
DCU@FIRE-2012: Rule-based Stemmers for
Bengali and Hindi

Debasis Ganguly, Johannes Leveling, and Gareth J. F. Jones

CNGL, School of Computing, Dublin City University, Dublin 9, Ireland
{dganguly, jleveling, gjones}@computing.dcu.ie

Abstract. For the participation of Dublin City University (DCU) in the
FIRE-2012 Morpheme Extraction Task (MET), we investigated a rule
based stemming approaches for Bengali and Hindi IR. The MET task it-
self is an attempt to obtain a fair and direct comparison between various
stemming approaches measured by comparing the retrieval effectiveness
obtained by each on the same dataset. Linguistic knowledge was used
to manually craft the rules for removing the commonly occurring plural
suffixes for Hindi and Bengali. Additionally, rules for removing classi-
fiers and case markers in Bengali were also formulated. Our rule-based
stemming approaches produced the best and the second-best retrieval
effectiveness for Hindi and Bengali datasets respectively.

1 Introduction

Stemming is an important preprocessing step in information retrieval (IR), which
involves normalizing inflected words, essentially representing the same concept,
to an equivalent representation in the index (called the stem). For example, an
ideal stemmer should normalize the words friend, friends, friendly, and friendship
to the stem friend.

Stemming approaches can broadly be classified into two different categories:
i) rule-based, where an inflected word is typically normalized by successively
removing the suffixes by applying a set of rules, e.g. the suffixes s, ly, and ship
can be removed from the inflections to obtain the stem friend; ii) corpus-based,
where words are grouped into an equivalent set representing the same concept,
by utilizing several corpus-wide statistical features such as co-occurrence or in-
dividual word-based features such as edit-distance etc.

The advantages of a rule-based stemmer over a corpus based approach are:
i) it is much faster because it does not require any pre-processing step on
the indexed documents; ii) the corpus based methods are error prone due to
under-training on a corpus not large enough for reliable statistical training; and
iii) highly frequent proper nouns might lead to stemming errors.

A disadvantage is that the stemming rules may have to be created manually
and for each language. Another limitation of a rule-based stemming approach
is that for some inflected words, it might not be possible to formulate a generic
enough rule for suffix removal. For example, while it is easy to remove the suffix

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/30934373?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ship to get the stem friend, a simple suffix removal does not suffice to normalize
the word enmity to enemy. Exceptions thus need to be formulated for a set of
words. Despite the limitations, the most widely used stemmers in English are
the rule-based ones viz. Porter stemmer [1] and the Lovins stemmer [2].

For Indian languages, which are more inflecting in nature than English, the
most commonly used stemming approaches have been the corpus-based one [3,
4]. The only reported work involving rule-based stemming for Bengali is [5].
However, there has not been any reported work seeking direct comparison be-
tween the stemming approaches i.e. applying the different stemming approaches
on the same document collection and query set, and comparing the retrieval ef-
fectiveness obtained by each. The Morpheme Extraction Task (MET) incepted
in FIRE-2012 is an attempt to achieve a fair and direct comparison between
different stemming approaches.

In this paper, we describe our participating systems in the MET-2012. We
developed two rule-based stemmers for Bengali and Hindi. The rest of the paper
is organized as follows. Section 2 describes the related work which is followed
by Sections 3 and 4 describing the rules and how are they applied for Bengali
and Hindi. Section 5 evaluates the proposed stemmers by presenting the official
results. Finally, Section 6 concludes the paper with directions for future work.

2 Related Work

Stemming approaches can be classified into different categories, e.g. by the results
produced by the stemmer (light stemming [6] vs. aggressive stemming [2]) or by
the resources used (corpus-based [7] vs. dictionary-based [8]).

The most widely used stemming approach for English is the rule-based Porter
stemmer [1], which successively applies rules to transform a word form into its
base form. The successive removal of affixes means that words with a recur-
sive morphological structure are reduced to their base form, e.g. words such as
hopelessness may be reduced to hope by removing the suffixes ness and less.

