
DCU@FIRE-2014: Fuzzy Queries with Rule-based
Normalization for Mixed Script Information Retrieval

Debasis Ganguly
Centre for Global Intelligent

Computing (CNGL)
School of Computing
Dublin City University

Dublin, Ireland
dganguly@computing.dcu.ie

Santanu Pal
Institute for Applied Linguistics

University of Saarland
Saarbruecken, Germany

santanu.pal@uni-
saarland.de

Gareth J.F. Jones
Centre for Global Intelligent

Computing (CNGL)
School of Computing
Dublin City University

Dublin, Ireland
gjones@computing.dcu.ie

ABSTRACT
We describe the participation of Dublin City University (DCU)
in the FIRE-2014 transliteration search task (TST). The
TST involves an ad-hoc search over a collection of Hindi film
song lyrics. The Hindi language content of each document
in the collection is either written in the native Devanagari
script or transliterated in Roman script or a combination of
both. The queries can be in mixed script as well. The task
is challenging primarily because of the vocabulary mismatch
which may arise due to the multiple transliteration alterna-
tives. We attempt to address the vocabulary mismatch prob-
lem both during the indexing and retrieval stages. During
indexing, we apply a rule-based normalization on some char-
acter sequences of the transliterated words in order to have a
single representation in the index for the multiple transliter-
ation alternatives. During the retrieval phase, we make use
of prefix matched fuzzy query terms to account for the mor-
phological variations of the transliterated words. The results
show significant improvement over a standard baseline query
likelihood language modelling (LM) approach. Additionally,
we also apply statistical machine transliteration to train a
transliteration model in order to predict the transliteration
of out-of-vocabulary words. Surprisingly, even with satis-
factory transliteration accuracy, we found that automatic
transliteration of query terms degraded retrieval effective-
ness.

Categories and Subject Descriptors
H.3.1 [INFORMATION STORAGE AND RETRIE-
VAL]: Content Analysis and Indexing—Abstracting meth-
ods; H.3.3 [INFORMATION STORAGE AND RETRIE-
VAL]: Information Search and Retrieval—Retrieval models,
Relevance Feedback, Query formulation

General Terms
Theory, Experimentation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Keywords
Fuzzy Query, Rule-based Normalization, Statistical Machine
Transliteration

1. INTRODUCTION
Generally speaking, mixed script information retrieval (MSIR)

refers to the problem of retrieving relevant documents for ad-
hoc search queries, where the textual content of the docu-
ments in the collection and of the queries can be represented
with more than one script, one native to the language of
the document while the others being non-native [1]. Cross
script information retrieval (CSIR) represents a special case
for MSIR where the queries and the documents are in a sin-
gle script but different from each other. The transliterated
search task (TST) at FIRE (Forum of Information Retrieval
Evaluation) 2014 is a shared task to establish benchmark re-
trieval methodologies for the MSIR research problem. The
document collection for TST comprises Hindi song lyrics
written both in the Devanagari script and the Roman script.
Queries are keyword based and can also be either in Devana-
gari or Roman script.

The problem of MSIR is particularly hard because of the
following reasons. First, the presence of script mixing in
the documents and the queries may necessitate different in-
dexing and retrieval strategies for the terms in two different
types of scripts. For example, the process of stemming to
address the morphological variations of the terms will be
different for the native and the foreign script.

Second, the transliteration process of a term in the foreign
script usually involves multiple alternatives due to linguis-
tic and cultural differences. For example, the Hindi word
“पहला” (EN: “first”)1 written in Devanagari script, the na-
tive script of Hindi, may be transliterated into the Roman
script as “pehla”, “pehlaa”, “pahla”, “pahlaa” etc. These
multiple alternatives can give rise to a vocabulary mismatch
problem between queries and documents, e.g. if one of the
query terms is “पहला”, transliterating this into “pehla” will
not be able to retrieve documents that contain any other
variants, e.g. “pahla”.

