
Workload Patterns for Quality-driven Dynamic Cloud

Service Configuration and Auto-Scaling

Li Zhang, Yichuan Zhang

Northeastern University,

Shenyang, China

{zhangl,zhangyc}@swc.neu.edu.cn

Pooyan Jamshidi, Lei Xu, Claus Pahl

IC4, School of Computing, Dublin City University,

Dublin, Ireland

{pjamshidi,lxu,cpahl}@computing.dcu.ie

Abstract— Cloud service providers negotiate SLAs for cus-

tomer services they offer based on the reliability of performance

and availability of their lower-level platform infrastructure.

While availability management is more mature, performance

management is less reliable. In order to support an iterative

approach that supports the initial static infrastructure configura-

tion as well as dynamic reconfiguration and auto-scaling, an

accurate and efficient solution is required. We propose a predic-

tion-based technique that combines a pattern matching approach

with a traditional collaborative filtering solution to meet the

accuracy and efficiency requirements. Service workload patterns

abstract common infrastructure workloads from monitoring logs

and act as a part of a first-stage high-performant configuration

mechanism before more complex traditional methods are consid-

ered. This enhances current reactive rule-based scalability ap-

proaches and basic prediction techniques based on for example

exponential smoothing.

Keywords — Quality of Service, Cloud Configuration, Auto-

scaling, Web and Cloud Services, QoS Prediction, Workload Pat-

tern Mining, Collaborative Filtering.

I. INTRODUCTION

Quality of Service (QoS) is the basis of web and cloud
service configuration management and deployment [1,2].
Cloud service providers (CSPs) – whether at infrastructure,
platform or software level – provide quality guarantees usually
in terms of availability and performance to their customers in
the form of service-level agreements (SLAs) [4]. Internally, the
respective service configuration in terms of available resources
then needs to make sure that the SLA obligations are met [10].
To facilitate SLA conformance, virtual machines (VMs) can be
configured and scaled up/down in terms of CPU cores and
memory, deployed with storage and network capabilities.
Some current cloud infrastructure solutions allow users to de-
fine rules manually to scale up or down to maintain perfor-
mance levels.

QoS like service performance in terms of response time or
availability may vary depending on network, service execution
environment and user requirements, making it hard for
providers to choose an initial configuration and scale this
up/down to maintain the SLA guarantees, but also optimising
resource utilisation at the same time. We utilise QoS prediction
techniques here, but rather than bottom-up predicting QoS
from monitored infrastructure metrics [12,13,25], we reverse
the idea, resulting in a novel technique for pattern-based

resource configuration. We extract service workload patterns
(SWPs) that correspond to typical workloads of the
infrastructure and map these to QoS values. A pattern consists
of narrow range of metrics measured for each infrastructure
concern such as compute, storage and network under which the
QoS concern is stable. In a top-down approach, we then take a
QoS requirement and determine suitable workload-oriented
configurations that maintain required values. Furthermore, we
enhance this with a cost-based selection function, applicable if
many candidate configurations emerge.

We specifically look at performance as the QoS concern
here since dealing with availability in cloud environments is
considered as easier to achieve, but performance is currently
neglected in practice due to less mature resource management
techniques [10]. We introduce pattern detection mechanisms
and, based on a QoS-SWP matrix, we define SWP workload
configurations for required QoS. The accuracy of the solution
to guarantee that the chosen (initially predicted) resource
configurations meet the QoS requirements is of utmost
importance. An appropriate scaling approach is required in
order to allow this to be utilised in dynamic environments. In
this paper, we show that the pattern-based approach improves
the efficiency of the solution in comparison with traditional
prediction approaches, e.g. based on collaborative filtering.
This enhance existing solutions by automating current manual
rule-based reactive scalability mechanisms and also advances
prediction approaches for QoS, making them applicable in the
cloud with its accuracy and performance requirements.

Section II outlines the solution and justifies its practical
relevance. Section III introduces SWPs and how they can be
derived. Section IV discusses the selection of patterns as
workload specifications for resource configuration. The
application of the solution for SLA-compliant cloud resource
configuration is described in Section V. Section VI contains an
evaluation in terms of accuracy and performance of the
solution and Section VII contains a discussion of related work.

II. APPROACH OUTLINE - QUALITY-DRIVEN

CONFIGURATION AND SCALING

We now briefly discuss the state-of-the-art in cloud
resource configuration and its relevance to the solution . An
SLA is typically defined based on availability. Customers
expect that the services they acquire will be always available.
Thus, providers usually make extensive claims here. The

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DCU Online Research Access Service

https://core.ac.uk/display/30934357?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:zhangyc%7d@swc.neu.edu.cn

consensus in the industry is that cloud computing providers
generally have solutions to manage availability. Response time
guarantees, on the other hand, are harder to guarantee [10].
These types of obligations are more carefully phrased or fully
ignored. A quote to illustrate this is “We are putting a lot of
thought into how we can offer predictable, reliable and specific
performance metrics to a customer that we can then [build an]
SLA around," [C. Drumgoole, vice president global operations,
Verizon Terremark, 2013]. Thus, we specifically focus on
performance, although our solution is in principle applicable to
availability as well.

From a provider’s perspective, the question is how to
initially configure and later scale VMs and other resources for
a service such that the QoS (specifically response time) is
guaranteed and, if additionally possible, cost is optimised.
From an infrastructure perspective, data/storage, network
conditions and CPU utilisation impact on QoS such as
performance and availability significantly. We consider data
size, network throughput and CPU utilization as
representatives of data, network and computation
characteristics. Common definitions, e.g. throughput as the rate
of successful message delivery over a communication channel
or bandwidth, shall be assumed. Fig. 1 illustrates in a simple
example that values of the three resource configuration factors
can be linked to the respective measured performance.

