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Abstract— Cloud service providers negotiate SLAs for cus-

tomer services they offer based on the reliability of performance 

and availability of their lower-level platform infrastructure. 

While availability management is more mature, performance 

management is less reliable. In order to support an iterative 

approach that supports the initial static infrastructure configura-

tion as well as dynamic reconfiguration and auto-scaling, an 

accurate and efficient solution is required. We propose a predic-

tion-based technique that combines a pattern matching approach 

with a traditional collaborative filtering solution to meet the 

accuracy and efficiency requirements. Service workload patterns 

abstract common infrastructure workloads from monitoring logs 

and act as a part of a first-stage high-performant configuration 

mechanism before more complex traditional methods are consid-

ered. This enhances current reactive rule-based scalability ap-

proaches and basic prediction techniques based on for example 

exponential smoothing. 

Keywords — Quality of Service, Cloud Configuration, Auto-

scaling, Web and Cloud Services, QoS Prediction, Workload Pat-

tern Mining, Collaborative Filtering. 

I. INTRODUCTION 

Quality of Service (QoS) is the basis of web and cloud 
service configuration management and deployment [1,2]. 
Cloud service providers (CSPs) – whether at infrastructure, 
platform or software level – provide quality guarantees usually 
in terms of availability and performance to their customers in 
the form of service-level agreements (SLAs) [4]. Internally, the 
respective service configuration in terms of available resources 
then needs to make sure that the SLA obligations are met [10]. 
To facilitate SLA conformance, virtual machines (VMs) can be 
configured and scaled up/down in terms of CPU cores and 
memory, deployed with storage and network capabilities. 
Some current cloud infrastructure solutions allow users to de-
fine rules manually to scale up or down to maintain perfor-
mance levels. 

QoS like service performance in terms of response time or 
availability may vary depending on network, service execution 
environment and user requirements, making it hard for 
providers to choose an initial configuration and scale this 
up/down to maintain the SLA guarantees, but also optimising 
resource utilisation at the same time. We utilise QoS prediction 
techniques here, but rather than bottom-up predicting QoS 
from monitored infrastructure metrics [12,13,25], we reverse 
the idea, resulting in a novel technique for pattern-based 

resource configuration. We extract service workload patterns 
(SWPs) that correspond to typical workloads of the 
infrastructure and map these to QoS values. A pattern consists 
of narrow range of metrics measured for each infrastructure 
concern such as compute, storage and network under which the 
QoS concern is stable. In a top-down approach, we then take a 
QoS requirement and determine suitable workload-oriented 
configurations that maintain required values. Furthermore, we 
enhance this with a cost-based selection function, applicable if 
many candidate configurations emerge. 

We specifically look at performance as the QoS concern 
here since dealing with availability in cloud environments is 
considered as easier to achieve, but performance is currently 
neglected in practice due to less mature resource management 
techniques [10]. We introduce pattern detection mechanisms 
and, based on a QoS-SWP matrix, we define SWP workload 
configurations for required QoS. The accuracy of the solution 
to guarantee that the chosen (initially predicted) resource 
configurations meet the QoS requirements is of utmost 
importance. An appropriate scaling approach is required in 
order to allow this to be utilised in dynamic environments. In 
this paper, we show that the pattern-based approach improves 
the efficiency of the solution in comparison with traditional 
prediction approaches, e.g. based on collaborative filtering. 
This enhance existing solutions by automating current manual 
rule-based reactive scalability mechanisms and also advances 
prediction approaches for QoS, making them applicable in the 
cloud with its accuracy and performance requirements. 

Section II outlines the solution and justifies its practical 
relevance. Section III introduces SWPs and how they can be 
derived. Section IV discusses the selection of patterns as 
workload specifications for resource configuration. The 
application of the solution for SLA-compliant cloud resource 
configuration is described in Section V. Section VI contains an 
evaluation in terms of accuracy and performance of the 
solution and Section VII contains a discussion of related work. 

II. APPROACH OUTLINE - QUALITY-DRIVEN 

CONFIGURATION AND SCALING 

We now briefly discuss the state-of-the-art in cloud 
resource configuration and its relevance to the solution . An 
SLA is typically defined based on availability. Customers 
expect that the services they acquire will be always available. 
Thus, providers usually make extensive claims here. The 
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consensus in the industry is that cloud computing providers 
generally have solutions to manage availability. Response time 
guarantees, on the other hand, are harder to guarantee [10]. 
These types of obligations are more carefully phrased or fully 
ignored. A quote to illustrate this is “We are putting a lot of 
thought into how we can offer predictable, reliable and specific 
performance metrics to a customer that we can then [build an] 
SLA around," [C. Drumgoole, vice president global operations, 
Verizon Terremark, 2013]. Thus, we specifically focus on 
performance, although our solution is in principle applicable to 
availability as well. 

From a provider’s perspective, the question is how to 
initially configure and later  scale VMs and other resources for 
a service such that the QoS (specifically response time) is 
guaranteed and, if additionally possible, cost is optimised. 
From an infrastructure perspective, data/storage, network 
conditions and CPU utilisation impact on QoS such as 
performance and availability significantly. We consider data 
size, network throughput and CPU utilization as 
representatives of data, network and computation 
characteristics. Common definitions, e.g. throughput as the rate 
of successful message delivery over a communication channel 
or bandwidth, shall be assumed. Fig. 1 illustrates in a simple 
example that values of the three resource configuration factors 
can be linked to the respective measured performance. 

