
Chapter 14
Real-Time Event Detection
in Field Sport Videos

Rafal Kapela, Kevin McGuinness, Aleksandra Swietlicka
and Noel E. O’Connor

Abstract This chapter describes a real-time system for event detection in sports
broadcasts. The approach presented is applicable to a wide range of field sports.
Using two independent event detection approaches that work simultaneously, the
system is capable of accurately detecting scores, near misses, and other exciting
parts of a game that do not result in a score. The results obtained across a diverse
dataset of different field sports are promising, demonstrating over 90 % accuracy for
a feature-based event detector and 100 % accuracy for a scoreboard-based detector
detecting only scores.

14.1 Event Detection in Sports

Sport has always been one of the most popular of television broadcasts [1, 2].
Sports broadcast viewing figures are consistently high, particularly for events like
the Olympics and national or regional finals of nationally popular games. Given
such wide appeal and popularity, there has been significant interest in algorithms
for automatic event detection in sports broadcasts [3]. This is motivated by potential
applications such as automatic highlight generation for summarization for emerg-
ing second screen applications, indexing for search, and retrieval in large archives,
mobile content delivery either offline or as an added value in-stadium user experience.
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Many of these applications either require or would benefit significantly from real-time
event detection, however, this aspect has been largely overlooked to date in the rel-
evant literature.

14.1.1 Sport Event Detection Approaches

A range of event detection algorithms have been presented in recent years, taking
into account the broad diversity of different sports. It has been shown in [4] that
about 97 % of interesting moments during a game are followed by a close-up shot
presenting a player who scored or who caused some interesting action. In addition,
features like end of a pitch, audio activity, or crowd shot detection have been shown
to be very useful in event detection [4]. The system present in [4] was proven to work
with different sports such as soccer, rugby, field hockey, hurling, and Gaelic football.
A Support Vector Machine (SVM) was used as a event classifier. However, the
algorithm was too computationally expensive for real-time implementation, mainly
due to the use of the Hough transform.

A very similar approach was presented in [5]. To detect an event the authors declare
so-called “plays” where mainly a color histogram is calculated and some heuristics
are applied about the regions of histogram detection. An event is categorized using
Hidden Markov Models (HMM) based on the sequence of camera shots. In this work
events were detected in baseball, American football, and Japanese sumo wrestling.
Another example of this kind of approach was presented in [6] where, based on simple
visual features like pitch orientation and close-up detection, the authors achieved
good accuracy. However, computation time is not evaluated in the paper and there is
a large drop in accuracy when the SVM is trained on the samples that do not belong
to the same game.

It is worth noting that the three approaches described above [4–6] are capable
of extracting not only goals but also other exciting moments like penalties and near
misses. In [7], very simple features like pixel/histogram change ratio between two
consecutive frames, grass ratios, and background mean and variation in addition
to time and frequency domain audio features were used to detect events in soccer
games. The authors report high-accuracy using simple features, but again do not
discuss computation time performance.

Although the acceptance of the MPEG-7 standard in the community has been
rather low, there are approaches based on MPEG-7 descriptors. In [8] a goal detection
system based only on MPEG-7 audio descriptors was proposed. Some implementa-
tions of the proposed feature extraction process are very fast and make the system
applicable in real-time scenarios. However, the system is designed for soccer games
alone, does not detect anything other than goals, and was tested on very few test
samples (only 8 goal scenarios).

One event detection technique extensively investigated for broadcast videos is
replay detection, since replays already contain interesting moments selected by a
director. Some examples of these techniques for either slow or normal motion replay
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detections are presented in [9–11]. Although all of these feature very good precision
and recall (from about 60 to 100 %), event detection based on replay extraction
techniques are not really appropriate for real-time applications (i.e., they occur after
the real event and a specific one may occur several times during a game so this
approach requires building some sort of indexing system to store and match following
scenes).

Finally, in [12, 13], very different approaches are taken. The former utilizes the
information produced by people during a game and tweeted by the popular Twitter
website to detect events in different games (soccer and rugby were tested). The latter
approach uses web-casted text for the same purpose. These are, at first sight, universal
approaches, however they can suffer from quite large false positive detection rates,
need constant connection to the Internet and introduce some ambiguity in the form
of delay between detected and real events making the detection of event boundaries
more difficult.

14.1.2 Field Sports as a Specific Genre of Team Sports

In general, from a content analysis point of view, sport broadcasts can be classified
into two main categories [3]: a single/dominant camera or multipoint/view camera
capture broadcasts. In sports like tennis or badminton, there is typically one camera
view that dominates the broadcast (e.g., the full court in tennis) and contains almost
all the semantically meaningful elements required to analyze the game. Yet in sports
like football, hurling, soccer, baseball, hockey, basketball, there is no such well-
defined camera view that dominates the course of play. This is mainly due to the fact
that the playing field is too large to present all the necessary details with a single
camera broadcast.