Service
name

1st
invocation

2nd
invocation

3rd
invocation

4th
invocation

5th
Invocation

s1 [2,10,0.2]
-> 0.5

[1.5,20,0.5]
-> 2.0

[2.5,10,0.1]
 -> 0.2

[2,30,0.3]
-> 0.8

[2,8,0.2]
-> 1.2

s2 [1.2,11,0.1]
-> 0.3

[2,20,0.4]
-> 1.8

s3 [2,20,0.3]
-> 3.0

[1,20,0.2]
-> 6.0

[1.5,20,0.3]
-> 4.0

[2,15,0.2]
-> 2.4

Fig. 1. Measured QoS mappings from Infrastructure to Service

(format: [data, network, CPU] → performance)

The first step is to monitor and record these input metrics in

system logs. The second step is pattern extraction. From
repeated service invocations records (the logs), an association
to service QoS values based on prediction techniques can be
made. An observation based on experiments that we made (see
evaluation section) is that most services have relatively fixed
service workload patterns (SWP):

 The patterns are defined here as ranges of data, network

and CPU processing characteristics that reflect stable,

small acceptable variations of a QoS value.

 Generally, service QoS keeps steady under a SWP,

allowing this stable mapping between infrastructure input

and QoS to be used further.
If we can abstract SWPs from service logs or the respective

resource usage logs, the associated service quality can be based
on usage information using pattern matching and prediction
techniques. Even if there is no or insufficient usage
information for a given service, quality values can be
calculated using log information of other similar services, e.g.
through collaborative filtering. These two step can be carried
out offline. The next, first online step, is pattern matching,

where dynamically a pattern is matched in the matrix against
performance requirements. The final step is the (if necessary
dynamic) configuration of the infrastructure in the cloud.

The hypothesis behind our workload pattern-driven
resource configuration based on required service-level quality
is the stability of variations of quality under SWPs. We assume
SLA definitions to establish QoS requirements and the charged
costs for a service to be decided between provider and
consumer. Service-specific workload pattern are mined and
constructed – which considers environmental characteristics of
a service (in a VM) deployment. We experimentally
demonstrate that the hybrid technique for QoS-to-SWP
mappings (based on pattern matching and collaborative
filtering for missing information) enhances accuracy and
computational performance and makes it applicable in the
cloud. Traditional prediction techniques can be computational-
ly expensive and unsuitable for the cloud.

We limit this investigation to services and infrastructure
with some reasonably deterministic behaviour, e.g. classical
business or technology management applications. Larger sub-
stantial uncertainties arising from the environment shall be
neglected – we will however discuss this context later. We also
focus on single cloud environment, ignoring uncertainties aris-
ing from multi-cloud environments.

III. WORKLOAD PATTERNS

The core concept of our solution is a Service Workload Pat-
tern (SWP). A SWP is a group of service invocation character-
istics reflected by the utilised resources. In a SWP, the value of
workload characteristics is a range. The QoS is meant to be
steady under a SWP. We describe a SWP M as a triple of rang-
es low to high:

 M = [Datalow ~ Datahigh ,

 Networklow ~ Networkhigh , (3.1)

 CPUlow ~ CPUhigh]

Data, Network and CPU are common data/storage, network
and server/computation characteristics that we have chosen for
this investigation [25].

A. SWP Pattern Mining and Construction

We assume service-level execution quality logs in the for-

mat < q1, … , qn > and infrastructure-level resource monitoring

logs < r
i
1, … , r

i
m > with i=1,..,j for quality aspects (e.g., data,

network, server CPU utilisation) of the past invocations of the
services under consideration, as illustrated in Fig. 1. For each
service, the resource metrics and the associated measured per-
formance are recorded. The challenge is now to determine or
mine combinations of value ranges for input parameters r that
result in stable, i.e. only slightly varying performances. The
solution is a SWP extraction process that constructs the work-
loadpatterns.

 A SWP is composed of data, network and computation

characteristics. For these, we take throughput, data size

and CPU utilization as representatives, resp.

 We consider the execution (response) time as the repre-

sentative of QoS here.

An execution log records the input data size and execution
QoS; a monitoring log records the network status and Web
server status. We reorganize these two logs to find the SWP
under which QoS keeps steady.

Our SWP extraction algorithm is based on a generic algo-
rithm type, DBSCAN (density-based spatial clustering of ap-
plication with noise). DBSCAN [14] analyses the density of
data and allocates the data into a cluster if the spatial density is
greater than a threshold. The DBSCAN algorithm has two

parameters: the threshold and the minimum number of points
MinPts. Two points can be in the same cluster if their distance

is less than . The minimum number of points is also given.
We also need a parameter MaxTimeRange, the max time range
of a cluster. We expect the range of time is a cluster that can be
steady and has a size limit. When the cluster is too large, e.g. if
the range exceed a threshold, the cluster construction should be
stopped. The main steps:

 Select any object p from the object set S and find the ob-

jects set D in which the object is density-reachable from

object p with respect to and MinPts.

 Choose another object without cluster and repeat the first

step.

The pattern extraction algorithm is presented below:

Algorithm: SWP Extraction Algorithm based on DBSCAN
Input: Service Usage InforSet (exec+monitor log), , MinPts,
 MaxTimeRange
Output: __SWP PatternBase, Pattern-QoS information PatternQoS

1 for(Infor
i

<DataSize,ThroughPut,CPU,Performance>∈InforSet){

2 if (Infor
i

 does not belong to any exist cluster) {

3 P
j

=newPattern(Infor
i

)

4 // create a new pattern with Infor
i

 as seed

5 Add(P
j

, PatternBase)

6 InforSet = InforSet – Infor
i

7 SimInfor = SimilarInfor(InforSet, Infor
i

, ε)

8 // SimInfor is the information set which includes

9 all the similar usage information of Infor
i

.

10 Differences between the information in SimInfor

11 and Infor
i

on the characteristics value except

12 execution time are less than . n is the number

13 of information items in SimInfor.

14 InforSet = InforSet – SimInfor

15 if (n>MinPts) {

16 // MinPts is min number of exec info in cluster

17 (S
1

, S
2

, … ,S
m

) = Divide(SimInfor)

18 // Divide SimInfor into different groups.

