
 

Immunoinformatics: Towards an 

understanding of species-specific 

protein evolution using 

phylogenomics and network theory 

 

Andrew Edward Webb M.Sc. Genetics, 

B.Sc. Biotechnology (cum laude) 

 

 

 

A thesis presented to Dublin City University for the Degree 

of 

Doctor of Philosophy 

 

Supervisor: Dr. Mary J. O'Connell 

School of Biotechnology 

Dublin City University 

 

January 2015 

  



ii 

Declaration 

‘I hereby certify that this material, which I now submit for assessment on the 

programme of study leading to the award of Doctor of Philosophy is entirely my 

own work, that I have exercised reasonable care to ensure that the work is 

original, and does not to the best of my knowledge breach any law of copyright, 

and has not been taken from the work of others save and to the extent that such 

work has been cited and acknowledged within the text of my work.’ 

 

Signed: _____________________ 

ID Number: 10114017 

Date: _____________________  

  



iii 

Table of Contents 

Acknowledgements ............................................................................................... x 

Abbreviations .................................................................................................... xii 

List of Figures ......................................................... Error! Bookmark not defined. 

List of Tables ..................................................................................................... xix 

Abstract ............................................................................................................ xxii 

Thesis Aims ..................................................................................................... xxiii 

 

Chapter 1: Introduction ...................................................................................... 1 

1.1 Innate Immunity ......................................................................................... 2 

1.1.1 General overview of the innate immune system in vertebrates ......... 2 

1.1.2 Major proteins categories involved in innate immunity .................... 2 

1.1.3 Central innate immune proteins and pathways .................................. 4 

1.1.3.1 The TLR signaling pathways ..................................................... 4 

1.1.3.2 Vertebrate TLR repertoires ........................................................ 8 

1.1.3.3 The complement system ............................................................. 9 

1.1.4 Discordant innate immune responses ............................................... 10 

1.1.4.1 Discordance reported in TRIM5α ............................................ 12 

1.1.4.2 Discordance reported in the Toll-like Receptors ..................... 13 

1.1.4.3 Variations reported in inflammation ........................................ 15 

1.1.5 Understanding and predicting model species discordance............... 16 

1.2 Natural Selection and Molecular Evolution ............................................. 17 

1.2.1 Evolutionary theory .......................................................................... 17 

1.2.2 Neutral theory................................................................................... 17 

1.2.3    Natural Selection .............................................................................. 18 



iv 

1.2.4 Positive selection and functional shift.............................................. 19 

1.2.5 The relationship between orthologs, paralogs, and function............ 24 

1.3 Methods for assessing selective pressure variation .................................. 26 

1.3.1 Distance-based methods ................................................................... 26 

1.3.2 Phylogeny-based methods ................................................................ 27 

1.3.2.1 Maximum likelihood methods ................................................. 28 

1.3.2.2 CodeML ................................................................................... 29 

1.3.2.3    Phylogenetic Reconstruction ..................................................... 33 

1.3.4 Population-based methods ............................................................... 34 

1.3.4.1 McDonald–Kreitman test ......................................................... 34 

1.3.4.2 Tajima’s D test statistic ............................................................ 34 

1.3.4.3 Fay and Wu’s H test statistic .................................................... 36 

1.4 Data limitations in analyses of selective pressure variation..................... 37 

1.4.1 Alignment Error ............................................................................... 37 

1.4.2 Non-adaptive evolutionary signals mistaken as positive selection .. 38 

1.4.3 Purifying Selection acting on silent sites mistaken for positive 

selection........................................................................................................ 39 

1.4.4 In vitro validation of positive selection ............................................ 40 

1.5 Graph theory and molecular evolution ..................................................... 41 

1.5.1    Introduction to graph theory............................................................. 41 

1.5.2 Characterizing Graphs ...................................................................... 45 

1.5.2.1 Centrality .................................................................................. 45 

1.5.2.2 Assortativity ............................................................................. 50 

1.5.2.3 Cliques and Communities ........................................................ 51 

1.5.2.4 Clustering ................................................................................. 56 



v 

1.5.3 Graphs and introgressive descent ..................................................... 59 

1.5.3.1 Tools for detecting introgressive events in networks ............... 59 

1.5.4 Composite genes and functional discordance. ................................. 60 

 

Chapter 2: Design and development of the bmeTools package ..................... 62 

2.1 Chapter Aim ............................................................................................. 63 

2.2 Introduction .............................................................................................. 64 

2.3 Aims for selective pressure analysis package .......................................... 66 

2.4 Motivation behind the development of bmeTools ................................... 66 

2.4.1 Minimize human error...................................................................... 66 

2.4.2 Increase user productivity ................................................................ 67 

2.5 Rationale behind the development of bmeTools ...................................... 68 

2.5.1 Selection of python programming language .................................... 68 

2.5.2 Separation of package into analysis phases ..................................... 69 

2.6 General overview of bmeTools ................................................................ 69 

2.7 Phase 1 – Data Preparation ...................................................................... 72 

2.7.1 Functions: clean and ensembl_clean ................................................ 72 

2.7.1.1 Additional options of ‘clean’ and ‘ensembl_clean’ ................. 73 

2.7.2 Function: translate ............................................................................ 76 

2.7.3 Function: create_database ................................................................ 78 

2.7.4 Function: gene_selection .................................................................. 78 

2.8 Phase 2: Homology searching .................................................................. 81 

2.8.1 Core options ..................................................................................... 84 

2.8.2 Functions: similarity_groups and reciprocal_groups ....................... 84 

2.8.3 Function: best_reciprocal_groups .................................................... 85 



vi 

2.9 Phase 3: Alignment assessment and phylogeny reconstruction ............... 88 

2.9.1 Function: metal_compare ................................................................. 88 

2.9.2 Functions: prottest_setup and prottest_reader .................................. 89 

2.9.3 Function:  mrbayes_setup ................................................................ 90 

2.10 Phase 4: Selection analysis ...................................................................... 92 

2.10.1   Function: map_alignments............................................................... 92 

2.10.2    Function: infer_genetree ................................................................. 94 

2.10.3    Function: setup_codeml .................................................................. 96 

2.10.4    Function: create_subtrees ............................................................... 98 

2.10.5    Function: mrbayes_reader ............................................................. 100 

2.10.6    Function: create_branch ................................................................ 100 

2.11 Phase 5: Selection analysis assessment .................................................. 101 

2.11.1    Function: codeml_reader .............................................................. 101 

2.12 General requirements of the software package ...................................... 101 

2.12.1    Core functions ............................................................................... 101 

2.12.2    Software dependencies ................................................................. 102 

2.13 Case study .............................................................................................. 102 

2.13.1     Project overview .......................................................................... 102 

2.13.2    Analysis Pipeline .......................................................................... 103 

2.13.3    Overview of Original Findings ..................................................... 103 

2.13.4     Data Quality Concerns and Importance of filters ........................ 104 

2.13.5     Feasibility of bmeTools ............................................................... 105 

 

 

 



vii 

Chapter 3: Evolutionary immunology: exploring the potential of  

                    identifying species-specific innate immune responses  

                   from sequence data ....................................................................... 111 

3.1 Chapter Aim ........................................................................................... 112 

3.2 Introduction ............................................................................................ 113 

3.3 Materials and Methods ........................................................................... 115 

3.3.1 Generating the vertebrate innate immune gene dataset .................. 115 

3.3.2 Selection of multiple sequence alignment method......................... 118 

3.3.3 Selecting the best-fit model of protein evolution using ProtTest3 . 119 

3.3.5 Extracting SGOs from multigene family ....................................... 121 

3.3.6 Selective pressure analysis ............................................................. 121 

3.3.7 Identifying evidence of recombination breakpoints ....................... 122 

3.3.8 Structural analysis of TLR3 ........................................................... 123 

3.3.9 Fixation of positively selected sites in populations........................ 125 

3.3.10   Assessing positively selected genes for evidence of  

             selection within human population data:....................................... 125 

3.4 Results .................................................................................................... 128 

3.4.1 Selection analysis reveals species-specific adaptation in  

            mouse and human innate immune genes: ...................................... 128 

3.4.2    Filtering for false positives due to recombination removes  

            potential candidate genes from the positively selected gene set: ... 128 

3.4.3 A subset of mouse innate immune pathways are enriched  

            for adaptive evolution: ................................................................... 136 

3.4.4 The Ancestral nodes have unique subsets of genes under  

            positive selection: ........................................................................... 136 



viii 

3.4.5 Positively selected residues map to essential functional domains: 137 

3.4.6 Positively selected residues in mouse TLR3 have predicted  

            effects on structural stability: ......................................................... 139 

3.4.7 The majority of positively selected residues are fixed within  

            human and mouse populations: ...................................................... 143 

3.4.8 Population level data shows no ongoing selective sweep in  

            modern humans: ............................................................................. 144 

3.5 Discussion .............................................................................................. 150 

 

Chapter 4: A non-phylogenetic approach to determine gene  

                   organization and domain sharing within vertebrate  

                   protein coding regions .................................................................. 156 

4.1 Chapter Aim ........................................................................................... 157 

4.2 Introduction ............................................................................................ 158 

4.3 Materials and Methods ........................................................................... 160 

4.3.1 Bipartite graph and co-occurrence unipartite-projection of  

            Pfam-A data: .................................................................................. 160 

        4.3.2   Pfam-A domain co-occurrence graph centrality: ............................ 164 

4.3.3 Node removal within unipartite-projected co-occurrence graph: .. 164 

4.3.4 Pfam-A co-occurrence graph assortativity: .................................... 164 

4.3.5    Identification of domain co-occurrence communities: .................. 165 

4.3.6    GO term associations and relevance in Pfam-A  

            co-occurrence communities: .......................................................... 165 

4.3.7    Enrichment of innate immunity in Pfam-A  

            co-occurrence communities: .......................................................... 166 



ix 

4.3.8    Identification of species-specific domain combinations: ............... 167 

4.4 Results .................................................................................................... 167 

4.4.1    Construction of the domain co-occurrence graph .......................... 167 

4.4.2    Highly central Pfam-A domains are most functionally  

            permissive ...................................................................................... 171 

4.4.3   Modular proteins exhibit a preference for domains with  

           similar functional permissiveness ................................................... 178 

4.4.4   Functional domain combinations are influenced by function ......... 181 

4.4.5   Species-specific domain combinations exhibit unique  

           properties ......................................................................................... 188 

4.5 Discussion .............................................................................................. 194 

Chapter 5: Discussion ...................................................................................... 198 

Conclusion: ........................................................................................................ 202 

Chapter 6: Bibliography .................................................................................. 204 

Publications  ...................................................................................................... 204 

Appendix  .......................................................................................................... CD 

 

 

 

 

 

 

 

 

 

  



x 

Acknowledgements 

 

First and foremost, I must wholeheartedly give thanks to my supervisor Dr. Mary 

O’Connell for all her support, enthusiasm, and dedication throughout my time at 

DCU. I cannot express in words how wonderful working alongside you has been 

and how truly difficult it was to leave. I know for certain that your mentorship 

has made me a better researcher, giving me more confidence in my abilities, 

taught me the benefits of collaboration, and shown me how to operate a truly 

cooperative and welcoming laboratory environment. And of course, I must thank 

you for being such a wonderful role model. I know for certain that our paths will 

cross again and I look forward to those occasions. 

 

Thanks to my fellow BME lab nerdlings, both past and present: Dr. Claire 

Morgan, Dr. Thomas Walsh, Dr. Mark Lynch, Dr. Noeleen Loughran, Kate Lee, 

Ann Mc Cartney, Ray Moran, and Dr. Edel Hyland, for being amazing examples, 

all the support, scientific banter, great times, and of course friendships. I couldn’t 

have asked for better group of lab members. And lastly, I hope our paths cross 

again and often.  

 

I give sincerely thanks to Prof. James McInerney for his support throughout my 

time at DCU. Thank you for all your advice and suggestions on my research. 

And of course, thank you for some truly amazing scientific discussions. 

 



xi 

I would also like to thank all my collarborators: Dr. João Pedro de Magalhães 

(University of Liverpool), Prof. Christine Loscher (DCU), Dr. Scott Edwards 

(Harvard), and Prof. Heather Ruskin (DCU). 

 

I honestly can’t thank all my friends enough for making my life outside the lab 

so amazing and reminding me there’s more to life than research. In particular, I 

must thank Amy, Lisa, Mark, and Paul for being my Irish family and making my 

time in Ireland so unforgettable. I couldn’t have asked for better friends, which 

made leaving Ireland so difficult.  

 

Finally, I must acknowledge my family for supporting my dreams – even the 

crazier ones – throughout my life. Thank you for being such incredible role 

models and teaching me the importance of hard work and never giving up. Thank 

you for always being there for me, especially when I failed. And of course, thank 

you for supporting me in my decision to move half way around the world.  



xii 

Abbreviations 

<Knn> Average degree of nearest neighbor 

ACHE Acetylcholinesterase (Yt blood group)  

ADIPOQ Adiponectin, C1Q and collagen domain containing  

APOA1 Apolipoprotein A-I  

AQUA Automated quality improvement for multiple sequence alignments 

ATG9A Autophagy related 9A  

AZIN2 Antizyme inhibitor 2  

BCAR1 Breast cancer anti-estrogen resistance 1  

BEB Bayes Empirical Bayes  

BF Complement factor B 

BIC Bayesian Information Criterion  

BLAST Basic Local Alignment Search Tool (DNA and protein sequence similarity searching) 

bmeTools Bioinformatics and Molecular Evolution Tools 

C12orf68 Chromosome 12 open reading frame 68 

C19orf38 Chromosome 19 open reading frame 38  

C1inh C1-inhibitor 

C1Q Complement component 1, q subcomponent  

C1R Complement component 1, r subcomponent  

C1RL Complement component 1, r subcomponent-like  

C1S Complement component 1, s subcomponent  

C2 Complement component 2  

C22orf15 Chromosome 22 open reading frame 15  

C3 Complement component 3  

C3orf49 Chromosome 3 open reading frame 49  

C4 Complement component 4 

C4BPA Complement component 4 binding protein, alpha  

C5 Complement component 5  

C6 Complement component 6  

C7 Complement component 7  

C8 Complement component 8 

C8B Complement component 8, beta polypeptide  

C9 Complement component 9  



xiii 

CARD6 Caspase recruitment domain family, member 6  

CCDC181 Coiled-coil domain containing 181  

CCDC88A Coiled-coil domain containing 88A  

CD200 CD200 molecule  

CD22 CD22 molecule  

CD63 CD63 molecule  

CDEs Complete domain events  

CDSs Coding sequence 

CFH Complement factor H  

CGEs Composite gene events  

CRHBP Corticotropin releasing hormone binding protein  

CSF2RB Colony stimulating factor 2 receptor, beta, low-affinity (granulocyte-macrophage)  

CTSD Cathepsin D  

d.f. Degrees of Freedom 

DFI Dynamic flexibility index  

DHX9 DEAH (Asp-Glu-Ala-His) box helicase 9  

DMP1 Dentin matrix acidic phosphoprotein 1  

Dn Non-synonymous substitutions per non-synonymous site  

Ds Synonymous substitutions per synonymous site  

 Dn/Ds 

DNA Deoxyribonucleic acid 

DUOX1 Dual oxidase 1  

ECSIT ECSIT signalling integrator  

EIF2AK2 Eukaryotic translation initiation factor 2-alpha kinase 2  

ERBB2IP Erbb2 interacting protein  

ESE Exonic Splice Enhancer 

ESPL1 Extra spindle pole bodies homolog 1 (S. Cerevisiae)  

F12 Coagulation factor XII (Hageman factor)  

FASTA Fast All (DNA and protein sequence similarity searching) 

FIP1L1 Factor interacting with PAPOLA and CPSF1  

GAPT GRB2-binding adaptor protein, transmembrane  

gBGC GC-biased gene conversion  

Gene A human, chimp, rat, and mouse orthologs of gene A 



xiv 

Gene B human, chimp, rat, and mouse orthologs of gene B 

Gene M human mosaic of human A gene and human B gene 

Gm15440 Predicted gene 15440 

GO Gene Ontology 

GPLD1 Glycosylphosphatidylinositol specific phospholipase D1  

GRN Granulin  

HGMD Human Gene Mutation Database 

HIV-1 Human immunodeficiency virus 

HMMER Biological sequence analysis using profile hidden Markov models 

HSV Herpes simplex virus  

IDEs Incomplete domain events  

IFI30 Interferon, gamma-inducible protein 30  

IFIT2 Interferon-induced protein with tetratricopeptide repeats 2  

IFNGR1 Interferon gamma receptor 1  

IFNGR2 Interferon gamma receptor 2 (interferon gamma transducer 1)  

IGF1R Insulin-like growth factor 1 receptor  

IL1RAPL2 Interleukin 1 receptor accessory protein-like 2  

IL2RB Interleukin 2 receptor, beta  

IL4R Interleukin 4 receptor  

INPP5D Inositol polyphosphate-5-phosphatase, 145kda  

IQCJ-

SCHIP1 IQCJ-SCHIP1 readthrough  

IRAK1 Interleukin-1 receptor-associated kinase 1 

IRAK4 Interleukin-1 receptor-associated kinase 4  

IRF3 Interferon regulatory factor 3  

IRF5 Interferon regulatory factor 5  

IRF5 Interferon regulatory factor 5 

IRF7 Interferon regulatory factor 7  

IRF9 Interferon regulatory factor 9  

ITGAM Integrin, alpha M (complement component 3 receptor 3 subunit)  

K Degree 

KXD1 Kxdl motif containing 1  

LBP Lipopolysaccharide binding protein  



xv 

LGALS3 Lectin, galactoside-binding, soluble, 3  

LIME1 Lck interacting transmembrane adaptor 1  

lnL Log Likelihood 

LRRFIP1 Leucine rich repeat (in FLII) interacting protein 1  

LRT Likelihood-ratio test 

LTB4R Leukotriene B4 receptor  

MAC Membrane attack Complex 

MASP1/2 Mannan-binding lectin serine peptidase 1 and 2 

MBL Mannan-binding lectin 

MCL Markov Cluster Algorithm 

MCMC Markov chain Monte Carlo 

MD-2 Lymphocyte antigen 96 

MetAl MetAl (not an abbreviation) 

MGF  Multi-gene family 

ML Maximum likelihood 

MLEC Malectin  

MMP13 Matrix metallopeptidase 13 (collagenase 3)  

MN1 Meningioma (disrupted in balanced translocation) 1  

MRCA  Most Recent Common Ancestor 

MSA Multiple sequence alignment 

MST1R Macrophage stimulating 1 receptor (c-met-related tyrosine kinase)  

MX2 MX dynamin-like gtpase 2  

MYD88 Myeloid differentiation primary response 88  

N50 

50% of assembly is contained in contigs or scaffolds equal to or larger than the given 

value. 

NCBI National Center for Biotechnology Information 

NCF1 Neutrophil cytosolic factor 1  

NDC80 NDC80 kinetochore complex component  

Ne Effective population size  

NEB Naïve Empirical Bayes  

NFκB Nuclear factor kappa-light-chain-enhancer of activated B cells 

NLRP1 NLR family, pyrin domain containing 1  

NLRP14 NLR family, pyrin domain containing 14  



xvi 

NLRP5 NLR family, pyrin domain containing 5  

NLRP6 NLR family, pyrin domain containing 6  

NLRP8 NLR family, pyrin domain containing 8  

NLRP9 NLR family, pyrin domain containing 9  

noRMD Normalized Mean Distance 

NOS2 Nitric oxide synthase 2, inducible  

NUP153 Nucleoporin 153kda  

NUP214 Nucleoporin 214kda  

OAS2 2'-5'-oligoadenylate synthetase 2, 69/71kda  

OLFM4 Olfactomedin 4  

Olfr1260 Olfactory receptor 1260 

OTUB2 OTU deubiquitinase, ubiquitin aldehyde binding 2  

PAMP Pathogen-associated molecular pattern 

PIGV Phosphatidylinositol glycan anchor biosynthesis, class V  

PLCG2 Phospholipase C, gamma 2 (phosphatidylinositol-specific)  

PML Promyelocytic leukemia  

PPAN-

P2RY11 PPAN-P2RY11 readthrough  

PRR Pattern recognition receptor 

PRR5-

ARHGAP8 PRR5-ARHGAP8 readthrough  

PTK2 Protein tyrosine kinase 2  

PTK2B Protein tyrosine kinase 2 beta  

PTPN2 Protein tyrosine phosphatase, non-receptor type 2  

QC Quality control 

RASGEF1B Rasgef domain family, member 1B  

REL V-rel avian reticuloendotheliosis viral oncogene homolog  

REST RE1-silencing transcription factor  

RI Replacement invariable  

RNF31 Ring finger protein 31  

RSAD2 Radical S-adenosyl methionine domain containing 2  

RUNX3 Runt-related transcription factor 3  

RV Replacement variable 



xvii 

SERPING1 Serpin peptidase inhibitor, clade G (C1 inhibitor), member 1  

SGO Single gene orthologs 

SI Silent invariable  

SIRPA Signal-regulatory protein alpha  

SIRT1 Sirtuin 1  

SLC15A4 Solute carrier family 15 (oligopeptide transporter), member 4  

SNAP23 Synaptosomal-associated protein, 23kda  

SNP Single-nucleotide polymorphism 

SPP2 Secreted phosphoprotein 2, 24kda  

SRRD SRR1 domain containing  

STAT2 Signal transducer and activator of transcription 2, 113kda  

SV Silent variable  

TBC1D19 TBC1 domain family, member 19  

TCF4 Transcription factor 4  

TICAM1 Toll-like receptor adaptor molecule 1  

TIRAP Toll-interleukin 1 receptor (TIR) domain containing adaptor protein  

TLR Toll-Like Receptor 

TLR1 Toll-like receptor 1  

TLR10 Toll-like receptor 10 

TLR2 Toll-like receptor 2  

TLR3 Toll-like receptor 3  

TLR4 Toll-like receptor 4  

TLR5 Toll-like receptor 5  

TLR6 Toll-like receptor 6  

TLR7 Toll-like receptor 7  

TLR8 Toll-like receptor 8  

TLR9 Toll-like receptor 9 

TMEM119 Transmembrane protein 119  

TOLLIP Toll interacting protein  

TRAF3 TNF receptor-associated factor 3  

TRAF5 TNF receptor-associated factor 5  

TRAF6 TNF receptor-associated factor 6, E3 ubiquitin protein ligase  

TRAM Tir domain-containing adapter molecule 2 



xviii 

TRIF Toll-like receptor adaptor molecule 1 

TRIM25 Tripartite motif containing 25  

TRIM5 Tripartite motif containing 5  

TRPV2 Transient receptor potential cation channel, subfamily V, member 2  

TYK2 Tyrosine kinase 2  

TYRO3 TYRO3 protein tyrosine kinase  

VDR Vitamin D (1,25- dihydroxyvitamin D3) receptor  

ZGLP1 Zinc finger, GATA-like protein 1  

ZNF646 Zinc finger protein 646  

θ Expected heterozygosity  

π Nucleotide diversity (observed) 

 

  



xix 

List of Figures 

Figure 1.1: Pathway map of the TLR signaling pathway....................................... 7 

Figure 1.2: Pathway map of the complement system .......................................... 11 

Figure 1.3: Schematic for impact of selective sweep at the population level ...... 20 

Figure 1.4: A schematic for how to measure selective pressure variation ........... 22 

Figure 1.5: Codon based models of substitution used in the analyses ................. 32 

Figure 1.6: Basic graph nomenclature and general types of graphs. ................... 42 

Figure 1.7: The properties of random and scale-free graphs ............................... 44 

Figure 1.8: Calculating degree and closeness centrality using adjacency  

                  matrices. ............................................................................................. 48 

Figure 1.9: Methods for characterizing graph assortativity ................................. 52 

Figure 1.10: Visual representation of cliques and communities detection. ......... 55 

Figure 1.11: Visual representation of average clustering. .................................... 57 

Figure 1.12: Visual representation of transitivity. ............................................... 58 

Figure 1.13: Basic characteristics of introgressive descent in graphs .................. 61 

Figure 2.1: Overview of the bmeTools package. ................................................. 70 

Figure 2.2: Overview of ‘clean’ and ‘ensembl_clean’ functions. ........................ 74 

Figure 2.3: Overview of ‘translate’ function. ...................................................... 77 

Figure 2.4: Overview of ‘create_database’ function. ........................................... 79 

Figure 2.5: Overview of ‘gene_selection’ function. ............................................ 80 

Figure 2.6: Recursive homology group creation function ................................... 82 

Figure 2.7: Similarity groups created by functions .............................................. 86 

Figure 2.8: Overview of ‘mrbayes_setup function. ............................................. 91 

Figure 2.9: Overview of the ‘map_alignments’ function ..................................... 93 

Figure 2.10: Overview of the ‘infer_genetree’ function. ..................................... 95 



xx 

Figure 2.11: Overview of the ‘setup_codeml’ function. ...................................... 97 

Figure 2.12: Overview of the ‘create_subtrees’ function..................................... 99 

Figure 2.13: Phylogeny of mammals used in comparison of selective  

                    pressure variation. .......................................................................... 107 

Figure 3.1. Phylogeny of species included in this study and summary of  

                   lineage-specific positive selection results. ...................................... 130 

Figure 3.2: Innate immune pathways containing positively selected genes. ..... 138 

Figure 3.3: Dynamic flexibility index of human TLR3 ectodomain. ................ 141 

Figure 3.4: Neutrality tests for positively selected genes in the human  

                  lineage. ............................................................................................. 148 

Figure 4.1: Visiualization of the Pfam-A co-occurrence graph. ........................ 170 

Figure 4.2: The degree distribution of the Pfam-A co-occurrence graph is  

                   scale-free ......................................................................................... 173 

Figure 4.3: Changes to average clustering and transitivity upon removal  

                  of domains. ....................................................................................... 174 

Figure 4.4: Assortativity of the Pfam-A co-occurrence graph. .......................... 180 

Figure 4.4: Schematic of the mechanisms and genetic origins of  

                  species-specific domain combinations in the network  

                  of human, mouse and dog. ............................................................... 192 

  



xxi 

List of Tables 

Table 1.1: Properties of the functional human TLRs. ............................................ 6 

Table 2.1: Proteins with evidence of lineage-specific positive selection........... 108 

Table 3.1: Details on the vertebrate genomes used in this study. ...................... 117 

Table 3.2: Genes tested for positively selected site fixation in their  

                 population. ......................................................................................... 127 

Table 3.3: Recombination within human and mouse positively selected  

                 genes. ................................................................................................. 132 

Table 3.4: Positively selected genes identified in this study. ............................. 133 

Table 3.5: Recombination within the ancestral lineages. ................................... 135 

Table 3.6: Fixation of human and mouse positively selected genes. ................. 145 

Table 4.1: Details on the vertebrate genomes used in this study. ...................... 163 

Table 4.2: The Pfam-A domains removed from the co-occurrence  

                 graph to measure average clustering and transitivity. ....................... 176 

Table 4.3: Community structure and gene GO-term, domain GO-term,  

                 and innate immune functional enrichment. ....................................... 184 

Table 4.4: Details on species-specific domain combinations identified  

                 from the Pfam-A domain co-occurrence graph. ................................ 190 

 

 

 

 

 

 

 



xxii 

Abstract 

 

In immunology, the mouse is unquestionably the predominant model organism. 

However, an increasing number of reports suggest that mouse models do not 

always mimic human innate immunology. To better understand this discordance 

at the molecular level, we are investigating two mechanisms of gene evolution: 

positive selection and gene remodeling by introgression/domain shuffling. We 

began by creating a bioinformatic pipeline for large-scale evolutionary analyses. 

We next investigated bowhead genomic data to test our pipeline and to determine 

if there is lineage specific positive selection in particular whale lineages. Positive 

selection is a molecular signature of adaptation, and therefore, potential protein 

functional divergence. Once we had the pipeline troubleshot using the low 

quality bowhead data we moved on to test our innate immune dataset for lineage 

specific selective pressures. When possible, we applied population genomics 

theory to identify potential false-positives and date putative positive selection 

events in human. The final phase of our analysis uses network (graph) theory to 

identify genes remodeled by domain shuffling/introgression and to identify 

species-specific introgressive events. Introgressive events potentially impart 

novel function and may also alter interactions within a protein network. By 

identifying genes displaying evidence of positive selection or introgression, we 

may begin to understand the molecular underpinnings of phenotypic discordance 

between human and mouse immune systems.   
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Thesis Aims 

(1) Automation of large-scale selective pressure variation – Chapter 2. 

We wished to develop a streamlined highly automated method to improve large-

scale identification of selective pressure variation and to stream line all processes 

associated with this type of analysis such as: (i) identification of gene families, 

(ii) alignment, (iii) phylogenetic reconstruction, (iv) selective pressure analyses, 

(v) LRTs, and (vi) quality control. We tested this software using novel sequence 

data from Bowhead Whale. 

 

(2) To determine if positive selection is correlated with phenotypic 

discordance using the innate immune system of vertebrates as a model – 

Chapter 3.  

We wished to determine if positive selection identified in the innate immune 

system correlates with known phenotypic discordance thereby providing a 

putative target to understand the known discordance at the molecular level. And 

from here we wished to predict sequence changes that may underpin currently 

unknown discordance cases.   

 

3) To elucidate the role of domain shuffling in the emergence of proteins in 

vertebrate evolution – Chapter 4.  

We wished to qualify and quantify gene remodeling by domain shuffling in 

vertebrate protein coding gene evolution, and to define the principles that govern 

how the domains of modular proteins combine to form functional units often in a 

species-specific manner that could lead to variation in function across species. 

  



1 

Chapter 1: Introduction 



2 

1.1 Innate Immunity 

1.1.1 General overview of the innate immune system in vertebrates 

The immune system of an organism is primarily responsible for defense against 

and resistance to pathogens. In vertebrates, immunity is divided into two distinct 

strategies: adaptive immunity and innate immunity. Adaptive immunity is unique 

to vertebrates and grants immunity from previously encountered pathogens by 

means of immunological memory [Flajnik and Kasahara, 2010]. A noteworthy 

aspect of immunological memory is that the survival advantage is confined to an 

individual [Medzhitov and Janeway, 2000]. Innate immunity evolved in the 

common ancestor of plants and animals and confers immunity to a wide range of 

pathogens by recognizing conserved characteristics or pathogen-associated 

molecular patterns (PAMPs) [Medzhitov and Janeway, 2000]. Innate immunity is 

responsible for activating multiple inflammatory responses as well as adaptive 

immunity [Janeway and Medzhitov, 2002]. In contrast with the adaptive immune 

system, the ability of the innate immune system to detect PAMPs by pattern 

recognition receptors (PRRs) is heritable.  

 

1.1.2 Major proteins categories involved in innate immunity 

Innate immunity involves a number of signaling pathways typically characterized 

by bespoke interaction networks and their proteins. Deciphering the complexities 

of these pathways (not to mention pathway-pathway interactions) begins by 

understanding the basic categories of proteins that are required in innate immune 

pathways. The protein categories that will be discussed in this section have been 

limited to those involved in intracellular pathways: PRRs, adaptor proteins, and 

transcription factors.  
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The majority of PRRs, including transmembrane and cytosolic PRRs, respond to 

pathogens by inducing the activation of transcription factors (e.g. NF-κB 

[nuclear factor kappa-light-chain-enhancer of activated B cells] and IRFs 

[interferon regulatory factors]) and can activate the adaptive immune response 

[Mogensen, 2009; Iwasaki and Medzhitov, 2010]. Typically, the response is 

dependent on the classification of the PRR in question: secreted, transmembrane, 

or cytosolic [Mogensen, 2009; Iwasaki and Medzhitov, 2010]. Secreted PRRs are 

responsible for inducing opsonization for phatgocytosis [Iwasaki and Medzhitov, 

2010] but are unable to directly activate the adaptive immune response without 

assistance.  

 

Detection of PAMPs by transmembrane and cytosolic PRRs and subsequent 

signal transduction requires various adaptor proteins to generate the required 

immunological response [Jordan et al., 2003]. In innate immunity, a number of 

adaptor proteins are responsible for encoding binding domains that recognize 

PAMP-activated PRRs [Jordan et al., 2003]. PRR-bound adaptors (i.e. activated 

adaptors) are required to facilitate the formation of a protein complex that either 

generates the required immunological response or binds and activates another 

adaptor for subsequent rounds of protein complex formation [Pawson, 2007]. It 

should be noted that many innate immune pathways require multiple rounds of 

adaptor activation to generate an immune response [Jordan et al., 2003]. 

 

Activation of adaptor proteins by transmembrane and cytosolic PRRs eventually 

forms protein complexes that are responsible for activating a variety of 
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transcription factors to induce the appropriate immunological responses. The role 

of activated transcription factors in innate immunity (such as NF-κB and IRFs) is 

typically to regulate the expression of specific proteins involved in cellular 

signaling, including the well-documented cytokines [Caamaño and Hunter, 2002; 

Tamura et al., 2008]. Activation of NF-κB for example leads to regulating the 

expression of proteins involved in: apoptosis (both inhibitors and activators), 

immune cell development and function, inflammatory response, and also triggers 

the adaptive immune system [Caamaño and Hunter, 2002].  

 

1.1.3 Central innate immune proteins and pathways 

The innate immune system incorporates a diverse collection of pathways that 

provide immunity to a range of pathogens (bacteria, parasites, and viruses). For 

the purpose of this thesis two of the pathways will be reviewed in detail here: the 

Toll-like Receptor (TLR) signaling pathways and the complement system. These 

are the two pathways that feature in Chapter 3. 

