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ABSTRACT 

Centrifugal microfluidic systems bear great potential for applications where ruggedness, portability, ease-of-use, and 

cost efficiency are critical. However, due to the unidirectional nature of the centrifugal pumping force, the number of 

sequential process steps which can be integrated on these “Lab-on-a-Disc” (LoaD) devices is limited by their finite 

radial extension. To significantly widen this bottleneck and thus expand the scope of applications that can be ported on 

these LoaD platforms, various groups have  developed a range of centripetal pumping mechanisms. Here, we present 

two advancements over our previous efforts in this area by combining buoyancy-based pumping with dissolvable film 

(DF) valves. First, we present a buoyancy-driven, reciprocating flow of a dense liquid initially located an upper 

reservoir and a sample in a peripheral reservoir. Secondly, we combine buoyancy-driven centripetal pumping with 

sample discretization and metering to fully integrate and automate a liquid handling protocol towards implementing a 

multi-parameter bioassay on a disc. 

INTRODUCTION 

On LoaD platforms [1-2], liquid handling protocols are integrated and automated on a cartridge typically 

exhibiting dimensions similar to disc-shaped optical data storage media (e.g. CD or DVD). These centrifugal 

microfluidic systems offer conceptually simple actuation of liquid handling within a disposable cartridge free 

of pneumatic interfacing; furthermore, the centrifugal field and thus the sedimentation and pumping pressure  

can be varied over orders of magnitude as they scale with the square of the spin rate set by a simple spindle 

motor. This resulting ruggedness, cost-efficiency, autonomy and portability of the platform make the LoaD 

platform a promising candidate for bioanalytical assay automation in low-resource settings, e.g. for point-of-

care testing in the doctor’s office or even at the patient’s home, in-field environmental monitoring [4], at-line 

bioprocess monitoring [5] and global diagnostics [6].   

 

However, the unidirectional nature of the centrifugal field tends to contradict transport of liquid from 

the periphery to the center of rotation. Thus, owing to its finite radial extension, discrete Laboratory Unit 

Operations (LUOs) [4] such as mixing and metering must be placed serially along the radial direction. On the 

one hand, its finite radial extension restricts the number of LUOs that can be integrated on a disc. Secondly, 

initial sample preparation steps such as centrifugation and reagent reservoirs must necessarily be located at a 

central location where disc space as well as the sedimentation force are minimal. 

 

In order to make optimum use of precious real estate near the axis of rotation and to maximize locally 

induced centrifugal force required for initial sedimentation steps, a repertoire of centripetal pumping methods 

has been developed. In a common approach, external support instrumentation directly or indirectly creates a 

pressure head to pump liquid centripetally against the prevailing centrifugal force. These ancillary energy 
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sources include compressed air bottles [8], heaters to expand trapped gas [9] and electric power driving on-

disc electrolysis [10]. While useful, these methods may compromise the inherently simple actuation of LoaD 

systems by a conventional spindle motor. Therefore entirely spindle driven solutions have been implemented 

such as rapid ramping of the spin rate pressurises a gas pocket which expands during subsequent deceleration 

has been implemented for centripetal pumping[11]. However, the  efficiency of this technique relies on the 

relative flow resistances of the inlet and outlet channels and also the use of a powerful motor to run the steep 

ramps of the rate of rotation. 

 

Alongside approaches using gas expansion, liquid displacement pumping has also been demonstrated. In 

a positive displacement approach [12], a pumping liquid is stored near the centre of the disc. Upon release 

into an elongated chamber, this liquid moves the working fluid radially inwards. Through a variety of shaped 

chambers, energy is transferred between liquids using two methods. In one approach, an intermediary gas 

was compressed by displacement of a pumping liquid towards the periphery of the disc; expansion of the 

compressed gas then drives the sample liquid towards the centre. In the second approach, the immiscible 

pumping liquid (carbon tetrachloride, specific gravity (SG) ~1.6) is released to flow underneath the sample 

and to displaced in the radially inbound direction. A similar approach, based on negative displacement [13], 

was presented where an intermediary gas is used as a ‘microfluidic pulley’ to move liquid from the periphery 

to the centre of the disc. However, in either concept, the discs require laborious / complex sample loading 

procedures and sealing to create trapped gas pockets while the use capillary burst valves limits the range of 

operational spin frequencies. 