19 Group S
1

includes all information of service s
1

20 for(k=1; k≤m; k++) {

21 for(Infor
j

∈S
k

) {

22 if (MaxTime-MinTime<MaxTimeRange) {

23 SimInfor =

24 SimilarInfor(InforSet,Infor
j

,time,MinPts,ε)

25 // Search similar info of S
k

 in execution

26 information set. If the number of similar

27 information item is less than MinPts, then the

28 density will turn low and top the loop.

29 S
k

 = S
k

 + SimInfor

30 InforSet = InforSet – SimInfor

31 }

32 }

33 PatternCharacteristics(S
k

)

34 // Organizes the information in the cluster and

35 statistics for the ranges of characteristics –

36 completes matrix

37 }

38 }

39 }

40 }__

 We give higher precedence to more recent log entries. Ex-

ponential smoothing can be applied to any discrete set of se-

quential observations xi. Let the sequence of observations

begin at time t=0, then simple exponential smoothing is de-

fined as follows:

𝑦0 = 𝑥0
𝑦𝑡 = 𝛼𝑥𝑡 + 1 − 𝛼 𝑦𝑡−1 , 𝑡 > 0, 0 < 𝛼 < 1

The choice of α is important. Close to 1 has no smoothing
effect and gives higher weight to recent changes and as a result
the estimate may fluctuate dramatically. Values of α closer to 0
have a better smoothing effect and the estimate is less respon-
sive to recent changes. We propose 0.8 as the default, which is
relatively high, but reflects the most recent multi-tenancy situa-
tion (which can undergo short-term changes).

B. Pattern-Quality Matrix

The input value ranges form a pattern that is linked to the
stable performance ranges in a Quality Matrix MS(M,S) based
on patterns M and services S. MS associates a service quality

QoSP(Si,Mi) (with P standing for performance) of service Si in

S under a pattern Mj in M.

Fig. 1 at the beginning illustrated monitoring and execution
logs that capture low-level metrics (CPU, network, storage)

and the related service response time performance. SWPs Mi
then result from the log mining process using clustering.

The matrix MS above shows the QoS in this example for

performance information of all services s for all patterns M.

(3.2)

mlll

m

m

m

qqq

qqq

qqq

sss

,2,1,

,22,21,2

,12,11,1

21

l

2

1

M

M

M

MS

s

sss

ss

ss

ssss

4~3

5.0~3.04.2~25.0~4.0

5.1~1.11.1~8.0

3.1~15.0~2.0

4321

4

3

2

1

M

M

M

M

The quality qij (1≤j≤l , 1≤i≤ m) is the quality of service sj under

pattern Mi with the quality value qij defined as follows:

 as if the service sj has no invocation history under pattern
mi and

 as lowij ~ highij if the service sj has an invocation history

under mi with range ~.

For a pattern M1 = [0.5-0.6 , 0.2-0.4 , 30-40MB] the CPU
utilization rate is 0.5-0.6, memory utilization is 0.2-0.4 and
network throughput is 30-40MB. The sample matrix illustrates
the workload pattern to QoS association for services. Empty
spaces (undetermined null values) for a service indicate lacking
data. In that case, a prediction based on similar services is nec-
essary, for which we use collaborative filtering.

C. Pattern Matching

For monitored resource metrics (data, network, CPU), we
need to determine which of these influences performance the
most. This determines the matched pattern. Let the usage in-
formation of service s be a sequence xk of data storage D, net-
work throughput N and CPU utilisation C values mapped to
response time R for k = 1, .. ,n:

[< xD
1
, xN

1
 , xC

1
 > , xR

1
]

 ..

[< xD
k
, xN

k
 , xC

k
 > , xR

k
] (3.3)

 ..

[< xD
n
, xN

n
 , xC

n
 > , xR

n
]

We use response time performance in the log as the refer-

ence sequence xR(k), k = 1,…, n, and other configuration met-
rics as comparative sequences. Then, we calculate the associa-
tion degree of other characteristics with response time and use
characteristics of an invocation as standard and carry out a
normalization of the other metrics. Thus, the normalized usage
information is (schematically) for any invocation k:

 [< yD(xD
k
)

, yN(xN

k
) , yC(xC

k
) > , 1] (3.4)

Next, we calculate absolute differences for the table above
using

0 0() () ()i ik y k y k (3.5)

With Oi here ranging over the quality aspects O1 = D, O2
= N and O3 = C. The resulting absolute difference sequence is
for our 3 quality aspects the following:

))(,),1(,0(010101 nyy ，

))(,),1(,0(020202 nyy ， (3.6)

))(,),1(,0(030303 nyy

In the next step, we determine a correlation coefficient
between reference and comparative sequence (using here the
correlation coefficient of the Gray relevance):

max0

maxmin
0

)(
)(

k
k

i

i
 (3.7)

Here |)()(|)(00 kykyk ii
is the absolute difference,

min 0min min ()i
i k

k is the minimum difference between two

poles, max 0max max ()i
i k

k is the maximum difference,

(0,1) is a distinguishing factor. Afterwards, we use the formula

n

k

i k
n

r
1

010)(
1

 (3.8)

to calculate the correlation degree between the metrics. Then,
we sort the metrics based on the correlation degree. If r0 is the
largest, it has the greatest impact on response time and will be
matched prior to others in the pattern matching process.

Clouds are shared multi-user environments where users and
applications require different quality settings. A multi-valued

utility function can be added representing the user weighting

of a vector of quality attributes for a matrix
as a weighting. This utility function allows a user to customise
the matching with user-specific weightings:

 𝑈 𝑝 ,𝑚 ,𝑞 : rng 𝑄 𝑚 ,𝑞 → 0,1 (3.9)

The overall utility can be defined, taking into account the
importance or severity of the quality attributes for each

:

𝑈 𝑚 ≝ 𝜔𝑖𝑈 𝑚 ,𝑞𝑖
∀𝑞𝑖∈𝑄

 𝑄 𝑚 ,𝑞𝑖
 𝑀𝑆

𝑈 𝑚 ,𝑞 = 𝑈 𝑝 ,𝑚 ,𝑞
∀𝑝∈𝑃

 𝜔𝑖
𝑖

= 1,𝜔𝑖 ≥ 0

(3.10)

Finally, the pattern that optimizes the overall configuration
utility is determined through the maximum utility calculated
as:

 𝑚𝑎𝑥𝑚∈𝑀𝑆
 𝑈 𝑚 (3.11)

Note, that the utility is based on the three quality concerns, but

could potentially be extended to take other factors into ac-

count. Furthermore, costs for the infrastructure can also be

taken into account to determine the best configuration. We

will define an additional cost function in the cloud configura-

tion Section V.

