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ABSTRACT
We describe DCU’s participation in the NTCIR-11 Spoken-
Query&Document task. We participated in the spoken-
query spoken content retrieval (SQ-SCR) subtask by us-
ing the slide group segments as basic indexing and retrieval
units. Our approach integrates normalised prosodic features
into a standard BM25 weighting function to increase weights
for terms that are prominent in speech. Text queries and rel-
evance assessment data from the NTCIR-10 SpokenDoc-2
passage retrieval task were used to train the prosodic-based
models. Evaluation results indicate that our prosodic-based
retrieval models do not provide significant improvements
over a text-based BM25 model, but suggest that they can
be useful for certain queries.
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CNGL

Subtasks
SQ-SCR over slide group segments (Japanese)
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1. INTRODUCTION
The NTCIR-11 SpokenQuery&Doc Task [2] provides a

common evaluation framework for researchers interested in
tasks of spoken term detection (STD) and spoken content
retrieval (SCR) over collections of informally structured spo-
ken content. The organisers provided retrieval subtasks which
require SCR systems to search for either relevant content or
term mentions within a collection of lecture recordings in
Japanese language.

In the spoken-query spoken content retrieval (SQ-SCR)
subtask, spontaneous spoken queries were provided as in-
put to retrieval systems whose goal is to find relevant pre-
defined speech segments within a collection of lecture record-
ings. Participants were required to choose between two pre-
defined retrieval units:

1. Slide group segments: speech segments with time bound-
aries given by the start and end points of a group of
topically coherent contiguous slides in the lectures.

2. Inter pausal units (IPUs): speech segments obtained
by splitting the speech data between silences longer
than a pre-computed threshold.

We participated in the SQ-SCR subtask and chose the slide
group segments as the basic indexing and retrieval units for
our experiments. More information about the tasks, dataset,
queries, transcripts, and evaluation metrics can be found in
the overview paper [2].

In a typical SCR system, spoken documents are initially
converted into text transcripts by means of large vocabulary
continuous speech recognition (LVCSR) systems. Normally,
these transcripts do not include other information than se-
quences of hypothesized words in the form of N-best lists,
confusion networks, or lattices, with some additional timing
and confidence information. This representation of speech is
an oversimplification of spoken language which is well known
to encode richer information that goes beyond the lexical
level of words and syllables. In particular, one information
source that is not represented in LVCSR transcripts, and
that has not been exploited in previous work on SCR is
prosodic information, which is characterised by variations
in pitch, duration, and loudness of the spoken units across
time. Prosody is used in human communication for a wide
range of purposes, including, among others, disambiguation
of meaning in relative clauses, making contrastive emphasis
or focus, and structuring information into phrases [18].

In this work, we build upon techniques proposed in [7] and
[3] to explore the utility of prosodic features in the task of re-
trieving relevant speech segments. The approach integrates
prosodic features into a BM25 weighting function [13] to give
higher weight to terms that are prosodically prominent in
the spoken content, thus promoting the rank of documents
that contain a high number of prominent terms. This paper
describes our approach and reports experimental results in
the SQ-SCR subtask by using slide group segments as search
units.

This paper is structured as follows. Section 2 presents rel-
evant previous and related work, while Section 3 explains in
detail our approach and different runs submitted for evalua-
tion. Section 4 presents and discusses the evaluation results
in terms of the official evaluation metric of the task. Fi-
nally, Section 5 presents our conclusions and suggestions for
further investigations.

2. BACKGROUND AND PREVIOUS WORK
This section begins with a brief description of general

TF-IDF weighting schemes in SCR in Section 2.1. At the
same time, we introduce some notation that will be used
throughout the paper. Section 2.2 gives basic notions about
prosody and prosodic prominence while Section 2.3 describes
previous research that investigated the relationship between

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/30934391?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


prosodic prominence and TF-IDF weights. Lastly, Section 2.4
presents related and previous research carried on tasks that
are relevant to SCR, where researchers have tried to inte-
grate prosodic information into TF-IDF weighting schemes.

2.1 TF-IDF Weighting Schemes in SCR
Given a collection of spoken documents segmented into a

collection C of topically consistent segments s1, . . . , sN , the
task of an SCR system can be stated as to produce a ranked
list of segments in C that are relevant to a query q provided
by a user. In order to achieve this, an SCR system typically
implements an information retrieval (IR) component that
computes relevance scores for each segment with respect to
the query. This is, given a query q, the IR component has
to rank the segments in C according to the value returned
by the relevance score function:

rel(q, sj) j = 1, . . . , N (1)

A number of retrieval frameworks have been developed
to define the relevance score function. Three standard IR
frameworks are the vector space model (VSM) [15], the prob-
abilistic approach [17], and the language model [11].