 

Recently, we introduced a buoyancy-driven pumping scheme [14] which combined (water) dissolvable 

films (DFs) [15-16] with a heavy liquid. This scheme enables accurate centripetal pumping of defined, 

metered volumes in a user-friendly manner which is facilitated through use of a heavy, immiscible, low-

viscosity liquid (FC-40 fluorocarbon, SG ~1.85) which will not dissolve the DF. FC-40 is stored in a 

pumping chamber proximal to the center behind a slow-dissolve DF (~50 s). The addition of liquid to a 

reservoir on the edge of the disc (called a lower pumping chamber), where the DF is located, releases the 

immiscible liquid which then flows radially outward, thus displacing the sample liquid radially inward.  

 

In this work we present two significant advancement of our previously established, buoyancy-driven 

pumping methods. In the first case, we improve the efficiency (both hydraulic and use of disc real-estate) of 

our pumping mechanism by establishing a reciprocating flow; as the sample liquid is pumped radially 

inwards it is directed into the upper pumping chamber and is overlaid on the dense FC-40. Thus the sample 

increases the pressure head generated by the FC-40 during pumping while it is also stored in the same 

chamber. A second DF, exposed to the aqueous sample as the FC-40 level drops, then dissolves and releases 

the sample to flow radially outward, for instance to be subject of further LUOs. 

 

In a second improvement, we expand our previously established metering / pumping structure [14] 

through the addition sample mixing chambers sealed by DF burst valves [15]. The addition of these 

chambers allows us to demonstrate a structure which can be used to implement a multi-parameter bio-assay 

for monitoring liver function [17]. 

2. CARTRIDGE MANUFACTURE AND METHODS 

2.2 Disc Manufacture and Assembly 

The microfluidic cartridges used in this study were assembled four layers of Poly(methyl methacry-

late)  (PMMA) and four layers of PSA (Pressure Sensitive Adhesive, Adhesives Research, Limerick, Ireland) 

by a previously described multi-lamination method (Fig. 1) [16]. Microchannels and other small features 

were created from voids cut in PSA (86 µm thick) [18] using a knife-cutter (Graphtec, Yokohama, Japan). 

Larger features such as reservoirs were laser cut (Epilog Zing, USA) into the PMMA layers (1.5 mm thick). 

These eight layers were stacked as follows: 
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1. Layer 1 (PMMA) consisted of loading vents.  

2. Layer 2 (PSA) consisted of top-level microchannels for liquid transport and pneumatic venting.  

3. Layer 3 (PMMA) provided large reservoirs and through-holes which act as vertical vias.  

4. Layer 4 (PSA) was a cover layer which sandwiches the DF tabs in place.  

5. Layer 5 (PSA) was a support layer for DF tabs and contained voids where the DF tabs could be posi-

tioned.  

6. Layer 6 (PMMA) contained the through-holes which acted as vertical vias.  

7. Layer 7 (PSA) features the lower-level microchannels for guiding flow and pneumatic venting.  

8. Layer 8 (PMMA) acts as mechanical backing.  

 

As they are isolated from each other, the microchannels on Layers 2 and 7 could cross and thus 

enable higher-level complexity.  

 

The layers were manually aligned on a custom assembly jig and subsequent hot-roll lamination 

pressing (Hot Roll Laminator, Chemsultant Int., US). Previously prepared DF tabs (See Section 2.2) were 

placed in voids present in Layer 5 and  covered by Layer 4 for mechanical reinforcement and  proper sealing. 

 

 
Figure 1: Detail of disc assembly from eight layers which are stacked into a multi-layer architecture. 

