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Abstract

A Machine Learning Framework for Automatic Human

Activity Classification from Wearable Sensors

Edmond Mitchell

Wearable sensors are becoming increasingly common and they permit
the capture of physiological data during exercise, recuperation and ev-
eryday activities. This work investigated and advanced the current
state-of-the-art in machine learning technology for the automatic clas-
sification of captured physiological data from wearable sensors. The
overall goal of the work presented here is to research and investigate
every aspect of the technology and methods involved in this field and
to create a framework of technology that can be utilised on low-cost
platforms across a wide range of activities. Both rudimentary and ad-
vanced techniques were compared, including those that allowed for both
real-time processing on an android platform and highly accurate post-
processing on a desktop computer. State-of-the-art feature extraction
methods such as Fourier and Wavelet analysis were also researched to
ascertain how well they could extract discriminative physiological infor-
mation. Various classifiers were investigated in terms of their ability to
work with different feature extraction methods. Consequently, complex
classification fusion models were created to increase the overall accu-
racy of the activity recognition process. Genetic algorithms were also
employed to optimise classifier parameter selection in the multidimen-
sional search space. Large annotated sporting activity datasets were
created for a range of sports that allowed different classification models
to be compared. This allowed for a machine learning framework to be
constructed that could potentially create accurate models when applied
to any unknown dataset. This framework was also successfully applied
to medical and everyday-activity datasets confirming that the approach
could be deployed in different application settings.
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1 Introduction

Up until the beginning of the millennium computers had been predom-

inantly associated with the traditional desktop personal computer with

the mouse and keyboard being the main methods of input. Today com-

puters are becoming more pervasive and are embedded within our smart-

phones, personal music players, auto-mobiles, clothing, watches and even

glasses. In fact it is difficult to imagine an object that will not contain

a computer at some stage in the future. The vision of ubiquitous com-

puting is that, eventually, computers will disappear and become part of

our environment, fading into the background of our everyday lives [5].

Therefore the ultimate goal in ubiquitous computing is that these un-

seen computers will autonomously gather contextual information from

users and their bodies to enhance their everyday life. With computers

today being embedded in smaller and smaller devices and being made

available in more and more aspects of daily living, the goal is to find

novel methods for humans to interact with this new era of computing

technology

One avenue of research in this regard would be to curtail the amount

of explicit interaction that users are forced to endure in order to commu-

nicate with computers. Implicit interaction implies that instead of the

user having to directly communicate with the computer, the computer

itself can determine the users requirements. In order for a computer to

calculate the users requirements, it first must be able to sense the raw

contextual information it can use to infer judgement within a particular

situation. Sensors allow computers to detect and record changes in the

users environment or physiology. These sensors are able to capture the

current state of the user, their environment and their context, i.e their

1



name, their location relative to the sensor, their current activity and the

current state of their environment.

Current research in computers that are contextually aware focuses on

the use of sensors either on the user or in their environment to capture

data that can be used to infer the users context. This contextual infor-

mation can be used by a computer to automatically detect the current

requirements of the user, thus eliminating the requirement of the user

to interact with the device. This, not only, increases productivity and

efficiency but also allows users to react to different scenarios naturally

without having to input information directly into a device.

As technology advances and more efficient manufacturing techniques

are discovered the cost to invent and construct sensors is lowered. In

turn, the quantity of data available from different sensor modalities in-

creases. With this increase the potential to fuse data from different

modalities allows researchers to infer new contextual information that

could not be discovered from a single modality.

In this work a new class of context aware computing is explored. Au-

tomatic activity recognition aims to recognise the actions and events of

a user utilising either physiological data captured from the body or data

captured from the users environment. This research area has reached

prominence in machine learning communities due to its ability to provide

unobtrusive information to the user in areas such as medicine, human

computer interaction and sport. The main research contribution out-

lined in this thesis focuses on using physiological data captured from

sensors worn on the body to recognise a wide range of human activities.

Firstly, the capability of a system to recognise a single activity is

introduced, which would allow the system to evaluate a users perfor-

mance. This type of technology has many applications in health and in

2



sport where patients need to perform rehabilitation exercises and ath-

letes want to hone their techniques and skills. Secondly, a single sensor

system is employed to automatically recognise a range of complex ac-

tivities. This technology again has various applications in health and

sport. Thirdly, multiple sensors are combined in order to provide higher

levels of accuracy in specific applications that involve more complex ac-

tivities, making them very difficult to distinguish using a single sensor.

Then sensors of different modalities are fused together so that any weak-

ness in contextually recognizing human actions or activity in one sensor

can be remedied from data from another sensor of a different modality.

Finally a search-space parameter optimisation algorithm is introduced

that allows the whole classification process to be sped up as well as

increasing the overall classification accuracy.

Wearable sensors are used along with advanced feature extraction

techniques and machine learning methods to capture, train and test

classification models in order to automatically recognize the user’s ac-

tivity. One of the main advantages of using wearable sensors, as oppose

to sensors built into the infrastructure of a stadium is the ability to ob-

serve the world from a 1st person perspective, continuously, and lacking

the requirement of any outside infrastructure. In this thesis activity

recognition with wearable sensors will be shown to have the capacity to

create new applications and to enhance current ones used in the areas

of sport and health.

The main goal of this work is to create a machine learning framework

for automatic human activity classification. This framework will allow

the creation of accurate classification models for any annotated dataset.

These models will be created from a variety of advanced feature selection

parameters as well as a multitude of classifiers. This framework will

3



also contain state of the art optimisation procedures to ensure efficient

parameter selection.

1.1 Research Objectives

There are several research objectives associated with creating a machine

learning framework for automatic human activity classification. The

initial objective is to outline the classification process from the sens-

ing of physiological information to the output of a recognised activity.

To simplify this, the first step is to examine whether it is possible to

identify a single desired activity. The capability to evaluate a desired

activity accurately permits the creation of a wide range of rehabilitation

applications for people and also the creation of training applications for

athletes. The chapter also presents the research contributes of this work

and cites examples where the framework was applied successfully.

The next research objective is to investigate novel approaches to

automatically identify various different activities with a single wearable

sensor. This would allow users to have a permanent record of activities

accomplished at a specific time or time intervals. To accomplish this

objective, novel data mining and machine learning techniques will have

to be inspected to ascertain their ability to perform this task. The

category of sensor and the location where it will be placed on the user

is paramount to the success of this goal. This is a challenging task as

a single sensor can only capture physiological from a signal modality.

Every classification model requires features from the raw data to be

inputted into it in order to yield accurate results. Therefore extracting

the most discriminative features from the raw sensor data is an extremely

important objective for this work.

Another objective is to investigate whether attaching more than one

4



sensor of the same type to different locations on a user can yield greater

classification accuracy results than a single sensor approach. With mul-

tiple sensors, the issue of fusion arises, of which there are two different

approaches when fusing sensor data together for classification purposes,

therefore both early fusion and late fusion need to be investigated.

One more research objective is to ascertain the plausibility of combin-

ing one or more sensors of a different modality and investigating whether

any weakness in recognizing a human action or activity by one sensor

can be remedied from data from another sensor.

A machine learning framework for automatic human activity clas-

sification will have many parameters that need to be selected before a

model can be generated. Researchers must generally limit the parame-

ters investigated otherwise the process will take an unreasonable amount

of time. This limitation in parameters can lead to the situation where

potential models that provide higher accuracy are not investigated and

therefore this is highly undesirable. Parameter selection optimisation

procedures will examined to see whether they can negate this outcome.

1.2 Research Contributions

A wearable sensor network is a network of intelligent physiological sen-

sors can be integrated into a wearable computing network. Wearable

sensor networks have an important role to play in future healthcare de-

livery and management by sensing the body and interpreting physiolog-

ical data. To this end an interactive system was developed that helped

patients perform respiratory exercises, and maintained the interest of

children during these exercise sessions. This wearable system classifies

breathing technique into separate grades and provides visual feedback

to the user through a graphical user interface. The exercise sessions can
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be repeated using the same reference signal, which means that medical

staff need not be present for the exercise, thereby improving efficiency

in the hospital.

Utilizing the accelerometer in the commonly available smartphone to

recognise human activities has added various novel contributions to this

thesis. The accelerometers in smartphones are less accurate than more

expensive professional units, which adds to the difficulties in processing

this data. Smartphones have been used to identify common day to day

activities in the literature however to the best of our knowledge it is

the first time they have been used accurately in a sporting context.

This technology is easily available to athletes and allows them to track

their sporting performance over the course of a training season. Using

a smartphone placed on athletes back, this thesis introduces a set of

algorithms to detect key movement and sporting activities including

walking, standing still, jogging, sprinting, tackling, hitting a ball and

soloing with a ball. These algorithms were shown to create accurate

models for two different field sports.

An analysis into the use of cheap and easy to use respiration, ECG

and accelerometer sensors for the classification of sleep apnea events

was concluded. Standard polysomnography tests can be prohibitively

expensive therefore the ability to pre-test for sleep apnea using a cheap

and accurate system could allow the tests to be preliminarily carried out

outside of the clinic environment. Therefore a cheap reusable wearable

system consisting solely of a t-shirt was created that allowed different

apnea events to be recognised. Additionally a comparison of early and

late fusion approaches for multimodal sensor fusion was carried out.

It was concluded that the early fusion approach outperformed the late

fusion approach. There are very few instances of this test in literature
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so it is beneficial to have conducted it.

Finally having a large set of possible parameters for any problem

presents a significant time investment problem. The more permutations

that must be investigated increases the length of time to conduct any

experiment. To overcome this problem, a final contribution is presented,

in which a novel classification parameter selection procedure is presented

which allows users to search through a list of permutations for the most

accurate solution with a significant increase in speed. This genetic al-

gorithm approach was shown to decrease the time to locate the best

classification parameters with an 87.5% decrease in time required on av-

erage. Additionally the novel approach presented shows how the GA can

permit a much larger parameter search space to be investigated which

was shown to identify model parameters with higher accuracy than the

model found within a smaller space. This in turn allows more accurate

models to be created than a standard brute force approach.

1.3 Thesis Outline

Chapter 2 explores the technical background of preprocessing the raw

sensor data before looking at the literature for advanced feature ex-

traction. Then physiological sensors and their relevant applications are

described in detail for classification purposes followed by a look at the

different data fusion techniques which are investigated on their appli-

cability for multimodal sensor fusion. After this chapter there is an

exploration at the state of the art machine learning techniques, which

are used for to create classification models in this work. Finally state

of the art parameter selection optimisation techniques are introduced,

which were to hasten the classification model creation process. Rele-

vant literature is presented as a basis for the framework design choices
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presented in this thesis.

Chapter 3 describes the challenges which were overcome in order to

perform human activity recognition using a single sensor. This chapter

outlines the feature extraction techniques required to initially evaluate a

users activity performance before creating algorithms to identify various

different sporting activities. A number of experiments are undertaken in

order to ascertain the best approach to creating a classification model. A

black box experiment is compared to a thorough investigation of all pa-

rameters. These two approaches are then compared to a final approach

where each activity has its own specialised classifier. All methods pro-

posed are compared to a literature benchmark for evaluation purposes.

Different feature extraction techniques such as DWT, FFT and some

simple time domain techniques were implemented for comparison pur-

poses.

Chapter 4 explores the challenges encountered when creating a mul-

timodal human action recognition system. Advantages from using two

accelerometers versus a single accelerometer to identify different training

activities performed by a subject are presented. As the results prove,

sensor fusion can significantly improve the accuracy rate for classification

models. Early fusion and late fusion are the two techniques used in this

chapter to fuse data from different sensors. Experiments are conducted

that use both early and late fusion to fuse the data from ECG,respiration

and accelerometer sensors. Results prove that even though early fusion

requires less computational time, it is similarly accurate at detecting

human activities as a late fusion approach. After evaluating those two

approaches, results obtained when using different permutations of three

sensors of different modality are presented in this chapter. Results in-

dicate that adding a sensor which captures physiological data that is
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already being accurately measured by a different modality can decrease

classification accuracy.

Chapter 5 takes the results of all the model parameter permutations

discovered in section 3.3 and uses them to test different genetic algo-

rithms. This chapter explains why genetic algorithms can help optimise

the parameter selection process. It also goes into detail on the role of

each parameter that makes up the genetic algorithm and process behind

it. Three experiments are conducted to investigate the genetic algo-

rithms suitability to optimise the process of parameter selection. The

first experiment explores the use of different population sizes and com-

pares each GA to the brute force approach. Experiments were conducted

100 times each to give a fair representation of each populations ability.

The second experiment increases the number of parameter permutations

by a factor of ten but the number of possible solutions investigated was

limited at the same amount as in section 3.3. This showed that the ge-

netic algorithm could locate a new superior solution in the same amount

of time it took the brute force algorithm to search through a search

space one tenth of the size. The final experiment investigated whether

this new superior models could of been extrapolated from original best

performing models in section 3.3.

Chapter 6 succinctly presents the overall conclusions and briefly ex-

plores the research contributions and discusses directions for future work.
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2 Technical Background

2.1 Introduction

This chapter presents an overview of the background literature required

to understand the techniques employed in the core work of this thesis.

Initially signal processing techniques that enhance the ability to dis-

criminate between different signal types are presented. Then discrete

wavelet transforms and fast Fourier transforms are introduced as they

are required for signal feature extraction for automatic human activity

classification. The current state of the art in inertial sensing is inves-

tigated which allows the fusing of sensor data from separate and dif-

ferent sensors. Automatic activity classification using signal processing

and sensor fusion is greatly strengthened by utilizing the best machine

learning methods available. Finally genetic algorithms are presented as

a means to search large parameter spaces.

2.2 Digital Signal Filtering

2.2.1 Filtering

A filter is a component that is devised to change the spectral content

of an inputted signal in a required manner. Filtering is commonly used

to improve the quality of a signal and extract relevant information from

a signal. Common filtering objectives include improving signal quality

and de-interlacing previously combined signal components. In this work

filtering is employed to improve the classification process by removing

unwanted noise from sensor data.

Filtering is a process that allows a desired range of frequency com-

ponents to pass in a signal called the passband while attenuating all

other frequency components called the stopband. A digital filter is a
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mathematical algorithm implemented in software that manipulates an

inputted digital signal to create a digital output signal that achieves a

wanted criteria.

Filters can be classified in terms of their magnitude response. These

are lowpass, highpass, bandpass, and stopband filters. A low-pass filter

passes signal components under a desired frequency while attenuating

signal components over this cutoff frequency. A high-pass filter passes

signal components over a desired frequency while attenuating signal com-

ponents lower than this cutoff frequency. A bandpass filter combines a

low-pass and high-pass filter to only allow frequencies components within

a desired range to pass. A stopband filter again combines a low-pass and

high-pass filter to only attenuate frequencies components within a de-

sired range. Filters can also be categorized in terms of their impulse

response. The two possibilities are a finite impulse response (FIR) filter

and a infinite impulse response (IIR) filter. The FIR filters impulse re-

sponse is of finite duration because it settles to zero in finite time. For a

linear and time-invariant FIR filter of order N , each value of the output

sequence is a weighted sum of the most recent input values. This can

be seen in equation 1 where x[n] is the input signal, y[n] is the output

signal, N is the filter order and bi is the value of the impulse response

at the i’th instant

y[n] =
N∑
i=0

bi · x[n− i] (1)

The advantages of a FIR filter over a IIR filter include the fact that it

has no feedback. This causes no rounding errors to be compounded by

repeated iterations. This also makes FIR filters inherently stable. y[n]

will always be a finite number since the largest value it can attain is
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∑
bi
I where I is the largest input.

The IIR filters impulse response is of infinite duration because it does

not become exactly zero past a certain point, but continues indefinitely.

It can be seen in equation 2 where P is the feedforward filter order, bi

are the, Q is the feedback filter order feedforward filter coefficients, ai

are the feedback filter coefficients, where x[n] is the input signal and y[n]

is the output signal.

y[n] =
1

a0
(
P∑
i=0

bix[n− i]−
Q∑
j=1

ajy[n− j]) (2)

The main advantage digital IIR filters have over FIR filters is that they

require less memory and cpu iterations to achieve a required filter re-

sponse characteristic for any magnitude. IIR filters require a lower order

Q than a FIR filter to achieve the same results. Also, certain desired

responses are not practical to construct with FIR filters.