What most standard retrieval frameworks have in com-
mon, except for some N-grams based language models, is
that they adopt the term independence assumption. This
assumption states that terms occur independently from each
other in the collection of segments. The independence as-
sumption permits us to compute rel(q, sj) as the combina-
tion of the individual contributions from the terms that ap-
pear in both q and sj . Therefore, given a list of the terms
that occur in C, such as t1, . . . , tM , we can think of any
segment sj in C as an M-dimentional vector where the i-th
dimension is the contribution that the term ti would make
to the computation of the relevance score between sj and q.

For the query q and the segment sj in C, the relevance
score function can be written as:

rel(q, sj) =

M∑
i

w(i, j) (2)

where w(i, j) is the weight of term i in segment sj .
Ideally, term weights should characterise how well a term

represents the topic of the segment in which occurs, and
how well it discriminates the content of the segment from
the content of other segments in the collection. Thus, the
computation of the weight for the term i in sj , usually in-
volves the product between the following two functions:

• tf(i, j), which depends on the term frequency of the
term in sj

• idf(i, C), which depends on the inverse document fre-
quency of the term in the collection.

In the rest of the paper, we will use TF-IDF score to refer
to term weights based on the product:

w(i, j) = tf(i, j) ∗ idf(i, C) (3)

independently on the concrete definition of tf(i, j) and idf(i, C).

2.2 Prosodic Prominence
In linguistics, prosody is commonly referred to as the

“suprasegmental”characteristics of speech [9]. These are fea-
tures that cannot be characterised as discrete speech units

(segments), such as vowels or consonants, but that rather
occur simultaneously with them, spanning to multiple seg-
ments, and describing their rhythmical properties. Prosodic
features are not, in general, absolute characteristics of a sin-
gle segment but they rather describe relative differences be-
tween segments by the way they are pronounced. For in-
stance, vowel length or the relative duration of a syllable is
considered a prosodic feature because it varies depending on
the speaking rate of the speaker in a particular context.

Prosodic variation is known to be realised by varying the
pitch, length, and loudness by which speech units are pro-
nounced. The acoustic correlates of these features, which
can be automatically extracted from the speech signal, are
respectively the fundamental frequency (F0), duration, and
signal amplitude.

A speech unit is said to be prosodically prominent when
it stands out from its surrounding context by means of its
prosodic characteristics. Speakers can make a word or sylla-
ble more prominent than others in order to perform different
communicative functions in spoken language [8, 18]. For in-
stance, prosodic prominence may be used by a speaker to
highlight words that include new or previously given infor-
mation. The general trend is that words carrying new in-
formation are more likely to be accented, while words that
present old information are more likely to be deaccented.
Although researchers have pointed out that there are many
exceptions to this trend [8, 18], the idea that prosodic infor-
mation might help to signal informative words is appealing
for tasks like SCR, where commonly only simple text-based
statistics are used to compute the term weights.

2.3 Relationship Between Prosodic Prominence
and Term Weights

Crestani and Silipo previously investigated the potential
of prosodic information in speech search by studying the
relationship between stressed syllables and TF-IDF scores
of terms in a corpus of american English monologues [4,
16]. In their work, linguists manually labelled every spoken
syllable in the corpus as either containing a primary stress,
an intermediate stress or the abscence of it, these events
were given values of 1, 0.5, and 0, respectively. They then
defined the stress of a word occurrence as the sum of the
stress values from its syllables. The overall stress score of a
word in a monologue was then defined as the average stress
across all its occurrences in the monologue. Stress scores
of words were then compared against their TF-IDF scores
which were computed by using a BM25 weighting function
and by considering monologues as the basic unit to be the
indexed and retrieved.

From this comparison, the authors found that, in general,
words with high (low) TF-IDF scores also tend to have high
(low) stress scores. Although they could not find enough
evidence to support the analogous case, their work suggests
that prosodic features may have potential to identify acous-
tic “keywords” in the spoken content, and that this infor-
mation could potentially be exploited by a SCR system to
better index spoken documents.