 

2.2 Dissolvable Film Tabs 

As they are non-adhesive, DFs were attached to double-sided pressure sensitive adhesive (PSA, Adhesives 

Research, Limerick, Ireland) in order to create sticky tabs [15-16]. The PSA is backed by an upper and lower 

carrier layer. First, a standard paper cutter machine (CraftRobo Pro, Graphtec, USA) cuts through-holes into 

the upper carrier layer and the PSA layer. The PSA chads, along with the entire upper carrier layer, are then 

removed and the DF material is rolled onto the exposed adhesive. A second cut, through the DF material and 

PSA, then defines the outline of the tabs. The outer diameter of the tabs was defined as 3 mm and the inner 

diameter 1 mm.  

During assembly, the tabs can be peeled from the lower carrier layer. The tabs were produced in 

larger-number arrays for use in the here described cartridges. Sealed in gas-tight bags, they could be stored 

for subsequent manufacturing runs. Note also that two grades of DF are used - both based on a polyvinyl 

alcohol (PVA) chemistry. Quick-dissolve, low-cost DFs, called Embroidery Film (Barnyards, Rippon, UK) 

were used for centrifugo-pneumatic burst valves while a slow-dissolve valve (~50s, Solublon KC-35, 

Harkepro, Germany) [16] were used to restrain the pumping liquid (FC-40). 
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2.3 Experimental Test Stand  

As the discs must be tested while under rotation, they are characterized  using an experimental test platform 

commonly referred to as a “spin stand” [19] which has been described previously [16]. A computer 

controlled motor (Faulhaber Minimotor SA, Switzerland) rotates the discs at defined rates. The motor 

encoder is synchronized using custom hardware with a stroboscopic light source (Drelloscop 3244, Drello, 

Germany) and a sensitive, short-exposure time camera (Pixelfly, PCO, Germany). Due to the stroboscopic 

principle, a stationary image of the same disc section is obtained for each rotation. Aside from where other-

wise specified, all discs are tested at 30 Hz rate of rotation. The discs are accelerated and slowed down at 

12.5 Hz s
-1

. Images are acquired as single files (PCO’s propriety format) at a rate of ~6 Hz. 

 

 
Figure 2: Basic Principle of Buoyancy Driven Centripetal Pumping (adapted from [14]). (a) Disc cartridge in the initial 

configuration. The FC-40 is restrained by the DF (b) the sample is pumped into the pumping chamber and the DF 

dissolves. (c) FC-40 is released and displaces a defined volume of sample radially inwards into the collection chamber 

(d) the sample is now located radially inwards. 

3. MECHANISM OF BUOYANCY-FRIVEN PUMPING 

The basic configuration of the buoyancy pumping mechanism is shown in Figure 2. Here, pumping a sample 

to a chamber on the periphery of the disc induces the dissolution of a DF. This step prompts the release of the 

immiscible liquid, FC-40, which will settle underneath the sample liquid to displace it centripetally from a 

wide reservoir into a narrow channel. The pump rate is leveraged by the high difference between the cross 

sections of the outer reservoir and the narrow channel. 

 

There are two major advantages of this approach. In the first case, the geometry of the large reservoir 

and the repeatable delivery of the pumping liquid FC-40 leads to a metering effect. The displacement by the 

FC-40 effectively splits the liquid into two discrete components, where the first, defined volume, is pumped 

radially inwards into the collection chamber while the other, overflow volume is pumped back the way it 

came in from. This effect can also be leverage to discretise samples for multi-parameter bio-assays [14]. 

 

The second advantage of this approach is its independence from the spin rate. The release of the FC-

40 pumping liquid is only triggered when the aqueous sample wets and dissolves the DF. This independence 

from the spin rate effective makes the pumping module, an LUO, which can be placed between other steps 

without effecting upstream or down-stream processes. 