IV. QUALITY PATTERN-DRIVEN CONFIGURATION

DETERMINATION

The QoS-SWP matrix is the tool to determine SLA re-
quirements-compliant SWPs as workload specifications for the
resource configuration and re-configuration/re-scaling. For
quality-driven configuration, the question is: for a given ser-

vice Si and a given performance requirement QoSP, what are
suitable SWPs to configure the execution environment? The
execution environment is assumed to be a VM image configu-
ration with storage and network services – samples are dis-
cussed in Section 5.

We first determine a few configuration determination use
cases to get a comprehensive picture where the pattern tech-
nique can be used and then discuss the core solutions in turn.

A. Use Cases

In general, there is a possibly empty set of patterns MS(si)
for each service si, i.e. some services have usage information,
others have no usage information in the matrix itself. Consider
the sample matrix from the previous section. Three use cases
emerge that indicate how the matrix can be used:

 Configuration Determination – Existing Patterns: For a

service s with monitoring history: Since s1 has an invoca-

tion history for various patterns for a requested response

time of 0.45s, we can return this set of patterns including

M1 and M3.

 Configuration Determination – Non-existing Patterns:

For a given service s without history: Since s2 has no in-

vocation history for a required response time of 2s, we

can utilise collaborative filtering for the prediction of set-

tings – i.e. use similar services to determine patterns for

the given service [8,9].

 Configuration Test: For a given triple of SWP values and

a service s: If a given s1 has an invocation history for a

required response time of 2s and we have a given work-

load configuration, we can test the compliance of the con-

figuration with a pattern using the matrix.

B. Pattern-based Configuration Determination

If patterns exist that satisfy the performance requirements,
then these are returned as candidate configurations. In the next
step, a cost-oriented ranking of these can be done. We use
quality level to cost mappings that will be explained in Section
V below. If no patterns exist for a particular service (which
reflects the second use case above), then these can be deter-
mined by prediction through collaborative filtering, see [25].

QoS Prediction Process. For any service s, if there is in-
formation of sv under pattern mi, then calculate the similarity
between other services sj and sv. We can get the k neighbouring
services of service sj through a similarity calculation. The set of
these k services is S = {s1‘,s2‘,…,sk‘}. We fill the null (empty)
QoS values for the target invocation using the information in
this set. Using the information in S, we then calculate the simi-
larity of mi with other patterns that have the information for
target service sj. We choose the most similar k‘ patterns of mi,
and use the information across the k‘ patterns and S to predict
the quality of service sj.

Service Similarity Computation. If there is no information
of sj in a pattern mi, we need to predict the response time qi,j for
sj. Firstly, we calculate the similarity of sj and services which
have information within pattern mi ranges. For a service sv in Ii
– where Ii is the set of services that have usage information
within pattern mi – we calculate the similarity of sj and sv. We
need to consider the impact of configuration environment dif-
ferences, i.e. redefine common similarity definitions. Mvj is the
set of workload patterns which have the usage information of
services sv and sj.

vj jjcvj vvc

jcvvc

jvS

cc

vjjc j

qqqq

qqqq
sssim

MM

M

m

m

2

,

2

,

,,

)()(

))((
),(

m

 (4.1)

Here, vq is the average quality value for service sv and jq

the respective value for sj. From this, we can obtain all
similarities between sj and others services which have usage
information within pattern mi. The more similar the service is
to sj, the more valuable its data is.

Predicting Missing Data. Missing or unreliable data can
have a negative impact on prediction accuracy. In [26], we
considered noise up to 10% to be acceptable. In order to deal
with uncertainty beyond this, we calculate the similarity be-
tween two services and get the k neighbouring services. Then,
we establish the k-neighbour matrix Nsim and complete the

missing data. We add pis , as the data of service sp under

pattern mi if required:

' ,

' ,,

,
|)(|

)''(
'

Sn pn

Sn nnipn

ppi
sim

qqsim
qs (4.2)

Again,

pq' is the average quality value of sp, and simn,p is

the similarity between sn and sp. Now every service s S’ has
usage information within all pattern ranges in mi.

Calculating Pattern Similarity and Prediction. There is
QoS information of k neighbouring services of sj in matrix Nsim.
Some of them are prediction values. We can calculate the
similarity of pattern mi and other patterns using the correction
cosine similarity method:

SS

S

kk

k j

s jkjs iki

s kjiki

jiM

tttt

tttt
mmsim

2

,

2

,

,,

)''()''(

)'')(''(
),((4.3)

After determining the pattern similarity, the data of patterns
with low similarity are removed from Nsim, the set of the first k
patterns. The data of these patterns are retained for prediction,
if pi,j is the data to be predicted as the usage data of service sj
within pattern mi, it can be calculated.

' ,

' ,,

,
|)(|

)''(
'

Mn

n

in

njnin

iji
sim

qqsim
qp M (4.4)

The average QoS of data related to pattern mi is

iq' and

simn,i is the similarity between patterns mn and mp.

C. Pattern-based Configuration Testing

We can use the pattern-QoS matrix to test a standard or any
known resource configuration in SWP format (i.e., three con-
crete values rather than value ranges for the infrastructure as-
pects) – for instance in the situation outlined above for a ser-
vice si for which its performance is uncertain. This can also be
done instead of collaborative filtering, as indicated above, if
the returned set of patterns is empty and a candidate configura-
tion is available. Then, the matrix can be used to determine the
respective QoS values, i.e., to predict quality such as perfor-
mance in our case through testing as well.