2.2.2 Butterworth Filter

A Butterworth filter is a popular IIR filter used in DSP. It is a maximally

flat magnitude filter and was first invented in 1930 by the engineer and

physicist Stephen Butterworth[6]. Its frequency response is maximally

flat in the passband and slopes towards zero in the stopband. Butter-

worth filters have a monotonically changing magnitude function with ω

whereas other popular filters such as Chebyshev or Elliptic filters that

have non-monotonic ripple in the passband or the stopband. The But-

terworth filter was employed in this work to reduce background noise

such as when using captured ECG data
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2.3 Signal Feature Extraction

Once data is captured, features must be extracted that will allow the

identification of activities. Feature extraction is the process of simpli-

fying the amount of information required to describe data accurately.

Features with higher correlation between similar patterns (intra-class

variation) and poorer correlation between dissimilar patterns (inter-class

variation) are desirable. Analysis with a large number of variables can

require a large amount of computer memory and computation power.

More importantly a large input into a classification algorithm can cause

overfitting in the training sample which produces models which respond

poorly to new samples. Choosing the most discriminative features is key

otherwise the model will not be able to distinguish between samples and

the classification accuracy will be unsatisfactory. There are many well

known general dimensionality reduction techniques used in signal fea-

ture extraction such as principal component analysis, Fourier analysis,

semidefinite embedding and wavelet analysis.

2.3.1 Fourier transform

The Fourier transform is the cornerstone of discrete signal processing

due to its ability to deal with linear time-invariant operators because

the output does not depend on the particular time the input is applied.

It is also able to deal with uniformly regular signals. While not as

complex as the DWT is has been employed to extract features for activ-

ity classification problems with success. The discrete Fourier transform

(DFT) transforms a definite array of samples of a function into a array of

coefficients of a fixed length of complex sinusoids, arranged by their fre-

quencies. Therefore it is able to convert information in the time domain
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to the frequency domain and vice versa. The fast Fourier transform

(FFT) is an algorithm that calculates the discrete Fourier transform

(DFT) and its inverse. The FFT is used instead of the DFT because it

reduces the number of complex multiplications from N2 to N log2(N).

For these reasons the FFT was investigated in this thesis.

Use of mean and energy of FFT components has been shown to re-

sult in accurate recognition of certain postures and activities [7][8][9].

Frequency-domain entropy is calculated as the normalized information

entropy of the discrete FFT component magnitudes of the signal. This

feature supports discrimination of activities with similar energy values

as more uniform movement patterns may show a single dominant fre-

quency component and very low magnitude for all other frequencies. On

the other hand complex movements may show various frequencies of a

similar magnitude[10].

2.3.2 The Wavelet Transform

The wavelet transform has been used with much success in extracting

discriminative features from data to aid in classification [11][12][13]. The

wavelet transform is a commonly used function [14] in signal process-

ing applications such as decomposing, compression, feature extraction,

encoding, and signal reconstruction. The Fourier transform is the cor-

nerstone of discrete signal processing due to its ability to deal with

linear time-invariant operators or uniformly regular signals but for sig-

nals that have transient properties, the Fourier transform is not ideal as

it requires a large number of coefficients to represent a localized event.

Wavelet bases, like Fourier bases, reveal the signal regularity through

the amplitude of coefficients, and their structure leads to a computa-

tionally efficient algorithm. However, wavelets require few coefficients
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to represent local transient structures due to being well localized. The

technical computing software MATLAB [15] has toolboxes which allow

for the extraction of DWT coefficients from a data signal [1].

A wavelet is an oscillating function about zero which includes both

the analysis and window functions. By shifting the wavelet over the

signal and correlating the two, time information can be calculated. To

decompose a signal into a set of basis functions called wavelets requires

a pair of waveforms that represent the high frequencies and low frequen-

cies. The wavelet function corresponds to the high frequency details of

the signal while the scaling function corresponds to the low frequency

parts of the signal [1].

2.3.3 The Discrete Wavelet Transform

Using the Discrete Wavelet Transform (DWT), any signal can be decom-

posed into a group of discrete wavelet coefficients. Almost all DWTs use

filter banks for the analysis and reconstruction of a signal which may

contain either finite impulse response or infinite impulse response filters.

The filter banks contain high and low frequency filters to derive the fre-

quency content of the signal in the sub-bands. Therefore the DWT

decomposes a discrete signal into two sets of coefficients; approximation

and detail. After the filtering, half of the samples can be eliminated

according to the Nyquist’s rule, since the signal now has a highest fre-

quency of π
2

radians instead of π. The signal can therefore be subsampled

by 2 by discarding every other sample [1].

Using the same method the resulting approximation coefficients are

then split into new approximation and detail coefficients. This procedure

is iteratively executed to create a group of approximation coefficient

vectors Ai and detail coefficient vectors D1, D2, . . . , Di at the ith level,
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Figure 1: DWT decomposition of signal x[n]

as outlined in Figure 1. There are N
2i

elements in the approximation

vector Ai and N
2i

elements in the detail vector Dj (where j = 1, . . . , i)

when the original signal has N elements[1].

The choice of the so called “ mother wavelet” is crucial as it generates

all the wavelet functions that determine the properties of the resulting

wavelet transform which in turn relates to the transform’s performance

in any application. Currently there is no standardized way to select

the mother wavelet and the choice depends on the application. The

most important and commonly considered parameters when choosing a

wavelet are its number of vanishing moments, its regularity, compact-

ness and symmetry. A wavelet has p vanishing moments only if the
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wavelet scaling function can generate polynomials up to degree p − 1.

More vanishing moments means that the scaling function can represent

more complex functions which allows for a sparser set of wavelet coeffi-

cients. The regularity gives an approximate measure of the number of

continuous derivatives that the wavelet function possesses. The regular-

ity therefore gives a measure of the smoothness of the wavelet function

with higher regularity implying a smoother wavelet[1].

The compactness of the wavelet (size) is also important. For exam-

ple, Daubechies second order is fast to compute but the narrowness in

time implies a very large width in frequency. Alternatively, wavelets

with large compact support such as the Coiflet order 22 are smoother,

have finer frequency resolution and are usually more efficient at de-

noising. Thus, a balance between analysis accuracy and computational

time is required. The symmetry properly indicates whether the filters

have a linear phase, which is an important characteristic to provide

perfect reconstruction. Symmetric wavelets show no preferred direction

in time, while asymmetric wavelets give unequal weighting to different

directions[1].

In signal processing the most commonly used wavelets are Haar,

Daubechies, Coiflet, Symlet, bi-orthogonal and reverse bi-orthogonal.

Coiflets and Symlets evolved from the Daubechies wavelet. Daubechies,

Coiflet and Symlet are orthogonal and compactly supported wavelets.

Daubechies wavelet is asymmetric, is compactly supported and has minimum-

phase associated scaling filters. Coiflet is near symmetric, is complactly

supported and has the highest number of vanishing moments. Symlet

has the least asymmetry, is compactly supported and has linear-phase

associated scaling filters. These wavelets suffer poor regularity[1].

Bi-orthogonal and reverse bi-orthogonal wavelets are bi-orthogonal
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and are compactly supported wavelet pairs. Bi-orthogonal wavelets are

also symmetrical, resulting in linear-phase filters, which are needed for

perfect signal reconstruction. Bi-orthogonal (BO) wavelets utilize two

different wavelets; one for decomposition and the second for reconstruc-

tion. Exact reconstructions are possible with FIR filters. Reverse bi-

orthogonal wavelets swap the BO wavlets synthesis and analysis parts.

Due to being bi-orthogonal processing time is increased[1].

2.3.4 Energy of the DWT

In this work features of sensor signals are extracted using the DWT

and fed into various classification algorithms in order to correctly iden-

tify a person’s current activity. Various DWT decomposition levels can

be explored however each increment in level increases the overall com-

putational time required. The total energy ET at level i of the DWT

decomposition is given by [16]:

ET = AiA
T
i +

i∑
j=1

DjD
T
j (3)

where Ai is the approximation coefficient at level i and Di is the

detailed coefficient at level i. One feature that can give discriminating

results is the energy ratio in each type of coefficient [16]. EDRA rep-

resents the energy ratio of the approximation coefficients while EDRDj

represents the energy ratio of the detail coefficients.

EDRA =
AiA

T
i

ET
(4)

EDRDj
=
DiD

T
j

ET
j = 1, . . . , i (5)

With the EDRs calculated a foundation has been created for de-
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tailed information features to be extracted. In [16] Ayrulu-Erdem and

Barshan found that the normalized variances of the DWT decomposi-

tion coefficients and the EDRs provided the most informative features

for a different albeit similar problem to that investigated in this thesis.

Specifically they investigate extracting the informative features of gyro-

scopic signals using the DWT decomposition and provide them as input

to multi-layer feed-forward artificial neural networks for leg motion clas-

sification. They investigated the performance of their approach using

different informational features such as normalized means, minimums

and maximums of the EDRs and obtained superior performance. As

such it is proposed to adopt the approach in this work. The variances of

the coefficients are calculated over each DWT coefficient vector at the

ith level

Ai, D1, D2, D3, ..., Di (6)

Therefore, at the ith level there are i+1 variance values calculated for

each axis segment, totalling 3(i+1) features for an accelerometer signal.

The amount of EDR features is equal to the amount of DWT coefficients.

Adding these features to the variances gives a total of 6(1 + i) features

at level i. Figure 2 provides an overview of how this approach fits into

a complete classification pipeline [1].

2.3.5 Applications

Industrial

Tools that can accurately predict the lifespan of equipment in indus-

try allow the optimization of resources and reduce the number of delays.
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Figure 2: System overview of the DWT decomposition and classification pro-
cess [1]

Saravanan et al. in [17] utilizes extracted features from the DWT to

diagnose faults in a gear box. The vibration signals of a spur bevel gear

box in different conditions were recorded. The DWT was used to extract

features from all possible types of transients in the vibration signals and

these features were passed into an artificial neural network for classifi-

cation. Vibration signals obtained during the microdrilling process were

used in [18] for Drill Wear Monitoring. The DWT with statistical esti-

mations of the signal energy distribution was again employed to extract

features describing energy spikes quantitatively. Non-destructive auto-

matic identification of defects in equipment or produced goods improves

safety and lowers costs. The authors in [19] present a method to detect

a variety of rail-road wheel-bearing faults using audible acoustic signals

at a variety of different train speeds. FFT and DWT features were both

implemented with each achieving accurate results.

Healthcare

Signal feature extraction can aid healthcare related applications such
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as the automatic detection and classification of cardiac abnormalities

[20]. This can facilitate the diagnosis of cardiac disorders and diseases

more easily and quickly than current methods.

In [20] the authors propose a method to accurately classify ECG ar-

rhythmias through a combination of wavelets and artificial neural net-

works. The capability of the DWT to decompose a signal at various

resolutions allows accurate extraction of features from non-stationary

signals like ECG. Their method is efficient at differentiating the natural

sinus rhythm and 12 different arrhythmias. Heart rate variability (HRV)

is a widely employed quantitative marker of the autonomic nervous sys-

tem and can be used as a predictor of a person’s risk to cardiovascular

diseases. In [21] Acharya et al. uses the FFT to extract the power spec-

tral densities of the HRV to determine to which of nine cardiac classes

a person belongs.

Detailed contextual information regarding a user’s activities can be

used to encourage people to lead a less sedentary lifestyle and therefore

become more active and healthy. In [10] the authors use the FFT to ex-

tract features from five small biaxial accelerometers worn simultaneously

on different parts of the body. A dataset was created with twenty sub-

jects who self annotated twenty different daily activities. The authors

then investigated the performance of different classification algorithms

achieving high results. Nyan et al. in [22] created a system that used

DWT features to detect falls. When a fall was detected a SMS was auto-

matically sent indicate someone has fallen and to summon professional

medical assistance.
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2.4 Sensing

Motion detection is the process of detecting a change in position of an

object relative to its surroundings or the change in the surroundings rel-

ative to an object. Calculating a person’s change in momentum involves

deciphering their movement in a three dimensional space and is a chal-

lenging undertaking. The amount of academic literature which deals

with wearable inertial sensors in the area of automatic activity classi-

fication has began to grow in recent years largely due to the relatively

recent drop in cost of inertial sensors.

While chapter 3 describes the state of the art in using inertial sensors

for automatic human activity classification, the following section more

generally introduces inertial sensing and its applications.

Accelerometers have been used for human activity recognition in a

large amount of existing work [23][24][25]. Research has shown that

accelerometers can be used to identify human activity for high energy

actions such as walking, jogging, jumping, etc [26]. In sports, accelerom-

eters have been used to monitor elite athletes in competition or training

environments. In swimming applications, accelerometers have allowed

the comparison of stroke characteristics for a variety of training strokes

and therefore have helped perfect swimming technique [27]. When used

in competitive rowing and coupled with other monitoring techniques

such as impeller velocity, they allow for the study of intra and inter

stroke phases as a means to assess performance and this has been used

by competition rowers to improve performance at national and interna-

tional competitions [23].
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2.4.1 Accelerometers

The authors in [2] describe a single axis accelerometer as a mass, sus-

pended by a spring in a housing as seen in Figure 3. The mass is per-

mitted to shift in one direction which is the sensitive direction of the

accelerometer. The deracination of the mass is the contrast between the

acceleration a and gravity g along the selected axis given by the unit

vector n. sA,n, a electrical signal is directly connected to these physical

properties as seen in equation 7.

sA,n = kA,n(a− g) · n+ oA,n (7)

An, k defines the scaling factor while An, o defines the offset. There-

fore a tri-axial (3D) accelerometer can be constructed by combining

three single axis accelerometers.

Parvis et al. in [28] created an algorithm that allows the change in

orientation to be described by the changes by the change in the three

axes. The output vector SyA can therefore be related to the starting

acceleration and gravity by equation 8.

SyA =S a−S g (8)

The vector is using a coordinate system and therefore there is a S on

the left side of a vector to indicate this. A 3D accelerometer can be used

to the calculate angle for activities in which the acceleration is lower

than the gravity vector. The angle is calculated by measuring the angle

of the sensor axes to the gravity vector. One negativity is that the rota-

tion around the vertical cannot be quantified since if the device is spun

around the gravity vector SyA stays uninterrupted[2]. Figure 4 illus-
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Figure 3: A single axis accelerometer, containing a mass suspended by a
spring. The distance d of the mass with respect to the sensor housing is
calculated and is a function of acceleration and the direction of gravity with
respect to the direction of distance measurement. The unit vector n represents
the sensitive axis of the sensor. [2]

Figure 4: A single axis accelerometer showing how energy generated by a
force charges an electrical circuit which can be measured [3]
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trates a single axis capacitive accelerometer. Capacitive accelerometers

measure the difference in electrical capacitance, caused by acceleration,

to alter the output of an powered circuit. The measuring node comprises

of two parallel plate capacitors (CS1 and CS2) performing in a differ-

ential mode. These capacitors work in a bridge circuit, together with

two defined capacitors, and change the peak voltage created by an oscil-

lator when the device experiences acceleration. This value is captured

by a detection circuit which is then amplified and outputted [3]. While

undergoing a consistent acceleration, the capacitance is constant, which

results in a signal corresponding to uniform acceleration. By layering

three capacitive accelerometers at alternate angles in an XYZ fashion, a

3D accelerometer can be assembled. The investigation of accelerometer

signals in this work are gathered on a 3D accelerometer device with an

output detailed by Equation (8), after being calibrated on the logic of

Equation (7).

2.4.2 Electrocardiography

Electrocardiography (ECG) is a transthoracic interpretation of the elec-

trical activity of the heart over a fixed period of time [29]. This activity

is determined by electrodes affixed to the skin. This noninvasive sensor

is used to calculate and record the regularity of heartbeats. This infor-

mation can be used to infer the size and position of the heart chambers,

whether the heart has suffered any damage and the effects of medica-

tion or devices used to regulate the heart such as a artificial cardiac

pacemaker.

