_Div , 0, "Divide BX by CX and

place the result in ?BX?"),

113 tInstLibEntry <tMethod >("mod", &cHardwareCPU :: Inst_Mod),

114 tInstLibEntry <tMethod >("nand", &cHardwareCPU ::Inst_Nand , nInstFlag ::DEFAULT , "

Nand BX by CX and place the result in ?BX?"),

115 tInstLibEntry <tMethod >("or", &cHardwareCPU :: Inst_Or),

116 tInstLibEntry <tMethod >("nor", &cHardwareCPU :: Inst_Nor),

117 tInstLibEntry <tMethod >("and", &cHardwareCPU :: Inst_And),

118 tInstLibEntry <tMethod >("order", &cHardwareCPU :: Inst_Order),

119 tInstLibEntry <tMethod >("xor", &cHardwareCPU :: Inst_Xor),

120

121 // Instructions that modify specific bits in the register values

122 tInstLibEntry <tMethod >("setbit", &cHardwareCPU :: Inst_Setbit , nInstFlag ::DEFAULT ,

"Set the bit in ?BX? specified by ?BX?’s complement"),

123 tInstLibEntry <tMethod >("clearbit", &cHardwareCPU :: Inst_Clearbit , nInstFlag ::

DEFAULT , "Clear the bit in ?BX? specified by ?BX?’s complement"),

124
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125 // Treatable instructions

126 tInstLibEntry <tMethod >("nand -treatable", &cHardwareCPU :: Inst_NandTreatable ,

nInstFlag ::DEFAULT , "Nand BX by CX and place the result in ?BX?, fails if

deme is treatable"),

127

128 tInstLibEntry <tMethod >("copy", &cHardwareCPU :: Inst_Copy),

129 tInstLibEntry <tMethod >("read", &cHardwareCPU :: Inst_ReadInst),

130 tInstLibEntry <tMethod >("write", &cHardwareCPU :: Inst_WriteInst),

131 tInstLibEntry <tMethod >("stk -read", &cHardwareCPU :: Inst_StackReadInst),

132 tInstLibEntry <tMethod >("stk -writ", &cHardwareCPU :: Inst_StackWriteInst),

133

134 tInstLibEntry <tMethod >("compare", &cHardwareCPU :: Inst_Compare),

135 tInstLibEntry <tMethod >("if -n-cpy", &cHardwareCPU :: Inst_IfNCpy),

136 tInstLibEntry <tMethod >("allocate", &cHardwareCPU :: Inst_Allocate),

137 tInstLibEntry <tMethod >("divide", &cHardwareCPU :: Inst_Divide , nInstFlag ::STALL),

138 tInstLibEntry <tMethod >("divideRS", &cHardwareCPU :: Inst_DivideRS , nInstFlag ::

STALL),

139 tInstLibEntry <tMethod >("c-alloc", &cHardwareCPU :: Inst_CAlloc),

140 tInstLibEntry <tMethod >("c-divide", &cHardwareCPU :: Inst_CDivide , nInstFlag ::STALL

),

141 tInstLibEntry <tMethod >("inject", &cHardwareCPU :: Inst_Inject , nInstFlag ::STALL),

142 tInstLibEntry <tMethod >("inject -r", &cHardwareCPU :: Inst_InjectRand , nInstFlag ::

STALL),

143 tInstLibEntry <tMethod >("transposon", &cHardwareCPU :: Inst_Transposon),

144 tInstLibEntry <tMethod >("search -f", &cHardwareCPU :: Inst_SearchF),

145 tInstLibEntry <tMethod >("search -b", &cHardwareCPU :: Inst_SearchB),

146 tInstLibEntry <tMethod >("mem -size", &cHardwareCPU :: Inst_MemSize),

147

148 tInstLibEntry <tMethod >("get", &cHardwareCPU :: Inst_TaskGet , nInstFlag ::STALL),

149 tInstLibEntry <tMethod >("get -2", &cHardwareCPU :: Inst_TaskGet2 , nInstFlag :: STALL),

150 tInstLibEntry <tMethod >("stk -get", &cHardwareCPU :: Inst_TaskStackGet , nInstFlag ::

STALL),

151 tInstLibEntry <tMethod >("stk -load", &cHardwareCPU :: Inst_TaskStackLoad , nInstFlag

::STALL),

152 tInstLibEntry <tMethod >("put", &cHardwareCPU :: Inst_TaskPut , nInstFlag ::STALL),

153 tInstLibEntry <tMethod >("put -reset", &cHardwareCPU :: Inst_TaskPutResetInputs ,

nInstFlag ::STALL),

154 tInstLibEntry <tMethod >("IO", &cHardwareCPU :: Inst_TaskIO , nInstFlag :: DEFAULT |

nInstFlag ::STALL , "Output ?BX?, and input new number back into ?BX?"),

155 tInstLibEntry <tMethod >("IO -Feedback", &cHardwareCPU :: Inst_TaskIO_Feedback ,

nInstFlag ::STALL , "Output ?BX?, and input new number back into ?BX?, and

push 1,0, or -1 onto stack1 if merit increased , stayed the same , or

decreased"),

156 tInstLibEntry <tMethod >("IO -bc -0.001", &cHardwareCPU :: Inst_TaskIO_BonusCost_0_001

, nInstFlag ::STALL),

157 tInstLibEntry <tMethod >("match -strings", &cHardwareCPU :: Inst_MatchStrings ,

nInstFlag ::STALL),

158 tInstLibEntry <tMethod >("sell", &cHardwareCPU ::Inst_Sell , nInstFlag :: STALL),

159 tInstLibEntry <tMethod >("buy", &cHardwareCPU ::Inst_Buy , nInstFlag ::STALL),

160 tInstLibEntry <tMethod >("send", &cHardwareCPU ::Inst_Send , nInstFlag :: STALL),

161 tInstLibEntry <tMethod >("receive", &cHardwareCPU :: Inst_Receive , nInstFlag ::STALL)

,

162 tInstLibEntry <tMethod >("sense", &cHardwareCPU :: Inst_SenseLog2 , nInstFlag ::STALL)

, // If you add more sense instructions

163 tInstLibEntry <tMethod >("sense -unit", &cHardwareCPU :: Inst_SenseUnit , nInstFlag ::

STALL), // and want to keep stats , also add

164 tInstLibEntry <tMethod >("sense -m100", &cHardwareCPU :: Inst_SenseMult100 , nInstFlag

::STALL), // the names to cStats :: cStats () @JEB

165

166 tInstLibEntry <tMethod >("sense -resource0", &cHardwareCPU :: Inst_SenseResource0 ,

nInstFlag ::STALL),

167 tInstLibEntry <tMethod >("sense -resource1", &cHardwareCPU :: Inst_SenseResource1 ,

nInstFlag ::STALL),
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168 tInstLibEntry <tMethod >("sense -resource2", &cHardwareCPU :: Inst_SenseResource2 ,

nInstFlag ::STALL),

169 tInstLibEntry <tMethod >("sense -faced -resource0", &cHardwareCPU ::

Inst_SenseFacedResource0 , nInstFlag :: STALL),

170 tInstLibEntry <tMethod >("sense -faced -resource1", &cHardwareCPU ::

Inst_SenseFacedResource1 , nInstFlag :: STALL),

171 tInstLibEntry <tMethod >("sense -faced -resource2", &cHardwareCPU ::

Inst_SenseFacedResource2 , nInstFlag :: STALL),

172

173 tInstLibEntry <tMethod >("if -resources", &cHardwareCPU :: Inst_IfResources ,

nInstFlag ::STALL),

174 tInstLibEntry <tMethod >("collect", &cHardwareCPU :: Inst_Collect , nInstFlag ::STALL)

,

175 tInstLibEntry <tMethod >("collect -no-env -remove", &cHardwareCPU ::

Inst_CollectNoEnvRemove , nInstFlag ::STALL),

176 tInstLibEntry <tMethod >("destroy", &cHardwareCPU :: Inst_Destroy , nInstFlag ::STALL)

,

177 tInstLibEntry <tMethod >("nop -collect", &cHardwareCPU :: Inst_NopCollect),

178 tInstLibEntry <tMethod >("collect -specific", &cHardwareCPU :: Inst_CollectSpecific ,

nInstFlag ::STALL),

179

180 tInstLibEntry <tMethod >("donate -rnd", &cHardwareCPU :: Inst_DonateRandom),

181 tInstLibEntry <tMethod >("donate -kin", &cHardwareCPU :: Inst_DonateKin),

182 tInstLibEntry <tMethod >("donate -edt", &cHardwareCPU :: Inst_DonateEditDist),

183 tInstLibEntry <tMethod >("donate -gbg", &cHardwareCPU :: Inst_DonateGreenBeardGene),

184 tInstLibEntry <tMethod >("donate -tgb", &cHardwareCPU :: Inst_DonateTrueGreenBeard),

185 tInstLibEntry <tMethod >("donate -shadedgb", &cHardwareCPU ::

Inst_DonateShadedGreenBeard),

186 tInstLibEntry <tMethod >("donate -threshgb", &cHardwareCPU ::

Inst_DonateThreshGreenBeard),

187 tInstLibEntry <tMethod >("donate -quantagb", &cHardwareCPU ::

Inst_DonateQuantaThreshGreenBeard),

188 tInstLibEntry <tMethod >("donate -gbsl", &cHardwareCPU ::

Inst_DonateGreenBeardSameLocus),

189 tInstLibEntry <tMethod >("donate -NUL", &cHardwareCPU :: Inst_DonateNULL),

190 tInstLibEntry <tMethod >("donate -facing", &cHardwareCPU :: Inst_DonateFacing),

191 tInstLibEntry <tMethod >("receive -donated -energy", &cHardwareCPU ::

Inst_ReceiveDonatedEnergy , nInstFlag :: STALL),

192 tInstLibEntry <tMethod >("donate -energy", &cHardwareCPU :: Inst_DonateEnergy ,

nInstFlag ::STALL),

193 tInstLibEntry <tMethod >("update -metabolic -rate", &cHardwareCPU ::

Inst_UpdateMetabolicRate , nInstFlag :: STALL),

194 tInstLibEntry <tMethod >("donate -energy -faced", &cHardwareCPU ::

Inst_DonateEnergyFaced , nInstFlag ::STALL),

195 tInstLibEntry <tMethod >("donate -energy -faced1", &cHardwareCPU ::

Inst_DonateEnergyFaced1 , nInstFlag ::STALL),

196 tInstLibEntry <tMethod >("donate -energy -faced2", &cHardwareCPU ::

Inst_DonateEnergyFaced2 , nInstFlag ::STALL),

197 tInstLibEntry <tMethod >("donate -energy -faced5", &cHardwareCPU ::

Inst_DonateEnergyFaced5 , nInstFlag ::STALL),

198 tInstLibEntry <tMethod >("donate -energy -faced10", &cHardwareCPU ::

Inst_DonateEnergyFaced10 , nInstFlag :: STALL),

199 tInstLibEntry <tMethod >("donate -energy -faced20", &cHardwareCPU ::

Inst_DonateEnergyFaced20 , nInstFlag :: STALL),

200 tInstLibEntry <tMethod >("donate -energy -faced50", &cHardwareCPU ::

Inst_DonateEnergyFaced50 , nInstFlag :: STALL),

201 tInstLibEntry <tMethod >("donate -energy -faced100", &cHardwareCPU ::

Inst_DonateEnergyFaced100 , nInstFlag :: STALL),

202 tInstLibEntry <tMethod >("rotate -to-most -needy", &cHardwareCPU ::

Inst_RotateToMostNeedy , nInstFlag ::STALL),

203 tInstLibEntry <tMethod >("request -energy", &cHardwareCPU :: Inst_RequestEnergy ,

nInstFlag ::STALL),

204 tInstLibEntry <tMethod >("request -energy -on", &cHardwareCPU ::
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Inst_RequestEnergyFlagOn , nInstFlag :: STALL),

205 tInstLibEntry <tMethod >("request -energy -off", &cHardwareCPU ::

Inst_RequestEnergyFlagOff , nInstFlag :: STALL),

206 tInstLibEntry <tMethod >("increase -energy -donation", &cHardwareCPU ::

Inst_IncreaseEnergyDonation , nInstFlag ::STALL),

207 tInstLibEntry <tMethod >("decrease -energy -donation", &cHardwareCPU ::

Inst_DecreaseEnergyDonation , nInstFlag ::STALL),

208 tInstLibEntry <tMethod >("donate -resource0", &cHardwareCPU :: Inst_DonateResource0 ,

nInstFlag ::STALL),

209 tInstLibEntry <tMethod >("donate -resource1", &cHardwareCPU :: Inst_DonateResource1 ,

nInstFlag ::STALL),

210 tInstLibEntry <tMethod >("donate -resource2", &cHardwareCPU :: Inst_DonateResource2 ,

nInstFlag ::STALL),

211 tInstLibEntry <tMethod >("IObuf -add1", &cHardwareCPU :: Inst_IOBufAdd1 , nInstFlag ::

STALL),

212 tInstLibEntry <tMethod >("IObuf -add0", &cHardwareCPU :: Inst_IOBufAdd0 , nInstFlag ::

STALL),

213

214 tInstLibEntry <tMethod >("rotate -l", &cHardwareCPU :: Inst_RotateL , nInstFlag ::STALL

),

215 tInstLibEntry <tMethod >("rotate -r", &cHardwareCPU :: Inst_RotateR , nInstFlag ::STALL