 

Service  
name 

1st   
invocation 

2nd  
invocation 

3rd  
invocation 

4th  
invocation 

5th  
Invocation 

s1 [2,10,0.2]  
-> 0.5  

[1.5,20,0.5] 
-> 2.0 

[2.5,10,0.1] 
 -> 0.2 

[2,30,0.3]  
-> 0.8 

[2,8,0.2]  
-> 1.2 

s2 [1.2,11,0.1] 
-> 0.3 

[2,20,0.4]  
-> 1.8 

      

s3 [2,20,0.3]  
-> 3.0  

[1,20,0.2]  
->  6.0  

[1.5,20,0.3]  
-> 4.0  

[2,15,0.2]  
->  2.4  

  

 

Fig. 1. Measured QoS mappings from Infrastructure to Service 

( format: [data, network, CPU] → performance ) 

 
The first step is to monitor and record these input metrics in 

system logs. The second step is pattern extraction. From 
repeated service invocations records (the logs), an association 
to service QoS values based on prediction techniques can be 
made. An observation based on experiments that we made (see 
evaluation section) is that most services have relatively fixed 
service workload patterns (SWP): 

 The patterns are defined here as ranges of data, network 

and CPU processing characteristics that reflect stable, 

small acceptable variations of a QoS value. 

 Generally, service QoS keeps steady under a SWP, 

allowing this stable mapping between infrastructure input 

and QoS to be used further. 
If we can abstract SWPs from service logs or the respective 

resource usage logs, the associated service quality can be based 
on usage information using pattern matching and prediction 
techniques. Even if there is no or insufficient usage 
information for a given service, quality values can be 
calculated using log information of other similar services, e.g. 
through collaborative filtering. These two step can be carried 
out offline. The next, first online step, is pattern matching, 

where dynamically a pattern is matched in the matrix against 
performance requirements. The final step is the (if necessary 
dynamic) configuration of the infrastructure in the cloud. 

The hypothesis behind our workload pattern-driven 
resource configuration based on required service-level quality 
is the stability of variations of quality under SWPs. We assume 
SLA definitions to establish QoS requirements and the charged 
costs for a service to be decided between provider and 
consumer. Service-specific workload pattern are mined and 
constructed – which considers environmental characteristics of 
a service (in a VM) deployment. We experimentally 
demonstrate that the hybrid technique for QoS-to-SWP 
mappings (based on pattern matching and collaborative 
filtering for missing information) enhances accuracy and 
computational performance and makes it applicable in the 
cloud. Traditional prediction techniques can be computational-
ly expensive and unsuitable for the cloud. 

We limit this investigation to services and infrastructure 
with some reasonably deterministic behaviour, e.g. classical 
business or technology management applications. Larger sub-
stantial uncertainties arising from the environment shall be 
neglected – we will however discuss this context later. We also 
focus on single cloud environment, ignoring uncertainties aris-
ing from multi-cloud environments. 

III. WORKLOAD PATTERNS 

The core concept of our solution is a Service Workload Pat-
tern (SWP). A SWP is a group of service invocation character-
istics reflected by the utilised resources. In a SWP, the value of 
workload characteristics is a range. The QoS is meant to be 
steady under a SWP. We describe a SWP M as a triple of rang-
es low to high: 

     M  =    [     Datalow ~ Datahigh ,   

                   Networklow ~ Networkhigh ,                           (3.1) 

                        CPUlow ~ CPUhigh     ]     
 

Data, Network and CPU are common data/storage, network 
and server/computation characteristics that we have chosen for 
this investigation [25]. 

A. SWP Pattern Mining and Construction 

We assume service-level execution quality logs in the for-

mat < q1, … , qn > and infrastructure-level resource monitoring 

logs < r
i
1, … , r

i
m > with i=1,..,j for quality aspects (e.g., data, 

network, server CPU utilisation) of the past invocations of the 
services under consideration, as illustrated in Fig. 1. For each 
service, the resource metrics and the associated measured per-
formance are recorded. The challenge is now to determine or 
mine combinations of value ranges for input parameters r that 
result in stable, i.e. only slightly varying performances. The 
solution is a SWP extraction process that constructs the work-
loadpatterns.  

 A SWP is composed of data, network and computation 

characteristics. For these, we take throughput, data size 

and CPU utilization as representatives, resp.  

 We consider the execution (response) time as the repre-

sentative of QoS here.  



An execution log records the input data size and execution 
QoS; a monitoring log records the network status and Web 
server status. We reorganize these two logs to find the SWP 
under which QoS keeps steady. 

Our SWP extraction algorithm is based on a generic algo-
rithm type, DBSCAN (density-based spatial clustering of ap-
plication with noise). DBSCAN [14] analyses the density of 
data and allocates the data into a cluster if the spatial density is 
greater than a threshold. The DBSCAN algorithm has two 

parameters: the threshold  and the minimum number of points 
MinPts. Two points can be in the same cluster if their distance 

is less than . The minimum number of points is also given. 
We also need a parameter MaxTimeRange, the max time range 
of a cluster. We expect the range of time is a cluster that can be 
steady and has a size limit. When the cluster is too large, e.g. if 
the range exceed a threshold, the cluster construction should be 
stopped. The main steps:  

 Select any object p from the object set S and find the ob-

jects set D in which the object is density-reachable from 

object p with respect to  and MinPts. 