An overview of our approach to mitigate this vocabulary
mismatch problem is as follows. First, we use a rule-based
character sequence normalization to normalize ambiguous
character sequences into one unique representation across
1Throughout this paper, we write the English meaning cor-
responding to a non-English word within a pair of parenthe-
sis following that word prefixed with “EN:”.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/30934393?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the collection. As an example, the alternative options for
transliterating the diacritic Hindi vowel “◌ा are “a”, “A” or
“aa”. Case folding leaves open two options eliminating one.
This ambiguity can be handled by a rule which replaces all
ocurrences of “aa” in the corpus to “a” as a pre-processing
step before indexing. This character sequence normalization
is also performed over the query terms during the retrieval
phase.

Second, during retrieval time, we make use of fuzzy query
terms to help alleviate the vocabulary mismatch. Specifi-
cally, a fuzzy query term allows at most 2 suffix characters
to be different in order to consider a match as a valid one,
e.g. “tera” (EN: yours) matches with “tere” (EN: your),
whereas “mera” (EN: my) does not match with “tera” since
the mismatch occurs in the prefix instead of the suffix. We
hypothesize that in the absence of a stemmer for the translit-
erated words, such a scheme of prefix-biased approximate
matching may potentially work well to bridge the vocabu-
lary gap.

The rest of the paper is organized as follows. In Section 2,
we describe the different indexing approaches to bridge the
vocabulary gap including the dictionary construction and
the rule based normalization. Section 3 describes our re-
trieval phase processing including query expansion, approx-
imate matching and query transliteration. This is followed
by Section 4, where we investigate the individual contri-
butions from each of the proposed approaches and present
various results obtained with on the set of training queries.
We also provide an overview of the official results of the TST
2014 obtained with the test set queries. Finally, Section 5
concludes the paper with directions for future work.

2. INDEXING APPROACH
In this section, we describe the two approaches using which

we hoped to alleviate the vocabulary mismatch problem in
MSIR. We first describe a dictionary based document ex-
pansion approach, following which we describe a rule based
character sequence normalization method.

2.1 Dictionary based Term Expansion
The document collection in the TST’14 task is comprised

of about 60K documents constituted of song lyrics. The text
in a large number of these documents is simply a concatena-
tion of the song lyrics in two scripts, as a result of which it is
a straight forward process to construct a bi-directional dic-
tionary of words from the native script to the foreign script
representation of a word and vice versa. An example of such
a document with mixed script content is shown in Figure 1.

A one-one mapping can hence be constructed in a straight-
forward way using the information from these mixed script
documents, e.g. “aa.Ndhii” is mapped to “आधँी”, “chalii” is
mapped to “चली” and so on. The dictionary that we con-
structed in this way has 21, 018 word mappings. Table 1
shows 10 words from this dictionary. Note that in the ab-
sence of such a well aligned structure of documents, a general
approach would be to use a pre-built dictionary. However,
for this particular task this approach of constructing the
dictionary makes sense.

The dictionary is then used to expand a document as fol-
lows. For every word of a document in native or foreign
script, we check if its counterpart exists in the dictionary;
if it does, we add this dictionary word in the complemen-
tary script to the document index. Note that due to the

aa.Ndhii chalii to naqshekafepaa nahii.n milaa
dil jisase mil gayaa wo dubaara nahii.n milaa

ham a.njuman me.n sabakii taraf dekhate rahe
apanii tarah se ko_ii akelaa nahii.n milaa

aawaaz ko to kaun samjhataa ki duur duur
Kaamoshiyo.n kaa dardshanaasaa nahii.n milaa

kachche gha.De ne jiit lii nadii cha.Dhii huii
majabuut kashtiyo.n ko kinaaraa nahii.n milaa

आँधी चली तो नक़्शएकफ़एपा नहीं िमला
िदल िजससे िमल गया वो दबुार नहीं िमला
हम अंजुमन म सबकी तरफ़ देखते रहे
अपनी तरह से कोई अकेला नहीं िमला
आवाज़ को तो कौन स झता िक दरू दरू
ख़ामोिशयॲ का ददशनासा नहीं िमला
क चे घड़े ने जीत ली नदी चढ़ी हईु

मजबूत कि तयॲ को िकनारा नहीं िमला

1

Figure 1: An example mixed script document from
the TST collection which shows the same content
written in both native and foreign script.

inherent transliteration ambiguity, some of the native script
words in our dictionary may point to a set of corresponding
foreign script words instead of a single one. For example,
the dictionary entry “पहला” (EN: first) would point to the
set {“pehla”, “pehlaa”, “pahla”, “pahlaa”}. We ensure that
in such a case, we always choose the lexicographically least
one, which for this particular example is “pahla”. We also
convert each occurrence of the other transliteration variants
into this representative class member, e.g. “pehla” is con-
verted to “pahla” and so on. This dictionary-based cross-
script term expansion is conducted on the query side as well.