),

216 tInstLibEntry <tMethod >("rotate -left -one", &cHardwareCPU :: Inst_RotateLeftOne ,

nInstFlag ::STALL),

217 tInstLibEntry <tMethod >("rotate -right -one", &cHardwareCPU :: Inst_RotateRightOne ,

nInstFlag ::STALL),

218 tInstLibEntry <tMethod >("rotate -label", &cHardwareCPU :: Inst_RotateLabel ,

nInstFlag ::STALL),

219 tInstLibEntry <tMethod >("rotate -to-unoccupied -cell", &cHardwareCPU ::

Inst_RotateUnoccupiedCell , nInstFlag :: STALL),

220 tInstLibEntry <tMethod >("rotate -to-next -unoccupied -cell", &cHardwareCPU ::

Inst_RotateNextUnoccupiedCell , nInstFlag ::STALL),

221 tInstLibEntry <tMethod >("rotate -to-occupied -cell", &cHardwareCPU ::

Inst_RotateOccupiedCell , nInstFlag ::STALL),

222 tInstLibEntry <tMethod >("rotate -to-next -occupied -cell", &cHardwareCPU ::

Inst_RotateNextOccupiedCell , nInstFlag ::STALL),

223 tInstLibEntry <tMethod >("rotate -to-event -cell", &cHardwareCPU ::

Inst_RotateEventCell , nInstFlag ::STALL),

224

225 tInstLibEntry <tMethod >("set -cmut", &cHardwareCPU :: Inst_SetCopyMut),

226 tInstLibEntry <tMethod >("mod -cmut", &cHardwareCPU :: Inst_ModCopyMut),

227 tInstLibEntry <tMethod >("get -cell -xy", &cHardwareCPU :: Inst_GetCellPosition),

228 tInstLibEntry <tMethod >("get -cell -x", &cHardwareCPU :: Inst_GetCellPositionX),

229 tInstLibEntry <tMethod >("get -cell -y", &cHardwareCPU :: Inst_GetCellPositionY),

230 tInstLibEntry <tMethod >("dist -from -diag", &cHardwareCPU ::

Inst_GetDistanceFromDiagonal),

231

232 // State Grid instructions

233 tInstLibEntry <tMethod >("sg -move", &cHardwareCPU :: Inst_SGMove),

234 tInstLibEntry <tMethod >("sg -rotate -l", &cHardwareCPU :: Inst_SGRotateL),

235 tInstLibEntry <tMethod >("sg -rotate -r", &cHardwareCPU :: Inst_SGRotateR),

236 tInstLibEntry <tMethod >("sg -sense", &cHardwareCPU :: Inst_SGSense),

237

238 // Movement instructions

239 tInstLibEntry <tMethod >("tumble", &cHardwareCPU :: Inst_Tumble , nInstFlag ::STALL),

240 tInstLibEntry <tMethod >("move", &cHardwareCPU ::Inst_Move , nInstFlag :: STALL),

241 tInstLibEntry <tMethod >("move -to -event", &cHardwareCPU :: Inst_MoveToEvent ,

nInstFlag ::STALL),

242 tInstLibEntry <tMethod >("if -event -in -unoccupied -neighbor -cell", &cHardwareCPU ::

Inst_IfNeighborEventInUnoccupiedCell),

243 tInstLibEntry <tMethod >("if -event -in -faced -cell", &cHardwareCPU ::

Inst_IfFacingEventCell),

244 tInstLibEntry <tMethod >("if -event -in -current -cell", &cHardwareCPU ::
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Inst_IfEventInCell),

245

246 // Threading instructions

247 tInstLibEntry <tMethod >("fork -th", &cHardwareCPU :: Inst_ForkThread),

248 tInstLibEntry <tMethod >("forkl", &cHardwareCPU :: Inst_ForkThreadLabel),

249 tInstLibEntry <tMethod >("forkl !=0", &cHardwareCPU :: Inst_ForkThreadLabelIfNot0),

250 tInstLibEntry <tMethod >("forkl=0", &cHardwareCPU :: Inst_ForkThreadLabelIf0),

251 tInstLibEntry <tMethod >("kill -th", &cHardwareCPU :: Inst_KillThread),

252 tInstLibEntry <tMethod >("id -th", &cHardwareCPU :: Inst_ThreadID),

253

254 // Head -based instructions

255 tInstLibEntry <tMethod >("h-alloc", &cHardwareCPU :: Inst_MaxAlloc , nInstFlag ::

DEFAULT , "Allocate maximum allowed space"),

256 tInstLibEntry <tMethod >("h-alloc -mw", &cHardwareCPU :: Inst_MaxAllocMoveWriteHead),

257 tInstLibEntry <tMethod >("h-divide", &cHardwareCPU :: Inst_HeadDivide , nInstFlag ::

DEFAULT | nInstFlag ::STALL , "Divide code between read and write heads."),

258 tInstLibEntry <tMethod >("h-divide1RS", &cHardwareCPU :: Inst_HeadDivide1RS ,

nInstFlag ::STALL , "Divide code between read and write heads , at most one

mutation on divide , resample if reverted."),

259 tInstLibEntry <tMethod >("h-divide2RS", &cHardwareCPU :: Inst_HeadDivide2RS ,

nInstFlag ::STALL , "Divide code between read and write heads , at most two

mutations on divide , resample if reverted."),

260 tInstLibEntry <tMethod >("h-divideRS", &cHardwareCPU :: Inst_HeadDivideRS , nInstFlag

::STALL , "Divide code between read and write heads , resample if reverted."),

261 tInstLibEntry <tMethod >("h-read", &cHardwareCPU :: Inst_HeadRead),

262 tInstLibEntry <tMethod >("h-write", &cHardwareCPU :: Inst_HeadWrite),

263 tInstLibEntry <tMethod >("h-copy", &cHardwareCPU :: Inst_HeadCopy , nInstFlag ::

DEFAULT , "Copy from read -head to write -head; advance both"),

264 tInstLibEntry <tMethod >("h-search", &cHardwareCPU :: Inst_HeadSearch , nInstFlag ::

DEFAULT , "Find complement template and make with flow head"),

265 tInstLibEntry <tMethod >("h-search -direct", &cHardwareCPU :: Inst_HeadSearchDirect ,

0, "Find direct template and move the flow head"),

266 tInstLibEntry <tMethod >("h-push", &cHardwareCPU :: Inst_HeadPush),

267 tInstLibEntry <tMethod >("h-pop", &cHardwareCPU :: Inst_HeadPop),

268 tInstLibEntry <tMethod >("set -head", &cHardwareCPU :: Inst_SetHead),

269 tInstLibEntry <tMethod >("adv -head", &cHardwareCPU :: Inst_AdvanceHead),

270 tInstLibEntry <tMethod >("mov -head", &cHardwareCPU :: Inst_MoveHead , nInstFlag ::

DEFAULT , "Move head ?IP? to the flow head"),

271 tInstLibEntry <tMethod >("jmp -head", &cHardwareCPU :: Inst_JumpHead , nInstFlag ::

DEFAULT , "Move head ?IP? by amount in CX register; CX = old pos."),

272 tInstLibEntry <tMethod >("get -head", &cHardwareCPU :: Inst_GetHead , nInstFlag ::

DEFAULT , "Copy the position of the ?IP? head into CX"),

273 tInstLibEntry <tMethod >("if -label", &cHardwareCPU :: Inst_IfLabel , nInstFlag ::

DEFAULT , "Execute next if we copied complement of attached label"),

274 tInstLibEntry <tMethod >("if -label -direct", &cHardwareCPU :: Inst_IfLabelDirect ,

nInstFlag ::DEFAULT , "Execute next if we copied direct match of the attached

label"),

275 tInstLibEntry <tMethod >("if -label2", &cHardwareCPU :: Inst_IfLabel2 , 0, "If copied

label compl., exec next inst; else SKIP W/NOPS"),

276 tInstLibEntry <tMethod >("set -flow", &cHardwareCPU :: Inst_SetFlow , nInstFlag ::

DEFAULT , "Set flow -head to position in ?CX?"),

277

278 tInstLibEntry <tMethod >("res -mov -head", &cHardwareCPU :: Inst_ResMoveHead ,

nInstFlag ::STALL , "Move head ?IP? to the flow head depending on resource

level"),

279 tInstLibEntry <tMethod >("res -jmp -head", &cHardwareCPU :: Inst_ResJumpHead ,

nInstFlag ::STALL , "Move head ?IP? by amount in CX register depending on

resource level; CX = old pos."),

280

281 tInstLibEntry <tMethod >("h-copy2", &cHardwareCPU :: Inst_HeadCopy2),

282 tInstLibEntry <tMethod >("h-copy3", &cHardwareCPU :: Inst_HeadCopy3),

283 tInstLibEntry <tMethod >("h-copy4", &cHardwareCPU :: Inst_HeadCopy4),

284 tInstLibEntry <tMethod >("h-copy5", &cHardwareCPU :: Inst_HeadCopy5),
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285 tInstLibEntry <tMethod >("h-copy6", &cHardwareCPU :: Inst_HeadCopy6),

286 tInstLibEntry <tMethod >("h-copy7", &cHardwareCPU :: Inst_HeadCopy7),

287 tInstLibEntry <tMethod >("h-copy8", &cHardwareCPU :: Inst_HeadCopy8),

288 tInstLibEntry <tMethod >("h-copy9", &cHardwareCPU :: Inst_HeadCopy9),

289 tInstLibEntry <tMethod >("h-copy10", &cHardwareCPU :: Inst_HeadCopy10),

290

291 tInstLibEntry <tMethod >("divide -sex", &cHardwareCPU :: Inst_HeadDivideSex ,

nInstFlag ::STALL),

292 tInstLibEntry <tMethod >("divide -asex", &cHardwareCPU :: Inst_HeadDivideAsex ,

nInstFlag ::STALL),

293

294 tInstLibEntry <tMethod >("div -sex", &cHardwareCPU :: Inst_HeadDivideSex , nInstFlag ::

STALL),

295 tInstLibEntry <tMethod >("div -asex", &cHardwareCPU :: Inst_HeadDivideAsex , nInstFlag

::STALL),

296 tInstLibEntry <tMethod >("div -asex -w", &cHardwareCPU :: Inst_HeadDivideAsexWait ,

nInstFlag ::STALL),

297 tInstLibEntry <tMethod >("div -sex -MS", &cHardwareCPU :: Inst_HeadDivideMateSelect ,

nInstFlag ::STALL),

298

299 tInstLibEntry <tMethod >("h-divide1", &cHardwareCPU :: Inst_HeadDivide1 , nInstFlag ::

STALL),

300 tInstLibEntry <tMethod >("h-divide2", &cHardwareCPU :: Inst_HeadDivide2 , nInstFlag ::

STALL),

301 tInstLibEntry <tMethod >("h-divide3", &cHardwareCPU :: Inst_HeadDivide3 , nInstFlag ::

STALL),

302 tInstLibEntry <tMethod >("h-divide4", &cHardwareCPU :: Inst_HeadDivide4 , nInstFlag ::

STALL),

303 tInstLibEntry <tMethod >("h-divide5", &cHardwareCPU :: Inst_HeadDivide5 , nInstFlag ::

STALL),

304 tInstLibEntry <tMethod >("h-divide6", &cHardwareCPU :: Inst_HeadDivide6 , nInstFlag ::

STALL),

305 tInstLibEntry <tMethod >("h-divide7", &cHardwareCPU :: Inst_HeadDivide7 , nInstFlag ::

STALL),

306 tInstLibEntry <tMethod >("h-divide8", &cHardwareCPU :: Inst_HeadDivide8 , nInstFlag ::

STALL),

307 tInstLibEntry <tMethod >("h-divide9", &cHardwareCPU :: Inst_HeadDivide9 , nInstFlag ::

STALL),

308 tInstLibEntry <tMethod >("h-divide10", &cHardwareCPU :: Inst_HeadDivide10 , nInstFlag

::STALL),

309 tInstLibEntry <tMethod >("h-divide16", &cHardwareCPU :: Inst_HeadDivide16 , nInstFlag

::STALL),

310 tInstLibEntry <tMethod >("h-divide32", &cHardwareCPU :: Inst_HeadDivide32 , nInstFlag

::STALL),

311 tInstLibEntry <tMethod >("h-divide50", &cHardwareCPU :: Inst_HeadDivide50 , nInstFlag

::STALL),

312 tInstLibEntry <tMethod >("h-divide100", &cHardwareCPU :: Inst_HeadDivide100 ,

nInstFlag ::STALL),

313 tInstLibEntry <tMethod >("h-divide500", &cHardwareCPU :: Inst_HeadDivide500 ,

nInstFlag ::STALL),

314 tInstLibEntry <tMethod >("h-divide1000", &cHardwareCPU :: Inst_HeadDivide1000 ,

nInstFlag ::STALL),

315 tInstLibEntry <tMethod >("h-divide5000", &cHardwareCPU :: Inst_HeadDivide5000 ,

nInstFlag ::STALL),

316 tInstLibEntry <tMethod >("h-divide10000", &cHardwareCPU :: Inst_HeadDivide10000 ,

nInstFlag ::STALL),

317 tInstLibEntry <tMethod >("h-divide50000", &cHardwareCPU :: Inst_HeadDivide50000 ,

nInstFlag ::STALL),

318 tInstLibEntry <tMethod >("h-divide0 .5", &cHardwareCPU :: Inst_HeadDivide0_5 ,

nInstFlag ::STALL),

319 tInstLibEntry <tMethod >("h-divide0 .1", &cHardwareCPU :: Inst_HeadDivide0_1 ,

nInstFlag ::STALL),

320 tInstLibEntry <tMethod >("h-divide0 .05", &cHardwareCPU :: Inst_HeadDivide0_05 ,
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nInstFlag ::STALL),