When the heart muscle depolarizes during each heartbeat, a small

electrical development on the skin transpires. This development can

be monitored and amplified by a ECG device. initially each cell in
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Figure 5: Smartex Wearable Wellness System. (a) Respiration sensor posi-
tioned at the front centre of the band. Accelerometer located in the CSEM
recording module which is housed in the indicated pouch. (b) Fabric ECG
electrodes located on the inside of the chest strap.

the heart has a negative charge across it cell membrane. The arrival

of positive ions, Na+ and Ca++ boosts the negative charge to zero

which is called depolarization. This kicks off the processes in the cell

that make it contract. A healthy heart will have a regular progression

of depolarisation waves that are formed by the sinoatrial node. These

waves advance through the atrium before making their way through the

ventricles. The ECG detects this as small rises and falls in the voltage

between the two electrodes. An example of an ECG that was used in

this work can be seen in Figure 5.

The human heart rate can alter widely according to the body’s cur-

rent physical activity. This includes the current oxygen absorption rate

and need to excrete carbon dioxide. Physical exercise, sleep, anxiety,

stress, illness and ingesting are some of the many activities that can

instigate change in the heart rate [30].

2.4.3 Applications

This section presents applications for automatic human activity classi-

fication systems where unobtrusive monitoring is desired. First appli-

cations for healthcare and assisted living are described. Following that
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applications are presented. Additionally for completeness two other ap-

plication groups are presented; industrial application uses and applica-

tions for the entertainment and gaming industry.

Healthcare and Assisted Living

Automatic human activity classification systems and context-aware

computing is often motivated by the desire to create new healthcare ap-

plications and technologies for the ageing population. People all over

the world are living longer due to recent improvements in public health,

nutrition and medicine. Ironically this is creating new problems in the

healthcare system as the percentage of elderly people in society is in-

creasing due to longer life expectancy. It is foreseen that emerging tech-

nology can solve these problems for example by allowing the elderly to

become more independent and therefore require less direct assistance by

medical professionals.

Systems have been designed that aim to prevent conditions and ac-

cidents prevalent in the elderly population before they occur. Sensors

which have gathered physiological data over a long period of time to

identify changes or unusual patterns in a user’s daily activities which

can indicate early symptoms of diseases such as alzheimer’s disease and

thus help prevent them. Automatic recognition of small changes in daily

activities is a popular area of research. Accelerometers can log vast

amounts of data over long periods of time and thus have the capability

to give user’s summaries of daily activities [31] or applications which

accumulate data from physiological sensors [32] [33] allow doctors and

care givers to give better service as they can better determine the current

health state of a patient
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Detailed contextual information of a users activities can be used to

encourage people to lead a less sedentary lifestyle and therefore become

more active and healthy. Accelerometers in mobile phones were used

by Maitland et al in [34] to increase the awareness of daily activity lev-

els. By monitoring daily activity levels they can provide regular detailed

summaries and use this information to encourage the user when appro-

priate. In [35] Consolvo et all describes a similar method where inertial

sensors are employed for automatic activity recognition so that when a

positive activity such as walking a certain distance durning the day is

achieved by the user, a feedback system displays virtual rewards on a

mobile phone screen. Andrew et all in [36] utilizes localisation data as

well as inertial data on a mobile phone to suggest contextual physical

activities. One such example is suggesting to walk to the next bus stop

when there is ample time before the next bus will arrive.

Human activity classification systems can be used to diagnose dis-

eases and disorders. This can lower healthcare related costs and speed

up the time taken to diagnose a patient. In [37] the authors create a

real-time monitoring system for cardiovascular disease using a wearable

system. They fuse the portability of Holter monitors with a start-of-the-

art Smartphone that can provide an helpful diagnosis solutions. Captur-

ing data via a Smartphone instead of a large, bulky contemporary ECG

machine allows much more data to be recorded without drastically in-

terfering with daily activities.

Recent advancements in wireless communication technology have

helped to improve non invasive wearable sensors, which can be used

in the home or at a health institution. Wearable sensors that allow

motion to be captured can be used for healthcare treatment and diag-

nosis [38][39]. Accelerometers and gyroscopes are the most frequently
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used inertial sensor used to distinguish between motor movements in

the healthcare system [40]. They can be attached to any location on the

body as well as specialised equipment to collect inertial data created by

patients or even recuperating athletes. Glaros et al [41] incorporates a

portable virtual reality interface to help optimize treatment and training

procedures during rehabilitation for athletes. It also provides them with

instant feedback on mistakes made any time during a training session.

Sporting & Leisure Applications

Sporting applications is another area where inertial sensors have found

significant use. In [42] Ermes et al constructed a wearable system that

could identify basic everyday activities as well as sporting activities such

as playing soccer, riding a bicycle and performing exercise routines such

as rowing. A Neural Network classifier was employed to distinguish

between different activities. In [26] the authors calculated the amount

of energy expended when a selection of daily activities such as walking,

running, cycling and driving are performed. Along with these daily

activities some sporting activities such as soccer, volleyball, badminton,

boxing and table tennis, were analysed .

Motion detection in the context of martial arts activities can be iden-

tified by fixing a 3D accelerometer to the torso of a subject to capture

the unique body acceleration performed. The research conducted in

[43] uses accelerometers and gyroscopes attached to the body to identify

different actions in Wing Tsun to increase immersion in video games of

martial arts. Additionally this same technology could create similar sys-

tems for martial arts instruction. In [44], the authors present an on-body

wireless sensor system for measuring snowboarding specific activities in

real-time (see Figure 6).
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Figure 6: A on-body wireless sensor system for measuring activities during
snowboarding in real-time

Accelerometers are used to calculate force impacted on the snow-

board along with an intelligent wireless network that captures and anal-

yses the posture and motion of the snowboarder.

Ghasemzadeh et al. use signal progressing algorithms to calculate the

angular rotations of a subject’s wrist during a golf swing in [45]. As in

[43] where Heinz is able to find the quality of the martial arts movements

performed Ghasemzadeh et al. is able to quantify the users expertise

and skill level of the person making the golf swing. The system can

then recommend appropriate feedback for the user. Arvind et al. use a

double pendulum system to model the golf swing and use accelerometers

placed along the body and golf club in [46]. This setup allows them to

determine how closely the movements of the user follow a predetermined

motion and give an appropriate score.

Commercial systems which employ inertial sensors for sporting appli-

cations include Nike+, which monitors an athlete’s sporting activities. A

small transmitter device is either embedded or placed on the shoe, which

can log all running and jogging exercises. This data can be aggregated

over time to allow the user to observe the change in their performance
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over time. This sensor can be integrated with additional devices such a

smartphone that allows them to engage in challenges with other runners

and walkers. The F50 adiZero mi-Coach was first released in 2011 and

it features mi-Coach match analysis technology which provides feedback

on user performance. Mi-Coach is a three part system including a stride

sensor, a heart monitor and a receiver. It tracks a subject’s max speed,

number of sprints, distance travelled and number of sprints. This data

can be aggregated over time to allow the user to track his/her fitness

training performance.

Industrial Applications

In an industrial setting, automatic human activity classification sys-

tems can potentially help workers in their responsibilities, reduce acci-

dents, improve productivity and increase overall safety in the workplace.

Xybernaut has been creating wearable monitoring systems since 1990

that support workers in industry by allowing them to conveniently ac-

cess relevant information and to collect suitable data. In [47] Stanford

explains that the shipping, airline and telecommunications industries

were the first organisations to incorporate intricate wearable technology

successfully into their businesses.

The authors in [48] show an example of on body sensors being used

in emergency response units, hospitals, aircraft maintenance and motor

manufacturing assembly lines. Data collected by the wearable sensors

allow activity classification software to provide hands free interactions to

data which speeds up the training of new workers and creates a summary

of worker activities. The authors in [49] combine information from body

worn microphones and accelerometers to recognise activities that are
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Figure 7: XBee accelerometer sensor box for integrating dance motion with
interactive visualizations (with a quarter shown for size comparison)[4].

characterized by a hand motion and an accompanying sound. They

describe a method for the continuous recognition of activities such as

sawing, hammering, drilling and grinding.

Entertainment and Games

Increasingly, entertainment systems like home gaming consoles and smart-

phones are incorporating player activity classification technology to al-

low the creation of a wide range of customised applications for enter-

tainment gaming. Accelerometers have been employed to distinguish

between different activities in various entertainment contexts. One such

area is the performing arts where sensors have been secured to dancers to

enhance audience interaction. In [4] the authors investigate lightweight

methods for integrating dance motion with interactive visualizations and

enhancing audience interaction. The sensors allow dancers to add an ex-

tra dimension to their performance with interactive multimedia content

that correlates with their movements Their proposed lightweight system

can be seen in Figure 7.

The authors in [50] introduce a system for augmented reality-based

evaluations of Salsa dancer performances. Their system enables an en-

hanced dance visualisation experience, through the augmentation of the

original media with the results of their automatic analyses by fusing
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data from wireless inertial measurement units and audio sensors.

Visualising dancer’s motions is a popular research area as seen in

[51][52][53]. Inertial sensors are used in correlation with advanced ma-

chine learning technology to recognise different body movements. The

data captured by the sensors is logged and then once the performance

is finished this logged data is classified which in turn allows the dancers

movements to be visualised.

The gaming industry has pushed the introduction of inertial sensors

into their products for some time. The hugely successful Nintendo Wii

which has sold more than 100 million units has an accelerometer in its

controller which allows gesture recognition which is the main method of

interacting with the system. Zhang et al. in [54] introduce a system to

control a computer game using a wearable motion sensor. Similarly in

[43] the author’s employ body worn accelerometers to detect movements

which control an avatar in the game.

Other Application Areas

Inertial sensors have been used in other fields for automatic activity

classification. In [55] the authors employ wearable accelerometers to

recognise soldier activities. These sensors can record the list of activi-

ties performed by a soldier during a mission or training exercise which

then can be used to automatically generate field or training reports. Ad-

ditional this technology can automatically supply vital information to

military command to aid timely strategy decisions. Sala et al explains in

[56] that activity recognition with inertial sensors can be used to target

mobile advertising.
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2.5 Sensor Fusion

The vestibular system in the inner ear of biological creatures supplies

inertial information which is required for movement, body position and

orientation. This system allows humans to achieve efficient head sta-

bilisation and perform visual tasks. The knowledge acquired by the

vestibular system is required to perform eye movements such as track-

ing and gaze holding [57]. It has been established that human vision and

the vestibular system fuse neurological signals at a very early processing

stage [58]. The inertial information increases the accuracy of the vision

system and the visual cues help spatial orientation. This approach of us-

ing combining complementary sensor signals to aid a system can be used

in computer science. There are many advantages to sensor fusion and

in this thesis, fusion of multiple sensor streams is used, in one example

the fusion of accelerometers, ECG and respiration sensors are proposed

to increase the overall classification accuracy of a system compared to a

solitary sensor stream.

Inertial sensors have been employed for navigation systems as well

as guidance of defence systems. Orientation, speed and altitude are cal-

culated using accurate accelerometer and gyroscope sensors whose data

is fused with localisation technology such as the Global Positioning Sys-

tem (GPS) as well as data from radar stations. Each of these sensors is

capable of creating vasts amounts of data so therefore intelligent algo-

rithms are required that can extract and combine the pertinent pieces

of information. All sensors have advantages and disadvantages and no

one sensor is a 100% accurate at measuring a physical quantity.

Sensor fusion is the process of fusing the sensory information from

two or more noisy sensors to acquire useful information, where data
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captured is unique. Sensor fusion has many applications such as auto-

matic vehicle guidance, automatic target recognition in missile guidance,

combat surveillance and automated threat detection systems, such as

identification friend-foe-neutral (IFFN) systems [59]. Non military ap-

plications include movement of materials in manufacturing processes,

robotics [60], automatic vehicle guidance such as robotic vacuum clean-

ers and also within healthcare devices.

The techniques used to combine the data is drawn from areas such as

digital signal processing, statistical evaluation and artificial intelligence

[61] [62]. In 1985 the Joint Directors of Laboratories (JDL) created

the Data Fusion Group which published a model which separated the

different processes associated with data fusion into 6 levels [63]. This

model is still in use today and provides researchers important guidelines

for data fusion. Other widely used approaches to fuse sensor data are

Bayesian Fusion [64] and Kalman Filtering [65]. These methods can be

employed to fuse data from various indirect and noisy sensors.

Sensor fusion allows the advantages of one sensor to overcome the

disadvantages of another. One example of this is how magnetometers

are utilized to reduce integration drift that occurs in gyroscopes. Iron

in magnetic equipment interferes with the local magnetic fields and this

affects the orientation measurement. This drift problem can be rectified

by examining the errors in the gyroscope drift as it will have a different

pattern than found in local magnetic field.

There are two approaches to fusion; early and late. The difference

between this two approaches is simply when in the classification pipeline

results are fused together. Early fusion merges the features of each

modality before any machine learning is conducted whereas late fusion

merges the features of each modality after some machine learning has
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been conducted. These two approaches are described in more detail in

section 4.4.

2.6 Machine Learning

Data mining is a methodology which can infer new knowledge by extract-

ing information from a data set and transform it into an understandable

structure for further use. These structures can lead to potentially useful

new information that is not always apparent without intelligent data

analysis. Machine learning is a technology which concerns the creation

and study of systems that can learn from data and is therefore a branch

of data mining. It requires computer programs which are trained to

locate patterns in data. The following sections describe the main prin-

ciples of machine learning. First, Bayes theorem is introduced, which is

the fundamental equation for statistical learning. This is then followed

by an introduction to classification and regression before presenting the

main differences between generative and discriminative models. Finally

supervised and unsupervised approaches in machine learning are de-

scribed.

2.6.1 Bayes Theorem

Bayes theorem is widely used to find probabilities in machine learning

and is fundamental to Bayesian Networks. In mathematical terms, Bayes

theorem states the relationship of the probabilities of A and B, P (A)

and P (B), and the conditional probabilities of A given B P (A|B) and

B given A P (B|A) [66]. In its simplest form, it is:

P (A|B) =
P (B|A)P (A)

P (B)
(9)
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2.6.2 Regression & Classification

Regression and classification are two machine learning methods to con-

struct prediction models from a dataset. The goal of classification is

to determine a route from the feature space, F , to a label space, L.

For instance, where the feature space is F ∈ Rd and the label space

is L = {0, 1}, the function f : Rd → L can be used to classify each

instance in F to its most likely discrete value in L. It is this mapping

function, f , which is the classifier and each classifier seeks to reduce the

generalisation error. The generalization error of a model is a function

that calculates how well a learning machine generalizes to unseen data.

The aim of regression is to determine a route from the input space, I,

to the output space, O. This f , is the mapping function. For instance,

we might have, I ∈ Rd and O = R, then regression will use the map-

ping function f : Rd → R, to determine which indiscrete output a given

instance belongs to. The main difference between regression and classi-

fication is that in regression the output variable takes continuous values

whereas in classification the output variable takes class labels. Classifi-

cation has dependent variables that are categorical and unordered. Re-

gression has dependent variables that are continuous values or ordered

whole values.

2.6.3 Generative & Discriminative Models

There are two different types of models traditionally used in machine

learning; generative and discriminative. A generative model calculates

the joint probability distribution p(x, y) and a discriminative model (also

called conditional models) calculates the conditional probability distri-

bution p(x|y), which is the probability of y given x[66].
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Discriminative models do not allow the generation of samples from

the joint distribution of x and y but since classification and regression

do not require it discriminative models can yield superior performance

[67].

Generative models grant a degree of ambiguity, uncertainty and ab-

straction. They perform well while modelling time-series data as they

tend to be efficient in manipulating large mounts of data [68].

Prominent generative methods include Hidden Markov Models, Naive

Bayes, Gaussian mixture models, Latent Dirichlet allocation and Bayesian

Networks. Popular discriminative methods include Support Vector Ma-

chines, K-Nearest Neighbour, Neural Networks and Linear regression.

While these methods have differences, they have the common goal of

constructing the perfect decision hypothesis that reduces classification

errors to zero. Both approaches use feature representation to estimate

the class label [69].

The judgement criteria for choosing either a generative or discrimi-

native supervised approach has been a constant source of discussion in

the machine learning community, culminating in an array of research on

the area being published in the literature.

For instance Ng et al. puts forward in [70] that discriminative models

have issues with over-fitting when the amount of training data is low so

therefore a generative mode is more applicable Yeom et al. concurs in

[71] that generative models are most suitable when the data contains a

large amount of ambiguity and there is not enough data to sufficiently

train against. The authors in [70] put forward that discriminative models

lack the complexity of generative models. This can be an obstacle for

users since they might need manual calibrate using kernel functions,

regularization and penalty methods and that the connection between
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parameters are not well defined so they act more like black boxes. In

this work both approaches are investigated to ascertain which is more

appropriate for autonomic activity classification.