 

1.1.3.1 The TLR signaling pathways 

The TLRs are a well-studied family of hetero/homo-dimeric transmembrane 

PRRs [Moresco et al., 2011]. It is currently thought that there are eleven TLRs 

encoded in the human genome, ten of which are expressed (TLRs 1-10) (Table 

1.1). The functions of human TLR8 and 10 are still not fully understood, 

however it has been reported that TLR10 is involved in the innate immune 

response to influenza infection [Lee et al., 2014] and TLR8 is involved in 

recognizing RNA of both viral and bacterial origin [Cervantes et al., 2012]. 

Human TLR11 is not expressed due to pseudogenization [Zhang et al., 2004]. 



5 

Signal transduction of the TLR signaling pathway requires various adaptor 

proteins and results in the activation of specific transcription factors to activate 

the appropriate response (Figure 1.1) [Kanehisa and Goto, 2000]. Of the adaptors 

involved in the TLR signaling pathway, MyD88 (myeloid differentiation primary 

response 88) and TRIF (TIR-domain-containing adapter-inducing interferon-β) 

are of particular importance. MyD88 and TRIF are central adaptors that are 

required to activate the MyD88-dependent and MyD88-independent pathways, 

respectively. The MyD88-dependent pathway is responsible for NF-κB 

activation and inflammatory cytokine release for TLRs 5, 7, 9 and TLR2 (as a 

heterodimer with TLR1/6). The MyD88-independent pathway (TRIF) is 

responsible for NF-κB activation and cytokine release for TLR3 alone. Of 

particular note, TLR4 (which is required to form a complex with MD-2 

[Lymphocyte antigen 96] and LBP [Lipopolysaccharide binding protein] for 

activation) is unique in its ability to activate both pathways with MyD88 

responsible for cytokine release and early phase NF-κB activation and TRIF for 

late phase NF-κB activation [Kawai and Akira, 2007]. 
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Table 1.1: Properties of the functional human TLRs. 

 

The various TLR receptors of humans, the dimer type of the receptor, the cellular localization of each receptor (information from [Kawai and 

Akira, 2010; Matsumoto et al., 2011; Cervantes et al., 2012; Lee et al., 2014]), the PAMP recognized by each receptor (information from 

[Moresco et al., 2011; Cervantes et al., 2012]), the pathogen recognized by each receptor (information from [Moresco et al., 2011; Cervantes et 

al., 2012; Lee et al., 2014]), and any additional molecular ligands of the receptor (reviewed in [Moresco et al., 2011]).  

Receptor(s) Dimer Type Cellular Localization PAMP Pathogen(s) Detected Additional Ligands

TLR2/TLR1 Heterodimeric Cell Surface Lipopeptides Gram-positive bacteria and Fungi

TLR2/TLR6 Heterodimeric Cell Surface Lipopeptides Gram-positive bacteria and Fungi

TLR3 Homodimeric
Cell Surface & Intracellular 

(Endosome)
dsRNA Viruses poly I:C 

TLR4 Homodimeric Cell Surface LPS Gram-negative bacteria

TLR5 Homodimeric Cell Surface Flagellin Bacterial flagellum

TLR7 Homodimeric Intracellular (Endosome) ssRNA Viruses Resiquimod, Imiquimod, and Loxoribine

TLR8 Homodimeric Intracellular (Endosome) ssRNA Viruses & Bacteria 

TLR9 Homodimeric Intracellular (Endosome)
Unmethylated 

DNA
Bacteria CpG-oligodeoxynucleotides (CpG-ODNs)

TLR10 Homodimeric Intracellular Unknown Virus (influenza)
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Figure 1.1: Pathway map of the TLR signaling pathway 

 

Simplified pathway map of the TLR signaling pathway (adapted from the KEGG 

pathway map of the TLR signaling pathway [Kanehisa and Goto, 2000]). 

Proteins are depicted as white boxes and interactions as arrows; dashed arrows 

indicate that some interactions are not shown for legibility. The PAMPs detected 

by each TLR receptor are shown to the left of their respective receptor (obtained 

from [Moresco et al., 2011; Cervantes et al., 2012]). The pathway is divided into 

two distinct pathways: the MyD88-dependent pathway and the MyD88-

independent pathway. For example, Lipopolysaccharides (LPS) activate TLR4. 

Activated TLR4 subsequently activates: i) a complex of MyD88 and TIRAP 

(toll-interleukin 1 receptor domain containing adaptor protein) to activate the 

MyD88-dependent pathway (resulting in activation of NF-κB and IRF5) and ii) 

TRIF activates the MyD88-independent pathway (results in activation of IRF3 

and IRF7). See table of abbreviations for the name of each protein shown above.  
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1.1.3.2 Vertebrate TLR repertoires 

Drosophila Toll was the first member of the TLRs to be described and it was 

found to function in embryonic dorsoventral regulation rather than immunity. 

Later it was discovered that in the presence of the pathogen-recognition adaptor 

gene, spätzle, a potent antifungal immune response was observed [Lemaitre et 

al., 1996].  

 

Comparative studies of vertebrate TLRs have found that both the recognition of 

and response to PAMPs has remained conserved [Roach et al., 2005]. Indeed, 

evidence of functional conservation has been reported in zebrafish [Purcell et al., 

2006], highlighting the ancient and conserved function of TLRs throughout 

nearly 400 million years of vertebrate evolution [Hedges et al., 2006].  

 

In addition to this functional conservation, vertebrates exhibit numerous 

instances of clade and/or species-specific TLR family expansion/contraction. For 

example, Zebrafish encode 17 putative TLR variants, including orthologs for 

mammalian TLR2-5 and 7-9, the remaining proteins represents divergences of 

the zebrafish TLR repertoire. For example, zebrafish TLR1 and 18 are the only 

TLR homologs reported for the mammalian TLR cluster of TLR1, 6, and 10. The 

zebrafish repertoire also includes multiple duplicated TLRs (4, 5, 8, and 20) and 

a cluster of fish specific TLRs (19, 20a/b, 21, and 22) [Jault et al., 2004; Meijer 

et al., 2004]. Similar studies in chicken have revealed the presence of 10 TLRs, 

with orthologs to mammalian TLR2, 3, 4, 5, and 7 [Alcaide and Edwards, 2011]. 

Chickens encode two lineage-specific duplications, TLR2A/2B and TLR1A/1B, 

TLR2A and 2B are homologous to mammalian TLR2, however, TLR1A and 1B 
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are unique to birds. Of the remaining chicken TLRs, TLR15 is unique to birds 

and TLR21 is orthologous to zebrafish TLR21. The significance of TLR 

repertoire divergences is the potential establishment of species/clade-specific 

innate immunity such as the zebrafish-specific TLR4a/b duplicates that are 

functionally divergent to mammalian TLR4 [Sullivan et al., 2009].  

 

The Mouse genome encodes thirteen TLRs, twelve of which are functionally 

expressed: TLR1-9 and 11-13, with TLR1-9 having direct orthologs in human 

[Roach et al., 2005]. Mouse TLR11-13 do not have any human homologs, rather 

they share common ancestry with TLR21 of fish and birds. Mouse TLR10, is 

nonfunctional due to a species-specific retroviral insertion [Hasan et al., 2005].  

 

Phylogenetic reconstruction places several of the TLRs into two clusters: the 

endocellular TLR cluster (7, 8, and 9) and the heterodimeric TLR cluster (1, 2, 6, 

and 10) [Roach et al., 2005]. An additional TLR cluster (TLR11) has been 

documented but lacks a functional human homolog due to the pseudogenization 

of human TLR11 [Roach et al., 2005; Zhang et al., 2004]. Considering the 

prevalent nature of divergent TLR repertoires combined with an affinity for 

functional divergence the TLRs represent an excellent case study for those 

interested in molecular mechanisms of protein evolution. 

 

1.1.3.3 The complement system 

The complement system is a network of proteins involved in host defense and 

inflammation [Sarma and Ward, 2011]. Activation of the complement system is 

known to occur through three distinct pathways: the alternative, classical, and 
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lectin pathways (Figure 1.2) [Kanehisa and Goto, 2000]. The alternative pathway 

is triggered by C3b (a complex of C3 [complement component 3] and Factor B) 

binding to carbohydrates, lipids, and proteins found the surface of a variety of 

pathogens [Sarma and Ward, 2011]. The classical pathway responds to IgG- and 

IgM-containing antigen-antibody complexes via the C1 complex (C1q 

[complement component 1, q subcomponent], C1r [complement component 1, r 

subcomponent], and C1s [complement component 1, s subcomponent]) binding 

to the Fc portion of IgG and IgM [Sarma and Ward, 2011]. The lectin pathway 

activates the complement system via mannose-binding lectin (MBL) or Ficolin 

binding to the surface of pathogens [Sarma and Ward, 2011]. Each pathway 

results in the formation of the membrane attack complex (MAC) on the cellular 

surface of the pathogen. The MAC acts as a stable transmembrane pore that leads 

to lysis of the pathogen [Ehrnthaller et al., 2011]. The complement system is also 

known to induce opsonization, inflammation, and phagocyte migration, and also 

to activate the adaptive immune system [Ehrnthaller et al., 2011].  

 

1.1.4 Discordant innate immune responses 

On March 13
th

 2006, six healthy volunteers were administered TGN1412, an 

immunomodulatory drug developed by TeGenero Immuno Therapeutics for 

combating autoimmune diseases and leukaemia [Suntharalingam et al., 2006]. 

Within the next two hours, all six volunteers began to exhibit severe symptoms 

(e.g. nausea, vomiting, drop in blood pressure, etc.) and eventually multiple 

organ failure [Suntharalingam et al., 2006]. While all volunteers survived the 

ordeal, an investigation was launched to determine how the potential lethality of  
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Figure 1.2: Pathway map of the complement system  

 

Simplified pathway map of the complement system (or cascade) (adapted from 

the KEGG pathway map of the complement system [Kanehisa and Goto, 2000]). 

Proteins are depicted as white boxes and interactions as arrows; dashed arrows 

indicate that some interactions are not shown for legibility. The PAMPs detected 

by each TLR receptor are shown to the left of their respective receptor (obtained 

from [Sarma and Ward, 2011]). The pathway is divided into three distinct 

pathways: the alternative pathway, lectin pathway, and classical pathway. Each 

pathway results in activation of the membrane attack complex (MAC). For 

example, the C1 (complement component 1) complex activates the classical 

pathway in response to IgG- and IgM-containing antigen-antibody complexes. 

The activated C1 complex then leads to the activation of the MAC to combat the 

pathogen. See table of abbreviations for the name of each protein shown above. 
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TGN1412 had gone unnoticed [Attarwala, 2010]. Investigation of TGN1412 

found the drug to be superagonist that led to a rapid release of proinflammatory 

cytokines or a “cytokine storm” in human patients [Suntharalingam et al., 2006; 

Stebbings et al., 2007]. Animal trials had been completed prior to clinical trial in 

cynomolgus monkeys (crab-eating macaque) and there had been no evidence of 

superagonism or cytokine storm. It was concluded that the white blood cells of 

cynomolgus monkeys were unable to properly mimic TGN1412 response in 

humans [Stebbings et al., 2007]. 

 

TGN1412 presents a worst-case scenario for model organism discordance - a 

biological response in the model organism that does not mimic human [Mestas 

and Hughes, 2004]. Traditionally, researchers respond to discordance by 

selecting more suitable model organisms [Davis, 2008]. While such solutions 

may be required for expediting research, they ignore the underlying molecular 

cause. Only by understanding discordance will we truly understand the biology 

of model organisms.  

 

1.1.4.1 Discordance reported in TRIM5α 

TRIM5α represents one of the most prominent and frequently cited instances of 

model discordance in the innate immune system [Stremlau et al., 2004]. Initially 

characterized as conferring resistance to human immunodeficiency virus-1 (HIV-

1) in rhesus macaque, TRIM5α belongs to the TRIM family of proteins, a group 

of RING proteins containing the ubiquitin-protein isopeptide ligase RBCC motif 

[Stremlau et al., 2004; Short and Cox, 2006]. Restriction of HIV-1 by TRIM5α 

in rhesus macaque is dependent on the SPRY domain, which is capable of 
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recognizing the HIV-1 capsid protein [Sawyer et al., 2005; Stremlau et al., 2005; 

Yap et al., 2005; Pertel et al., 2011]. A comparative analysis identified two 

possible causative polymorphisms for the discordant phenotype between human 

(susceptible) and macaque (resistant), a single polymorphic residue P332R and a 

variable region of eight rhesus macaque and six human residues at position 335. 

Replacing either human variant with the rhesus macaque equivalent sequence 

conferred resistance to HIV-1 in human [Sawyer et al., 2005; Stremlau et al., 

2005; Yap et al., 2005]. 

 

1.1.4.2 Discordance reported in the Toll-like Receptors 

Since discovery of the first human TLR in 1997 [Medzhitov et al., 1997], the 

scientific literature has reported a large number of studies in which non-human 

TLRs produced unexpected phenotypic responses. Concern over these reports 

has spawned a number of review articles on the subject of unique phenotypes 

[Rehli, 2002; Mestas and Hughes, 2004; Werling, 2009]. Beyond differences in 

TLR repertoires, discordant responses have been reported in TLR2, TLR3, 

TLR4, TLR5, TLR8, and TLR9. The discordant responses of TLR5 and TLR9 

are minimal and are mostly attributed to flagellin and CpG-ODNs sequence 

prefereces respectively [Bauer et al., 2001; Rankin et al., 2001; Pontarollo et al., 

2002; Andersen-Nissen et al., 2007; Keestra et al., 2008]. Phenotypic 

discordance between human and mouse for TLR2 (as a heterodimer) is attributed 

to the unique ability of mouse TLR2 to respond to tri-lauroylated lipopeptide 

(Lau3CSK4) [Yamamoto et al., 2002; Grabiec et al., 2004]. These are the more 

mild phenotypic discordances reported, however those involving TLR8, TLR4, 

and TLR3 are more signifcant. 
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Human TLR8, but not mouse TLR8, has been reported as capable of conferring 

NF-B activation in response to RNA ligands, imidazoquinoline resiquimod 

(R848), and the immunostimulant derivatives CLO95 (imidazoquinoline 

resiquimod) and CL075 (thiazoloquinolone) in the absence of polyT-ODN [Jurk 

et al., 2002; Forsbach et al., 2008; Liu et al., 2010]. Such findings led to the 

conclusion that TLR8 was non-functional in mouse [Cervantes et al., 2012]. 

Subsequent sequence comparisons and deletion experiments identified two 

potentially causative motifs, RQSYA and PGIQ, both of which were missing in 

rodents [Liu et al., 2010]. Reports suggest that activation of mouse TLR8 by 

CL075 is possible, but requires the addition of polyT-ODNs to confer activation 

[Liu et al., 2010].  

 

TLR4 is responsible for recognition of LPS from gram-negative bacteria and was 

one of the first TLRs to be characterized in vertebrates [Medzhitov et al., 1997; 

Moresco et al., 2011]. Subsequent research identified that TLR4 is required to 

associate with the protein MD2 to recognize the hydrophobic domain of LPS (i.e. 

Lipid A) [Shimazu et al., 1999; Raetz and Whitfield, 2002]. Various LPS 

molecules have been reported to elicit discordant immune responses, a small 

number of examples are detailed here for illustrative purposes. Lipid IVA (a 

synthetic Lipid A precursor) and LpxL1 LPS of Neisseria meningitides are able 

to induce an innate immune response in mouse but not human TLR4/MD2. The 

cause of Lipid IVA discordance was determined to be mutations in both TLR4 

and MD2, whereas LpxL1 discordance was dependent on TLR4 mutations alone 

[Steeghs et al., 2008; Meng et al., 2010]. The LPS molecules of msbB (mutated 

msbB E. coli [Somerville et al., 1996]) and Porphyromonas gingivalis are also 
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documented to elicit species-specific discordance, both LPS molecules 

antagonize normal LPS based TLR4/MD2 induction in humans whereas they 

induce an immune response in mouse TLR4/MD2 [Coats et al., 2007]. Human 

TLR4 but not mouse TLR4 produces an immune response upon recognizing 

nickel (Ni
2+

), resulting in human-specific contact hypersensitivity (CHS). This 

discordant response to nickel was subsequently attributed to the histidine 

residues H456 and H458 in human TLR4 [Schmidt et al., 2010]. 

 

TLR3 is documented to localize to the cellular surface and endosomal 

compartments and is responsible for recognizing the double-stranded RNA 

(dsRNA) of viruses [Alexopoulou et al., 2001; Matsumoto et al., 2003]. 

Recognition of the immunostimulant poly(I:C) has been reported to elicit a 

discordant response, albeit minor. Mouse macrophages but not human 

macrophages have been documented to induce TNF and activate NFB and 

IRF-3 in response to poly(I:C) [Fortier et al., 2004; Lundberg et al., 2007]. 

Beyond poly(I:C) discordance, human TLR3 has been reported to exhibit a 

restricted anti-viral role in resisting herpes simplex virus encephalitis, whereas 

mouse TLR3 exhibits broad functionality [Ariffin and Sweet, 2013]. 

 

1.1.4.3 Variations reported in inflammation 

Inflammation is a critical response triggered by the innate immune system upon 

infection. The suitability of mouse as a model of inflammation has recently been 

questioned [Seok et al., 2013]. In the study by Seok et al. the gene expression 

profiles for inflammatory responses due to trauma, burns, and endotoxemia were 

compared between human and mouse. The results showed little correlation 
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between the species in terms of gene expression profiles for the same condition 

[Seok et al., 2013]. They also found no correlation in expression at the pathway 

level [Seok et al., 2013]. These findings have since been contested. Using the 

same dataset a strong correlation was found between the inflammation gene 

expression profiles of human and mouse [Takao and Miyakawa, 2014]. The 

discrepancy between these reports can be attributed to different standards for 

data inclusion in the correlation analysis [Takao and Miyakawa, 2014]. At 

present, the validity of both reports is under question and it has been suggested 

that an additional study is warranted [Leslie, 2014].  

 

1.1.5 Understanding and predicting model species discordance 

The various examples presented in Section 1.1.4 highlight a problem often 

neglected by biologists; model organisms occasionally are unable to mimic 

human biology. The remainder of the introduction reviews two distinct 

evolutionary methodologies with the potential to identify and predict the genetic 

causes of species discordance. Section 1.2 reviews the application of selective 

pressure analysis to infer potential functional discordance from protein coding 

genes under positive selection. Section 1.3 reviews the application of network 

theory to identify introgressive (non-vertical inheritance) that may attribute to 

functional discordance.  
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1.2 Natural Selection and Molecular Evolution 

1.2.1 Evolutionary theory 

The theory of natural selection was first proposed as the gradual process by 

which the traits of a population change in frequency depending on their impact 

on reproductive success [Darwin, 1859]. In the modern era, the study of 

molecular evolution has sought to understand the process of evolution (including 

natural selection) from the sequences of organisms and this has shown that 

saltational events also occur. While the relative roles for genetic drift and 

selection have been debated in molecular evolutionary biology [Lynch, 2007; 

Hahn, 2008], the modern synthesis is well developed to describe the processes 

and patterns we observe in molecular sequence data. 

 

1.2.2 Neutral theory 

The neutral theory of evolution postulates that the majority of molecular 

variations observed within a genome are caused by random genetic drift of 

neutral alleles rather than natural selection [Kimura, 1968]. Neutral alleles are 

defined as variation that has no fitness effect on the organism and were believed 

to be responsible for the vast majority of variation within populations and 

between species [Kimura, 1968]. Early adoption of the neutral theory was aided 

by studies demonstrating the highly polymorphic nature of DNA within 

populations and between species, evidence that could not be explained by 

adaptive evolution alone [Zuckerkandl and Pauling, 1965; Harris, 1966; 

Lewontin and Hubby, 1966]. The theory was later expanded upon by the 

inclusion of nearly neutral mutations, accounting for slightly advantageous or 
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deleterious mutations that may become fixed within a population due to random 

genetic drift [Ohta, 1973; Ohta and Gillespie, 1996].  

 

The probability of neutral or nearly neutral mutations becoming fixed within a 

diploid population with an effective population size 𝑁𝑒  due to random genetic 

drift is shown in the following equation (Equation 1.1).  

 

Equation 1.1: Probability of fixed of neutral mutations within a population. 

𝑃𝑥 =  
1

2𝑁𝑒
 

 

As the equation states, the probability of neutral or nearly neutral mutations 

becoming fixed within a population increases with smaller 𝑁𝑒 [Kimura, 1968].  

 

1.2.3    Natural Selection 

Natural selection was postulated by Darwin to influence the frequency of 

particular phenotypes within a population depending on their impact on 

reproductive success [Darwin, 1859]. From a modern molecular standpoint, 

natural selection may be subdivided into distinct categories: i) positive selection, 

whereby an advantageous spontaneous mutation increases in frequency within a 

population and ii) purifying selection, whereby a deleterious mutation decreases 

in frequency. In the absence of selection, frequency is dependent on neutral 

evolution and therefore dependent on random genetic drift (and of course Ne).  

 

By comparing homologous sequences across populations or species (See Section 

1.2.4 for details) it is possible to determine the selective pressures that have acted 
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upon individual protein coding genes (Section 1.3 the section on how this is 

done). In general, it is presumed that the majority of the sequence within protein 

coding genes is evolving under purifying selection due to functional constraints 

[Hughes, 1999; Peterson et al., 2009]. Nonetheless, studies have identified high 

levels of positive selection among the protein coding genes of Drosophila [Smith 

and Eyre-Walker, 2002; Begun et al., 2007], E. coli [Charlesworth and Eyre-

Walker, 2006], and mammals [Kosiol et al., 2009]. These findings have 

prompted some to state that the nearly neutral theory may not be an appropriate 

description of molecular evolution and that an adaptationist regime may be a 

more appropriate explanation [Hahn, 2008]. 

 

1.2.4 Positive selection and functional shift 

Population geneticists traditionally define positive selection as a type of natural 

selection in which a spontaneous mutation that confers an advantage increases in 

frequency within the population [Sabeti et al., 2006]. In comparison to harmful 

or neutral spontaneous mutations, positive selection is defined by an increase in 

the fixation rate of an advantageous allele [Sabeti et al., 2006]. Selection (and 

possible fixation) of the advantageous allele is documented to confer a 

hitchhiking effect, whereby neutral, nearly neutral, and deleterious alleles linked 

to the advantageous allele also increase in frequency [Smith and Haigh, 1974; 

Chun and Fay, 2011]. Depending on the strength of selection event, hitchhiking 

may lead to a notable reduction in variation in the region surrounding the 

advantageous allele termed a selective sweep (Figure 1.3) [Andolfatto, 2001]. 
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Figure 1.3: Schematic for impact of selective sweep at the population level 

 

In this simplified scenario, variation in the population of size 6 is shown in blue and advantageous alleles in red. Prior to the selective sweep of 

an advantageous allele, the population will exhibit a number of neutral alleles (blue) surrounding the locus of the advantageous allele (red) – 

leftmost panel. After the positive selection and fixation of the advantageous allele in red, a hitchhiking effect will be observed whereby the 

linked neutral alleles in blue also increase in frequency (i.e. a decrease in variation in the region surrounding the advantageous allele) – central 

panel. Loss of evidence of the selective sweep will eventually occur due to the occurrence of spontaneous mutations (i.e. slow return of genetic 

diversity) – rightmost panel. 

Before selection
After selection

“Selective Sweep” Loss of evidence
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The various methods developed to determine selective pressure from molecular 

signatures are described in Section 1.3. Genetic diversity will slowly return to the 

region due to the occurrence of spontaneous mutations and eventually eliminate 

the molecular signatures of the selective sweep (this is within approximately 

250,000 years for humans) [Sabeti et al., 2006]. 

 

From the perspective of species-level comparisons, positive selection is often 

defined as the molecular signature of species adapting to their environment and 

for that reason has been hypothesized to be a marker of functional discordance 

between species [Tennessen, 2008]. The primary method for detecting positive 

selection between species is calculating the ratio of replacement non-

synonymous substitutions per non-synonymous site (Dn) over synonymous 

substitutions per synonymous site (Ds) [Hurst, 2002]. This ratio of Dn/Ds, 

termed omega () throughout the thesis has three potential outcomes: i) an  > 1 

is indicative of positive selection, ii)  = 1 is indicative of neutral evolution, and 

iii)  < 1 is indicative of purifying selection (Figure 1.4). 

 

Concerns have been raised over attempts to associate positive selection with 

functional discordance [Hughes, 2007; Yokoyama, 2008]. It is now widely held 

that positive selection requires in-vitro confirmation by the reconstruction and 

rational mutagenesis of ancestral proteins [Yokoyama, 2013]. For more details 

on in-vitro confirmation by ancestral reconstruction see Section 1.4.4. More 

recent studies focusing on the link between positive selection and phenotypic 

discordance have met with some success.  
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Figure 1.4: A schematic for how to measure selective pressure variation 

 

The simplified example above shows two outcomes of mutating the fourth codon 

(CTC or leucine) in a protein. A synonymous substitution (shown in green) 

mutates the codon CTC to CTG but has no observable protein alteration. A non-

synonymous substitution mutates CTC to CCC (shown in red) and results in the 

substitution of leucine for proline, and this mutation results in an altered 

conformation (illustrated as a “kink”). The consequence of the observed kink 

may be separated into three outcomes: neutral (i.e. no fitness effect), deleterious, 

or advantageous. If neutral, the non-synonymous “kink” (in addition to other 

neutral non-synonymous substitutions) would be fixed within a species at the 

same frequency as the synonymous substitutions – as the likelihood of fixation is 

the same for both the neutral non-synonymous and synonymous mutations – and 

would result in ω = 1 (i.e. the gene is evolving neutrally) [Hurst, 2002]. If 

deleterious, the non-synonymous “kink” (in addition to other deleterious non-

synonymous substitutions) would be eliminated, resulting in a higher frequency 

of synonymous substitutions becoming fixed and therefore ω < 1 (i.e. the gene is 

under purifying selection) [Hurst, 2002]. If advantageous, the non-synonymous 
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“kink” (in addition to other advantageous non-synonymous substitutions) would 

be fixed more frequently than synonymous substitutions, thus resulting ω > 1 

(i.e. the gene is under positive selection) [Hurst, 2002]. It should be noted that 

the omega (ω) measurement is not without fault. For example, if a specific region 

of a protein is under positive selection whereas another region is under purifying 

selection, ω may incorrectly indicate the protein is evolving neutrally [Hurst, 

2002]. In addition, the measurement does not account for the infrequency of 

transversions in comparison to transitions and therefore results in unrealistic Ds 

and Dn values [Yang and Bielawski, 2000]. 
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A frequently cited species comparison  of TRIM5α, a HIV-1 restriction factor in 

old world monkeys [Stremlau et al., 2004], used positive selection to identify an 

11- to 13-amino acid segment of the SPRY domain responsible for species-

specific retroviral restriction [Sawyer et al., 2005]. And a rational mutagenesis 

approach by Loughran et al found that three positively selected residues (N496, 

Y500, and L504) in the mammal myeloperoxidase protein were responsible for 

the evolution of this dual functioning enzyme capable of both peroxidation and 

chlorination activity [Loughran et al., 2012]. Other recent studies have also 

shown a clear relationship between positive selection and functional discordance 

[Moury and Simon, 2011; Farhat et al., 2013].  

 

1.2.5 The relationship between orthologs, paralogs, and function 

Homologs are genes that share common ancestry and are traditionally classified 

by their origin, orthologs by speciation events and paralogs by gene duplication 

[Fitch, 1970]. More recently, discussion centered around the long held 

assumptions of the ortholog conjecture, i.e. that orthologs are more conserved 

than paralogs in terms of sequence and function [Dessimoz et al., 2012]. 

Questions about how orthologs should be defined were raised, for example, 

should it be by sequence similarly [Gabaldón et al., 2009], domain architecture 

[Forslund et al., 2011], intron structure [Henricson et al., 2010], protein structure 

[Peterson et al., 2009], or expression patterns [Huerta-Cepas et al., 2011]. The 

debate was further complicated by research that found functional annotations 

more often correlate with paralogs than orthologs, thereby directly challenging 

the assumptions of the ortholog conjecture [Nehrt et al., 2011]. Subsequent 

studies found that the reported functional correlation of paralogs was primarily 
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due to biases introduced by the use of computationally annotated Gene Ontology 

(GO) terms and they report that the corrected correlations supported the ortholog 

conjecture [Altenhoff et al., 2012]. The debate on the most appropriate 

framework to define orthologs continues [Haggerty et al., 2014]. 

 

If the ortholog conjecture holds true, paralogs are expected to exhibit greater 

functional divergence [Dessimoz et al., 2012]. Gene duplication is the biological 

mechanism that generates paralogs and is hypothesized to provide an opportunity 

for functional divergence to occur. Gene duplication events, are predicted to 

frequently result in one of the duplicates becoming pseudogenized by 

degenerative mutations [Ohno et al., 1970]. However, both duplicates may 

become preserved by either beneficial mutations that generate a novel function 

(neofunctionalization) or mutations that necessitate the fixation of both 

duplicates  (subfunctionalization) [Force et al., 1999; Ohno et al., 1970].  

 

In subfunctionalization, duplicates become fixed within a population if partial 

functional loss necessitates functional complementation of the daughter genes to 

maintain parental function [Zhang, 2003]. A recent example of 

subfunctionalization was reported in the H3-H4 histone chaperones ASF1a and 

ASF1b [Abascal et al., 2013]. The duplication event that produced ASF1a and 

ASF1b was reported to have occurred in the ancestor of jawed vertebrates. The 

single ASF1 of Saccharomyces cerevisiae is reported to interact with HIRA and 

CAF-1 chaperones with equal affinity [Abascal et al., 2013]. After the 

duplication event, ASF1a and ASF1b became divergent in their gene expression 

profiles and positive selection acted on both paralogs (C-terminal of ASF1b and 
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N-terminal of both paralogs). Considering these hallmarks of functional 

divergence, it may not be surprising that ASF1a and ASF1b exhibit preferential 

interaction affinities, ASF1a with HIRA and ASF1b with CAF-1 [Abascal et al., 

2013].  

 

In neofunctionalization, a mutation that confers a novel function may cause both 

duplicates to become fixed by positive selection or genetic drift [Conant and 

Wolfe, 2008], such as in the human SRGAP2 genes [Dennis et al., 2012]. 

SRGAP2 is a neuronal migration gene that is highly conserved in mammal 

evolution. Multiple “Homo”-specific gene duplication events led to three 

duplicates of SRGAP2A (SRGAP2B-D) in humans. These duplications had not 

been previously sequenced or characterized due to a misassembled SRGAP2. 

Subsequent analysis supported that only SRGAP2A and SRGAP2C were likely 

functional and that the incomplete duplication that created SRGAP2C had 

created a novel antagonism mechanism of parental SRGAP2A [Dennis et al., 

2012]. 

 

1.3 Methods for assessing selective pressure variation  

1.3.1 Distance-based methods  

One of the earliest approaches for assessing selective pressure variation across 

sites was developed by Li et al., (1985). The method classified nucleotide 

positions in coding regions into four categories: non-degenerate sites are 

classified as non-synonymous (any mutation results in replacement of the amino 

acid), fourfold degenerate sites are classified as synonymous (all mutations are 

silent i.e. do not change the amino acid), twofold degenerate sites are classified 
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as synonymous for transitions, and twofold degenerate sites are classified as non-

synonymous for transversions. The issue with this method is that the twofold 

degenerate category overestimates synonymous counts due to the infrequency of 

transversions in comparison to transitions and later refinements were made to 

improve the efficiency in this regard [Li, 1993]. This approach to assessing 

selective pressure has been found to be unsatisfactory as it lacks power to detect 

positive selection if only a few sites are under selection [Pond and Frost, 2005; 

Murray, 2011]. Distance-based sliding window approaches were later developed 

so that selective pressures across coding sequences could be classified along the 

length of the sequence [Comeron, 1999; Creevey and McInerney, 2003; Fares, 

2004; Liang, 2006]. Sliding window based approaches have since been shown to 

have undesirable characteristics including the estimation of artifactual trends of 

synonymous and nonsynonymous rate variation and not correcting for multiple 

testing [Schmid and Yang, 2008].  

 

1.3.2 Phylogeny-based methods 

In comparison to the distance-based methods, phylogeny-based methods enable 

the assessment of selective pressure variation across lineages as well as sites 

[Creevey and McInerney, 2002; Yang, 2002]. The Creevey-McInerney method 

uses the G-test to test the hypothesis that sequences are evolving neutrally when 

the ratio of silent invariable (SI) sites to silent variable (SV) sites is equal to the 

ratio of replacement invariable (RI) sites to replacement variable (RV) sites 

[Creevey and McInerney, 2002]. Significant deviations indicate a departure from 

neutrality. The method implements a rooted phylogeny (that is assumed to be 

correct) to reconstruct the ancestral sequences at each internal node using a 
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maximum parsimony approach [Hennig, 1966; Creevey and McInerney, 2002]. 

The reconstructed phylogeny is then used to identify all substitutions that 

occurred across the tree and determine whether they resulted in a non-

synonymous (replacement) or synonymous (silent) codon change. Significantly 

high rates – reported by the G-test – of RI are indicative of directional selection 

whereas significantly high rates of RV are indicative of non-directional selection 

[Creevey and McInerney, 2002]. The Creevey-McInerney method is effective for 

detecting selective pressure variation across lineages, but cannot identify sites 

under lineage-specific positive selection [Creevey and McInerney, 2002].  