This situation shall be supported by an algorithm that
matches candidate configurations with stored workload pat-
terns based on their expected service quality. The algorithm

takes into account whether or not possibly matching workload
patterns exist.

__

Algorithm: Matching Candidate Configurations

Input: Service Usage Information of a Service

Output: ____Metrics Sorted by Correlation Degree______________
1 Match [candidate configuration Config = < y

1

, y
2

, y
3

 >

of target service s
i

] with [characteristics (ranges)

< low
1

~high
1

, low
2

~high
2

, low
3

~high
3

 >] of stored pat-

terns M
i

.

2 If there is a pattern that can be matched

a. Then return it

b. Else use Gray relevance analysis (formula

(3.7)) to match a pattern

3 Let the matched pattern be m
i

a. Search information about matched pattern m
i

in

matrix M

b. If there is QoS information of service s
i

 in

m
i

,

i. Then return it as expected QoS for

 candidate configuration

ii. Else If no related QoS information

 exists

Then predict QoS by collaborat.

 filtering (4.1)–(4.4)

4 Return .

If no patterns exist, existing candidate configurations can
be tested – to enable always a solution, at least one default
configuration should be provided. Alternatively, similar ser-
vices can be considered; these can be determined through col-
laborative filtering and then we would start again.

V. CLOUD SERVICE SLA, VM CONFIGURATION AND AUTO-

SCALING

This section shall illustrate how the approach can be used
in a cloud setting for resource (VM) configuration and auto-
scaling. Predefined configurations for VMs and other resources
offered by providers as part of standard SLAs could be the
following that relate to the CPU, data/storage and network
utilisation criteria < Data , Network , CPU > we used in Sec-
tions 3 and 4 for the SWPs:

32-bit VM Bronze Silver Gold

Virtual CPU @ 1.25 GHz 1 2 4

Virtual Memory (GB) 2 4 4

Virtual Storage (GB) 60 120 240

Network Bandwidth (GB) 350 700 1400

Gold, Silver and Bronze are names for the different config-
urations. We can add pricing for Pay-as-you-Go (PAYG) and
monthly subscription fees to the above scheme to take cost-
based selection of configurations into account:

32-bit VM Pay-as-you-Go Bronze Silver Gold

CPU Hours 1/hr 100 150 200

Virtual Memory 0.05/hr 200 300 450

Virtual Storage 0.1/hr 60 120 240

Network Bandwidth 10/TB 35 50 75

We define below a cost function C : Config -> Cost to for-
malise such a table. The categories based on the resource work-
load configurations can now be aligned by the provider with
QoS values that are promised in the SLA – here with response
time and availability guarantees filled in the Configuration-
Quality matrix CQ:

995.1

9.990.1

99.9975.0

Bronze

Silver

Gold

In general, the Configuration-Quality Matrix is defined by

CQ = [cij] with i : configuration category (5.2)

 and j : quality attribute

A selection function determines suitable workload pat-
terns Mi for a given quality target q as defined in the Configu-
ration-Quality matrix and a service sj:

(q,s) = { MiM | MS(q,sj) qij } (5.3)

From this set of workload patterns {M1, … , Mn}, we deter-
mine the most optimal one in terms of resource utilisation. For
minimum and maximum utilisation thresholds minU and maxU ,
the best pattern is selected based on a minimum deviation of
pattern ranges Mi(q) across all quality factors (based on the
overall mean value) from the threshold average value, defined
as the mean average deviation (where indicates the mean
value for any expression x):

min𝑖 𝑚𝑎𝑥𝑈 −𝑚𝑖𝑛𝑈 − 𝑀𝑖(𝑞)
2

The thresholds can be set at 60% and 80% of the pattern
range averages to achieve a good utilisation with some remain-
ing capacity for spikes.

Based on the best selected SWP Mi with the given key met-
rics, a VM image can be configured accordingly in terms of
CPU, data and network parameters and deployed with the ser-
vice in question. If several SWPs apply to meet performance
requirements, then costs can be considered to select the cheap-
est offer (if the cost in the table reflects in some way the real
cost of provisioned resources and not only charged costs)

𝐶𝑜𝑠𝑡(𝑞, 𝑠) = min𝑖 𝐶((𝑞,𝑠))

for a cost function C that maps a pattern in (q,s) to its cost
value. The cost function can create a ranking of otherwise
equally suitable patterns or configurations.

The service-based framework presented in Sections III and
IV was here applied to the cloud context by linking it to stand-
ard configuration and payment models. Specific challenges
arose from the cloud context that we have addressed are:

 Standard cloud payment models allow an explicit costing,
which we took into account here through the cost function.
Essentially, the cost function can be used to generate a
ranked list of candidate patterns for a required QoS value in
terms of the operational cost. In [30], we have demonstrat-
ed that different performance result, but also costs vary for
a given configuration pattern.

 (5.4)

 (5.5)

 Cloud solutions are subject to (dynamic) configurations,
generally both at IaaS and PaaS level. While our configura-
tion here is geared towards typical IaaS attributes, our im-
plementation work with Microsoft Azure (see Section VI)
also demonstrates the possibility and benefit of PaaS-level
configuration. In [30], we have discussed different PaaS-
level storage configurations and their cost and performance
implications.

 User-driven scalability mechanisms such as CloudScale or
CloudWatch or the AWS Autoscaling typically work on
scaling rules defined on the granularity of VMs add-
ed/removed. Our solution is based on similar metrics, e.g.
GB for storage or network bandwidth, i.e. further automates
these solutions.

We have briefly mentioned uncertainties that arise from cloud
environments in Section II. While this aspect is neglected here,
in [26], we have presented an approach that adds uncertainty
handling on top of prediction for VM (re-) configuration. Un-
certainties arise for instance from incomplete or potentially
untrusted monitoring data or from varying needs and interpre-
tations of stakeholders regarding quality aspects. The approach
in [26] adds a fuzzy logic processing on top of a prediction
approach.