Most existing event detection algorithms focus on a particular type of sport (e.g.,
tennis, soccer, cricket) and are not robust for other types of sports, thereby limiting
their applicability. This reflects the fact that different sports present different charac-
teristics either in the rules for that sport or the manner in which they are captured for
broadcast. So far there have been very few attempts to make event detection more
general so that the same system/algorithm could be used for more than just a single
sport. Although this may seem to be complex and challenging it could be very conve-
nient from the perspective of a sports broadcaster, avoiding the need for development
and deployment of multiple different algorithms and systems. For this reason, in this
chapter we focus on a generic subset of all sports that can be designated as “field
sports”, a term originally introduced in [4] to refer to any sport played on a grass
pitch (soccer, rugby, field hockey, etc.) featuring two teams competing for territorial
advantage. In this work, however, we extend this definition to include other sports
that exhibit similar characteristics but that are not necessarily played on a grass pitch.
Specifically, we extend the definition of field sports to include sports played in a play-
ing arena that features some kind of scoring posts (e.g., goal post in soccer or basket
in basketball), whereby the overall objective is territorial advancement with a view to
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obtaining a score. Since most field sports have similar characteristics, broadcasters
use the same scene compilation techniques to present the action on the field to the
viewer. Thus, once a robust and accurate algorithm is developed, it can be applied to
different kinds of field sports without any modification.

14.2 The Architecture of the Event Detection System

The top-view architecture of the system is presented in Fig. 14.1. After video decod-
ing the stream analysis is split into two independent threads. The first, termed the
scene thread, works on extracted video frames and audio packets. The second, the
scoreboard thread needs only video frames. The common data is stored in a shared
buffer in order to simplify the processing flow. The two threads are described in
more detail in the following sections. All their features are presented in the bottom-
up approach—we start with a description of the low-level modules that gather the
data extracted by feature detectors. All these data are then sent to the mid-level mod-
ules where, depending on the processing thread, it is either used to detect the text
(scoreboard) region or predict what kind of scene is presented to the viewer. The top
module gathers the events from both threads, summarizing the description of the sys-
tem. The inputs (i.e., recognized score change or specific—event related sequence of
shots) to this module are treated separately which means that there are two kinds of
event markers at the system output. In general the primary design constraint was the
latency introduced by the modules working at all levels throughout the system. This
is reflected in the following sections, where time efficiency is the main parameter
investigated in each module. The two threads are described in detail below.

Fig. 14.1 The block schematic of the system—the two parallel threads are responsible for the
analysis of the specific aspects of the video stream in order to determine if the particular part of the
video is interesting from the user’s point of view
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14.3 Feature-Based Event Detection System

The scene analysis thread is responsible for detection of events that can subsequently
be observed on the scoreboard (i.e., goals) but also situations like close-misses or
any other actions that can be classified as interesting from the viewer’s point of view.
It belongs to the class of the algorithms that analyze the sequence of shots presented.
Earlier works on event detection state that 97 % of the interesting moments are
followed by close-up shots (i.e., shots that present a player) [4]. If we add to this the
information about where the action has taken place (e.g., end of pitch/court—close
to the goal-post/basket) before the close-up shot occurred, we can more precisely
distinguish between usual and unusual events.

The scene analysis thread utilizes extracted video frames and audio packets in
order to detect the events. Most of the information needed for this task is stored in
visual data. For this reason we have chosen 14 different classes that represent most
of the situations presented on the field/court during a match. In order to evaluate the
generalization properties of the algorithm some of the classes were split into three
subclasses: shot with simple background (a dominant color easily distinguishable),
shot with complex background (no dominant color in the background) and a mixture
of the two—Table 14.1.

However, we have also included simple audio analysis for better robustness of the
algorithm. The reason for this was that we have observed how usually the interesting
moment in the game is followed with increased audio activity intervals (e.g., round
of applause or excitation of the commentator). From a real-time perspective audio
track analysis does not introduce significant overhead in processing time since the
decoder does audio extraction in parallel to the analysis of the video stream and
moreover, we are only calculating a temporal energy of the audio signal which is a
relatively simple operation.

Table 14.1 The abbreviations of descriptors used in the system

Abbreviation Descriptor focus

CLHS Close up shot head with simple background

CLHC Close up shot head complex background

CLH Close up shot head mixture background

CLWUS Close up shot waist up simple background

CLWUC Close up shot waist up complex background

CLWU Close up shot waist up mixture background

SPS Short distance shot presenting player(s) simple background

SPC Short distance shot presenting player(s) complex background

SP Short distance shot presenting player(s) mixture background

SS Short distance shot presenting spectators

LC Long distance shot presenting center of the field

LR Long distance shot presenting right side of the field

LL Long distance shot presenting left side of the field

LS Long distance shot presenting spectators



298 R. Kapela et al.

14.3.1 Feature Detection

As mentioned in the introduction, to date there have been many features proposed
to detect different scenes in a game. However, the majority of these approaches are
either not suitable for real-time analysis of the game or, taking into account that we
deal with not only one type of the sport, too simple to distinguish robustly between
the type of the scenes. For these reasons we had to propose our own scene detection
techniques [14] or simplify the existing ones to meet the real-time requirement.

In [14] we compared state-of-the-art image description techniques and proposed
a dataset of images especially chosen for this task. The mentioned dataset meets two
very important requirements in order to provide a tool for unique categorization of
scene detection algorithms:

• it contains variety of field sports (specifically, soccer, rugby, Gaelic football, hurl-
ing, basketball, and cricket);

• provides a representative variety of images that can be assigned to particular classes
(i.e., 14 types of scenes ranging from head close-up shots to shots with long
perceptive distance to the players).