 Choose another object without cluster and repeat the first 

step. 

The pattern extraction algorithm is presented below: 
___________________________________________________________________________________ 

Algorithm:  SWP Extraction Algorithm based on DBSCAN 
Input:        Service Usage InforSet (exec+monitor log), , MinPts,  
                    MaxTimeRange   
Output: __SWP PatternBase, Pattern-QoS information PatternQoS 

1 for(Infor
i

<DataSize,ThroughPut,CPU,Performance>∈InforSet){ 

2   if (Infor
i

 does not belong to any exist cluster) { 

3     P
j

=newPattern(Infor
i

) 

4          // create a new pattern with Infor
i

 as seed 

5     Add( P
j

, PatternBase ) 

6     InforSet = InforSet – Infor
i

 

7     SimInfor = SimilarInfor(InforSet, Infor
i

, ε)           

8         // SimInfor is the information set which includes  

9            all the similar usage information of Infor
i

.  

10     Differences between the information in SimInfor  

11     and Infor
i  

on the characteristics value except 

12     execution time are less than . n is the number  

13     of information items in SimInfor. 

14 InforSet = InforSet – SimInfor 

15 if ( n>MinPts ) {      

16     // MinPts is min number of exec info in cluster 

17  (S
1

, S
2

, … ,S
m

) = Divide(SimInfor) 

18   // Divide SimInfor into different groups. 

19      Group S
1 

includes all information of service s
1

 

20  for(k=1; k≤m; k++) { 

21    for(Infor
j

∈S
k

) { 

22      if (MaxTime-MinTime<MaxTimeRange) { 

23        SimInfor =  

24         SimilarInfor(InforSet,Infor
j

,time,MinPts,ε)   

25      // Search similar info of S
k

 in execution 

26      information set.  If the number of similar  

27      information item is less than MinPts, then the  

28      density will turn low and top the loop. 

29        S
k

 = S
k

 + SimInfor 

30        InforSet = InforSet – SimInfor  

31       } 

32     } 

33     PatternCharacteristics(S
k

)  

34     // Organizes the information in the cluster and 

35     statistics for the ranges of characteristics –  

36     completes matrix 

37 } 

38 } 

39  } 

40 }______________________________________________ 
     

    We give higher precedence to more recent log entries. Ex-

ponential smoothing can be applied to any discrete set of se-

quential observations xi. Let the sequence of observations 

begin at time t=0, then simple exponential smoothing is de-

fined as follows: 

 
𝑦0 = 𝑥0  
𝑦𝑡 = 𝛼𝑥𝑡 +  1 − 𝛼 𝑦𝑡−1 , 𝑡 > 0, 0 < 𝛼 < 1  

 

The choice of α is important. Close to 1 has no smoothing 
effect and gives higher weight to recent changes and as a result 
the estimate may fluctuate dramatically. Values of α closer to 0 
have a better smoothing effect and the estimate is less respon-
sive to recent changes. We propose 0.8 as the default, which is 
relatively high, but reflects the most recent multi-tenancy situa-
tion (which can undergo short-term changes). 

B. Pattern-Quality Matrix 

The input value ranges form a pattern that is linked to the 
stable performance ranges in a Quality Matrix MS(M,S) based 
on patterns M and services S. MS associates a service quality 

QoSP(Si,Mi) (with P standing for performance) of service Si in 

S under a pattern Mj in M.  

 

Fig. 1 at the beginning illustrated monitoring and execution 
logs that capture low-level metrics (CPU, network, storage) 

and the related service response time performance. SWPs Mi 
then result from the log mining process using clustering.  

 
The matrix MS above shows the QoS in this example for 

performance information of all services s for all patterns M. 

(3.2) 





















mlll

m

m

m

qqq

qqq

qqq

sss

,2,1,

,22,21,2

,12,11,1

21













l

2

1

M

M

M

MS



















s

sss

ss

ss

ssss

4~3

5.0~3.04.2~25.0~4.0

5.1~1.11.1~8.0

3.1~15.0~2.0

4321

4

3

2

1

M

M

M

M



The quality qij (1≤j≤l , 1≤i≤ m) is the quality of service sj under 

pattern Mi with the quality value qij  defined as follows: 

 as  if the service sj has no invocation history under pattern 
mi and  

 as lowij ~ highij if the service sj has an invocation history 

under mi with range ~.  

For a pattern M1 = [ 0.5-0.6 , 0.2-0.4 , 30-40MB ] the CPU 
utilization rate is 0.5-0.6, memory utilization is 0.2-0.4 and 
network throughput is 30-40MB. The sample matrix illustrates 
the workload pattern to QoS association for services. Empty 
spaces (undetermined null values) for a service indicate lacking 
data. In that case, a prediction based on similar services is nec-
essary, for which we use collaborative filtering. 

C. Pattern Matching 

For monitored resource metrics (data, network, CPU), we 
need to determine which of these influences performance the 
most. This determines the matched pattern. Let the usage in-
formation of service s be a sequence xk of data storage D, net-
work throughput N and CPU utilisation C values mapped to 
response time R for k = 1, .. ,n: 

 

[ < xD
1 
, xN

1
 , xC

1
 > , xR

1
 ]  

                ..  