 

We calculate the (equivalent) hydrostatic pressure:  

 

𝑝𝜔 = 𝜌∆𝑟�̅�𝜔2
    (1) 

 

on a liquid element of density ρ,  radial length Δr and mean radial position �̅� rotating at the (angular) 

frequency ω. In the case of the centripetal pumping, the buoyancy force will be proportional to the density 

differences between the pumping and sample liquids. At a sufficiently large density differential and spin 

rates, the buoyancy force prevails over the capillary force which might counteract flow.   
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 Figure 3: Schematic of reciprocating pumping (a) shows a disc cartridge in the initial configuration. The FC-40 is 

restrained by the lower DF (from entering pumping chamber) and upper DF (from entering the collection chamber). The 

sample is restrained behind a burst valve. (b) The spin rate is increased and the sample is pumped into the pumping 

chamber(c) the lower DF is wetted and the FC-40 is released. (d) FC-40 and sample establish a recirculating flow where 

the FC-40 displaces the sample upwards. This continues until equilibrium is reached. (e) The inner DF is contacted by 

aqueous sample and dissolves. (f) The sample is released to be subject to further LUOs. 

4. CIRCULATION-DISPLACEMENT BASED PUMPING 

In a further development of the buoyancy pumping mechanism, we introduce here displacement pumping 

through a side channel. In this approach, also sample is pumped into the inner reservoir initially holding the 

FC-40. Effectively, the addition of aqueous sample into the lower pumping chamber, which dissolves a DF 

film, establishes a circular fluid path where the denser FC-40 flows outwards through one channel and 

displaces the sample inwards through the other (Figs. 3 and  4). When the systems have reached equilibrium, 

the sample is layered above the FC-40 in the upper chamber. However, for practical use the microfluidic 

structure is configured such that, as the FC-40 flows radially outwards, another slow-dissolve DF is exposed 

to the aqueous sample and dissolves, thus allowing the sample to be subject of more LUOs. 

 

The significant advantage of this method is it minimises the use of disc real-estate, particularly close 

to the centre of rotation. As the same reservoir is used both as the source of pumping liquid and as a 

destination for the sample, the critical footprint of this structure is effectively halved. A second advantage is 

the pumped sample, resting on top of the FC-40 as it is centrifugally pumped, generates an additional 

hydrostatic pressure and thus even slightly increases the speed of the pumping process. 

5. BUOYANCY-BASED PUMPING TOWARDS INTEGRATED ASSAYS 

Recently, we introduced a microfluidic structure that integrates buoyancy centripetal pumping with sample 

discretisation and metering [14]. To exemplify the applicability of this structure by a multi-parameter liver 

function bioassay panel integrated on a single disc [17]. Here an advancement is presented where a blood-

processing chamber is placed an upstream and  valved mixing chambers downstream. The integration of 

metering and discretisation of sample with centripetal pumping offers a number of advantages on the LoaD 

platform. In the first case, the capability of processing blood sample on the periphery of the disc, where a 

higher centrifugal field already emerges at smaller spin rates, lends the system to enhanced process 

integration. This, combined with the ability to move the discretized samples to a more central location and 

particularly useful in cases where multiple liquid handling steps are required and the available rotationally actuated valving 

technology restricts the spin rate envelope.  
 

A second advantage is the combined discretizing / metering /  pumping structure effectively acts as a 

valve. Before the heavy pumping liquid (FC-40) is released, the sample is effectively retained in the metering 

structure by the centrifugal force. Displaced upwards, it can be aliquoted into a number of discrete samples 

(Figs. 5 and 6 show 3-plex aliquoting) in a relatively small area and, through centripetal pumping, deliver 

them to distant locations. As the ‘valve’ the sample is pumped through is effectively an open channel it has a 

very small dead volume compared with some other valving technologies common on LoaD. A microchannel 

manufactured using the methods described here (cross-section: 0.5  0.086 mm
2
) would, if it was extending 

120 mm across the typical disc, have a maximum dead volume of ~5 µl. Additionally, unlike conventional 