 

1.3.2.1 Maximum likelihood methods 

Maximum likelihood (ML) methods use models of evolution to determine the 

likelihood of observing the experimental data given the characteristics of the 

specified model. A variety of methods have been developed to identify selective 

pressure variation under a maximum likelihood framework (in addition to 

methods using a Bayesian framework not specified for brevity) [Massingham 

and Goldman, 2005; Pond et al., 2005; Yang, 2007]. The sitewise likelihood-

ratio (SLR) test was an approach primarily designed to detect evidence of non-

neutral evolution and estimate the likelihood of each site under being under 

either purifying of positive selection [Massingham and Goldman, 2005]. The 

program HyPhy carries out a variety of likelihood-based analyses, including the 

assessment of selective pressures acting on sites and lineages combined [Pond et 

al., 2005]. The codeML program from the PAML software package was 

designed to identify positive selection acting on specific sites within an 

alignment and positive selection unique to a specific foreground lineage [Yang, 
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2007]. The codeML program was selected for our analysis for three reasons: i) 

the method is highly developed and regularly updated, ii) the robustness of the 

most recent lineage-site models and their appropriate null models [Yang and dos 

Reis, 2011], and iii) low false discovery rate of the lineage-site models in the 

presence of GC content deviations and indels (see Section 1.4 for details) 

[Fletcher and Yang, 2010; Gharib and Robinson-Rechavi, 2013]. 

 

1.3.2.2 CodeML 

The codeML program from the PAML package implements a large number of 

codon substitution models developed to account for various substitution rate 

characteristics (i.e. Transition/transversion rate bias and codon usage bias) 

between the various amino acids, and also to estimate the Dn/Ds ratio (ω) 

[Goldman and Yang, 1994; Yang, 2007]. Codon substitution models have been 

developed that account for heterogeneous selective pressure at codon sites and 

that allow for ω to be estimated for a lineage or subset of lineages (referred to in 

the codeML literature as “foreground lineages”) on the phylogeny [Yang et al., 

2000; Yang and Nielsen, 2002; Zhang et al., 2005]. 

 

As the primary aims in chapters 2 and 3 of this thesis is the identification of 

species-specific positive selection, only the relevant codon substitution models 

will be discussed. The codon-based models of evolution implemented by 

codeML are nested likelihood models, indicating that models differ in 

complexity by the addition of free parameters (Figure 1.5). The M1a model is a 

nearly-neutral model where the ω values are permitted to be below neutrality (ω0 

< 1), and p0 is the proportion of sites that have that value. The remaining 
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proportion of sites (p1 = 1 - p0) is expected to be evolving neutrality (ω1 = 1). The 

branch-site (also known as the lineage-specific) model used in the analyses in 

Chapters 2 and 3 is the updated model A [Zhang et al., 2005]. Previous versions 

of model A were found to have an unacceptably high rates of false positives (19-

54%) when there was a relaxation of purifying selection in the foreground 

[Zhang, 2004; Zhang et al., 2005]. The modified branch-site model A (hereafter 

referred to as model A) has four free parameters. Three of these parameters are 

the same for foreground and background lineages, p0  = the proportion of sites 

with the estimated ω below neutrality (0 < ω0 < 1), and p1 = the proportion of sites 

evolving neutrality (ω1 = 1). The fourth and final free parameter in model A is ω2 

which is the estimated ω in the foreground lineage alone (ω2 is free to be > 1). 

The proportion of sites for ω2 is broken into two site categories: p2a whereby 

foreground sites are evolving with ω2 > 1 and background sites are evolving with 

ω0 between 0 and 1, and p2b whereby foreground sites are evolving with ω2 > 1 

and background sites are evolving with a ω1 = 1. The null hypothesis of model A 

has three free parameters and is referred to throughout as model A null where ω2 

= 1. Model A null allows sites in the background to be evolving neutrally (ω1 = 

1) or under purifying selection (0 < ω0 < 1), Figure 1.5. The ML implementation 

of these models could report results from a local minimum on the likelihood 

plain, for this reason codeML analyses conducted in this thesis used multiple 

starting omega values (0, 1, 2, 10) as in previous publications to increase the 

likelihood of finding and reporting estimates from the global minimum [Yang, 

1997; Yang et al., 1998; Loughran et al., 2008; Morgan et al., 2010]. 

 



31 

The likelihood ratio test (LRT) is used to determine the significance of parameter 

rich models by a comparison to alterative less parameter rich models [Nielsen 

and Yang, 1998; Yang et al., 2000]. The LRT is defined as the difference 

between the log-likelihood (lnL) values of the two models (Δl) multiplied by 

two, and follows a chi-squared (χ
2
) distribution [Nielsen and Yang, 1998]. The 

degrees of freedom (d.f.) between the two models is then used to determine the 

χ
2 

critical value for significance. If 2Δl is larger than the χ
2 

critical value then the 

parameter rich model is found to be significant as in Figure 1.5. If a codon 

substitution model is found to be significant by the LRT, the posterior 

probability of a specific codon being under positive selection is calculated by 

applying an Empirical Bayes estimate to ω for each codon. By default codeML 

uses two Empirical Bayes methods: i) Naïve Empirical Bayes (NEB) [Yang et 

al., 1998] and ii) Bayes Empirical Bayes (BEB) [Yang et al., 2005]. When 

possible, the BEB values were used in the analyses conducted in this thesis as 

they have been reported to be more statistically robust then NEB values 

particularly for smaller datasets [Anisimova et al., 2002; Yang et al., 2005]. 
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Figure 1.5: Codon based models of substitution used in the analyses 

 

(a) The three nested likelihood models required for detecting species-specific 

positive selection. The parameters for each model are specified within their 

respective grey boxes, fixed parameters are shown in black whereas free 

parameters are shown in orange (please note that for branch-site model A ω2 is a 

single free parameter). The parameters for branch-site model A and model A null 

are shown for both the foreground in red (S1) and background in black (S2, S3, 

and S4) of the given phylogeny. The free parameters for the nested likelihood 

models are as follows: Model A with 4 (P0, P1, ω0, and ω2), Model A null with 3 

(P0, P1, and ω0), and M1a with 2 (P0 and ω0). The number of free parameters of 

the nested likelihood models is then used to perform a likelihood ratio test 

(LRT). (b) The table shows the two comparisons required to determine the 

significance of Model A. The degrees of freedom (d.f.) of a comparison is 

determined from the difference in free parameters between the two models. For 

example, the comparison of M1a (Null) and Model A (alterative) diffeences in 2 

free parameters and therefore has a d.f. of 2. As the LRT follows a χ
2
 

distribution, the d.f. of the models is used to determine the χ
2 

critical value for the 

comparison. The χ
2 

critical values given in the table are for a p-value of 0.05. 

S1

S2

S3

S4

 p0 : ω0 < 1
 p1 : ω1 = 1

 p2a : ω2 > 1
 p2b : ω2 > 1

Foreground

 p0 : ω0 < 1
 p1 : ω1 = 1

 p2a : ω0 < 1
 p2b : ω1 = 1

Background

Model A: Branch-Site

 p0 : ω0 < 1  p1 : ω1 = 1

M1a: Nearly Neutral p0 : ω0 < 1
 p1 : ω1 = 1

 p2a : ω2 = 1
 p2b : ω2 = 1

Foreground

Model A null

 p0 : ω0 < 1
 p1 : ω1 = 1

 p2a : ω0 < 1
 p2b : ω1 = 1

Background

Comparison Null Model FP Alternative Model FP d.f. Critical !2 values

M1a vs. Model A M1a 2 Model A 4 2 > 5.99 (P = 0.05)

Model A null vs. Model A Model A null 3 Model A 4 1 > 3.84 (P = 0.05)

a.

b.
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1.3.2.3    Phylogenetic Reconstruction 

Phylogenetic trees describe relationships caused by linear descent and may be 

constructed from a variety of data types, including (but not limited to): 

morphological, microRNAs, mitochondrial, and nuclear coding sequences 

[Wiens, 2004; Pedersen et al., 2006; McCormack et al., 2012; Morgan et al., 

2013; Morgan et al., 2014; Yang and Rannala, 2012]. The most common modern 

methods for phylogeny reconstruction include Bayesian and ML approaches 

[Felsenstein, 1981; Yang and Rannala, 1997]. Both approaches use the likelihood 

function and therefore share many statistical properties [Yang and Rannala, 

2012]. However, there are major differences between these approaches: (i) ML 

approaches identify the most probable phylogeny whereas Bayesian approaches 

search for the most credible trees, and (ii) Bayesian implementations allow a 

prior hypothesis whereas ML cannot [Huelsenbeck et al., 2002; Yang and 

Rannala, 2012]. The results of Bayesian inference are also far easier to interpret, 

with the posterior probability being the support for a given node based on the 

data and specified model [Yang and Rannala, 2012]. 

 

Considering the focus of this thesis is to understand the mechanisms of protein 

evolution that underpin the formation of vertebrate proteins (namely positive 

selection and domain shuffling), phylogenetic trees are most suitable for 

detecting and explaining linear descent such as gene duplication and substitution 

processes over time such as adaptive evolution (Chapters 2 and 3). However, to 

capture gene remodeling by domain shuffling a network approach is required 

(Section 1.5 and Chapter 4).  
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1.3.4 Population-based methods 

1.3.4.1 McDonald–Kreitman test 

One of the earliest implementations of population level tests for selective 

pressure variation was the McDonald–Kreitman test [McDonald and Kreitman, 

1991]. The approach uses a simple phylogeny, the advantage of which is to 

provide the user with the ability to distinguish the amount of variation within a 

species (polymorphism) from the substitutions between species. The McDonald–

Kreitman test works by comparing the ratio of non-synonymous to synonymous 

polymorphisms within a species to the ratio of non-synonymous to synonymous 

fixed substitutions between species by means of a contingency table which is 

used to conduct a G-Test [McDonald and Kreitman, 1991]. Mutations under 

positive selection will fix within a population more rapidly than by random 

genetic drift alone [McDonald and Kreitman, 1991; Gillespie, 1998]. Adaptive 

evolution is therefore observed if the ratio of non-synonymous to synonymous 

polymorphisms within a population is lower than the ratio of non-synonymous to 

synonymous variation across species [McDonald and Kreitman, 1991]. It should 

be noted that the McDonald–Kreitman test requires population data from both 

species being compared and therefore due to a lack of mouse population data was 

not employed in this thesis, however other population level approaches are 

possible with the species we study and these are detailed below.  

 

1.3.4.2 Tajima’s D test statistic 

Tajima’s D test statistic is a population-based approach to determine if a 

nucleotide sequence in a population is evolving neutrally or evolving under a 

non-random process [Tajima, 1989]. Tajima’s D requires two values to be 
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calculated from a multiple sequence alignment of the population: the observed 

nucleotide diversity (π) and the expected heterozygosity (θ). The observed 

nucleotide diversity is the average number of pairwise nucleotide differences 

within the population. The expected heterozygosity of a population is calculated 

using the following equation (Equation 1.2).  

 

Equation 1.2: Expected heterozygosity of a population 

𝜃 =  
𝑆

∑
1

𝑖
𝑛−1
𝑖=1

 

 

where 𝑆 is the number of segregating sites, 𝑛 is the number of individuals, 𝑖 is 

the index of summation, and θ is the expected heterozygosity.  

 

In populations evolving neutrally, the observed and expected values should be 

equal and therefore return a Tajima’s D of approximately zero. If the population 

however is evolving under a non-random process, Tajima’s D may result in a 

positive value (higher observed to expected i.e. possibly balancing selection or 

population decrease) or it may result in a negative value (lower observed to 

expected i.e. possible selective sweep or population growth) [Simonsen et al., 

1995; Tajima, 1989].  

 

Tajima’s D has also been applied using sliding window approaches [Rogers et 

al., 2010]. In these approaches, Tajima’s D is calculated at regular intervals from 

segments of sequence in the genomic region surrounding a nucleotide sequence 

of interest, as each window is an independent test with no overlap it does not 
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have the multiple testing flaw of the distance-based sliding window methods 

[Schmid and Yang, 2008]. In comparison to only calculating Tajima’s D for a 

nucleotide sequence of interest, sliding windows enable the identification of 

significant departures from neutrality across the sequence [Rogers et al., 2010]. 

 

Tajima’s D is commonly tested for significance by obtaining a confidence 

interval for the true value of 𝜃 [Simonsen et al., 1995]. Obtaining a confidence 

interval is achieved by generating a large number of samples under a Wright-

Fisher neutral model of genetic variation [Simonsen et al., 1995]. One of the 

most commonly used approaches to generate a confidence interval is 

implemented in MS where the user supplies 𝜃, 𝑆, or 𝜃 and 𝑆  [Hudson, 2002].  

 

1.3.4.3 Fay and Wu’s H test statistic 

Fay and Wu’s H test statistic is a population-based approach often described as 

an improvement on Tajima’s D [Fay and Wu, 2000]. In comparison to Tajima’s 

D statistic, Fay and Wu’s H accounts for the presence of derived alleles (i.e. non-

ancestral alleles that arose by mutation) by determining the ancestral state of 

alleles on a phylogenetic tree. Derived alleles are typically expected to be present 

at lower frequencies than ancestral alleles [Watterson and Guess, 1977]. This 

expectation becomes violated in the presence of positive selection, resulting in 

the presence of high-frequency derived alleles [Hamblin et al., 2002]. In 

populations evolving neutrally, Fay and Wu’s H is expected to be approximately 

zero [Fay and Wu, 2000]. However, if the population is evolving under a non-

random process then Fay and Wu’s H may result in a positive value (i.e. few 

high-frequency derived alleles) or negative value (i.e. many high-frequency 
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derived alleles) [Fay and Wu, 2000]. Like Tajima’s D, Fay and Wu’s H is a 

statistical test and therefore resultant values must be tested for significance. This 

is achieved using a similar approach as described for Tajima’s D (Section 1.3.4). 

Tajima’s D and Fay and Wu’s test statistics are employed in Chapter 3 using 

human population genomic data from the 1000 human genomes project 

[Abecasis et al., 2012]. 

 

1.4 Data limitations in analyses of selective pressure variation 

Beyond the limitations of specific methods for measuring selective pressure 

variation, the data itself may have sequencing, assembly and/or alignment errors 

that can influence the estimates of parameters across sites and lineages 

[Schneider et al., 2009]. The use of high quality genomes and assemblies is 

highly recommended for selective pressure analysis (see Section 2.12). The 

following sections briefly detail some of the major sources of potential error in a 

selective pressure analysis.  

 

1.4.1 Alignment Error 

Alignment error is reported to cause unacceptably high rates of false positives 

when using model A in codeML [Fletcher and Yang, 2010]. This source of error 

is not from aligned insertions and deletions but rather from poorly aligned 

codons [Fletcher and Yang, 2010]. It is advisable therefore to use a variety of 

alignment methods for a given dataset and independently assess which is the best 

alignment for the data [Muller et al., 2010]. Programs such as MetAl  

[Blackburne and Whelan, 2012], AQUA (Automated quality improvement for 

multiple sequence alignments) [Muller et al., 2010], and NorMD (Normalized 
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Mean Distance) [Thompson et al., 2001] provide a way of comparing various 

alignment methods and selecting the most appropriate method for a given 

multiple sequence alignment (MSA). A combination of the methods MetAl and 

NorMD was implemented in Chapter 2. 

 

1.4.2 Non-adaptive evolutionary signals mistaken as positive selection 

Recombination is the process by which nucleotide sequences exchange genetic 

information and has been reported to produce new combinations of alleles 

[Posada and Crandall, 2001]. Recombination has also been documented to alter 

codon usage [Marais et al., 2001] in addition to affecting the accuracy of 

phylogenetic reconstruction [Posada and Crandall, 2002]. It has been reported 

that high levels of recombination may result in an unrealistic LRT analysis and 

therefore produce molecular signatures indistinguishable from those of positive 

selection [Anisimova et al., 2003]. Recombination has also been associated with 

GC-biased gene conversion (gBGC) [Katzman et al., 2011]. gBGC is a neutral 

process whereby GC content increases due to the DNA mismatch repair 

machinery favoring G:C pairs at recombination breakpoints [Galtier and Duret, 

2007]. gBGC has been reported to associate with false positives in selective 

pressure analyses, primarily due to the inflation of ω [Ratnakumar et al., 2010]. 

Studies have used GC and GC3 (wobble base) content to imply evidence of 

gBGC [Romiguier et al., 2013]. However, a recent report on the branch-site 

model used in this thesis (modelA) found that deviating GC frequencies have no 

significant effect on false positives [Gharib and Robinson-Rechavi, 2013]. 
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1.4.3 Purifying Selection acting on silent sites mistaken for positive 

selection 

Exonic splice enhancers (ESEs) are nucleotide sequence motifs that are reported 

to aid in pre-mRNA splicing and have been reported to be under purifying 

selection [Cáceres and Hurst, 2013; Parmley et al., 2006; Hurst and Pál, 2001]. 

ESEs are most likely enriched in regions of exonic sequence that are close to 

splice sites and they have been proposed as a potential driving force behind the 

observed reduced rates of synonymous and non-synonymous sites towards the 

ends of exons [Fairbrother et al., 2002; Parmley et al., 2006; Parmley et al., 

2007; Woolfe et al., 2010]. Therefore the presence of ESEs may cause an 

inflation of ω due to a reduction in Ds rather than an increase in Dn [Parmley et 

al., 2006]. Recently the net impact of ESEs has been conservatively estimated to 

result in a 4% reduction in Ds [Cáceres and Hurst, 2013]. While ESEs do present 

a potential source of false positives, many of the ESE datasets are reported to not 

reflect the known properties of ESEs (for example: enriched near exon 

boundaries, associated with weak splice sites, and enriched near longer introns) 

[Cáceres and Hurst, 2013]. In addition, it is currently unknown how ESEs (or the 

number of ESEs within a sequence) would alter the false-positive rate of the 

branch-site model. The presence of ESEs does warrant the exploration of 

proteins known to have ESEs to determine the effect the reported robustness of 

the branch-site model (modelA) [Gharib and Robinson-Rechavi, 2013; Yang and 

dos Reis, 2011] and determine how ESEs should be considered in future 

analyses. 
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1.4.4 In vitro validation of positive selection  

The traditional approach to site-directed mutagenesis mutates specific amino 

acids within modern day proteins. This simple approach is problematic for in-

vitro studies of positive selection because it does not account for epistatic 

interactions with other amino acids in the background, this can lead to erroneous 

genotype–phenotype correlations [Yokoyama et al., 2012; Yokoyama, 2013]. 

One possible solution is to first reconstruct the ancestral protein which will 

provide a more “realistic” background to place the sites of interest [Yokoyama 

and Radlwimmer, 2001; Shi and Yokoyama, 2003; Bridgham et al., 2006; Harms 

and Thornton, 2010]. By performing site-directed mutagenesis on these 

synthesized ancestral proteins it is possible to accurately characterize the 

relationship between positive selection and function [Yokoyama et al., 2013]. 

Model A has been previously used to identify positively selected residues in a 

mammal protein by reconstructing the ancestral protein and then performing 

rational mutagenesis in that background. It was shown that the positively 

selected residues elicited a direct functional impact [Loughran et al., 2012]. Such 

in vitro studies were not performed in this thesis as here we are focused on 

software design for large-scale analyses (Chapter 2) and mechanisms of protein 

evolution in vertebrates (Chapters 3 and 4).  
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1.5 Graph theory and molecular evolution 

1.5.1    Introduction to graph theory 

Graph theory is the subdiscipline of mathematics that studies the nature of 

graphs, which are mathematical representations of connections between objects 

(Figure 1.6). Since the initial application of graph theory by computational 

biologists, the discipline has primarily published research on protein interaction, 

sequence homology, cell signaling, and genetic association [Katoh and Katoh, 

2007; Goh et al., 2007; Bapteste et al., 2012; Franceschini et al., 2012]. One of 

the most significant discoveries revealed by biological graphs (often referred to 

as networks) was that despite their complex nature, they shared the common 

governing principles of scientific and technological graphs (e.g. the Internet and 

social networks) [Barabasi and Oltvai, 2004]. Of particular importance is that 

biological graphs are theorized to be scale-free rather than random graphs. In 

random graphs, the degree of each node does not significantly deviate from the 

average degree of the graph (Figure 1.7a). In contrast to the random model, the 

scale-free model is characterized by a power-law degree distribution, which is 

characterized by a small number of hub nodes that strongly influence the 

properties of the graph (Figure 1.7b). For example, a protein interaction graph of 

the TLR signaling pathway displays scale-free characteristics with MyD88 as a 

central hub node. The existence of hub nodes in scale-free graphs is founded on 

two concepts, growth and preferential attachment. Growth denotes that graphs 

grow overtime. Preferential attachment indicates that nodes with higher degree 

are more likely to gain new connections as they grow [Barabasi and Oltvai, 

2004].  
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Figure 1.6: Basic graph nomenclature and general types of graphs. 

 

 (a) Graphs are composed of objects and the connections between those objects, 

respectively termed nodes and edges. (b) The degree of a node is the total 

number of edges it has to other nodes (i.e. nearest neighbors). (c) Nodes may be 

referred to as hubs if they have a large degree in respect to other nodes (e.g. the 

Google in yellow). (d) The shortest path between two nodes is the smallest 

number of edges required to connect the two nodes (e.g. the shortest path from 

the UCSC genome browser (yellow) to Ensembl BioMart (orange) only requires 

4 edges if Google is bypassed. (e) Graphs may be directed and permit edges to 

have direction associated with them, or (f) undirected if edges have no direction 
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associated with them. (g) Graphs are bipartite if they incorporate relationships 

between two independent sets of data (e.g. use of the EBI [European 

Bioinformatics Institute] database connects DCU and TCD). (h) Relationships 

between members of the same independent set of a bipartite network may be 

determined by inferring a unipartite network projection. For example, upon 

removal of EBI, DCU and TCD are connected in a unipartite graph (unipartite 

projection of the bipartite graph). This connection is due to both the DCU and 

TCD nodes being previously associated (i.e. sharing edges) with EBI. 
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Figure 1.7: The properties of random and scale-free graphs 

 

 (a) The Erdös-Rényi model of a random graph is generated by selecting the 

number of nodes (N) and the probability (p) of a connection and constructs a 

graph with approximately 
𝑝𝑁(𝑁−1)

2
 randomly placed edges [Barabasi and Oltvai, 

2004]. The degree distribution (i.e. the distribution of node degree values) of 

random graphs is expected to follow a Poisson distribution, indicating that most 

nodes have approximately the same number of edges and do not significantly 

deviate from the average degree of the graph [Barabasi and Oltvai, 2004]. 

Therefore the nodes of random graphs are expected to uniform in respect to 

connectivity. (b) The scale-free model is characterized by a power-law degree 

distribution, whereby the probability that a node has a connection k is 

𝑃(𝑘) ~ 𝑘−γ
, where γ is a constant typically between 2 and 3 [Barabasi and 

Oltvai, 2004]. Graphs created from the power-law equation are characterized by 

a logarithmic decrease in probability of a node existing as the degree of the node 

increases. Therefore, in scale-free graphs, the majority of nodes exhibit small 

degree values whereas a small number of nodes exhibit high degree values (i.e. 

are hub nodes) [Barabasi and Oltvai, 2004]. Because of this, the nodes of scale-

free graphs are disproportionate in respect to connectivity. 

a b
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Duplication events have been proposed as one mechanism that creates 

preferential attachment in biological networks. As hub proteins naturally exhibit 

greater connections, they have a higher probability of being connected to a 

protein that undergoes duplication thereby creating an additional connection 

[Barabasi and Oltvai, 2004]. Evidence of this concept is illustrated by the 

duplication events that resulted in TLR7, TLR8, and TLR9 [Leulier and 

Lemaitre, 2008] each of which shares a connection with MyD88 in a protein 

interaction graph of the TLR signaling pathway. 

 

1.5.2 Characterizing Graphs 

1.5.2.1 Centrality 

Centrality is concerned with measuring the influence (or importance) of each 

node on the structure of the entire graph. While a plethora of measurements have 

been developed independently, the three most prominent and frequently used 

measurements of centrality are: degree, closeness, and betweenness [Freeman, 

1979].   

 

Degree centrality is the simplest measurement of centrality and is defined as the 

total number of edges (or adjacencies) for a given node [Freeman, 1979]. The 

degree of a given node can also be thought of as the initial importance of a given 

node in the graph. Applying this concept to infection networks, hub nodes 

unsurprisingly pose the greatest initial risk for spreading an infection [Borgatti, 

2005]. The best method for calculating degree centrality of a given node is by 

using an adjacency matrix of the graph (Figure 1.8), as shown in Equation 1.3: 
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Equation 1.3: Degree centrality. 

𝐶𝑖
𝐷𝐸𝐺 = ∑ 𝑎𝑖𝑗

𝑁

𝑗

 

           𝑎𝑖𝑗 ∶=  {
 1     𝑖𝑓 𝑖 = 𝑗     
0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

       

 

where 𝑖  is the given node, 𝑗 is the remaining nodes, 𝑁  is the total number of 

nodes in the graph, and 𝑎𝑖𝑗 is the adjacency matrix.  

 

The adjacency matrix is necessary to define if an edge exists between the current 

nodes [Opsahi et al., 2010; Borgatti and Everett 2006].  

 

Closeness centrality is the measurement that states how close a given node is to 

all other nodes within a graph. The closeness of a given node is the inversed sum 

of the shortest paths to each of the remaining nodes within the graph [Opsahi et 

al., 2010; Borgatti and Everett, 2006]. Therefore, nodes with high closeness 

exhibit a smaller overall distance to the remaining nodes in the graph. In an 

infection network, nodes exhibiting the highest closeness pose the greatest risk of 

being positioned for early infection [Borgatti, 2005]. Calculating closeness is 

achieved using a shortest path adjacent matrix of the graph (Figure 1.8), as 

shown in Equation 1.4: 

 

Equation 1.4: Closeness centrality. 

𝐶𝑖
𝐶𝐿𝑂 =  

𝑁 − 1

∑ 𝑑𝑖𝑗
𝑁−1
𝑗
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where 𝑖  is the given node, 𝑗 is the remaining nodes, 𝑁  is the total number of 

nodes in the graph, and 𝑑𝑖𝑗 is the shortest path adjacent matrix [Opsahi et al., 

2010]. Equation 1.4 is normalized by the total remaining nodes (i.e. 𝑁 − 1). 

 

Betweenness centrality is the measurement of centrality that defines the total 

number of times a given node belongs to the shortest path of two separate nodes 

[Freeman, 1979]. Nodes with high betweenness are regularly required for 

connection between nodes that are distantly connected in a graph. For example, 

shipping canals (e.g. Panama and Suez) typically exhibit high betweenness in 

global shipping networks as they are frequently visited en route to other ports 

[Kaluza et al., 2010]. Betweenness centrality is calculated using Equation 1.5: 

 

Equation 1.5: Betweenness centrality. 

𝐶𝑖
𝐵𝐸𝑇 = ∑ ∑

𝜎(𝑗, 𝑘|𝑖)

𝜎(𝑗, 𝑘)
𝑘𝑗

 

 

where 𝑖 is the given node, 𝜎(𝑗, 𝑘) is the number of shortest paths between the 

nodes 𝑗 and 𝑘, and 𝜎(𝑗, 𝑘|𝑖) is the number of those shortest paths that that require 

𝑖  [Borgatti and Everett, 2006]. Betweenness may also be normalized by 

calculating the maximum number of edges in a graph of 𝑁 nodes (
2

(𝑛−1)(𝑛−2)
), 

see Equation 1.6 for the normalized betweenness:  

 

Equation 1.6: Normalized betweenness centrality. 

𝐶𝑖
𝑁𝑜𝑟𝑚𝐵𝐸𝑇 =

2 (∑ ∑
𝜎(𝑗,𝑘|𝑖)

𝜎(𝑗,𝑘)𝑘𝑗 )

(𝑁 − 1)(𝑁 − 2)
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Figure 1.8: Calculating degree and closeness centrality using adjacency 

matrices. 

 

 (a) Degree centrality can be calculated by summing the number of edges of the 

node of interest in an adjacency matrix. For example, the degree centrality of the 

EBI (highlighted in yellow on the matrix) is four due to having edges with the 

DBJ, Google, NCBI, and ENSEMBL nodes. (b) Closeness centrality can be 
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calculated by dividing the total number of nodes in the graph minus the given 

node (i.e. N - 1) by the sum of the shortest paths to all remaining nodes in the 

graph. This can be accomplished using a shortest path adjacency matrix. For 

example, the shortest path between UCSC and EBI is two as two edges (shown 

in orange above) is the fewest number of edges required to connect the nodes. 

The closeness centrality of UCSC to all other nodes on the graph is 0.45 based 

on this calculation.    
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1.5.2.2 Assortativity 

Assortativity measures the correlation between degree and node connectivity. 

Depending on the observed correlation, graphs may be defined as showing 

assortative, neutral, or disassortative mixing patterns. Assortative mixing is a 

preference for any given node to attach to other nodes displaying a similar degree 

(e.g. high-degree nodes attached to high-degree nodes) [Newman, 2002; 

Newman, 2003]. Disassortative mixing is a preference of attachment to nodes of 

dissimilar degree (e.g. high-degree nodes with low-degree nodes) [Newman, 

2002; Newman, 2003]. Graphs rarely exhibit neutral mixing, where neither a 

preference for assortative nor disassortative mixing is detected [Newman, 2002; 

Newman, 2003]. A variety of social, technological, and biological graphs have 

undergone assortativity measurements. Biological (e.g. protein interaction and 

metabolic) and technological (e.g. internet and world-wide-web) networks are 

predominantly disassortative whereas social networks (e.g. co-authorship and 

actor collaborations) are predominantly assortative [Newman, 2003].  

 

Depending on the robustness of the assortativity analysis, methods of varying 

complexity have been devised to determine the mixing pattern of a graph. The 

simplest and often initial method is constructing a chart of each edge in a graph, 

whereby the axes of the chart are scaled by the degree of the nodes in an edge 

[Newman, 2003]. It should be noted that edge charts are only ideal for 

deciphering predominantly assortative or disassortative mixing (Figure 1.9a and 

b). Another method for investigating degree correlation is plotting average 

degree of nearest neighbors for a node in respect to the degree of the node in 

question [Pastor-Satorras and Vespignani, 2001]. The assortativity of the graph is 
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then estimated from the linear regression of the data - a positive slope indicating 

assortative, negative indicating disassortative, and a slope of zero indicating 

neutral (Figure 1.9c and d). Lastly, the assortativity coefficient may be calculated 

for a graph using a Pearson correlation to determine the linear correlation 

between degree connectivity [Newman, 2002]. The assortativity coefficient (𝑟) 

of a graph lies between -1 ≤ r ≤ 1 with positive indicating assortative mixing, 

negative indicating disassortative, and 0 indicating neutral [Newman, 2002]. To 

determine the statistical significance of the assortativity coefficient of a graph, a 

number of randomized graph with the same degree distribution are used to obtain 

a confidence interval of the assortativity coefficient [Foster et al., 2010]. 

 

1.5.2.3 Cliques and Communities 

Cliques are defined by graph theory as subgraphs in which every pair of nodes is 

connected by an edge (i.e. fully connected or complete) [Luce and Perry, 1949] 

(Figure 1.10a). Cliques are often defined by their size k (i.e. k-clique), where k is 

the number of nodes within the clique. Cliques may also be designated as 

maximal or maximum [Butenko and Wilhelm, 2006]. Maximal cliques are 

defined as cliques that cannot expand by incorporating neighboring nodes. A 

maximum clique is the clique of the greatest size in the graph. It should be noted 

that identifying either the maximum clique or all maximal cliques within a given 

graph is considered an NP-complete problem, problems in which a given 

solution may be verified in polynomial time but computing an exact solution 

cannot be completed in an efficient manner [Karp, 1972; Leeuwen, 1998]. 

Despite this innate difficultly, algorithms have been developed to approximate 

the maximum clique or all maximal cliques [Butenko and Wilhelm, 2006].  



52 

Figure 1.9: Methods for characterizing graph assortativity 

 

There are two common approaches to plot graph assortativity: (a and b) degree 

plots and (c and d) neighbor connectivity plots. Two datasets are shown for each 

plot approach: (a and c) an assortative dataset and (b and d) a disassortative 

dataset. (a and b) Degree plots are constructed by plotting the degree values (K) 

of each pair of nodes connected by an edge (one value for each axis). Comparing 

the mixing pattern generated by (a) the assortative dataset to (b) the 

disassortative dataset illustrates the difficulty of verifying the assortativity 

pattern from degree plots. Only highly assortative or disassortative networks will 

result in patterns that are not ambiguous. (c and d) Neighbor connectivity plots 

are constructed by plotting the average degree of nearest neighbors (<Knn>) of a 

given node with the degree (K). In comparison to degree plots, neighbor 

connectivity plots are able to the accurately identify both weakly assortative and 
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disassortative graphs. This is achieved by determining the linear regression of 

<Knn> on the y-axis to and K on the x-axis, with a positive slope indicating 

assortative mixing and a negative slope indicating disassortative mixing. For 

example, linear regression was able to correctly identify (c) the assortative 

dataset with a positive slope and (d) the disassortative dataset with a negative 

slope. 
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Communities in graphs are defined as subsets of nodes that exhibit dense internal 

connections but sparse connections elsewhere [Girvan and Newman, 2002] 

(Figure 1.10b). Various methods to distinguishing community structure within 

large graphs have been developed, however, these methods are limited to 

approximations as identifying the most dense subgraph in a graph is classified as 

an NP-hard problem [Rivera et al., 2010]. Similar to NP-complete problems, NP-

hard problems are unable to be solved in an efficient manner (i.e. polynomial 

time), however, NP-hard problems occasionally are unable to verify a given 

solution in polynomial time [Leeuwen, 1998]. Another limitation of many of 

these community detection methods is user-defined parameters, which if 

incorrectly specified may give unrealistic results. The NeMo algorithm was 

selected for this thesis due to the accuracy of the algorithm and the absence of 

user-defined parameters [Rivera et al., 2010]. NeMo detects communities by 

calculating a log odds score for observing a certain number of shared neighbors 

between nodes [Rivera et al., 2010].  
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Figure 1.10: Visual representation of cliques and communities detection. 