[ < xD
k 
, xN

k
 , xC

k
 > , xR

k
 ]            (3.3) 

                ..  

[ < xD
n 
, xN

n
 , xC

n
 > , xR

n
 ]        

 

We use response time performance in the log as the refer-

ence sequence xR(k), k = 1,…, n, and other configuration met-
rics as comparative sequences. Then, we calculate the associa-
tion degree of other characteristics with response time and use 
characteristics of an invocation as standard and carry out a 
normalization of the other metrics. Thus, the normalized usage 
information is (schematically) for any invocation k: 

 

  [ < yD(xD
k
)
 
, yN(xN

k
) , yC(xC

k
) > , 1 ]                       (3.4) 

 

Next, we calculate absolute differences for the table above 
using 

0 0( ) ( ) ( )i ik y k y k            (3.5) 

With Oi here ranging over the quality aspects O1 = D, O2 
= N and O3 = C. The resulting absolute difference sequence is 
for our 3 quality aspects the following: 

))(,),1(,0( 010101 nyy  ， 

))(,),1(,0( 020202 nyy  ，        (3.6) 

))(,),1(,0( 030303 nyy      
 

In the next step, we determine a correlation coefficient 
between reference and comparative sequence (using here the 
correlation coefficient of the Gray relevance): 

max0

maxmin
0

)(
)(











k
k

i

i
          (3.7) 

Here |)()(|)( 00 kykyk ii   
is the absolute difference, 

min 0min min ( )i
i k

k    is the minimum difference between two 

poles, max 0max max ( )i
i k

k    is the maximum difference,   

(0,1) is a distinguishing factor. Afterwards, we use the formula 





n

k

i k
n

r
1

010 )(
1

           (3.8) 

to calculate the correlation degree between the metrics. Then, 
we sort the metrics based on the correlation degree. If r0 is the 
largest, it has the greatest impact on response time and will be 
matched prior to others in the pattern matching process. 

Clouds are shared multi-user environments where users and 
applications require different quality settings. A multi-valued 

utility function  can be added representing the user weighting 

of a vector  of quality attributes  for a matrix  
as a weighting. This utility function allows a user to customise 
the matching with user-specific weightings: 

 𝑈 𝑝 ,𝑚 ,𝑞 : rng 𝑄 𝑚 ,𝑞 →  0,1   (3.9) 

The overall utility can be defined, taking into account the 
importance or severity of the quality attributes  for each 

: 

𝑈 𝑚 ≝  𝜔𝑖𝑈 𝑚 ,𝑞𝑖
∀𝑞𝑖∈𝑄

 𝑄 𝑚 ,𝑞𝑖
 𝑀𝑆   

𝑈 𝑚 ,𝑞 =  𝑈 𝑝 ,𝑚 ,𝑞
∀𝑝∈𝑃

 

 𝜔𝑖
𝑖

= 1,𝜔𝑖 ≥ 0 
 

 
 
 

  

(3.10) 

Finally, the pattern that optimizes the overall configuration 
utility is determined through the maximum utility calculated 
as: 

 𝑚𝑎𝑥𝑚∈𝑀𝑆
 𝑈 𝑚   (3.11) 

Note, that the utility is based on the three quality concerns, but 

could potentially be extended to take other factors into ac-

count. Furthermore, costs for the infrastructure can also be 

taken into account to determine the best configuration. We 

will define an additional cost function in the cloud configura-

tion Section V. 

IV. QUALITY PATTERN-DRIVEN CONFIGURATION 

DETERMINATION 

The QoS-SWP matrix is the tool to determine SLA re-
quirements-compliant SWPs as workload specifications for the 
resource configuration and re-configuration/re-scaling. For 
quality-driven configuration, the question is: for a given ser-

vice Si and a given performance requirement QoSP, what are 
suitable SWPs to configure the execution environment? The 
execution environment is assumed to be a VM image configu-
ration with storage and network services – samples are dis-
cussed in Section 5. 

We first determine a few configuration determination use 
cases to get a comprehensive picture where the pattern tech-
nique can be used and then discuss the core solutions in turn. 



A. Use Cases 

In general, there is a possibly empty set of patterns MS(si) 
for each service si, i.e. some services have usage information, 
others have no usage information in the matrix itself. Consider 
the sample matrix from the previous section. Three use cases 
emerge that indicate how the matrix can be used: 

 Configuration Determination – Existing Patterns: For a 

service s with monitoring history: Since s1 has an invoca-

tion history for various patterns for a requested response 

time of 0.45s, we can return this set of patterns including 

M1 and M3. 

 Configuration Determination – Non-existing Patterns: 

For a given service s without history: Since s2 has no in-

vocation history for a required response time of 2s, we 

can utilise collaborative filtering for the prediction of set-

tings – i.e. use similar services to determine patterns for 

the given service [8,9]. 

 Configuration Test: For a given triple of SWP values and 

a service s: If a given s1 has an invocation history for a 

required response time of 2s and we have a given work-

load configuration, we can test the compliance of the con-

figuration with a pattern using the matrix. 

B. Pattern-based Configuration Determination 

If patterns exist that satisfy the performance requirements, 
then these are returned as candidate configurations. In the next 
step, a cost-oriented ranking of these can be done. We use 
quality level to cost mappings that will be explained in Section 
V below. If no patterns exist for a particular service (which 
reflects the second use case above), then these can be deter-
mined by prediction through collaborative filtering, see [25].  