2.4 Prosodic Prominence in Term Weighting
In [3], Chen et al. describe an approach to spoken docu-

ment retrieval (SDR) that takes into account the signal am-
plitude and duration of words to compute relevance scores
for spoken documents. In these experiments, they used a



vector space model (VSM) with cosine similarity in order
to compute the relevance scores. Assuming that words con-
taining high informative content might be uttered louder and
lenghtened more than non-informative words, they increased
the weight of words that were pronounced with a high av-
erage signal magnitude and large duration. The authors
evaluated this method by performing retrieval experiments
over a dataset of Mandarin broadcast news, and reported
some minor improvements in retrieval efectiveness due to
the inclusion of the prosodic features into the calculation of
term weights.

More recently, Guinaudeau and Hirschberg [7] experimented
with an approach that uses acoustic correlates of pitch and
loudness for computing topic similarity between vector rep-
resentations of spoken documents in a topic tracking task.
Similarly to [3], Guinaudeau used a VSM to represent the
text transcripts obtained from an automatic speech recog-
niser (ASR) as term incidence vectors, and considered the
cosine similarity as topic similarity between transcripts.

In Guinaudeau’s approach, the assumption was that terms
that are more characteristic of the topic of a document might
be produced “with greater emphasis, in an expanded pitch
range, or with greater intensity”. Therefore, they hypothe-
sised that an acoustic score that captures how prominent a
term is from its surroundings might be used in combination
with TF-IDF scores to compute incidence vectors that bet-
ter represent the topic of a document. In order to test this
hypothesis, the authors experimented with two methods to
obtain the acoustic score of a term in a document.

In their first method, they extracted the fundamental fre-
quency (F0) and root-mean-squared (RMS) energy for every
10 ms of speech data. Subsequently, they normalised these
values according to each speaker based on the output of a
speaker diarisation system. This was performed by replac-
ing each F0 and energy value by its z-score ((v − µ)/σ),
which considered the mean and standard deviation calcu-
lated across all the F0 and energy values corresponding to a
single speaker.

In the next processing step, they processed the text tran-
scripts with a stemming algorithm and aligned the nor-
malised values of F0 and energy with each occurrence of
a stem in the transcripts. As a result of this process, mul-
tiple values of F0 and energy were associated with every
stem occurrence. To make the following steps clearer for
the reader, let f0k

i,j and ek
i,j be vectors containing, respec-

tively, the normalised F0 and energy values associated with
the k-th occurrence of the i-th stem in the j-th document,
and let max, min, mean, and std be functions that take a
vector as an input and return, respectively, the maximum,
minimum, mean, and standard deviation from all the ele-
ments of the vector. A single value of pitch and energy was
given to each stem occurrence by considering the max, min,
mean, and std functions computed over f0k

i,j and ek
i,j . This

resulted in four pitch scores and four energy scores for every
stem occurrence. They then defined the acoustic score of the
k-th occurrence of the i-th stem in document j, denoted by
acf,ki,j , as the product of its pitch and energy scores as given
by the function f . This resulted in four different acoustic
scores, accordingly:

acf,ki,j = f(f0k
i,j) ∗ f(ek

i,j) f ∈ {max,min,mean, std} (4)

Finally, they considered two definitions for the overall
acoustic score of a term i in a document j: the average

acoustic score across term occurrences,

ac(i, j) =
1

tfi,j

tfi,j∑
k

acf,ki,j (5)

and the maximum acoustic score,

ac(i, j) = max{acf,ki,j : k = 1, . . . , tfi,j} (6)

Guinaudeau’s second method to compute acoustic scores,
was based on prominence scores calculated by the AuToBI [14]
tool for every stem occurrence in an utterance, to obtain
acki,j . Stem duplicates in this case were handled as described
previously, and either Equation 5 or 6 were used to compute
the overall acoustic score of a term in a document.

In order to integrate acoustic scores into the computation
of the term weights in the VSM, the authors used a harmonic
mean, where TF-IDF and acoustic scores were weighted by
the parameters θir and θac respectively in order to control
their individual effects over the final score:

w(i, j) =
θir ∗ tf(i, j) ∗ idf(i, C) + θac ∗ ac(i, j)

θir + θac
(7)

Using Equation 7 as the weighting function for the VSM,
Guinaudeau reported some improvements in terms of F1-
score when using the first approach, this is, the one that
does not use AuToBI, to compute the acoustic scores. In-
terestingly, the best results were obtained for θac = θir = 1,
with f = max and Equation 6 to define the final acoustic
score for terms.