 

 (a) A clique is characterized by a subset of nodes in which each pair is 

connected by an edge. Both cliques shown (k=3 and k=4) are maximal cliques, 

as they cannot grow larger. The maximum clique of the graph is k=4 (shown in 

red). (b) A community is characterized by a subset of densely interconnected 

nodes that are sparsely connected elsewhere. 

 

a
k=3

k=4

Clique Detection

b

Community 

Detection
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1.5.2.4 Clustering 

Two coefficients of graph clustering were employed within this thesis: average 

clustering and transitivity. Clustering coefficients are typically used to measure 

the degree to which nodes cluster [Luce and Perry, 1949; Watts and Strogatz, 

1998]. 

 

Average clustering is the average of the local clustering coefficients of all nodes 

in a graph [Watts and Strogatz, 1998]. The local clustering coefficient of a given 

node is defined as the percentage of nearest neighbor (i.e. nodes sharing an edge 

with the given node) pairs that share an edge (Figure 1.11a). Local clustering 

coefficients range from 0 to 1; a coefficient of 0 indicates that the nearest 

neighbors of the given node share no connections whereas a coefficient of 1 

indicates the nearest neighbors are completely connected (along with the given 

node) and are a clique (Figure 1.11b). 

 

Transitivity is a global clustering coefficient based on the number of node triplets 

within a graph (Figure 1.12a). Node triplets are either defined as open or closed, 

an open triplet only possesses two edges and therefore is not fully connected 

whereas a closed triplet possesses three edges and is fully connected (i.e. a 

clique) (Figure 1.12b). Transitivity is measured by dividing the closed triplets 

(often defined as triangles) by the total number of node triplet (open or closed) in 

the graph (Figure 1.12c). Graph transitivity ranges from 0 to 1; a coefficient of 0 

indicates that all triplets are open whereas a coefficient of 1 indicates that all 

triplets are closed (i.e. cliques). 
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Figure 1.11: Visual representation of average clustering. 

 

(a) The local clustering coefficient of node A (shown in blue) is the percentage 

of edges shared by pairs of the nearest neighbors of node A, which are: B, C and 

D (shown in red). (b) The clustering coefficient (C) of four scenarios: C = 0 if 

there no edges between nearest neighbors, C = 1/3 if there is a single edge 

between nearest neighbors, C = 2/3 if there are two edges between nearest 

neighbors, and C = 1 if the nearest neighbors and the given node (node A) are a 

clique (i.e. fully connected). 

  



58 

Figure 1.12: Visual representation of transitivity. 

 

(a) The given network has two connected components: 1) nodes A, B, C, D, and 

E and 2) nodes X, Y, and Z. These components are then broken into triplets (i.e 

three nodes connected by at least two edges). Component 1 (A, B, C, D, and E) 

can be broken into three triplets: A-B-C, B-C-D, and C-D-E. Component 2 is 

only made of a single triplet: X, Y, Z. (b) Triplets are either open and contain 

only two edges (i.e. not fully connected) or closed – often termed triangles – and 

contain three edges (i.e. a clique). (c) The transitivity coefficient is calculated by 

dividing the number of closed triplets (triangles) over the number of all triplets 

(open and closed). 
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1.5.3 Graphs and introgressive descent 

Of the various biological relationships characterized by graphs, sequence-

similarity networks have recently become of particular interest to evolutionary 

biologists due to their ability to accurately represent the molecular signatures of 

non-linear or introgressive descent [Bapteste et al., 2013]. Sequence-similarity 

networks represent sequences as nodes and infer edges from homology data 

provided by programs such as BLAST, FASTA, or HMMER [Eddy, 1998; 

Altschul et al., 1990; Lipman and Pearson, 1985]. In a sequence-similarity 

network the homology connections of both monophyletic orthologs and 

introgressive descent are characterized by distinct edge patterns (Figure 1.13). 

Networks therefore enable the evolutionary impact of events such as domain 

sharing, mosaic genes, plasmids, and phages to be accurately evaluated in 

addition to the traditional tree-like molecular signatures [Bapteste et al., 2013].  

 

1.5.3.1 Tools for detecting introgressive events in networks 

Currently, there are a small number of tools that have been devised to identify 

introgressive events in large sequence-similarity networks. The recently released 

program MosaicFinder identifies composite genes – a gene generated by a fusion 

between two previously separate/distinct genes – by constructing a sequence-

similarity graph from BLAST alignment data [Jachiet et al., 2013]. MosaicFinder 

identifies composite genes by equating them to clique minimal separators 

[Jachiet et al., 2013]. A clique separator is a node that if removed will cause the 

graph to separate into connected components, that separator is minimum if no 

subset of the node also causes separation (i.e. an independent separator that does 

not require the node in question) [Berry et al., 2010], e.g. Human M in Figure 
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1.11. MosaicFinder subsequently confirms potential composites using the 

BLAST output data [Jachiet et al., 2013].  

 

1.5.4 Composite genes and functional discordance. 

Composite genes (introgressive events caused by fusion of two or more genes) 

have been reported to have unique species-specific functional properties 

[Thomson et al., 2000; Rogers et al., 2010; Molero et al., 2013]. These instances 

of non-vertical descent have resulted in the alterations to cellular localization 

(e.g. the human fusion Kua–UEV [Thomson et al., 2000]), distinct regulatory 

profiles (e.g. the Drosophila fusion Quetzalcoatl [Rogers et al., 2010]), and 

combine of distinct functions (e.g. Schizosaccharomyces pombe fusion gene hal3 

[Molero et al., 2013]). The ability of composite genes to elicit a variety of 

species-specific functions demonstrates the importance of characterizing non-

vertical events. Therefore the unique ability of graphs to accurately identify non-

vertical events provides an additional method to understand functional 

discordance between species.  
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Figure 1.13: Basic characteristics of introgressive descent in graphs 

 

Graphs are capable of displaying the unique characteristics of both monophyletic 

orthologs (vertical decent) and mosaics (non-vertical descent). Monophyletic 

orthologs typically manifest as cliques as they share coalescent orthologs e.g. 

Gene A (human, chimp, rat, and mouse orthologs of gene A) in blue & Gene B 

(human, chimp, rat, and mouse orthologs of gene B) in red. Graphs depict mosaic 

sequences, human Gene M (human mosaic of human A gene and human B gene), 

as sparsely connected nodes that typically connect unrelated groups with strong 

interconnectivity.  
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Chapter 2: Design and development of the bmeTools package 
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2.1 Chapter Aim 

Analysis of selective pressure heterogeneity requires a large number of steps 

from ortholog identification through to phylogeny reconstruction and likelihood 

ratio tests of the codon models applied. Therefore, the primary aim of chapter 

two was the development of a highly automated bioinformatic pipeline for 

selective pressure analysis. We called this pipeline the Bioinformatics and 

Molecular Evolution Tools package or simply bmeTools. The pipeline was 

designed to minimize potential biases of the user by including software that 

automates the selection of alignments and/or substitution models based on the 

sequence data rather than user assumptions. Therefore there were two major aims 

in the design of this pipeline (1) to simplify the analysis and (2) to reduce 

potential human error. These goals were achieved by designing a pipeline that 

included software for all steps from data acquisition to the analysis of the 

selective pressure results, the major steps involved were: (i) identification of 

gene families, (ii) alignment, (iii) phylogeny reconstruction, (iv) selective 

pressure analyses, and (v) Likelihood ratio test calculations to determine the 

codon based model of best fit for each gene alignment.  

 

The bmeTools package was then applied to the comparative genomic analysis of 

the newly sequenced Bowhead whale genome to test all functionality of the 

software.  
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2.2 Introduction 

Since the initial release of the human genome in 2001 [Lander et al., 2001], 

technological advances in both computing and sequencing have enabled the 

release of genome assemblies of approximately eighty different vertebrates 

[Flicek et al., 2014]. In this same period, researchers in the field of molecular 

evolution have developed techniques capable of evolutionary analyses on a 

genome-wide scale (for example [Kosiol et al., 2008]). One of the most widely 

used approaches to estimate the selective pressure variation across homologous 

protein-coding genes is to calculate the ratio of non-synonymous substitutions 

per non-synonymous site (Dn) over synonymous substitutions per synonymous 

site (Ds) (Dn/Ds or ω). An ω value >1 is the classical signature of molecular 

adaptation and until recently has been theorized to indicate potential functional 

divergence [Sawyer et al., 2005]. Recently there have been a number of 

independent studies that have successfully linked positive selection to protein 

functional divergence in a wide variety of species [Loughran et al., 2012; Moury 

and Simon, 2011; Levasseur et al., 2006; Sawyer et al., 2005]. Large-scale 

genomic studies of selective pressure variation across species have the potential 

therefore to identify e.g. the molecular underpinnings of species-specific traits 

[Kosiol et al., 2008]. The focus here was to design and implement a pipeline for 

large-scale selective pressure analysis, thereby positioning us to identifying 

protein functional shifts between mouse and human that underpin species-

specific immune responses [Mestas and Hughes, 2004].  

 

To date, a number of methods and software packages of varying complexity have 

been released with the purpose of calculating ω [Delport et al., 2010; Yang, 
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2007; Pond and Frost, 2005]. One of the most highly cited is codeML from the 

PAML software package [Yang, 2007]. CodeML uses codon-based models of 

evolution to assess selective pressures in protein coding sequence alignments at 

specific sites or restricted to sites in a predefined lineage [Yang and dos Reis, 

2011]. Operating codeML requires a complex file structure to accurately 

compute the parameters under multiple nested models, calculate the associated 

likelihood ratio tests (LRTs), and perform the statistics required to infer putative 

positive selection. Overcoming these complexities and properly interpreting the 

results for most evolutionary biologists is achieved by creating in-house software 

pipelines, which are rarely publically available. Lack of a flexible toolkit for 

upstream and downstream analyses has proven problematic for many organismal 

biologists working on next-generation sequence data and is an additional 

stumbling block for analysis and interpretation of their novel data. Attempts have 

been made to solve this problem by creating a simplified and automated pipeline 

for codeML analysis, but most have only focused on the codeML package itself 

(e.g. BioPerl PAML, Lazarus, etc.) [Hanson-Smith et al., 2010; Stajich et al., 

2002; Walsh, 2013]. These attempts have ignored the various steps required prior 

to and following codeML analysis, which would still present a problem to the 

non-programming biologist. Enabling codeML analysis for organismal biologists 

requires a broad functioning pipeline that streamlines and automates the many 

analyses prior to the codeML stage – such as data collection, homology 

searching, sequence alignment and phylogenetic reconstruction – as well as 

automating the various mathematical analyses required to interpret the output 

from codeML.  
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Here we present bmeTools, a software package for the automation of codeML 

and associated upstream and downstream analyses. bmeTools was primarily 

designed for users unfamiliar with the command-line environment of codeML by 

eliminating the majority of data manipulation requirements, enabling large-scale 

analyses, and automatically analyzing codeML output. But bmeTools is equally 

useful for the more experienced user as it provides a flexible system for a variety 

of analyses. bmeTools produces results that are easy to interpret and allow 

simplified assessment and identification of false positive results for 

inexperienced users. All bmeTools related functions can be found in Appendix 2. 

 

2.3 Aims for selective pressure analysis package 

1) Create a simple and comprehensive analysis package to enable researchers 

with limited bioinformatics experience to conduct large-scale molecular 

evolutionary analyses such as homology searching, alignment and phylogeny 

reconstruction as well as codeML analyses.  

2) Create a robust and flexible analysis package to enable high-throughput 

molecular evolutionary analyses for experienced researchers.  

 

2.4 Motivation behind the development of bmeTools 

2.4.1 Minimize human error 

A major motivation for the bmeTools package was minimizing potential sources 

of error in selective pressure analyses. Assessing selective pressure variation 

requires a complex pipeline composed of numerous independent analyses, 

including: ortholog identification, multiple sequence alignment, phylogenetic 

reconstruction, and assessment of codon-based models of evolution. The pipeline 
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requires multiple data manipulation steps to combine the output of each of these 

different techniques (e.g. parsing BLAST result files to identify homologs and 

assessment of the suitability of the phylogenetic tree for selective pressure 

analysis). For researchers with limited bioinformatics knowledge, manual data 

manipulation is prone to error, is potentially unstandardized, and is difficult to 

reproduce. bmeTools was designed to be an easily reproducible method to 

eliminate the need for manual data manipulation by creating functions that 

automatically complete the majority of data manipulation steps using a 

standardized approach. In addition, the use of bmeTools should minimize the 

requirements for inexperienced users to create their own programs, which may 

be vulnerable to programming errors.  

 

Another potential source of error that motivated the creation of the bmeTools 

package was the potential for inexperienced researchers to use aberrant pipelines 

for data analysis. While the procedures within each stage of a selective pressure 

analysis are independent, there are requirements on the order in which the phases 

are carried out. bmeTools was designed to mitigate these complications by 

creating a standardize pipeline of analyses with a specific ordering of phases in 

the process. In addition, the package encompasses multiple specialized pipelines 

to accurately assess selective pressure and reduce potential false positives (such 

as those caused by alignment error [Fletcher and Yang, 2010]). 

 

2.4.2 Increase user productivity 

Another motivation in the development of bmeTools was to increase user 

productivity by automating labour intensive tasks. Increasing productivity in this 
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respect can be achieved in two ways: i) automation by recursion – used to repeat 

an analysis on a number of files  (e.g. cleaning and translating a directory of 

genomes), and ii) automation of analysis methods – used to complete tasks that 

are normally demanding but invariable in execution (e.g. identifying homologs 

within BLAST output data). Automating these procedures within bmeTools has 

created an analysis package that is highly scalable (i.e. from a single gene to 

whole genomes) and that is suitable for the needs of all levels of expertise.   

 

2.5 Rationale behind the development of bmeTools 

2.5.1 Selection of python programming language 

The primary rationale for using the python programming language was the high 

productivity of the language [Prechelt, 2000]. The general syntax of Python 

requires fewer lines than traditional compiler languages (C and C++) while still 

maintaining a competitive runtime [Prechelt, 2000; Fourment and Gillings, 

2008]. Python also incorporates a number of built-in libraries that reduce 

development time by enabling previously designed functions to be easily 

incorporated into a program [van der Walt et al., 2011; Sukumaran and Holder, 

2010; Hunter, 2007]. 

 

‘Pythonic’ programs, or programs that are minimalistic and highly readable is a 

major goal [Fourment and Gillings, 2008]. This is beneficial within a PhD 

environment as any student proficient in python is able to easily understand 

‘Pythonic’ software. High readability also allows for software to be easily 

maintained and recycled within a laboratory years after the initial development. 
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Python programs are executable without compilation, and to run python 

programs, users are only required to install Python on their system.  

 

2.5.2 Separation of package into analysis phases 

The rationale behind separating the bmeTools package into analysis phases 1 - 5 

(Figure 2.1) was primarily to aid users in understanding the distinct procedures 

involved in selective pressure analysis and to provide more advanced users with 

a flexible and adaptable pipeline. All functions within a phase analyze the same 

input type (e.g. sequences, BLAST output, etc.), only specific functions can be 

combined and the overall output of a phase produces a new data type.  

 

2.6 General overview of bmeTools 

There are five separate analysis phases and two analysis pipelines in the 

bmeTools package, a basic pipeline for single gene orthologs (SGOs) and an 

advanced pipeline for both SGOs and multi-gene families (MGFs). The basic 

pipeline was designed to bypass the phylogenetic reconstruction techniques 

(phase 3) by inferring a gene phylogeny from a user defined species phylogeny. 

Usage of the basic pipeline is only recommended if the genes are confirmed 

SGOs. See Figure 2.1 for additional details on the pipeline. The output of each 

phase in the bmeTools package requires an analysis step that must be completed 

by the user with third-party software (Figure 2.1). These analyses are not 

automated by bmeTools for two reasons: i) these analyses are far too 

computationally intensive, and ii) the submission process for these programs may 

differ from user to user. In addition, software updates may create bugs within the 

pipeline.   
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Figure 2.1: Overview of the bmeTools package. 
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boxes indicate third-party programs. (a) Phase 1 (Section 2.6) is the data 

preparation phase and includes the functions: ensembl_clean/clean (Section 

2.6.1), translate (Section 2.6.2), create_database (Section 2.6.3), and 

gene_selection (Section 2.6.4). This phase ends with the requirements for 

sequence similarity searching. (b) Phase 2 (Section 2.7) is the similarity group 

creation phase and includes the following functions: similarity_groups (Section 

2.7.2), reciprocal_groups (Section 2.7.2) and best_reciprocal_groups (Section 

2.7.3). This phase results in the creation of requirements for multiple sequence 

alignment (MSA). (c) Phase three (Section 2.8) is the alignment assessment stage 

and includes both a basic pipeline (on the left) for MSA files that contain only 

single gene orthologous (SGOs) and an advanced pipeline (on the right) for 

unconfirmed MSA files. The phase includes the following functions: 

metal_compare (Section 2.8.1), protest_setup (Section 2.8.2), protest_reader 

(Section 2.8.2), and mrbayes_setup (Section 2.8.3). This phase results in either: i) 

a phylogenetic trees of the MSAs for the advanced pipeline or ii) selected MSAs 

for the basic pipeline. (d) Phase four (Section 2.9) is the selective pressure phase 

and continues the basic pipeline and advanced pipeline of the previous phase. 

The phase four basic pipeline includes: map_alignment (Section 2.9.1), 

infer_genetree (Section 2.9.2), create_branch (Section 2.9.6), and setup_codeml 

(Section 2.9.3). The phase four advanced pipeline includes: create_subtrees 

(Section 2.9.4), mrbayes_reader (Section 2.9.5), create_branch (Section 2.9.6), 

and setup_codeml (Section 2.9.3). This phase results in the input requirements 

for selective pressure analysis by codeML. (e) The final phase (Section 2.10) 

includes the function codeml_reader (Section 2.10.1) that analyzes the results of 

the codeML analysis.  
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2.7 Phase 1 – Data Preparation 

The data preparation phase was included in bmeTools for users with limited 

bioinformatics training. The phase prepares downloaded genomes for homology 

searching using the two bmeTools supported homology search tools: BLAST 

[Altschul et al., 1990] and HMMER [Eddy, 1998]. Many of the included 

functions were designed to operate in various circumstances by incorporating 

additional options. The phase also includes a number of supplementary functions 

not required for either pipeline shown in Figure 2.1 but rather to aid 

inexperienced users in homology searching.  

 

2.7.1 Functions: clean and ensembl_clean 

The basic ‘clean’ function was designed as a quality control (QC) filter for 

downloaded nucleotide sequences and/or genomes (Figure 2.2a). Each sequence 

is confirmed as protein coding by using a conditional statement to verify that the 

nucleotide sequence encompasses only complete codons (Figure 2.2b). This is an 

essential step to confirm gene annotation quality and permit the codon 

substitution models of codeML [Yang, 2007]. Only sequences that pass QC are 

retained (Figure 2.2c). 

 

The more advanced ‘ensembl_clean’ function was designed to identify the 

longest nucleotide (canonical) transcript within an Ensembl nucleotide genome 

that passed the above QC step. This is achieved by exploiting the pattern of 

ensembl sequence identifiers, which consistently begin with the gene identifier 

followed by the transcript identifier (Figure 2.2d). The longest transcript is then 

identified for each ensembl gene identifier and saved within the output file. 



 73 

Shorter transcripts along with the sequences that failed the QC filter are reported 

in a separate log file. 

 

2.7.1.1 Additional options of ‘clean’ and ‘ensembl_clean’ 

Both clean functions have a single enabled option (‘rm_internal_stop’) and two 

disabled options (‘label_filename’ and ‘infer_ensembl_species’) that may be 

manually configured by the user. The option ‘rm_internal_stop’ will remove 

sequences if they contain an internal stop codon (Figure 2.2g), those removed 

will be reported in the log file. It should be noted that while ‘rm_internal_stop’ is 

configurable, codeML does not permit nonsense mutations and the option should 

be enabled if the toolkit is being used for that purpose. The options 

‘label_filename’ and ‘infer_ensembl_species’ alter sequence headers (i.e. 

Ensembl gene and transcript identifiers) by adding an additional identifier at the 

beginning of the header: ‘infer_ensembl_species’ adds the common species name 

of the respective Ensembl identifier (Figure 2.2e) and ‘label_filename’ adds the 

filename (without the file extension) (Figure 2.2f). It should be noted that 

executing a labeling option is required for enabling bmeTools to automate the 

creation of gene trees and setup of the codeML branch-site models (for details 

see Section 2.9.6 for automation and Section 1.3.2.2 for branch-site models).  
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Figure 2.2: Overview of ‘clean’ and ‘ensembl_clean’ functions. 

 

FastA formatted files are shown as grey boxes and the associated white boxes 

show the filename. Data confirmation steps shown as readout beneath each 

example indicates if the results passed the check. The following QC checks are 
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illustrated here: (a) Cleaning an input file, (b) initiates with codon confirmation, 

(c) only sequences that pass are saved in the output. If the ‘ensembl_clean’ 

function is invoked, in addition to codon confirmation, each transcript of an 

ensembl gene undergoes (d) a longest transcript confirmation and only the 

longest transcript is saved in the output. Two options are available to append a 

prefix to sequence headers: (e) ‘infer_ensembl_species’ to append the Ensembl 

genome, or (f) ‘label_filename’ to append the input filename. Invoking (g) 

‘rm_internal_stop’ will remove genes that fail stop codon confirmation. 
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2.7.2 Function: translate 

The ‘translate’ function translates nucleotide sequences that passed previous QC 

(Figure 2.3a). The function operates by splitting the nucleotide sequence into 

codons and then translating them into amino acids (Figure 2.3b). Translation is a 

mandatory step to produce alignments permitted by the codon substitution 

models of codeML (see Section 2.9.1) [Yang, 2007]. The resulting protein 

sequences are then saved (Figure 2.3c). If non-coding sequences (incomplete 

codons or internal stop codons) were not removed prior to invoking the 

‘translate’ function, the function will produce a warning message. The warning 

reports that the function is designed to only translate protein-coding sequences 

and non-coding sequences will be removed from the pipeline and will be 

recorded within a separate log file.  

 

The ‘translate’ function incorporates a single unique option ‘cleave_terminal’ 

and the previously described options of the clean functions (Section 2.6.1.1). If 

not manually configured, ‘cleave_terminal’ is enabled by default and is designed 

to cleave the terminal stop codon of each sequence (Figure 2.3d). The function 

and default status of the remaining options are detailed in Section 2.6.1.1. 
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Figure 2.3: Overview of ‘translate’ function. 

 

FastA formatted files are shown as grey boxes and their filenames are given in 

white boxes. (a) Translating an input file using ‘translate’ initiates the translation 

procedure by separating the sequence (as in (b)) into each codon to determine the 

respective amino acid, (c) translated sequences are saved in the ‘Translated’ 

output file. (d) If the ‘cleave_terminal’ option is invoked, terminal stop codons 

will be removed from each applicable sequence. 
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2.7.3 Function: create_database 

The ‘create_database’ function was designed for inexperienced users to 

concatenate multiple genomes into the single database required for homology 

searching. The function operates by building the database a single sequence at a 

time (Figure 2.4a and b). The command-line version of BLAST requires 

additional commands to create a BLAST-formatted database. If the user enables 

the option ‘format_blast’ and BLAST is installed on the system the function will 

attempt to automate the additional steps required for producing a BLAST-ready 

database (Figure 2.4c). If ‘create_database’ is unable to create the BLAST-

formatted database, a warning message will be produced.  

 

2.7.4 Function: gene_selection 

If the user is only interested in a subset of genes, the ‘gene_selection’ function 

was designed to enable the user to search a database for gene identifiers specified 

in a separate file. The function operates by searching the sequence headers of the 

database for matches with the user specified gene identifiers (Figure 2.5a). The 

matching process only requires the user-specified identifiers to match a portion 

of the database sequence headers (Figure 2.5b). The function saves a single 

sequence file for each matched identifier (Figure 2.5c). If a user-specified 

identifier matches more than a single sequence header in the database, or indeed 

no sequence in the database, the function will produce a warning message.  
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Figure 2.4: Overview of ‘create_database’ function. 

 

FastA formatted files are shown as grey boxes and their filenames in white 

boxes. Invoking the ‘create_database’ function (a) combines numerous sequence 

files into (b) a single sequence database file. (c) Shows the ‘format_blast’ option 

that will generate the required database files for BLAST [Altschul et al., 1990]. 
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Figure 2.5: Overview of ‘gene_selection’ function. 

 

FastA formatted files are shown as grey boxes and their filenames in white 

boxes. Data confirmation steps indicate if the results passed the check. (a) The 

‘gene_selection’ function requires two files to operate: a database (Human.fasta) 

and a user specified gene identifiers file (genes.csv). (b) The function operates 

using header confirmation to identify sequences in the database that match to 

those specified by the user. (c) The output of the function is a single sequence 

file for each user specified genes found.  
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2.8 Phase 2: Homology searching 

The second phase of bmeTools is concerned with identifying homologous groups 

of sequences from either BLAST or HMMER searches. A homologous group of 

sequences is restricted to those that are found by a recursive connection function 

(Figure 2.6). Three types of homology are recognized by bmeTools: non-

reciprocal (unidirectional), reciprocal (bidirectional), and best-reciprocal. “Non-

reciprocal similarity” is characterized by sequence similarity that is only detected 

by one of the pair of sequences, commonly resultant of an E-value near the 

threshold. Non-reciprocal similarity is generally distantly related sequences. 

“Reciprocal similarity” is similarity identified by both sequences in the pair. 

Reciprocal similarity is typically closely related orthologs or paralogs. “Best-

reciprocal similarity” requires that the sequences pass two criteria: (i) they are 

sequences from different species, and (ii) in the pair-wise connection each 

sequence finds no other sequence in the respective species with a lower E-value. 

These requirements limit identification to orthologs (non-orthologs may be 

identified due to identical E-values).   

 

Each type of similarity connection is invoked using a separate function and will 

generate the families specific to that connection type. Each function is required 

to be linked to a protein sequence database (Section 2.6.3). The database is used 

to produce an output file of each similarity group containing the protein 

sequences of each member. Each protein sequence file then undergoes multiple 

sequence alignment using bmeTools currently supported methods (MUSCLE and 

PRANK). More experienced users may wish to use unsupported methods – the 

package is flexible enough to permit these changes. 
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Figure 2.6: Recursive homology group creation function 

 

Genes are represented as circles and sequence similarity as grey arrows. Each of 

the similarity functions of bmeTools (‘similarity_groups’, ‘reciprocal_groups’, 

and ‘best_reciprocal_groups’) uses the same method for group creation. (a) The 

function begins by reading BLAST/HMMER input and sequentially identifying 

pairwise connections (connection requirements differ for each function, see 

Sections 2.7.2 and 2.7.3 for details). The arrow numbers indicate the sequential 

position (i.e. order of identification) of the respective pairwise connection. (b) 

The program will then generate the respective similarity groups using these 

connections. For example, two groups are created in the example above, one 

group contains five members (highlighted in blue) and another has three 
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members (highlighted in red). (c) The program will eventually encounter a new 

pairwise connection related to two previously generated similarity groups. (d) 

Such events will join the previous similarity groups – shown highlighted in blue 

and red – and a union of the groups – highlighted in green – will be reported in 

the results. 
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2.8.1 Core options 

Each function within Phase 2 includes three threshold options (default = 

disabled). The three options enable the user to define threshold values for the E-

value, alignment length, and percentage identity of each homology connection. 

Enabled thresholds must be passed for a pair-wise homology connection to be 

used. If the user has not enabled an E-value threshold, each function is designed 

to only incorporate E-values < 1, otherwise warning message is printed.  

 

2.8.2 Functions: similarity_groups and reciprocal_groups 

The ‘similarity_groups’ and ‘reciprocal_groups’ functions both construct 

sequence homology groups using a similar approach. Both functions iteratively 

read a single line of input (BLAST or HMMER output) and record only the name 

of the query and subject if they pass enabled thresholds. Limiting the recorded 

data of the homology search to sequence names and their respective role (query 

or subject) results in reduced computational requirements, increased function 

speed, and permits the function to parse larger BLAST or HMMER input files. 

Both functions are able to recognize and record input that denotes reciprocal 

homology of a previously recorded entry. Once each function has completed 

processing the input, the pair-wise homologs are used to build families (Figure 

2.6). The ‘similarity_groups’ function allows both non-reciprocal and reciprocal 

connections within a sequence group (Figure 2.7a) whereas ‘reciprocal_groups’ 

is restricted to reciprocal connection within a sequence group (Figure 2.7b). 
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2.8.3 Function: best_reciprocal_groups 

The ‘best_reciprocal_groups’ function constructs sequence homology groups by 

iteratively reading each line of input and storing the record within a database in 

reference to the query sequence. Once the function has completed parsing the 

input, the database is used to determine the best-homolog for each query 

sequence. This is achieved by identifying which subject sequence has the best E-

value for each designated species. The designated best-hit for each query are then 

parsed to determine if the relationship is reciprocal (i.e. the subject sequence [as 

a query] identifies the query [as a subject]).  If a query and subject are identified 

as best-reciprocal homology hits, they are used to create families (Figure 2.7c). 
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Figure 2.7: Similarity groups created by functions 

 

The families created using (a) ‘similarity_groups’, (b) ‘reciprocal_groups’, and 

(c) ‘best_reciprocal_groups’. Shorter lines represent better E-values between two 
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sequences (circles). Lines with a single arrow represent non-reciprocal or 

unidirectional similarity connections. Lines with arrows on both sides represent 

reciprocal or bidirectional similarity connections. Sequence identifiers are shown 

for each sequence, different species are designated in this figure by lowercase 

letter at the beginning of each sequence identifier – h (human), m (mouse), r 

(rat), g (gorilla). (a) the ‘similarity_groups’ function connects all sequences as 

they are connected by either unidirectional or bidirectional similarity 

connections. (b) the ‘reciprocal_groups’ function creates two groups because the 

sequences mGY and rGY only exhibit a bidirectional similarity connection with 

each other.  (c) the ‘best_reciprocal_groups’ function creates a three groups as 

the gorilla GX2 (gGX2) exhibits a stronger (i.e. lower e-value) bidirectional 

similarity connection with human GX2 (hGX2)  than  human GX (hGX).  
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2.9 Phase 3: Alignment assessment and phylogeny reconstruction 

Phase 3 of bmeTools combines multiple third-party programs to automate the 

assessment of protein MSAs and enable simplified phylogenetic reconstruction. 

Alignment error is reported to cause high rates of false positives in a selective 

pressure analysis (Section 1.4.1). Therefore, bmeTools incorporates third-party 

programs for MSA comparison and scoring. A complete analysis of the MSAs 

from each method is recommended. The next step in this phase is the selection of 

the empirical model of evolution that best-fits each MSA [Foster, 2004; Keane et 

al., 2006]. Phase 3 concludes with an automated method for phylogenetic 

reconstruction using the selected MSA and model of evolution. As bmeTools 

was created with inexperienced users in mind, the functions of this phase are 

primarily designed to interface with selected third-party programs. However, 

each step of this phase has been made optional if the user has different 

preferences. 

 

2.9.1 Function: metal_compare 

The ‘metal_compare’ function is designed to fully automate MSA comparison 

and scoring. The function operates using the third-party program MetAl 

[Blackburne and Whelan, 2012] to compare two protein MSAs (as described in 

Section 1.4.1). If MetAl indicates that the two MSAs are dissimilar, the function 

employs the third-party program noRMD [Thompson et al., 2001] (as described 

in Section 1.4.1) to score each protein MSA using column-based similarity. The 

MSA with the highest noRMD (i.e. column-based similarity) score is then 

selected for subsequent analysis.  
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The ‘metal_compare’ function incorporates two additional options 

(‘metal_cutoff’ and ‘alignment_preference’) that may be configured by the user. 

The ‘metal_cutoff’ option assigns the numeric threshold determining MSA 

dissimilarity and by default is fixed at 5% (0.05). Alignment methods that yield 

MetAl scores lower than 0.05 are considered comparable, and in that case the 

‘alignment_preference’ option may be used to specify an alignment method 

preference. If ‘alignment_preference’ is not configured the function by default 

will select the MSA from the first alignment method.  