QoS Prediction Process. For any service s, if there is in-
formation of sv under pattern mi, then calculate the similarity 
between other services sj and sv. We can get the k neighbouring 
services of service sj through a similarity calculation. The set of 
these k services is S = {s1‘,s2‘,…,sk‘}. We fill the null (empty) 
QoS values for the target invocation using the information in 
this set. Using the information in S, we then calculate the simi-
larity of mi with other patterns that have the information for 
target service sj. We choose the most similar k‘ patterns of mi, 
and use the information across the k‘ patterns and S to predict 
the quality of service sj. 

Service Similarity Computation. If there is no information 
of sj in a pattern mi, we need to predict the response time qi,j for 
sj. Firstly, we calculate the similarity of sj and services which 
have information within pattern mi ranges. For a service sv in Ii 
– where Ii is the set of services that have usage information 
within pattern mi – we calculate the similarity of sj and sv. We 
need to consider the impact of configuration environment dif-
ferences, i.e. redefine common similarity definitions. Mvj is the 
set of workload patterns which have the usage information of 
services sv and sj. 
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Here, vq  is the average quality value for service sv and jq  

the respective value for sj. From this, we can obtain all 
similarities between sj and others services which have usage 
information within pattern mi. The more similar the service is 
to sj, the more valuable its data is.  

Predicting Missing Data. Missing or unreliable data can 
have a negative impact on prediction accuracy. In [26], we 
considered noise up to 10% to be acceptable. In order to deal 
with uncertainty beyond this, we calculate the similarity be-
tween two services and get the k neighbouring services. Then, 
we establish the k-neighbour matrix Nsim and complete the 

missing data. We add pis ,  as the data of service sp under 

pattern mi if required: 
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Again, 


pq'  is the average quality value of sp, and simn,p is 

the similarity between sn and sp. Now every service s S’ has 
usage information within all pattern ranges in mi.  

Calculating Pattern Similarity and Prediction. There is 
QoS information of k neighbouring services of sj in matrix Nsim. 
Some of them are prediction values. We can calculate the 
similarity of pattern mi and other patterns using the correction 
cosine similarity method:  
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After determining the pattern similarity, the data of patterns 
with low similarity are removed from Nsim, the set of the first k 
patterns. The data of these patterns are retained for prediction, 
if pi,j is the data to be predicted as the usage data of service sj 
within pattern mi, it can be calculated. 
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The average QoS of data related to pattern mi  is 


iq' and 

simn,i is the similarity between patterns mn and  mp. 

C. Pattern-based Configuration Testing 

We can use the pattern-QoS matrix to test a standard or any 
known resource configuration in SWP format (i.e., three con-
crete values rather than value ranges for the infrastructure as-
pects) – for instance in the situation outlined above for a ser-
vice si for which its performance is uncertain. This can also be 
done instead of collaborative filtering, as indicated above, if 
the returned set of patterns is empty and a candidate configura-
tion is available. Then, the matrix can be used to determine the 
respective QoS values, i.e., to predict quality such as perfor-
mance in our case through testing as well.  

This situation shall be supported by an algorithm that 
matches candidate configurations with stored workload pat-
terns based on their expected service quality. The algorithm 



takes into account whether or not possibly matching workload 
patterns exist. 

______________________________________________________________________ 

Algorithm:      Matching Candidate Configurations 

Input:        Service Usage Information of a Service 

Output:  ____Metrics Sorted by Correlation Degree______________  
1 Match [ candidate configuration Config = < y

1

, y
2

, y
3

 > 

of target service s
i

 ] with  [characteristics (ranges) 

< low
1

~high
1

, low
2

~high
2

, low
3

~high
3

 > ] of stored pat-

terns M
i

.  

2 If  there is a pattern that can be matched 

a. Then  return it 

b. Else  use Gray relevance analysis (formula 

(3.7)) to match a pattern 

3 Let the matched pattern be m
i

 

a. Search information about matched pattern m
i 

in 

matrix M  

b. If there is QoS information of service s
i

 in 

m
i

,  

i. Then  return it as expected QoS for 

      candidate configuration  

ii. Else  If    no related QoS information  

         exists 

Then  predict QoS by collaborat. 

      filtering (4.1)–(4.4) 

4   Return                                                .                                               

 

 

If no patterns exist, existing candidate configurations can 
be tested – to enable always a solution, at least one default 
configuration should be provided. Alternatively, similar ser-
vices can be considered; these can be determined through col-
laborative filtering and then we would start again. 