Light stemming focuses on removing only a few but the most frequent suffixes
from word forms. Recently, light stemming has been researched as a less aggres-
sive means to reduce words to their root form. For English, the s-stemmer which
removes only the -s, -es, and -ies suffixes from words and other light stemming
approaches have been proposed (see, for example, [9] and [10]).

YASS is a clustering-based suffix stripper which has been applied to docu-
ments in English, French, and Bengali [3]. YASS identifies clusters of equivalence
classes for words by calculating distance measures between strings. This stem-
mer relies on multiple word lists which have to be extracted from documents,
i.e. all words starting with the same character have to be collected in the same
word list in a scan over all documents.

Xu and Croft [7] use a combination of aggressive suffix removal with co-
occurrence information from small text windows to identify stemming classes.
This technique is corpus-based and requires little knowledge about the document



language. The original stemmer was developed for a Spanish document collection
[7] and shows an increase in recall for Spanish.

Goldsmith [11] identified suffixes employing a minimum description length
(MDL) approach. MDL reflects the heuristic that words should be split into a
relatively common root part and a common suffix part. Every instance of a word
(token) must be split at the same breakpoint, and the breakpoints are selected
so that the number of bits for encoding documents is minimal.

Oard, Levow et al. [12] apply the Linguistica tool by Goldsmith [11] to
create a statistical stemmer. Suffix frequencies are computed for a subset of
500,000 words in a document collection. The frequencies of suffixes up to a
length of 4 were adjusted by subtracting the frequency of subsumed suffixes.
Single-character suffixes were sorted by the ratio between their final position
likelihood and their unconditional likelihood. Suffixes were sorted in decreasing
order of frequency, choosing a cutoff value where the second derivative of the
frequency vs. rank was maximized.

3 Bengali Stemmer

We start this section with a brief introduction to the word inflection grammar of
Bengali, which is then used to formulate the explicit rules and the methodology
devised to apply them in sequence.

Bengali is an Indo-Aryan language spoken by more than 200 million people in
Bangladesh and the Indian state of West Bengal. Bengali is a highly inflectional
language with frequent compound suffixes which makes it necessary to apply
rules in steps. Morphogical affixing in Bengali can be categorized into: a) Inflec-
tional, where the part-of-speech of the inflected word remains unchanged; and
b) Derivational, where the part-of-speech of the inflected word changes.

Since nouns, typically due to their higher Inverse Document Frequency (idf )
values, are more important in IR than other parts-of-speech [13], for inflectional
morphology we restrict our investigation to nouns only. Bhattacharya et al. [14]
show that noun inflections can grouped into:

i) Title markers: These are the titles such as দবী (“Mrs.”), বাবু (sir) etc. which
are added as suffixes to proper nouns.

ii) Classifier: Used to denote plurality and specificity of a noun e.g. a root word
ছিব (picture) may be inflected as ছিব েলা (pictures) or ছিবটা (the picture). A
classifier can also indicate the gender of a noun e.g.ছা (student) may be
inflected to ছা ী to particularly denote a female student.

iii) Case marker: Used to denote possessive or accusative relations with other
words. The possessive case marker for English is the apostrophe charac-
ter. English does not use accusative markers. An example of an possessive
marker is পিরবােরর where the suffix ◌র is added to the root form পিরবার (family)
to mean “family’s”.

iv) Emphasizer: These markers are used to emphasize the current word e.g.ছিব
may be inflected to ছিবই to denote an equivalent of “only a picture” in En-
glish.



All of the above suffix types can appear in a word but only in the specified order
e.g.ছিব েলােকও, where েলা (a plurality classifier), ক (an accusative marker) and ও
(an emphasizer) have been used to derive “’also those pictures” from the root
word ছিব. With reference to the above example, we see that for English language
IR “also” and “those” can be easily removed since these are stopwords and the
trailing “s” which is the plural classifier, can be removed by a simple rule. But in
Bengali it is difficult since an English phrase can map to a single word and not
normalizing this word to the base form can result in a poor retrieval performance.
Title markers if present come before the case markers.

Algorithm 1 shows the algorithm to remove the suffixes for Bengali and
Table 1 illustrates a particular case in the control flow of the former. To handle
compound suffixes rules are applied in a series of steps.