2.6.4 Supervised & Unsupervised learning

There are two fundamental approaches used in Machine Learning; su-

pervised learning and unsupervised learning.

Supervised learning is the machine learning method of creating a

function from labelled training data. The training data consist of a set

of annotated training examples. In supervised learning, each example

consists of two pieces of data. The first is an input object which is

normally a vector and the second is its associated label often called the

supervisory signal

A supervised learning algorithm evaluates the training data and con-

structs a function, which can be used for mapping new examples. The

goal is to allow the algorithm to correctly identify the appropriate class

labels to unseen examples. This requires the learning algorithm to not

over-fit when constructing models from the training data and to per-

mit unseen situations to be correctly classified. This process occurs in

human and animal psychology and is often termed concept learning.

Unsupervised learning is the machine learning method of trying to

locate hidden structure in unlabelled training data Since the examples

in-putted into the classifier are unlabelled, there is no error or reward

signal to evaluate the constructed classifier. The aim of unsupervised

learning systems is to locate obscure structures from unlabelled data.

In the supervised machine learning approach, there are three fun-

damental areas. The first is binary or binomial classifiers where the

elements of a given set are split into two groups, on the basis that the
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examples of each class have some similar traits. The second supervised

learning approach is known as multiclass or multinomial classification

which aims to classify examples into two or more classes. The third

method is regression which has been discussed above. Some commonly

used terminology in machine learning is introduced in the next section.

2.6.5 Concepts, Attributes and Instances

In machine learning, an input is the sum of three parts; concepts (clas-

sifier), instances (examples) and attributes (features). The aim of the

learning process is to produce a distinct characterization of what the

data represents in a form that the classifier can use to locate analogous

traits. This work employs supervised learning techniques to construct

models from a training dataset that can receive unknown examples that

can be classified accurately.

The data the classifier is supplied with is refereed to as an instance.

Each instance is a unique example of the concept to be analysed. Each

training data set comprises of a set of these instances. The traits of each

instance are judged by the attribute values which are contained in every

instance. These definitive properties are a measurement of some desired

trait that are used to distinguish between classes.

2.6.6 Classifiers

A classifier refers to a mathematical function, that maps input data to

a category. In this section, we discuss five popular families of classifiers

that were employed in this thesis. The classifiers choosen are those most

commonly used in the state of the art and collectively represent a broad

range of different approaches.
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Support Vector Machine (SVM)

Support vector machines have secure theoretical foundations, strong

regularization properties and excellent empirical successes. They have

been applied to tasks such as image classification [72], speech process-

ing [73], protein classification [74] and human activity classification [75].

Support Vector machines can be defined as systems which use hypothesis

space of a linear functions in a high dimensional feature space which are

trained with a learning algorithm from optimization theory that imple-

ments a learning bias derived from statistical learning theory [76]. SVM

performs well on data sets that have a large amount of attributes, even

data sets which contain very few cases on which to train the model. In

fact there is no upper limit on the number of attributes a data set can

contain and hardware poses the only constraints. The SMO algorithm

is used to efficiently solve the optimization problems which occur during

the training of SVMs. SVMs are often described as a “black box” classi-

fier as the user does not need to choose many parameters. In this thesis,

John C. Platt’s Sequential Minimal Optimization (SMO) optimization

algorithm was used for the training of the SVM classifier.

K Nearest Neighbour (K-NN)

K-NN algorithms are used for classifying data based on closest train-

ing examples in the feature space. K-NN is a class of instance-based

learning techniques where the function is only approximated locally and

calculations are suspended until classification. The K-NN algorithm

finds a group of k objects in the training set that are nearest to the in-

putted object, and judges the allocation of a label on the predominance
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of a class in this neighbourhood. For this method there are three basic

components: a set of labelled attributes, a distance measure to com-

pute distance between objects, and the value of k, the number of nearest

neighbours. To classify unknown data, the distance of this data to the

known data is computed, its k-nearest neighbours are determined, and

the class labels of these neighbours are then used to identify the class la-

bel of the unknown object. K-NN algorithms can handle missing values,

are robust to outlying data points, and have a good history as predictors.

They tend to only handle numeric variables, are sensitive to monotonic

transformations of features, are not immune to insignificant inputs, and

provide models that are difficult to interpret. The K-NN algorithm sets

equal weighting to all inputs therefore it is sensitive to noise and re-

dundant features. It has been used in many applications in the field of

data mining, statistical pattern recognition, image processing and many

others. Some successful applications include recognition of handwriting

[77], text classification [78] satellite imagery analysis [79] and ECG pat-

tern analysis [80]. The IBk classifier is a simple instance-based learner

that uses the k nearest neighbour (k-NN) algorithm for training and was

used in this work.

Bayesian Network

One very important probability-band classifier is the naive Bayes

method which is also known as idiot’s Bayes, simple Bayes, or indepen-

dence Bayes. It assumes that the presence or absence of a particular

feature of a class is unrelated to the presence or absence of any other

feature, given the class variable. This method is significant for many

reasons. It does not need any complicated iterative parameter estima-
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tion schemes therefore it is simple to construct. This means it may be

applicable to large datasets. One advantage of the naive Bayes classifier

is that to calculate the parameters (means and variances of the train-

ing data) required for classification, it only requires a small amount of

training data. Only the variances of the variables for each class need

to be determined because independent variables are assumed, and not

the whole covariance matrix. This classifier has been used in a large

range of applications such as medical diagnosis [81], data mining [82]

and musical style recognition [83] and was employed in this thesis.

Classification tree

Classification trees create a model that predicts the value of a target

variable based on several input features. In these tree structures, leaves

represent class labels and branches represent conduits that allow features

to lead to class labels. A logistic model tree, which is a classification

tree with logistic regression functions at the leaves was employed for

this work. This method has been shown to give better results than

standard decision trees and simpler logistic methods[84]. A stage-wise

fitting process is used that selects relevant attributes in the data. This

incrementally refines the leaves constructed at higher levels in the tree.

The logistical model tree has been used in applications such as ECG

arrhythmia studies [85], textual entailment classification [86] and real-

time human movement classification using accelerometers [24] and for

this reason was choosen in this work.

Artificial Neural Network
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Biological neural networks have inspired mathematical models called

artificial neural networks (ANNs). A multilayer perceptron (MLP) [87]

is a feedforward ANN that consists of multiple layers of nodes that each

have the same destination, with each layer completely connected to the

adjacent layers. Apart from the input and output nodes each node is a

neuron, that is to say a processing element with a nonlinear activation

function. MLP uses backpropagation for training the network which

allows the network to converge on a satisfactory feature weighting and

flow. MLP is an adaptation of the standard linear perceptron and can

analyse data that is not linearly separable. The MLP has been used

in a wide array of classification problems such as skin segmentation

[88], classification of multispectral satellite images [89] and recognizing

human motion with multiple acceleration sensors [90]. For these reasons

the MLP was choosen as one of the classifers employed in this work.

Classification Evaluation

F-measure gives a measure of a classifiers accuracy. It uses both

precision p and recall r of a test to calculate the score. Precision is

calculated as the number of correct results divided by the number of total

results while recall is the number of correct results divided by the number

of results that should have been returned positive. These metrics are

often described in terms of the metrics true positive (Tp), false positive

(Fp) and false negative (Fn). The F-measure score is a harmonic mean

of precision and recall, where an F-measure score reaches its best value

at 1 and worst score at 0. In this work all results are presented using

the F-measure algorithm unless otherwise stated.
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F1 = 2.
Precision× Recall

Precision + Recall
(10)

Precision =
Tp

(Tp + Fp)

Recall =
Tp

(Tp + Fn)
(11)

2.7 Heuristic Approach to Optimisation

A heuristic approach refers to a experience-based method used for prob-

lem solving, learning, and discovery where an exhaustive search is im-

practical. The solution acquired by a heuristic approach is not guar-

anteed to be optimal but typically used to accelerate the procedure of

locating a adequate solution. Humans use heuristic methods such as

rule of thumb, an educated guess, intuition, discrimination or common

sense to hasten decision making. In the context of a heuristic algorithm,

a heuristic will be a process of performing a slight alteration, or a se-

quence of alterations, of a given or partial solution in order to achieve

a contrasting solution or partial solution. A heuristic algorithm iter-

atively applies one or more heuristics in conformance with a specified

design strategy.

2.7.1 Genetic Algorithm

The genetic algorithm (GA) is a search heuristic that mimics the mech-

anism of natural selection. It is frequently used to achieve effective

solutions to search and optimisation problems [91]. In an genetic algo-

rithm a population of candidate solutions to an optimisation problem

are iteratively altered in an evolutionary manner aiming for improved

45



solutions. Each of these solutions has a known set of parameters called

chromosomes which are mutated throughout the process. Occasionally,

the chromosomes may be weighted in areas where optimal solutions are

expected to be found. In this thesis, a genetic algorithm is used to se-

lect the optimal parameters which create the most accurate classification

models.

The initial population set is generated randomly and the evolution

of this population is an iterative process. The population in each sub-

sequent population is called a generation. All candidate solutions have

their fitness evaluated upon creation. Fitness is defined by the objective

function in the optimization process being solved. In this work the fit-

ness of the candidate solution is the classification accuracy of the models

created.

During each subsequent generation, a selected proportion of the pre-

vious generation is selected to breed the next generation. Candidate

solutions are created through a fitness-based procedure where the fitter

the candidate solution the more probable it is to be selected for a genetic

operation. A genetic operator is an operation used in genetic algorithms

to create candidate solutions. One example is mutation which is a ge-

netic operator used to preserve genetic diversity from one generation to

the next and behaves like its biological counterpart. Mutation trans-

forms one or more chromosomes from one state to another based on a

mutation probability.

Crossover is another genetic operator that fuses two candidate solu-

tions called parents together to create a new one. Fitness proportionate

selection also know as roulette wheel selection is a genetic operator used

for identifying potentially effective candidate solutions for recombina-

tion. In fitness proportionate selection the probability of selecting an
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individual candidate solution as a parent is based on its fitness. The

higher the fitness the more likely it will be selected. If fi is the fitness

of individual i in the population, its probability of being selected is

pi =
fi∑N
j=1 fj

(12)

where N is the number of individuals in the population. In contrast to

simpler selection algorithms such as truncation selection there is a prob-

ability that some less fit candidate solutions may withstand the selection

process. This can be advantageous as though a candidate solution may

be unfit, it could include a chromosome that could prove effective after

the recombination process. Additionally the probability that a candi-

date solution undergoes either crossover or mutation can be set prior to

the commencement of the genetic algorithm.

One popular genetic operator due to its success[92] is elitism. This

is where a number of the most fit candidate solutions are kept unaltered

and guaranteed a place in the next generation. They are able to be

selected as parents and allow mutations created from them in addition

to their original form being brought into the next generation. All three

of these genetic operators, crossover, mutation and elitism are utilized

in this work.

There are three commonly used criteria employed to judge when the

genetic algorithm process should stop. These are achieving a required

solution, reaching a candidate solution count limit and reaching a con-

vergence break limit. Achieving a required solution occurs when the

user has selected a specified target solution for the genetic algorithm for

example creating a classification model of 100%. A candidate solution

count limit is where the user has set a maximum number of solutions
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that can be calculated and once this value is reached the genetic algo-

rithm stops. Usually this is calculated as a percentage of the maximum

number candidate solutions that can occur. Finally the convergence

limit is where the best performing candidate solution has ceased devel-

oping for a set number of candidate solutions. This again is usually

calculated as a percentage of the maximum number candidate solutions

that can be created. The genetic algorithm uses stochastic processes

but the result is non-random. It can be used for a number of different

multidimensional optimization problems in which the chromosomes are

known and are non-infinite.

2.7.2 Applications

Many practical classification task require learning of an appropriate clas-

sifier function that assigns a given input usually a series of attributes to

one of a finite set of classes. The choice of features, attributes, feature

size and classifier type all have a direct impact on the overall accuracy

of a model. This presents a parameter selection problem in automated

design of activity classification. The feature subset parameter selection

problem refers to the task of recognizing and determining a efficient set

of parameters to be used to represent patterns from a larger set which

contains often redundant, possibly irrelevant parameters with different

associated measurement costs and or risks.

Huang et al. in [93] uses a GA gene-based feature selection and pa-

rameters optimization for support vector machines. The SVM, a popular

technique for pattern classification, had its parameters and feature sub-

set optimized without degrading classification accuracy. Creating clas-

sification models for large datasets is a time consuming task as finding

the most productive parameters is computationally expensive. Punch
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et al. in [94] employs a GA in conjunction with a K-nearest neighbour

algorithm to optimize classification by searching for an optimal feature

weighting. This basically warps the feature space to coalesce individuals

within groups and to isolate groups from each another. The GA can also

be used to implement efficient methods of fusing classification models

for one overall prediction goal. In [95] the authors use a genetic algo-

rithm to design a multiple-classifier system. They tested their methods

on four real data sets. They found that GA design was less prone to

overfitting compared to classifiers using: all features; the best feature

subset found by the sequential backward selection method; and the best

feature subset found by a GA (individual classifier).

2.8 Conclusion

This chapter presented the technical background necessary for the ex-

periments designed to investigate automatic activity classification. A

comprehensive state of the art review of all relevant areas provided the

basis for certain key decisions taken. The Butterworth filter is chosen

as the filter of choice. It was decided to investigate both Fourier and

Wavelet Transforms for feature extraction. A sensor fusion approach

is suggested in this work. A variety of classification models including

SVMs, Decision Trees, ANNs, Bayesian Networks and k-NNs were se-

lected for evaluation. Finally a genetic algorithm was investigated to

optimise the selection of parameters that would yield the highest classi-

fication accuracy.
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3 Unimodal Human Action Recognition

In this chapter novel approaches are examined to automatically recognise

human actions using a single sensor worn by a human subject. Firstly,

a method is proposed that allows for the classification of a subject’s

ability to perform a single desired action. Then a number of different

techniques are investigated to ascertain each techniques ability to ac-

curately distinguish between certain types of activities. Algorithms are

proposed that can be employed on a wide range of human activity clas-

sification problems. The validity of the approaches is demonstrated by

applying them to real world noisy data collected as part of this thesis.

3.1 Introduction

This chapter gives an introduction to inertial sensors for identifying

specific activities before giving an overview of the current research chal-

lenges faced in this field. Following this a novel method for automatically

classifying human activities with a signal accelerometer is given.

One of the fundamental goals of wearable computing is to allow for

the creation of personal software that can adapt and respond to the

current context of the user appropriately. “Context” in this work is

defined as all types of information about a user or the objects that are

surrounding him or her. Context aware computing takes into account

a user’s state and surroundings, and the mobile computer modifies its

behaviour based on this information [96].

The capacity of a system to be able to quantify a subject’s ability

to perform an activity has many applications in sport and health. For

the case of sporting applications the authors of [97] present a golf swing

training system, which incorporates wearable motion sensors to obtain
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inertial information and provide feedback on the quality of movements.

Similarly in [44] Spelmezan et al. present a wireless prototype system

used to detect some common mistakes during snowboarding and to pro-

vide students with immediate feedback on how to correct their mistakes.

In the field of healthcare Jovanov et al. designed a wireless system that

is composed of intelligent motion sensors for computer assisted physical

rehabilitation [98]. Glaros et al. present a wearable intelligent system

for monitoring health condition and rehabilitation of running athletes

[41].

The first work completed in activity recognition with wearable sen-

sors was in 1993 when breakthroughs in hardware technology allowed

sensors to constructed that were light enough for portable automated

systems to be developed. These systems could be fastened to a human

subject for a long duration of time[99]. These initial research prototypes

were somewhat cumbersome and interfered with a subject’s movement

and comfort more than desired. However it was predicted that these

systems would “vanish into the background” [5]. It was envisaged by

Weiser in [5] that the potential of allowing a computer to sense human

actions would allow the creation of genuinely personal applications.