V. CLOUD SERVICE SLA, VM CONFIGURATION AND AUTO-

SCALING 

This section shall illustrate how the approach can be used 
in a cloud setting for resource (VM) configuration and auto-
scaling. Predefined configurations for VMs and other resources 
offered by providers as part of standard SLAs could be the 
following that relate to the CPU, data/storage and network 
utilisation criteria < Data ,  Network ,  CPU  > we used in Sec-
tions 3 and 4 for the SWPs: 

 

32-bit VM Bronze Silver Gold 

Virtual CPU @ 1.25 GHz 1 2 4 

Virtual Memory (GB) 2 4 4 

Virtual Storage (GB) 60 120 240 

Network Bandwidth (GB) 350 700 1400 
 

Gold, Silver and Bronze are names for the different config-
urations. We can add pricing for Pay-as-you-Go (PAYG) and 
monthly subscription fees to the above scheme to take cost-
based selection of configurations into account: 

 

32-bit VM Pay-as-you-Go Bronze Silver Gold 

CPU Hours 1/hr 100 150 200 

Virtual Memory  0.05/hr 200 300 450 

Virtual Storage  0.1/hr 60 120 240 

Network Bandwidth  10/TB 35 50 75 

 

We define below a cost function C : Config -> Cost to for-
malise such a table. The categories based on the resource work-
load configurations can now be aligned by the provider with 
QoS values that are promised in the SLA – here with response 
time and availability guarantees filled in the Configuration-
Quality matrix CQ: 



















995.1

9.990.1

99.9975.0

Bronze

Silver

Gold


In general, the Configuration-Quality Matrix is defined by  

CQ = [ cij ]  with i : configuration category         (5.2) 

   and j : quality attribute         

A selection function  determines suitable workload pat-
terns Mi for a given quality target q as defined in the Configu-
ration-Quality matrix and a service sj: 

(q,s) = { MiM | MS(q,sj)  qij }        (5.3) 
 

From this set of workload patterns {M1, … , Mn}, we deter-
mine the most optimal one in terms of resource utilisation. For 
minimum and maximum utilisation thresholds minU and maxU , 
the best pattern is selected based on a minimum deviation of 
pattern ranges Mi(q) across all quality factors (based on the 
overall mean value) from the threshold average value, defined 
as the mean average deviation (where  indicates the mean 
value for any expression x): 

min𝑖     𝑚𝑎𝑥𝑈 −𝑚𝑖𝑛𝑈 −  𝑀𝑖(𝑞) 
2

               
 

The thresholds can be set at 60% and 80% of the pattern 
range averages to achieve a good utilisation with some remain-
ing capacity for spikes.  

Based on the best selected SWP Mi with the given key met-
rics, a VM image can be configured accordingly in terms of 
CPU, data and network parameters and deployed with the ser-
vice in question. If several SWPs apply to meet performance 
requirements, then costs can be considered to select the cheap-
est offer (if the cost in the table reflects in some way the real 
cost of provisioned resources and not only charged costs) 

𝐶𝑜𝑠𝑡(𝑞, 𝑠)  =  min𝑖 𝐶((𝑞,𝑠)) 
 

for a cost function C that maps a pattern in (q,s) to its cost 
value. The cost function can create a ranking of otherwise 
equally suitable patterns or configurations. 

The service-based framework presented in Sections III and 
IV was here applied to the cloud context by linking it to stand-
ard configuration and payment models. Specific challenges 
arose from the cloud context that we have addressed are: 

 Standard cloud payment models allow an explicit costing, 
which we took into account here through the cost function. 
Essentially, the cost function can be used to generate a 
ranked list of candidate patterns for a required QoS value in 
terms of the operational cost. In [30], we have demonstrat-
ed that different performance result, but also costs vary for 
a given configuration pattern. 

   (5.4) 

  (5.5) 



 Cloud solutions are subject to (dynamic) configurations, 
generally both at IaaS and PaaS level. While our configura-
tion here is geared towards typical IaaS attributes, our im-
plementation work with Microsoft Azure (see Section VI) 
also demonstrates the possibility and benefit of PaaS-level 
configuration. In [30], we have discussed different PaaS-
level storage configurations and their cost and performance 
implications. 

 User-driven scalability mechanisms such as CloudScale or 
CloudWatch or the AWS Autoscaling typically work on 
scaling rules defined on the granularity of VMs add-
ed/removed. Our solution is based on similar metrics, e.g. 
GB for storage or network bandwidth, i.e. further automates 
these solutions. 

We have briefly mentioned uncertainties that arise from cloud 
environments in Section II. While this aspect is neglected here, 
in [26], we have presented an approach that adds uncertainty 
handling on top of prediction for VM (re-) configuration. Un-
certainties arise for instance from incomplete or potentially 
untrusted monitoring data or from varying needs and interpre-
tations of stakeholders regarding quality aspects. The approach 
in [26] adds a fuzzy logic processing on top of a prediction 
approach. 

VI. IMPLEMENTATION AND EVALUATION 

Implementation. The implementation of the prediction and 
configuration technique covers different parts – offline and 
online components:  

 The pattern determination and the construction of the pat-
terns-quality matrix is done off-line based on monitoring 
logs. The matrix is needed for dynamic configuration and 
can be updated as required in the cloud system. For the 
prediction, the accuracy is central. As the construction is 
offline, performance overhead for the cloud environment is, 
as we will demonstrate, neglectable. 

 The actual prediction through accessing the matrix is done 
in a dynamic cloud setting as part of a scaling engine that 
combines prediction and configuration. Here the acceptable 
performance overhead for the prediction needs to be 
demonstrated. 

For both the accuracy and performance concern, we use a 
standard prediction solution, collaborative filtering (CF) as the 
benchmark, which is widely used and analysed in terms of 
these properties, cf. [8,9] or [12,13]. 