321 tInstLibEntry <tMethod >("h-divide0 .01", &cHardwareCPU :: Inst_HeadDivide0_01 ,

nInstFlag ::STALL),

322 tInstLibEntry <tMethod >("h-divide0 .001", &cHardwareCPU :: Inst_HeadDivide0_001 ,

nInstFlag ::STALL),

323

324 // High -level instructions

325 tInstLibEntry <tMethod >("repro_deme", &cHardwareCPU :: Inst_ReproDeme , nInstFlag ::

STALL),

326 tInstLibEntry <tMethod >("repro", &cHardwareCPU :: Inst_Repro , nInstFlag ::STALL),

327 tInstLibEntry <tMethod >("repro -sex", &cHardwareCPU :: Inst_ReproSex , nInstFlag ::

STALL),

328 tInstLibEntry <tMethod >("repro -A", &cHardwareCPU ::Inst_Repro , nInstFlag ::STALL),

329 tInstLibEntry <tMethod >("repro -B", &cHardwareCPU ::Inst_Repro , nInstFlag ::STALL),

330 tInstLibEntry <tMethod >("repro -C", &cHardwareCPU ::Inst_Repro , nInstFlag ::STALL),

331 tInstLibEntry <tMethod >("repro -D", &cHardwareCPU ::Inst_Repro , nInstFlag ::STALL),

332 tInstLibEntry <tMethod >("repro -E", &cHardwareCPU ::Inst_Repro , nInstFlag ::STALL),

333 tInstLibEntry <tMethod >("repro -F", &cHardwareCPU ::Inst_Repro , nInstFlag ::STALL),

334 tInstLibEntry <tMethod >("repro -G", &cHardwareCPU ::Inst_Repro , nInstFlag ::STALL),

335 tInstLibEntry <tMethod >("repro -H", &cHardwareCPU ::Inst_Repro , nInstFlag ::STALL),

336 tInstLibEntry <tMethod >("repro -I", &cHardwareCPU ::Inst_Repro , nInstFlag ::STALL),

337 tInstLibEntry <tMethod >("repro -J", &cHardwareCPU ::Inst_Repro , nInstFlag ::STALL),

338 tInstLibEntry <tMethod >("repro -K", &cHardwareCPU ::Inst_Repro , nInstFlag ::STALL),

339 tInstLibEntry <tMethod >("repro -L", &cHardwareCPU ::Inst_Repro , nInstFlag ::STALL),

340 tInstLibEntry <tMethod >("repro -M", &cHardwareCPU ::Inst_Repro , nInstFlag ::STALL),

341 tInstLibEntry <tMethod >("repro -N", &cHardwareCPU ::Inst_Repro , nInstFlag ::STALL),

342 tInstLibEntry <tMethod >("repro -O", &cHardwareCPU ::Inst_Repro , nInstFlag ::STALL),

343 tInstLibEntry <tMethod >("repro -P", &cHardwareCPU ::Inst_Repro , nInstFlag ::STALL),

344 tInstLibEntry <tMethod >("repro -Q", &cHardwareCPU ::Inst_Repro , nInstFlag ::STALL),

345 tInstLibEntry <tMethod >("repro -R", &cHardwareCPU ::Inst_Repro , nInstFlag ::STALL),

346 tInstLibEntry <tMethod >("repro -S", &cHardwareCPU ::Inst_Repro , nInstFlag ::STALL),

347 tInstLibEntry <tMethod >("repro -T", &cHardwareCPU ::Inst_Repro , nInstFlag ::STALL),

348 tInstLibEntry <tMethod >("repro -U", &cHardwareCPU ::Inst_Repro , nInstFlag ::STALL),

349 tInstLibEntry <tMethod >("repro -V", &cHardwareCPU ::Inst_Repro , nInstFlag ::STALL),

350 tInstLibEntry <tMethod >("repro -W", &cHardwareCPU ::Inst_Repro , nInstFlag ::STALL),

351 tInstLibEntry <tMethod >("repro -X", &cHardwareCPU ::Inst_Repro , nInstFlag ::STALL),

352 tInstLibEntry <tMethod >("repro -Y", &cHardwareCPU ::Inst_Repro , nInstFlag ::STALL),

353 tInstLibEntry <tMethod >("repro -Z", &cHardwareCPU ::Inst_Repro , nInstFlag ::STALL),

354

355 tInstLibEntry <tMethod >("put -repro", &cHardwareCPU :: Inst_TaskPutRepro , nInstFlag

::STALL),

356 tInstLibEntry <tMethod >("metabolize", &cHardwareCPU :: Inst_TaskPutResetInputsRepro

, nInstFlag ::STALL),

357

358 tInstLibEntry <tMethod >("sterilize", &cHardwareCPU :: Inst_Sterilize),

359

360 tInstLibEntry <tMethod >("spawn -deme", &cHardwareCPU :: Inst_SpawnDeme , nInstFlag ::

STALL),

361

362 // Suicide

363 tInstLibEntry <tMethod >("kazi", &cHardwareCPU ::Inst_Kazi , nInstFlag :: STALL),

364 tInstLibEntry <tMethod >("kazi5", &cHardwareCPU :: Inst_Kazi5 , nInstFlag ::STALL),

365 tInstLibEntry <tMethod >("die", &cHardwareCPU ::Inst_Die , nInstFlag ::STALL),

366 tInstLibEntry <tMethod >("suicide", &cHardwareCPU :: Inst_Suicide , nInstFlag ::STALL)

,

367 tInstLibEntry <tMethod >("relinquishEnergyToFutureDeme", &cHardwareCPU ::

Inst_RelinquishEnergyToFutureDeme , nInstFlag :: STALL),

368 tInstLibEntry <tMethod >("relinquishEnergyToNeighborOrganisms", &cHardwareCPU ::

Inst_RelinquishEnergyToNeighborOrganisms , nInstFlag ::STALL),

369 tInstLibEntry <tMethod >("relinquishEnergyToOrganismsInDeme", &cHardwareCPU ::

Inst_RelinquishEnergyToOrganismsInDeme , nInstFlag :: STALL),

370

371 // Energy level detection
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372 tInstLibEntry <tMethod >("if -energy -low", &cHardwareCPU :: Inst_IfEnergyLow ,

nInstFlag ::STALL),

373 tInstLibEntry <tMethod >("if -energy -not -low", &cHardwareCPU :: Inst_IfEnergyNotLow ,

nInstFlag ::STALL),

374 tInstLibEntry <tMethod >("if -faced -energy -low", &cHardwareCPU ::

Inst_IfFacedEnergyLow , nInstFlag ::STALL),

375 tInstLibEntry <tMethod >("if -faced -energy -not -low", &cHardwareCPU ::

Inst_IfFacedEnergyNotLow , nInstFlag :: STALL),

376 tInstLibEntry <tMethod >("if -energy -high", &cHardwareCPU :: Inst_IfEnergyHigh ,

nInstFlag ::STALL),

377 tInstLibEntry <tMethod >("if -energy -not -high", &cHardwareCPU :: Inst_IfEnergyNotHigh

, nInstFlag ::STALL),

378 tInstLibEntry <tMethod >("if -faced -energy -high", &cHardwareCPU ::

Inst_IfFacedEnergyHigh , nInstFlag ::STALL),

379 tInstLibEntry <tMethod >("if -faced -energy -not -high", &cHardwareCPU ::

Inst_IfFacedEnergyNotHigh , nInstFlag :: STALL),

380 tInstLibEntry <tMethod >("if -energy -med", &cHardwareCPU :: Inst_IfEnergyMed ,

nInstFlag ::STALL),

381 tInstLibEntry <tMethod >("if -faced -energy -med", &cHardwareCPU ::

Inst_IfFacedEnergyMed , nInstFlag ::STALL),

382 tInstLibEntry <tMethod >("if -faced -energy -less", &cHardwareCPU ::

Inst_IfFacedEnergyLess , nInstFlag ::STALL),

383 tInstLibEntry <tMethod >("if -faced -energy -more", &cHardwareCPU ::

Inst_IfFacedEnergyMore , nInstFlag ::STALL),

384 tInstLibEntry <tMethod >("if -energy -in -buffer", &cHardwareCPU ::

Inst_IfEnergyInBuffer , nInstFlag ::STALL),

385 tInstLibEntry <tMethod >("if -energy -not -in -buffer", &cHardwareCPU ::

Inst_IfEnergyNotInBuffer , nInstFlag :: STALL),

386 tInstLibEntry <tMethod >("get -energy -level", &cHardwareCPU :: Inst_GetEnergyLevel ,

nInstFlag ::STALL),

387 tInstLibEntry <tMethod >("get -faced -energy -level", &cHardwareCPU ::

Inst_GetFacedEnergyLevel , nInstFlag :: STALL),

388 tInstLibEntry <tMethod >("if -faced -request -on", &cHardwareCPU ::

Inst_IfFacedEnergyRequestOn , nInstFlag ::STALL),

389 tInstLibEntry <tMethod >("if -faced -request -off", &cHardwareCPU ::

Inst_IfFacedEnergyRequestOff , nInstFlag ::STALL),

390 tInstLibEntry <tMethod >("get -energy -request -status", &cHardwareCPU ::

Inst_GetEnergyRequestStatus , nInstFlag ::STALL),

391 tInstLibEntry <tMethod >("get -faced -energy -request -status", &cHardwareCPU ::

Inst_GetFacedEnergyRequestStatus , nInstFlag :: STALL),

392

393 // Sleep and time

394 tInstLibEntry <tMethod >("sleep", &cHardwareCPU :: Inst_Sleep , nInstFlag ::STALL),

395 tInstLibEntry <tMethod >("sleep1", &cHardwareCPU ::Inst_Sleep , nInstFlag ::STALL),

396 tInstLibEntry <tMethod >("sleep2", &cHardwareCPU ::Inst_Sleep , nInstFlag ::STALL),

397 tInstLibEntry <tMethod >("sleep3", &cHardwareCPU ::Inst_Sleep , nInstFlag ::STALL),

398 tInstLibEntry <tMethod >("sleep4", &cHardwareCPU ::Inst_Sleep , nInstFlag ::STALL),

399 tInstLibEntry <tMethod >("time", &cHardwareCPU :: Inst_GetUpdate , nInstFlag :: STALL),

400

401 // Promoter Model

402 tInstLibEntry <tMethod >("promoter", &cHardwareCPU :: Inst_Promoter),

403 tInstLibEntry <tMethod >("terminate", &cHardwareCPU :: Inst_Terminate),

404 tInstLibEntry <tMethod >("promoter", &cHardwareCPU :: Inst_Promoter),

405 tInstLibEntry <tMethod >("terminate", &cHardwareCPU :: Inst_Terminate),

406 tInstLibEntry <tMethod >("regulate", &cHardwareCPU :: Inst_Regulate),

407 tInstLibEntry <tMethod >("regulate -sp", &cHardwareCPU ::

Inst_RegulateSpecificPromoters),

408 tInstLibEntry <tMethod >("s-regulate", &cHardwareCPU :: Inst_SenseRegulate),

409 tInstLibEntry <tMethod >("numberate", &cHardwareCPU :: Inst_Numberate),

410 tInstLibEntry <tMethod >("numberate -24", &cHardwareCPU :: Inst_Numberate24),

411

412 // Bit Consensus

413 tInstLibEntry <tMethod >("bit -cons", &cHardwareCPU :: Inst_BitConsensus),
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414 tInstLibEntry <tMethod >("bit -cons -24", &cHardwareCPU :: Inst_BitConsensus24),

415 tInstLibEntry <tMethod >("if -cons", &cHardwareCPU :: Inst_IfConsensus , 0, "Execute

next instruction if ?BX? in consensus , else skip it"),

416 tInstLibEntry <tMethod >("if -cons -24", &cHardwareCPU :: Inst_IfConsensus24 , 0, "

Execute next instruction if ?BX [0:23]? in consensus , else skip it"),

417 tInstLibEntry <tMethod >("if -less -cons", &cHardwareCPU :: Inst_IfLessConsensus , 0, "

Execute next instruction if Count(?BX?) < Count (?CX?), else skip it"),

418 tInstLibEntry <tMethod >("if -less -cons -24", &cHardwareCPU :: Inst_IfLessConsensus24 ,

0, "Execute next instruction if Count(?BX [0:23]?) < Count(?CX [0:23]?) , else

skip it"),

419

420 // Bit Masking (higher order bit masking is possible ,

421 // just add the instructions if needed)

422 tInstLibEntry <tMethod >("mask -signbit", &cHardwareCPU :: Inst_MaskSignBit),

423 tInstLibEntry <tMethod >("maskoff -lower16bits", &cHardwareCPU ::

Inst_MaskOffLower16Bits),

424 tInstLibEntry <tMethod >("maskoff -lower16bits -defaultAX", &cHardwareCPU ::

Inst_MaskOffLower16Bits_defaultAX),

425 tInstLibEntry <tMethod >("maskoff -lower15bits", &cHardwareCPU ::

Inst_MaskOffLower15Bits),

426 tInstLibEntry <tMethod >("maskoff -lower15bits -defaultAX", &cHardwareCPU ::

Inst_MaskOffLower15Bits_defaultAX),

427 tInstLibEntry <tMethod >("maskoff -lower14bits", &cHardwareCPU ::

Inst_MaskOffLower14Bits),

428 tInstLibEntry <tMethod >("maskoff -lower14bits -defaultAX", &cHardwareCPU ::

Inst_MaskOffLower14Bits_defaultAX),

429 tInstLibEntry <tMethod >("maskoff -lower13bits", &cHardwareCPU ::

Inst_MaskOffLower13Bits),

430 tInstLibEntry <tMethod >("maskoff -lower13bits -defaultAX", &cHardwareCPU ::