 

2.9.2 Functions: prottest_setup and prottest_reader 

The ‘prottest_setup’ function is designed to automate the process of identifying 

the best-fit model of amino acid replacement for a specified protein alignment 

using the third-party program ProtTest3 [Darriba et al., 2011]. The function is 

designed to test each amino acid replacement model in both the presence and 

absence of rate-heterogeneity (i.e. invariant sites, gamma categories). The 

‘prottest_reader’ function automates the process of reading the output of 

ProtTest3. The function creates two output files: best_models.csv and 

best_supported_models.csv. The best models file reports the best-fit model of 

amino acid replacement (± rate-heterogeneity) reported by ProtTest3 whereas the 

best supported file reports the best-fit model of amino acid replacement (± rate-

heterogeneity) supported by the third-party phylogenetic reconstruction program 

MrBayes [Ronquist and Huelsenbeck, 2003]. The two output files are given to 

enable the user to use different phylogenetic reconstruction software if desired.  
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2.9.3 Function:  mrbayes_setup 

The ‘mrbayes_setup’ function is designed to simplify the process of phylogenetic 

reconstruction using the third-party program MrBayes [Ronquist and 

Huelsenbeck, 2003]. The function begins by converting each protein MSA into 

the nexus format (Figure 2.8a). Each nexus-formatted MSA is then appended 

with a standardized MrBayes command block that defines the variables required 

for phylogenetic reconstruction (Figure 2.8b-d) (Section 1.3.2.3), they include 

the number of MCMC generations, the number of chains (trees) to be examined 

per generation, the temperature of the heated chain, the burn-in percentage, and 

the best-fit model of amino acid replacement (Section 2.8.2).  

 

The ‘mrbayes_setup’ function incorporates multiple options (‘mcmc_gen’, 

‘mcmc_chains’, ‘mcmc_temp’, ‘mcmc_burnin’) for permitting the user to alter 

variables within the MrBayes command block (Figure 2.8b-d). The ‘mcmc_gen’ 

option sets the number of generations for the phylogenetic reconstruction and 

should be increased from the default value of 200,000 if previous attempts failed 

to converge. The remaining options have the following recommended settings by 

default: ‘mcmc_chains’ i.e. the number of chains (default = 4), ‘mcmc_temp’ i.e. 

the temperature of the heated chain (default = 0.2), and ‘mcmc_burnin’, i.e. the 

burn-in percentage respectfully (default = 0.25).  
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Figure 2.8: Overview of ‘mrbayes_setup function. 

 

 (a) The NEXUS file is separated into two blocks, a sequence alignment block 

and a MrBayes command block. (b) The specific commands within the MrBayes 

command block are each assigned default values (in bold) based on recommend 

values and previous commands. (c) The commands lset and prset by default are 

assigned from the ‘best_supported_models.csv’ file generated in Section 2.8.2. 

(d) The remaining commands are assigned based on recommended values, but 

may configured by the user is desired. 
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2.10 Phase 4: Selection analysis 

Phase 4 of bmeTools automates selective pressure analysis using codeML from 

the PAML package [Yang, 2007]. Phase 4 is characterized by specific commands 

for the simple and advanced pipeline options (Figure 2.1). These pipeline-

associated functions are designed to process the specific input of each pipeline 

into a standardized file format for the common functions used by both pipelines. 

Following standardization, bmeTools automates the normally labor-intensive 

process of creating the necessary files and directory structures for codeML. 

Phase 4 also incorporates a single optional function ‘branch-label table’ (Section 

2.9.6) that may be invoked to enable the branch-site models of codeML.  

 

2.10.1 Function: map_alignments 

The ‘map_alignments’ function is designed to automate the conversion of protein 

MSAs to nucleotide MSAs. This process is mandatory - codon substitution 

models of codeML require nucleotide alignments. Protein-MSA guided 

nucleotide MSAs are generated rather than directly generating nucleotide MSAs 

because: i) each column within the protein MSA represents aligned codons and 

therefore avoids aligning incomplete codons or frame-shift mutations, and ii) 

protein MSAs represent a comparison of the phenotype-producing elements of 

protein-coding sequences (Figure 2.9a). The function begins by reading the 

protein MSA to map the non-gap position of each codon within the inferred 

nucleotide alignment (Figure 2.9b). The sequence of the mapped codons is then 

inferred using the nucleotide dataset (Figure 2.9c). If the mapping process results 

in no errors, the respective nucleotide MSA is created (Figure 2.9d). All errors 

detected by the function will be returned within a separate log file.  
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Figure 2.9: Overview of the ‘map_alignments’ function 

 

Sequence files are shown above as grey boxes indicating the sequences and 

white boxes indicating the filename. The ‘map_alignments’ function requires (a) 

two files to operate: a protein alignment (Alignment.fasta) and a nucleotide 

sequence database (Database.fasta). The function initiates by (b) mapping the 

gaps of the nucleotide alignment. (c) The nucleotide sequence of each alignment 

is then mapped using the sequence database to produce (d) the completely 

mapped output file. 
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2.10.2 Function: infer_genetree 

The ‘infer_genetree’ function is designed to automate the creation of the 

corresponding gene tree for a user-specified MSA. This is achieved by 

associating the taxa specified on a user-defined species tree with the headers 

created by ‘label_filename’ and ‘infer_ensembl_species’ (Section 2.6.1.1) within 

the MSA. The function operates by first creating a copy of the species tree with 

the species names (Figure 2.10a). The species names are then replaced with their 

associated MSA headers (Figure 2.10b). If any species names remain after the 

MSA associating phase, the taxa and their respective branches are removed from 

the tree to create the finished gene tree (Figure 2.10c). It should be noted that the 

‘infer_genetree’ function incorporates the non-standard python library dendropy 

[Sukumaran et al., 2010], details on this requirement can be found in Section 

2.11.2. 

 

The ‘infer_genetree’ function incorporates a single option ‘allow_paralogs’ that 

is disabled by default. Normally, ‘infer_genetree’ is designed to only allow a 

single MSA header to associate with a species name (Figure 2.10d). If multiple 

headers are found to associate with a species name, bmeTools will produce a 

warning message. The ‘allow_paralogs’ may be enabled in these situations if the 

association error(s) are caused by within-species paralogs, in this case a gene tree 

will be created with associated headers shown as within-species paralogs (Figure 

2.10e). 
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Figure 2.10: Overview of the ‘infer_genetree’ function. 

 

 (a) The ‘infer_genetree’ function requires two files to operate: a nucleotide 

alignment (Sequence_group_00.fasta) and a species phylogeny to determine the 

phylogenetic relationship of the sequences within the alignment in relation to the 

species phylogeny. (b) The function begins by replacing each species name 

within the phylogeny with their respective gene identifier (i.e. Human  

Human|TLR2) located in the nucleotide alignment. (c) The function then creates 

the gene phylogeny by removing the species that have not been replaced by a 

gene identifier. (d) If the nucleotide alignment specified by the user contains 

paralogs (Chicken TLR2A and TLR2B) bmeTools will produce an error 

message. (e) If the ‘allow_paralogs’ option is enabled the function will create a 

new branch to house the paralogs with the original species acting as an ancestral 

node.  
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2.10.3 Function: setup_codeml 

The ‘setup_codeml’ function is designed to simplify the creation of the complex 

codeML directory structure. This is achieved by incorporating previously written 

in-house software ‘GenerateCodemlWorkspace.pl’ written by Dr. Thomas Walsh 

to produce the codeML directory structure [Walsh, 2013]. The purpose of 

automating the program ‘GenerateCodemlWorkspace.pl’ via ‘setup_codeml’ was 

to simplify input requirements and enable high-throughput analyses. The 

function requires only a protein-inferred nucleotide MSA (Section 2.9.1) and an 

associated phylogenetic tree (Section 2.9.6) to construct the directory structure 

for the codeML site-specific models [Walsh, 2013]. However, if the user has 

created the optional branch-label table (Section 2.9.6) and enabled the 

‘label_table’ option the function will create the directory structure for the 

codeML branch-site models (Section 1.3.2.2 for description of models). 

Automating the branch-site models requires a specific directory for each species 

and/or lineage specified by the user in the optional branch-label table (Figure 

2.11a). Next the ‘setup_codeml’ function will produce a codeML “taskfile” that 

contains each codeML command line command to be computed (Figure 2.11b). 

Following creation of the taskfile, a separate log file reporting the branch-site 

models that cannot be tested (due to missing taxa) is produced.  
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Figure 2.11: Overview of the ‘setup_codeml’ function. 

 

 (a) Using the branch-label table (branch_table.txt) the function produces 

species-labelled (highlighted) phylogenies for each species or ancestral node 

specified and then automates the production of the codeML directory for the 

branch-site models. (b) The function terminates by producing a codeML taskfile 

with all the codeML command line commands required to complete the job. 
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2.10.4 Function: create_subtrees 

The ‘create_subtrees’ function is designed for high throughput tree pruning. This 

optional step is often required to prune very large multigene family phylogenies 

into smaller phylogenies. User phylogenies may require pruning due to 

feasibility concerns as subfamilies increase data manageability and decrease 

computational requirements. Users may require this option for pruning out SGOs 

for selection analyses that are focused on single genes. The function operates by 

displaying the current phylogeny with a set of pruning commands/options. The 

user is then prompted to select of the four commands: ‘select subtree’, ‘remove 

subtree’, ‘remove leaf’, or ‘keep original’. If either ‘select subtree’ or ‘remove 

subtree’ is selected, the user is prompted to select a single node (numbered on the 

displayed phylogeny) for selection or removal respectively (Figure 2.12a/b). If 

‘remove leaf’ is selected, the user is prompted to select a leaf label (sequence 

header) for removal (Figure 2.12c). If ‘keep original’ is selected the tree 

manipulation step is skipped. The ‘create_subtrees’ function will produce a 

protein sequence file of the remaining nodes in the phylogeny (Figure 2.12d). 

The protein sequence file is then required to undergo re-alignment and it 

proceeds from Phase 3 through the remainder of the pipeline (Figure 2.1). The 

‘create_subtrees’ function will also produce a separate log file of the original 

phylogeny, the selected command, and the resulting phylogeny. The 

‘create_subtrees’ function incorporates the non-standard python library dendropy 

[Sukumaran et al., 2010] (Section 2.11.2). 
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Figure 2.12: Overview of the ‘create_subtrees’ function. 

 

 (a-c) shows an example of the node-labelled phylogeny displayed for the user is 

shown on the left for each option. (a) If the user specifies the ‘select subtree’ 

option along with a node, the function will create the subtree by separating the 

specified node from its next common ancestor node and returning the requested 

subtree. (b) The ‘remove subtree’ options functions identically to ‘select subtree’ 

except that requested subtree is discarded and rather the subtree containing the 

common ancestor node is returned. (c) The ‘remove leaf’ option will remove the 

specified taxa from the phylogeny. (d) The function terminates by creating 

sequence files for each pruned phylogeny. 
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2.10.5 Function: mrbayes_reader 

If phylogenetic reconstruction has been performed by MrBayes then the 

‘mrbayes_reader’ function is designed to replace ‘infer_genetree’ [Ronquist and 

Huelsenbeck, 2003]. The function operates by converting the nexus-formatted 

phylogeny into the newick format supported by bmeTools and codeML. If the 

function is unable to locate the original amino acid fasta-formatted MSA 

required by ‘mrbayes_setup’ (Section 2.8.3) the nexus-formatted MSA will be 

converted and placed with the newick-formatted phylogeny. It should be noted 

that ‘mrbayes_reader’ is unable to check phylogenies for convergence. Instead 

users are directed to confirm convergence using the third party program Tracer 

[Rambaut et al., 2014].  

 

2.10.6 Function: create_branch 

The ‘create_branch’ function is designed to simplify the creation of the branch-

label table required for the optional branch-site models of codeML (Section 

1.3.2.2). The branch-label table (previously shown in Figure 2.11a) indicates the 

lineages or ‘branches’ that will undergo lineage-specific selection analysis, i.e. 

designation of the “foreground lineages” for codeML. Each line indicates one 

lineage, either a species or an ancestral node. Ancestral nodes (uniquely named 

by user [i.e. Eglires]) are followed by a list of descendant (extant) species (Figure 

2.11a). The function operates by displaying a user-specified species phylogeny 

and promoting the user to select the species and/or ancestral nodes (numbered on 

the displayed phylogeny) of interest for the study (identical display methodology 

as described in Section 2.9.4 - see phylogeny in Figure 2.12a for example). When 

the user has finished their selection, the function will automatically produce the 
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branch-label table. It should be noted that this function is completely optional as 

the branch-label table may be easily created by hand. The ‘create_branch’ 

function incorporates the non-standard python library dendropy [Sukumaran et 

al., 2010] (Section 2.11.2). 

 

2.11 Phase 5: Selection analysis assessment 

2.11.1 Function: codeml_reader 

The ‘codeml_reader’ function is designed to parse the complex codeML 

directory structure and create simplified results for inexperienced users. This is 

achieved by incorporating in-house software ‘CreateSummaryReport.pl’ written 

by Dr. Thomas Walsh [Walsh, 2013] to produce the majority of the codeML 

results. In addition to automating ‘CreateSummaryReport.pl’, ‘codeml_reader’ 

produces supplementary output files that are designed for detection of false 

positives. If the user specifies a branch-label table (Section 2.9.6) 

‘codeml_reader’ will produce codeML MSAs, these MSAs are characterized by 

the addition of i) the putative positively selected sites, and ii) the codons/amino 

acids that are positively selected in the respective lineage/s (Figure 2.13).  

 

2.12 General requirements of the software package 

2.12.1 Core functions 

Each phase of bmeTools incorporates multiple core functions that are designed to 

minimize code redundancies. Primary core functions include: a log file creator, a 

sequence reader, a sequence writer, general sequence tools (translator, labeller, 

stop-codon detector, and length calculator), homology connection reader, 

homology group creator, general output creators, and sequence/alignment 
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verifiers. Each core function is designed with high flexibility to allow general 

use. 

 

2.12.2 Software dependencies 

The bmeTools software package is designed to minimize potential software 

dependencies, as additional software requirements may be difficult for 

inexperienced users to install on their systems. Currently, the non-standard 

python library dendropy [Sukumaran et al., 2010] is the only dependency that 

remains in bmeTools. Dendropy incorporates numerous functions for storing 

phylogenetic information and simplifying tree-based analyses. Removal of 

dendropy would require substantial development time and the design of 

numerous core functions. However, installation of dendropy is simple and only 

requires a single command to be invoked by the user. If the user invokes a 

dendropy-dependent function, bmeTools is designed to print a warning message 

detailing the installation process of dendropy if the software is not installed. 

 

2.13 Case study 

2.13.1 Project overview 

The feasibility of the bmeTools software package for simplifying large-scale 

selective pressure analysis was explored in our international collaboration on the 

bowhead whale genome project. From a biological perspective this investigation 

was of particular interest given the unusually long lifespan of bowhead whales 

and their apparent lack of cancer [George et al., 1999; Caulin and Maley, 2011; 

de Magalhaes, 2013]. We compared the bowhead, minke, and orca to 20 other 

placental mammals, with marsupial, and monotreme outgroups (Figure 2.13). 
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This unique opportunity to explore cetacean molecular evolution was made 

possible by the recent publication of the minke whale genome [Yim et al., 2013], 

our collaboration with the bowhead and orca whale genome-sequencing efforts 

and our bmeTools software package.  

 

2.13.2 Analysis Pipeline 

Here we applied the simple SGO option in the bmeTools package (Figure 2.1), 

this was mostly due to time constraints imposed by the consortium. A genome-

wide analysis of the protein coding elements of all genomes (as per Sections 

2.6.1 – 2.6.3) was performed by carrying out an all-vs-all BLASTp with an E-

value cutoff of 10
-7

.  BLASTp results were then examined and 866 reciprocal 

SGOs were identified (as per Sections 2.7.2). Protein MSAs were created using 

PRANK to account for the high levels of indels observed in the bowhead and 

minke genomes. CodeML analysis focused on the branch-site models of each 

extant cetacean lineage and the two ancestral lineages (i.e. the most recent 

common ancestor (MRCA) of all cetaceans and the MRCA of baleen whales) 

using phylogenies inferred from a mammal species tree and protein-inferred 

nucleotide MSAs (Sections 2.9.1 - 2.9.3 and 2.9.6). CodeML results were 

subsequently verified for potential alignment-based false positives using 

codeML-enhanced alignments (Section 2.10.1). 

 

2.13.3 Overview of Original Findings 

Examining the three extant cetacean genomes for the number of SGOs exhibiting 

lineage-specific positive selection resulted in the following: bowhead (112 

SGOs), minke (112 SGOs), and orca (28 SGOs). It should be noted that data 
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quality varied greatly across the cetacean genomes and may contribute to 

elevated values observed in the baleen whales (bowhead and minke). A 

functional survey by the genome-sequencing queried the putative cases of 

positive selection in the bowhead whale for previous published links to longevity 

and resulted in the following genes of interest: COQ6 (coenzyme Q6 

monooxygenase), ERCC1 (Excision repair cross-complementation group 1), 

TP53TG5 (TP53 [tumor protein p53] target 5), TTI1 (TELO2 [telomere 

maintenance 2] interacting protein 1), and XRCC2 (X-ray repair complementing 

defective repair in Chinese hamster cells 2). 

 

2.13.4 Data Quality Concerns and Importance of filters 

In-depth analysis of the bowhead sequences of COQ6, ERCC1, TP53TG5, TTI1, 

and XRCC2 by the genome-sequencing effort identified evidence of potential 

annotation error. The genes of interest were subsequently re-annotated to 

eliminate the possibility of false positives (Section 1.4). Repeating the codeML 

analysis with the re-annotated bowhead COQ6, ERCC1, TP53TG5, TTI1, and 

XRCC2 resulted in no evidence of lineage-specific positive selection.  

 

To minimize other potential false positives in the selection results, the MSAs of 

the 866 SGOs underwent strict data-quality filtering. The first imposed filter 

prohibited the presence of gaps in the MSA if created by unique insertions in 

either Bowhead or Minke sequences. The second imposed filter required 

unaligned Bowhead or Minke sequences to be at least half the length of their 

respective MSA. These two filters reduced the number of testable SGOs to 319. 

Examining the refined SGOs for evidence of lineage-specific positive selection 
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resulted in the following: bowhead (14 SGOs), minke (10 SGOs), and orca (6 

SGOs), (Figure 2.13 and Table 2.1). 

 

Both the re-annotation effort that led to the identification of the false positives in 

the bowhead lineage (i.e. COQ6, ERCC1, TP53TG5, TTI1, and XRCC2) and the 

substantial impact of data-quality filtering highlight the importance of genome 

quality and annotation in selective pressure analyses. We can only reliably 

predict selective pressure variation if each protein coding sequence is accurate. 

For this reason, high-quality genomes with high quality annotations are required 

for an accurate inference of positive selection and are strongly recommended for 

use with this pipeline.  

 

2.13.5 Feasibility of bmeTools 

Employing bmeTools in the analysis of the bowhead whale resulted in a 

streamlined and simple analysis that could be completed within the imposed time 

constraints. Data manipulation techniques that would have typically been time 

consuming and error-prone in an analysis of this size have been completely 

automated. For example, the inference of nearly one thousand gene phylogenies 

from a single species phylogeny was completed in less than five minutes without 

error. In addition, the interpretation of the codeML results and identification of a 

great number of alignment-based false positives (Section 1.4.1) was greatly 

simplified by employing the bmeTools-produced alignments. The inability of 

bmeTools to directly detect the annotation errors of the bowhead and minke 

whale indicate that the pipeline is only suitable for users experienced in 

identifying high-quality genomes with high quality annotations. For this reason, 
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bmeTools will remain a software package for internal laboratory (and trusted 

collaborators) use for the time being. Updates to bmeTools will be made in the 

near future to verify the suitability of the data for analysis to remedy this 

shortcoming (in addition to other improvements).  
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Figure 2.13: Phylogeny of mammals used in comparison of selective 

pressure variation. 

 

The figure shows the mammals used in the selective pressure analysis conducted 

with bmeTools. The number of candidate genes under positive selection on each 

extant species – bowhead (blue), minke (red), and orca (dark green) – and 

ancestral lineages – baleen whales (i.e. bowhead and minke [in yellow]) and – 

cetaceans (i.e. orca, bowhead, and minke [in light green]) is indicated within the 

color boxes. 
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Table 2.1: Proteins with evidence of lineage-specific positive selection 

 

Lineage Protein Position of Positively Selected Residues

Bowhead BAMBI BEB: 204

Bowhead C19orf38 BEB: 88

Bowhead CCDC181 BEB: 65, 89, 91, and 265

Bowhead TBC1D19 BEB: 469

Bowhead ZNF646 BEB: 211, 608, 702, 796, and 829

Bowhead ARL6IP6 BEB: 18

Bowhead DMP1 BEB: 322 and 386

Bowhead IFI30 BEB: 316

Bowhead GAPT BEB: 197**, 228**, 265**, 269**, 271*, a nd 278**

Bowhead SPP2 BEB: 15

Bowhead C22orf15 BEB: 46* and 75

Bowhead ZGLP1 BEB: 333**

Bowhead LIME1 BEB: 148 and 330

Bowhead Gm15440 BEB: 117

Cetacea SRRD BEB: 176 and 289

Cetacea TMEM119 BEB: 102 and 340**

Cetacea C12orf68 BEB: 124 and 150**

Minke NDC80 BEB: 193**

Minke CRHBP BEB: 331**

Minke MLEC BEB: 15** and 115*

Minke AKAP12 BEB: 160, 217, 250, 268, 295, 592, 609, 627, 821, 1065, 1563, a nd 1923**

Minke DMP1 BEB: 24, 84, 145, 153**, 184, 214, 241, 261, 279, 292, 322, 342**, a nd 360

Minke PIGV BEB: 232

Minke GPLD1 BEB: 690, 831**, and 865

Minke C3orf49 BEB: 237

Minke MN1 BEB: 162, 1089**, and 1152

Minke LIME1 BEB: 140, 257**, and 326

Mysticeti BAMBI BEB: 24**, 127**, and 181

Mysticeti ESPL1 BEB: 166, 1054**, 1081, 1220, 1748, a nd 2005

Mysticeti SRRD BEB: 148, 316, and 319
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Table 2.1: Proteins with evidence of lineage-specific positive selection 

 

The table shows the proteins identified under lineage-specific positive selection. 

The proteins are sorted into the respective lineage in which the positive selection 

was observed. Each protein is reported with the positions of the residues 

identified as positively selected and the empirical Bayes model used – BEB or 

NEB – to calculate the posterior probability of the residues being under positive 

selection (see Section 1.3.2.2 for details). The probability of the residues being 

under selection is also reported at three cutoffs: residues with a probability only 

Lineage Protein Position of Positively Selected Residues

Mysticeti IGSF6 BEB: 65**, 69, 106, and 207

Mysticeti ODF1 BEB: 41**, 64, 76**, and 99**

Mysticeti C4orf29 BEB: 35, 56, 317, 342, 344, a nd 375

Mysticeti DNALI1 BEB: 95 and 355

Mysticeti BBS12 NEB: 535*

Mysticeti TC2N BEB: 109, 154, 301, and 399

Mysticeti C17orf59 BEB: 57** and 243

Mysticeti PPP1R15A BEB: 75, 113, 624*, and 691

Mysticeti PODXL BEB: 774 and 779

Mysticeti BRICD5 BEB: 19**

Mysticeti CXCL17 BEB: 17, 21**, 28, 45, 110, 113, and 124

Mysticeti C22orf15 BEB: 36

Mysticeti HPS6 BEB: 14, 152**, 187, 248, 420, 557**, a nd 574

Mysticeti C9orf131 BEB: 251**, 584, 713, 1028, 1048, a nd 1053

Mysticeti MBLAC1 BEB: 22, 23**, 218, and 255**

Orca AP5M1 BEB: 15, 93**, 130, 406, 439, 532**, 533**, 534**, a nd 535**

Orca IL33 BEB: 37, 45**, 77, 173, a nd 217

Orca GAPT BEB: 173, 192**, 193, 195, 225, 271, 272*, a nd 276**

Orca APOA2 BEB: 33**, 64, and 94

Orca G0S2 BEB: 22**, 54, 56**, and 101

Orca LIME1 BEB: 205, 252, 256, 274, 276, a nd 290
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greater than 0.50 are unmarked, residues with a probability only greater than 0.90 

are marked with a single asterisk (*), and residues with a probability greater than 

0.95 are marked with a double asterisk (**). See table of abbreviations for the 

name of each protein shown above. 
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Chapter 3: Evolutionary immunology: exploring the potential of identifying 

species-specific innate immune responses from sequence data 
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3.1 Chapter Aim 

Human and mouse last shared a common ancestor approximately 100 million 

years ago. Therefore their systems such as the innate immune system have 

approximately 200 million years of independent evolution. The primary aim of 

chapter three was to assess what level of lineage specific positive selection had 

occurred in the human and mouse lineages since they diverged and whether these 

positively selected residues were fixed or variable in modern populations. Then 

we wished to determine if positive selection had occurred whether it was 

confined to specific pathways or interacting proteins. And finally, with the 

growing body of literature on human mouse innate immune discordance we 

wished to determine if positive selection identified in the innate immune system 

correlated with known phenotypic discordance in immune response between 

human and mouse.  

 

To achieve these goals, the bmeTools package developed in chapter two was 

applied as we carried out a genome-wide lineage-specific selective pressure 

analysis in the human, mouse, and multiple ancestral lineages of the 

Euarchontoglires clade (primate, rodent, and murinae).  
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3.2 Introduction 

The study of innate immunology relies predominately upon the mouse as a 

model organism. However, it is becoming increasingly evident from the 

literature that there are inconsistencies between human and our model organisms 

in terms of response to pathogenic infection [Mestas and Hughes, 2004]. For 

example, a key receptor in innate immunity is toll-like receptor (TLR) 4, upon 

detecting gram-negative bacteria TLR4 triggers the activation of factors 

(MYD88, TIRAP, and TRAF6) that regulate immune and inflammatory 

responses [Kawai and Akira, 2010]. Coding sequence mutations in TLR4 have 

been shown to produce nickel sensitivity in human but not mouse [Schmidt et 

al., 2010]. This unpredictability of immune response between human and our 

model organisms is particularly problematic in clinical trials as outlined in 

Section 1.1.4 [Stebbings et al., 2007]. Discordance is a significant issue 

contributing to the unpredictability of modelling human disease [Mestas and 

Hughes, 2004]. The completion of a large variety of vertebrate genomes, 

including the recently completed 1000 Human and 17 Mouse genome projects 

[Keane et al., 2011; Abecasis et al., 2012], and the increased quality attained for 

the Neandertal [Green et al., 2010], provide us with a unique opportunity to 

approach the problem of discordance in immune response from an evolutionary 

perspective, permitting us to address the molecular underpinnings of known 

discordance cases along with predicting novel discordance candidates at the 

molecular level. 

 

The “Red Queen hypothesis” describes the evolutionary arms race between host 

and pathogen [Van Valen, 1973]. This dynamic results in signatures of positive 
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selection (synonymous with protein functional shift) detectable at the molecular 

level in immune related genes [Sawyer et al., 2005]. It is not surprising therefore 

that genes of the immune system tend to have the highest levels of positive 

selection in comparison to other functional categories of genes [Kosiol et al., 

2008]. Indeed it is known that this can also occur at the species-specific level 

[Sawyer et al., 2005]. The relationship between positive selection and protein 

functional shift has also recently been elucidated using rational mutagenesis of 

positively selected residues in a human enzyme called myeloperoxidase (MPO) 

that is produced by neutrophils [Loughran et al., 2012]. MPO exhibits a novel 

chlorination activity among the mammalian heme peroxidase family [Loughran 

et al., 2012]. Three positively selected residues (N496, Y500, and L504) were 

attributed to conferring chlorination activity as mutating them to their respective 

ancestral peroxidase residues abolished novel function [Loughran et al., 2012]. 

These and other recent studies have shown a clear relationship between positive 

selection and protein functional shift [Farhat et al., 2013; Moury and Simon, 

2011]. In this chapter we set out to determine if orthologous innate immune 

proteins function in precisely the same way across different species using an in 

silico approach. We also set out to predict which innate immune proteins are 

most likely to have altered function in a given species thereby contributing to 

observed discordance in response to infection.  

 

Here we have used patterns of conservation and variation to map regions of 

possible discordance in the innate immune system of human, mouse, and their 

closest MRCAs. We have combined comparative genomics, molecular evolution, 

structural modeling and population data analyses to identify both human and 
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mouse-specific adaptive evolutionary events. Not only do our results correlate 

with known discordance cases from the literature - thereby showing the value of 

our approach - but these findings also provide us with a platform for the 

prediction of novel molecular and phenotypic discordance of relevance to 

modeling of human disease. 

 

3.3 Materials and Methods 

3.3.1 Generating the vertebrate innate immune gene dataset 

The full list of documented innate immune genes was downloaded from 

InnateDB [Lynn et al., 2008] (Appendix 3.1). The InnateDB database is 

manually curated and requires experimental evidence for all entries [Lynn et al., 

2008]. The InnateDB dataset was filtered for documented evidence of a human 

ortholog, which restricted our dataset to 725 Ensembl gene identifiers. This filter 

was imposed as our primary interest is in discordance between human and mouse 

innate immune response and due to InnateDB housing data for human, mouse, 

and bovine. 

 

The 21 high coverage (>6x) vertebrate genomes were downloaded from Ensembl 

BioMart (Ensembl Gene 60) [Kinsella et al., 2011] (Table 3.1). The longest 

transcripts for all protein coding genes were taken for each genome [Kinsella et 

al., 2011]. The downloaded genomes underwent a simple quality check using the 

‘clean’ function within the program ‘FastaTools.py’  (Appendix 3.2 – function in 

bmeTools package [Section 2.6.1]). This function tested the integrity of the 

protein coding sequences by ensuring they had complete codons. Transcripts 

then underwent translation into proteins using the ‘translate’ function from the 
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program ‘FastaTools.py’ (Appendix 3.2 - function in bmeTools package [Section 

2.6.2]).  

 

Homologs for the 725 innate immune genes were identified from the 21 

vertebrate genomes using standalone BLASTp (v2.2.23+) [Altschul et al., 1990]. 

The query sequences required by BLAST were provided by the ‘GeneSelect’ 

function within ‘FastaTools.py’ (Appendix 3.2 - function in bmeTools package 

[Section 2.6.4]). The database to query was created using the ‘database’ function 

within ‘FastaTools.py’ (Appendix 3.2 - function in bmeTools package [Section 

2.6.3]). BLASTp was run with an E-value threshold of 1.0e-10.  

 

Initial clustering of the BLAST results using MCL produced large multigene 

families containing more than one innate immune gene each. Therefore, a 

conservative E-value threshold of 1.0e-100 was imposed along with an alignment 

length threshold of approximately 85-87%. These thresholds were applied as 

they maximized the number of gene families that contained only orthologous 

genes while accounting for the possible presence of species-specific gene 

duplications, which are known to affect selective pressure variation [Zhang, 

2003]. A best reciprocal BLAST approach was deemed unsuitable, as the 

approach is unable to account for gene duplications. Gene families were created 

with these thresholds using the ‘brc’ or Reciprocal Check function in 

‘BLASTer.py’ (Appendix 3.2 - function in bmeTools package [Section 2.7.2]). 

Gene families that contained six or more members were retained for further 

analysis.  
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Table 3.1: Details on the vertebrate genomes used in this study. 

 

The phylogenetic relationship, common name, genome assembly, fold coverage, 

and contig N50 are given for each the 21 vertebrate genomes used in this chapter. 

All details given were gathered from Ensembl [Kinsella et al., 2011], NCBI 

Assembly, and respective genome publications. 

 

 

 

 

 

Species Assembly Coverage Contig N50

Human GRCh37 High 38Mb

Chimpanzee CHIMP2.1.4 6 50kb

Gorilla gorGor3.1 2.1 & 35 11kb

Orangutan PPYG2 6 15kb

Marmoset culJac3 6 29kb

Mouse NCBIM37 High 32Mb

Rat RGSC3.4 6 52kb

Guinea Pig cavPor3 6.79 80kb

Rabbit OryCun2 7 64kb

Dog CanFam3.1 7.6 267kb

Horse EquCab2 6.79 112kb

Cow Btau_4.0 7 78kb

Pig Sscrofa9 24 69kb

Elephant loxAfr3 7 69kb

Opossum MonDom5 7.33 108kb

Platypus OANA5 6 11kb

Chicken WASHUC2 7.1 45kb

Zebrafinch taeGut3.2.4 6 39kb

Xenopus JGI41 7.6 22kb

Fugu FUGU4.0 8.5 52kb

Zebrafish Zv9 7.5 1Mb
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3.3.2 Selection of multiple sequence alignment method 

MSAs were created for each gene family using two distinct alignment methods 

under standard conditions: MUSCLE (v3.8.31) [Edgar, 2004] and PRANK 

(v100802) [Loytynoja and Goldman, 2005]. MUSCLE was selected due to the 

reported accuracy and efficiency of the algorithm [Edgar, 2004]. PRANK was 

selected due to the unique ability of the algorithm to distinguish insertions from 

deletions within an alignment [Loytynoja and Goldman, 2005]. Excluding the +F 

option for PRANK designates that the algorithm should not align inferred 

insertions, but the algorithm still correctly distinguishes insertions from deletions 

but inferred insertions may be aligned [Loytynoja and Goldman, 2008]. Reports 

indicate that including the +F option improves sequence alignments and 

downstream analyses in comparison to traditional alignment methods [Loytynoja 

and Goldman, 2008]. However, the +F option is only recommend if the 

phylogeny can be fully trusted [Loytynoja and Goldman, 2008; Loytynoja and 

Goldman, 2010]. For this reason, the PRANK alignments were constructed 

without the +F option. 