We have implemented a simulation environment with a 
workload generator to evaluate accuracy of the prediction ap-
proach and the performance of the prediction-based configura-
tion. We provided 100 application services from three different 
categories, each category either sensitive to data size, network 
throughput or CPU utilization. Figs. 2 and 3 describe the 
testbed with the monitoring and SWP extraction solution for 
Web services. The primary concern is the accuracy of the pat-
tern extraction and pattern-based prediction of performance for 
deployed services. Furthermore, as dynamic reconfiguration, 
i.e. auto-scaling, is an aim, also performance needs to be 
looked at. 

We have tested our scalability management in Microsoft 
Azure. We have implemented a range of standard applications, 
including an online shopping application, a services manage-
ment solution and a video processing feature to determine the 
quality metrics for different service and infrastructure configu-
ration types. For the first two, we used the Azure Diagnostics 
to collect monitoring data (Fig. 2). We also created an addi-
tional simulation environment to gather a reliable dataset with-
out interference from uncontrollable cloud factors such as the 
network (Fig. 3). 
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Fig. 2. Evaluation Architecture. 

Elsewhere, we have implemented our prediction mecha-
nism in other platforms. Work we described in [26] deals with 
how to implement this in a scalability solution such as Amazon 
AWS where monitored workload and performance metrics are 
considered together with a prediction of anticipated behaviour 
to configure the compute capabilities.  

Monitoring 
Log

Execution 
Log

Cloud
System under Test

Pattern 
MatchingMonitoring 

Engine

Scaling 
(Configuration)

Engine

SWP 
Repository

SWP 
Extraction

Online Prediction

Offline Prediction
 

 

Fig. 3. Scaling Engine Components – Pattern and Prediction 

 
Accuracy. Reliable performance guarantees based on con-

figuration parameters is the key aim – real performance needs 
to match the expected or promised one for the provider to fulfil 
the SLA obligations. Accuracy in virtualisation environments 
is specifically challenging [28] due to the layered architecture, 
shared resources and distribution. 



Accuracy of prediction is measured in terms of deviation 
from the real behaviour. The metric we use here is based on the 
mean absolute error (MAE) between prediction (SLA im-
posed) and real response time, which is the normal choice to 
measure prediction accuracy. Different characteristics of QoS 
have different ranges. Consequently, we use NMAE (the Nor-
malized Mean Absolute Error) instead of the MAE. The small-
er the NMAE, the more accurate is the prediction. We compare 
our solution with similar methods based on traditional predic-
tion methods in terms of matrix density. This covers different 
situations from situations where little is known about the ser-
vices (density is low) and situations where there is a reliable 
base of historic data for pattern extraction and prediction (high 
density). 

In earlier work, we included average-based predications 
and classical collaborative filtering (CF) in a comparison with 
our own hybrid method (MCF) of matrix-based matching and 
collaborative filtering [25]. The NMAE of k=15 and k=18 
(higher or lower ks are not interesting as lower values are sta-
tistically not significant and higher ones only show a stabilisa-
tion of the trend) shows an accuracy improvement for our solu-
tion compared to standard prediction techniques, even without 
utility function and exponential smoothing, see Fig. 4. For this 
evaluation here, we also include time series (TS) into the com-
parison. For the evaluation, we considered some noisy data 
which cannot be in any pattern. We also removed invocation 
data and then predicted it using the CF, MCF and also the TS 
time series method from [22]. 

Fig. 4. Accuracy Evaluation 

We can observe that an increase of the dataset size im-
proves the accuracy significantly. In all cases, our MCF ap-
proach outperforms the other ones. 

Efficiency Overhead (Runtime). For automated service 
management – in the context of cloud auto-configuration and 
auto-scaling – we need sufficient performance of the extraction 
and matching approach itself. To be tested in this context are 
the performance of three components: 

1) SWP Extraction from Logs (Matrix Determination) 

2) Configuration-Pattern Matching (Existing Patterns) 

3) Collaborative Filtering (Non-Existing Patterns) 

 
For cases 1 and 2, we determined 150 workload patterns 

from 2400 usage recordings. We tested the algorithm on a 
range of different datasets extracted from a number of docu-
mented benchmarks and test cases.  Compared to other work 

based on the TS and CF solutions, the matrix for collaborative 
computation is reduced from 2400*100 to 150*100, which 
reduces execution time significantly by the factor 16. For case 
3, only when a matched pattern provides no information for a 
target service, the calculation for collaboration prediction is 
required – see Figure 5 where we compare prediction with and 
without the pattern-based matrix utilisation.  

 

 

Fig. 5. Performance Evaluation 

Thus, in conclusion, the computational effort for the dy-
namic prediction is decreased to a large extent due to the al-
ready partially filled matrix. As already explained, the perfor-
mance of the pattern extraction and matrix construction 
(DBSCAN based clustering and collaborative filtering) can be 
computationally expensive, but can be done offline and only 
the matrix-based access (as demonstrated in the performance 
figure above) impacts on the runtime overhead for the configu-
ration. However, as the figure shows, our method’s overhead 
increases only slowly even if the data size increases substan-
tially. Consequently, the solution in this setting is no more 
intrusive than a reactive rule-based scalability solution such as 
Amazon AWS Auto Scaling that would also follow the archi-
tecture in Fig.2. 

VII. RELATED WORK 

QoS-based service selection in general has been widely 
covered. There are three main categories of prediction-based 
approaches for selection.  