Inst_MaskOffLower13Bits_defaultAX),

431 tInstLibEntry <tMethod >("maskoff -lower12bits", &cHardwareCPU ::

Inst_MaskOffLower12Bits),

432 tInstLibEntry <tMethod >("maskoff -lower12bits -defaultAX", &cHardwareCPU ::

Inst_MaskOffLower12Bits_defaultAX),

433 tInstLibEntry <tMethod >("maskoff -lower8bits", &cHardwareCPU ::

Inst_MaskOffLower8Bits),

434 tInstLibEntry <tMethod >("maskoff -lower8bits -defaultAX", &cHardwareCPU ::

Inst_MaskOffLower8Bits_defaultAX),

435 tInstLibEntry <tMethod >("maskoff -lower4bits", &cHardwareCPU ::

Inst_MaskOffLower4Bits),

436 tInstLibEntry <tMethod >("maskoff -lower4bits -defaultAX", &cHardwareCPU ::

Inst_MaskOffLower4Bits_defaultAX),

437

438 // Energy usage

439 tInstLibEntry <tMethod >("double -energy -usage", &cHardwareCPU ::

Inst_DoubleEnergyUsage , nInstFlag ::STALL),

440 tInstLibEntry <tMethod >("halve -energy -usage", &cHardwareCPU ::

Inst_HalveEnergyUsage , nInstFlag ::STALL),

441 tInstLibEntry <tMethod >("default -energy -usage", &cHardwareCPU ::

Inst_DefaultEnergyUsage , nInstFlag ::STALL),

442

443 // Messaging

444 tInstLibEntry <tMethod >("send -msg", &cHardwareCPU :: Inst_SendMessage , nInstFlag ::

STALL),

445 tInstLibEntry <tMethod >("retrieve -msg", &cHardwareCPU :: Inst_RetrieveMessage ,

nInstFlag ::STALL),

446 tInstLibEntry <tMethod >("bcast1", &cHardwareCPU :: Inst_Broadcast1 , nInstFlag ::

STALL),

447 tInstLibEntry <tMethod >("bcast2", &cHardwareCPU :: Inst_Broadcast2 , nInstFlag ::

STALL),

448 tInstLibEntry <tMethod >("bcast4", &cHardwareCPU :: Inst_Broadcast4 , nInstFlag ::

STALL),

449 tInstLibEntry <tMethod >("bcast8", &cHardwareCPU :: Inst_Broadcast8 , nInstFlag ::
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STALL),

450

451 // Alarms

452 tInstLibEntry <tMethod >("send -alarm -msg -local", &cHardwareCPU ::

Inst_Alarm_MSG_local , nInstFlag ::STALL),

453 tInstLibEntry <tMethod >("send -alarm -msg -multihop", &cHardwareCPU ::

Inst_Alarm_MSG_multihop , nInstFlag ::STALL),

454 tInstLibEntry <tMethod >("send -alarm -msg -bit -cons24 -local", &cHardwareCPU ::

Inst_Alarm_MSG_Bit_Cons24_local , nInstFlag ::STALL),

455 tInstLibEntry <tMethod >("send -alarm -msg -bit -cons24 -multihop", &cHardwareCPU ::

Inst_Alarm_MSG_Bit_Cons24_multihop , nInstFlag :: STALL),

456 tInstLibEntry <tMethod >("alarm -label -high", &cHardwareCPU :: Inst_Alarm_Label),

457 tInstLibEntry <tMethod >("alarm -label -low", &cHardwareCPU :: Inst_Alarm_Label),

458

459 // Interrupt

460 tInstLibEntry <tMethod >("send -msg -interrupt -type0", &cHardwareCPU ::

Inst_SendMessageInterruptType0 , nInstFlag ::STALL),

461 tInstLibEntry <tMethod >("send -msg -interrupt -type1", &cHardwareCPU ::

Inst_SendMessageInterruptType1 , nInstFlag ::STALL),

462 tInstLibEntry <tMethod >("send -msg -interrupt -type2", &cHardwareCPU ::

Inst_SendMessageInterruptType2 , nInstFlag ::STALL),

463 tInstLibEntry <tMethod >("send -msg -interrupt -type3", &cHardwareCPU ::

Inst_SendMessageInterruptType3 , nInstFlag ::STALL),

464 tInstLibEntry <tMethod >("send -msg -interrupt -type4", &cHardwareCPU ::

Inst_SendMessageInterruptType4 , nInstFlag ::STALL),

465 tInstLibEntry <tMethod >("send -msg -interrupt -type5", &cHardwareCPU ::

Inst_SendMessageInterruptType5 , nInstFlag ::STALL),

466 tInstLibEntry <tMethod >("msg -handler -type0", &cHardwareCPU :: Inst_START_Handler),

467 tInstLibEntry <tMethod >("msg -handler -type1", &cHardwareCPU :: Inst_START_Handler),

468 tInstLibEntry <tMethod >("msg -handler -type2", &cHardwareCPU :: Inst_START_Handler),

469 tInstLibEntry <tMethod >("msg -handler -type3", &cHardwareCPU :: Inst_START_Handler),

470 tInstLibEntry <tMethod >("msg -handler -type4", &cHardwareCPU :: Inst_START_Handler),

471 tInstLibEntry <tMethod >("msg -handler -type5", &cHardwareCPU :: Inst_START_Handler),

472 tInstLibEntry <tMethod >("moved -handler", &cHardwareCPU :: Inst_START_Handler),

473 tInstLibEntry <tMethod >("end -handler", &cHardwareCPU :: Inst_End_Handler),

474

475 // Placebo instructions

476 tInstLibEntry <tMethod >("skip", &cHardwareCPU :: Inst_Skip),

477

478 // @BDC additions for pheromones

479 tInstLibEntry <tMethod >("phero -on", &cHardwareCPU :: Inst_PheroOn),

480 tInstLibEntry <tMethod >("phero -off", &cHardwareCPU :: Inst_PheroOff),

481 tInstLibEntry <tMethod >("pherotoggle", &cHardwareCPU :: Inst_PheroToggle),

482 tInstLibEntry <tMethod >("sense -target", &cHardwareCPU :: Inst_SenseTarget),

483 tInstLibEntry <tMethod >("sense -target -faced", &cHardwareCPU ::

Inst_SenseTargetFaced),

484 tInstLibEntry <tMethod >("sensef", &cHardwareCPU :: Inst_SenseLog2Facing),

485 tInstLibEntry <tMethod >("sensef -unit", &cHardwareCPU :: Inst_SenseUnitFacing),

486 tInstLibEntry <tMethod >("sensef -m100", &cHardwareCPU :: Inst_SenseMult100Facing),

487 tInstLibEntry <tMethod >("sense -pheromone", &cHardwareCPU :: Inst_SensePheromone),

488 tInstLibEntry <tMethod >("sense -pheromone -faced", &cHardwareCPU ::

Inst_SensePheromoneFaced),

489 tInstLibEntry <tMethod >("sense -pheromone -inDemeGlobal", &cHardwareCPU ::

Inst_SensePheromoneInDemeGlobal),

490 tInstLibEntry <tMethod >("sense -pheromone -global", &cHardwareCPU ::

Inst_SensePheromoneGlobal),

491 tInstLibEntry <tMethod >("sense -pheromone -global -defaultAX", &cHardwareCPU ::

Inst_SensePheromoneGlobal_defaultAX),

492 tInstLibEntry <tMethod >("exploit", &cHardwareCPU :: Inst_Exploit , nInstFlag ::STALL)

,

493 tInstLibEntry <tMethod >("exploit -forward5", &cHardwareCPU :: Inst_ExploitForward5 ,

nInstFlag ::STALL),

494 tInstLibEntry <tMethod >("exploit -forward3", &cHardwareCPU :: Inst_ExploitForward3 ,
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nInstFlag ::STALL),

495 tInstLibEntry <tMethod >("explore", &cHardwareCPU :: Inst_Explore , nInstFlag ::STALL)

,

496 tInstLibEntry <tMethod >("movetarget", &cHardwareCPU :: Inst_MoveTarget , nInstFlag ::

STALL),

497 tInstLibEntry <tMethod >("movetarget -forward5", &cHardwareCPU ::

Inst_MoveTargetForward5 , nInstFlag ::STALL),

498 tInstLibEntry <tMethod >("movetarget -forward3", &cHardwareCPU ::

Inst_MoveTargetForward3 , nInstFlag ::STALL),

499 tInstLibEntry <tMethod >("supermove", &cHardwareCPU :: Inst_SuperMove , nInstFlag ::

STALL),

500 tInstLibEntry <tMethod >("if -target", &cHardwareCPU :: Inst_IfTarget),

501 tInstLibEntry <tMethod >("if -not -target", &cHardwareCPU :: Inst_IfNotTarget),

502 tInstLibEntry <tMethod >("if -pheromone", &cHardwareCPU :: Inst_IfPheromone),

503 tInstLibEntry <tMethod >("if -not -pheromone", &cHardwareCPU :: Inst_IfNotPheromone),

504 tInstLibEntry <tMethod >("drop -pheromone", &cHardwareCPU :: Inst_DropPheromone ,

nInstFlag ::STALL),

505

506 // Opinion instructions.

507 // These are STALLs because opinions are only relevant with respect to time.

508 tInstLibEntry <tMethod >("set -opinion", &cHardwareCPU :: Inst_SetOpinion , nInstFlag

::STALL),

509 tInstLibEntry <tMethod >("get -opinion", &cHardwareCPU :: Inst_GetOpinion , nInstFlag

::STALL),

510 tInstLibEntry <tMethod >("get -opinionOnly", &cHardwareCPU ::

Inst_GetOpinionOnly_ZeroIfNone , nInstFlag ::STALL),

511 tInstLibEntry <tMethod >("clear -opinion", &cHardwareCPU :: Inst_ClearOpinion ,

nInstFlag ::STALL),

512 tInstLibEntry <tMethod >("if -opinion -set", &cHardwareCPU :: Inst_IfOpinionSet ,

nInstFlag ::STALL),

513 tInstLibEntry <tMethod >("if -opinion -notset", &cHardwareCPU :: Inst_IfOpinionNotSet ,

nInstFlag ::STALL),

514

515 // Data collection

516 tInstLibEntry <tMethod >("if -cell -data -changed", &cHardwareCPU ::

Inst_IfCellDataChanged , nInstFlag ::STALL),

517 tInstLibEntry <tMethod >("collect -cell -data", &cHardwareCPU :: Inst_CollectCellData ,

nInstFlag ::STALL),

518 tInstLibEntry <tMethod >("kill -cell -event", &cHardwareCPU :: Inst_KillCellEvent ,

nInstFlag ::STALL),

519 tInstLibEntry <tMethod >("kill -faced -cell -event", &cHardwareCPU ::

Inst_KillFacedCellEvent , nInstFlag ::STALL),

520 tInstLibEntry <tMethod >("collect -cell -data -and -kill -event", &cHardwareCPU ::

Inst_CollectCellDataAndKillEvent , nInstFlag :: STALL),

521 tInstLibEntry <tMethod >("read -cell -data", &cHardwareCPU :: Inst_ReadCellData),

522 tInstLibEntry <tMethod >("read -faced -cell -data", &cHardwareCPU ::

Inst_ReadFacedCellData , nInstFlag ::STALL),

523 tInstLibEntry <tMethod >("mark -cell -with -id", &cHardwareCPU :: Inst_MarkCellWithID),

524 tInstLibEntry <tMethod >("get -id", &cHardwareCPU :: Inst_GetID),

525

526 // Synchronization

527 tInstLibEntry <tMethod >("flash", &cHardwareCPU :: Inst_Flash , nInstFlag ::STALL),

528 tInstLibEntry <tMethod >("if -recvd -flash", &cHardwareCPU :: Inst_IfRecvdFlash ,

nInstFlag ::STALL),

529 tInstLibEntry <tMethod >("flash -info", &cHardwareCPU :: Inst_FlashInfo , nInstFlag ::

STALL),

530 tInstLibEntry <tMethod >("flash -info -b", &cHardwareCPU :: Inst_FlashInfoB , nInstFlag

::STALL),

531 tInstLibEntry <tMethod >("reset -flash -info", &cHardwareCPU :: Inst_ResetFlashInfo ,

nInstFlag ::STALL),

532 tInstLibEntry <tMethod >("hard -reset", &cHardwareCPU :: Inst_HardReset , nInstFlag ::

STALL),

533 tInstLibEntry <tMethod >("get -cycles", &cHardwareCPU :: Inst_GetCycles , nInstFlag ::
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STALL),

534

535 // Neighborhood -sensing instructions

536 tInstLibEntry <tMethod >("get -neighborhood", &cHardwareCPU :: Inst_GetNeighborhood ,

nInstFlag ::STALL),

537 tInstLibEntry <tMethod >("if -neighborhood -changed", &cHardwareCPU ::

Inst_IfNeighborhoodChanged , nInstFlag :: STALL),

538

539 // Reputation instructions

540 tInstLibEntry <tMethod >("donate -frm", &cHardwareCPU ::

Inst_DonateFacingRawMaterials , nInstFlag ::STALL),

541 tInstLibEntry <tMethod >("donate -spec", &cHardwareCPU ::

Inst_DonateFacingRawMaterialsOtherSpecies , nInstFlag ::STALL),

542 tInstLibEntry <tMethod >("donate -if-donor", &cHardwareCPU :: Inst_DonateIfDonor ,

nInstFlag ::STALL),

543 tInstLibEntry <tMethod >("donate -string", &cHardwareCPU :: Inst_DonateFacingString ,

nInstFlag ::STALL),

544

545 tInstLibEntry <tMethod >("get -neighbors -reputation", &cHardwareCPU ::