 

The MUSCLE and PRANK MSAs for each family were subsequently compared 

by MetAl (v1.1.0) [Blackburne and Whelan, 2012] using the function 

‘scoreMetAl’ from the ‘metalman.py’ program (Appendix 3.2 - function in 

bmeTools package [Section 2.8.1]). MetAl measures variation between MSAs 

produced by different alignment methodologies. Using the default metric (d-pos) 

a percentage is returned indicating the difference between the alignment methods 

[Blackburne and Whelan, 2012]. MSAs were treated as identical if the returned 

percentage was ≤ 0.05 (5%) [Communication with Blackburne and Whelan]. If 
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alignments were reported as identical, we chose the MUSCLE alignment. If the 

alignments were >5% different they were subsequently compared using noRMD 

(v1.2) [Thompson et al., 2001] with the function ‘noRMDchk’ from the 

‘metalman.py’ program (Appendix 3.2 - function in bmeTools package [Section 

2.8.1]). MSAs with greater column-based similarity will return higher noRMD 

scores. The methods that returned the higher noRMD was used, if the noRMD 

scores were identical, again MUSCLE alignments were favoured.  

 

3.3.3 Selecting the best-fit model of protein evolution using ProtTest3 

ProtTest3 (v3.0) [Darriba et al., 2011] was selected for identifying the best-fit 

substitution model. Using the function ‘SetupProtTest’ in the program 

‘MUSCLEman.py’ (Appendix 3.2 - function in bmeTools package [Section 

2.8.2]), each MSA was assessed by ProtTest3 with a subset of the substitution 

models (JTT [Jones et al., 1990], Dayhoff [Dayhoff et al., 1978], Blosum62 

[Henikoff and Henikoff, 1992], VT [Muller and Vingron, 2000], and WAG 

[Whelan and Goldman, 2001]), see per command below. Limiting the number of 

substitution models because software used in subsequent steps of our analysis 

pipeline only used these models. 

 

Substitution models were also assessed in the presence of different variables of 

rate-heterogeneity, including: invariable sites (+I) [Reeves, 1992], variable rate 

categories (+G/Γ) [Yang, 1993], and a combination of these two factors 

(+I+G/Γ). Using a maximum likelihood approach ProtTest3 determines the 

likelihood of each substitution model (± rate-heterogeneity), and compares these 

scores using the Bayesian Information Criterion (BIC) [Schwarz, 1978]. Using 
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the function ‘CheckProtTest’ in ‘MUSCLEman.py’ (Appendix 3.2 - 

subsequently incorporated into bmeTools.py [See 2.5.2.3]), the substitution 

model (± rate-heterogeneity) for each MSA with the highest overall BIC value 

was identified as the best-fit model of protein evolution. 

 

3.3.4 Phylogenetic reconstruction by MrBayes 

Phylogenetic reconstruction was carried out for all gene families using MrBayes 

(v3.1.2) [Ronquist and Huelsenbeck, 2003]. The function ‘SetupMrBayes’ in 

‘MUSCLEman.py’ (Appendix 3.2 - function in bmeTools package [Section 

2.8.3]) was used to automate the generation of nexus formatted alignments and to 

append the MrBayes command-block, see Figure 2.8 for example. The function 

‘SetupMrBayes’ reads the output of ProtTest3 and assigns two parameters within 

the command-block: i) the substitution model, and ii) rate-heterogeneity (Figure 

2.8).  

 

For each gene family, the standard number of four Markov chain Monte Carlo 

(MCMC) chains were set. As is standard practice, three of the chains acted as 

“heated” chains to better allow the regular sampling "cold" chain to escape local 

maxima/peaks [Ronquist et al., 2011]. Each MCMC chain ran for a minimum of 

10
6
 generations or until MrBayes reported convergence and the average standard 

deviation of split frequencies reflected convergence < 0.01 [Ronquist et al., 

2011]. Chains were sampled every 200 generations with a standard burn-in of 

0.25 (25%) to remove the initial generations prior to likelihood stabilization 

[Ronquist et al., 2011]. 
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3.3.5 Extracting SGOs from multigene family 

A number of phylogenies contained gene duplicates. Where appropriate the 

program ‘nodes_picker.py’ (Appendix 3.2 - function in bmeTools package 

[Section 2.9.4]) was used to remove (or prune) the SGO of interest alongside its 

respective orthologous genes (Figure 2.12). Following such extraction the 

reduced gene family were realigned (Section 3.2.2) and continued through the 

analysis. 

 

3.3.6 Selective pressure analysis 

Selective pressure analyses were performed using codeML from the PAML 

package (v4.4e) [Yang, 2007]. CodeML examines nested codon-based models of 

evolution in a Maximum Likelihood framework to determine ω [Yang, 2007] 

(See Section 1.3.2.2 for more details). We employed branch-site specific models 

to scan for positive selection unique to a specific foreground lineage [Yang and 

dos Reis, 2011]. Using the function ‘SetupCodeml’ in ‘MUSCLEman.py’ 

(Appendix 3.2 - function in bmeTools package [Section 2.9.3]), the codeML 

input for each homologous group was generated: i) a nucleotide MSAs inferred 

form the previously selected protein MSAs (Appendix 3.3) (Section 2.9.2), and 

ii) the labeled phylogenetic trees required for the branch-site specific models for 

the extant species (human and mouse) and ancestral lineages (primates, murinae, 

and rodents) of interest. Using the programs ‘GenerateCodemlWorkspace.pl’ and 

‘SetupCodemlTaskfarm.pl’ written by Dr. Thomas Walsh, the nucleotide MSAs 

and labeled phylogenetic trees were assessed for the modelA branch-site specific 

model. 
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The codeML results were interpreted by implementing likelihood ratio tests 

(LRTs) using the program ‘CreateCodemlReports.pl’ written by Dr. Thomas 

Walsh [Walsh, 2013]. The LRT test statistic approximates the chi-squared (χ
2
) 

distribution critical value with degrees of freedom equal to the number of 

additional free parameters in the alternative model. If branch-site specific models 

passed LRT and positive selection is inferred, the posterior probability of the 

positively selected site is estimated by ‘CreateCodemlReports.pl’ using two 

calculations: NEB or BEB [Yang, 2007]. If both BEB and NEB are predicted, we 

used the BEB results as they have been reported to be more statistically robust 

[Yang, 2005]. The candidate positively selected sites were then compared to 

UniProt protein entries using the program ‘swissAlign.py’ (Appendix 3.2).  

 

3.3.7 Identifying evidence of recombination breakpoints 

Detection of recombination breakpoints was performed on the nucleotide 

alignments of each putative positively selected gene using RDP3 [Martin et al., 

2010]. RDP3 implements a wide range of independent recombination detection 

methods: RDP [Martin and Rybicki, 2000], BOOTSCAN [Martin et al., 2005], 

GENECONV [Padidam et al., 1999], MAXCHI [Smith, 1992], CHIMAERA 

[Posada and Crandall, 2001], SISCAN [Gibbs et al., 2000], and 3SEQ [Boni et 

al., 2007]. Implementing multiple detection methods in tandem has been 

recommended to more accurately detect recombination [Posada and Crandall, 

2001]. Additionally, these methods are broadly categorised into two distinct 

detection approaches: phylogeny-based (RDP, Bootscan, and SISCAN) and 

substitution-based (CHIMAERA, MAXCHI, GENECONV, and 3SEQ). A past 

comparative study of recombination detection methods reported GENECONV, 
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CHIMAERA, and MAXCHI as the most powerful substitution-based methods, 

with CHIMAERA and MAXCHI performing best overall [Posada and Crandall, 

2001]. The more recent substitution based detection method, 3SEQ has been 

reported to be comparable in power to CHIMAERA [Boni et al., 2007]. 

Comparisons of the phylogeny-based detection methods have found 

BOOTSCAN and SISCAN to perform well [Martin et al., 2005; Posada and 

Crandall, 2001]. 

 

The program ‘recombReader.py’ (Appendix 3.2) was then used to parse the 

RDP3 output for the nucleotide alignment (created in 3.2.6) for each gene with 

signatures of positive selected. Due to the inherent difficulty of identifying 

recombination breakpoints, all recombination events were required to be 

statistically significant for at least one substitution-based and one phylogenetic-

based detection method.  

 

3.3.8 Structural analysis of TLR3 

Three-dimensional structures of mouse and human toll-like receptor 3 (TLR3) 

ectodomain were modeled using MODELLER [Eswar et al., 2008]. We obtained 

100% sequence identity between the target sequences and template structure for 

mouse (PDB id: 3CIG) and human (PDB id: 2A0Z). The dynamic flexibility 

index (dfi) [Gerek et al., 2013] was then computed. The dfi score quantifies the 

dynamic properties of individual residues in the protein structure and the stability 

change caused by mutating residues.  
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Certain positions in a 3-D structure are more susceptible to perturbation, showing 

high fluctuation responses and high dfi values, whereas other positions with low 

dfi values are stable and the stability of the proteins does not deviate significantly 

upon perturbation. Therefore, higher dfi means greater chance that this mutation 

does not alter the 3D structure and by assuming that structure and function are 

tightly linked [Lee et al., 2007], these high dfi scores indicate non-function 

altering mutations.  

 

Using this approach, stability change is estimated by the protein folding free 

energy (ΔΔG). A ΔΔG value for each amino acid substitution (mutant) is 

calculated from ΔGmutant - ΔGwt where ΔGwt is the wild type free energy of 

unfolding.  To compute the ΔΔG values for each amino acid substitution, we 

applied the FoldX method [Guerois et al., 2002; Schymkowitz et al., 2005] that 

uses empirical potential combining both physical force fields and free parameters 

fitted with known experimental data. If the value of ΔΔG is greater than 0, the 

mutation has a destabilizing effect on the protein structure, while ΔΔG<0, the 

mutation is stabilizing, we used 1kcal/mol as a threshold. First, we computed the 

stability change of positively selected residues in the mouse structure and then 

the corresponding orthologous residues in the human structure. Finally, we 

estimated ΔΔG for all possible amino acid substitutions in the human structure, 

including disease-associated sites in human. Disease-associated sites were 

obtained from the Human Gene Mutation Database (HGMD) [Stenson et al., 

2003]. We also estimated ΔΔG caused by all possible amino acid substitutions 

for randomly selected sites. 

 



 125 

3.3.9 Fixation of positively selected sites in populations 

To determine if the positively selected sites for each positively selected gene 

were fixed within their respective populations, variation data was downloaded 

from Ensembl Biomart (Ensembl Variation 72) [Kinsella et al., 2011]. Human 

variation data was limited to validated single nucleotide polymorphisms (SNPs) 

to increase accuracy of the assessment; this limitation was not imposed on mouse 

variation due to the small number of validated mouse SNPs. Using the program 

‘buildVariation.py’ (Appendix 3.2) a total of 559 SNPs were mapped onto the 

protein sequence of 29 positively selected genes (Human 2, Mouse 27), see 

Table 3.2. Using the program ‘buildFixationData.py’ (Appendix 3.2) the SNP-

mapped protein sequences were combined with positive selection data (Section 

3.2.6) to identify the positively selected sites that were not fixed in the 

population. 

 

3.3.10 Assessing positively selected genes for evidence of selection within 

human population data: 

To determine if population data corroborated the findings from the species-level 

comparisons for positive selection in human lineage, variation data was 

downloaded from the 1000 Genomes Project website, with each individual 

consisting of two chromosomal samples [Abecasis et al., 2012]. Using the 

program ‘1000Reader.py’ (Appendix 3.2) the SNP data from the 1000 Genomes 

Project for each was separated into individuals. Population sequence alignments 

for each positively selected gene were created using ‘genemapper.py’ (Appendix 

3.2), this program built alignments in two steps: i) it created the genomic 

sequence of the individual by mapping their respective SNPs onto the reference 
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genome [Kinsella et al., 2011], and ii) it added each completed individual 

nucleotide sequence to the overall alignment. Using DnaSP [Librado and Rozas, 

2009], we calculated Tajima’s D [Tajima 1989] and Fay and Wu’s H [Fay and 

Wu, 2000] for these population alignments. Fay and Wu’s H requires an 

outgroup sequence, to satisfy this requirement the respective chimpanzee 

genomic sequences (with 1kb of flanking DNA) for each positively selected gene 

was obtained from Ensembl Biomart (Ensembl Gene 72) [Kinsella et al., 2011]. 

Chimpanzee sequences were aligned to the human population data using 

MUSCLE [Edgar, 2004] and chimpanzee-flanking sequence was cleaved using 

TrimAl [Capella-Gutiérrez, 2009]. To determine the significance of Tajima’s D 

and Fay and Wu’s H, 10,000 coalescence simulations were conducted for each 

gene [Hudson, 2002].  

 

To determine if the regions surrounding the genes identified as positively 

selected in human from the species-level comparative analysis exhibited 

evidence of selective sweep, we created 1kb alignments between 100kb upstream 

and 100kb downstream of each positively selected gene. Population sequence 

alignments for the regions surrounding the positively selected genes were created 

using a modification to ‘neutralSetup.py’ (Appendix 3.2); alignments were 

created as described above with the reference sequence. DnaSP [Librado and 

Rozas, 2009] was used to calculate Tajima’s D [Tajima, 1989] for each window. 

Significance was determined for Tajima’s D [Tajima, 1989] for each window as 

described above. All graphs were created using the matplotlib python library 

[Hunter, 2007].  
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Table 3.2: Genes tested for positively selected site fixation in their 

population. 

 

The table shows the gene name, species, and the number of available non-

synonymous SNPs from Ensembl Biomart (Ensembl Variation 72) [Kinsella et 

al., 2011] for each of the 29 genes under positive selection. The SNP site column 

indicates the number of non-synonymous SNP that mapped to protein coding 

residues.   

Gene Species SNP Sites Gene Species SNP Sites

CARD6 Human 38 Nlrp14 Mouse 16

IRF9 Human 9 Lgals3 Mouse 15

Stat2 Mouse 58 Ifit2 Mouse 14

C6 Mouse 53 Irf5 Mouse 14

Nlrp6 Mouse 53 Il1rapl2 Mouse 11

Il4ra Mouse 51 Adipoq Mouse 9

Plcg2 Mouse 51 Cfh Mouse 8

Lrrfip1 Mouse 49 Cd63 Mouse 6

C8b Mouse 36 Card6 Mouse 4

Lbp Mouse 33 Tlr3 Mouse 4

Rnf31 Mouse 24 Atg9a Mouse 3

Tcf4 Mouse 20 Trif Mouse 3

C1ra Mouse 16 Snap23 Mouse 2

Grn Mouse 16 Ecsit Mouse 1

Ltb4r1 Mouse 16
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3.4 Results 

3.4.1 Selection analysis reveals species-specific adaptation in mouse and 

human innate immune genes: 

A total of 457 protein coding single gene orthologous families were analyzed. As 

functional divergence could have emerged prior to the divergence of modern 

human and mouse all ancestral lineages across the Euarchontoglires clade were 

tested (Figure 3.1), i.e. the ancestral primate, murinae and rodent branches, as 

well as modern human and mouse. Following LRT analyses [Yang, 2007] five 

candidate genes were identified as under positive selection in the human lineage 

(LAP2, CARD6, C1RL, INPP5D, and IRF9). Analysis of the lineage leading to 

modern mouse revealed 44 genes under positive selection this is out of a total of 

366 gene families that had a mouse ortholog (Appendix 3.4). The branch leading 

to primates, murinae and rodents showed evidence of positive selection specific 

to these lineages in 19 (12.93%), 23 (14.20%), and 9 (11.25%) of testable genes 

respectively (Appendix 3.4). These results emphasize the heterogeneity in 

selective pressures on innate immunity in different lineages.  

 

3.4.2 Filtering for false positives due to recombination removes potential 

candidate genes from the positively selected gene set: 

To reduce the level of false positive detection for adaptive evolution we applied a 

number of subsequent filters on the results outlined above. The first was a test for 

recombination that has previously been associated with potential false positives 

[Anisimova et al., 2003]. Any putative positively selected gene that had evidence 

of recombination proximal to positively selected sites was removed from our list 

of positively selected genes (Figure 3.1). In total, 12 positively selected genes 
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were identified with evidence of recombination, three human genes (C1RL, 

LAP2, and INPP5D) and nine mouse genes (Cd22, Csf2rb, Itgam, Ptk2, Sirpa, 

Tlr8, Traf5, Tyro3, and Zp3r), these were subsequently removed from the list of 

genes under positive selection (Table 3.3). See Table 3.4 for an updated list of 

the positively selected genes. From the analysis of the ancestral branches there 

were a total of three murinae genes (Igf1r, Itgam, and Tyro3), two primate genes 

(BCAR1 and NLRP9), and one rodent gene (Tyro3) removed (Table 3.5). 
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Figure 3.1. Phylogeny of species included in this study and summary of 

lineage-specific positive selection results.  

 

The lineages within the Euarchontoglires clade (denoted by grey box) tested for 

species-specific selective pressure variation are shown in colored boxes: human 
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(yellow), ancestral primate lineage – human, chimpanzee, gorilla, orangatun, and 

marmoset – (red), mouse (dark green), ancestral murinae lineage – mouse, rat – 

(light green), and ancestral rodent lineage – mouse, rat, and guinea pig – (blue). 

Dashed lines are provided to increase clarity of the species and are unrelated to 

the branches of the phylogeny. The initial number and percentage of genes 

displaying evidence of species-specific positive selection are shown in grey. 

Totals after the filter for recombination are shown in black. 
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Table 3.3: Recombination within human and mouse positively selected genes. 

 

The gene name and positively selected residues are given for each gene exhibiting a recombination event. The location of the recombination 

event is given alongside the sites within the event (internal) and within close proximity of the event (proximal). 

Gene 

Name
Positively Selected Residue Positions

Recombination 

Event

Internal Recombination 

Sites 

Proximal 

Recombination Sites 

C1RL 103 127 - 247 103

INPP5D 72, 223, 227*, 228**, 235, 239, 241, 244, 249, a nd 250 218 - 248
223, 227*, 228**, 235, 

239, 241, and 244
249 and 250

LAP2 714 and 1194 1197 - 1261 1194

Cd22 137, 190, 271, 474, and 812 1 - 68

Csf2rb 169, 271, 288, 473, 536, 569, a nd 576 68 - 161 169

Itgam 23, 45, 820, 831, 844, 1035, 1089, 1092, a nd 1131 1110 - 1206 1131

Ptk2 390** and 800 366 - 447 390** 

Sirpa
23, 51, 52**, 69, 77, 83, 91, 193, 202, 221, 224, 226, 237, 238, 

250, 276, 297, 305, 307, 338**, 344, a nd 490
 6 - 74 23, 51, 52**, and 69 77

Tlr8 44, 751, 764*, 778, 802*, 864, a nd 1003 23 - 80 44

Traf5 133, 308, 309, and 339 223 - 302 308, 309, and 339

Tyro3 85, 101, 825, and 826 0 - 88 & 700 - 787 85

Zp3r
3, 7, 39, 110, 174, 179, 206, 212, 219, 244, 31 1, 454, 460, 461, 

470, 485, 488, 510, 514, 518**, 524*, 528, 537, 541, a nd 546
396 - 445 454, 460, and 461

Genes under positive selection specifically in the human lineage

Genes under positive selection specifically in the mouse lineage
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Table 3.4: Positively selected genes identified in this study. 

 

Gene name Position of positively selected residues

CARD6 264, 346, 382, 750, 767, 805, 818, 903, 916, 937, 998, 1010, a nd 1031

IRF9 119, 129, and 333

Adipoq 25, 27, 29, and 82

Atg9a 634 and 662*

C1inh 332*, 365, 468, 479

C1ra 468, 520, 574, 631, 633, a nd 634*

C6 220, 233, 319, 353, 378, 408, 419, 430, 554, 655, 681, 703, 792, and 930

C8b 242*, 263, 278, 383*, and 488

Card6 394, 501, and 702

Cd200 129 and 177

Cd63 31, 118, 143, 184*, 194, and 203

Cfh 209, 243, 474, 767, 1005, 1068, 1074, 1104, 1181, and 1227

Ecsit 10, 12, 75, 82, 176, 325, 330**, 348, and 371

Eif2ak2 136, 155, 181, 182*, 344, and 345

F12 45, 65, 166, 243**, and 454

Grn 18, 101, 198, 303, 375*, 382, 411, 549, and 597

Ifit2 191, 402, and 420

Il1rapl2 566, 628, and 666*

Il2rb 4, 13, 31, 55, 174, 202, 347*, 402, 418, 491, 496, a nd 516

Il4ra 47, 67, 308, 330, and 626

Irf5 232, 259, and 262

Lbp 24, 40 and 329

Lgals3 22, 92, 94, and 260

Lrrfip1 328, 449, 468, 480, a nd 571

Ltb4r1 53, 101, and 175

Nlrp14

77, 79*, 186, 212, 219, 254, 257, 263, 272, 281, 284, 291, 294, 315, 319, 333, 

358, 393, 415, 424, 453, 465, 530, 549 , 552, 553, 584, 613, 657, 679, 684, 

685, 687, 696, 782,  810, 814, 829, 846, 848, 902, 908, 912, 931, 953, 956, 

958, 978, 982, 984, and 986

Genes under positive selection specifically in the human lineage

Genes under positive selection specifically in the mouse lineage
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Table 3.4: Positively selected genes identified in this study. 

 

The table shows the proteins identified under lineage-specific positive selection 

that showed no evidence of recombination proximal to positively selected 

residues. The proteins are sorted into the respective lineage in which the positive 

selection was observed. Each protein is reported alongside the positions that 

were identified by the BEB empirical Bayes model (see Section 1.3.2.2 for 

details). See table of abbreviations for the name of each protein shown above. 

Gene name Position of positively selected residues

Nlrp6

22, 25, 72, 77, 80, 81, 85, 96, 101, 113, 114, 190, 192, 251, 260**, 329, 344, 

479, 488, 515, 553, 571, 628, 657, 727, 737, 739, 744, 771, 775*, 776, 793, 

807, 865, 877, and 880

Oas2 55, 56, 139, 171, 199, 211, 221, 298, 481, 549, and 711 

Plcg2 461 and 594*

Ptpn2 166, 206, 319, 321, and 329

Rnf31 203, 431, and 1025

Sirt1 107, 537, 698, and 701

Snap23 109, 133, and 197

Stat2 21, 130, 149, 157, 195, 205, 218, 354, 623*, 869, 871, 874, 876, and 877

Tcf4 139

Tlr3 266, 297, and 603 

Trif 18, 327, 338, 388, 482, 556, a nd 711

Genes under positive selection specifically in the mouse lineage
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Table 3.5: Recombination within the ancestral lineages. 

 

The gene name and positively selected residues are given for each gene exhibiting a recombination event. The location of the recombination 

event is given alongside the sites within the event (internal) and within close proximity of the event (proximal). 

Gene 

Name
Positively Selected Residue Positions Recombination Event Internal Recombination Sites 

Proximal 

Recombination Sites 

BCAR1 475** and 602 84 - 916 475** and 602

IFNGR2 99, 126, 170, 195, 197, a nd 253 2 - 45

NLRP9 37, 362, and 502 94 - 106, 466 - 499, & 558 - 728 502

TLR8
142, 188, 193*, 212, 213, 255, 309, 312, 335, 349, 386, 387, 432, 562, 580, 

605, 634, 641, 690, 722, 793, 835, 850, 923, 975, 1013, 1087, 1089, a nd 1103
41 - 98

TRIM5 433, 520, 523, 538, 568, 584, 654, 767, 810, 842, 848, a nd 859 242 - 276

Mst1r 736 and 964* 267 - 376 & 814 - 880

Tyro3 91* 1 - 89 91*

Ccdc88a
195, 221, 443, 601, 613, 635, 638, 675, 995, 1021, 1031, 1037, 1219, 1230, 

1235, 1607, 1704, 1728, 1730, 1733, 1817, a nd 1827
89 - 113

Mst1r 97, 268, 291, 553, 769, a nd 1041 267 - 376 & 814 - 880  268 and 291

Traf6 16* 275 - 313

Igf1r 155 and 257** 39 - 227 155

Itgam 98, 132, 214, 226, 468, a nd 784 1 - 1111 98, 132, 214, 226, 468, a nd 784

Tyro3 101, 105, 127, 202, 223, 240, 406*, a nd 445 1 - 89 101 and 105

Genes under positive selection specifically in the primate lineage

Genes under positive selection specifically in the rodent lineage

Genes under positive selection specifically in the murinea lineage
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3.4.3 A subset of mouse innate immune pathways are enriched for 

adaptive evolution:  

Assessment of the two candidate genes in the human lineage (CARD6 and IRF9) 

revealed no evidence of protein-protein interaction among these proteins and no 

evidence for enrichment in particular innate immune pathways. Conversely, the 

35 candidates in mouse exhibited a number of proteins involved in direct 

interaction with one another (Figure 3.2) and in the same pathways: 5 genes in 

the complement cascade (C1ra, C1inh, C6, C8b, and Cfh - Figure 3.2a), 4 genes 

in the TLR signalling pathway (Irf5, Lbp, Tlr3, and Trif - Figure 3.2b), 3 genes 

in the JAK-STAT pathway (Stat2, Il2rb, and Il4ra), and a single genes in the 

MAPK signalling pathway (Ecsit). Of particular interest was the interaction 

between Trif and Tlr3. Trif exhibits positive selection within the Tlr3 interaction 

interface (Figure 3.2) [Oshiumi et al., 2003].  

 

3.4.4 The Ancestral nodes have unique subsets of genes under positive 

selection: 

We identified 18 genes with evidence of positive selection in the ancestral 

primate lineage alone and nowhere else on the tree. In terms of the functional 

classification of these genes they fell broadly into five categories: Nod-Like 

Receptors (NLRP1, NLRP5, NLRP8, and NLRP9), TRIM receptors (TRIM5 and 

TRIM25), Interferon gamma receptors (IFNGR1 and IFNGR2), TLR (TLR8), 

and one breast cancer related gene (BCAR1) (Appendix 3.4). Within this set of 

genes there is one known protein-protein interaction between IFNGR1 and 

IFNGR2 associated with the JAK-STAT pathway [Kanehisa and Goto, 2000]. 

Analyses of the ancestral rodent and murinae branches identified 7 and 14 genes 
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respectively as under positive selection (Appendix 3.4). There was limited 

information on function and associated pathways for these genes and there were 

no reports of direct protein-protein interactions in these subsets of the data. The 

C1inh protein from the complement cascade also featured as under positive 

selection in the ancestral murinae branch, and there was evidence for a murinae 

unique positive selection event in the TRAF6 protein, a gene known to interact 

with the TLR signaling pathway [Kanehisa and Goto, 2000]. 

 

3.4.5 Positively selected residues map to essential functional domains: 

To determine potential functional effects of positive selection we compared the 

positively selected residues identified in this study to functional data available on 

SwissProt [The UniProt Consortium, 2012]. Assessment of the 35 candidate 

genes under positive selection in the mouse lineage alone identified numerous 

examples of positively selected residues within known functional domains 

(Appendix 3.4). Where data permitted additional functional assessment was 

performed on the genes of the complement cascade (Figure 3.2c).  
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Figure 3.2: Innate immune pathways containing positively selected genes.   

 

The positively selected genes in (a) the complement system and (b) the TLR 

signaling pathway are shown as darkened rectangles. Signaling cascades are 

depicted as arrows and inhibitors are depicted as blunt-ended lines. Defined 

pathways and complexes are shown in grey boxes with the given name. (c) 

Positively selected residues of the complement system alongside information on 

domain structure. Information on the function of these domains is also given. See 

table of abbreviations for the name of each protein shown above. 
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3.4.6 Positively selected residues in mouse TLR3 have predicted effects on 

structural stability: 

The dynamic flexibility index (dfi) measures the contribution of each residue to 

the overall structural dynamics and stability of the protein [Gerek et al., 2013]. 

The dfi approach measures the spatial fluctuation of each residue in response to 

perturbing residues along the peptide. Dfi values indicate the resilience of each 

residue to perturbations; a low dfi indicates a residue essential for dynamic 

stability as they absorb the transfer of perturbation (i.e. structurally inflexible) 

whereas high dfi implies the residue is prone to perturbation (i.e. structurally 

flexible) [Gerek et al., 2013]. Dfi values are reported to significantly correlate 

with known neutral variants (high dfi values) and residues strongly linked with 

genetic disease (low dfi values) [Gerek et al., 2013]. This correlation of dfi to 

biological function was also reported to have a greater ability to discern 

functionally critical from non-critical sites as compared to the solvent accessible 

surface area (ASA) metric frequently used to assess functional significance 

[Gerek et al., 2013]. 

 

LR3 was chosen for this analysis as it is well characterized and displayed lineage 

specific positive selection in mouse but not human. The human TLR3 disease-

associated residues displayed low dfi values [Stenson et al., 2003] (Figure 3.3) 

whereas the positively selected residues from mouse TLR3 (i.e. E266, Y297, and 

E604) and their counterparts in human (i.e. N265, W296, and P602) had 

moderate to high dfi values indicating structural flexibility (Figure 3.3). These 

findings are in keeping with the red queen hypothesis and the potential role of 

these sites in pathogen recognition or binding at the surface of the TLR3 
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ectodomain. We then calculated the change in protein stability for all possible 

amino acid substitutions at each position in the ectodomain of human and mouse 

TLR3 (Figure 3.3). We found no evidence of a destabilizing effect for the 

positively selected residues in the ectodomain of mouse TLR3 (E266, Y297, and 

E603) (Figure 3.3), indicating that these positions in mouse are tolerant to 

mutation and are structurally flexible. Mutating the homologous residues in 

human (N265, W296, and P602) we found two sites (W296 and P602) that 

exhibited an effect on folding stability. More specifically, of the 19 possible 

mutations of W296 and P602, destabilizing effects were observed in 13 and 18 

substitutions, respectively (Figure 3.3). Substitutions of W296 and P602 exhibit 

dfi profiles comparable to disease-associated sites, leading us to propose that in 

human these positions may also be fundamental for protein stability and 

structurally inflexible. Testing the effect of mutating randomly chosen residues 

we found no obvious patterns in protein destabilizing effects (Figure 3.3). Taken 

together, these data suggest that two of the positively selected residues in mouse 

TLR3 and their homologous positions in human TLR3 contribute differently to 

overall protein stability in these two species. 
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Figure 3.3: Dynamic flexibility index of human TLR3 ectodomain. 

 

Ribbon diagrams of the crystal structure of the TLR3 ectodomain of (a) human 

(PDB id: 2A0Z) and (b) mouse (PDB id: 3CIG). (a) and (b) are colored with a 

spectrum of red-yellow-green-cyan-blue representing the dynamic flexibility 

index (dfi), where red indicates the highest dfi values down to blue which 

indicates the lowest values. (c) The stability change for all possible substitutions 

was computed for: the positively selected sites in mouse (E266, Y297, and 
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E603), their human homologs (N265, W296 and P602), known human disease-

associated sites (N284, F303, L412, and P554) [Stenson et al., 2003], and 

randomly selected sites. Except for the randomly selected sites, sites have been 

indicated on the respective ribbon diagrams in the following colors: mouse 

positively selected sites in black, human homologs in brown, and human disease 

sites in red. 
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3.4.7 The majority of positively selected residues are fixed within human 

and mouse populations:  

Positive selection rapidly drives advantageous alleles to fixation within a 

population [Haldane, 1927]. Depending on the age of the event, effective 

population size (Ne) and the strength of selection, positively selected sites will 

either be fully fixed within a population or will have some degree of variability 

[Sabeti et al., 2006]. We sought to determine if the positively selected residues 

identified in human and mouse are fixed in their respective populations or 

whether they are variable (Table 3.6). We gathered all available SNP data for all 

positively selected genes, i.e. two human candidates and 27 mouse candidates. 

The majority of positively selected sites in both human (15/16 or 94%) and 

mouse (207/214 or ~97%) were entirely fixed in their lineage. The exceptions 

were the CARD6 gene in human and six mouse genes (C6, C8b, Ecsit, Il4ra, 

Nlrp14, and Stat2) (Table 3.6). Of the total of 8 positively selected residues 

across all 7 genes showing variability at the population level, four SNPs resulted 

in the ancestral residue present at the homologous position in other species, they 

were as follows: human CARD6 (G264E) and mouse Ecsit (S75L); Nlrp6 

(R744K); and Stat2 (L874M). In addition, there were two substitutions at 

positively selected residues in mouse genes that resulted in amino acids with 

similar physicochemical properties as the homologous position in another 

species: C6 (L554) and Il4ra (G626) (Table 3.6).  

 

The positively selected residues in human CARD6 and IRF9 genes were 

compared to the recently released Neanderthal genomes [Green et al., 2010]. The 
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same positively selected residues that are fixed in the modern human lineage 

were also found in Neanderthal.   

 

3.4.8 Population level data shows no ongoing selective sweep in modern 

humans: 

Within a population, positive selection not only leads to the fixation of an 

advantageous allele, but a notable reduction in variation in the surrounding 

region [Sabeti et al., 2006]. The regions identified in the species level analyses as 

positively selected were tested to determine if they are evolving neutrally in 

modern human populations, this was done using Tajima’s D statistic [Tajima, 

1989]. Tajima’s D is a scaled measurement of the difference between the number 

of segregating sites and average nucleotide diversity, the value of D is expected 

to be close to zero if sequences are evolving neutrally [Tajima, 1989]. Therefore, 

significant deviations from zero indicate sequences that are evolving non-

neutrally. To determine if our two candidate genes from human (CARD6 and 

IRF9) were evolving neutrally, their Tajima’s D was calculated (Figure 3.4a). 

Both had a negative Tajima’s D, indicating non-neutral evolution. These values 

were found to be statistically significant.  

 

We wished to determine if this “non-neutral” signal from the Tajima’s D statistic 

for CARD6 and IRF9 in human was due to positive selective pressure or 

purifying selective pressure. Fay and Wu’s H test was applied, as it accounts for 

derived alleles using an outgroup sequence [Fay and Wu, 2000]. Derived alleles 

are non-ancestral recent mutations that are expected to be at lower frequencies.  
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Table 3.6: Fixation of human and mouse positively selected genes. 