DF valving technologies, these open channel ‘valves’ will be compatible with all non-aqueous liquids such 

as isopropyl alcohol (IPA) and ethanol (EtOH).  
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Figure 4: Video still acquired during circulation-displacement based pumping (a) shows a disc cartridge in the initial 

configuration. The FC-40 is restrained by the lower DF (from entering pumping chamber) and upper DF (from entering 

the collection chamber). The sample is restrained behind a DF burst valve. (b) the spin rate is increased and the sample 

is pumped into the pumping chamber (c) the lower DF is wetted and the FC-40 is released (d-e) the FC-40 and sample 

establish a recirculating flow where the FC-40 displaces the sample upwards. This continues until equilibrium is 

reached (f) the upper DF is wetted by aqueous sample and dissolves (g-h) the sample is released to be subject to further 

LUOs. Note that in the experiment above, the volumes of FC-40 was tailored to minimize both the volume of FC-40 

passed to the next state in the test and the volume of sample lost during pumping. Varying (reducing) the volume of FC-

40 from this optimal volume can permit the upper structure to also have a metering effect on the sample. 

 

 
Figure 5: (a) Schematic of a disc used to demonstrate an integrated assay. This disc can demonstrate blood processing, 

discretizing, metering and pumping of extracted plasma and three stage delivery of reagents to selective chambers. In 

the planned bio-assay (i.e. liver function panel [17]) assays will run to completion or must be stopped after a specific 

time period through mixing sample with a ‘Stop Reagent’. In the liquid handling protocol demonstrated, plasma mixed 

with Reagent A will run to completion (over ~15 minutes) while Reagent B reaction must be stopped after 3 minutes 

(through addition of Reagent B’) while Reagent C reaction must be stopped after 15 minutes (Reagent C’). Absorbance 

measurements can then  be made from read chambers on the edge of the disc. (b) Spin-protocol used to implement the 

assay. At spin rates below 25 Hz, blood may be stratified into cells and plasma. Increasing the spin-frequency to 30 Hz 

opens DF Valve #1. The plasma is then discretized, metered and pumped into Reagent A, B and C chambers. At this 

point, the reactions begin and the disc is rapidly accelerated and decelerated to enhance fluidic mixing. After a set time 

(3 minutes) the spin rate is increased to 45 Hz and the plasma / Reagent B solution is released to mix with the stop 

Reagent B’. Finally, 15 minutes after the pumping step, the spin rate is increased to 55 Hz to release the plasma / 

Reagent C solution to mix with Reagent C’. After a pre-defined mixing step the absorbance of each reaction can be 

measured. 
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Figure 6: Disc designed for integrated bio-assays using integrated metering / mixing / pumping (a) shows the disc pre-

loaded with FC-40 as pumping liquid, DI water to represent bio-reagents and dyed water to represent working sample 

(blood / plasma) (b) Increasing the spin rate to 30 Hz (see Fig 5) releases dyed water into the metering structure (c) the 

DF located in the metering structure dissolves and the FC-40 is released. Sample is discretized, accurately metered and 

pumped radially inwards. Previous measurements from a similar metering structure [14] indicate the accuracy of 

metering is 24 µl ± 240 nl (n = 9) (based on absorbance measurements of red food dye). (d) Sample is added to Reagent 

A, B and C and is mixed using the ‘shake mode’-induced Euler force [20]. (e) After 3 minutes the spin rate is increased 

to 45 Hz and plasma / Reagent B solution  is released into the read chamber where it mixes with the ‘stop reagent’ 

Reagent B’. (f) Similarly, after a further 12 minutes, the spin rate is increased to 55 Hz and the plasma / Reagent C 

solution is mixed with Reagent C’.  