Inst_GetNeighborsReputation , nInstFlag ::STALL),

546 tInstLibEntry <tMethod >("get -reputation", &cHardwareCPU :: Inst_GetReputation ,

nInstFlag ::STALL),

547 tInstLibEntry <tMethod >("get -raw -mat -amount", &cHardwareCPU ::

Inst_GetAmountOfRawMaterials , nInstFlag ::STALL),

548 tInstLibEntry <tMethod >("get -other -raw -mat -amount", &cHardwareCPU ::

Inst_GetAmountOfOtherRawMaterials , nInstFlag :: STALL),

549 tInstLibEntry <tMethod >("pose", &cHardwareCPU ::Inst_Pose , nInstFlag :: STALL),

550 tInstLibEntry <tMethod >("rotate -to-rep", &cHardwareCPU ::

Inst_RotateToGreatestReputation , nInstFlag ::STALL),

551 tInstLibEntry <tMethod >("rotate -to-rep -and -donate", &cHardwareCPU ::

Inst_RotateToGreatestReputationAndDonate , nInstFlag ::STALL),

552 tInstLibEntry <tMethod >("rotate -to-rep -tag", &cHardwareCPU ::

Inst_RotateToGreatestReputationWithDifferentTag , nInstFlag :: STALL),

553 tInstLibEntry <tMethod >("rotate -to-rep -lineage", &cHardwareCPU ::

Inst_RotateToGreatestReputationWithDifferentLineage , nInstFlag ::STALL),

554 tInstLibEntry <tMethod >("rotate -to-tag", &cHardwareCPU :: Inst_RotateToDifferentTag

, nInstFlag ::STALL),

555 tInstLibEntry <tMethod >("if -donor", &cHardwareCPU :: Inst_IfDonor , nInstFlag ::STALL

),

556 tInstLibEntry <tMethod >("prod -string", &cHardwareCPU :: Inst_ProduceString ,

nInstFlag ::STALL),

557

558 // Group formation instructions

559 tInstLibEntry <tMethod >("join -group", &cHardwareCPU :: Inst_JoinGroup , nInstFlag ::

STALL),

560 tInstLibEntry <tMethod >("orgs -in -my-group", &cHardwareCPU ::

Inst_NumberOrgsInMyGroup , nInstFlag :: STALL),

561 tInstLibEntry <tMethod >("orgs -in -group", &cHardwareCPU :: Inst_NumberOrgsInGroup ,

nInstFlag ::STALL),

562

563 // Network creation instructions

564 tInstLibEntry <tMethod >("create -link -facing", &cHardwareCPU ::

Inst_CreateLinkByFacing , nInstFlag ::STALL),

565 tInstLibEntry <tMethod >("create -link -xy", &cHardwareCPU :: Inst_CreateLinkByXY ,

nInstFlag ::STALL),

566 tInstLibEntry <tMethod >("create -link -index", &cHardwareCPU ::

Inst_CreateLinkByIndex , nInstFlag ::STALL),

567

568 // Must always be the last instruction in the array

569 tInstLibEntry <tMethod >("NULL", &cHardwareCPU ::Inst_Nop , 0, "True no -operation

instruction: does nothing"),

570 };
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Appendix E

Configuration File (Excerpt)

Three relevant groups of configurable variables are listed below, with the comments ac-

cording to the original wording and terminology. Several unused fields are also included

in the listing for the sake of completeness.

Listing E.1: ARCH GROUP

1 ### ARCH_GROUP ###

2 # Architecture Variables

3 WORLD_X 60 # Width of the Avida world

4 WORLD_Y 60 # Height of the Avida world

5 WORLD_Z 1 # Depth of the Avida world

6 WORLD_GEOMETRY 2 # 1 = Bounded Grid

7 # 2 = Torus

8 # 3 = Clique

9 # 4 = Hexagonal grid

10 # 5 = Partial

11 # 6 = Lattice

12 # 7 = Random connected

13 # 8 = Scale -free

14 SCALE_FREE_M 3 # Number of connections to add per cell when using a scale -free

geometry.

15 SCALE_FREE_ALPHA 1.0 # Attachment power (1= linear).

16 SCALE_FREE_ZERO_APPEAL 0.0 # Appeal of cells with zero connections.

17 RANDOM_SEED 17676175 # Random number seed (0 for based on time)

18 #RANDOM_SEED 0 # Random number seed (0 for based on time)

19 HARDWARE_TYPE 0 # 0 = Original CPUs

20 # 1 = New SMT CPUs

21 # 2 = Transitional SMT

22 # 3 = Experimental CPU

23 # 4 = Gene Expression CPU

24 SPECULATIVE 1 # Enable speculative execution

25 TRACE_EXECUTION 0 # Trace the execution of all organisms in the population (default

=OFF , SLOW!)

26 IO_EXPIRE 1 # Is the expiration functionality of ’-expire ’ I/O instructions enabled

?

Listing E.2: MUTATION GROUP

1 ### MUTATION_GROUP ###

2 # Mutations

3 POINT_MUT_PROB 0.0 # Mutation rate (per -location per update) #default =0.0

4 COPY_MUT_PROB 0.0001753 # Mutation rate (per copy) for von neumann ancestors

5 #COPY_MUT_PROB 0.0 # Mutation rate (per copy) for von neumann ancestors

6 COPY_INS_PROB 0.0 # Insertion rate (per copy)

7 COPY_DEL_PROB 0.0 # Deletion rate (per copy)

8 COPY_UNIFORM_PROB 0.0 # Uniform mutation probability (per copy)
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9 # - Randomly applies any of the three classes of mutations (ins , del , point).

10 COPY_SLIP_PROB 0.0 # Slip rate (per copy)

11 DIV_MUT_PROB 0.0 # Mutation rate (per site , applied on divide)

12 DIV_INS_PROB 0.0 # Insertion rate (per site , applied on divide)

13 DIV_DEL_PROB 0.0 # Deletion rate (per site , applied on divide)

14 DIV_UNIFORM_PROB 0.0 # Uniform mutation probability (per site , applied on divide)

15 # - Randomly applies any of the three classes of mutations (ins , del , point).

16 DIV_SLIP_PROB 0.0 # Slip rate (per site , applied on divide)

17 DIVIDE_MUT_PROB 0.0 # Mutation rate (max one , per divide)

18 DIVIDE_INS_PROB 0.0 # Insertion rate (max one , per divide)

19 DIVIDE_DEL_PROB 0.0 # Deletion rate (max one , per divide)

20 DIVIDE_SLIP_PROB 0.0 # Slip rate (per divide) - creates large deletions/

duplications

21 DIVIDE_POISSON_MUT_MEAN 0.0 # Mutation rate (Poisson distributed , per divide)

22 DIVIDE_POISSON_INS_MEAN 0.0 # Insertion rate (Poisson distributed , per divide)

23 DIVIDE_POISSON_DEL_MEAN 0.0 # Deletion rate (Poisson distributed , per divide)

24 DIVIDE_POISSON_SLIP_MEAN 0.0 # Slip rate (Poisson distributed , per divide)

25 DIVIDE_UNIFORM_PROB 0.0 # Uniform mutation probability (per divide)

26 # - Randomly applies any of the three classes of mutations (ins , del , point).

27 DEATH_PROB 0.0 # Death rate (parent organism , per divide)

28 INJECT_INS_PROB 0.0 # Insertion rate (per site , applied on inject)

29 INJECT_DEL_PROB 0.0 # Deletion rate (per site , applied on inject)

30 INJECT_MUT_PROB 0.0 # Mutation rate (per site , applied on inject)

31 SLIP_FILL_MODE 0 # Fill insertions from slip mutations with 0= duplication , 1=nop -X

, 2=random , 3=scrambled , 4=nop -C

32 SLIP_COPY_MODE 0 # How to handle ’on-copy ’ slip mutations:

33 # 0 = actual read head slip

34 # 1 = instant large mutation (obeys slip mode)

35 PARENT_MUT_PROB 0.0 # Per -site , in parent , on divide

36 SPECIAL_MUT_LINE -1 # If this is >= 0, ONLY this line is mutated

37 META_COPY_MUT 0.0 # Prob. of copy mutation rate changing (per gen)

38 META_STD_DEV 0.0 # Standard deviation of meta mutation size.

39 MUT_RATE_SOURCE 1 # 1 = Mutation rates determined by environment.

40 # 2 = Mutation rates inherited from parent.

41 MIGRATION_RATE 0.0 # Uniform probability of offspring migrating to a new deme.

Listing E.3: REPRODUCTION GROUP

1 ### REPRODUCTION_GROUP ###

2 # Birth and Death

3 BIRTH_METHOD 1 # Which organism should be replaced on birth?

4 # 0 = Random organism in neighborhood #default

5 # 1 = Oldest in neighborhood

6 # 2 = Largest Age/Merit in neighborhood

7 # 3 = None (use only empty cells in neighborhood)

8 # 4 = Random from population (Mass Action)

9 # 5 = Oldest in entire population

10 # 6 = Random within deme

11 # 7 = Organism faced by parent

12 # 8 = Next grid cell (id+1)

13 # 9 = Largest energy used in entire population

14 # 10 = Largest energy used in neighborhood

15 # 11 = Local neighborhood dispersal

16 PREFER_EMPTY 1 # Give empty cells preference in offsping placement?

17 ALLOW_PARENT 1 # Allow births to replace the parent organism?

18 DISPERSAL_RATE 0.0 # Rate of dispersal under birth method 11

19 # (poisson distributed random connection list hops)

20 DEATH_METHOD 0

21 # 0 = Never die of old age.

22 # 1 = Die when inst executed = AGE_LIMIT (+ deviation)

23 # 2 = Die when inst executed = length*AGE_LIMIT (+dev) #default

24 AGE_LIMIT 20 # Modifies DEATH_METHOD

25 AGE_DEVIATION 0 # Creates a distribution around AGE_LIMIT
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26 ALLOC_METHOD 0 # (Orignal CPU Only)

27 # 0 = Allocated space is set to default instruction.

28 # 1 = Set to section of dead genome (Necrophilia)

29 # 2 = Allocated space is set to random instruction.

30 DIVIDE_METHOD 1

31 # 0 = Divide leaves state of mother untouched.

32 # 1 = Divide resets state of mother

33 # (after the divide , we have 2 children)

34 # 2 = Divide resets state of current thread only

35 # (does not touch possible parasite threads)

36 # 3 = Divide resets mother stats , but not state.

37 # 4 = 3 + child inherits mother registers and stack values.

38 EPIGENETIC_METHOD 0 # Inheritance of state information other than genome

39 # 0 = none

40 # 1 = offspring inherits registers and stacks of first thread

41 # 2 = parent maintains registers and stacks of first thread

42 # 3 = offspring and parent keep state information

43 INJECT_METHOD 0

44 # 0 = Leaves the parasite thread state untouched.

45 # 1 = Resets the calling thread state on inject

46 GENERATION_INC_METHOD 1

47 # 0 = Only the generation of the child is increased on divide.

48 # 1 = Both the generation of the mother and child are increased on divide.

49 # (good with DIVIDE_METHOD 1).

50 RESET_INPUTS_ON_DIVIDE 0

51 # Reset environment inputs of parent upon successful divide.

52 REPRO_METHOD 1 # Replace existing organism: 1=yes

53 INHERIT_MULTI_THREAD_CLASSIFICATION 0

54 # Inherit the parental classification of multithreaded

55 POPULATION_CAP 0 # Carrying capacity in number of organisms

Listing E.4: DIVIDE GROUP

1 ### DIVIDE_GROUP ###

2 # Divide Restrictions

3 CHILD_SIZE_RANGE 2.0 # Maximal differential between child and parent sizes.

4 # (Checked BEFORE mutations applied on divide .)

5 MIN_COPIED_LINES 0.5 # Code fraction which must be copied before divide.

6 MIN_EXE_LINES 0.45 # Code fraction which must be executed before divide.

7 # 0.45 for the prototype ancestor.

8 # (based on Phenome size / Gene size = 294/644 = 0.4565...)

9 MIN_GENOME_SIZE 0

10 # Minimum number of instructions allowed in a genome. 0 = OFF

11 MAX_GENOME_SIZE 0

12 # Maximum number of instructions allowed in a genome. 0 = OFF

13 REQUIRE_ALLOCATE 1 # (Original CPU Only) Require allocate before divide?

14 REQUIRED_TASK -1 # Task ID required for successful divide.

15 IMMUNITY_TASK -1 # Task providing immunity from the required task.

16 REQUIRED_REACTION -1 # Reaction ID required for successful divide.

17 IMMUNITY_REACTION -1 # Reaction ID that provides immunity for successful divide.

18 REQUIRED_BONUS 0.0 # Required bonus to divide.

19 REQUIRE_EXACT_COPY 0

20 # Require offspring to be an exact copy (only divide mutations allowed).

21 REQUIRED_RESOURCE -1

22 # Resource ID required for successful divide

23 # (organism must have this resource in internal bins).

24 REQUIRED_RESOURCE_LEVEL 0.0

25 # Level of resource required for successful divide (see REQUIRED_RESOURCE).

26 IMPLICIT_REPRO_BONUS 0

27 # Call Inst_Repro to divide upon achieving this bonus. # 0 = OFF

28 IMPLICIT_REPRO_CPU_CYCLES 0

29 # Call Inst_Repro after this many cpu cycles. 0 = OFF

30 IMPLICIT_REPRO_TIME 0
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31 # Call Inst_Repro after this time used. 0 = OFF

32 IMPLICIT_REPRO_END 0

33 # Call Inst_Repro after executing the last instruction in the genome.