In recent work [12], we experimented with Guinaudeau’s
approach [7] and implemented an SCR system that inte-
grates normalised pitch, loudness, and duration in the com-
putation of term weights. In a similar way, the prosodic fea-
tures were used to increase the weights of prominent terms
by using the harmonic mean from Equation 7. We ex-
plored different combinations of prosodic features to define
the acoustic score ac(i, j), and evaluated these retrieval mod-
els in an ad-hoc spoken content retrieval task at the Medi-
aEval 2014 Search and Hyperlinking benchmark [5]. Evalua-
tion results over the test set showed that the prosodic-based
systems did not offer any improvements over a text-based
SCR system. However, we noted that the queries and rele-
vance assessments used to optimise the parameters θir and
θac in the training set differed from the type of queries and
relevance assessment that were used to evaluate the models
in the test set.

3. METHODOLOGY
Firstly, we processed the manual and automatic tran-

scripts of the spoken queries and lectures to obtain tokenised
text that is suitable to be indexed by an SCR system. We
explain these pre-processing steps in Section 3.1. Secondly,
we partitioned the transcripts of lectures based on the slide
group information provided by the organisers. As a result,
we obtained the collection C of segments s1, . . . , sN that
we used in our retrieval experiments. Thirdly, we extracted
loudness and F0 features from the audio data, and then
normalised and aligned them with the words found in the
segments. This is explained in more detail in Section 3.2.
Lastly, we indexed the collection of segments, storing the
prosodic features in the index, and performed retrieval by
using a modification of the BM25 weighting scheme that in-
corporates acoustic scores computed from the prosodic fea-



tures of each term. Section 3.3 describes in detail how we did
this while Section 3.4 explains how we selected the models
submitted for evaluation.

3.1 Pre-processing of Spoken Query and Lec-
ture Transcripts

The organisers of the SpokenQuery&Doc task provided
manual and automatic speech recognition (ASR) transcripts
for the spoken queries and the lecture recordings. The au-
tomatic transcripts were produced by the Julius1 LVCSR
system under different training conditions of language and
acoustic models. ASR transcripts included up to 10-best
recognition hypothesise for each transcribed IPU, plus con-
fidence scores for each recognised word, and time stamps for
individual words obtained from forced alignment. Recog-
nised text was post-processed by the organisers with the
ChaSen2 morphological analyser version 2.4.4 in order to
tokenise text into words and to provide base forms and part-
of-speech information.

In this work, we used only the 1-best hypothesis from the
word-based ASR transcripts. We extracted the base form
of the recognised words, along with the force alignment in-
formation to create a linear text transcript with timing in-
formation for each word, including starting times and dura-
tions. When ChaSen was unable to produce a base form for
a word, we extracted its conjugated form instead, this was
done in order not to lose any possible term occurrence that
may have been spoken in the lectures. As only ASR tran-
scripts trained under the match and unmatchAMLM condi-
tions contained timestamps for recognised words, we limited
our runs to these two, omitting transcripts obtained under
the unmatchLM condition.

We also experimented with the manual transcripts pro-
vided by the organisers. As these solely contained non-
processed Japanese text, we used ChaSen version 2.4.4 to
tokenise the text, though, using a different grammar, (Ipadic
2.7.0), than the grammar used by the organisers (UniDic
1.3.9) to process the ASR transcripts. Next, we used the
base form of the words, when available, to create a linear
text transcript for each lecture. Similarly to what we did
with the ASR transcripts, the conjugated form of a word
was used when ChaSen could not output its base form. In
order to get the starting time and duration for each word,
we first used ChaSen to obtain the pronunciation form of
the word in Katakana characters, which we then translated
into its phonemic representation. For instance, the sequence
“m a z u i” was used as the phonemic representation for the
Katakana sequence “マズイ” corresponding to the word “ま
ずい”. We then performed forced alignment with Julius and
the Julius 4 Segmentation Kit3 version 1.0. In this step, we
obtained timestamps for each word in an IPU by feeding the
julius segmentation script with the phonemic translations
and the WAV file of the IPU, plus the triphone acoustic
model trained under the match condition that was provided
by the organisers.

Various types of transcripts for the spoken queries were
made available for participants. We processed manual, match
and unmatchAMLM ASR transcripts of queries in the same
way as we did with the transcripts of lectures.