Our work in [14] shows that local feature detection algorithms like Scale Invari-
ant Feature Transform (SIFT) [15] and Histogram of Oriented Gradients (HoG) [16]
algorithms, that are characterized with the highest accuracy are too slow to be part of a
system that has to work under real-time constraints. More recent local feature descrip-
tors have been proposed, similar to SIFT and Speeded-Up Robust Features (SURF),
which are much faster to compute as they produce a binary output (e.g., to produce
the response, the algorithm only has to compare a fixed number of region intensi-
ties around the key-point). These include: Binary Robust Independent Elementary
Features (BRIEF) [17], Fast Retina Keypoint (FREAK) [18], Binary Robust Invari-
ant Scalable Keypoints (BRISK) [19] and An Efficient Dense Descriptor Applied to
Wide Baseline Stereo (DAISY) [20]. Depending on the descriptor length and local
region filtering they could be from several up to several tens of times faster than
the SURF local descriptor [21, 22]. The fastest is BRIEF (up to sixty times faster
than SURF) ensuring at the same time an acceptable recognition rate [22]. Note, that
a scene description algorithm for sport videos does not need to provide scale and
rotation invariance for two reasons:

• the broadcasted videos always present non-rotated scenes;
• we want to distinguish between long and close-up shots of the players and the

field/court, thus the scale invariance has to be restrained to some, albeit relatively
small, range.

As the BRIEF descriptor satisfies the above considerations and is computationally
efficient, it was chosen for this application scenario.
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14.3.2 Feature Aggregation

Once a set of binary local descriptors have been extracted for a frame, a method is
needed to aggregate these into a single fixed-length descriptor that can be used for
classification. The most widely known technique is the bag of visual words method,
in which a histogram of local descriptors is created from a pre-trained codebook
where each bin represents a cluster of similar local descriptors. This very simple
and effective algorithm is also suitable for binary data and outperforms, in terms
of computational complexity, other state-of-the-art techniques, for example, Fisher
kernels [23] or VLAD [24].

Bag of visual word aggregation is usually implemented using k-means to generate
the code book. However, clustering binary data with k-means algorithm is not straight
forward as descriptors should be compared using Hamming distances rather than
Euclidean, and substituting Euclidean distances may lead to unexpected results [25].
We therefore took a different approach for cluster generation. The algorithm is as
follows:

1. Calculate local descriptors for all images from the training set.
2. For each of these, find N nearest neighbors based on Hamming distance (based

on a number of experiments we noticed that N should be equal to 2–5 % of the
number of descriptors, in our case N = 150). The sum of all the distances to a
particular node is an estimate of a local density around it.

3. Sort the list by the local density estimate.
4. Choose a vector from this list, either from the top, bottom, or randomly, and store

it as a cluster.
5. Remove the vector that produced the cluster and all its neighbors.
6. Repeat points 4–5 until all clusters are selected.

Intuitively there would be tendency to pick only clusters from the top, but experiments
show that also selecting random vectors and vectors from the bottom has a positive
effect on accuracy. Accuracy is improved because the candidates with less neighbors
simply represent the regions of lower densities. Experimental results are presented
in the Sect. 14.5.

We applied a moving window approach where the average of the SVM responses
over a fixed time period is calculated when detecting the 14 classes defined in
Sect. 14.3. Then these 14 values and the audio intensity descriptor are sent to the
event recognition module.

14.3.3 Event Recognition

Figure 14.2 shows an example of the behavior of the description vectors (outputs
from scene recognition SVMs). For a close-up shot one can observe that all the
descriptors prefixed with CL (close-up) are dominant, whereas in a long-distance
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Fig. 14.2 Example of the behavior of visual descriptors (averaged responses from SVMs)
a a close-up shot; b long-distance shot

shots the LL (long-left) descriptor is dominant with the additional feedback that
some players/spectators detected could be at a short perceived distance to the camera.
Note, that the difference between short and long type of shots is quite fuzzy (e.g., in
basketball long type of shot presents players at a scale analogous to short distance
shots in soccer, Gaelic football, or hurling). However, this does not negatively impact
on effective event recognition.

Intuitively, an initial approach would be to train a deterministic classifier like an
SVM to take all the responses of scene classifiers and detect if the shot presented
belongs to an event class. Our experiments, however, show that we also need an
additional input about previous SVMs responses and also responses from the event
classifier.

14.3.3.1 State Machine

A state machine can be one of the simplest ways of singling out all of the important
scenes from the given game. Tha main difficulty in this case is however the optimal
choice of the number of states. After analysis of the correlation between the values
of the descriptors and the ground-truth probes we have chosen four states:

A—an interesting event has been detected, e.g. there was a goal;
B—an interesting event just happened;
C—an idle state, when all the descriptors have values less than 0.5;
D—all other situations.

We assumed that the most interesting moments of the game take place at the end
of the arena, so state A occurs when the descriptor of the end of the field or court
is higher than 0.8, plus very often after an event, there is a close-up shot. This is
reflected by keeping track of an upward trend of the set of close-up descriptors.
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After analyzing the amount of transitions between the proposed states it is obvious
that the biggest probability of transition is between the same states. This unfortunately
leads to insufficient accuracy of around 46 %. This is caused by the fact that the state
machine usually stays in the same state, and breaking the loop is almost impossible.
This is unacceptable since we can of course reduce the number of states to two
and propose a random classifier with an accuracy better than 46 %. As a conclusion
of this analysis, these results forced us to look for other solutions and to consider
dependency between descriptors at a higher level than just their values.