VI. IMPLEMENTATION AND EVALUATION

Implementation. The implementation of the prediction and
configuration technique covers different parts – offline and
online components:

 The pattern determination and the construction of the pat-
terns-quality matrix is done off-line based on monitoring
logs. The matrix is needed for dynamic configuration and
can be updated as required in the cloud system. For the
prediction, the accuracy is central. As the construction is
offline, performance overhead for the cloud environment is,
as we will demonstrate, neglectable.

 The actual prediction through accessing the matrix is done
in a dynamic cloud setting as part of a scaling engine that
combines prediction and configuration. Here the acceptable
performance overhead for the prediction needs to be
demonstrated.

For both the accuracy and performance concern, we use a
standard prediction solution, collaborative filtering (CF) as the
benchmark, which is widely used and analysed in terms of
these properties, cf. [8,9] or [12,13].

We have implemented a simulation environment with a
workload generator to evaluate accuracy of the prediction ap-
proach and the performance of the prediction-based configura-
tion. We provided 100 application services from three different
categories, each category either sensitive to data size, network
throughput or CPU utilization. Figs. 2 and 3 describe the
testbed with the monitoring and SWP extraction solution for
Web services. The primary concern is the accuracy of the pat-
tern extraction and pattern-based prediction of performance for
deployed services. Furthermore, as dynamic reconfiguration,
i.e. auto-scaling, is an aim, also performance needs to be
looked at.

We have tested our scalability management in Microsoft
Azure. We have implemented a range of standard applications,
including an online shopping application, a services manage-
ment solution and a video processing feature to determine the
quality metrics for different service and infrastructure configu-
ration types. For the first two, we used the Azure Diagnostics
to collect monitoring data (Fig. 2). We also created an addi-
tional simulation environment to gather a reliable dataset with-
out interference from uncontrollable cloud factors such as the
network (Fig. 3).

0 50 100
0

500

1000

1500

0 50 100
100

200

300

400

500

0 50 100
0

1000

2000

0 50 100
0

200

400

600

0 50 100
0

500

1000

0 50 100
0

500

1000

Fig. 2. Evaluation Architecture.

Elsewhere, we have implemented our prediction mecha-
nism in other platforms. Work we described in [26] deals with
how to implement this in a scalability solution such as Amazon
AWS where monitored workload and performance metrics are
considered together with a prediction of anticipated behaviour
to configure the compute capabilities.

Monitoring
Log

Execution
Log

Cloud
System under Test

Pattern
MatchingMonitoring

Engine

Scaling
(Configuration)

Engine

SWP
Repository

SWP
Extraction

Online Prediction

Offline Prediction

Fig. 3. Scaling Engine Components – Pattern and Prediction

Accuracy. Reliable performance guarantees based on con-

figuration parameters is the key aim – real performance needs
to match the expected or promised one for the provider to fulfil
the SLA obligations. Accuracy in virtualisation environments
is specifically challenging [28] due to the layered architecture,
shared resources and distribution.

Accuracy of prediction is measured in terms of deviation
from the real behaviour. The metric we use here is based on the
mean absolute error (MAE) between prediction (SLA im-
posed) and real response time, which is the normal choice to
measure prediction accuracy. Different characteristics of QoS
have different ranges. Consequently, we use NMAE (the Nor-
malized Mean Absolute Error) instead of the MAE. The small-
er the NMAE, the more accurate is the prediction. We compare
our solution with similar methods based on traditional predic-
tion methods in terms of matrix density. This covers different
situations from situations where little is known about the ser-
vices (density is low) and situations where there is a reliable
base of historic data for pattern extraction and prediction (high
density).

In earlier work, we included average-based predications
and classical collaborative filtering (CF) in a comparison with
our own hybrid method (MCF) of matrix-based matching and
collaborative filtering [25]. The NMAE of k=15 and k=18
(higher or lower ks are not interesting as lower values are sta-
tistically not significant and higher ones only show a stabilisa-
tion of the trend) shows an accuracy improvement for our solu-
tion compared to standard prediction techniques, even without
utility function and exponential smoothing, see Fig. 4. For this
evaluation here, we also include time series (TS) into the com-
parison. For the evaluation, we considered some noisy data
which cannot be in any pattern. We also removed invocation
data and then predicted it using the CF, MCF and also the TS
time series method from [22].

Fig. 4. Accuracy Evaluation

We can observe that an increase of the dataset size im-
proves the accuracy significantly. In all cases, our MCF ap-
proach outperforms the other ones.

Efficiency Overhead (Runtime). For automated service
management – in the context of cloud auto-configuration and
auto-scaling – we need sufficient performance of the extraction
and matching approach itself. To be tested in this context are
the performance of three components:

1) SWP Extraction from Logs (Matrix Determination)

2) Configuration-Pattern Matching (Existing Patterns)

3) Collaborative Filtering (Non-Existing Patterns)

For cases 1 and 2, we determined 150 workload patterns

from 2400 usage recordings. We tested the algorithm on a
range of different datasets extracted from a number of docu-
mented benchmarks and test cases. Compared to other work

based on the TS and CF solutions, the matrix for collaborative
computation is reduced from 2400*100 to 150*100, which
reduces execution time significantly by the factor 16. For case
3, only when a matched pattern provides no information for a
target service, the calculation for collaboration prediction is
required – see Figure 5 where we compare prediction with and
without the pattern-based matrix utilisation.

Fig. 5. Performance Evaluation

Thus, in conclusion, the computational effort for the dy-
namic prediction is decreased to a large extent due to the al-
ready partially filled matrix. As already explained, the perfor-
mance of the pattern extraction and matrix construction
(DBSCAN based clustering and collaborative filtering) can be
computationally expensive, but can be done offline and only
the matrix-based access (as demonstrated in the performance
figure above) impacts on the runtime overhead for the configu-
ration. However, as the figure shows, our method’s overhead
increases only slowly even if the data size increases substan-
tially. Consequently, the solution in this setting is no more
intrusive than a reactive rule-based scalability solution such as
Amazon AWS Auto Scaling that would also follow the archi-
tecture in Fig.2.

VII. RELATED WORK

QoS-based service selection in general has been widely
covered. There are three main categories of prediction-based
approaches for selection.