 The first one covers statistical methods, which is often 

adopted for simplicity [1,2,4,5,6]. These methods are 

simple and easy to implement.  

 The second category selects services based on user feed-

back and reputation [16,17]. It can avoid malicious feed-

back, but does not consider the impact of SLA require-

ments and the environment and cannot customise predic-

tion for users.  

 The third category is based on collaborative filtering 

[8,9,11], which is a widely adopted recommendation 

method [18-20] – e.g., [19] summarizes the application of 



collaborative filtering in different types of media recom-

mendation. Here, we combine collaborative filtering with 

service workload patterns, user requirements and SLA ob-

ligations and preferences. This considers different user 

preferences and makes prediction personalized, while 

maintaining good performance results. 
To demonstrate that our solution is an advancement com-

pared to existing work on prediction accuracy, we had singled 
out two approaches for categories 1 and 3 for the evaluation 
above. 

Some works integrate user preferences and user characteris-
tics into QoS prediction [8,9,11,12], e.g. [8,9] propose predic-
tion algorithms based on collaborative filtering. They calculate 
the similarity between users by their usage data and predict 
QoS based on user similarity. This method avoids the influence 
of the environment factor on prediction. However, even the 
same user will have different QoS experiences over time de-
pending on the configuration of the execution environment or 
will work with different input data. Current work generally 
does not consider user requirements. Another current limitation 
of current solutions is low efficiency as we demonstrated. Our 
work in [26] is a direction based on fuzzy logic to take user 
scalability preferences into account for a cloud setting. 

In [24,25], pattern approaches are proposed. [24] suggests 
pattern-based management for cloud configuration manage-
ment, but without a detailed solution. [25] is about bottom-up 
QoS predication for standard service-based architectures, while 
in this paper QoS requirements are used to predict suitable 
workload-oriented configurations taking specifically cloud 
concerns into consideration. We added additionally exponential 
smoothing and utility functions and the cost analysis here, but 
draw on some evaluation results from [25] in comparison to 
standard statistical methods.  

Supporting cloud service management can automatically 
scale the infrastructure to meet the user/SLA-specified perfor-
mance requirements, even when multiple user applications are 
running concurrently. Jamshidi et al. [26] deal with multi-user 
requirements as part of an uncertainty management approach, 
which performs well based on a fuzzy-logic approach, but 
cannot in comparison demonstrate as accurate prediction as 
only exponent smoothing based on a few workload patterns is 
done. Ghandi et al. [27] also leverage application level metrics 
and resource usage metrics to accurately scale infrastructure. 
They use Kalman filtering to automatically learn changing 
system parameters and to proactively scale the infrastructure, 
but have less of a performance gain than through patterns in 
our solution. Another work in this direction is [29], where the 
solution aims to automatically adapt to unpredicted conditions 
by dynamically updating a Kriging behaviour model. These 
deal with uncertainty concerns that we have excluded. Howev-
er, an integration of both directions would be beneficial in the 
cloud. These approaches can add the uncertainty management 
solutions required. 

The proposed method in this paper takes full account of us-
er requirements (reflected in SLA obligations for the provider), 
the network and computational factors. It abstracts the service 
workload pattern to keep the service QoS steady. When us-
er/SLA requirements are known, prediction-base configuration 

can be done based on matched patterns. This approach is effi-
cient and reduces the computational overhead. 

VIII. CONCLUSIONS 

Web or cloud services [23] usually differ with respect to 
QoS characteristics. Relevant service-level qualities are re-
sponse time, execution cost, reliability, or availability. There 
are many factors that impact on QoS [15]. They depend not 
only on the service itself, but also how it is deployed. Some 
factors are static, some are run-time static, the others are dy-
namic. Run-time static and dynamic factors like client load, 
server load, network channel bandwidth or network channel 
delay are generally uncertain, but can be influenced by suitable 
configuration in virtualised environments such as the cloud. 
Most factors can be monitored, and their impact on service-
level quality can be calculated as part of a service management 
solution. Service management in cloud environments requires 
SLAs for individual users to be managed continuously through 
dynamic platform and infrastructure configuration, based on 
monitored QoS data.  

We provided a solution that links defined SLA obligations 
for the provider in terms of service performance with lower-
level metrics from the infrastructure that facilitates the provi-
sioning of the service. Our solution enables cloud workload 
patterns to be associated to performance requirements in order 
to allow the requirements to be met through appropriate con-
figuration. 

Performance management is still a problem in the cloud 
[10,31]. While availability is generally managed and, corre-
spondingly, SLA guarantees are made, reliably guaranteeing 
performance is not yet solved. Through a mining approach we 
can extract resource workload patterns from past behaviour 
that match the performance requirement and allow a reliable 
prediction of a respective configuration for the future.  

In order to further fine-tune the approach, in the future we 
will take more infrastructure metrics into account. More specif-
ic cloud infrastructure solutions and more different use cases 
shall be used on the experimental side to investigate whether 
different patterns emerge either for different resource provi-
sioning environments or for different application domains and 
consumer customisations [32]. Another crucial direction is the 
incorporation of uncertainty into the approach. Uncertainty, as 
discussed, manifests itself through incomplete and untrustwor-
thy data or the consequences of multiple stakeholders in the 
cloud. We propose to follow [26] and use a fuzzy logic ap-
proach to incorporate this. 
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