14.3.3.2 Decision Tree

Because of the real-time requirement on the system, using a decision tree for event
detection was a natural choice to investigate. Also, going deeper into the analysis of
values of each descriptor we decided to think about constructing a decision tree that
would give the information about the significance of a single frame. We started with
an analysis of the end-of-pitch/court descriptor since most of the events begin with
this kind of scene and then they are followed with a close-up shot. Note, that from
an event detection point of view we do not need to have the information about left or
right side of a pitch/court. For this reason we shortened the number of elements in the
description vector to nine values. The new one encompasses the following features:
LLR equal to maximum of LL and LR; LC, LS, SP, SS, CLH, CLHS, CLHC, audio
activity (AA).

Thus, for the end-of-pitch/court descriptor we can have two situations: the video
sequence comprises or does not comprise an event. Table 14.2 shows both situations,
where the first nine values refer to the audiovisual descriptors and the last one gives
the information whether this frame belongs to an event or not. As can be seen, the first
situation ensures that this scene is taking place at the end of the court but the value
notifying about an event is false, which means that nothing interesting has happened.
In the second case we have the opposite situation—a scene is not happening at the
end of the arena but the frame belongs to an event. Accordingly, we can easily find
two lines, where values of descriptors are exactly the same but can be distinguished
by the event flag. This was a reason to create two separate decision trees. The first
one assumes nine descriptors as values that classify each frame independently and
the second one eighteen descriptors, including also the previous time instant.

Constructing the tree manually would result in a tree that has 11(N − 1) · 101
nodes, where N stands for the length of the input vector. We would start with the first
descriptor and consider all possible eleven values (i.e., the average of ten previous

Table 14.2 The disambiguation between scene descriptors

LLR LC LS SP SS CLH CLHS CLHC AA EVENT

1.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 1.0 False

0.0 0.0 0.9 0.2 0.9 0.0 0.0 0.4 0.4 True



302 R. Kapela et al.

SVM 0/1 responses), each going to the next node representing the next descriptor
which would also has eleven possible branches, etc. Then the last tree level would
have 101 branches since this is the number of all possible values for audio descriptor.
To avoid this and create an efficient decision tree we used the algorithm described
in [26], based on the Gini diversity index, which measures the node impurity and is
given with a formula:

g (n) = 1 −
∑

i

n2
i

N 2 (14.1)

where n = (n1, n2, . . . , nk) is a vector of non-negative real numbers representing
the number of examples of each class and

N =
∑

i

ni (14.2)

represents the total number of examples at a given node. A node with just one class
(a pure node) has the Gini index zero, otherwise the Gini index is positive. The
algorithm is also available in MATLAB [26].

Depending on the amount of data and on the number of descriptors (9 or 19) the
constructed tree has 2,000–2,500 nodes. In the case, with 9 descriptors we reached
94 % accuracy and with 18–99 % (see the Sect. 14.5 for details).

14.3.3.3 Artificial Neural Networks

An artificial neural network, thanks to its auto-associative memory capabilities, also
seems to be an appropriate solution for the detection of interesting events since they
can track regularities that occur in the sequences of values of descriptors, which are
practically impossible to do with the naked eye. Optimizing this kind of classification
method, since many local minima exist, is a non-convex problem but thanks to
choosing a fixed but random starting point it gives good results and can be treated as
a deterministic method.

We naturally considered at first a feedforward structure, where we simply used
values of nine descriptors on the input and the network was trained to recognize if
a given frame belongs to the event segment of a video. The structure of this neural
network assumed 18 neurons and linear activation function in the hidden layer and
a sigmoid activation function in the output layer. We used the Levenberg-Marquardt
algorithm [27, 28] for training and the gradient of error function reached a minima
after 10 iterations. Fast convergence indicates that the neural network was able to
learn the classification task. We can assume this because fast convergence implies
that the network was able to recognize quickly all the learning data not causing a
divergence in the validation error at the same time. This is also a clue based on which
we can say that the positive and negative training datasets are not overlapping each
other. The accuracy reached around 65 % on average for all sports. More details on
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how we split the dataset to train and test subsets is given in Sect. 14.5. We therefore
experimented with a more sophisticated recursive network structure.

The natural choice was the Elman neural network [29], which assumes the recur-
sion from a chosen number of neurons in the hidden layer. In this case we decided
to consider two structures of the neural network:

• based only on nine values of descriptors at a certain moment of time;
• based on nine values of descriptors at a certain moment of time, values of descrip-

tors at a moment preceding the considered moment of time and the information
about whether the previous moment/frame was considered to be an event or not.

In the hidden layer we used 20 neurons where ten had a feedback to the input layer.
Linear and sigmoid activation functions were used in hidden and output layer respec-
tively. The Levenberg-Marquardt algorithm was used also for training, which was
able to train the whole network in only 30 iterations. After a number of simulations,
the architecture with 19 inputs appeared to be the most effective. The accuracy of
this network was above 90 % for all sports in our dataset.