34 IMPLICIT_REPRO_ENERGY 0.0 # Call Inst_Repro if organism accumulates this amount of

energy.

Listing E.5: TIME GROUP

1 ### TIME_GROUP ###

2 # Time Slicing

3 AVE_TIME_SLICE 30 # Ave number of insts per org per update

4 SLICING_METHOD 1 # 0 = CONSTANT: all organisms get default ...

5 # 1 = PROBABILISTIC: Run _prob_ proportional to merit. (default)

6 # 2 = INTEGRATED: Perfectly integrated deterministic.

7 # 3 = DemeProbabalistic , each deme gets the same number of CPU cycles , which are

awarded probabalistically within each deme.

8 # 4 = ProbDemeProbabalistic , each deme gets CPU cycles proportional to its

living population size , which are awarded probabalistically within each deme

.

9 # 5 = CONSTANT BURST: all organisms get default , in SLICING_BURST_SIZE chunks

10 SLICING_BURST_SIZE 1 # Sets the scheduler burst size , when supported.

11 BASE_MERIT_METHOD 3 # 0 = Constant (merit independent of size)

12 # 1 = Merit proportional to copied size

13 # 2 = Merit prop. to executed size

14 # 3 = Merit prop. to full size (default)

15 # 4 = Merit prop. to min of executed or copied size

16 # 5 = Merit prop. to sqrt of the minimum size

17 # 6 = Merit prop. to num times MERIT_BONUS_INST is in genome.

18 BASE_CONST_MERIT 100 # Base merit when BASE_MERIT_METHOD set to 0

19 DEFAULT_BONUS 1.0 # Initial bonus before any tasks

20 MERIT_DEFAULT_BONUS 0 # Scale the merit of an offspring by this default bonus

21 # rather than the accumulated bonus of the parent? 0 = OFF

22 MERIT_BONUS_INST 0 # in BASE_MERIT_METHOD 6, this sets which instruction counts

23 # (-1 = none , 0 = First in INST_SET .)

24 MERIT_BONUS_EFFECT 0 # in BASE_MERIT_METHOD 6, this sets how much merit is earned

25 # per instruction (-1 = penalty , 0 = no effect .)

26 MERIT_INC_APPLY_IMMEDIATE 0 # Should merit increases (above current) be applied

immediately , or delayed until divide?

27 TASK_REFRACTORY_PERIOD 0.0 # Number of updates affected by refractory period

28 FITNESS_METHOD 0 # 0 = default , 1 = sigmoidal ,

29 FITNESS_COEFF_1 1.0 # 1st FITNESS_METHOD parameter

30 FITNESS_COEFF_2 1.0 # 2nd FITNESS_METHOD parameter

31 FITNESS_VALLEY 0 # in BASE_MERIT_METHOD 6, this creates valleys from

32 # FITNESS_VALLEY_START to FITNESS_VALLEY_STOP

33 # (0 = OFF , 1 = ON)

34 FITNESS_VALLEY_START 0 # if FITNESS_VALLEY = 1, orgs with num_key_instructions

35 # from FITNESS_VALLEY_START to FITNESS_VALLEY_STOP

36 # get fitness 1 (lowest)

37 FITNESS_VALLEY_STOP 0 # if FITNESS_VALLEY = 1, orgs with num_key_instructions

38 # from FITNESS_VALLEY_START to FITNESS_VALLEY_STOP

39 # get fitness 1 (lowest)

40 MAX_CPU_THREADS 1 # Number of Threads a CPU can spawn

41 THREAD_SLICING_METHOD 0 # Formula for and organism ’s thread slicing

42 # (num_threads -1) * THREAD_SLICING_METHOD + 1

43 # 0 = One thread executed per time slice.

44 # 1 = All threads executed each time slice.

45 NO_CPU_CYCLE_TIME 0 # Don ’t count each CPU cycle as part of gestation time

46 MAX_LABEL_EXE_SIZE 1 # Max nops marked as executed when labels are used

47 MERIT_GIVEN 0.0 # Fraction of merit donated with ’donate ’ command

48 MERIT_RECEIVED 0.0 # Multiplier of merit given with ’donate ’ command

49 MAX_DONATE_KIN_DIST -1 # Limit on distance of relation for donate; -1=no max

50 MAX_DONATE_EDIT_DIST -1 # Limit on genetic (edit) distance for donate; -1=no max

51 MIN_GB_DONATE_THRESHOLD -1 # threshold green beard donates only to orgs above this
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52 # donation attempt threshold; -1=no thresh

53 DONATE_THRESH_QUANTA 10 # The size of steps between quanta donate thresholds

54 MAX_DONATES 1000000 # Limit on number of donates organisms are allowed.

55 PRECALC_PHENOTYPE 0 # 0 = Disabled

56 # 1 = Assign precalculated merit at birth (unlimited resources only)

57 # 2 = Assign precalculated gestation time

58 # 3 = Assign precalculated merit AND gestation time.

59 # 4 = Assign last instruction counts

60 # 5 = Assign last instruction counts and merit

61 # 6 = Assign last instruction counts and gestation time

62 # 7 = Assign everything currently supported

63 # Fitness will be evaluated for organism based on these settings.

64 FASTFORWARD_UPDATES 0 # Fast -forward if the average generation has not changed in

this many updates. (0 = OFF)

65 FASTFORWARD_NUM_ORGS 0 # Fast -forward if population is equal to this

66 GENOTYPE_PHENPLAST_CALC 100 # Number of times to test a genotype ’s

67 # plasticity during runtime.

Listing E.6: GENEOLOGY GROUP

1 ### GENEOLOGY_GROUP ###

2 # Geneology

3 TRACK_MAIN_LINEAGE 1 # Keep all ancestors of the active population?

4 # 0=no , 1=yes , 2=yes ,w/sexual population

5 THRESHOLD 3

6 # Number of organisms in a genotype needed for it to be considered viable.

7 GENOTYPE_PRINT 0 # 0/1 (OFF/ON) Print out all threshold genotypes?

8 GENOTYPE_PRINT_DOM 0

9 # Print out a genotype if it stays dominant for this many updates. 0 = OFF

10 SPECIES_THRESHOLD 2 # max failure count for organisms to be same species

11 SPECIES_RECORDING 0 # 1 = full , 2 = limited search (parent only)

12 SPECIES_PRINT 0 # 0/1 (OFF/ON) Print out all species?

13 TEST_CPU_TIME_MOD 163 # Time allocated in test CPUs (multiple of length)

14 TRACK_PARENT_DIST 0 # Track parent distance during run. This is unnecessary when

track main lineage is on.
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Appendix F

Analysis Code

The TRACE command is the key command implemented in the original analysis mode,

which was modified to realise the enhanced analysis. The function call relationship as

found in the Avida source code is as follows:

Listing F.1: Pseudo Function Call Relationship for the TRACE Command

1 /*

2 Function call relationship for the analyze mode’s TRACE command

3 with function names and arguments.

4 For further information anout the class definition , dependency ,

5 structure , etc., refer to the actual source code.

6 */

7 void cAnalyze :: CommandTrace(cString cur_string)

8 bool cTestCPU :: TestGenome(cAvidaContext& ctx , cCPUTestInfo& test_info , const

cGenome& genome) // with three arguments

9 bool cTestCPU :: TestGenome_Body(cAvidaContext& ctx , cCPUTestInfo& test_info ,

const cMetaGenome& genome , int cur_depth)

10 bool cTestCPU :: ProcessGestation(cAvidaContext& ctx , cCPUTestInfo&

test_info , int cur_depth)

11 bool cHardwareCPU :: SingleProcess(cAvidaContext& ctx , bool speculative)

12 void cHardwareStatusPrinter :: TraceHardware(cHardwareBase& hardware ,

bool bonus)

13 void cOrganism :: PrintStatus(ostream& fp, const cString& next_name

) // printing of details is done here

14 void cHardwareStatusPrinter :: TraceTestCPU(int time_used , int

time_allocated , const cOrganism& organism)

15 void cOrganism :: PrintFinalStatus(ostream& fp, int time_used , int

time_allocated) const

The original function for the analysis using the TRACE command follows.

Listing F.2: Original TestGenome Body Function

1 bool cTestCPU :: TestGenome_Body(cAvidaContext& ctx , cCPUTestInfo& test_info , const

cMetaGenome& genome , int cur_depth)

2 {

3 assert(cur_depth < test_info.generation_tests);

4

5 // Input sizes can vary based on environment settings , must at least initialize

6 m_use_random_inputs = test_info.GetUseRandomInputs (); // save this value in case

ResetInputs is used.

7 if (! test_info.GetUseManualInputs ())

8 m_world ->GetEnvironment ().SetupInputs(ctx , input_array , m_use_random_inputs);

9 else
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10 input_array = test_info.manual_inputs;

11

12 receive_array.Resize (3);

13 if (test_info.GetUseRandomInputs ()) {

14 receive_array [0] = (15 << 24) + ctx.GetRandom ().GetUInt (1 << 24); // 00001111

15 receive_array [1] = (51 << 24) + ctx.GetRandom ().GetUInt (1 << 24); // 00110011

16 receive_array [2] = (85 << 24) + ctx.GetRandom ().GetUInt (1 << 24); // 01010101

17 } else {

18 receive_array [0] = 0x0f139f14; // 00001111 00010011 10011111 00010100

19 receive_array [1] = 0x33083ee5; // 00110011 00001000 00111110 11100101

20 receive_array [2] = 0x5562eb41; // 01010101 01100010 11101011 01000001

21 }

22

23 if (cur_depth == 0) test_info.used_inputs = input_array;

24

25 if (cur_depth > test_info.max_depth) test_info.max_depth = cur_depth;

26 // records how far it went.

27

28 // Setup the organism we’re working with now.

29 if (test_info.org_array[cur_depth] != NULL) {

30 delete test_info.org_array[cur_depth ];

31 }

32 cOrganism* organism = NULL;

33

34 if (test_info.GetInstSet ()) organism = new cOrganism(m_world , ctx , genome ,

test_info.GetInstSet ());

35 else organism = new cOrganism(m_world , ctx , genome);

36

37 // Copy the test mutation rates

38 organism ->MutationRates ().Copy(test_info.MutationRates ());

39

40 test_info.org_array[cur_depth] = organism;

41 organism ->SetOrgInterface(ctx , new cTestCPUInterface(this , test_info , cur_depth)

);

42 organism ->GetPhenotype ().SetupInject(genome.GetGenome ());

43

44 // Run the current organism.

45 ProcessGestation(ctx , test_info , cur_depth);

46

47 // Must be able to divide twice in order to form a successful colony ,

48 // assuming the CPU doesn ’t get reset on divides.

49 //

50 // The possibilities after this gestation cycle are:

51 // 1: It did not copy at all => Exit this level.

52 // 2: It copied true => Check next gestation cycle , or set is_viable.

53 // 3: Its copy looks like an ancestor => copy true.

54 // 4: It copied false => we must check the child.

55

56 // Case 1: ////////////////////////////////////

57 if (organism ->GetPhenotype ().GetNumDivides () == 0) return false;

58

59 // Case 2: ////////////////////////////////////

60 if (organism ->GetPhenotype ().CopyTrue () == true) {

61 test_info.depth_found = cur_depth;

62 test_info.is_viable = true;

63 return true;

64 }

65

66 // Case 3: ////////////////////////////////////

67 bool is_ancestor = false;

68 for (int anc_depth = 0; anc_depth < cur_depth; anc_depth ++) {

69 if (organism ->OffspringGenome ().GetGenome () == test_info.org_array[anc_depth

]->GetGenome ()){
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70 is_ancestor = true;

71 const int cur_cycle = cur_depth - anc_depth;

72 if (test_info.max_cycle < cur_cycle) test_info.max_cycle = cur_cycle;

73 test_info.cycle_to = anc_depth;

74 }

75 }

76 if (is_ancestor) {

77 test_info.depth_found = cur_depth;

78 test_info.is_viable = true;

79 return true;

80 }

81

82 // Case 4: ////////////////////////////////////

83 // If we haven’t reached maximum depth yet , check out the child.

84 if (cur_depth + 1 < test_info.generation_tests) {

85 // Run the offspring ’s genome.

86 return TestGenome_Body(ctx , test_info , organism ->OffspringGenome (), cur_depth

+ 1);

87 }

88

89 // All options have failed; just return false.

90 return false;

91 }

The modified function for the enhanced analysis using the TRACE command is as follows:

Listing F.3: Modified TestGenome Body Function

1 int cTestCPU :: TestGenome_Body(cAvidaContext& ctx , cCPUTestInfo& test_info , const

cMetaGenome& genome , int cur_depth , int cur_index)

2 {

3 // First severel procedures are left unchanged , from here ...

4 assert(cur_index < test_info.generation_tests);

5

6 // Input sizes can vary based on environment settings , must at least initialize

7 m_use_random_inputs = test_info.GetUseRandomInputs (); // save this value in case

ResetInputs is used.

8 if (! test_info.GetUseManualInputs ())

9 m_world ->GetEnvironment ().SetupInputs(ctx , input_array , m_use_random_inputs);

10 else

11 input_array = test_info.manual_inputs;

12

13 receive_array.Resize (3);

14 if (test_info.GetUseRandomInputs ()) {

15 receive_array [0] = (15 << 24) + ctx.GetRandom ().GetUInt (1 << 24); //

00001111

16 receive_array [1] = (51 << 24) + ctx.GetRandom ().GetUInt (1 << 24); //

00110011

17 receive_array [2] = (85 << 24) + ctx.GetRandom ().GetUInt (1 << 24); //

01010101

18 } else {

19 receive_array [0] = 0x0f139f14; // 00001111 00010011 10011111 00010100

20 receive_array [1] = 0x33083ee5; // 00110011 00001000 00111110 11100101

21 receive_array [2] = 0x5562eb41; // 01010101 01100010 11101011 01000001

22 }

23

24 if (cur_depth == 0) test_info.used_inputs = input_array;

25

26 if (cur_index > test_info.max_depth) test_info.max_depth = cur_index;

27 // ... left unchanged till here.