 

The gene name, number of positively selected residues, number of protein coding 

SNPs, and unfixed residues for each positively selected gene with variation data. 

If a coding SNP produces a positively selected residue that is not fixed within the 

Genes PS Residues Coding SNPs  
Residue(s) 

not fixed
Details

CARD6 13 38 G264E Ancestral residue

IRF9 3 9 None

Adipoq 4 9 None

Atg9a 1 3 None

C1ra 6 16 None

C6 14 53 R554L
Similar physicochemical 

properties

C8b 5 36 M263I

Card6 3 4 None

Cd63 6 6 None

Cfh 10 8 None

Ecsit 9 1 S75L Ancestral residue

Grn 9 16 None

Ifit2 3 14 None

Il1rapl2 3 11 None

Il4ra 5 51
F47S & 

D626G

D626G: Similar 

physicochemical properties

Irf5 3 14 None

Lbp 2 33 None

Lgals3 4 15 None

Lrrfip1 5 49 None

Ltb4r1 3 16 None

Nlrp14 51 16 A613S

Nlrp6 36 53 None Ancestral residue

Plcg2 1 51 None

Rnf31 3 24 None

Snap23 3 2 None

Stat2 14 58 L874M Ancestral residue

Tcf4 1 20 None

Tlr3 3 4 None

Trif 7 3 None

Genes under positive selection in the human lineage

Genes under positive selection in the mouse lineage
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population, the respective polymorphism and position are given. If the 

polymorphism is to an ancestral residue present at the homologous position in 

other species, it is designated as: Ancestral residue. If the polymorphism is to a 

residue that shares similar physicochemical properties to the residue as the 

homologous position in another species, it is designated as: Similar 

physicochemical properties.  
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However, derived alleles within close proximity of an advantageous allele may 

spread by hitchhiking and thereby become high frequency [Sabeti et al., 2006]. 

Assessment of CARD6 and IRF9 by Fay and Wu’s H test resulted in negative 

values that failed to reach significance, indicating that these regions are evolving 

neutrally (Figure 3.4a).  

 

The rapid fixation of an advantageous allele within a population results in a 

notable and skewed decrease in variation at linked neutral sites, termed a 

selective sweep [Sabeti et al., 2006]. To determine if our candidates from the 

species-level analyses exhibited evidence of reduced variability, a 1kb sliding 

window analysis of allele frequency was carried out incorporating 100kb of 

upstream and downstream sequence for each candidate gene. Departure from 

neutrality was measured in each window [Tajima, 1989], graphical 

representations of the results can be found in Figure 3.4b. The analysis of IRF9 

and CARD6 identified comparable levels of variation for all windows assessed. 

The results for the human candidate genes IRF9 and CARD6, are consistent with 

a potential positive selective pressure/sweep to fixation in the ancestral human 

lineage prior to the divergence of Neanderthal, and a relaxation of selective 

pressure in the current human population.  
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Figure 3.4: Neutrality tests for positively selected genes in the human 

lineage. 

 

 (a) Results of calculating Tajima’s D and Fay and Wu’s H and their respective 

95% confidence intervals from coalescent simulations for IRF9 and CARD6. (b) 

Sliding window analysis of Tajima’s D of the positively selected genes identified 

in human. The analysis was conducted using a window size of 1kb within 100kb 
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upstream and downstream of each gene. The 95% confidence interval is shown 

as red highlighted region. 
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3.5 Discussion 

In agreement with previous large-scale surveys of positive selection [Kosiol et 

al., 2008], we find a high frequency of positive selection in innate immune genes 

in the mouse lineage as compared to human. These high levels of species-

specific positive selection in human and in mouse were not observed in ancestral 

mammal lineages, suggesting that these sites are responding to more recent 

selective pressures.  

 

The candidate genes of both mouse and human exhibited some evidence of 

recombination breakpoints. It has been reported that this may produce molecular 

signatures indistinguishable from those of positive selection [Anisimova et al., 

2003] and genes with signatures for recombination were removed. 

 

The positively selected genes in mouse are components of well-known innate 

immune pathways, and are involved upstream and downstream in these 

pathways. In pathways enriched for positively selected members (e.g. TLR 

signaling pathways and complement system), more than half the components are 

involved directly or indirectly with initiation (Cfh, C1r, C1inh, Tlr3, and Lbp), 

indicating that upstream positions may be subjected to stronger positive selective 

pressure. Recent studies have reported a relaxation in selective constraint as you 

progress downstream through a pathway [Ramsay et al., 2009] whereas other 

reports detail patterns similar to those presented here [Alvarez-Ponce et al., 

2009]. The enrichment for positive selection that we observe in proteins 

functioning at the start of the pathways is most likely because many of these 

proteins interact directly with pathogens (C6, C8, and Lbp); bind to pathogens 
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for immunological defense (Cfh); or are pathogen recognition receptors (Tlr3) 

and are most likely under increased positive selective pressure from the pathogen 

[Van Valen, 1973]. The absence of human-specific positively selected genes 

within the TLR signaling pathways and complement system may be partially 

explained by a previous study of the evolution of TLRs in primates [Wlasiuk and 

Nachman, 2010] where they found primate TLRs exhibit an episodic pattern of 

evolution. In agreement with this pattern, we identified positive selection in 

TLR8 in the ancestral primate lineage.  

 

As positively selected sites have been documented to result in protein functional 

shifts [e.g. Loughran et al., 2012; Saywer et al., 2005], our results may implicate 

positively selected residues responsible for the emergence of divergent protein 

functions between human and mouse. We identified positively selected genes in 

the alternative, classical, and lectin pathways of the complement system in 

mouse indicating possible functional shift in these pathways in the mouse lineage 

alone. The complement system is reported to neutralize herpes simplex virus 

(HSV) in rat, mouse, and human [Wakimoto et al., 2002]. However, complement 

activation proceeds uniquely for each species: via the lectin pathway in mouse, 

via the alternative and lectin pathways in rat, and in human via the classical 

pathway [Wakimoto et al., 2002]. The exclusive use of the lectin pathway in 

mouse is of interest due to the presence of positively selected genes in the 

alternative (C1inh), classical (C1r and C1inh), and lectin (Cfh) pathways that 

offer potential molecular markers of in vitro study of the observed species-

specific functional shift. 
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The complement system is also reported to display functional discordance in 

response to Acanthamoeba infection. Both human and mouse are reported to 

initiate the complement system by the alternative pathway leading to 

Acanthamoeba binding with C9 of the membrane attack complex (MAC) 

[Pumidonming et al., 2011]. By contrast, the MAC of mouse is unable to lyse 

Acanthamoeba [Pumidonming et al., 2011]. Here we present evidence of 

positively selected residues in the C6 and C8b proteins of the complement 

cascade unique to the modern mouse lineage. Both the C6 and C8b proteins are 

essential to MAC formation and cell lysis [Aleshin et al., 2012], therefore these 

residues provide the community with a molecular target for the observed 

phenotypic discordance between human and mouse in their MAC activity. 

 

In comparison to innate immune genes with phenotypic discordance and a known 

molecular cause, our results were found to be moderately successful. The 

restriction factor TRIM5α is reported to confer a species-specific resistance to 

HIV-1 in rhesus macaque but not humans [Stremlau et al., 2004]. Selective 

pressure analysis performed on TRIM5α identified an 11- to 13-amino acid 

segment of the SPRY domain responsible for species-specific retroviral 

restriction [Sawyer et al., 2005]. In contrast, our analysis was able to identify 

TRIM5α as under positive selection within the ancestral primate lineage 

(Appendix 3.4), but was unable to identify the reported causative region. It 

should be noted that our analysis did not include the rhesus macaque and this 

could partially explain the variation in the results. Another example of a known 

innate immune discordance is TLR8, which is reported as being able to confer 

NF-B activation in response to multiple RNA ligands in human but not mouse 
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[Jurk et al., 2002; Forsbach et al., 2008; Liu et al., 2010]. The cause of this 

species-specific activation was determined to be a 5-amino acid motif – RQSYA 

– that was not present within mouse TLR9 [Liu et al., 2010]. Our analysis was 

able to identify TLR8 as being under positive selection in the ancestral primate 

lineage but the causative motif was not identified as being under positive 

selection.   

 

The preferred approach to test functional effect of positive selection is by in vitro 

analysis. The same approach (albeit with a less sophisticated branch-site model) 

has been shown to result in functional effects of positive selection in the innate 

immune related protein myeloperoxidase [Loughran et al., 2012]. Providing this 

human mouse discordance data will lead to further in vitro studies.  

 

In keeping with our computational approach we performed in silico structural 

modeling on the TLR3 protein. The difference in stability effects between human 

and mouse residues of the TLR3 protein suggests a major structural and 

functional discordance between human and mouse in their ability to detect 

double stranded RNA in viral infections. Indeed these findings for TLR3 are of 

particular interest given reports of the restricted anti-viral role of human TLR3 in 

comparison to mouse Tlr3 where LPS up-regulation of Tlr3 is seen in mouse but 

not in human macrophages [Ariffin and Sweet, 2013]. This is an important 

finding given the difficulty in modeling the human innate immune system 

[Mestas and Hughes, 2004]. This application of in silico modeling highlights its 

ability to predict molecular level signatures of species phenotypic discordance 

that warrant future in vitro study. 
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While the lineage leading to modern human and indeed Neanderthal display 

signatures of positive selection in two genes (CARD6 and IRF9), there is no 

evidence for an ongoing selective sweep in modern human in these genes 

[Tajima, 1989]. It should be mentioned that this approach is sensitive to the age 

of the adaptive event, because signatures of selective sweep are eventually lost. 

The outer limit of these analyses in human is approximately 250,000 years 

[Sabeti et al., 2006]. The conservation of these positively selected residues 

between modern human and Neanderthal may be due to shared ancestry making 

these adaptive events at minimum ~400,000 to 600,000 years old [Scally and 

Durbin, 2012]. 

 

The number of positively selected sites where the residue was variable within 

human or mouse was rare, in total 94% (in human) to 97% (in mouse) of 

positively selected sites were completely fixed in the modern human or mouse 

populations. There were a total of 8 sites where the positively selected residue 

was not fixed. All but one of these were from mouse population data and often 

encoded for ancestral residues observed in the corresponding position in other 

species (4 of 7) or that were physicochemically similar residues to those in other 

species in the alignment (2 of 7). It is important to note that the mouse 

population data is based on only 21 inbred laboratory mice strains, and likely 

does not represent true population structure due to their artificial selection 

histories [Keane et al., 2011].  
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There was a single unfixed positively selected site in our cohort of positively 

selected genes in human: position (G264E) of CARD6. This replacement SNP 

(rs61757657) is documented in only 3% of Africans and 1% of Americans (2% 

of Puerto Ricans) [Kinsella et al., 2011; 1000 Genomes Project Consortium, 

2012], suggesting that the putative positively selected residue is not completely 

fixed in these populations. Subsequent inspection of the multiple species 

alignment identified the codon of the unfixed E264 (GAA) to be homologous to 

the other great apes (chimpanzee, gorilla, and orangutan) within the alignment, 

suggesting multiple functional alternatives may be tolerated at this position. 

Disease association data would also prove valuable to determine if this 

polymorphism is slightly deleterious or neutral.  

 

The combined use of new data such as the recently completed 1000 human 

genomes and Neanderthal genomes with phylogenetic analyses of selective 

pressure, has potential for advancing our understanding of the molecular 

underpinnings of species-specific response to disease. Distinct species-specific 

selective forces are acting on components of the innate immune system, they are 

detectable at the molecular level and they align with known phenotypic 

discordance, thereby providing a predictive tool for the identification of currently 

unknown discordance cases of the immune system and beyond. 
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Chapter 4: A non-phylogenetic approach to determine gene organization 

and domain sharing within vertebrate protein coding regions 
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4.1 Chapter Aim 

Domain rearrangements in have been directly implicated in the creation of novel 

proteins, including the establishment of species-specific proteins. While 

characterizing and identifying such proteins would be highly beneficial to 

understanding functional discordance, traditional phylogenetic approaches are 

unable to fully characterize the events due to non-vertical nature of domain 

rearrangement. The primary aim of chapter four was to explore the ability of 

networks to: i) identify species-specific proteins create by domain 

rearrangements and ii) understand the properties of domain rearrangements in 

multi-domain proteins. These goals were achieved by constructing a network of 

Pfam-A domains to explore the ability of Pfam-A domains to co-occur within a 

gene. The co-occurrence network was then used to identify multi-domain 

exhibiting species-specific domain combinations. The network was also used to 

identify the governing principals of multi-domain proteins to determine if these 

principals differed in proteins exhibiting species-specific fusion events.  
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4.2 Introduction 

Phylogenetic trees have proven to be an invaluable tool for the field of 

evolutionary biology. Inferred from evidence of vertical descent, phylogenetic 

trees are commonly used to explore the evolutionary relationships among 

species, genes, and populations. While advances in phylogenetic reconstruction 

have led to complex models of evolution, this framework alone cannot fully 

explore the process of modular rearrangement in multi-domain (i.e. modular) 

proteins due to their non-vertical nature [Bapteste et al., 2013].  

 

An established view of protein modularity is the existence of functional modules 

– or domains – that are analogous to independently folding elements [Moore et 

al., 2008; Coulson and Moult, 2002]. Support for this claim has been 

documented from reports of mutations that affect the function of a particular 

domain but not the other domains of a protein [Tjoelker et al., 2000]. Domains 

are also reported to belong to domain families, which are collections of domains 

that share similar structural profiles and/or evolutionary histories [Andreeva et 

al., 2008; Finn et al., 2014]. Specific protein families, such as fibronectin III and 

kinases are widely used in the genome and found within a multitude of proteins 

[Little et al., 1994; Manning et al., 2002]. In addition, research indicates that 

several of these domain families are common to most species, indicating they 

may be ancient elements [Apic et al., 2001]. Considering the age and frequency 

of these domains families, it may not be surprising that research has shown that 

domain rearrangement have resulted in the creation of novel proteins [Bashton 

and Chothia, 2007]. As domain rearrangement may result in the creation of novel 

proteins, the identification of species-specific domain rearrangements is of 
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particular interest. For example, a number of species-specific composite genes 

(i.e. fusion of two or more genes) have been found to result in the establishment 

of unique species-specific functional properties [Thomson et al., 2000; Rogers et 

al., 2010; Molero et al., 2013]. Therefore, characterizing the governing 

characteristics of modular proteins – the domains combinations and 

rearrangements permitted – in addition to the identification of species-specific 

domain rearrangement may lead to a better understanding of protein evolution 

and the establishment of new function. 

 

In this chapter non-vertical evolution of modular proteins is explored by 

employing graph theory to accurately characterize the properties of modularity. 

In comparison to phylogenetic trees, graphs or “networks” represent biological 

data as unrestricted pairwise connections and allow genetic material to have 

multiple sources [Halary et al., 2010]. Therefore, a network considers the 

independent domains of modular proteins as individual genetic sources, and 

enables the exploration of modularity in proteins [Moore et al., 2008]. Previous 

applications of graph theory have found that biological graphs share many 

features with technological and social networks [Newman, 2003; Barabasi and 

Oltvai, 2004], highlighting the potential for universal laws of networks [Barabasi 

and Oltvai, 2004]. Beyond simply enabling the visualization of modular proteins, 

applying the concepts and techniques of network theory to biological data 

facilitates the exploration, discovery, and description of previously unknown 

properties and mechanisms of protein evolution. 
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To date, a considerable amount of research has been conducted on the modular 

rearrangements of proteins in a variety of species [Wuchty and Almaas, 2005; 

Moore et al., 2008; Kersting et al., 2012]. From these studies we have learned 

that rearrangement event such as domain fusion and fission, as well as large-

scale chromosomal events such as intragenic duplications, intergenic repeats, and 

exon relocation all play an important role in the evolution of modular proteins 

[Moore et al., 2008]. In addition, single-species networks have been successfully 

applied to understand the evolutionary impact of domain modularity [Wuchty, 

2001; Wuchty and Almaas, 2005]; nonetheless, much work remains to fully 

understand the impact of domain modularity and species-specific rearrangement 

in vertebrates.   

 

The data used in this chapter consisted of the CDSs from 30 vertebrate genomes, 

and the corresponding constructed Pfam domain co-occurrence network 

(Appendix 4.1). Here our goal is to determine the global properties of the 

domains combinations and rearrangements in the evolution of modular proteins 

in vertebrates including the discovery of species-specific domain rearrangement 

events that may result in potential functional discordance. 

 

4.3 Materials and Methods 

4.3.1 Bipartite graph and co-occurrence unipartite-projection of Pfam-A 

data: 

The profile hidden markov models (profile HMMs) of 14,831 Pfam-A domain 

families were downloaded from the Pfam website (v27.0) [Finn et al., 2014]. A 

total of 30 high-coverage genomes were downloaded from Ensembl Gene 73 on 
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Ensembl BioMart [Flicek et al., 2014] (Table 4.1). These annotated genomes 

together with the HMMscan function within standalone HMMER (v3.1b1) 

[Eddy, 1998] provided the sequence information required to identify homology 

of domains, i.e. Pfam-A motifs. Sequences homologous to Pfam-A domains were 

only reported if they passed a conservative E-value threshold of 1.0E-20. 

HMMscan homology connections were then filtered to account for the possibility 

of erroneously assigning Pfam-A domains to a gene due to the presence of either 

a composite domain or a domain family member.  

 

Composite Pfam-A domains are comprised of smaller Pfam-A domains (i.e. 

component domains) and may generate false domain combination preferences if 

component domains are not removed from the database. Domains were classified 

as component domains if they found within a larger Pfam-A domain. To account 

for the imperfect nature of determining exact alignment positions [Eddy, 2010], a 

component was allowed to have 5% of its sequence to be partially unaligned 

(either 5’ or 3’) to the composite domain. Identified components were removed 

from subsequent analysis. If multiple tiers of composites/components were 

identified only the largest overall composite was included in subsequent 

analyses, if multiple composites were found to share the largest length, the 

composite with the lowest e-value was selected.  

 

Domain families are characterized by possessing multiple Pfam-A domains with 

similar sequence motifs and may generate false domain combination preferences 

due to multiple Pfam-A domains aligning to the same position within a protein. 

To account for this potential error, if 80% of a Pfam-A domain was found to 
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overlap with another domain on a protein, only the Pfam-A domain with the 

lowest e-value was included in subsequent analyses. If multiple tiers of overlaps 

were identified only the Pfam-A domain with the lowest e-value was included in 

subsequent analyses. It should be noted that if there was evidence of domain 

families within a composite Pfam-A domain, the composite method of domain 

selection was preferred.   

 

The filtered homology connections (filtered using the program 

‘Pfam_Checker.py’ [Appendix 4.2]) were then used to construct a bipartite graph 

consisting of edges between Pfam-A domains and protein sequences (i.e. Pfam-A 

homology graph) (Appendix 4.1) using the program ‘Pfam_Checker.py’ 

(Appendix 4.2). The bipartite graph was subsequently separated into connected 

components to create Pfam-A homology sub-graph. A Pfam-A domain 

unipartite-projection was generated from the bipartite graph by removing each 

protein sequence node and inferring the connections between the Pfam-A 

domains based on the removed protein sequences (i.e. Pfam-A co-occurrence 

graph) (Appendix 4.1). Where possible Pfam-A co-occurrence sub-graphs were 

created. 
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Table 4.1: Details on the vertebrate genomes used in this study. 

 

The common name, genome assembly, fold coverage, and contig N50 are given 

for each the 30 vertebrate genomes used in this chapter. All details given were 

gathered from Ensembl [Flicek et al., 2014], NCBI Assembly, and respective 

genome publications. The contig N50 of the stickleback was not specified (n.s.). 

Species Assembly Coverage Contig N50

Anole Lizard AnoCar2.0 7 79kb

Cat Felis_catus_6.2 2 & 12 20kb

Chicken Galgal4 12 279kb

Chimpanzee CHIMP2.1.4 6 50kb

Coelacanth LatCha1 77.5 12kb

Cow UMD3.1 9 96kb

Dog CanFam3.1 7.6 267kb

Elephant loxAfr3 7 69kb

Fugu FUGU4.0 8.5 52kb

Gibbon Nleu1.0 5.6 35kb

Gorilla gorGor3.1 2.1 & 35 11kb

Guinea Pig cavPor3 6.79 80kb

Horse EquCab2 6.79 112kb

Human GRCh37.p12 High 36Mb

Macaque MMUL 1.0 5 25kb

Marmoset C_jacchus3.2.1 6.6 29kb

Microbat Myoluc2.0 7 64kb

Mouse GRCm38.p1 High 32Mb

Opossum MonDom5 7.33 108kb

Orangutan PPYG2 6 15kb

Panda ailMel1 56 39kb

Platypus OANA5 6 11kb

Platyfish Xipmac4.4.2 19.6 22kb

Rabbit OryCun2.0 7 64kb

Rat Rnor_5.0 3 & 6 52kb

Stickleback BROAD S1 11 n.s.

Turkey Turkey_2.01 17 12kb

Xenopus JGI41 7.6 22kb

Zebrafinch taeGut3.2.4 6 39kb

Zebrafish Zv9 7.5 1Mb



 164 

4.3.2 Pfam-A domain co-occurrence graph centrality: 

The following centrality measurements: degree, closeness, and betweenness, 

were calculated for each node within the Pfam-A co-occurrence sub-graphs using 

the program ‘General_Stats.py’ (Appendix 4.2). The calculation of degree 

centrality was independent of both in-degree and out-degree measurements as the 

sub-graphs were undirected. Closeness centrality values were normalized by the 

total number of remaining nodes (𝑛 − 1). Betweenness centrality values were 

normalized by maximum number of pairs of nodes not including the node of 

interest (
2

(𝑛−1)(𝑛−2)
) (as per Section 1.6.2.1).  

 

4.3.3 Node removal within unipartite-projected co-occurrence graph: 

Removing the 50 nodes with the highest degree, betweenness, or closeness 

centrality values from the Pfam-A co-occurrence sub-graphs allowed us to 

determine the role these nodes play in the structure of the graph. Using the 

program ‘node_deletion.py’ (Appendix 4.2), the impact was measured by 

calculating graph transitivity (see Section 1.5.2.4) [Luce and Perry, 1949] and 

average clustering (see Section 1.5.2.4) [Watts and Strogatz, 1998] pre- and post-

removal of nodes. Nodes were also removed at random from the graph and the 

same calculations were made. The process of selection and removal of random 

nodes from the graph was repeated 100 times.  

 

4.3.4 Pfam-A co-occurrence graph assortativity: 

Assortativity of the Pfam-A co-occurrence graph was visualized by plotting each 

edge of the graph by the degree (K) of its respective nodes. Assortativity was 

measured by: i) the linear regression of the average degree of nearest neighbors 
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for a node (<Knn>) plotted against K, and ii) the assortativity coefficient (r) 

[Newman, 2002; Newman, 2003], this was implemented in the program 

‘Network_Assortativity.py’ (Appendix 4.2). A confidence interval of the 

assortativity coefficient can be determined by creating randomized graphs that 

share the same degree distribution of the graph in question [Foster et al., 2010]. 

To determine the confidence interval, the program “Random_Assortativity” 

(Appendix 4.2) generated 10,000 randomized networks and computed the 95% 

confidence interval. 

 

4.3.5    Identification of domain co-occurrence communities: 

Pfam-A co-occurrence communities were identified from the largest Pfam-A co-

occurrence sub-graph using the NeMo plugin [Rivera et al., 2010] from the 

cytoscape package [Shannon et al., 2003]. NeMo identifies communities using a 

hierarchical method that permits the detection of internal sub-communities. The 

NeMo communities produced were evaluated as either independent (i.e. with 

sub-communities) or combined (i.e. without sub-communities). The remaining 

Pfam-A co-occurrence sub-graphs were automatically classified as independent 

communities as they lacked connections elsewhere in the graph. 

 

4.3.6 GO term associations and relevance in Pfam-A co-occurrence 

communities: 

Pfam-A co-occurrence communities were evaluated in relation to gene and 

domain GO terms to determine if community structure correlated with function. 

This was achieved using the programs ‘NeMo_Gstats.py’ (Appendix 4.2) for 

gene level analysis and ‘NeMo_Dstats.py’ (Appendix 4.2) for domains. As the 
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Pfam-A co-occurrence communities exclude gene nodes, genes were associated 

using the initial Pfam-A homology sub-graphs. Genes were only associated with 

a community if they did not possess homology outside the community. To 

circumvent potential species-based biases in GO-term annotation, only human 

genes were allowed to be associated with a community. Gene GO terms were 

downloaded from Ensembl Gene 76 on Ensembl BioMart [Flicek et al., 2014] 

and Pfam-A GO terms were downloaded from the gene ontology website 

[Ashburner et al., 2000]. GO term enrichment was evaluated using Fisher's exact 

test and chi-squared test. Where both calculations were made, Fisher's exact test 

was favored. To determine if communities were accurately displaying evidence 

of GO term enrichment (i.e. not due to due to gene- or domain-specific GO terms 

only found once in the network) we calculated the recall and precision accuracy 

of each GO term associated with a community. Recall is the ratio of the specific 

GO term displayed by community members to the remainder of the network. 

Precision is the ratio of community members with the GO term to the community 

members without. 

 

4.3.7 Enrichment of innate immunity in Pfam-A co-occurrence 

communities: 

Pfam-A communities were also evaluated for the presence of genes involved in 

innate immunity using the program ‘NeMo_IIstats.py’ (Appendix 4.2). GO terms 

associated with innate immune response were downloaded from AMIGO 

[Carbon et al., 2009] and were used to filter the previously downloaded gene GO 

terms (described in Section 4.2.6). Using similar methodologies to Section 4.2.6, 

each community was tested for enrichment of innate immune specific GO terms 
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using the Fisher's exact and chi-squared tests. The accuracy of functional 

enrichment was determined by calculating recall and precision as before (see 

Section 4.2.6.). 

 

4.3.8 Identification of species-specific domain combinations: 

Human, mouse, and dog orthologous gene families were downloaded from 

Ensembl Gene 76 on Ensembl BioMart [Flicek et al., 2014]. Orthologous gene 

families were only included if all genes were present within the same Pfam-A 

homology sub-graph. Presence or absence of the Pfam-A domain was determined 

for each gene from the bipartite similarity graph using the programs 

‘ortho_domain_networker.py’ (Appendix 4.2). Orthologous families that 

contained a member that had either a gain or loss of domain were subsequently 

aligned using PRANK [Loytynoja and Goldman, 2005]. The domain gain or loss 

events identified were then assessed at the alignment level to identify false 

positives due to sequence polymorphisms, this was achieved using the program 

‘domain_checker.py’ (Appendix 4.2). MSAs not flagged as false positives were 

confirmed using Ensembl BLAST by searching for the identified domain gain or 

loss [Flicek et al., 2014].  

 

4.4 Results 

4.4.1 Construction of the domain co-occurrence graph 

Modular proteins are typically characterized by encompassing multiple 

functional domains [Moore et al., 2008]. However, the functional domains that 

are capable of residing or co-occurring within a given modular proteins have 

been proposed to be limited, suggesting that a number of domains function 
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unaccompanied by other domains [Tordai et al., 2005]. To identify the functional 

domain combinations permitted in the evolution of vertebrate modular proteins, 

we constructed a bipartite graph (Section 1.5.1) from two independent datasets: 

the protein sequences of 30 vertebrate genomes and the HMM profiles from the 

Pfam-A domain database. Sequence homology provided connections between the 

nodes of these independent datasets. Accurate assessment of the Pfam-A domain 

database required our analysis to account for both composite domains (i.e. Pfam-

A domains that are comprised of smaller Pfam-A domains) and domain families 

(i.e. multiple Pfam-A domains with similar sequence motifs) as both categories 

bias results by creating false signatures of domain co-occurrence. See Section 

4.2.1 for details on removing biases from composite domains and domain 

families.  

 

Investigating the structure of the bipartite graph revealed 3,336 connected 

components, with a single giant connected component comprising 36.14% of all 

homology connections and 11.93% of all Pfam-A domains. The presence of this 

giant connected component in addition to other smaller components with 

multiple domains indicate that approximately 40% of all known functional 

domains are functionally promiscuous (i.e. they may co-occur alongside at least 

one other functional domain in a modular protein) and there are specific 

functional domains that reside within multiple modular proteins. The majority of 

connected components (2,816) exhibited only a single Pfam-A domain, 

indicating that the majority (60%) of known biological domains are functionally 

exclusive and therefore cannot occur within a modular protein.  
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Although the majority of vertebrate proteins are not modular in nature, an 

accurate global description of protein evolution requires us to account for those 

proteins that are modular. Protein kinases form a large gene family, they are also 

modular and frequent within our dataset, but the kinases display preferential 

functional domain combinations [Manning et al., 2002]. And so domains of high 

frequency in our dataset may not necessarily be domains that are permitted in 

many combinations in modular proteins. To determine the relationship between 

the function of a domain and its presence in modular proteins we measured the 

unbiased functional permissiveness of each domain in vertebrates. We 

constructed Pfam-A unipartite projections (Figure 4.1) by inferring connections 

between two Pfam-A domains if they co-occur on the same gene, following the 

process described in Section 1.5.1. Constructing the unipartite projections 

resulted in 520 Pfam-A unipartite graphs, with a single giant connected 

component consisting of 43.60% of all co-occurrence connections and 28.76% of 

the co-occurring Pfam-A domains. The presence of approximately a quarter of 

all co-occurring functional domains in a single component indicates that specific 

functional domains are able to co-occur in numerous combinations and therefore 

are like “glue” that holds the connected component together. In the next section 

(Section 4.3.2) we explore the properties of this component to determine if 

kinases (in addition to other domains) are representative of the “glue” pattern. 

Excluding the giant connected component, the remaining 519 components 

exhibit an average of 3 ± 2 domains. The small average of the remaining 519 

components indicates that these domains may co-occur but in limited 

combinations. 
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Figure 4.1: Visiualization of the Pfam-A co-occurrence graph. 

  

The Pfam-A co-occurrence network shows each of the 1996 Pfam-A domains found in modular proteins (i.e. nodes) as blue dots. Grey lines (i.e. 

edges) indicate that the connected Pfam-A domains are found to both reside within a single modular protein (i.e. co-occurrence). Co-occurring 

domains are separated into 520 connected components (i.e. groups of nodes connected by edges that share no edges elsewhere in the network). 

The presence of the large connected component (large circle) indicates that some domains are able to co-occur in numerous combinations and 

hold the connected component together.  
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4.4.2 Highly central Pfam-A domains are most functionally permissive  

The properties of the Pfam-A co-occurrence network are characteristic of a scale-

free graph (Figure 4.2). This is expected for biological graphs [Barabasi and 

Oltvai, 2004] and indicates that modular proteins exhibit a small number of 

functional domains that are capable of functioning in a multitude of 

combinations, i.e. the “glue” or hub nodes, whereas the majority of the functional 

domains are limited in their functional combinations [Barabasi and Oltvai, 2004]. 

To identify which of the functional domains act as hub nodes, and therefore 

which of the domains have the most influence in modular proteins we calculated 

degree, closeness, and betweenness centrality for each node in the Pfam-A co-

occurrence graph (See Section 1.5.2.1 for details on the centrality 

measurements). Calculating the centrality measurements identified several 

domains that strongly influenced (greater than expected by random chance) the 

possible functional combinations exhibited by modular proteins (Figure 4.3). Of 

these domains, Pkinase was found to have the greatest overall influence as the 

domain exhibited the highest values for degree, closeness, and betweenness 

centrality. This finding is perhaps unsurprising given the wide range of 

functional domains reported alongside kinase domains in the human genome 

[Manning et al., 2002]. Many of the other influential domains – Ank2, SH2, 

7tm_1, and RhoGAP – are motifs frequently observed in biology and found in 

proteins with a multitude of functions [Pierce et al., 2002; Mosavi et al., 2004; 

Tcherkezian and Lamarche-Vane, 2007; Filippakopoulos et al., 2008] (Table 

4.2). The observed impact of removing central domains (i.e. high degree, 

closeness, and betweenness) was measured using two graph-clustering 

measurements: average clustering and transitivity (See Sections 1.5.2.4 for 
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details on measurements). The observed decrease in average clustering upon 

removing central domains – especially domains with high degree centrality – 

indicates a decrease in individual domains displaying clique-structure with their 

nearest neighbors (including individual nodes becoming detached from the 

network altogether). In contrast, the observed increase in transitivity upon 

removing central domains indicates an increase in cliques among connected 

triplets (i.e. three nodes connected by at least two edges) (Figure 4.3). Taken 

together, these results indicate that removing central domains is resulting in 

stronger community/clique structure among the network by losing individual 

sparsely connected domains that frequently form triplets but infrequently form 

cliques. This interpretation is supported by a continuous decrease of triangles 

(i.e. triplets displaying clique structure) in the transitivity calculation after each 

deletion event, demonstrating a much greater decrease in the total number of 

triplets to result in the continuous increase in transitivity (Appendix 4.3). From a 

biological perspective, these central or “glue-like” domains are highly 

promiscuous, they are present in many different modular proteins, and without 

these central domains there would be no other relationship between these 

proteins. 
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Figure 4.2: The degree distribution of the Pfam-A co-occurrence graph is 

scale-free 

 The chart shows the proportion of domains in the co-occurrence network on the 

y-axis that exhibit the degree centrality value (i.e. the number edges possessed by 

the node) on the x-axis. The graph indicates that the majority of domains in the 

co-occurrence network exhibit low degree centrality values with approximately 

50% of domains exhibiting a degree centrality of one (i.e. only exhibit a single 

edge). Additionally, the graph shows that a much smaller number of domains 

exhibit high degree centrality values (≥10). In graph theory this degree 

distribution pattern is termed scale-free as it adheres to a power law slope 

(𝑃(𝑘) ~ 𝑘−ϒ)  (see Section 1.5.1 for details). This interpretation is supported by 

the slope of the least squares following a power law (y = 0.84x
-0.64

). Scale-free 

graphs are characterized by having a small number of nodes that possess far 

more connections than the other nodes within the network. These highly 

connected nodes are termed “hubs” and highly influential within the network.  