Early work focused on the established text and keyboard based ap-

plications before exploring advanced approaches of capture and commu-

nication. Some examples of these new approaches were the placement

of cameras on subjects to capture contextual information from visual

data [100] [101], or placing microphones [102] to extract context from

environmental audio. Other contextual data would be incorporated with

existing audio or visual data such as the subjects current location, the

topic of a conversation and the identity of who the subject is communi-

cating with. This information can be used to provide the subject with
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pertinent real-time information about their current activity or to record

this information for future analysis [103].

Calculating the physical activity of a subject using technology that

works for subjects of all shapes and sizes has been a consistent aim for

researchers across numerous scientific disciplines. Accelerometers have

primarily been employed for this ambition for several decades as they

can be attached easily and securely to various locations on the body

[104][105].

The goal of these early systems was to calculate global measures such

as the total energy expenditure or the oxygen requirements of the sub-

ject while he or she was completing an array of contrasting activities.

Portable systems that incorporated accelerometers that could distin-

guish particular physical activities began to emerge at the turn of the

last decade. The growth in the prevalence of these systems was facil-

itated by advances in hardware electronics and new machine learning

approaches as well as the expected usefulness for the new paradigm of

context-aware computing [106] [107]. Unfortunately these early devices

contained prohibitively costly hardware and difficult to use user inter-

faces [108].

Current research in automatic human activity classification from

wearable sensors covers many areas such as activity recognition in daily

living for healthcare [109], automatic recognition of activities in unla-

belled data [110], semi-automatic or unsupervised learning of activities

[111] [112] or combining various sensor modalities to increase recognition

accuracy [113].

There have been various techniques applied to raw sensor data in

order to recognise human activities. Due to the electronic nature of

“on body” sensors, it is common for the captured data to undergo a
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pre processing step to eliminate noise. The detection and removal of

high frequency noise in acceleration data is an important step as with-

out it feature extraction and classification become more difficult. Some

successful methods to remove high frequency noise are low-pass median

[24], Laplacian [114], and Gaussian filters [115].

The capacity of a activity recognition system to remove unneces-

sary information from raw data while preserving pertinent information

is critical. This process has a direct impact to the efficiency, compu-

tational time and success of activity recognition systems. Sensors can

capture immense volumes of data, which if unregulated can overwhelm

the whole activity recognition system. Consequently it is vital to locate

abstractions in the raw data via relevant features. The feature vector al-

lows the detection of independent actions using dimensionality reduction

[116] [117] and these vectors are then employed for classification.

One of the most common approaches used in order to extract features

is the Fourier Transform, which has the ability to discriminate between

useful and redundant information by representing the data in frequency

clusters and thus reducing the amount of dimensions of the sensor data

[118]. Discrete-Fourier Transforms are an application specific version of

Fourier Transform that take discrete data as an input [119]. Since it

deals with a finite amount of data, it can be implemented in computers

by numerical algorithms or even dedicated hardware. These implemen-

tations usually employ efficient fast Fourier transform (FFT) algorithm.

A more rudimentary approach to extract discriminative features from

sensor data is to use time-domain features. These can be signal statis-

tics and basic waveform attributes, which are directly calculated from

a raw data segment. In [120] Ward et al. attach a triaxial accelerom-

eter and a microphone to a subject to recognise human actions. They
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extract the mean and variance and compute the number of peaks for

each accelerometer axis as the features to represent each action to be

recognised. Their aim was to recognise construction activities such as

hammering, drilling and sawing and these time domain features allowed

them to accomplish this to a high degree of accuracy. Calculating the

variance of raw accelerometer signals has also been successfully used to

recognise human actions in [107] [121] [122] [49] [116] and as such is one

of the more popular time-domain features.

Sensors have been placed on various locations on the human body in

order to record different physiological data. The placement of the sensor

is highly dependent on the actions that are to be recognised. In [120] the

author placed an accelerometer on the subject’s wrist when attempting

to recognise human construction actions as each tool required a unique

wrist motion. In [123] the authors successfully employ an accelerome-

ter placed on the upper back to recognise dynamic and static human

activities. Additionally this placement generally does not interfere with

movement and is unlikely to get damaged during sporting contact as it

is illegal in the vast majority of contact sports to exert a force on an

opponent’s back that would damage the sensor.

3.1.1 Discussion

This section deals with the specific case where only one sensor is attached

to a subject. Using a single sensor reduces interference with a subject’s

normal body movements, reduces the chance of injury as the less sensors

attached to a subject the less chance a sensor could cause damage and

finally lowers the cost of the system. Embedding sensors into normal

clothes is also advantageous as it requires subjects just to simply get

dressed before important physiological data can be captured and studied.
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The sensor and its communication platform can be coated in a non

conductive polymer that makes the clothes machine washable. This

makes the system reusable thus reducing cost further.

3.2 Evaluating a Subjects Performance

3.2.1 Introduction

Wearable sensors have an important role to play in future healthcare

delivery and management by sensing the body and interpreting physi-

ological data[124]. In the experiment outlined in this section the aim

is to develop an interactive system to help patients perform respira-

tory exercises, and particularly to maintain the interest of children dur-

ing exercise sessions. This comprises a wearable system which classifies

breathing technique into separate grades and provides visual feedback

to the user through a graphical user interface. An additional advantage

of this system is that exercise sessions can be repeated using the same

reference signal, which means that medical staff need not be present

for the exercise, thereby improving efficiency in the hospital. Typically

these types of exercises require some degree of expert supervision and

monitoring. In this section a classification framework is created that

classifies a subject’s ability to perform a desired action.

3.2.2 Motivation

The average human takes approximately 7×109 breaths in their lifetime

and each one is critical to maintaining homeostasis. Breathing is essen-

tial for our survival and yet it is generally something people perform

without conscious thought. Breathing behaviour can have a profound

impact on a person’s health[125]. Furthermore, despite the fact that a
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person’s breathing technique can affect overall health, we receive very

little information this in everyday life. For example, by breathing in a

slow, steady and deep manner, a person’s heartbeat slows and relaxes,

blood pressure normalises, stress hormones drop and muscles loosen.

These techniques are availed of by athletes to improve performance and

reduce stress before and during competitions [126].

There are many diseases that affect the respiratory system in hu-

mans. One such disease is asthma, an inflammation of the lungs which

causes narrowing of the airways. Asthma affects an estimated 300 mil-

lion people worldwide. Another is Cystic Fibrosis(CF), a life-threatening

disease, which has a high occurrence ratio in Ireland, with one in nine-

teen people being carriers of the CF gene [127]. Whilst this hereditary

disorder affects the entire body, breathing complications are the most

serious symptom and frequent lung infections typically occur. One of

the symptoms of CF is the accumulation of large amounts of phlegm the

lungs. A widely accepted technique to provide relief in such cases is the

loosening and removal of phlegm through various breathing practices.

The Active Cycle of breathing is one such popular technique that uses

breathing exercises to remove phlegm from the lungs. Clearing secre-

tions from peripheral airways is the most important defence mechanism

of the respiratory system. The technique involves 4-5 deep breaths cou-

pled with holding periods in-between to allow air to be transported be-

hind obstructed areas in the lungs. These exercises need to be performed

regularly six to seven times a day [128]. Training the lung muscles can

provide significant benefits for patients with respiratory diseases. Reg-

ular short shallow breaths can lead to frailties in chest muscle, reduce

oxygen circulation, induce shortness of breath and cause poor lung ca-

pacity. Proper breathing exercises can help to resolve the severity of
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these symptoms, increase muscle strength, and improve posture and

mental ability [129]. Therefore a system was created to encourage pa-

tients to carry out their prescribed breathing exercises. The system was

designed for use in both a clinical setting and also for home use where

the patient can be remotely monitored.

3.2.3 Feature Extraction System

One key element of the system was that it had to be low-cost and com-

patible with existing computer systems found in hospitals or homes.

Sensors embedded in clothing must be comfortable to wear. Therefore,

this system consists of a textile sensor which tracks breathing patterns

via an embedded arduino microcontroller that is comfortable to wear.

The microcontroller was used to sample and transfer the user’s breathing

signal to a computer for signal processing and analysis. The Digi Xbee

wireless radio frequency module was used to sample data from the sensor.

This allowed data to be transferred to a PC while granting unobtrusive

monitoring of the lung muscle. The user interacts with a Graphical User

Interface (GUI), which gives real-time feedback of the breathing tech-

nique and facilitates continuous assessment of the patient’s performance.

This system can be seen in Figure 8.

The textile-based sensor was developed using a piezoresisistive mate-

rial specifically created to detect body movements [130]. As the material

is stretched, its resistance increases. This effect can be used to detect

joint movement and also to measure breathing rates. Breathing rate may

be measured by monitoring the expansion and contraction of the ribcage.

Placement of the sensors at the chest and abdomen allows patterns of

breathing to be monitored, e.g. shallow breathing versus deep abdomi-

nal breathing. The software allows the patient and doctor/therapist to
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Figure 8: Wireless Breathing Monitoring T-Shirt

perform a breathing exercise for a specified length of time which the pa-

tient must attempt to emulate. This respiratory signal is recorded as a

reference breathing signal. Once the reference signal has been recorded

it is then used to instruct the user for future exercises. Instruction is

given to the user by means of an avatar, whose mouth expands and con-

tracts in time with the breathing sequence. The user’s breathing signal

is compared in real-time to the reference signal and immediate feedback

is given to the user.

3.2.4 Filtering

Piezoresisistive sensors can capture an abundance of data and generally

the data rate is limited by the microprocessor. However in order to

procure a clean signal which gives an accurate representation of the

activity being performed, some signal pre-processing steps are required.

In this work filtering is employed to remove the noise emanating from

the wireless sensor. Filtering high frequency noise from the breathing
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Figure 9: Unfiltered Breathing Signal

Figure 10: Filtered Breathing Signal
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Figure 11: Reference Signal Recording with Real-time graphing.

sensor signal is a vital step as the subject most emulate the reference

signal and a noisy signal would be difficult to follow. In this work a

digital filter is employed to achieve this1.

The signal is filtered with a 3rd order digital low-pass Butterworth

filter with a cut off at 1Hz. This filter was found to adequately reduce

the noise emanating from the breathing sensor. The raw data signal

as shown in Figure 9 has been filtered and is displayed in Figure 10.

Filtering the data ensures a smooth transition of the avatar’s feedback

allowing the user to emulate it more easily. Figure 11 shows the real-

time graphing on the patients respiration signal in the lower right hand

corner. Figure 12 shows an avatar with two different coloured mouths.

The cyan mouth represents the patients current respiration signal while

the outer darker mouth represents the respiration that the subject wishes

to emulate. Each mouth expand and contract based on the respiration

signals inputted.

1http://www-users.cs.york.ac.uk/ fisher/mkfilter/
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Figure 12: Graphical User interface - User attempting to emulate reference
signal

3.2.5 Grade Classification

When the patient has completed the exercise, they are presented with a

number of stars depending on their performance. In order to calculate

the number of stars a user receives, a measurement of how similar the

signals were would need to be determined. One such way to ascertain

this was to calculate the correlation coefficient. Equation 13 was used

to correlate the reference signal and the emulated signal.

R =

∑
xiyi −

∑
xi

∑
yi

N√
(
∑
x2i −

(
∑
xi)2

N
)(
∑
y2i −

(
∑
yi)2

N
)

(13)

Where R is the normalised cross correlation coefficient, x is the reference

signal, y is the emulated signal and N is the number of samples. R values

are most sensitive to similarities and discrepancies in shape. It is also very

sensitive to timing and can be used to find correlations between signals with

inherent delay. Figure 13 shows three different breathing signals recorded by
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Figure 13: Comparisons of two signal classifications

the system. The solid (light blue) line is the reference signal which consisted

of seven slow deep breaths over the course of 90 seconds. Two emulated

signals were compared to it. The dashed (red) line represents a trial where

the user emulated the avatars breathing very accurately. This performance

was given a five star grading. The dotted (dark blue) line represents a trial

where the user performed short shallow breaths that did not synchronise well

with the avatar’s breathing. The amplitude change of this signal is smaller

than the five star signal as the sensor is not stretched as much during shallow

breathing. This performance was given a three star grading. The grading

system was designed to be supportive so that it would be encouraging and

provide positive feedback to the user for carrying out the exercise in the first

instance.

From Figure 13 it can be seen that there is a slight delay between the

reference signal and the user’s performance of the task. Therefore the pro-

gram first needed to calculate this time delay before grading the user. The

correlation function was calculated for the reference and emulated signals.

The system implements a sliding window to identify the time lag between the

signals by finding the index of the maximum correlation coefficient. For the

reference signal and five star trial, the maximum correlation coefficient was
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Figure 14: Plot of Reference and 5 Star Signal once time delay has been
removed using correlation coefficient

found to be 0.9242 at a time lag of 24 samples (3.08 sec). There were two

sources to this delay. Firstly there is a delay between the user seeing and

performing the breathing action. Secondly the sensor data captured had to

be inputted into the flash application via simulated keypresses which has a

low maximum data throughput. Figure 14 show the maximum correlation

value achieved during the sliding window.

Various tests were conducted in order to ascertain the grading of user

signals based on the normalised cross correlation coefficient R. Three grades

were created based on star-grading, with 5 stars corresponding to full marks

and 3 stars corresponding to the poorest grade. From Figure 13 and Figure

14 it can be seen that the 5 star signal closely resembles the reference signal.

With this data and similar data from other tests it was empirically decided

that users who received over 0.85 for R deserved 5 stars. The other grades

were calculated in the same way. From Figure 13 it can be seen that there

is little resemblance between the 3 star signal and the reference signal. Even

with signal time shift the maximum cross correlation coefficient was low. Any

user that receives a coefficient of less than 0.7 receives 3 stars while if they
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Grade Classifications R value

5 star R ≥ 0.85
4 star R ≥ 0.70 &R < 0.85
3 star R < 0.70

Table 1: Breathing Monitor Grade Classifications

receive a score between 0.7 and 0.85 a 4 star grade is awarded. Three stars

were assigned to the poorest grade in order to encourage the user to keep

continuing with the breathing training. The primary target population for

this feedback system is children, and it is extremely important to keep them

well motivated and focused on improving their technique. Table 1 shows

the R values required for grade classification. The values were chosen after

extensive testing on a single subject.

3.2.6 Conclusion

In this section a classification framework is introduced that classifies a sub-

ject’s ability to perform a desired action. Creating a breathing feedback

system motivates patients to train their lungs sufficiently which improves life

expectancy and quality of life. The advantage of this system is that it is

low-cost and the sensor garment is flexible and comfortable to wear. This

low-cost sensor could be mass-produced by screen-printing processes com-

monly used in the textile industry. The entire system is very easy to deploy

as it only consists of the wireless sensor and a small software package. Cre-

ating a framework that is able to accurately ascertain the competency of a

subjects performance has a wide range of applications in health and sport.

In this work one such application is explored but this approach could be eas-

ily applied to various problems across the healthcare and elite performances

spheres. The state machine diagram for this framework can be seen in Figure

15 and it shows how this framework could be applied to other performance

grading applications.
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Figure 15: State Machine Diagram of Breathing Feedback System
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3.3 Recognising Specific Activities

3.3.1 Data Capturing System

Smartphone usage has grown dramatically since their introduction over a

decade ago. Over 50% of adults in the United States and over 40% of adults

in Europe own a smartphone [131]. By 2016 it is expected that there will be

one billion smartphone owners worldwide [132]. A smartphone is a mobile

phone with a purpose built mobile operating system with advanced computing

ability and inter connectivity compared to a standard mobile phone. Smart-

phones have more advanced Application Programming Interfaces (APIs) for

running third party applications. They also contain technology which stan-

dard phones lack, such as portable media players, digital cameras, GPS nav-

igation systems and modern web browsers. One key feature provided by

smartphones relevant to this work, is access to embedded sensors, such as

gyroscopes, magnetometers and accelerometers.

Most approaches in human activity recognition have relied on multiple ex-

pensive sensors. With the increase in smartphone ownership there has been

more research conducted utilizing the sensors embedded within smartphones.

Human activity recognition using smartphones have been employed to sup-

port patient monitoring [133], to identify the user’s current mobility [134]

and for monitoring daily activities [135]. However in this work we show how

smartphones can be used to recognize human activity in sport.

In this work, the embedded accelerometer within a smartphone is used

Whilst there is a large amount of literature for activity recognition in general,

it is quite limited for classifying sporting activities. Most of this literature uses

custom, albeit commercially available, sensors requiring athletes to purchase

these sensors such as the miCoach and the Nike+. However over 40% of adults

in Europe alone has a smartphone in their pocket. Performing classification

using the smartphone potentially makes the technology available to everyone
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at all levels without additional hardware bar a cheap vest.