Table 1: An extract from the automatically con-
structed dictionary using a simple one-one mapping.

Devanagari Roman
रखकर rakhakar
चारासाज़ chaaraasaaz
प के patke
सजाना sajaanaa
खैरात khairaat
पखावज pakhaavaj
प का patkaa
कमसीन kamasiin
क ज़े kabze
सजाने sajaane

2.2 Rule-based Normalization
The dictionary is only able to handle those words which

can be aligned due to the presence of transliterated content
within the same document. To reduce the term mismatch
problem for out-of-dictionary words, we employed a sim-
ple rule-based character sequence normalization method to
create a single equivalent representation for the ambiguous
character sequences in the index. This process is also per-
formed on the query side.

Table 2 lists the rules that we applied while construct-
ing the index along with illustrative examples. All the rules

are applied iteratively, as a result of which a word can go
through a sequence of multiple intermediate transformations
before eventually reaching the final normal form, e.g. ac-
cording to the rules of Table 2, “dhoom” → doom → dum
→ dam.

Table 2: Rules applied for normalizing alternative
transliterations.

Found Substituted Example
aa a laagan → lagan
ay ai sapnay → sapnai
ae ai sapnae → sapnai
ii i mahii → mahi
ee i mahee → mahi
oo u pooja → puja
uu u huzuur → huzur
q k qayamat → kayamat
ia ya dooria → doorya
hh h chhaya → chaya
v w havas → hawas
bh b bharat → barat
cch c iccha → ica
ch c chaya → caya
gh g ghungru → gungru
jh j jharoka → jarokha
sh s shaan → saan
th t hathi → hati
dh d dhoom → doom
um am hum → ham
ain ai main → mai
dh ai main → mai

2.3 Index Generation
Previous research in probabilistic and language models of

IR has shown that using field specific models for IR usu-
ally out-performs flat ones, mainly because the document
term frequency maximum likelihood estimates are more re-
liable on a per-field basis than on a global one [6, 2]. In
our case, since a large number of documents in the collec-
tion are comprised of mixed script content, separating the
content of the document into two individual fields, one for
the native script and the other for the foreign enables us to
compute document term frequency and collection statistics
relative to each individual field. Moreover, each document
in the collection has a title and a body. It is fairly intuitive
that a match of a query term in the title of a song lyric may
bear more importance than a match in the body of the song.
To achieve this, we further partitioned the content of each
script field (native or foreign) of each document in two more
additional fields, namely the title and the body.

A document in our index thus manifests itself as a set of
four individual fields, namely the Devanagari title (HN_Title),
Devanagari body (HN_Body), Roman title (EN_Title) and
Roman body (EN_Body). The index is generated with the
help of Lucene2, a widely used freely available Java toolkit
for indexing and retrieval. In the case of song lyric search the
order of the query terms may in fact be quite important, e.g.
“diwana dil” and “dil diwana” refers to two different songs.
In order to take the term order into account, along with the
2http://lucene.apache.org/

unigrams we also index the word bi-grams with the help of
the ShingleFilter3 utility of Lucene.

Table 3 shows the index statistics for each index con-
structed without and with the pre-processing steps described
in Section 2.1 and 2.2. It can be observed that the vocab-
ulary is much more diverse for the transliterated content
(EN_Title and EN_Body) than the native script content
(HN_Title and HN_Body) due to the inherent ambiguities
in the transliteration. Character sequence normalization
helps to reduce this diversity by grouping together words
into equivalent classes and using only a single class member
from each of these equivalent classes as the indexing units.
Transliteration helps to expand the document lengths by
adding equivalent cross-script word representations. The
indexing strategy undertaken in the last row of Table 3 is
expected to provide the best results due to the combination
of the two strategies for mitigating vocabulary mismatch.