1http://julius.sourceforge.jp/
2http://chasen-legacy.sourceforge.jp
3http://sourceforge.jp/projects/julius/downloads/
32570/julius4-segmentation-kit-v1.0.tar.gz

As an additional pre-processing step for manual transcripts
of queries and lectures, we discarded some annotation la-
bels that were present. In particular, annotations with label
codes from the set: { H, Q, FV, 息, 笑, 泣, 咳, D, D2, ?, F,
M, O, K, 笑, 泣, 咳, あくび, L, s, VAD, 雑音, H } were dis-
carded from the manual transcripts, since we did not want
them to be included in the index. As we found that the
annotations in the text affected ChaSen’s output, we re-
moved them prior to performing the morphological parsing.
Annotations with label codes A and W marked usage of
alphabetic characters (borrowed words) and incorrect pro-
nunciations respectively. A annotations, e.g. (A ティーエ
フアイディーエフ;tf-idf), specified two forms for a word,
its alphabetic form and its pronunciation form in Katakana
characters, while W annotations, e.g. (Wエーキュー;要求),
specified the mispronounced word and its correct pronounci-
ation. Although we set-up ChaSen to omit these annotations
too, we considered the alphabetic forms of words and cor-
rect pronunciations as indexing terms. Furthermore, when
performing forced alignment to obtain timestamps for these
special words, we used their pronunciation form included in
their A or W annotations.

As the last processing step prior to indexing, we processed
the spoken query and lecture transcripts with a script that
converted simple-width alphabetic characters into their full-
width Unicode equivalent. This was done in order not to
miss trivial matchings between words containing alphabetic
characters.

3.2 Processing of Prosodic Features
We extracted acoustic correlates of pitch and loudness

from the audio files of each IPU by using the Munich Versa-
tile and Fast Open-Source Audio Feature Extractor (OpenS-
MILE)4 [6]. Initially, the audio signal was framed into over-
lapping windows of 50 ms length and 40 ms of overlap.
To compute loudness, we first computed the RMS energy
for each frame and then calculated its simplified intensity
(narrow band approximation) by means of the OpenSMILE
component cIntensity. Fundamental frequency (F0) was ex-
tracted for each frame by first applying the cTransformFFT,
cFFTmagphase, and cSpecScale components to obtain octave-
scaled magnitudes and phase values, and then by using the
cPitchACF component to produce the F0 contour and prob-
ability of voicing. In the F0 contour, regions with probabil-
ity of voicing below 0.55 were considered voiceless and were
assigned a F0 of 0. The resulting contours of loudness and
F0 were smoothed using the cContourSmoother component
with a moving average window of size 3. At the end of this
process, we obtained values of loudness and F0 for every 10
milliseconds of speech for each IPU.

The smoothed contours of loudness and F0 were subse-
quently aligned following a similar procedure to the one
presented in Section 2.4. Following the notation convention
that we introduced in Section 2.4, lki,j , and f0k

i,j will denote
the vector of normalised loudness and F0 values respectively
associated with the k-th occurrence of i-th word in the j-th
segment. These normalised vectors were obtained by using
range normalisation, as follows:

lki,j =
l− Lmin

Lmax−Lmin
f0k

i,j =
f0− F0min

F0max−F0min
(8)

where Lmax, F0max, Lmin, F0min are, respectively, the ab-

4http://opensmile.sourceforge.net



solute maximum and minimum values of loudness and F0 in
the lecture where the j-th segment belongs to. Note that in
range normalisation, features were replaced by values in the
range between 0 and 1.

In addition, we also considered the duration of words as
another useful feature to be considered when computing the
acoustic scores. We use dk

i,j to denote the absolute duration
of the k-th occurrence of term i in segment j.

In order to associate a single score of loudness and F0 to
a specific word occurrence in a segment, we applied the max
and min functions over the vectors lki,j and f0k

i,j . Then, we
defined scores based on F0, loudness and duration for a term
i in a segment j, by combining the values coming from the
multiple occurrences of the term, as follows:

f0(i, j) = max
k
{max(f0k

i,j)} (Pitch)

f0-range(i, j) = max
k
{max(f0k

i,j)} −min
k
{min(f0k

i,j)}
(Pitch Range)

l(i, j) = max
k
{max(lki,j)} (Loudness)

d(i, j) = max
k
{dk

i,j} (Duration)

Finally, we combined the previous scores Pitch, Loudness,
Duration, Pitch Range in order to explore different defini-
tions for the final acoustic score of a term in a segment. In
particular, we experimented with the following six defini-
tions for ac(i, j):