14.4 Scoreboard-Based Event Detection

The detection of an event in sport video broadcasts may seem to be an easy task.
Very often there is a scoreboard in one of the corners on the screen to notify the
viewers that an event occurred. So naturally a first approach would be to analyze this
region of the screen to detect any interesting moments in a game. However, this is
not an easy task from a computer vision point of view, taking into account the variety
of shapes, fonts, and behaviors of these regions. For sports with relatively simple
scoring systems, like soccer, Gaelic football, hurling, and rugby, the scoreboards
tend to share some characteristics. There is usually information about the teams,
points that they have scored, and the remaining/elapsed time. However, even in this
case there is significant diversity in the possible layouts. Figure 14.3 shows some
examples of the scoreboards in our dataset.

Fig. 14.3 Sample scoreboards: a top-bottom scoreboard with highlighted score region; b Gaelic
football scoreboard with big/small points; c low bitrate soccer scoreboard; d Olympic basketball
scoreboard; e side-by-side scoreboard with highlighted score regions; f the same scoreboard during
a transition effect
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These are just representatives of the vast range of scoreboards possible. Examples
Fig. 14.3a shows the top-bottom layout of the scoreboard. Note, that the gap between
the two scores and digits in the same score on the scoreboard Fig. 14.3a is very small,
which significantly affects the digit segmentation/extraction process. Since the score
region can be highlighted, the process that finds the digits needs to be invariant to
different backgrounds and complex objects like country flags in the region where text
is detected Fig. 14.3d. Scoreboard Fig. 14.3b represents a Gaelic football scoreboard
where the score for both teams can be further split into big and small points. Another
issue in text detection and recognition in the images is the quality of the image itself.
Example Fig. 14.3c represents a scoreboard region extracted from the video of very
low bitrate or resolution. Note, that even if the text region is correctly recognized the
score itself is almost invisible, or at least very difficult to extract. These aspects that
make the extraction of the score difficult are exacerbated by the fact that almost every
broadcaster has implemented a different style of the scoreboard behavior that can be
changed at short notice. There are two major features that can vary from broadcaster
to broadcaster:

• the amount of time the scoreboard is visible on the screen (even when the score is
recognized, due to the fact that in replays usually this information is invisible, it
is not possible to simply assume that it will be there every time we need it);

• transition effects cause changes such as color change or some additional graphical
effects Fig. 14.3e, f.

Clearly, the implementation of the scoreboard-based event detection system is not a
straightforward task.

14.4.1 Scoreboard Detection

The scoreboard/text region detection process is run independently on each of the
three channels of the RGB color space, and then merged into a single text region
image representation in a logical AND manner presented with Eq. (14.3).

I text = I R ∧ I G ∧ I B (14.3)

Note, that in order to perform logical AND, I i where i = R, G, B has to be a binary
image.

Every channel is a logical OR combination of present and past video frames where
text features are calculated with respect to the Eq. (14.4):

I i = I i
t,t−τ ∨ I i

t,t−2τ ∨ I i
t−τ,t−2τ (14.4)

where i = {R, G, B}, t is an actual timestamp and τ is a fixed delay. In our exper-
iments τ is equal to one second which is a tradeoff between the delay needed to
detect a change by the algorithm and delay needed for the scoreboard to apply the
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text transition effect. As it can be seen, we take three different pairs resulting from
all different combinations of an actual frame and two frames from the past delayed
by the same amount of the time between each of them. For every pair we calculate
following formula (note, that for clarity we drop the i index) (14.5):

It0,t1 = I col
t0,t1 I var I edg

t0,t1 (14.5)

Equation (14.5) shows the three features extracted for text region detection:

I col
t0,t1 = |I col

t0 − I col
t1 |

I var = 1

L

L∑

p=1

(
px,y − Īx,y

)2

Īx,y = 1

L

L∑

p=1

px,y

I edg
t0,t1 = |I edg

t0 − I edg
t1 |

I edg
t = max

(
I vertical
t , I horizontal

t , I diagonal
t

)

where px,y is a pixel of x, y coordinates, L is the number of pixels in the local

variance mask and I vertical
t , I horizontal

t , I diagonal
t are vertical, horizontal, and diagonal

gradients of a frame t . These kind of gradients are proven to work well in text
detection process [30].

Taking all the above into account a text region is a region where:

1. The color distribution does not change (even if it is transparent to some extent)
and the font color does not change.

2. Text is a region of a high edge density that also usually does not change between
the two frames.

3. Local variance of a text region is big.

This is always true for all three RGB channels. Figure 14.4 shows a sample soccer
video frame and a response from text region identification algorithm. It can be seen
that the presented algorithm works for multiple regions that have different charac-
teristics (i.e., different colors, partially transparent background, etc.).

The next step after finding the text candidate regions is to create consistent text
regions on which the digit identification algorithm can run. This is done by a project
and split algorithm that works in the following manner:

1. Project the text candidate images horizontally onto the y axis (projection axis
number 1 in Fig. 14.5);

2. Based on the projection curve detect consistent regions of values above a thresh-
old, equal to 5 in our experiments—a good tradeoff between noise removal and
small text region extraction (regions 1 and 2 in Fig. 14.5);
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Fig. 14.4 Sample video frame from a basketball game (a) and its text region candidates (b)
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Fig. 14.5 Project and split algorithm

3. Store all the region candidates in memory;
4. Take region candidate from the queue;
5. Project region in the opposite direction (projection axis number 2 in Fig. 14.5);
6. Based on the projection curve detect consistent regions of values above threshold

(regions 3 and 4 in Fig. 14.5);
7. If the detected region width/height is equal to the original width/height before

projection store ready text region in the memory;
8. Go to step 4.