3. RETRIEVAL APPROACH
The retrieval model that we use for all the IR experiments

reported in this paper is the language model (LM) query
likelihood [2]. The parameter λ (the importance of term
presence) was set to 0.3 after tuning on the development
set queries. The subsequent retrieval experiments use this
value of λ, i.e. 0.3. In the following sections, we describe
two retrieval time techniques of mitigating the vocabulary
mismatch between documents and queries.

3.1 Approximate Query Term Matching
Stemming plays an important role in normalizing the mor-

phological variations of a word, e.g. “friendly” and “friends”
are represented by the root word “friend” [5]. However in
the context of MSIR, stemming words written in the for-
eign script is difficult because of the multiple alternatives
inherent in these suffixes. We therefore undertake a simple
approach of approximately matching the query terms with
the index terms in the inverted list instead of exact matches.
The utility class of Lucene that we make use of for this is
the “FuzzyQuery”4. For efficiency reasons, edit distances
of up to 2 are allowed in the approximate matching. The
prefix length value that must match for two terms to match
approximately is set to τ ×max(len(td, tq)), where td is an
index term that we seek to match with the query term tq,
len(.) is the length function and τ is a parameter (τ ∈ [0, 1]).
We set the value of τ = 0.7 for all the experiments reported
in this paper involving fuzzy term matching.

3.2 Automatic Transliteration
For some query terms we expect to find an equivalent

cross-script representation exists in the dictionary. This
cross-script representation for the current query term is added
to the query. For out-of-dictionary terms, we employ a sta-
tistical machine translation (SMT) approach to automati-
cally predict the transliteration of unseen words. The sim-
ilarity of transliteration with translation can be observed
from the fact that while SMT involves translation of a source
language sentence to a target language one, automatic translit-
eration on the other hand involves transforming a source
3http://lucene.apache.org/core/4_9_0/
analyzers-common/org/apache/lucene/analysis/
shingle/ShingleFilter.html
4https://lucene.apache.org/core/4_6_0/core/org/
apache/lucene/search/FuzzyQuery.html

Table 3: Collection statistics from indexes obtained with different pre-processing.
Pre-processing before indexing #Collection Frequency

EN_Title HN_Title EN_Body HN_Body
No pre-processing 106,697 51,074 1,211,136 473,144
Normalization 78,331 51,074 804,834 473,144
Transliteration + Normalization 89,855 51,115 832,460 474,058

Table 4: Retrieval results obtained on the development set of 34 queries.
Parameters Evaluation Metrics

Normalization Term Expansion Fuzzy QueryDocument-side Query-side MAP MRR Recall BPREF
no no no no 0.3623 0.7688 0.5576 0.5688
no no yes no 0.2718 0.5907 0.6057 0.6628
no no no yes 0.3829 0.7760 0.6201 0.6029
no no yes yes 0.3294 0.6523 0.6923 0.7186
yes no no no 0.4371 0.7593 0.6394 0.6153
yes no yes no 0.4495 0.7898 0.6826 0.7160
yes no no yes 0.4390 0.7455 0.6538 0.6365
yes no yes yes 0.4546 0.7689 0.6971 0.7381
yes yes yes no 0.5641 0.8400 0.7211 0.7430
yes yes yes yes 0.5671 0.8467 0.7548 0.7757
yes yes yes (Dict. + Moses) no 0.3988 0.6417 0.6737 0.7134
yes yes yes (Dict. + Moses) yes 0.4131 0.6769 0.6875 0.7346

script character sequence to a target script character se-
quence.

Equivalent cross-script words from our dictionary (see Sec-
tion 2.1) were used to constitute a list of parallel corpora
(aligned at the character level), which in turn was used to
train a transliteration model. For example, the word pair
(“khushbuu”, “खु श ब”ू) from the dictionary is converted to
the following character sequence pair.

k h u s h b u u → ख ◌ु श ब ◌ू
The goal of the alignment function is to learn the correct

mapping between the character sequences, which in this case
is “k h” → ख, “u” to ◌,ु “s h” to श and “b u u” to ब.ू

Our experimental settings for training the transliteration
model were:

1. Log-linear phrase based statistical machine translation
(PB-SMT) model [3], implemented in “Moses”5.

2. Maximum phrase length of 5 in translation model and
3-gram (character sequence) for language model.

3. GIZA++ implementation of IBM alignment model with
grow-diagonal-final-and heuristics for performing source
target character alignment and phrase-extraction [4].