Algorithm 1 Bengali Suffix Stripper(w)
1: len ← len[w]
2: {Drop the emphasizers}
3: if w[len-1] = ও or w[len-1] = ই then
4: len ← len-1;
5: end if
6: {Drop the classifiers and case markers}
7: x = {তা, টা, িট, টু , ক, র, ◌র, দর ভােব}
8: while ∃ x: w=w’x do
9: w ← w’; len ← len[w’];

10: end while
11: {Drop title markers}
12: x = {কারী, শীল, দবী, বাবু, ভাই}
13: while ∃ x: w=w’x do
14: w ← w’; len ← len[w’];
15: end while
16: {Drop the plural suffixes}
17: x = {রা, েলা, িল, েলােত, িলেত}
18: if ∃ x: w=w’x then
19: w ← w’; len ← len[w’];
20: end if
21: {Drop the derivational suffixes}
22: V = {Bengali Vowels} ∪ {Bengali Matras}∪ {য়}
23: while w[len-1] ∈ V do
24: len ← len-1
25: end while
26: if len>2 then
27: w ← w[0. . .len-1]
28: end if
29: return w



Table 1: Rules for simple suffixes with Bengali examples.

Lines Suffix type Bengali notation ITRANS notation

4 Emphasizer আিধক ই → আিধক Adhikya[i] → Adhikya
4, 19 Emphasizer and plural

classifier
ম ীরাও → ম ী mantrI[rAo] → mantrI

9 Specific classifier মুেখাশটা → মুেখাশ mukhosh[TA] → mukhosh
9 Possessive case marker ভারেতর → ভারত bhArat[er] → bhArat
9 Plural accusative case

marker
িশ ীেদর → িশ ী shilpI[der] → shilpI

9, 9 Specific classifier and Pos-
sessive case marker

িনয়াটার → িনয়া duniyA[TAr] → duniyA

14 Derivational ি তীশীল → ি তী sthitI[shIl] → sthitI
14 Title marker ক নােদবী → ক না karunA[debI] → karunA
9, 2 Plural accusative case

marker and derivational
ভারতীয়েদর → ভারতীয় bhAratiya[der] → bhAratiya

4 Hindi Stemmer

In Hindi, the inflections are less complex than Bengali and hence can be ad-
dressed by a smaller number of rules. For instance, the accusative markers and
emphasizers in Hindi instead of forming inflections as in Bengali, appear as sep-
arate words. An example in Hindi is “भारतीय को” (to an Indian) instead of
“ভারতীয়েক” as in Bengali.

In fact, there are only four cases of noun inflections for Hindi. Table 2 sum-
marises these with examples. To remove the inflections in Hindi, a very simple
rule similar to Step 21 of Algorithm 1 was employed. To be more precise, we
go on removing Hindi vowels, matras, anusvara and य from the rightmost part
of a word until the first consonant is encountered. The algorithm is outlined in
Algorithm 2. It is easy to see that the application of Algorithm 2 on the word
लड़िकयां (girls) yields the stem लड़की (girl).

Table 2: Noun inflections in Hindi

Root Inflected form
Word English translation Word English translation

लडक़ा boy लड़के boys (direct plural)
लडक़ा boy लड़कों boys (indirect plural)
लड़की girl लड़िकयां girls (direct plural)
लड़की girl लडि़कयों girls (indirect plural)



Algorithm 2 Hindi Suffix Stripper(w)
1: len ← len[w]
2: {Drop the derivational suffixes}
3: V = {Hindi Vowels} ∪ {Hindi Matras} ∪ {य, �ँ}
4: while w[len-1] ∈ V do
5: len ← len-1
6: end while
7: return w

5 Evaluation

Algorithms 1 and 2 were implemented in the C programming language as stand-
alone applications. The complete source code was submitted to the MET or-
ganizers, who compiled the code to build the executables at their end. Each
stemmer executable takes as input a list of words, which is the set of unique
words indexed by Terrier1 for the FIRE-2011 document collection in a partic-
ular language. The stemmer executable then generates a bi-column file, each
line of which comprises of the original word tab separated by its stemmed form.
The stemmed forms were then used to create a separate index and run retrieval
against it.