 The first one covers statistical methods, which is often

adopted for simplicity [1,2,4,5,6]. These methods are

simple and easy to implement.

 The second category selects services based on user feed-

back and reputation [16,17]. It can avoid malicious feed-

back, but does not consider the impact of SLA require-

ments and the environment and cannot customise predic-

tion for users.

 The third category is based on collaborative filtering

[8,9,11], which is a widely adopted recommendation

method [18-20] – e.g., [19] summarizes the application of

collaborative filtering in different types of media recom-

mendation. Here, we combine collaborative filtering with

service workload patterns, user requirements and SLA ob-

ligations and preferences. This considers different user

preferences and makes prediction personalized, while

maintaining good performance results.
To demonstrate that our solution is an advancement com-

pared to existing work on prediction accuracy, we had singled
out two approaches for categories 1 and 3 for the evaluation
above.

Some works integrate user preferences and user characteris-
tics into QoS prediction [8,9,11,12], e.g. [8,9] propose predic-
tion algorithms based on collaborative filtering. They calculate
the similarity between users by their usage data and predict
QoS based on user similarity. This method avoids the influence
of the environment factor on prediction. However, even the
same user will have different QoS experiences over time de-
pending on the configuration of the execution environment or
will work with different input data. Current work generally
does not consider user requirements. Another current limitation
of current solutions is low efficiency as we demonstrated. Our
work in [26] is a direction based on fuzzy logic to take user
scalability preferences into account for a cloud setting.

In [24,25], pattern approaches are proposed. [24] suggests
pattern-based management for cloud configuration manage-
ment, but without a detailed solution. [25] is about bottom-up
QoS predication for standard service-based architectures, while
in this paper QoS requirements are used to predict suitable
workload-oriented configurations taking specifically cloud
concerns into consideration. We added additionally exponential
smoothing and utility functions and the cost analysis here, but
draw on some evaluation results from [25] in comparison to
standard statistical methods.

Supporting cloud service management can automatically
scale the infrastructure to meet the user/SLA-specified perfor-
mance requirements, even when multiple user applications are
running concurrently. Jamshidi et al. [26] deal with multi-user
requirements as part of an uncertainty management approach,
which performs well based on a fuzzy-logic approach, but
cannot in comparison demonstrate as accurate prediction as
only exponent smoothing based on a few workload patterns is
done. Ghandi et al. [27] also leverage application level metrics
and resource usage metrics to accurately scale infrastructure.
They use Kalman filtering to automatically learn changing
system parameters and to proactively scale the infrastructure,
but have less of a performance gain than through patterns in
our solution. Another work in this direction is [29], where the
solution aims to automatically adapt to unpredicted conditions
by dynamically updating a Kriging behaviour model. These
deal with uncertainty concerns that we have excluded. Howev-
er, an integration of both directions would be beneficial in the
cloud. These approaches can add the uncertainty management
solutions required.

The proposed method in this paper takes full account of us-
er requirements (reflected in SLA obligations for the provider),
the network and computational factors. It abstracts the service
workload pattern to keep the service QoS steady. When us-
er/SLA requirements are known, prediction-base configuration

can be done based on matched patterns. This approach is effi-
cient and reduces the computational overhead.

VIII. CONCLUSIONS

Web or cloud services [23] usually differ with respect to
QoS characteristics. Relevant service-level qualities are re-
sponse time, execution cost, reliability, or availability. There
are many factors that impact on QoS [15]. They depend not
only on the service itself, but also how it is deployed. Some
factors are static, some are run-time static, the others are dy-
namic. Run-time static and dynamic factors like client load,
server load, network channel bandwidth or network channel
delay are generally uncertain, but can be influenced by suitable
configuration in virtualised environments such as the cloud.
Most factors can be monitored, and their impact on service-
level quality can be calculated as part of a service management
solution. Service management in cloud environments requires
SLAs for individual users to be managed continuously through
dynamic platform and infrastructure configuration, based on
monitored QoS data.

We provided a solution that links defined SLA obligations
for the provider in terms of service performance with lower-
level metrics from the infrastructure that facilitates the provi-
sioning of the service. Our solution enables cloud workload
patterns to be associated to performance requirements in order
to allow the requirements to be met through appropriate con-
figuration.

Performance management is still a problem in the cloud
[10,31]. While availability is generally managed and, corre-
spondingly, SLA guarantees are made, reliably guaranteeing
performance is not yet solved. Through a mining approach we
can extract resource workload patterns from past behaviour
that match the performance requirement and allow a reliable
prediction of a respective configuration for the future.

In order to further fine-tune the approach, in the future we
will take more infrastructure metrics into account. More specif-
ic cloud infrastructure solutions and more different use cases
shall be used on the experimental side to investigate whether
different patterns emerge either for different resource provi-
sioning environments or for different application domains and
consumer customisations [32]. Another crucial direction is the
incorporation of uncertainty into the approach. Uncertainty, as
discussed, manifests itself through incomplete and untrustwor-
thy data or the consequences of multiple stakeholders in the
cloud. We propose to follow [26] and use a fuzzy logic ap-
proach to incorporate this.

ACKNOWLEDGMENT

This research has been supported by the Fundamental Re-
search Funds for the Central Universities of China (grant
N130317005), by the National Natural Science Foundation of
China (grant 61402090), and the Irish Centre for Cloud Com-
puting and Commerce IC4, an Irish national Technology Cen-
tre funded by Enterprise Ireland, the Irish Industrial Develop-
ment Authority, and by Science Foundation Ireland (Interna-
tional Strategic Cooperation Award Grant Number
SFI/13/ISCA/2845).