4. No reordering performed and distortion parameter word
penalty set to zero.

The accuracy of our transliteration model was measured
with the help of 10-fold cross validation. The average pre-
cession, recall and F measure values are shown in Table 5.
Table 5 shows that we achieve satisfactory transliteration
accuracy (measured by the BLEU score), the results being
better from foreign to native script than the other way round
because of the inherent transliteration ambiguity. Since, we
obtain more accurate transliterations from the foreign to
the native script, we use only this direction for query ex-
pansion. More precisely, given an out-of-dictionary Roman
5http://www.statmt.org/moses/

script transliterated word, we transliterate this word back
to the native script and add this term to the query.

The column named “Character” in Table 5 indicates that
the output character sequences are evaluated with respect
to the character sequences of the reference (test set) data.
The “Word” column on the other hand indicates that the
evaluation is conducted at the word level that is by removing
the intermediates spaces between the character sequences of
the output and the reference words.

Table 5: 10-fold cross validation results on translit-
erated word prediction.

EN-HI HI-EN
Character Word Character Word

Precision 0.9177 0.8806 0.9312 0.8109
Recall 0.9293 0.8780 0.9073 0.8109
F-score 0.9235 0.8793 0.9191 0.8109
BLEU 0.7494 0.6185 0.6470 0.4295

4. RESULTS
In this section, we report the results of our experiments.

In order to investigate the effectiveness of various indexing
and retrieval approaches proposed in Sections 2 and 3, we
first report the results obtained on the training (develop-
ment) set of queries with an incremental application of each
of these approaches. We then select the best experimental
settings and apply them to the test set, the approach which
we in fact used for the official submissions. The software
used for the indexing and retrieval experiments reported in
this paper is made publicly available6.

6https://github.com/gdebasis/msir/

4.1 Development Set Results
In order to compare our results with that of [1], we use

the binary relevance judgments for evaluation. Similar to [1],
we consider the documents with manually assessed scores of
over 2 (i.e. 3 and 4) out of a 5-point scale from 0 to 4 as
relevant. We retrieve 1000 documents for each query and
all our reported results are calculated based on this ranked
list of 1000 documents. The total number of queries in the
development set is 35, out of which one query has no relevant
documents (i.e. assessed scores of above 2). We therefore
consider 34 queries for our evaluation.

Table 4 shows the results. It can be observed that accord-
ing to our hypothesis, the best results are obtained when
we use a combination of dictionary-based term expansion
on both the document and the query-side coupled with rule
based normalization and approximate query term matching.
It is somewhat surprising to see that despite the good per-
formance of the transliteration model trained with Moses,
expanding the out-of-dictionary query terms with automat-
ically transliterated words degrades retrieval quality.

In order to directly compare our results with [1], we com-
pare our best performing approach (best settings of Table
4) with the best results reported in [1]. For this, we eval-
uate our approach only on the first 25 queries constituting
of terms only in the foreign script (the same test set used
for the TST’13 task at FIRE 2013 [7] and [1]). The results
are shown in Table 6. We see that our approach produces
second best results only with a simple term based approach
without modeling the equivalence of sub-word features, e.g.
character n-grams with the help of auto-encoders [1].

Table 6: Comparative evaluation on top 10 retrieved
documents with previously reported results.

Run Description Evaluation Metrics
MRR MAP

TUVal-2 [7] 0.8440 0.4240
Deep [1] 0.8740 0.5039
Our Best Approach (Table 4) 0.8500 0.4793

4.2 Test Set (Official) Results
We submitted two runs in TST ’14. The first run applied

dictionary based alignment to expand index and query terms
along with rule based normalization for indexing and the
fuzzy query match for retrieval. The second run applied
PBSMT based query term transliteration (see Section 3.2).
In Table 7, we report the results obtained on the 35 test
queries.

An interesting observation is that the MAP and the MRR
values are considerably lower for the test set queries in com-
parison to the training set ones (c.f. Table 4 and Table 7). In
order to investigate what might have caused this, we report
the per-query retrieval results for the test set queries. We
observed that 8 out of 35 queries produced very low average
precision (AP) values of less than 0.1. In fact two of the
queries produced a zero AP value. On manual inspection of
one of these queries (shown in Table 8), we found that the
reason for the bad performance is due to the compounding
effect (shown with underlined text). It can be seen that “ek
taara” occurs as two distinct words in the query, whereas
in both the relevant documents these terms have been jux-
taposed together to form a compound, as a result of which

Table 7: Evaluation on the test set with 10 and 1000
documents retrieved.