 

 

 

 

 

 

To demonstrate the capabilities of centripetal discretization / metering / pumping towards multi-

parameter bio-assays we present a disc cartridge (Figs. 5 and 6) which implements all liquid handling steps 

associated with liver function monitoring [17]. Figure 5(a) shows a schematic of this disc design and Figure 

5(b) shows a representation of the typical spin rate protocol to implement the following integrated assay:  
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1. Centrifuge Blood at 25 Hz – Stratify blood into RBCs and plasma 

2. Increase spin rate to 30 Hz – Release plasma into metering chamber 

3. Discretization / Metering / Pumping of 24 µl of plasma to chambers containing: 

a. 120 µl of Reagent A – an end-point absorbance measurement which runs to completion; 

similar to Albumin [17] 

b. 120 µl of Reagent B – an end-point absorbance measurement which must be ‘stopped’ prior 

to completion (after 3 minutes); similar to Total Bilirubin [17] 

c. 120 µl of Reagent C – an end-point absorbance measurement which must be ‘stopped’ prior 

to completion (after 15 minutes); similar to Alkaline Phosphotase [17] 

4. Mixing of solutions 

5. Transfer of plasma / Reagent B solution to a read chamber where it is mixed with a ‘stop reagent’ 

(Reagent B’) 

6. Mixing of solutions 

7. Transfer of plasma / Reagent C solution to a read chamber where it is mixed with a ‘stop reagent’ 

(Reagent C’) 

8. Mixing of solutions 

9. Reading of absorbance from read chambers. 

Figure 6 shows video stills of the disc cartridge processing dyed water (in place of blood samples). 

With the disc spinning at 25 Hz (Fig. 6a) the ‘blood’ sample is held back by DF Burst Valve #1. Increasing 

the spin rate past the design burst frequency (to 30 Hz) results in the opening of this valve and the pumping 

of the dyed water into the metering structure. This structure fills rapidly (~30 s)  (Fig. 6b) and, ~50 s after 

wetting the slow-dissolve DF, the pumping liquid (FC-40) is released. The FC-40 enters the chamber 

(Fig. 6c),  and, as it displaces the liquid upwards, accurately meters and splits it into discrete fluid elements.  

These volumes, representing plasma, are pumped radially inwards and then in the reverse direction 

towards mixing chambers. One chamber, pre-loaded with DI water representing Reagent A, is a read-

chamber located on the periphery of the disc. The other, more central chambers are pre-loaded with DI water 

representing Reagent B and C initially sealed by DF valves which are designed to burst above 45 Hz and 

55 Hz, respectively. With the sample delivered, the disc is accelerated and decelerated between 15 Hz and 

22.5 Hz in order to induce ‘shake-mode’ style Euler mixing.  

After a set time duration, the disc is accelerated to 40 Hz (Fig. 6e) and the food dye / DI water 

representing plasma / Reagent B is delivered to a read chamber (which has been pre-loaded with 60 µl of DI 

water representing ‘stop’ Reagent B’). Similarly, the disc is then accelerated to 55 Hz to process Reagent C 

(Fig. 6f). 

6. CONCLUSIONS  

In this work we have presented centripetal pumping techniques which offer a number of key advantages over 

existing methods. The use of a DF to restrain the pumping liquid  FC-40  implies that the pumping mecha-

nism is broadly independent of the spin rate and is only triggered with the presence of an aqueous liquid in 

the pumping chamber; this pumping technique is thus widely independent of upstream LUOs and thus 

useable in practice.  

For circulation based pumping, by using a common chamber in which the FC-40 and sample 

effectively switch positions, the use of valuable, central real-estate is minimized. Additionally, the use of a 

DF valve in the upper chamber, which dissolves and opens a route for the sample as the filling level of FC-

40 lowers, can act to meter the volume of liquid which is made available for subsequent LUOs. Furthermore, 

we have expanded our integrated discretizing / metering / mixing structure to demonstrate how it can become 

a key enabler of an integrated bio-assay. This structure demonstrates a number of decisive advantages 

including the ability to rapidly process blood; taking advantage of the elevated centrifugal field at the 

periphery of the disc and the ability to integrate this structure with time-triggered burst valves. 

As future work, we intend to further optimize this structure and use it to implement the 3-plex multi-

parameter liver panel described here. 
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