The above procedure can be implemented using recursion. The first few steps are
shown in Fig. 14.5.

14.4.2 Event Detection

Figure 14.6 shows the processing flow in the scoreboard-based event detection task.
The input to the algorithm are the extracted text regions described in the previous
section. The following stages are described herein.
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Fig. 14.6 The flow of scoreboard-based event detection

14.4.2.1 Digit Detection

Since the scoreboard region is typically designed for better visibility with high con-
trast we assume that either the text color is very dark or very bright. This approach
allows us to deal with the challenge of different font colors (Fig. 14.3a). Based on
this assumption, the detection phase is performed twice: the first time it seeks black
digits on white background and second, white digits on black background. The digit
identification algorithm finds foreground objects, extracts their features, and applies
a cascade classifier to detect if the region contains a digit and, if so, what digit. The
levels of the classifier validate the following features:

• region height;
• region width/height ratio;
• region no. foreground pixels to no. background pixels ratio;
• a Support Vector Machine (SVM) response.

An SVM is trained to recognize digit/non-digit image blocks based on con-
catenated horizontal and vertical projections of this block [31]. A feed-forward
artificial neural network trained on the same input as in the SVM is then used to
distinguish between digits. A dataset of figures containing differently shaped dig-
its and non-digits was created to train both an SVM and ANN. Figure 14.7 shows
some exemplary images from this dataset. It contains 5,000 images distributed
equally between different digit and non-digit classes. We have chosen an ANN for
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Fig. 14.7 Samples of digit images used to train SVM and ANN in digit detection and recognition
tasks: a exemplary digits; b exemplary non-digits

multi-class digit recognition since thanks to its auto-associative characteristics it per-
formed better than multi-class SVMs trained on the same dataset. Both classifiers
obtained an accuracy of around 98 %.

14.4.2.2 Digit Thresholding

The digit identification algorithm works for every foreground object and is repeated
for varying thresholds. This is due to the fact that the video compression process
softens the edges, thus, making the digits’ shapes less sharp, connected to other dig-
its or the background. Introducing a loop where the input region is thresholded with
increasing threshold value assures that in some range of this value the extracted digit
will be recognized correctly. After a set of experiments we decided to implement
ten thresholds with spacing equal to ten (0–100 for black digits, 150–250 for white).
Based on experiments we performed, this is a more robust and efficient solution than
thresholding with adaptive threshold value which is not very robust to quantization
noise or performing image segmentation based on a Gaussian mixture model where
the number of Gaussians is unknown. For every iteration of the loop the digit recog-
nition result is remembered and a voting is performed afterwards so that the output
of this algorithm is a digit with the highest number of votes.

14.4.2.3 Digit Linking and Digit Group Creation

The first of these two processes looks for digits that are in close proximity and links
them together. The idea behind this process is to link the digits that comprise a single
score or the time information in the scoreboard. Note, that the distance between
two digits to be linked has to be adaptive and is a function of a region height and
font characteristics. The second process takes all the links into consideration and
performs digit grouping, i.e., a single group consists of the digits that were linked
together. Note, that a particular digit in a digit group does not have links with all
the members in the group (transitional links are allowed). Each group is assigned a
specific number called the usefulness which stands for the number of digit changes
within the group.
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14.4.2.4 Digit Group Merging and Changes Evaluation

If at least one digit group was detected in the text region candidate the procedure
assigns a scoreboard candidate flag to this region and tries to find any equiva-
lent results (scoreboard candidates and digit groups) from the previously processed
frames. The features taken into account are the dimensions, location, and number of
digit groups in the scoreboard candidates. If the first two match then the scoreboard
candidates are merged together. During the merge process the recognized digits and
usefulness scores are updated. If there was a digit change this information is sent to
the following step where changes evaluation takes place. During this process the use-
fulness of the scoreboard candidate and digit group where the change was detected
are taken into account. First, since there was a change, digit group usefulness is
decreased. If the usefulness of a digit group and its parent (scoreboard candidate)
are sufficiently high an event detected flag is set. If not, the algorithm updates the
usefulness of a scoreboard region.

Figure 14.8 shows an example scoreboard recognized by our approach. After the
digits are detected (yellow bounding boxes) and grouped into digit groups (blue
bounding boxes) a text region becomes a scoreboard region. This is visualized with
a green bounding box. Scoreboard region and digit groups are given usefulness para-
meters visualized with numbers at the upper left corners. The pictured situation was
captured after few seconds from the beginning of the video and it shows that the
regions that change often (e.g., time region) are marked with negative usefulness
whereas score digit groups and their parent (scoreboard region) have all high useful-
ness numbers.

Fig. 14.8 Exemplary scoreboard region (green bounding box) with detected digits (yellow bounding
boxes), digit groups (blue bounding boxes)
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14.5 Event Detection Results

This section presents results obtained from testing our event detection algorithms on
datasets proposed especially for this task. We discuss the accuracy and the time per-
formance separately. Results obtained from both investigations allow us to conclude
that the system is capable of extracting the interesting events in a real-time.