#ret=10 #ret=1000
Run Description MRR MAP MRR MAP
Normalization + Doc.
& Qry. exp. (dict.
based) + fuzzy qry.
match

0.6408 0.4040 0.6455 0.4701

Normalization + Doc.
& Qry. exp. (dict.
based) + fuzzy qry.
match + Qry. exp.
(Moses)

0.4265 0.2633 0.4315 0.3257

Table 8: Compounding effect causes poor results for
some queries.

Relevant Document
Query # Title
koi ek taara ek taara 1 इकतारा - ikataaraa

2 ओ रे मनवा... इकतारा (मिहला वर) -
o re manawaa... ikataaraa (mahi-
laa swar)

our system could not perform well on these types of queries
in general.

5. CONCLUSIONS AND FUTURE WORK
We described our participatory work for the transliterated

search task (TST) at FIRE 2014. We undertook a purely IR
approach to the search task. The main motivation for our
work was to mitigate the vocabulary mismatch between the
documents and queries where both may be represented in
mixed scripts from an IR perspective. Firstly, we make use
of a dictionary based transliteration for document and query
expansion. Secondly, we apply rule-based normalization to
transform each equivalent character sequence into a single
representative of its equivalence class. Thirdly, we employ
a fuzzy term matching to account for the absence of a stem-
ming algorithm for words in the foreign script. Further,
we also applied a PBSMT system to learn the correspond-
ing character sequence alignments across the source and the
target scripts.

The results showed that a pure IR approach yields com-
petitive results in comparison to a more sophisticated meth-
ods for detecting character sequence level alignments, namely
using deep learning with auto-encoders [1]. Surprisingly, the
results degraded with the use of PBSMT based query expan-
sion. In future, we plan to investigate the possible reasons
for this degradation.

Acknowledgments
This research is supported by Science Foundation Ireland
(SFI) as a part of the CNGL Centre for Global Intelligent
Content at DCU (Grant No: 12/CE/I2267).

6. REFERENCES

[1] P. Gupta, K. Bali, R. E. Banchs, M. Choudhury, and
P. Rosso. Query expansion for mixed-script information
retrieval. In The 37th International ACM SIGIR
Conference on Research and Development in
Information Retrieval, SIGIR ’14, Gold Coast , QLD,
Australia - July 06 - 11, 2014, pages 677–686. ACM,
2014.

[2] D. Hiemstra. Using Language Models for Information
Retrieval. PhD thesis, CTIT, AE Enschede, 2000.

[3] P. Koehn, H. Hoang, A. Birch, C. Callison-Burch,
M. Federico, N. Bertoldi, B. Cowan, W. Shen,
C. Moran, R. Zens, C. Dyer, O. Bojar, A. Constantin,
and E. Herbst. Moses: Open source toolkit for
statistical machine translation. In Proceedings of the
45th Annual Meeting of the ACL on Interactive Poster
and Demonstration Sessions, ACL ’07, pages 177–180.
Association for Computational Linguistics, 2007.

[4] P. Koehn, F. J. Och, and D. Marcu. Statistical
phrase-based translation. In Proceedings of the 2003
Conference of the North American Chapter of the
Association for Computational Linguistics on Human
Language Technology - Volume 1, NAACL ’03, pages
48–54. Association for Computational Linguistics, 2003.

[5] M. F. Porter. An algorithm for suffix stripping.
Program, 14(3):130–137, 1980.

[6] S. Robertson, H. Zaragoza, and M. Taylor. Simple
bm25 extension to multiple weighted fields. In
Proceedings of the Thirteenth ACM International
Conference on Information and Knowledge
Management, CIKM ’04, pages 42–49. ACM, 2004.

[7] R. S. Roy, M. Choudhury, P. Majumder, and
K. Agarwal. Overview and datasets of fire 2013 track
on transliterated search. In Working Notes on FIRE
2013, FIRE ’13, 2013.