28

29 // For "breadth first trace" (and tree creation)

F3



30 std::queue <int > bft_queue; // intended to hold indices

31

32 if (cur_index == 0) { // initial process. incubate the first one in the

strain_array []

33 sStrain* strain = new sStrain ();

34 test_info.strain_array[cur_index] = strain;

35 test_info.strain_array[cur_index]->size = genome.GetSize ();

36 test_info.strain_array[cur_index]->incubated = true;

37

38 cOrganism* organism = NULL; // set up the organism

39 // is needed anyway to compare to elements in the array

40 if (test_info.GetInstSet ()) organism = new cOrganism(m_world , ctx , genome ,

test_info.GetInstSet ());

41 else organism = new cOrganism(m_world , ctx , genome);

42 organism ->MutationRates ().Copy(test_info.MutationRates ()); // just in case ,

copy the test mutation rates

43

44 test_info.org_array[cur_index] = organism; // register org in the array for

comparison later

45 organism ->SetOrgInterface(ctx , new cTestCPUInterface(this , test_info ,

cur_index)); // part of original code

46 organism ->GetPhenotype ().SetupInject(genome.GetGenome ()); // just in case ,

for completeness

47

48 bft_queue.push(cur_index);

49 }

50

51 assert (test_info.strain_array[cur_index ]!= NULL);

52

53 while (! bft_queue.empty()) {

54 // "cur_index" is now used to point to an index for a new offspring !!

55 int par_index = bft_queue.front (); // meaning it "may" become a parent , if

and only if it divides

56 bft_queue.pop(); // dequeue

57

58 // TRACE: produce a trace file of this strain as usual

59 ProcessGestation(ctx , test_info , par_index);

60

61 cHardwareTracer* tracer = test_info.GetTracer ();

62 // to print out whether divided or not

63

64 test_info.strain_array[par_index]->gestationTime = test_info.org_array[

par_index]->GetPhenotype ().GetGestationTime ();

65

66 // if not divided

67 if (test_info.org_array[par_index]->GetPhenotype ().GetNumDivides () == 0) { //

if not divided

68 test_info.strain_array[par_index]->divided = false;

69 if (tracer != NULL) test_info.org_array[par_index]->PrintCaseRecursion (*(

tracer ->GetStream ()), 0);

70

71 test_info.strain_array[par_index]->leftChildIndex = -1;

72 test_info.strain_array[par_index]->rightChildIndex = -1;

73 }

74 else {// if divided

75 test_info.strain_array[par_index]->divided = true;

76 if (tracer != NULL) test_info.org_array[par_index]->PrintCaseRecursion (*(

tracer ->GetStream ()), 1);

77

78 bool flagSeen;

79

80 // 1) this I call LEFT side of the tree , always fully checked first

81 // first check if organism ->FinalGenome ().GetGenome ()
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82 // is previously seen in the org_array []

83 for (int i=0; i<= cur_index; i++) {

84 flagSeen = false;

85 if (test_info.org_array[i]->GetGenome () == test_info.org_array[

par_index]->FinalGenome ().GetGenome ()) {

86 test_info.strain_array[par_index]->leftChildIndex = i; // set

leftChildIndex to the index seen

87 flagSeen = true;

88 break;

89 }

90 }

91 if (flagSeen == false) { // if this first child of the offspring is never

seen (new),

92 cur_index ++;

93

94 test_info.strain_array[par_index]->leftChildIndex = cur_index; //

register as a child of the parent

95

96 if (0 <= cur_index && cur_index < test_info.generation_tests) {

97 // test before passing onto the next call

98 // forget the depth limit now that it is breadth first

99 if (test_info.strain_array[cur_index ]== NULL) { // embody a strain

for this child

100 sStrain* strain = new sStrain ();

101 test_info.strain_array[cur_index] = strain;

102 strain ->size = test_info.org_array[par_index]->FinalGenome ().

GetSize ();

103 strain ->incubated = true; // here the child is incubated

104

105 cOrganism* organism = NULL; // set up the organism

106 // is needed anyway to compare to elements in the array

107 if (test_info.GetInstSet ()) organism = new cOrganism(m_world , ctx

, test_info.org_array[par_index]->FinalGenome (), test_info.

GetInstSet ());

108 else organism = new cOrganism(m_world , ctx , test_info.org_array[

par_index]->FinalGenome ());

109 organism ->MutationRates ().Copy(test_info.MutationRates ()); //

just in case , copy the test mutation rates

110

111 test_info.org_array[cur_index] = organism; // register org in the

array for comparison later

112 organism ->SetOrgInterface(ctx , new cTestCPUInterface(this ,

test_info , cur_index)); // part of original code

113 organism ->GetPhenotype ().SetupInject(test_info.org_array[

par_index]->FinalGenome ().GetGenome ()); // just in case , for

completeness

114

115 bft_queue.push(cur_index); // enqueue

116 }

117 }

118 else {

119 std::cout << " Out of Bound " << std::endl;

120 std::cout << " queue size: " << bft_queue.size()

121 << ", queue front: " << bft_queue.front()

122 << ", empty ?: " << boolalpha << bft_queue.empty()

123 << std::endl;

124

125 return cur_index;

126 }

127 } // if this first child of the offspring is already seen , do nothing.

128

129 // 2) then move on to the other RIGHT side of the tree

130 // first check if organism ->OffspringGenome ().GetGenome ()
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131 // is previously seen in the org_array []

132 for (int i=0; i<= cur_index; i++) {

133 flagSeen = false;

134 if (test_info.org_array[i]->GetGenome () == test_info.org_array[

par_index]->OffspringGenome ().GetGenome ()) {

135 test_info.strain_array[par_index]->rightChildIndex = i; // set

rightChildIndex to the index seen

136 flagSeen = true;

137 break;

138 }

139 }

140 if (flagSeen == false) { // if this second child is never seen (new),

141 cur_index ++;

142

143 test_info.strain_array[par_index]->rightChildIndex = cur_index; //

register as the other child of the parent

144

145 if (0 <= cur_index && cur_index < test_info.generation_tests) {

146 // test before passing onto the next call

147 // forget the depth limit now that it is breadth first

148 if (test_info.strain_array[cur_index ]== NULL) { // embody a strain

for this child

149 sStrain* strain = new sStrain ();

150 test_info.strain_array[cur_index] = strain;

151 strain ->size = test_info.org_array[par_index]->OffspringGenome ().

GetSize ();

152 strain ->incubated = true; // here the other child is incubated

153

154 cOrganism* organism = NULL; // set up the organism

155 // is needed anyway to compare to elements in the array

156 if (test_info.GetInstSet ()) organism = new cOrganism(m_world , ctx

, test_info.org_array[par_index]->OffspringGenome (),

test_info.GetInstSet ());

157 else organism = new cOrganism(m_world , ctx , test_info.org_array[

par_index]->OffspringGenome ());

158 organism ->MutationRates ().Copy(test_info.MutationRates ()); //

just in case , copy the test mutation rates

159

160 test_info.org_array[cur_index] = organism; // register org in the

array for comparison later

161 organism ->SetOrgInterface(ctx , new cTestCPUInterface(this ,

test_info , cur_index)); // part of original code

162 organism ->GetPhenotype ().SetupInject(test_info.org_array[

par_index]->OffspringGenome ().GetGenome ()); // just in case ,

for completeness

163

164 bft_queue.push(cur_index); // enqueue

165 }

166 }

167 else {

168 std::cout << " Out of Bound " << std::endl;

169 std::cout << " queue size: " << bft_queue.size()

170 << ", queue front: " << bft_queue.front()

171 << ", empty ?: " << boolalpha << bft_queue.empty()

172 << std::endl;

173

174 return cur_index;

175 }

176 } // if this second child of the offspring is already seen , do nothing.

177

178 } // else ends

179 std::cout << " After a while , queue size: " << bft_queue.size()

180 << ", queue front: " << bft_queue.front()
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181 << ", empty ?: " << boolalpha << bft_queue.empty()

182 << std::endl;

183 } // while ends

184

185 return cur_index; // always return the next index

186 }

Listing F.4: Added Struct Representing a Strain

1 struct sStrain {

2 int size;

3 bool incubated;

4 bool divided;

5 int gestationTime;

6 int leftChildIndex; // first

7 int rightChildIndex; // second

8 };
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Appendix G

Automation Scripts

Scripts (in Python) used for the pre-analysis, the Avida trace, and the post-analysis (see

Section 4.5 in Chapter 4) are shown.

Listing G.1: fOverarching.py

1 import subprocess

2 import sys

3 import os

4 import shutil

5 import glob

6 import fGenerateMutants

7 import fPostAnalysis

8 import fDigest

9 import fExtract

10

11 def overarch(cur_g , cur_ss):

12 print "current generation: ", cur_g , ", source strain: ", cur_ss

13 if cur_g < 3: # set generations to go

14 # 1) pre -analysis

15 print "now pre -analysis ..."

16 fGenerateMutants.main(cur_g , cur_ss)

17

18 print "now renaming analyze.cfg ..."

19 # create a new analyze.cfg

20 with open("./ analyze.cfg", ’w’) as f:

21 f.write("VERBOSE\n")

22 f.write("LOAD " + "generatedMutants_" + cur_ss + ".pop" + "\n")

23 f.write("TRACE\n")

24 f.close()

25

26

27 # 2) main analysis

28 print "now main analysis ..."

29 # enhanced avida -a

30 # produces trace files in ./data/archive

31

32 p = subprocess.Popen (["./avida", "-a"], stdout=subprocess.PIPE , stderr=

subprocess.STDOUT)

33 for line in iter(p.stdout.readline , ""):

34 line = p.stdout.readline ()

35 if line:

36 print line

37 else:

38 break

39 p.wait() #to wait until the trace files are ready ??

40

41

G1



42 # 3) post -analysis

43 print "now postAnalysis ..."

44 fPostAnalysis.main() # from trace files , produces lineages and dynamics

folders and files beneath

45

46 print "now digest ..."

47 maxArraySize = 100

48 fDigest.main(maxArraySize)

49

50 print "now extract ..."

51 next_g = cur_g + 1

52 fExtract.main(next_g , cur_ss)

53

54

55 # rename the data folder so as not to get over -written

56 shutil.move("./data", "./data_" + cur_ss)

57 # next turn a data folder will be created by avida

58

59 # rename the past analyze.cfg to save

60 os.rename("./ analyze.cfg", "./ analyze_" + cur_ss + ".cfg")

61 shutil.move("./ analyze_" + cur_ss + ".cfg", "./ pastAnalyzeCfgs/analyze_" +

cur_ss + ".cfg")

62

63

64 # recursively iterate

65 p = "./generation -" + str(next_g) + "/" + cur_ss + " -*.pop"

66 for file in glob.glob(p):

67 next_ss = file.split("/")[-1]. split(".")[0]

68 print "next generation:", next_g , ", next source strain: ", next_ss

69 overarch(next_g , next_ss)

70

71

72

73 g = 0 # generation , or depth

74 #ss = "org -0" # in the generation -0 folder

75 #ss = "hcf28_org -0"# h-copy -free version one

76 ss = "hcf27_org -0" # h-copy -free version two

77

78 #### check list before running the script ####

79 # ! 1) change the instset in "avida.cfg" and in "fGenerateMutants.py" too (28/27)

80 # ! 2) change the lower bound in "fExtract.py" (down the middle),

81 # ! and the upper bound in "avida.cfg" (" TEST_CPU_TIME_MOD ")

82 # ! (depending on the gest_time and the size of the first source strain)

83 # ! 3) set the max depth above ("cur_g <"),

84 # ! and the selection size in the "fExtract.py" ("top ==")

85

86 if not os.path.exists("./ mutantsWithTags"):

87 os.makedirs("./ mutantsWithTags")

88 if not os.path.exists("./ pastAnalyzeCfgs"):

89 os.makedirs("./ pastAnalyzeCfgs")

90

91 overarch(g, ss)

Listing G.2: fGenerateMutants.py

1 import sys

2

3 def main(current_generation , source_strain):

4 #prototype

5 fi = open("./generation -" + str(current_generation) + "/" + source_strain + ".

pop", ’r’)

6

7 for line in fi:
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8 if ’#’ in line or ’\n’ == line:

9 continue

10 else:

11 inseq = line

12 print "line " + inseq + "\n is set."