Whether or not player monitoring technology is allowed in competition

varies from sport to sport, however, both low-cost solutions, e.g. miCoach

or Nike+, and high-end offerings, e.g GPSports, are used widely at all levels

in training sessions and competition (when allowed). The GPSports device

contains sensors that allow the recording of speed, distance, heart rate and

acceleration. The device contains an advanced accelerometer that records at

a rate of 100Hz. This technology is used by some of the world’s top sporting

teams including Barcelona F.C, Real Madrid F.C and Liverpool F.C however

its retail price restricts its widespread adoption for non-elite athletes. How-

ever, the level of automatic data analysis provided for understanding player

activity is quite limited. The technology proposed here can be considered to

be a low-cost solution that provides finer grained information about player’s

activity based on an automatic classification framework.

Athletes can take advantage of this technology to judge their overall match

and training participation, physiotherapists could be notified of potential in-

juries and coaches could factor this information into their team selection. In

sports where the wearing of sensors is forbidden during competitive matches,

this technology can still be used in training environments to assess an ath-

lete’s performance. In the work presented here the sample rate was set to a

low value that current smartphones can easily accommodate (16-22 Hz) when

logging raw accelerometer signals.

The placement of a sensor on a subject is a decision that requires careful

consideration. Incorrect placement of the sensor can result in inadequate data

being captured or can result in the subject becoming uncomfortable which

may affect their ability to perform activities correctly. In this work sensor

placement is given considerable consideration in order to capture suitable

data while not impeding or endangering the user. Also this location is the

least impeding position i.e the location that interferes with the athlete the
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Figure 16: Location of Smartphone.

least. Therefore a single a single sensor is attached to a subjects upper back

crevice. Current research suggests that placing a sensor on the upper back

has produced excellent results as well has reducing the interference to the

subject to an appropriate level and also reducing the chance of injury to the

subject from the device [136].

3.3.2 Targeted Activities and Experimental Methodology

Accelerometer data was captured from two different field sports, five-a-side

soccer and field hockey. Hockey players regularly change their back position

when performing field hockey activities. For this reason field hockey repre-

sents a moderately difficult scenario whereas five-a-side soccer was chosen as

it was envisaged that it would present significant difficulty in attempting to

recognize activities and would provide a solid stress test for the technology.

This was due to the smartphone being placed upon the upper area of a user’s

back as shown in Figure 16. Players wearing the vest reported that wearing

it did not affect their performance due to the placement of the smartphone

and the light weight nature of the vest.
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In all forms of soccer the primary appendage used are the feet there-

fore deciphering actions executed by the feet from the upper back presents a

difficult challenge. Consequently, achieving accurate results with five-a-side

soccer is an ideal challenge for classification approach. Seven different sport-

ing activities common to both five-a-side soccer and field hockey are targeted

for classification. In this context, an activity is defined as a quantifiable ac-

tion preformed by the user that is deemed significant. With this definition

we identify the following activities:

A1 Subject is stationary

A2 Subject is walking

A3 Subject is jogging

A4 Subject is sprinting

A5 Subject is hitting the ball

A6 Subject is attempting a standing tackle

A7 Subject is dribbling the ball

It was concluded that these activities were comprehensive yet generic as

they cover both inertial (A1-A4) and game (A5-A7) activities. Examples of

these signals can be viewed in Appendix A. Table 2 displays the specification

of the smartphones employed to collect our dataset. The intrusive size of

the HTC Desire can be seen in Figure 17. From experimental observation

we have found that the constant recording of the sensors on a smartphone

of this nature for a period of 1 hour uses approximately 20% of the battery.

When the dataset was being constructed these smartphones were at the more

expensive range of the smartphone market. Cheaper smartphones with less

advanced hardware would not be able to capture accelerometer data at a
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Figure 17: HTC Desire Smartphone with a e2 coin for scale

Smartphones used

Google Nexus One HTC Desire

Sampling Rate 16Hz 25Hz

Accelerometer Tri-axial Tri-axial

Resolution 8-bit 8-bit

Table 2: Smartphone specifications

high rate so we chose the standard rate for sampling so that in principle any

smartphone could be used.

Five-a-side soccer data was recorded during five matches with each lasting

one hour. From these five matches, the accelerometer data from 15 players

was recorded. For field hockey, six matches were recorded with a total of 17

different players. Each match was video recorded with a Sony DCR-SR50

which allowed player activities to be accurately annotated by synchronising

the video data with the accelerometer data. When annotating inertial activ-
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ities, each annotator was required to determine the speed of the player from

video data alone. Ideally the speed of the player would be available to the an-

notater as mislabling could occur otherwise. When logging an activity, nine

seconds of data was collected, with the activity being placed in the centre

of this window. This allowed us to experiment with different window sizes

for feature extraction. Nine seconds was chosen as it was large enough for

these sporting activities to be completed and small enough that it did not

drastically increase computational time.

There were 30 instances of activities A5-A7 in the recorded matches and

all of them were added to the dataset. As mentioned in section 2.4.3 there

is an abundance of technology that can detect different inertial movements

however there is very little work in the literature for identifying more complex

movements such as dribbling with a ball. Adding every inertial movement

annotation to the dataset would create a class imbalance. In [137] Chawla et

al. states that “Learning algorithms that do not consider class-imbalance tend

to be overwhelmed by the major class and ignore the minor one”. Therefore

the number of instances of A1-A4 added to the dataset was limited to 30 to

prevent this.

Datasets were created that contained 30 examples of each activity from

both five-a-side soccer and field hockey data. These 30 examples were chosen

randomly from activities logged from the matches recorded. These datasets

contained activities from various players and allowed comparisons based on

varying classification model parameters. In activity classification problems

one important aspect is the changes in performance when different people

perform the same activity. This inter-subject variability can have a distinct

effect on classification accuracy. Each individual performs an activity differ-

ently due to their weight, height, sex and strength. In this study we captured

data from a variety of players in order to get a realistic classification result.

One limitation of including samples from every player in the training data is
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that the classification results do not give an indication on how the model re-

spond to a new subjects data. However this was not judged to be an issue as

each person’s performance of an activity will at vary each time they execute

it.

Subjects whose data was captured while playing soccer were amateur en-

thusiasts whereas subjects whose data was captured while playing field hockey

were elite athletes. By capturing data in a naturalistic environment we reduce

the possibility that a player’s activities have been altered by the experiment.

Ethical approval was granted for the data capture.

Normalisation

Across all humans, elite athletes and amateurs, there is a wide range of accel-

eration magnitudeS and therefore it is necessary to normalise the accelerome-

ter signals to account for variances in actions performed by different subjects.

A simple but powerful normalisation approach is utilized, which normalises

the sensor signal so that the maximum is equal to 1 and the minimum is equal

to 0. This approach is applied to accelerometer signals and aids the classi-

fication process as it helps to find similarities in different human subjects.

Each action performed is then manually annotated and these annotations are

required for extracting features and training a classifier. Equation 14 shows

the process used

eNi =
ei − Emin

Emax − Emin
(14)

where Emin is the minimum accelerometer value, Emax is the maximum

accelerometer value and ei is the value to be normalised.
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3.3.3 Approach and Results

Initially other popular classification approaches from the literature are applied

on the collected datasets for benchmarking reasons. Three separate experi-

ments are then conducted to discover the most accurate approach to creating

the best classification framework. Finally a publicly available accelerometer

based human activity recognition dataset is employed to compare the methods

proposed here against other popular and successful classification approaches

Benchmarking

In [138], Kwapisz et al extracts forty-three time domain features from a

smartphone accelerometer and employs them, along with a Multilayer Percep-

tron artificial neural network classifier (ANN) for activity recognition. These

activities are walking, jogging, walking upstairs, walking downstairs, sitting

and standing. They achieved an overall recognition accuracy of over 90%.

Due to this high result we employed Kwapisz et al methods on our dataset.

Their approach achieved an average accuracy rate of 73% for soccer and 79%

for field hockey. It took 2 ms to compute the time domain features for a

nine second data window. Table 3 explains in detail the time domain features

extracted and fed into the ANN.

As mentioned earlier, the Fast Fast Fourier Transform (FFT) is a popu-

lar method for extracting informational features from a data signal. In [13]

Preece et al. investigates various FFT feature extraction techniques using ac-

celerometer data captured from subjects performing various daily activities

such as walking, jogging, walking upstairs, walking downstairs, running, hop-

ping on left leg, hopping on right leg and jumping. Preece et al. concluded

that extracting the DC component and the magnitude of the first five com-

ponents of FFT analysis produce the most accurate models. Therefore this

technique was also applied to the soccer and field hockey datasets. It achieved

an average accuracy rate of 78.1% for soccer and 78.5% for field hockey. It
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Feature[No] Description

Average [3] Average acceleration (for each axis)

Standard Deviation [3] Standard deviation (for each axis)

Average Absolute Dif-
ference [3]

Average absolute difference between the
value of each of the 200 readings within
the ED and the mean value over those 200
values (for each axis)

Average Resultant Ac-
celeration [1]

Average of the square roots of the
sum of the values of each axis squared√
x2i + y2i + z2i over the ED

Time Between Peaks [3] Time in milliseconds between peaks in the
sinusoidal waves associated with most ac-
tivities (for each axis)

Binned Distribution
[30]

The range of values is determined for each
axis (maximum – minimum), divide this
range into 10 equal sized bins, and then
record what fraction of the 200 values fell
within each of the bins.

Table 3: Benchmark Time Domain Features

Activity A1 A2 A3 A4 A5 A6 A7

A1 28 2 0 0 0 0 0

A2 0 30 0 0 0 0 0

A3 0 1 29 0 0 0 0

A4 0 0 0 29 0 1 0

A5 0 0 0 0 22 3 5

A6 0 1 0 0 5 13 11

A7 0 0 0 0 9 8 13

Table 4: Confusion matrix for FFT benchmark for Soccer Smartphone data

took 25 ms for the FFT features to be extracted using MATLAB from a

ten second data window. All computation duration tests in this work were

completed on a Intel Core 2 Quad CPU Q9650 processor with 4 gigabytes of

RAM.

Experiment 1

A black box experiment is using a system which is viewed solely based
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Activity A1 A2 A3 A4 A5 A6 A7

A1 29 1 0 0 0 0 0

A2 0 30 0 0 0 0 0

A3 0 1 29 0 0 0 0

A4 0 0 0 29 0 1 0

A5 0 0 0 0 23 3 4

A6 0 1 1 0 4 14 10

A7 0 0 1 0 8 9 12

Table 5: Confusion matrix for FFT benchmark for Hockey Smartphone data

on terms of input and output. In this scenario parameters are selected based

on their popularity or their ease of use. SVMs are one of the most popular

classifiers used in human activity problems as it is relatively simple to un-

derstand and fast. Therefore for this baseline experiment an SVM was used

and the selected parameters can be seen in Table 6. Daubechies 4 wavelet

“db4” is a popular motherwavelet choice in signal analysis problems due to

its regularity and fast computational time. A level two DWT was chosen to

keep computational time fast while still extracting discriminative features.

A window length of five seconds was chosen as every activity had concluded

by then. It took 10 ms for the DWT features to be extracted from the 5

second window. It took 4 ms for this approach to classify the extracted DWT

features with the SVM.

For field hockey this experiment achieved a 65.9% F-Measure score while

for soccer it achieved a 62.7% F-Measure score. Field hockey and soccer

models both suffered from high mean absolute error, 21.13% and 21.41%

respectively. Table 7 and 8 give the confusion matrix for this experiment.

Both models identify inertial activities (A1 - A4) adequately, but perform

poorly when trying to identify game activities (A5 - A7). This approach is

the fastest to create and train, however this is outweighed by its relatively

poor performance compared to other approaches.
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Classifier Mother-wavelet DWT level window size

SVM-SMO db4 2 5 seconds

Table 6: Parameter specifications for black-box approach

Activity A1 A2 A3 A4 A5 A6 A7

A1 30 0 0 0 0 0 0

A2 3 27 0 0 0 0 0

A3 0 0 30 0 0 0 0

A4 0 0 0 30 0 0 0

A5 0 15 3 0 7 4 1

A6 4 4 2 0 7 8 5

A7 3 4 4 0 7 4 8

Table 7: Confusion matrix for Soccer Smartphone data for Experiment 1

Experiment 2

In this experiment a diverse range of classifiers is investigated and the

input parameters are varied to understand to what extent they influence the

classification procedure. The classifier, DWT decomposition level, window

length and motherwavelet are inspected to see how adjusting them affects

the accuracy of the models the that framework produces.

In Figure 18 the average accuracy for each classifier investigated can be

seen. Interestingly all classifiers perform similarly except for the SVM-SMO

classifier during soccer. Further investigation showed that this classifier could

Activity A1 A2 A3 A4 A5 A6 A7

A1 30 0 0 0 0 0 0

A2 3 27 0 0 0 0 0

A3 0 0 30 0 0 0 0

A4 0 0 0 30 0 0 0

A5 0 6 5 0 11 1 7

A6 0 1 0 0 16 1 12

A7 0 0 1 0 9 3 17

Table 8: Confusion matrix for Hockey Smartphone data using Experiment 1
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Figure 18: Average classifier family accuracy for experiment 2

not reliably distinguish between lower extremity game activities. SVM clas-

sifiers themselves have many parameters and therefore require tweaking to

reach their full potential. During hockey activity classification the SVM-SMO

performed well as the game activities were much more distinct. Interestingly

the average soccer model outperforms its hockey counterpart, which was an

unintuitive result. A reason for this could be that the range of parame-

ters investigated favoured soccer classification. However the highest accuracy

hockey models created performed better than the highest accuracy soccer

models, which was intuitively expected.

In Figure 19 the overall average accuracy for each DWT level over all clas-

sifiers can be observed. It is interesting to note that there is an increase in

average accuracy with every level increase during soccer while during hockey

classification each level performs similarly well. As mentioned earlier five a

side soccer was envisaged to be much more difficult to classify due to the

position of the smartphone. Therefore it was concluded that retrieving more

features with additional decomposition levels allows classifiers to rectify diffi-

cult to interpret data. DWT decomposition levels ranging from one through
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Figure 19: Effect of DWT Levels on classification accuracy

seven were investigated as further levels would increase computational time

significantly.

In Figure 20 the accuracy average for each window length can be seen

over all classifiers. For soccer the accuracy of the model decreases with an

increase in window length. This makes sense as soccer activities have a shorter

duration than their hockey counterparts. With shorter activities the longer

the window the more activities can occur. If two or more activities occur in a

window then classification difficulty is dramatically increased. When selecting

a time window it is vital that it is long enough to contain the whole activity

being performed and short enough that it does not include additional events.

In Figure 21 the average accuracy for each mother wavelet family can be

seen. Each family performs well and no one family out performs the rest. This

result reinforces the conclusion in the literature that it is almost impossible

to prejudge what motherwavelet will perform well in an application. Simi-

larly, results from individual wavelets show no discernible difference between

their performance. However the mother wavelet itself is important due to its
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Figure 20: Effect of window length on average accuracy

Device Sport Classifier DWT lvl Mother W. Length(sec) F-Measure

Smartphone Soccer NaiveBayes 6 rbio1.1 3 0.799

Smartphone Hockey MLP 6 bior1.1 7 0.823

Table 9: Highest classification accuracies attained for Experiment 2

integral part in the DWT process.

As with Experiment 1 classifiers are very competent at identifying inertial

movement activities (A1 - A4) however game activities (A5 - A7) pose more

of a challenge. The inertial activities are very distinct as the energy during

these activities is unique. They range from zero energy outputted when the

player is stationary to maximum energy when the player is sprinting. The

confusion encountered between the game activities is due to the similar mo-

tions being performed. In soccer these motions involve lower leg movement

while in hockey these game activities involve the upper arm movement. Table

9 provides the parameters for the highest classification accuracy attained for

each respective sport. Tables 10 and 11 display their confusion matrix data.

It took 5 ms for this approach to classify the extracted DWT features.