• The individual scores:

ac(i, j) = {f0(i, j), f0-range(i, j), l(i, j),d(i, j)}

• The product of Pitch Range and Loudness:

ac(i, j) = f0-range(i, j) ∗ l(i, j)

• The product of Pitch and Loudness:

ac(i, j) = f0(i, j) ∗ l(i, j)

3.3 Indexing and Retrieval
The text transcripts of each slide group segment were in-

dexed with the Terrier IR platform5 [10] version 3.5. We ex-
tended Terrier to also store the prosodic features associated
with term occurrences in the inverted index along with the
standard IR term frequency statistics. In addition, we setup
Terrier to properly handle Unicode strings by setting its to-
keniser class to UTFTokeniser, the property trec.encoding
to utf-8 and the property string.use utf to true.

Retrieval was performed with Terrier, with an extension
of the weighting model implemented by the class TF IDF.
When using this weighting model, Terrier computes rele-
vance scores by following the probabilistic approach, in which
the relevance score function is defined as the sum of individ-
ual term weights as presented in Equation 2.

Equation 3, along with the following definitions for tf(i, j)
and idf(i, C), based on the Okapi BM25 weighting func-
tion [13], are implemented by the class TF IDF in Terrier

5http://terrier.org

to complete Equation 2:

tf(i, j) =
k1 ∗ tfi,j

tfi,j +k1 ∗ (1− b+ b ∗ dlj
avdlj

)
(9)

idf(i, C) = log(
N

ni
+ 1) (10)

In Equation 9, tfi,j is the number of occurrences of term
i in segment sj , while dlj , and avdlj are the number of
terms in sj and the average length from all the segments
in C respectively. In Equation 10, N is the total number of
segments in C while ni represents the number of segments
in C containing the term i.

We extended the TF IDF weighting model implemented
in Terrier by integrating terms’ acoustic scores to the weight-
ing function. We experimented with the harmonic mean
given in Equation 7 and with the following weighted linear
interpolation:

w(i, j) = idf(i, C) ∗ (α ∗ tf(i, j) + (1− α) ∗ ac(i, j)) (11)

In both weighting functions, tf(i, j) and idf(i, C) were im-
plemented as in the original TF IDF model from Terrier
(Equations 9 and 10) and ac(i, j) was always one of the six
acoustic scores that we presented in Section 3.2. Overall,
we experimented with 12 weighting functions, each of which
defined a different “prosodic-based” retrieval model.

Note that the weighted linear interpolation from Equa-
tion 11 does not combine acoustic scores with inverse doc-
ument frequencies. The reason for this comes from the as-
sumption that the acoustic score ac(i, j), which is intended
to capture the grade of prominence of a term relative to oth-
ers in the lecture, is a measure of the importance that the
term i has for the segment sj . The term frequency tf(i, j)
can be also considered a measure of the level of importance
of the term i for the segment sj . Thus, it sounds logical to
only interpolate ac(i, j) with tf(i, j) in the calculation of the
weight w(i, j).

3.4 Optimisation and Model Selection
In order to optimise the parameters α, θir, and θac in the

prosodic-based weighting functions, we used as our training
set the text queries and relevance assessment data from the
passage retrieval subtask at the NTCIR-10 “2nd round of IR
for Spoken Documents” (SpokenDoc-2) [1] task. The rele-
vance assessment data of the SpokenDoc-2 passage retrieval
task associates each query with a sequence of relevant IPUs,
as opposed to the relevance data of this year’s slide group
segment task, in which each query is associated with a slide
group ID. So, we had to map each slide group ID to its IPUs
sequence in the retrieval results of our training experiments
to be able to evaluate these with the relevance assessment
data from the SpokenDoc-2 passage retrieval task.

Parameter optimisation was performed by evaluating the
prosodic-based weighting functions with different parameter
values. Then we selected the retrieval models that obtained
the best results in terms of the evaluation metrics used in
the SpokenDoc-2 passage retrieval task. We evaluated the
weighted linear interpolation from Equation 11 by varying α
from 1.0 to 9.0 and the harmonic mean from Equation 7 by
varying both θir and θac between 1.0 and 5.0. In addition,
we evaluated Terrier’s retrieval model as implemented by the
class TF IDF and considered this as our baseline system.