REFERENCES

[1] Cardoso J., Sheth A., Miller J., Arnold J., Kochut, K.: Quality of Service
for Workflows and Web Service Processes. Jrnl of Web Sem 1(3):281-
308 (2004)

[2] Kritikos, K., Plexousakis, D.: Requirements for QoS-based Web service
description and discovery. IEEE Transact on Services Computing, 2(4),
320-337 (2009)

[3] Huang, A. F. M., Lan, C. W., Yang, S. J. H.: An optimal QoS-based
Web service selection scheme. Information Sciences, 179(19): 3309-
3322 (2009)

[4] Ye, Z., Bouguettaya, A., Zhou, X.: QoS-Aware Cloud Service
Composition based on Economic Models. Service-Oriented Computing,
Springer, 111-126 (2012)

[5] Alrifai, M., Skoutas, D., Risse, T.: Selecting skyline services for QoS-
based web service composition. Proc. Intl Conf on World Wide Web,
ACM, 11-20 (2010)

[6] Zeng, L., Benatallah, B., Ngu, A. H. H., et al.: QoS-Aware middleware
for Web services composition. IEEE Transact on Softw Eng, 30(5), 311-
327 (2004)

[7] Yu, T., Lin, K. J.: Service Selection Algorithms for Web Services with
End-to-end QoS constraints. Inf Syst and E-Bus Management, 3(2):103-
126 (2005)

[8] Shao, L., Zhang, J., Wei, Y., et al.: Personalized QoS prediction for Web
services via collaborative filtering. Intl Conf on Web Services ICWS’07,
439-446 (2007)

[9] Zheng, Z., Ma, L. M. R., et al.: Qos-aware web service recommendation
by collaborative filtering. IEEE Transact on Services Computing, 4(2),
140-152 (2011)

[10] Chaudhuri, S.: What next?: a half-dozen data management research
goals for big data and the cloud. Proc. 31st Symp. Princ. of Database
Systems (2012)

[11] Wu, G., Wei, J., Qiao, X., et al.: A Bayesian network based QoS
assessment model for web services. IEEE Intl Conf on Service
Computing, 498-505 (2007)

[12] Li, Z., Bin, Z., Ying, L., et al. A Web Service QoS Prediction Approach
Based on Collaborative Filtering. Asia-Pacific Serv Comp Conf
APSCC10,725-731 (2010)

[13] Li, Z., Bin, Z., Jun, N., et al.: An Approach for Web Service QoS
prediction based on service using information. Intl Conference on
Service Sciences ICSS’2010. 324-328 (2010)

[14] Ester, M., Kriegel, H. P., Sander, J., et al.: A density-based algorithm for
discovering clusters in large spatial databases with noise. Intl Conf on
Knowledge Discovery in Databases and Data Mining (KDD-96), 226-
232 (1996)

[15] Lelli, F., Maron, G., Orlando, S.: Client Side Estimation of a Remote
Service Execution, IEEE International Symposium on Modelling,
Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS) (2007)

[16] Vu, L. H., Hauswirth, M., Aberer, K.: QoS-based Service Selection and
Ranking with Trust and Reputation Management. Comp Sci,
3760(2005) , 466-483 (2005)

[17] Yan, L., Minghui, Z., Duanchao, L., et al.: Service selection approach
considering the trustworthiness of QoS data. Jrnl of Software 19(10),
2620-2627 (2008)

[18] Sarwar, B., Karypis, G., Konstan, J., et al.: Item-based collaborative
filtering recommendation algorithms. World-Wide Web Conf. ACM,
285-295 (2001)

[19] Chun, Z., Chunxiao, X., Lizhu, Z.: A Survey of Personalization
Technology. Journal of Software, 13(10), 1852-1861 (2002)

[20] Hailing, X., Xiao, W., Xiaodong, W., Baoping, Y.: Comparison study of
Internet recommendation system. Journal of Software, 20(2):350-362
(2009)

[21] Ailing, D., Yangyong, Z., Bole, S.: A collaborative filtering
recommendation algorithm based on item rating prediction. Jrnl of
Software 14(9):1621-1628 (2003)

[22] Cavallo B, Di Penta M, Canfora G. An empirical comparison of
methods to support QoS-aware service selection. 2nd International
Workshop on Principles of Engineering Service-Oriented Systems. 64-
70 (2010)

[23] Pahl, C., Xiong, H.: Migration to PaaS Clouds - Migration Process and
Architectural Concerns. International Symposium on the Maintenance
and Evolution of Service-Oriented and Cloud-Based Systems
MESOCA'2013 (2013)

[24] Srinivas, D.: A patterns/workload-based approach to the cloud. DIMS
Lightning Talk. IBM (2013)

[25] Zhang, L., Zhang, B., Pahl, C., Xu, L., Zhu, Z: Personalized Quality
Prediction for Dynamic Service Management based on Invocation
Patterns. Intl Conference on Service Oriented Computing ICSOC (2013)

[26] Jamshidi, P., Ahmad, A., Pahl, C. Autonomic Resource Provisioning for
Cloud-Based Software. 9th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems SEAMS'14
(2014)

[27] Gandhi, A., Harchol-Balter, H., Raghunathan, R., Kozuch M.A.:
Autoscale: Dynamic, robust capacity management for multi-tier data
centers. ACM Transactions on Computer Systems (TOCS) 30 (4), 14
(2012)

[28] Gmach, D., Rolia, J., Cherkasova, L., Kemper, A.: Workload Analysis
and Demand Prediction of Enterprise Data Center Applications.
Proceedings of the 2007 IEEE 10th International Symposium on
Workload Characterization (2007)

[29] Gambi, A., Toffetti, G., Pautasso, C., Pezze, M.: Kriging controllers for
cloud applications. Internet Computing, IEEE 17.4: 40-47 (2013)

[30] Xiong, H., Fowley, F., Pahl, C., Moran, N.: Scalable Architectures for
Platform-as-a-Service Clouds: Performance and Cost Analysis.
European Conference on Software Architecture ECSA'14 (2014)

[31] Jamshidi, P., Ahmad, A., Pahl, C. Cloud Migration Research: A
Systematic Review. IEEE Transactions on Cloud Computing 1(2):142-
157 (2013)

[32] Wang, Bandara, K.Y., Pahl, C. Process as a Service - Distributed Multi-
tenant Policy-based Process Runtime Governance. IEEE International
Conference on Services Computing SCC’2010. IEEE Press (2010)