14.5.1 Accuracy

The dataset comprises 40 h of basketball, soccer, rugby, cricket, Gaelic football, and
hurling videos. The duration of the videos in each sport group is balanced equally in
order to avoid biasing the obtained results. Also accuracy, precision, and recall are
calculated for each sport to show that exactness/quality and completeness/quantity of
results are consistent. For every sport the ground-truth dataset is split into submodules
in order to detect three types of events:

1. Goal event—an event that ends with a change of the game score;
2. Exciting event—an event that could be extremely exciting to the viewer, e.g.,

skillful dribble before the goal or a close-miss;
3. General event—type of an event that includes both previous events, plus addi-

tional, less exciting moments.

In Tables 14.3, 14.4 and 14.5 we present calculated values of accuracy, precision
and recall for the three possible scenarios presented above. All the abbreviations used
in the above tables are as follows:

SM—state machine;
DT—decision tree;
MLP—multi-layer perceptron neural network;
ENET—Elman neural network.

Table 14.3 Accuracy, precision, and recall calculated for six different games for the classification
of the general event scenario

Accuracy Precision Recall

SM DT MLP ENET SM DT MLP ENET SM DT MLP ENET

Rugby 0.66 0.92 0.74 0.99 0.63 0.66 0.17 0.98 0.36 0.97 0.04 0.98

Soccer 0.58 0.95 0.79 0.98 0.7 0.77 0.21 0.95 0.51 0.97 0.04 0.96

Basketball 0.74 0.99 0.85 0.99 0.62 0.95 0.17 0.92 0.32 0.91 0.19 0.92

Cricket 0.42 0.95 0.9 0.99 0.7 0.67 0.1 0.93 0.26 0.73 0.04 0.97

Gaelic
football

0.59 0.98 0.92 0.99 0.3 0.81 0.18 0.97 0.39 0.92 0.05 0.97

Hurling 0.44 0.95 0.8 0.99 0.79 0.77 0.36 0.99 0.73 0.98 0.08 0.99
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Table 14.4 Accuracy, precision, and recall calculated for six different games for the classification
of the goal scenario

Accuracy Precision Recall

SM DT MLP ENET SM DT MLP ENET SM DT MLP ENET

Rugby 0.55 0.96 0.94 0.99 0.22 0.61 0.01 0.88 0.4 0.73 0.00 0.99

Soccer 0.56 0.95 0.83 0.96 0.72 0.75 0.23 0.81 0.5 0.92 0.07 0.96

Basketball 0.53 0.99 0.67 0.99 0.62 0.95 0.02 0.82 0.47 0.98 0.22 0.93

Cricket 0.8 0.96 0.96 0.94 0.33 0.59 0.07 0.57 0.42 0.79 0.03 0.97

Gaelic football 0.78 0.98 0.85 0.98 0.57 0.77 0.09 0.71 0.6 0.73 0.1 0.97

Hurling 0.59 0.94 0.68 0.99 0.46 0.59 0.55 0.92 0.46 0.96 0.05 0.99

Table 14.5 Accuracy, precision, and recall calculated for six different games for the classification
of the exciting event scenario

Accuracy Precision Recall

SM DT MLP ENET SM DT MLP ENET SM DT MLP ENET

Rugby 0.44 0.97 0.65 0.94 0.52 0.48 0.83 0.88 0.72 0.99 0.28 0.74

Soccer 0.73 0.97 0.82 0.95 0.48 0.75 0.27 0.82 0.51 0.99 0.53 0.8

Basketball 0.58 0.99 0.93 0.99 0.32 0.97 0.52 0.71 0.72 0.99 0.17 0.95

Cricket 0.41 0.95 0.27 0.96 0.41 0.34 0.73 0.78 0.36 0.99 0.19 0.72

Gaelic football 0.46 0.99 0.26 0.98 0.77 0.49 0.14 0.22 0.39 0.76 0.75 0.78

Hurling 0.74 0.99 0.57 0.99 0.6 0.52 0.48 0.7 0.4 0.93 0.24 0.78

The training was performed with use of probes collected only from one game
(in this case—basketball) and simulated on six different games: rugby, football,
basketball, cricket, Gaelic football, and hurling. In order to figure out the optimal
split between training and testing subclasses of the given data we ran a number of
experiments. Naturally, we tried a training dataset that is equally distributed among
all classes and sports but this did not give the most effective results. Surprisingly
the optimal division seems to be in the case when we take most of the samples from
one game and train the classifier and test it on the remaining data points. This is due
to the fact that a large training dataset from one sport only will cover most of the
situations that the system could deal with and are simply impossible or at least very
difficult to analyze by a human. Concluding, as the training data we used 70 % of
probes collected from the basketball game, which is around 19,600 frames.

It can be seen from the results that the system’s accuracy in the case of a decision
tree classifier is usually above 95 % and never lower than 92 %. The results for the
Elman neural network are between 96 and 94 %. This proves, that both classifiers
are well trained and are capable of recognizing event sequences from videos or even
sports that they have never seen before.

Regarding the efficiency of the scoreboard-based event detection (which can
only detect scores), once the scoreboard is detected correctly, as was presented in
Sect. 14.4.2 it is just a matter of tracking the changes inside this region. If the change
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Fig. 14.9 Exemplary
scoreboard region
highlighting detected
scoreboard-based event

detected score event

appears in the digit region that does not change often and the digits present a number
that is reasonably similar to the probable score of the game we say that there was a
goal/event. Note, that the system is not constrained to count a score from zero since
otherwise it would have to analyze every video from the beginning of the game.
Figure 14.9 shows an exemplary visualization performed by the system when the
change in the score is detected.