13 break

14

15 #instset = "abcdefghijklmnopqrstuvwxyzAB" #28 insts

16 instset = "abcdefghijklmnopqrstuvwxyzA" #27 insts

17

18

19 #strings (are immutable)

20 phenome = inseq [:(len(inseq)/2)]

21 ttable = phenome[-len(instset):]

22 genome = inseq[(len(inseq)/2):]

23

24 #create possible mutations (combinations)

25 mutgenomes = []

26 for i in range(len(genome)):

27 for inst in instset:

28 if genome[i] != inst: #exclude itself

29 amutg = genome [:i] + inst + genome[i+1:] #temporary string

30 mutgenomes.append(amutg) #list of mutated genome sequences(strings)

31

32 #decode

33 mutants = [] #list of mutants (with mutations carried and expressed)

34 for mutgenome in mutgenomes: #string

35 anexpp = []

36 for letter in mutgenome: #to create a phenome with a mutation expressed

37 anexpp.append(ttable[instset.find(letter)])

38 mutants.append("".join(anexpp)[:] + mutgenome [:]) #turn lists into a string

and add to a list

39

40 #to produce the input file (.pop) for the Avida analyze mode

41 f = open("./ generatedMutants_" + source_strain + ".pop", ’w’)

42 f.write("#filetype genotype_data\n")

43 f.write("#format sequence\n\n")

44 for mutant in mutants:

45 f.write(str(mutant) + "\n")

46 f.close()

47

48 #to tag with the locations

49 #(where and how the mutation is expressed and carried)

50 f = open("./ mutantsWithTags/mutantsWithTag_" + source_strain + ".txt", ’w’)

51 i = 0

52 j = 1

53 for mutant in mutants:

54 f.write(str(mutant) + "\t")

55 if i >= j*(len(instset) -1):

56 j += 1

57 f.write(str(j-1) + "_" + str(j-1+ len(inseq)/2) + "\t")

58 f.write(inseq[j-1] + "->" + mutant[j-1] + "_" + inseq[j-1+len(inseq)/2] + "

->" +mutant[j-1+len(inseq)/2] + "\n")

59 i += 1

60 f.close()

Listing G.3: fPostAnalysis.py

1 from scipy.linalg import eig

2 import glob

3 import os

4

5 path1 = "./data/archive /*. trace"
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6 # assuming you are on the same level as avida etc.

7 # underneath we make the "lineages" directory and the "dynamics" directory

8

9 def init_matrix(n, init_v):

10 matrix = [[ init_v for i in range(n)] for j in range(n)]

11 return matrix

12

13 def main():

14 if not os.path.exists("./data/archive/lineages"):

15 os.makedirs("./data/archive/lineages")

16

17 if not os.path.exists("./data/archive/dynamics"):

18 os.makedirs("./data/archive/dynamics")

19

20 for file in glob.glob(path1):# work on trace files

21 with open(file) as f1:

22 # step 1: extract adjacency lists from trace files

23 fout1 = open("./data/archive/lineages/" + str(file.split("/")[-1]).

split(".")[0] + ".lineage", "w")

24 # for a starter read’em all

25 lines = f1.readlines ()

26 i = lines.index("Index Size Incubated? Divided? GestationTime

LeftChildIndex RightChildIndex\n")

27 lineage = []

28 # only after the above label come strains as adjacency lists

29 for s in lines[i+1:]:

30 strain = s.split ()

31 lineage.append(strain)

32 fout1.write(str(lineage))

33 fout1.write("\n")

34 fout1.close ()

35

36 # step 2: create the matrix and populate with rates and calculate the

dynamics

37 fout2 = open("./data/archive/dynamics/" + str(file.split("/")[-1]).

split(".")[0] + ".txt", "w")

38 # convert strings to ints or bools # revised on 2 Nov 2013, after

adding "size"

39 for s in lineage:

40 s[0] = int(s[0]) # index

41 s[1] = int(s[1]) # size

42 if s[2] == ’true’: # incubated?

43 s[2] = True

44 else:

45 s[2] = False

46 if s[3] == ’true’: # divided?

47 s[3] = True

48 else:

49 s[3] = False

50 s[4] = int(s[4]) # gestation time

51 s[5] = int(s[5]) # "left" child index (formerly "final" memory

image) dealt with first

52 s[6] = int(s[6]) # "right" child index (formerly "child" memory

image) dealt with second

53

54 print "lineage " + str(file.split("/")[-1]).split(".")[0]. split("-")[1]

#, ": ", lineage

55 fout2.write("There are " + str(len(lineage)) + " distinct strains .\n")

56

57 # collect the gestation time to create a rate vector (use reciprocal)

58 gest_time = []

59 rates = []

60 for s in lineage:
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61 if s[4] != 0:

62 gest_time.append(s[4])

63 rates.append (1.0/s[4])

64 else:

65 gest_time.append (0)

66 rates.append (0)

67

68 fout2.write("gest_time: " + str(gest_time) + "\n")

69 fout2.write("rates: " + str(rates) + "\n")

70

71 if len(lineage) < 3000:

72 transition = init_matrix(len(lineage), 0)

73

74 for s in lineage:# so that a column shows a parent producing

offspring which correspond to rows

75 if s[3] == True: # if divided

76 transition[s[0]][s[0]] = transition[s[0]][s[0]] - rates[s

[0]] # itself disappears at the rate

77 if s[5] < len(lineage): # id for the left offspring

78 transition[s[5]][s[0]] = transition[s[5]][s[0]] + rates

[s[0]] # the offspring appears at the rate

79 else:

80 fout2.write("leftChild of " + str(s) + " hit the

recursion limit , regarded as no divide\n")

81 if s[6] < len(lineage): # id for the right offspring

82 transition[s[6]][s[0]] = transition[s[6]][s[0]] + rates

[s[0]] # the offspring appears at the rate

83 else:

84 fout2.write("rightChild of " + str(s) + " hit the

recursion limit , regarded as no divide\n")

85

86 D,V = eig(transition) # should have the same dimension by

definition

87 fout2.write("eigenvalues: " + str(D) + "\n")

88 fout2.write("eigenvectors: " + str(V) + "\n")

89

90 # for detecting exponential growth for known mutants

91 expStrains = []

92 for i in xrange(0,len(D)): # access each column (e.vec for each e.

val) and see if the signs are the same

93 if (all(item >= 0 for item in [row[i] for row in V]) or all(

item <= 0 for item in [row[i] for row in V])):

94 if D[i].real > 0: # if e.vec is valid , then see if the e.

vec real part is positive

95 expStrains.append(i) # count in this strain if both e.

vec and e.val are valid

96 fout2.write(str(len(expStrains)) + " are exp. growing strains: " +

str(expStrains) + "\n")

97 if max(D.real) > 0:

98 fout2.write(" max real part (>0): " + str(max(D.real)))

99 # get one youngest fittest strain

100 fout2.write(" by: " + str([i for i,val in enumerate(D.real) if

val == max(D.real)]) + "\t")

101 # and its gest time ([4] of each strain in lineage)

102 fout2.write(str([ lineage[i][4] for i,val in enumerate(D.real)

if val == max(D.real)]) + "\n")

103 else:

104 fout2.write("too big a matrix ( >=3000)\n")

105 fout2.close ()

106 f1.close ()
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Listing G.4: fDigest.py

1 # produce a digest version of the analysis

2 # extract interesting mutants for the next generation analysis

3 # by judging potential of exp. growth , from "dynamics"

4

5 import glob

6

7 def main(maxArraySize):

8 path_dyn = "./data/archive/dynamics /*.txt"

9

10 recurHitLins = []

11 maxHitLins = []

12 tooBig = []

13 maxInd = 0

14 numDistinctStrains = []

15 numExpStrains = []

16

17 f1 = open("./data/archive/summary", "w")

18 f1.write("strain_id"+"\t"+"derived_strains"+"\t"+"1st_gest_time"+"\t"+"

exp_growing"+"\t"+"max_real_part"+"\t"+"by_whom"+ "\t" +"its_gest_time\n")

19 for file in glob.glob(path_dyn):

20 print "now", file.split("/")[-1]. split(".")[0]

21 with open(file) as f:

22 lines = f.readlines ()

23 recurHitCount = 0

24 this_id = str(file.split("/")[-1]. split(".")[0])

25 f1.write(this_id + "\t") # strain id

26 for line in lines:

27 if "distinct strains." in line:

28 numDistinctStrains.append(int(line.split ()[2])) # for

distribution

29 f1.write(str(line.split()[2]) + "\t")

30 if maxArraySize == int(line.split()[2]):

31 maxHitLins.append(file.split("/")[-1]. split(".")[0])

32 if "gest_time" in line:

33 this_gt = line.split ()[1]. strip(’[],’)

34 f1.write(this_gt + "\t") # gest_time

35 if "hit" in line:

36 recurHitCount += 1

37 if maxInd < int(line.split()[2]. strip("[,")):

38 maxInd = int(line.split()[2]. strip("[,"))

39 if "too big" in line:

40 tooBig.append(file.split("/")[-1]. split(".")[0])

41 f1.write("too_big\t")

42 if " are exp. growing strains: " in line:

43 numExpStrains.append(int(line.split ()[0]))

44 f1.write(str(int(line.split ()[0])) + "\t")

45 if " max real part (>0): " in line:

46 f1.write(" " + str(line).rstrip ().split()[4] + "\t")

47 # which strain has this max real part? its gest time?

48 f1.write(" " + str(line).rstrip ().split()[6]. split ()[0]. strip(’

[,]’) + "\t")

49 f1.write(" " + str(line).rstrip ().split()[7]. split ()[0]. strip(’

[,]’) + "\t")

50

51 if recurHitCount > 0:

52 recurHitLins.append(file.split("/")[-1]. split(".")[0]) # should be

recursion_limit and times

53 f1.write("recursion_hit_" + str(recurHitCount) + "\t")

54

55 f1.write("\n")

56

57 print numDistinctStrains
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58 print numExpStrains

59

60 print len(recurHitLins), " have reached the recursion limit at least once."

61 print recurHitLins

62 print "(Of them , ", maxInd , " is the max index .)"

63

64 print len(maxHitLins), " have reached the array size limit."

65 print maxHitLins

66 print "(Including them , ", len(tooBig), " are too many distinct strains (>=

3000).)"

67 print tooBig

68

69 f1.close ()

Listing G.5: fExtract.py

1 import os

2

3 def main(next_g , cur_ss):

4 # with new summary format: [0]: org -id, [1]: total distinct strains ,

5 # [2]: first gest time , [3]: exp growing strains , [4]: if any , max real part of

eig.val.

6 # collect lists by checking values >1 in a column for exp. growth

7 # sort it by the key (max real part of eigenvalue)

8 # pick up ids from the top , only if gest_time is okay , up to 10(?) strains

9

10 ## collect ids of the extracted strains

11 extracted_strains = []

12 with open("./data/archive/summary", ’r’) as f:

13 lines = f.readlines ()

14 for line in lines [1:]:

15 try:

16 max_real = int(line.split()[3])

17 if max_real > 0:

18 strain_entry = line.split ()

19 extracted_strains.append(strain_entry)

20 except:

21 pass

22

23 f.close()

24

25 # assuming extracted lines necessarily have the [4] element

26 # also [5] by whom the maxt real part is had , and [6] its gest time

27 ranking = sorted(extracted_strains , key=lambda x: float(x[4]), reverse=True)

28 #print ranking

29

30 pickups = []

31 whom = []

32 top = 0

33 for strain in ranking:

34 if int(strain [6]) > 59218*0.5: #59218 for "27" ver. #59392*0.5:# for "28"

ver. #52218*0.5:# for priginal prototype

35 pickups.append(strain [0])

36 whom.append(strain [5])

37 top += 1

38 if top == 3: # 10: # set how many from the top to be selected

39 break

40

41 print top , pickups , whom

42

43 loc_tra = "./data/archive/"

44

45 if not os.path.exists("./ generation -" + str(next_g)):
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46 os.makedirs("./generation -" + str(next_g))

47

48 ctr = 0

49 for str_id in pickups:

50 with open(loc_tra + str_id + ".trace") as ft:

51 new_str_id = cur_ss + "-" + str_id.split("-")[1]

52 fn = open("./generation -" + str(next_g) + "/" + new_str_id + ".pop", ’w

’)

53 fn.write("#filetype genotype_data\n" + "#format sequence\n\n") # format

54 lines = ft.readlines ()

55 nth = 0

56 for line in lines:

57 if "# Init Memory:" in line:

58 if nth == int(whom[ctr]):

59 fn.write(line.split()[3])

60 break

61 else:

62 nth += 1

63 ctr += 1

64 ft.close ()

65 fn.close ()
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Appendix H

Glossary

The research in this thesis deals with the von Neumann style self-reproduction architecture

and its evolutionary characterisation within Avida. Throughout the thesis, there are some

terms and concepts that are introduced or defined somewhat differently from those found

in the Avida literature or in other evolutionary research contexts. This glossary presents

simple descriptions of such relevant terms frequently used in the main text.

Copy

Write to a memory location (of a prospective offspring) a word identical to one

read from another memory location (of a putative parent), as a result of program

execution. Or, a process of copying words. Compare with decode.

Decode

Write to a memory location (especially, within a phenome of a prospective offspring)

a word that is read from another location (especially, within a genome of a putative

parent) and is translated (especially, through a lookup table). Compare with copy.

Fertile

Capable of directly producing offspring. Compare with viable.

Genome

Passive segment of program within a von Neumann style self-reproducer. Compare

with phenome.

Genotype

Class of identical genomes. Compare with phenome.

Lineage

Network of organisms/strains that a seed organism/strain deterministically generate.

Memory

Circular component of an Avidian organism on which a program is executed by

CPU. (In the Avida literature, this is called genome instead.)

Mutation

Inheritable change in memory image. Compare with perturbation.
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Organism

Program coupled with CPU in the Avida world. Compare with strain.

Perturbation

Change in memory image. Compare with mutation.

Phenome

Active segment of program within a von Neumann style self-reproducer. Compare

with genome.

Phenotype

Class of identical phenomes. Compare with genome.

Production Graph

A way of representing lineages. Used to represent lineages of distinct strains. Com-

pare with production tree.

Production Tree

A way of representing lineages. Used to represent lineages of individual organisms.

Compare with production graph.

Strain

Memory image of a program in the Avida world. Compare with organism. (In the

Avida literature, this is called genotype instead.)

Viable

Capable of producing evolutionarily significant (especially, self-reproducing) off-

spring directly or indirectly. Compare with fertile.
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