Slope of least squares fit: y = 0.84 x
(- 0.64)
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Figure 4.3:  Changes to average clustering and transitivity upon removal of 

domains. 

 

The impact removing nodes with high centrality on two measures of graph 

clustering: (a) average clustering, and (b) transitivity. Both (a) and (b) show their 

respective measurement on the y-axis for each domain removed (on the x-axis). 

The order in which domains were removed from the network was either based on 

centrality values (see Section 1.5.2.1) – degree (violet), closeness (green), or 

betweenness (orange) – or by random selection (red). Random selection was 

repeated 100 times for an accurate sampling of random domains. See Table 4.2 

a.

b.
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for the list of domains removed by centrality values. (a) illustrates the affect of 

node deletion on the average clustering, a measure of clique structure among 

each given node and the nearest neighbors of that given node within the network 

(see Section 1.5.2.4 for details). The chart indicates that removing domains based 

on degree or betweenness centrality decreased the average clustering of the 

network far more than expected at random. In comparison, removing domains 

based on closeness centrality decreased the average clustering only slightly more 

than expected at random. In both instances the decrease in average clustering 

shows a decrease in the number of individual domains displaying clique-

structure with their nearest neighbors within the network. (b) illustrates the affect 

of node deletion on transitivity, a measure of clique structure among connected 

triplets (i.e. three nodes connected by edges) within the network (see Section 

1.5.2.4 for details). All three centrality measurements were found to increase the 

transitivity of the network far more than expected at random. This indicates that 

the removal of central domains is increasing the number of cliques among 

connected triplets.  
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Table 4.2: The Pfam-A domains removed from the co-occurrence graph to 

measure average clustering and transitivity. 

 

#1 Node Deleted Value Node Deleted Value2 Node Deleted Value2

1 Pkinase 67 Pkinase 0.31209 Pkinase 0.56188

2 Pkinase_Tyr 43 Pkinase_Tyr 0.29145 RabGAP-TBC 0.21173

3 VWA 18 RhoGEF 0.27016 Pkinase_Tyr 0.19535

4 GVQW 18 Ank_2 0.26826 Ank_2 0.18470

5 7tm_1 17 SH2 0.26503 SNF2_N 0.12246

6 Ank_2 16 F5_F8_type_C 0.26321 Myosin_head 0.11926

7 SNF2_N 15 C2 0.26105 RhoGAP 0.11140

8 RhoGEF 15 Fz 0.26081 7tm_1 0.09532

9 Laminin_G_2 14 Myosin_head 0.26045 Filament 0.08818

10 Trypsin 14 RabGAP-TBC 0.25569 Trypsin 0.08358

11 RhoGAP 14 Kringle 0.25489 RhoGEF 0.08199

12 SPRY 13 RBD 0.25421 GVQW 0.07881

13 7tm_2 13 SH3_1 0.25376 SH2 0.07775

14 Cadherin 13 F_actin_bind 0.25376 HECT 0.07246

15 Y_phosphatase 13 I-set 0.25365 NACHT 0.07044

16 VWD 12 Inhibitor_Mig-60.25354 F5_F8_type_C 0.06922

17 FERM_M 12 Miro 0.25132 C2 0.06664

18 RabGAP-TBC 12 ANF_receptor 0.25088 Bromodomain 0.06518

19 MAM 11 OLF 0.25033 VWA 0.06453

20 CUB 11 Guanylate_cyc 0.24956 DEAD 0.06102

21 C2 11 Death 0.24902 Y_phosphatase 0.05927

22 HECT 10 CNH 0.24859 Fz 0.05354

23 Bromodomain 10 Ephrin_lbd 0.24752 SET 0.05225

24 Myosin_head 10 EphA2_TM 0.24752 PRY 0.05183

25 Fz 10 Recep_L_domain0.24741 ANF_receptor 0.05152

26 DUF3497 10 SAM_1 0.24741 Exo_endo_phos 0.04814

27 ANF_receptor 10 Furin-like 0.24741 SPRY 0.04783

28 AAA 10 GF_recep_IV 0.24741 MHC_I 0.04776

29 Kinesin 9 Sema 0.24741 PARP 0.04709

30 ABC_tran 9 DUF4071 0.24730 RVT_1 0.04522

31 NACHT 9 GTPase_binding0.24730 C1-set 0.04467

32 UCH 9 DCX 0.24720 UCH 0.04143

33 Laminin_G_1 9 ApoL 0.24720 Cadherin 0.03908

Degree	Centrality Closeness	Centrality Betweeness	Centrality
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Table 4.2: The Pfam-A domains removed from the co-occurrence graph to 

measure average clustering and transitivity. 

 

The order of removal of nodes, the functional domain removed, and centrality 

score for each of the centrality measurement assessed is given. The centrality 

scores used for selection were based on the original Pfam-A co-occurrence 

graph, the scores given for closeness and betweenness are rounded to increase 

legibility of the table. 

 

#1 Node Deleted Value Node Deleted Value2 Node Deleted Value2

34 F5_F8_type_C 9 PBD 0.24720 PH 0.03772

35 SH2 9 KSR1-SAM 0.24720 PWWP 0.03735

36 DEAD 8 POLO_box 0.24720 MAM 0.03584

37 FERM_N 8 Mst1_SARAH 0.24720 Sec7 0.03445

38 PARP 8 Focal_AT 0.24720 Transposase_22 0.03436

39 SET 8 DUF1908 0.24720 MIT 0.03435

40 RVT_1 8 PKK 0.24720 I-set 0.03241

41 NTR 8 Ig_Tie2_1 0.24720 Guanylate_kin 0.03182

42 Filament 7 PH_3 0.24720 PABP 0.03097

43 SRCR 7 Trypsin 0.24635 VWD 0.02988

44 I-set 7 Filament 0.24603 NTR 0.02923

45 FERM_C 7 MAM 0.24096 Laminin_G_2 0.02817

46 Guanylate_kin 7 Guanylate_kin 0.24076 AAA 0.02774

47 Laminin_N 7 RGS 0.24055 RRM_1 0.02773

48 RRM_1 7 MIT 0.23995 CUB 0.02750

49 A2M_recep 7 7tm_1 0.23945 OLF 0.02732

50 PWWP 7 PX 0.23895 7tm_2 0.02656
1Deletion iteration
2Rounded values

Degree	Centrality Closeness	Centrality Betweeness	Centrality
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4.4.3 Modular proteins exhibit a preference for domains with similar 

functional permissiveness  

To determine the influence of specific domain combinations on modular proteins 

we calculated the degree assortativity (i.e. preference of nodes to share edges due 

to similar degree centrality values of the respective nodes) of each co-occurrence 

connection within the Pfam-A co-occurrence graph (See Section 1.5.2.2 for 

details on calculating assortativity). The Pfam-A co-occurrence graph was 

determined to be assortative from a neighbor connectivity plot, indicating a 

preference of nodes to attach if they share exhibit degree values (Figure 4.4). It is 

possible that the large number of low degree nodes may have unrealistically 

influenced this measurement, and so we also obtained the degree assortativity 

coefficient for the network – which we calculated as 0.03301 and was 

determined to be significant using 10,000 randomized graphs with the same 

degree distribution [Foster et al., 2010] (Appendix 4.4). Together these network 

metrics indicate that Pfam-A co-occurrence is an assortative network comparable 

for example to the patterns observed in co-authorship networks, which are 

characterized by a preferential attachment of nodes with similar degree centrality 

values [Newman, 2003]. This finding is in direct contrast to the disassortative 

mixing patterns (i.e. preferential attachment of high-degree nodes with low-

degree nodes) that characterize most biological networks [Newman, 2002]. 

Therefore, in our exploration of vertebrate modular protein evolution we see that 

domains with similar domain centrality values are more likely to co-occur. For 

example, the modular protein HACE1 (HECT domain and ankyrin repeat 

containing E3 ubiquitin protein ligase 1) [Anglesio et al., 2004; Flicek et al., 

2014] contains the HECT and Ank_2 (Ankyrin 2) domains whereas TNKS2 
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(TRF1-interacting ankyrin-related ADP-ribose polymerase 2) [Lyons et al., 

2001; Flicek et al., 2014] contains the Ank_2 and PARP (Poly ADP ribose 

polymerase) domains, in both cases the pair of domains have similar degree 

centrality values. The results indicate that modular proteins are preferentially 

constructed with domains exhibiting similar co-occurrence possibilities (i.e. 

permissiveness to reside with other domains). 
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Figure 4.4: Assortativity of the Pfam-A co-occurrence graph. 

 

One method for measuring network assortativity is generating a neighbor 

connectivity plot by plotting the average degree centrality of nearest neighbors 

<Knn> on the y-axis for a node with degree K on the x-axis. As illustrated in the 

box above, <Knn> is the average degree centrality of the nodes that share an 

edge with the given node (i.e. nearest neighbors of the given node), for example, 

the <Knn> for node F is the average degree centrality of C and E (
𝐾𝐶 + 𝐾𝐸

2
 ) and 

is plotted against the K of F. The chart shows that the Pfam-A graph displays 

assortative mixing patterns as the positive slope (y = 0.2734x + 3.937) of the 

trend line (i.e. linear regression of K and <Knn>) indicates that the degree of a 

given node (K) increases alongside the degree of its nearest neighbors <Knn>. It 

should be noted that the large number of nodes with low degree values may have 

unrealistically influenced the linear regression – causing the low r-squared value 

of 0.00771 – and indicates that additional confirmation is required.   
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4.4.4 Functional domain combinations are influenced by function 

Many Pfam-A domains, such as Pkinase and Pkinase_Tyr, have been associated 

with specific biological functions [Manning et al., 2002; Scheeff and Bourne, 

2005]. Kinase domains in particular are documented to frequently co-occur with 

a variety of functional domains to construct a functional modular protein 

[Manning et al., 2002]. We wished to determine if Pfam-A domain combinations 

were associated with function at three distinct levels: i) domain functional 

enrichment (do domain combinations occur more often between domains of 

similar function?), ii) gene functional enrichment (do specific domain 

combinations occur more often in genes of similar function?), and iii) biological 

pathway functional enrichment (do domain combinations occur more frequently 

in specific pathways?). The innate immune system was selected as the set of 

biological pathways for analysis of functional enrichment.  

 

Pfam-A communities were generated from each of the 518 co-occurrence graphs 

to identify frequently connected domain combinations (see Section 1.5.2.3 for 

description of network communities). Each community was assessed for 

potential functional enrichment using GO terms associated with either the Pfam-

A domains (in the case of domain functional enrichment analysis) or the 

associated human proteins (in the case of gene and pathway functional 

enrichment analyses). Identifying functional enrichment was achieved by using a 

one-tailed (enrichment required) Fisher's exact test. In total, there were 1,376 

domains, 26,843 proteins, and 147 innate immune GO terms identified as 

significantly enriched (P < 0.05). However, this approach includes GO terms that 

are only associated with a single protein or domain and were not found elsewhere 
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in the Pfam-A network. Such GO terms do not accurately reflect enrichment due 

to their small sampling. To more accurately quantify community enrichment, two 

precision measurements (precision and recall) were also calculated. Using a 

precision threshold of 0.5 (i.e. requiring 50% of the community to possess the 

GO term) refined the results down to 243 domains, 4,363 proteins, and 20 innate 

immune genes that had GO terms that were significantly enriched (P < 0.05). 

Table 4.3 contains details on the communities that exhibited the highest precision 

and recall scores (i.e. fraction of GO term within the community vs. the entire 

network). Communities exhibiting high recall possess functional enrichment that 

is unique and not frequently observed elsewhere in the network. Indicating that 

the particular domain combination is not frequently observed in other 

combinations. Communities exhibiting higher precision possess more members 

(i.e. domains and genes) exhibiting a specific functional enrichment, indicating 

that more of the domain combination is required for the function. Therefore, 

communities exhibiting both high recall and precision indicate that the majority 

of the domain combination is required for a unique function. In summary, we 

show that modular proteins occasionally require a specific combination of 

domains to function independently or within a pathway such as innate immunity, 

or they may require a combination of functionally similar domains to function. 

For a full list of the enrichment findings see Appendix 4.5. 

 

From our analysis we found that multiple functionally enriched communities 

displayed consistently low degree centrality values with an average of 1.8 and a 

standard deviation of 1.2 (Appendix 4.6). Low centrality would indicate that 

these communities contain domain combinations that have limited functional 
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combinations. Degree centrality was also determined to be similar among 

members of the same community, with an average standard deviation across all 

communities of 0.17 (Appendix 4.6). The lack of deviation in degree that we 

observe in domains that make up the vertebrate modular proteins is also 

supported by the assortativity of the network. Therefore, it appears that 

functionally enriched domain combinations are restricted in their ability to 

operate in other combinations and favor combinations of domains with similar 

restrictions.
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Table 4.3: Community structure and gene GO-term, domain GO-term, and innate immune functional enrichment. 

 

 

 

Term
Group 

Size

Members 

w/Term

Non-group 

w/Term
Recall Precision

Fisher's Exact 

odds ratio

Fisher's 

Exact P-value

cation-transporting ATPase activity 27 27 0 1.000 1.000 inf 7.10E-85

connexon complex 22 22 0 1.000 1.000 inf 4.35E-71

neurotransmitter:sodium symporter activity 21 21 0 1.000 1.000 inf 2.82E-68

diacylglycerol kinase activity 15 15 0 1.000 1.000 inf 6.14E-51

calcium-dependent cysteine-type endopeptidase activity 15 15 0 1.000 1.000 inf 6.14E-51

protein-glutamine gamma-glutamyltransferase activity 9 9 0 1.000 1.000 inf 1.45E-32

ribose phosphate diphosphokinase activity 5 5 0 1.000 1.000 inf 2.01E-19

glucokinase activity 5 5 0 1.000 1.000 inf 2.01E-19

phosphopyruvate hydratase activity 5 5 0 1.000 1.000 inf 2.01E-19

phosphopyruvate hydratase complex 5 5 0 1.000 1.000 inf 2.01E-19
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Table 4.3 Community structure and gene GO-term, domain GO-term, and innate immune functional enrichment. 

 

 

 

Term
Group 

Size

Members 

w/Term

Non-group 

w/Term
Recall Precision

Fisher's Exact 

odds ratio

Fisher's 

Exact P-value

DNA ligase (ATP) activity 4 4 0 1.000 1.000 inf 1.52E-12

thiamine pyrophosphate binding 3 3 0 1.000 1.000 inf 7.56E-10

negative regulation of transcription, DNA-dependent 3 3 0 1.000 1.000 inf 7.56E-10

S-adenosylmethionine biosynthetic process 3 3 0 1.000 1.000 inf 7.56E-10

methionine adenosyltransferase activity 3 3 0 1.000 1.000 inf 7.56E-10

protein-arginine deiminase activity 3 3 0 1.000 1.000 inf 7.56E-10

folic acid-containing compound biosynthetic process 3 3 0 1.000 1.000 inf 7.56E-10

intramolecular transferase activity, phosphotransferases 3 3 0 1.000 1.000 inf 7.56E-10

arginyl-tRNA aminoacylation 3 3 0 1.000 1.000 inf 7.56E-10

arginine-tRNA ligase activity 3 3 0 1.000 1.000 inf 7.56E-10
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Table 4.3 Community structure and gene GO-term, domain GO-term, and innate immune functional enrichment. 

 

The 10 communities with the highest precision and recall for gene/protein, domain, and innate immune system functional enrichment. 

Calculations were determined using the size of the community (Group Size), the number of community members with the term in question 

Term
Group 

Size

Members 

w/Term

Non-group 

w/Term
Recall Precision

Fisher's Exact 

odds ratio

Fisher's 

Exact P-value

RIG-I signaling pathway 3 2 1 0.667 0.667 28598 8.80E-08

positive regulation of type I interferon-mediated signaling pathway 3 2 5 0.286 0.667 5718 6.16E-07

positive regulation of innate immune response 2 2 8 0.2 1.000 inf 4.40E-07

type I interferon-mediated signaling pathway 9 9 88 0.093 1.000 inf 2.08E-20

interferon-gamma-mediated signaling pathway 9 9 126 0.067 1.000 inf 4.54E-19

innate immune response 24 16 485 0.032 0.667 56.88247423 2.31E-18

innate immune response 17 10 491 0.02 0.588 40.13674716 3.97E-11

innate immune response 4 4 497 0.008 1.000 inf 1.49E-06

innate immune response 2 2 499 0.004 1.000 inf 1.22E-03

innate immune response 2 2 499 0.004 1.000 inf 1.22E-03

In
an

te
 I

m
m

u
n
e 

E
n

ri
ch

m
en

t
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(Members w/Term), and the number of non-community members with the term (Non-group w/Term). The results of the Fisher's exact test (odds 

ratio and P-value) are given. An odds ratio of “inf” (infinity) indicates a large difference. 
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4.4.5 Species-specific domain combinations exhibit unique properties 

Species-specific domain combinations in modular proteins may represent novel 

functional domain combinations. We wished to identify if there were species-

specific combinations present in the vertebrate modular protein network and if 

these novel combinations displayed similar characteristic to our previous 

findings of the entire network. To this end we identified species-specific domain 

combinations in the Pfam-A co-occurrence network using orthologous genes 

from human, mouse, and dog.  

 

The domains responsible for the establishment of the species-specific 

combinations were classified by protein position (5’, internal, and 3’) and most 

likely mechanism that created the event. Three creation mechanisms were 

observed within the Pfam-A network: (i) complete domain events (CDEs) 

characterized by indels that contain an entire Pfam-A domain motif, (ii) 

incomplete domain events (IDEs) characterized by indels that only contain a 

fraction of a Pfam-A domain motif, and (iii) composite gene events (CGEs) 

characterized by a single gene that contains the coding sequence of two 

nonallelic genes (Figure 4.4a).  

 

Identification of species-specific domains were limited to human and mouse to 

minimize false positives due to poor assemblies and low alternative transcript 

counts (Appendix 4.7). Analysis of human and mouse orthologs resulted in the 

identification of 122 potential species-specific domain combinations. Manual 

inspection and Ensembl BLAST [Flicek et al., 2014] identified 113 false 

positives present due to poor alignment and alternative transcripts. Of the 
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remaining 9 events there were 2 IDEs, 2 CDEs, and 5 CGEs (Table 4.4). 

Calculating the assortativity of the modular proteins exhibiting species-specific 

combinations alone (the edges of species-specific modular proteins) resulted in 

an assortativity coefficient of -0.1807 (Appendix 4.8), indicating disassortative 

mixing patterns. Therefore in this small subset of species-specific combinations 

there is a preferential attachment of high-degree nodes with low-degree nodes, 

similar to most biological networks [Newman, 2002]. This is in direct contrast to 

the assortative mixing patterns observed for the entire network that indicated a 

preference for modular proteins to incorporate domains with similar combination 

possibilities. In terms of modular proteins, the domains responsible for species-

specific combinations are frequently found in modular proteins with dissimilar 

co-occurrence ability. 

 

For each of the 9 species-specific events identified, the dog ortholog (where 

available) was used to determine the genetic mechanism behind the event and 

determine if the event was a species-specific domain gain or loss. Dog was 

selected as an output due to being the closest non-euarchontoglires mammal with 

the highest frequency of alternative transcripts (Appendix 4.7). This analysis of 

the data and additional confirmation by Ensembl BLAST (i.e verification with 

genomic DNA) provided evidence for four genetic mechanisms that have 

generated the observed species-specific combination events (Figure 4.4b). These 

mechanisms comprised: (i) the gain or loss of exons, (ii) the extension of exons 

by indels with an additional 5’ splice site, (iii) the partial gain or loss of an exon, 

and (iv), transcription readthrough events (Table 4.4). 
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Table 4.4: Details on species-specific domain combinations identified from the Pfam-A domain co-occurrence graph.  

 

The species, gene name, domain name, and proximal protein location (3’, 5’, and internal) are given for the postulated domain(s) responsible for 

the species-specific combinations. The table indicates the proposed mechanisms and genetic origin of each event. In addition, the current status 

Species	Status	
(Present	or	Absent)

Hs | Mm | Cf

Mouse Kxd1
Ribosomal_L40e,  

ubiquitin
3' CGE Readthrough −  |  +  |  −

Human FIP1L1 Pkinase_Tyr 3' CGE Readthrough +  |  −  |  −

Human PPAN-P2RY11 7tm_1 3' CGE Readthrough +  |  −  |  −

Human PRR5-ARHGAP8 HbrB 3' CGE Readthrough +  |  −  |  −

Human IQCJ-SCHIP1 IQ-like 5' CGE Readthrough +  |  −  |  −

Human AZIN2 Orn_DAP_Arg_deC Internal IDE Exon expansion +  |  −  |  +

Mouse Olfr1260 7tm_1 Internal IDE Partial exon indel −  |  +  |  +

Human MMP13 GVQW 3' CDE  Exon indel +  |  −  |  −

Human NLRP5 PYRIN Internal CDE  Exon indel +  |  −  |  +

Genetic Origin Species Gene Name Domain Name(s) Location  Mechanism  



 191 

of the postulated domain(s) are given in the human (Hs), mouse (Mm), and dog (Cf) Ensembl genome assemblies, status of the postulated 

domain(s) are either present within assembly (+) or absent (-). 
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Figure 4.4: Schematic of the mechanisms and genetic origins of species-

specific domain combinations in the network of human, mouse and dog. 

 

 (a) The three introgressive mechanisms found by the Pfam-A co-occurrence 

network. CDEs involve the gain or loss of a complete Pfam-A domain. IDEs 

involve the gain or loss of an incomplete Pfam-A domain into a protein that 

contains sequence that completes the Pfam-A domain. CGEs involve the fusing 

of two or more non-allelic proteins to become a single protein. (b) Schematic of 

four possible genetic origins responsible for the introgressive events reported in 

the Pfam-A co-occurrence network. Exon gain or loss: In this instance, a unique 

domain combination is created by the fusion (gain) or fission (loss) of an exon 

that contained a Pfam domain. Partial exon gain or loss: In this instance, a unique 

domain combination is created by the fusion (gain) or fission (loss) of a sub-

sequence of an exon that contained a Pfam domain. Exon-expansion: In this 
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instance, a unique domain combination is created by the fusion (gain) or fission 

(loss) of a sequence that contains a splice site that either extends (gain) or 

reduces (loss) an exon sequence. Transcription readthrough: In this instance, a 

unique domain combination is created by the fusion (gain) of an entire gene by a 

readthrough event. 
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4.5 Discussion 

In this chapter, we have used graph theory to globally characterize and identify 

the species-specific domain combination events that underpin the evolution of 

modular proteins in vertebrates. In agreement with previous co-occurrence 

network analyses that used only single-species [Wuchty, 2001; Wuchty and 

Almaas, 2005], our results indicate that domain co-occurrence (i.e. the ability of 

two domains to exist on a common gene) is characteristically scale-free in 

vertebrate evolution. In biological terms, these findings indicate that only a small 

number of domains (i.e. hub nodes, see degree centrality in Table 4.2) are 

tolerated in the construction of most modular proteins, whereas the majority of 

functional domains are restricted in terms of the combinations of modular 

proteins where they are found. The topology of the network was also found to 

exhibit patterns of assortative mixing, indicating that modular proteins favour 

combinations of domains with similar degree centrality values, this is a 

previously undocumented characteristic of modular proteins. The presence of 

such preferences suggests that domains that are restricted in their functional 

combinations are incompatible with domains that have numerous functional 

combinations. 

 

Restrictions in domain combinations in modular proteins is further explained by 

the identification of graph communities, indicating that modular proteins have a 

biological preference for specific combinations of domains beyond just similar 

degree centrality values. A number of graph communities were found to display 

evidence of functional enrichment, indicating that these specific domain 

combinations may be favored for functional reasons. One community of four 
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Pfam-A domains (DNA_ligase_IV, DNA_ligase_A_C, DNA_ligase_A_M, and 

DNA_ligase_A_N) was identified as significantly enriched for DNA ligase 

activity (Table 4.3). All four domains exhibited low degree centrality values 

(Appendix 4.6) in keeping with the assortative mixing of domain co-occurrence. 

The combination of functional enrichment and low centrality was frequently 

observed in our results (Appendix 4.6) and may not be so surprising as functions 

such as DNA ligase activity and RNA polymerase activity (Appendix 4.5) are 

essential biological functions that require specialized domains and may be 

disrupted or become harmful in combinations with domains able to function in or 

interact with a wider array of modular proteins. 

 

The possible domain combinations of modular proteins are further complicated 

by the presence of species-specific domain combinations. Such events represent 

the creation of an altered modular protein due to the gain or loss of a domain 

[Bapteste et al., 2012]. The network topology for our human, mouse and dog 

comparison indicated that humans exhibits more species-specific combinations 

than mouse, but this could be partially explained by the higher frequency of 

alternative transcripts in the human genome assembly (Appendix 4.7). In 

comparison to the assortative mixing patterns of modular proteins, these species-

specific domain combinations are characterized by disassortative mixing 

patterns. The disassortative mixing patterns may be partially explained by the 

non-vertical mechanisms that generated the event, and suggests that assortativity 

could potentially enable the global identification of species-specific domain 

combinations from network topology alone.  
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The biological implication of species-specific domain combinations such as 

those identified in this chapter is the potential alteration of the function of a 

modular protein, this is plausible particularly when considering the observed 

association of functional enrichment with low centrality and the disassortative 

mixing patterns of the species-specific domain combinations. A single human-

specific combination was due to the putative binding domain GVQW [Finn et 

al., 2014]. The presence of GVQW could therefore potentially alter the binding 

capabilities of the modular protein in which it is contained. The mouse-specific 

combination between the YchF-GTPase_C domain (hypothesized to be required 

for signal transduction or ribosome function [Caldon et al., 2001]) and the Nrf1 

gene (transcription factor linked to regulating cellular growth, respiration, heme 

biosynthesis, and mtDNA transcription and replication [Pruitt et al., 2014]) could 

potentially be responsible for various species-specific functions. To properly 

investigate the biological implications of these putative species-specific domain 

combinations events, in vitro functional assessment would be essential to 

determine that the gene and protein products of these putative species-specific 

events are expressed, and if they are expressed, to characterize and compare their 

functions. 

 

In closing, network biology offers a powerful tool for studying species-specific 

domain combinations in the evolution of modular proteins. The identification of 

species-specific combinations and determining their characteristics is an 

important step to understand the causes of species-specific functions. The 

network topology and network analyses carried out in this chapter have enabled 
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us to uncover previously unknown characteristics that are unique to species-

specific events in vertebrate modular proteins.  
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Chapter 5: Discussion 
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In this thesis the innate immune system has been employed as a model system to 

better understand phenotypic discordance at the molecular level that is 

potentially governed by protein functional shift. Our approach was to use large-

scale screens for molecular signatures of positive selection between species as a 

proxy for functional discordance, an approach that has proven successful in 

previous studies of individual proteins [Sawyer et al., 2005; Loughran et al., 

2012, Moury and Simon, 2011; Farhat et al., 2013]. We identified a large 

number of genes displaying species-specific positive selection in the extant 

mouse lineage in particular. Examining these results alongside reported instances 

of functional discordance there are a number of positively selected genes 

implicated in known cases of phenotypic discordance (Section 3.4) [Wakimoto et 

al., 2002; Pumidonming et al., 2011].  

 

Using signatures of positive selection to predict potential functional discordance 

has particular relevance in deepening our understanding of the relationship 

between genotype and phenotype. In the future, this approach could direct the 

choice of model organism in which a drug will be tested, but it could also be 

used to determine which model organism will produce the closest mimic of a 

human genetic disorder. Using the software designed in this thesis, this analysis 

could easily be expanded in future projects to include lineage tests on other 

model organisms such as hamster and rat, and indeed to test non-model 

organisms that are gaining significance in biomedical research [Kim et al., 

2011]. Our findings in Chapter 3 provide a number of potential molecular 

candidates to assist in the current attempt to “humanize” the mouse model for the 

immune system [Garcia and Freitas, 2012; Ito et al., 2012].  
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Large-scale analyses of selective pressure variation is not straight-forward as 

evidenced by the complexity of the software designed in Chapter 2, and also 

there were many difficulties and limitations encountered due to data quality. The 

poor quality of sequences and assemblies resulted in unacceptably high levels of 

false positives in our analysis of the bowhead whale genome (Section 2.12) and 

spurred us to use very high quality genomes in subsequent large-scale analysis 

presented in Chapter 3.  

 

Initially there were 112 genes estimated as positively selected in the bowhead 

lineage alone, upon close inspection and following manual filtering for gene 

annotation and sequencing errors this total was adjusted to just 14 genes. The 

bowhead whale study highlighted the importance of genome and alignment 

quality for the accurate identification of positive selection [Schneider et al., 

2009]. Unfortunately this limits selective pressure analyses to species that have 

genomes of suitably high quality (at minimum  > 6X coverage) (as in Chapter 3). 

Our analysis was also limited by the absence of genome-wide population data for 

the vast majority of currently sequenced species. We implemented population 

level data analytics for the genes displaying positive selection in the human 

lineage [Tajima, 1989; Fay and Wu, 2000]. But these analyses were not possible 

for our genes displaying positive selection in the mouse lineage as we currently 

lack population data (we did attempt analyses using the 17 mouse genomes but 

these are laboratory strains and are two few in number). A greater amount of data 

on disease-associated mutations would allow us to link more precisely functional 

discordance to molecular signatures. 
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There are of course many other causes of phenotypic discordance along with 

point mutational processes studied in Chapters 2 and 3, they include but are not 

limited to: regulatory differences [Prud’homme et al., 2006; McLean et al., 2011; 

Wittkopp and Kalay, 2012], differences in gene duplication strategies/gene 

family repertoires [Blanc and Wolfe, 2004; Sullivan et al., 2009; Brown et al., 

2010; Dennis et al., 2012; Abascal et al., 2013], copy number variation [Dumas 

et al., 2007; Perry et al., 2008], and epigenomic differences [Feng and Jacobsen, 

2011; Zeng et al., 2012] between species. During the process of identifying 

protein families for analysis in Chapters 2 and 3, we noticed patterns in the 

protein coding sequences that were suggestive of introgression or gene 

remodeling (e.g. domain shuffling) playing an important role in vertebrate 

protein evolution. This observation spurred us to explore non-linear patterns that 

lead to novel protein coding genes in vertebrate evolution (Chapter 4).  

 

In Chapter 4 we applied graph theory to study the prevalence and role of 

introgressive events (gene remodeling) in the emergence of novel genes. Our 

analysis revealed not only multiple species-specific introgressive events in the 

evolution of vertebrate modular proteins, but it also determined the unique 

evolutionary principles that govern remodeling in vertebrate protein coding 

space. We discovered that vertebrate modular proteins are more likely to be 

composed of domains that share similar promiscuity levels. In addition we found 

that there was a preference for proteins exhibiting unique functions to 

incorporate domains with limited promiscuity levels (Section 4.3.3 and Section 

4.3.4). These discoveries suggest that introgressive events do not strictly adhere 

to these same principles (Section 4.3.5). It should be stated that our graph theory 
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approach was not without challenges, including the detection of false positives 

primarily due to differences in the frequency of alternative transcripts between 

species. This again demonstrates that low quality assemblies result in 

unacceptably high levels of false positives.  

 

While the application of graph theory to evolutionary biology is still in its 

infancy, this approach has already led to advances in important theoretical 

concepts such as the ortholog conjecture [Haggerty et al., 2014]. The application 

of network theory to detecting and characterizing non-linear gene remodeling is 

providing important insights into the complex nature of protein change over time 

and is contributing to theoretical advancements in the field of evolutionary 

biology [Bapteste et al., 2012; Bapteste et al., 2013; Haggerty et al., 2014]. The 

domain shuffling described in Chapter 4 generates “partially orthologous” 

sequences that are divergent in function and also are potentially lineage-specific 

[Gharib and Robinson-Rechavi, 2011; Haggerty et al., 2014]. These results 

warrant further study at the in silico and in vitro level to determine the functional 

impact of species-specific gene remodeling.    

 

Conclusion: 

The research conducted in this thesis employed the innate immune system to 

elucidate the evolution of unique protein function within vertebrates. We 

successfully developed a high throughput pipeline that greatly simplified the 

large-scale analysis of protein coding sequence datasets. Examining the human 

and mouse innate immune systems identified a number of genes with species-

specific signatures of positive selection. Our approach was found to be able to 
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accurately identify functional discordance from sequence data for known cases 

of phenotypic discordance. Our investigation of gene remodeling by domain 

shuffling revealed how frequent this mechanism of protein evolution is and what 

the rules for gene remodeling are (e.g. which domains are compatible and 

incompatible). Our analysis revealed the prevalence of species-specific gene 

remodeling events across these vertebrate species and highlighted the importance 

of domain shuffling for the introduction of novel proteins into the innate immune 

system and indeed into the vertebrate species tested.  
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