In an attempt to avoid overfitting when selecting the best
performing models, we split the query set from the SpokenDoc-
2 passage retrieval dataset into two sets, SD21 and SD22,
and evaluated the prosodic-based models on each of these.
We then ranked the models according to their performance
in terms of Utterance MAP (uMAP) for SD21 and SD22,
and selected the ones that performed better based on both
ranks. To do this, we simply selected the models with the
highest sum of rank numbers in SD21 and SD22. This pro-
cedure was performed individually for each type of tran-
scripts to obtain different best performing models for spoken
segments that were transcribed under the manual, math, and
unmatchAMLM conditions. Note that in the SpokenDoc-2
tasks, the query sets only included text queries, so our best
models were selected on the basis of their performance with
this type of queries.

Table 1 shows results for some of the best performing mod-
els obtained from our model selection procedure. The re-
sults presented in the table were obtained by evaluating the
best performing models with the complete query set from
the SpokenDoc-2 passage retrieval task, this included the
queries from the two parts SD21 and SD22. In the table, we
sorted the retrieval models according to their performance in
uMAP and not according t othe sum of their rank numbers
in SD21 and SD22, so Table 1 may not reflect the real rank-
ing order obtained during our model selection process. We
also marked in bold the best performing models that were
finally submitted for evaluation at the SQ-SCR task. Note
that we submitted runs with our baseline model as well, in
order to compare its performance against the prosodic-based
models. The k1 and b parameters in Equation 9 were set to
the default values of 1.2 and 0.75 respectively.

4. EXPERIMENTAL RESULTS
Figures 1, 2, 3 show the evaluation results for the runs

using prosodic-based models and the baseline system on the
SQ-SCR slide group segment task. The barplot from Fig-
ure 1 shows the results obtained when the manual transcrips
of the segments are used, while the barplots in Figures 2 and
3 show the results obtained when the ASR match and un-
match transcripts of the segments are used.

The barplots show the MAP value obtained for each re-
trieval model with an individual bar. We use the same pat-
terns across barplots for idenfitying the same or similar mod-
els, e.g., models based on LI-LPr have a wide diagonal strip
patter in all the barplots. Bars are grouped depending on
the type of spoken query used. So, in each barplot, bars from
the “Manual” group are the results of models evaluated with
the manual transcription of the spoken queries, whereas the
“Match” and “UnmatchAMLM” bar groups show results for
models evaluated with the ASR match and unmatchAMLM
transcripts of the spoken queries.

A general trend can be noted is that the prosodic-based
retrieval models did not perform better than the baseline
model TF IDF. An exception is the case where manual tran-
scripts are used for both spoken queries and segments (lef-
most bar group in Figure 1). In this case, the models LI-
Pr-0.7 and LI-LPr-0.7 obtained MAP values of 0.121 and
0.110 respectively, which are slightly better than the 0.108
obtained by the TF IDF baseline. Here, it is important to
note that LI-Pr-0.7 and LI-LPr-0.7 were both optimised to
perform well over text queries and manual transcripts of seg-
ments, as explained in Section 3.4 (see also Table 1). This

apparent superiority of LI-Pr-0.7 and LI-LPr-0.7 over the
baseline disappears when any other transcript type is used
for either the spoken queries or the segments. The remainder
of the prosodic-based models shown in the barplots in Fig-
ures 2 and 3 were optimised for text queries and the match
and unmatchAMLM type of transcripts, respectively. These
barplots show that the models do not beat the baseline un-
der these evaluation conditions. However, there is still an
open question of whether these models can outperform the
baseline when the manually transcribed spoken queries are
used as input instead of their ASR counterparts.

While the raw MAP values may suggest that some re-
trieval models are more effective than others, paired t stu-
dent’s statistical significance tests considering a 95% confi-
dence level show that, there is no statistical significant dif-
ference between the models when they are evaluated over
the same combination of spoken queries and segment tran-
scripts. This is, there is no statistical significant difference
between any combination of results taken from the same bar
group in the barplots.

When comparing the performance of the models by vary-
ing the type of spoken query used and leaving the type of
transcript fixed, we found statistical significant differences in
some cases. For instance, this is the case for the model LI-
Pr-0.7 in Figure 1 when it is evaluated with manual queries
and ASR queries. Also, the same model performs signifi-
cally worse when it is evaluated over ASR match segments
with unmatchAMLM queries, than when it is evaluated with
manual queries (Figure 2). This shows, as expected, that
the quality in the transcription of the spoken queries mat-
ters. Similarly, the quality of the transcripts used for the
segments affects the retrieval results. When using low qual-
ity ASR transcripts the results achieved by the models are
consistently lower. For example, the results obtained with
LI-LPr-0.5 for the match segments are statistically signifi-
cantly lower than the ones obtained for the unmatchAMLM
segments (Figures 2, and 3).