79



Figure 21: Effect of choice of wavelet

Activity A1 A2 A3 A4 A5 A6 A7

A1 28 0 0 0 0 0 0

A2 0 30 0 0 0 0 0

A3 0 0 30 0 0 0 0

A4 0 0 0 30 0 0 0

A5 0 1 0 0 24 4 1

A6 0 2 0 0 9 12 7

A7 0 1 0 0 12 2 15

Table 10: Confusion matrix for Football Smartphone data for Experiment 2

Activity A1 A2 A3 A4 A5 A6 A7

A1 30 0 0 0 0 0 0

A2 1 29 0 0 0 0 0

A3 0 0 30 0 0 0 0

A4 0 0 0 30 0 0 0

A5 0 0 0 0 19 7 4

A6 0 0 0 0 7 15 8

A7 0 0 0 0 4 6 20

Table 11: Confusion matrix for Hockey Smartphone data for Experiment 2
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Experiment 3

In this experiment separate classification model are created for each activity

and the results investigated. This allows the creation of a fusion of classi-

fiers whereby the classifier result with highest confidence dictates the result.

This late fusion method is described in more detail in section 2.5. The best

performing classifiers from experiment two were used, NaiveBayes for Soccer

and MLP for Hockey. The average F-measure score for soccer data yielded

a result of 86.3%, while for hockey data it yielded 88.8%. Both results had

low mean absolute error, 4.42% for football and 4.55% for hockey. Figure

22 compares the accuracy of all three experiments and includes the absolute

mean error. Figure 23 compares the ability of each experiment to identify

specific activities. It took 27 ms for this approach to classify the extracted

DWT features. The increased computational time compared to experiment

2 is due to testing the extracted DWT features of a signal with each activity

model.

Figure 22: Average model accuracy for each experiment
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Figure 23: Single activity accuracy results for each approach

Experiment 4

In order to facilitate research of accelerometer-based human activity recog-

nition, Xue et al[139] built a naturalistic 3D acceleration-based activity dataset,

SCUT-NAA. It provides researchers in the field of acceleration-based activ-

ity recognition with a naturalistic activity dataset with training and testing

samples. It also allows for comparing and evaluating performance of different

algorithms. It was for this reason this dataset was chosen to apply the auto-

matic human activity classification approach described above in Experiment

3. SCUT-NAA dataset is the first publicly available 3D acceleration-based

activity dataset. It contains 1278 samples of 44 individuals (34 males and 10

females) which were collected in naturalistic settings with only one tri-axial

accelerometer located in the pants pocket. Each sampling person is asked to

perform ten activities. To collect activity data, they developed a sampling

device comprising an accelerometer ADXL330, microprocessor ADuC7026,
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Notation Activities Captured

a climbing downstairs

b climbing upstairs

c jump 45 seconds

d relax

e run 100m

f step walking 45s

g walking 50m

h walking backward

i walking quickly 50m

j bicycling

Table 12: List of Classified Activities in SCUT-NAA

Bluetooth transceiver module, FLASH data storage module and keyboard

module. The ADXL330 is a tri-axial accelerometer capable of sensing accel-

eration between minus and plus 3g with tolerance within 10%. The output

signal of the accelerometer was sampled at 100 Hz[139].

In [139] Xue et al performs four different feature extraction techniques

on the SCUT-NAA dataset. They are the Fast Fourier Transform (FFT),

Discrete Cosine Transform (DCT), Time Domain (TD) features and Autore-

gressive (AR) processing. The FFT approach achieved an average accuracy

of 84%, the DCT 83%, the TD 47% and the AR 48%. The real-time ap-

proach presented here on the smartphone achieved an accuracy of 78% which

is comparable to the offline FFT and DCT methods. There is little compara-

ble research of using advanced algorithms on smartphone devices in real-time

as it is only recently that smartphones processing power has developed suf-

ficiently to employ them. Table 13 shows an in depth look at the accuracy

levels that the fusion of classifiers method obtained for each activity per-

formed. This approach was more successful than any of the four methods

proposed by the authors in [139].
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Notation Precision Recall F-Measure Class

a 0.889 0.821 0.855 climbing downstairs

b 0.648 0.686 0.667 climbing upstairs

c 0.931 0.942 0.936 jump 45 seconds

d 0.988 0.965 0.976 relax

e 0.885 0.895 0.89 run 100m

f 0.728 0.872 0.794 step walking 45s

g 0.635 0.628 0.632 walking 50m

h 0.641 0.477 0.547 walking backward

i 0.878 0.802 0.84 walking quickly 50m

j 0.944 0.85 0.895 bicycling

Weighted Avg 0.884 0.842 0.863

Table 13: Classification Results

3.3.4 Conclusion

In this section a framework is presented that allows for the automatic iden-

tification of sporting activities from a single smartphone worn on the upper

body. Discriminative informational features were extracted from smartphone

accelerometer signals using the Discrete Wavelet Transform (DWT) decom-

position. These features were very informative as they were able to reduce

accelerometer signals to a much less complex input. For example with the

first model in Table 9 we were able to reduce the accelerometer segment from

75 samples into 42 descriptive features. Training and classifying activities

would take much longer and be prone to over-fitting without reducing the

signal to a small set of features. One disadvantage of using the DWT when

extracting features from signals is that is there is no widely accepted method

of picking the most suitable motherwavelet for a particular application. We

investigated five prominent motherwavelet classes Daubechies, Coiflets, Sym-

lets, Biorthogonal and reverse Biorthogonal. Daubechies provided the moth-

erwavlet for half of the best accuracy models however the overall results show

that performance differences between motherwavelets are not very significant.

No one classifier family has to date been shown to have a direct advantage
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in activity classification problems so classifiers from different families were ex-

amined. Investigating different window lengths, DWT levels, classifiers and

motherwavelets allowed us to create classification models that achieved F-

measures of 86.3% and 88.8% for five a side soccer and field hockey respec-

tively. This DWT extraction process is much more accurate compared to

state of the art time domain and FFT feature extraction methods mentioned

earlier. Figure 18 illustrates the average performance for each of the classifiers

investigated. None of the classifiers parameters were explored as this would

of increased the overall feature investigation time exponentially.

Overall the worst performing classifier was the support vector machine

(SVMs). Hsu et al. in [140] explains that the main disadvantages of SVMs is

that they require several steps before an acceptable classification result can

be achieved. The first step he mentions is to conduct simple scaling on the

extracted features. This eliminates greater numeric ranges from dominat-

ing smaller numeric ranges. The second step requires testing different kernel

parameters. The SVMs kernel is responsible for analysing patterns and cre-

ating relations in the dataset. In general, the RBF kernel is a reasonable first

choice [140] and was the kernel chosen in this work. However there are other

popular kernels such as the polynomial and sigmoid kernels. Both polynomial

and sigmoid kernels have had success classifying activities using smartphones.

Anguita et al. in [141] achieved an overall accuracy of 89.3% using a SVM

with a sigmoid kernel detecting six everyday activities such as walking up-

stairs and downstairs. Similarly Fleury et al. in [142] achieved an overall

accuracy of 75.9% recognising complex everyday activities such as dressing

oneself and using the toilet with a polynomial kernel. Both these kernels

have independent variables that can heavily influence the performance of the

SVM. Hsu recommends searching through these variables in order to create

the best possible classifier.

In experiment two the highest soccer accuracy attained using a SVM was
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76.33% and it was found using a bior3.3 mother wavelet, a DWT decompo-

sition level of 6 and a 3 second window. By employing the best performing

parameters mentioned on the mother wavelet, DWT decomposition level and

window size, the overall accuracy was improved from 76.33% to 82.7% which

makes it the new best performing classifier. The difference between the de-

fault SVM and the new improved SVM can be seen in Table 14.

Kernel c Scaled features F-Measure

Default SVM RBF 1 no 76.33%

Explored SVM polynomial 10 yes 82.7%

Table 14: Improved SVM Results

Decision tree classifiers are immune to scaling problems therefore large

ranges of numeric data do not dominate smaller ranges. This can explain why

on average decision trees performed well whereas the SVM did not. Bayesian

classifiers such as NaiveBayes perform well when its assumption that all in-

putted features are independent is true [143]. Since all extracted features are

based of the X,Y and Z axis of an accelerometer this assumption holds true

and can explain why the NaiveBayes classifier performs very well overall in

this work. The neural network multilayer perceptron (MLP) achieved success

due to its ability to automatically adjust its own parameters using back-

propagation. Therefore since the MLP automatically optimizes itself its high

overall average accuracy is explained. The KNN algorithm is relatively simple

compared to the other classification algorithms mentioned and therefore has

very little adjustable parameters. Due to its capacity to handle outlying data

points it is more robust when working with smaller datasets which prevents

overfitting. This could explain why the KNN-IBk classifier also had a high

overall average accuracy.

In this work the effect of changing several of the DWT input parameters

are investigated, including motherwavelets, window lengths and DWT de-

composition levels. During the course of this work we created a unique sports
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activity analysis dataset, comprised of five a side soccer and field hockey ac-

tivities. All experimental results presented in this section are based on this

dataset. The average maximum F-measure accuracy of 87% was achieved

using a fusion of classifiers which was 6% better than a single classifier model

and 23% better than a standard SVM approach. However this relatively

modest 6% increase comes with significant increase in computation.

Most approaches in human activity recognition rely on multiple expensive

sensors. With the increase in smartphone ownership there has been more re-

search conducted utilizing the sensors embedded within smartphones. Human

activity recognition using smartphones have been employed to support patient

monitoring [133], to identify the users current mobility [134] and for monitor-

ing daily activities [135]. In this work we have shown that smartphones can

be used to recognize human activity in sport.

Performing classification using data gathered by a smartphone potentially

makes the technology available to everyone at all levels without additional

hardware bar a cheap vest. Currently all processing is performed offline after

data gathering. If real time processing is required then the preferred solution

would be a continuous connection to a server rather than performing the

analysis on the smartphone itself.

The approach proposed here for human sporting activity classification can

be applied to other human motion activity problems. Experiment 4 shows

that movements that humans perform daily are able to be accurately recog-

nised using a fusion of classifiers. Now that the framework has been set up

the key problem when creating classification models is acquiring sufficient

training data. Additionally this method is not confined to an offline setup

especially with smart phones which posses the ability to communicate over

the web. The smartphone also has many other embedded sensors that could

be used to capture physiological information. Future work will focus on in-

vestigating this and also comparing other feature extraction methods to the
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DWT. The investigation of other feature dimensionality reduction techniques

such as principal component analysis is another area that warrents future re-

search. Furthermore there are other sensors which have grown in popularity

such as the miCoach by Adidas. It would be interesting to investigate their

performance compared to smartphones. Planned future work will look to ex-

amine and to compare accuracy of the current major available commercial

devices.
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4 MultiModal Human Action Recognition

4.1 Introduction

This chapter introduces the methods used to fuse data from a collection of

sensors. This sensor fusion approach will allow contextual information from

diverse sensors to be combined to allow the automatic classification of human

activity. In the next section the literature concerned with the fusion of sensors

of the same type is explored first before literature concerned with fusion

sensors that detect different physiological data is explored. Thereafter an

experiment is conducted to investigate whether adding sensors to the human

body can aid in automatic activity classification. Methodologies and results

are presented on whether early or late fusion is more beneficial for the specific

application of classifying sleep apnea events.

4.2 Related Work

In [144], Zhu et al. uses two inertial sensors in their classification system.

The first sensor was placed on the subject’s waist and the other sensor on the

foot. Each inertial measurement unit compromised of an accelerometer and

magnetometer. Initially the data from the two inertial sensors are fused for

coarse-grained classification. This allows the classification of the of activity

performed into one of the three groups; zero displacement activity (standing

or sitting), transitional activity (sitting to standing, standing to sitting), or

strong displacement activity (walking upstairs, walking downstairs). Follow-

ing this step a fine-grained classification is performed on each of the three

groups. This allows classification between activities within the same groups

e.g sitting to standing versus standing to sitting. The first classification step

uses a neural network to identify the group whereas the second step uses

a Hidden Markov Model (HMM) to further distinguish the activity. They

achieved an overall classification accuracy of 89.75%. Aminian et al. use a
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different method to fuse inertial sensor data [8]. They attached one inertial

sensor to a subject’s chest and a second sensor was attached to the rear leg.

They then fused the acceleration samples from the two sensors. By fusing the

data they were able to recognise activities such as sitting, lying, standing and

dynamic activities such as walking. Before fusing the data they were unable

to accurately distinguish each activity.

In [145], Lawrence et al. use a MicroLEAP2(ULEAP2) system that would

aid in automatically recognizing rehabilitation activities performed by people

suffering from chronic obstructive pulmonary disease. This second generation

of the energy-aware wearable sensor system incorporates various sensors for

physiological monitoring[146]. It contains an accelerometer and a gyroscope

to capture motion data. It also includes a piezoelectric belt that generates

a small voltage in response to mechanical stretching in order to measure

respiration. Finally it houses a heart rate sensor that locally computes the

user’s heart rate. The N-point(FFT) was used as all activities to be identified

exhibited a certain periodicity. The FFT extracted the Fpeak and Fenergy from

the sensor signals every second. Each sensor modality was 16-bit and acquired

at 128 Hz. HMMs were used to classify the features extracted by the FFT.

They were able to accurately identify activities like resting, taking the stairs,

walking and running 85% of the time.

Early fusion is a fusion scheme which merges the features of each modality

before any machine learning is conducted. In [147], extracted features from

each sensor are concatenated to create a fused multimedia representation of

visual, textual and audio sensors. After these multimodal features are con-

catenated a supervised learning approach is adopted to classify the semantic

concepts. The main advantage of early fusion is that the concatenated vector

is a true representation of all classes and also that only one machine learning

stage is required to classify the sensors.

Snoek et al. in [147] define late fusion as a scheme which initially learns the
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concept scores from individual unimodal features and afterwards these results

are fused to learn concepts. Late fusion approaches have also been utilized

with much success in the field of multimodal analysis. The authors in [148] use

individual probabilistic models to classify text and video using a late fusion

scheme. In their approach, the text model is based on the language modelling

approach to text retrieval and the visual information is modelled as a mixture

of Gaussian densities. The scores are linked after individual classification

to give the final classification accuracy score. This means that with the

late fusion approach it is possible to ascertain the classification accuracy of

each individual sensor since eachs data is untouched before the first machine

learning stage. However as mentioned in [147], late fusion is expensive with

regards to learning effort and computational time, as a classification stage

is required for each unique modality. In addition to this, after the learned

concepts are merged, some forms of late fusion have an additional learning

step before final fusion prediction is obtained.

4.3 Experiments with a single type of sensor

In the first experiment conducted in this chapter the goal is to investigate

the potential of combining raw data from the same type of sensor but attach-

ing them to different locations on the body. Two wireless/wearable inertial

motion units (WIMUs) were placed on various subjects of different athletic

ability. The ability of using two separate sensors to distinguish different train-

ing movements and activities was compared to just using a single sensor. A

dataset was created for a real world application which required two WIMUs

to gather the required data. The methods and results for both approaches is

presented in the next section.
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4.3.1 Target & Application

Sport and physical activity have important cardiovascular, musculoskeletal

and mental health benefits [149] and are enjoyed by large numbers. However,

associated lower body musculoskeletal injuries are very common [150], [151],

[152]. Almost all injuries are caused by relative excessive loading on the tis-

sues i.e. high loading relative to tissue strength. One factor that significantly

influences this loading is movement technique. Athletes can be biomechan-

ically screened to determine an athlete’s predisposition for injury [153] by

recording and quantifying both their movement technique (i.e. joint angle

and angular velocity) and some measure2 of loading on their lower body dur-

ing a series of actions common to their sport and known to be related to

injury (e.g. running [151], jumping and landing [154], agility cuts [155]).

Generally, the athlete completes 3 - 5 maximum effort trials of each action

[154] and their results are compared to normative values, if available [156].

These tests are almost exclusively completed in a laboratory since biome-

chanics based motion analysis systems tend to be camera based (6+ cameras

typically) which must remain spatially fixed during the testing session and

tend to be negatively affected by changing lighting conditions. This screening

process creates several assessment and comparison challenges, which signifi-

cantly reduce its ecological validity and usefulness.

A solution to the above assessment challenges would be to use sensors that

could be worn throughout a training session or competitive event, detecting

an athlete’s joint angular motion and impact accelerations. With the use of

these sensors more opportunities are presented to make the process of tracking

the change in a subject’s athletic ability for training and health purposes.