The official results are shown in Table 3. Our runs are named by “DCU”.
Five official runs were submmitted for the Bengali task, whereas only two were
submitted for Hindi. It can be seen that our Bengali rule-based stemmer achieves
a performance improvement of 20.69% over the baseline (no stemming). The
improvement obtained over the baseline with our rule-based Hindi is less (5.03%).
The most likely reason of getting more improvement for Bengali is that Bengali
being a language with more complex morphology than Hindi, offers a larger
scope of improvement by the stemming process.

Table 3: Official results of the MET-2012 task.
Team Language MAP

Baseline Bengali 0.2740
JU Bengali 0.3307 (20.69%)
DCU Bengali 0.3300 (20.44%)
IIT-KGP Bengali 0.3225 (17.70%)
CVPR-Team1 Bengali 0.3159 (15.29%)
ISM Bengali 0.3103 (13.25%)

Baseline Hindi 0.2821
DCU Hindi 0.2963 (5.03%)
ISM Hindi 0.2793 (-0.99%)

1 http://terrier.org/



6 Conclusions and Future Work

Our rule-based stemmers for Hindi and Bengali yielded the best and second
best performance gains in retrieval effectiveness, respectively. Future work will
involve extending the rules and adding appropriate exceptions.

Acknowledgments

This research is supported by the Science Foundation Ireland (Grant 07/CE/I1142)
as part of the Centre for Next Generation Localisation (CNGL) project.

References
1. Porter, M.F.: An algorithm for suffix stripping. Program 14(3) (1980) 130–137
2. Lovins, J.B.: Development of a stemming algorithm. Mechanical translation and

computation 11(1-2) (1968) 22–31
3. Majumder, P., Mitra, M., Parui, S.K., Kole, G., Mitra, P., Datta, K.: YASS: Yet

another suffix stripper. ACM Trans. Inf. Syst. 25(4) (2007)
4. Paik, J.H., Pal, D., Parui, S.K.: A novel corpus-based stemming algorithm using

co-occurrence statistics. In: Proceedings of the SIGIR ’11. (2011) 863–872
5. Leveling, J., Ganguly, D., Jones, G.J.F.: DCU@FIRE2010: Term conflation, blind

relevance feedback, and cross-language IR with manual and automatic query trans-
lation. In: Second Workshop of the Forum for Information Retrieval Evaluation
(FIRE 2010), Working Notes. (2010) 39–44

6. Savoy, J.: A stemming procedure and stopword list for general French corpora.
Journal of the American Society for Information Science 50(10) (1999) 944–952

7. Xu, J., Croft, B.: Corpus-based stemming using co-occurence of word variants.
ACM transactions on information systems 16(1) (1998) 61–81

8. Krovetz, R.: Viewing morphology as an inference process. In: SIGIR, ACM (1993)
191–202

9. Harman, D.: How effective is suffixing? Journal of the American Society for
Information Science 42(1) (1991) 7–15

10. Savoy, J.: Light stemming approaches for the French, Portuguese, German and
Hungarian languages. In: Proceedings of the 2006 ACM Symposium on Applied
Computing (SAC), Dijon, France, April 23–27, 2006, ACM (2006) 1031–1035

11. Goldsmith, J.: Unsupervised learning of the morphology of a natural language.
Computational Linguistics 27 (2001) 153–198

12. Oard, D.W., Levow, G.A., Cabezas, C.I.: CLEF experiments at Maryland: Statis-
tical stemming and backoff translation. In: Cross-Language Information Retrieval
and Evaluation, Workshop of Cross-Language Evaluation Forum, CLEF 2000, Lis-
bon, Portugal, September 21–22, 2000, Revised Papers. Volume 2069 of Lecture
Notes in Computer Science (LNCS)., Springer (2001)

13. Xu, J., Croft, W.B.: Improving the effectiveness of informational retrieval with
Local Context Analysis. ACM Transactions on information systems 18 (2000)
79–112

14. Bhattacharya, S., Choudhury, M., Sarkar, S., Basu, A.: Inflectional morphology
synthesis for bengali noun, pronoun and verb systems. In: In Proceedings of the
national conference on computer processing of Bangla (NCCPB. (2005) 34–43