We also analysed the performance of our models on indi-
vidual queries. This was done in order to identify cases for
which prosodic-based models may have performed well. The
barplot from Figure 4 compares average precision (AveP)
values obtained for query 1 for every possible combination
of spoken query and segment transcript types. Bars with a
diagonal pattern show the average AveP obtained by the
prosodic-based models for query 1, while solid grey bars
show the AveP obtained by the baseline TF IDF model for
query 1. From the barplot, it can be seen that prosodic-
based models performed better than the baseline indepen-
dently on the quality of the transcripts.

5. CONCLUSIONS AND FURTHER WORK
This paper described DCU’s participation at the NTCIR-

11 SpokenQuery&Doc task. Following on from previous re-
search, we experimented with various weighting functions
that attempt to exploit the prosodic prominence of terms in
order to enhance their TF-IDF scores.

We participated in the slide group segment retrieval sub-
task. For the text transcripts provided by the organisers
we computed a set of normalised prosodic features for each
recognised word and aligned these to the processed man-
ual and ASR transcripts based on the word’s timestamps.
Transcripts enriched with the prosodic features were then
indexed with the Terrier IR platform, and term weighting



Transcript Type Model ID
Weighting

Acoustic Score
Parameters Results

Function α θir θac uMAP pwMAP fMAP

Manual

LI-Pr-0.7 Eq. 11 Pitch Range 0.7 - - 0.1369 0.0951 0.0995
LI-LPr-0.7 Eq. 11 Loudness * Pitch Range 0.7 - - 0.1369 0.0976 0.1005
G-LP-1-1 Eq. 7 Loudness * Pitch - 1 1 0.1326 0.0960 0.0989
BM25 Eq. 3 - - - - 0.1270 0.0950 0.0972

Match

LI-LPr-0.5 Eq. 11 Loudness * Pitch Range 0.5 - - 0.0842 0.0508 0.0524
LI-Dur-0.3 Eq. 11 Duration 0.3 - - 0.0819 0.0498 0.0521
G-Pr-1-1 Eq. 7 Pitch Range - 1 1 0.0786 0.0473 0.0499
LI-Pr-0.7 Eq. 11 Pitch Range 0.7 - - 0.0778 0.0490 0.0501
BM25 Eq. 3 - - - - 0.0682 0.0477 0.0486

UnmatchAMLM

G-P-3-1 Eq. 7 Pitch - 3 1 0.0288 0.0208 0.0131
LI-LP-0.5 Eq. 11 Loudness * Pitch 0.5 - - 0.0278 0.0210 0.0135
LI-LPr-0.2 Eq. 11 Loudness * Pitch Range 0.2 - - 0.0271 0.0205 0.0132
LI-P-0.9 Eq. 11 Pitch 0.9 - - 0.0227 0.0206 0.0129
BM25 Eq. 3 - - - - 0.0222 0.0203 0.0128

Table 1: Evaluation results on the SpokenDoc-2 dataset for some of the best performing retrieval models. The last

columns show the results in terms of Utterance-based MAP [uMAP], Pointwise MAP [pwMAP], and Fractional MAP

[fMAP]. Retrieval models marked in bold in column “Model ID” were submitted for evaluation at the SQ-SCR task.
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Figure 1: Evaluation results for the case when the man-

ual transcriptions of the segments are used.

schemes were implemented to combine the prosodic informa-
tion with TF-IDF scores. We submitted for evaluation the
prosodic-based retrieval models that obtained the highest
uMAP when evaluated on the SpokenDoc-2 query set.

The evaluation results do not provide sufficient evidence to
conclude that our prosodic-based retrieval models improve
over a simple baseline. It thus remains an open question
whether prosodic prominence at the word level can be effec-
tively used to improve retrieval performance in the Spoken-
Query&Doc task. However, as we would expect, the results
show that transcript quality of both spoken queries and seg-
ments impacts on the retrieval effectiveness of the models.
The results do though suggest that the prosodic-based mod-
els may be useful in particular cases, this is supported by
the fact that the prosodic-models retrieved more relevant
segments at higher ranks than the baseline for some queries.
Understanding the situations in which prosodic-models im-
prove retrieval effectiveness, and seeking to generalize these
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Figure 2: Evaluation results for the case when the ASR

match transcripts are used.

effects will be a subject of our further work.
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