The only feature of the video that can affect this process is the perceptual quality
of the scoreboard which is dependent on video bitrate and resolution. For example
in our tests the system could easily recognize scoreboards in videos of resolution
640 × 480 whereas this was not the case for videos of resolution 768 × 76 due to
a specific font used However, for videos where scoreboard regions can be clearly
recognized by subjective viewing (about 80 % in our dataset) its effectiveness was
always 100 %.

14.5.2 Time Performance

Given the classification methods presented in Sects. 14.3.3 and 14.4.2 it is important
to highlight the time performance of the proposed detection techniques. Given the
low accuracy of the state machine we do not take it into consideration.

As mentioned, the accuracy of the decision tree and Elman neural network are
always higher than 92 % which makes them good candidates for the final event detec-
tor. Looking more closely at the two classification algorithms, the main differences
that make them the best candidate for this task would be a train/predict time perfor-
mance and the nature of the algorithm itself. The decision tree algorithm needs less
than a second to create a tree (either in the case of nine or eighteen descriptors) while
the Elman neural network needs more than a minute to perform the training. The pre-
diction time is very similar for both cases: 0.0219 s for the decision tree and 0.0269 s
for the neural network. Since training can be done offline it is not particularly crucial
unless the system is required to change its behavior or gain some additional knowl-
edge about events in interactive mode training time is very important. In addition,
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the great disadvantage of the neural network is that as a non-deterministic algorithm
it will always give different results for every training, while it always starts with dif-
ferent values of weights. Thus, it is very unpredictable and each has to be validated
separately. Moreover, the output of the neural network is a value between 0 and 1,
and setting up the threshold for event detection can be a difficult task.

Figure 14.10 shows the breakdown of the time performance of the feature-based
event detection algorithm. This is the time needed to prepare data for the final clas-
sifier (decision tree or Elman neural network). As can be seen, keypoint detection,
feature extraction and matching (i.e., assigning all the descriptors to particular nodes)
consume the most time, whereas creation of bag-of-words histogram and SVM pre-
diction can almost be disregarded.

The time performance of the scoreboard-based event detection significantly
depends on the behavior of the scoreboard region. In general it can be split, according
to Fig. 14.6 into the following stages: preprocessing, digit detection, digit linking,
digit grouping, group merging, evaluation/event detection. All stages except the last
one are done only a few times at the beginning of each game unless the behavior
of the scoreboard prevents the algorithm from detecting a stable scoreboard region
(e.g., when scoreboard appears only for a few seconds after the score changes). The
times for particular stages are as follows:

• preprocessing—30 ms;
• digit detection—135 ms;
• digit linking—6µs;
• digit grouping—30µs;
• group merging—250µs;
• evaluation/event detection—55µs.

So after the scoreboard is detected and digit groups are recognized the scoreboard-
based event detection algorithm only needs 55µs to detect an event. Finally, it should
be noted, that the given times for scoreboard-based and feature-based event detection
are not cumulative since both techniques work in parallel with no interdependency.

Fig. 14.10 Breakdown of
processing time in the
various stages of the
feature-based event detection
algorithm; all times are given
in µs
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14.6 Summary

This chapter describes a real-time field sports video event detection system that is
capable of detecting goals/scores, close-misses, and also other exciting moments
with high accuracy across multiple sports. Unlike previous work in sports scene
classification, we pay particular attention to computational requirements, deriving
an algorithm that is comparable with the state of the art in terms of accuracy, but which
requires significantly less computational resources. For concreteness, our experimen-
tal evaluation focuses on field sports video as this covers multiple individual sports
such as basketball, soccer, rugby, football, all genres of hockey, etc.; however, as our
descriptor avoids using sports video specific mid-level features, like grass ratios, it
is sufficiently general to be applicable in other contexts. The system is composed of
two event detection modules that work in parallel performing complementary event
detection tasks.

The first one is based on audio-visual low-level features and can be trained for
different events such as goals, or very interesting moments such as a close miss. A
feature of the approach is minimal ambiguity, as its response is considered in terms
of event probability rather than a deterministic response. We also validated different
event classification techniques and present results (accuracy, precision and recall)
for each of them with respect to different sport videos processed by the system.
The simplest approach is to use a state machine. However, the results showed that
this solution does not give satisfactory results. To overcome this, we evaluated more
sophisticated methods like deterministic decision trees or non-deterministic artificial
neural networks. Both these solutions give good results, the difference is mainly
in training time. It is important to notice that training either the decision tree or
the Elman neural network based on the probes from one game only does not have
negative influence on accuracy for any other game, which is always higher than
92 %. Using mixed values from different games could result in overfitting since it is
very hard to judge if the game events encoded with low-level features are similar or
not. For this reason we think it is better to use most of one game to train the event
classifier since we can be sure it covers most of the possible cases on the field/court.
The second, independent thread complements the first mentioned and is capable
of detecting scoring events with 100 % accuracy with high resolution footage. The
detection process is based on detection of changes in the score presented on the
scoreboard on the screen. In this case, time performance is not constant during the
video analysis and takes more time at the beginning where the scoreboard area has
to be detected in order to track changes in the scores of the teams played.
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