With the recent development of more accurate and relatively cheap WIMUs,

combined with improved algorithms to more accurately determine sensor ori-

2Direct loading on individual tissues cannot be measured in a non-invasive fashion but
this is possible for aggregate loading on a region of tissues or structures.
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Figure 24: Placement of two inertial sensor units on the thigh and shank as
well as their local coordinate system in a global coordinate system is illus-
trated.

entation [157], [158] , it has become feasible to deploy wearable body sensor

networks in training sessions.

Automatic activity classification is used to identify different training ac-

tivities as this would allow training sessions to be more quickly evaluated by

sporting and health professionals. It would allow them to quickly segment

an athlete’s training session by activity and thus allow the desired data to be

more easily located. This approach also facilitates the creation of a database

containing the evolution of an athlete’s movements within and across training

sessions.

4.3.2 Data Collection

To evaluate the proposed framework, recordings of ten subject whose ac-

tions were captured using four wearable inertial sensors. The injured subject

was experiencing lower back pain that did not WIMUs were placed on the

left/right shank and left/right thigh of a subject as shown in Figure 24. The
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location of the sensor on each body segment was chosen to avoid large mus-

cles; as soft tissue deformations due to muscle contractions and foot-ground

impacts may negatively affect the accuracy of joint orientation estimates.

The sensors were affixed to the subject with double sided tape and velcro

straps with some elasticity in the fabric, so as not to restrict the subject’s

movement and performance in any way. Next, the subject was asked to per-

form a series of actions as they normally do during outdoor training sessions.

Each subject performed a predefined exercise routine on a large outdoor grass

soccer pitch. The exercise routine consisted of the following motions: agility

cuts, walking, sprinting, jogging, box jumps and football free kicks. Each

motion lasted approximately 60 seconds for a total of approximately 9 - 10

minutes for the entire session.

The data from each sensor was recorded to an internal SD card on board

the device. As each sensor recorded data independently, a physical event was

required to synchronize all devices together. This was achieved by instructing

each subject to perform five vertical jumps, ensuring large acceleration spikes

would occur simultaneously on each device, that would be clearly visible in

the accelerometer stream. In a post processing step, peak alignment was

automatically performed and all data streams were cropped to two seconds

before the first vertical jump landing. Video footage of each data capture

session was also recorded and annotated, to be used as ground truth for

the automatic segmentation and recognition of movements categories (i.e.

jogging, agility cuts, sprinting etc.). Samples of the signals can be seen in

Appendix B. Ethical approval was granted for the data capture.

4.3.3 Methodology and Results

In order to develop an approach to activity classification the exercise routine

performed by each athlete was segmented and annotated for all activities and

used to create a training set. The acceleration data from the two WIMUs
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Activity a b c d e f

a = Agility Cut 166 0 6 4 3 1

b = Walking 0 399 0 0 0 0

c = Jumping on box 4 2 17 3 1 2

d = Jogging 0 0 0 205 0 0

e = Sprinting 1 0 0 0 27 0

f = Ball Kicking 2 4 5 5 3 68

Table 15: Confusion Matrix for the classifier using a single sensor on the
shank

was isolated and features extracted for classification purposes. An early fusion

approach was adopted to fuse the two feature vectors from each accelerometer.

More detail about different fusion schemes is described in the next section. A

window length of three seconds was chosen as this was sufficient time for each

of the selected training activities to be completed. The DWT was used with

much success in extracting discriminative features from accelerometer data

in section 3.3.3 and thus was used to extract features for classification. The

Daubechies 4 wavelet is a popular mother wavelet choice in signal analysis

problems due to its regularity and fast computational time, and was chosen

in this work.

The F-measure scores when using data solely from the leg shank sensor

is presented in Table 18 and the confusion matrix associated is presented in

Table 15. Similarly the scores from the thigh sensor is presented in Table 16

and its confusion matrix is in Table 19. Table 20 shows the F-measure scores

when data from both the leg shank sensor and leg thigh sensor are both used

to classify the activity being performed. All values in this experiment were

computed using a ten-fold cross validation. Since the classifier was trained

with classes which had different instance populations the F-measure scores

are shown. The F-measure score gives a better indication of a model’s ability

to correctly identify an activity than standard classification accuracy alone.

Comparing Table 15, Table 16 and Table 17, it is possible to see the ac-

tivities that require two sensors for accurate classification. Agility cut and

95



Activity a b c d e f

a = Agility Cut 176 0 2 0 0 2

b = Walking 0 399 0 0 0 0

c = Jumping on box 3 2 21 0 0 3

d = Jogging 0 0 0 205 0 0

e = Sprinting 0 0 0 0 28 0

f = Ball Kicking 4 3 5 4 1 70

Table 16: Confusion Matrix for the classifier using a single sensor on the thigh

Activity a b c d e f

a = Agility Cut 180 0 0 0 0 0

b = Walking 0 399 0 0 0 0

c = Jumping on box 0 0 27 2 0 0

d = Jogging 0 0 0 205 0 0

e = Sprinting 0 0 0 0 28 0

f = Ball Kicking 3 5 2 3 1 73

Table 17: Confusion Matrix for the classifier using two sensors

jumping on a box are much more complex activities than walking or jogging

and more information is required to distinguish those activities from the rest.

The sensor on the thigh would capture the more pronounced movement re-

quired before a jump is undertaken. The thigh sensor also aids in classifying

agility cuts as the single sensor approach confuses this activity with walking,

jumping on a box, jogging and sprinting whereas the two sensor approach

has a 100% success rate recognising this activity. Both approaches perform

similarly when attempting to recognise a subject kicking a ball. One reason

why this confusion could occur is the varied kicking style between subjects.

No specification was made hence right foot, left foot, inside of the foot strike,

laces strike, passing, shot, cross, chip etc. are all viable methods that lie in

the “ball kicking” label. A larger number of subjects in the dataset and a

more specified activity would help account for the variation in kicking styles.

Tables 18 and Table 20 show the precision, recall and F-measure scores

for both approaches. The two sensor approach has a consistent classification

accuracy rate across all activities unlike the single sensor approaches. Figure
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Activity Precision Recall F-Measure

Agility Cut 0.96 0.922 0.941

Walking 0.985 1 0.993

Jumping on box 0.607 0.586 0.596

Jogging 0.945 1 0.972

Sprinting 0.794 0.964 0.871

Ball Kicking 0.958 0.782 0.861

Table 18: Precision, Recall and F1 score obtained post classification using a
single sensor on the shank.

Activity Precision Recall F-Measure

Agility Cut 0.962 0.978 0.97

Walking 0.988 1 0.994

Jumping on box 0.75 0.724 0.737

Jogging 0.981 1 0.99

Sprinting 0.966 1 0.982

Ball Kicking 0.933 0.805 0.864

Table 19: Precision, Recall and F1 score obtained post classification using a
single sensor on the thigh.

25 illustrates the difference in accuracy between using a single sensor and

using two strategically placed sensors.

4.3.4 Conclusion

In this section a novel body worn inertial sensor framework capable of auto-

matically segmenting and classifying various actions in outdoor unconstrained

environments is described. Sensors have been used extensively in body moni-

toring applications. With sensors becoming cheaper and more available, there

Activity Precision Recall F-Measure

Agility Cut 0.984 1 0.992

Walking 0.988 1 0.994

Jumping on box 0.931 0.931 0.931

Jogging 0.976 1 0.988

Sprinting 0.966 1 0.982

Ball Kicking 1 0.839 0.913

Table 20: Precision, Recall and F1 score obtained post classification using
two sensors.
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Figure 25: F1 score comparison between one sensor and two sensors

are a variety of applications that can benefit from using two or more sensors

that can capture physiological information from strategic locations. In this

experiment the use of one inertial sensor versus two strategically placed in-

ertial sensors is evaluated. The use of a second sensor has allowed in this

experiment for complex activities to be recognised.

4.4 Experiment with multiple types of sensors

In this experiment different types of sensors are fused together to aid in the

classification of a human activities. When fusing data from two different

sensors there is two different methods; early fusion and late fusion. In this

section both methods are investigated to see which performs better when

using sensors of different types. By fusing these different sensor modalities

it is hoped that any weakness in contextually recognizing a users actions or

activity in one sensor can be remedied from data from another sensor of a
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different modality.

4.4.1 Early Fusion

In the early fusion scheme used throughout in this work, after the features

are extracted from each sensor modality, each set of features is concatenated

into a single vector. In this work feature vectors from multiple accelerometers,

respiration sensors and ECG signals are concatenated to get a current context

awareness of the subject. After the multimodal features are concatenated an

instance based learning scheme is employed to classify the physiological data

captured as shown in Figure 26.

4.4.2 Late Fusion

In this thesis research is conducted to determine whether late fusion is a

suitable approach for automatically classifying human activities. In this ap-

proach, which is illustrated in Figure 27, the data from each sensor is only

fused with each other at the very end of the classification process. As Fig-

ure 27 illustrates that each individual sensor is treated as a unique modality,

therefore concepts are learned from three individual modalities. The predic-

tion made from each modality is then inspected and the modality with the

highest confidence is assumed to have predicted correctly or they could be

weighted statistically.

Early fusion and late fusion may be combined to form a hybrid fusion

approach. This occurs where a certain number of sensor modalities are fused

together with a early fusion scheme to create a new fused modality. This

fused modality acts like a unique modality and outputs a prediction with an

associated confidence value. The remaining modalities are treated as unique

modalities and each output their prediction with an associated confidence

value. As in late fusion the modality with the highest confidence value is

then assumed to have predicted correctly.
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Figure 26: Early Fusion scheme. Features are fused before a concept is learned
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Figure 27: Late Fusion scheme. Features from three individual sensors are
used to learn four individual concepts. Confidence scores determine the out-
putted class
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4.4.3 Target Application & Motivation

Healthy sleep patterns have long been proven to be essential for maintaining

both mental and physical health [159]. Sleep apnea is a common disorder

which seriously degrades sleep quality and is characterised by recurrent pauses

in breathing (apnea) or by instances of abnormally low breathing during

sleep (hypopnoea). Apnea events can be classified into two main groups:

obstructive apnea (OA) is the cessation of airflow due to the collapse of the

upper airway while central apnea (CA) is due to the lack of neural input from

the central nervous system [160].

Patients suffering from sleep apnea have been shown to be more prone

to a number of different health complications. The associated reduction in

sleep quality has been proven to increase the likelihood of accidents both at

home and at work [161][162] whilst patients suffering from sleep apnea have

also been shown to be more susceptible to more major health risks, including

cardiovascular related deaths [163][164]. In conjunction with this increased

health risk is the high cost to national healthcare systems. The U.S. National

Commission on Sleep Disorders Research [164] estimated that the annual cost

to the American taxpayer, for disorders related to sleep apnea, is in excess of

42 million dollars. This sum shows the clear requirement for systems which

are both capable of accurately detecting sleep apnea events whilst remaining

low cost.

To date there have been a number of independent systems employed to

aid in sleep apnea classification [165][166], however the widely accepted gold

standard diagnostic method is known as a polysomnograph (PSG). During a

PSG the patient attends a specialised sleep clinic and is monitored over the

course of a single night using multiple different monitoring systems. These

systems commonly include a measurement of the heart (electrocardiogram

(ECG)), the skeletal muscles (electromyogram (EMG)), eye movement (elec-
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trooculogram (EOG)), respiratory airflow, respiratory effort and oxygenation

saturation of the blood (PPG) [166]. The position of the patient in the bed

and the snoring level is also often recorded to aid in the diagnosis.

This requirement for multiple recording modalities results in a high cost

(private patient test can cost up to e1,000) as well as a large quantity of

data which must be examined post-recording by a trained technician for each

patient. This commonly leads to long waiting lists for patients requiring

testing. Current research is continuing to examine the use of less complex

systems to accurately classify sleep apnea events. Examples of this research

includes the use of the ECG to classify between obstructive and central apnea

events [167][168] and the use of accelerometers placed on the suprasternal

notch to screen for sleep apnea events [169].

This section explores the possibility of accurately identifying sleep apnea

events by combining data from three different types of sensors. Classification

results are obtained using a combination of electrocardiogram (ECG), respi-

ration and acceleration sensors. By fusing these different sensor modalities it

is hoped that any weakness in contextually recognizing a human actions or

activity in one sensor can be remedied from data from another sensor of a

different modality.

4.4.4 Data Collection

Data was collected using the “Smartex WWS” [170] from 5 adult patients

(3 female, mean age 52 years, standard deviation 5.89 years) during routine

PSG recording. All analysed data was recorded as part of routine sleep apnea

diagnosis, therefore additional ethical approvement was not required. Patient

data was analysed post recording and an exclusion criterion was implemented

based on a positive indication of the presence of sleep apnea events. One

female patient was discovered to not suffer from sleep apnea and was thus

excluded from the study.

103



Figure 28: Smartex Wearable Wellness System. (a) Respiration sensor posi-
tioned at the front centre of the band. Accelerometer located in the CSEM
recording module which is housed in the indicated pouch. (b) Fabric ECG
electrodes located on the inside of the chest strap.

Patient data was recorded overnight in St. Joseph’s Clinic, Raheny,

Dublin, Ireland. During recording the gold standard PSG monitoring was

performed while concurrent measurements were made using the implemented

“Smartex” system. The gold standard PSG provided accurate information

as to the time points and duration of all apnea events observed overnight,

allowing for an detailed measure of the efficacy of post classification results

using the “Smartex” system.

As stated previously, PSG recordings are regarded as the gold standard

method for determining the presence of sleep apnea events. During the rou-

tine recording, a number of patent physiological signs were monitored includ-

ing respiration flow, thorax effort, oxygen saturation, heart rate and breaths

per minute. The body position and snoring output of the patient was also

monitored. These signals provided a database from which a trained clinician

could analyse the data, post recording, and manually tag the epochs relating

to apnea events. The detected apnea events were tagged as either obstructive

apnea, central apnea, hypopnoea or mixed apnea depending on their nature.

Any epochs in which one or more of the recorded signals were observed to

be noisy were labeled as an artifact epoch. All remaining epochs were then

marked as clean. Data was recorded for a period of between 6-8 hours per
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subject, during which period the patient slept in a bed situated in an isolated

room.

As described earlier, three separate signal modalities were measured con-

currently with the PSG recording. Figure 28 illustrates the “Smartex Wear-

able Wellness System (WWS)” chest strap [170] used to house the three

recording sensors. This WWS is a wearable system based on textile knit-

ted sensors [171]. The electrocardiography signal (ECG) is used to monitor

the electrical activity associated with the pumping of the heart. The ECG

signal was recorded using two moistened fabric sensors located at either side

of the ribcage (Figure 28 (b)). The use of these fabric electrodes eliminates

the requirement for adhesive electrodes which can be cumbersome to apply

and have been shown to occasionally cause skin irritation [172], while also

allowing for unlimited use. The ECG signal was recorded at a sampling rate

of 250 Hz.

The acceleration signal was recorded using a tri-axial accelerometer lo-

cated in the recording module shown in Figure 28. This recording module

was securely stored in a pouch located on the front of the chest strap. This

accelerometer was capable of determining patient body position as well as

being a proxy for the respiration signal due to the movement of the chest.

The sampling rate of the accelerometer was set at 25 Hz.

The respiration signal was also monitored using the chest strap. The

respiration signal was recorded using a piezoresistive knitted textile stretch

sensor located on the front of the chest strap as can be seen from Figure 28

(a). As the subject both inhales and exhales, the force on the stretch sensor

alters, presenting a recordable change in resistance. This resistance change

can then be related to a change in lung volume. The respiration sensor was

also sampled at the lower frequency rate of 25 Hz. All data recorded was

stored on an on-board SD card for post processing using MATLAB.

The data from the Smartex chest strap was triggered against the PSG data
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post recording using the available information regarding the patient’s body

position. Using the accelerometer data, so that any change in patient body

position could be determined, the time points relating to positional change

could be aligned with the positional data available from the PSG analysis.

The “Smartex WWS” chest strap was secured to the patient’s chest below

the pectoral muscles and above the base of the ribcage using the available

velcro. This allowed for a similar position to be attainable for both the male

and female patients. It should be noted that the only pre-test requirement

was the wetting of the ECG electrodes. This allowed for a very quick and

easy application of the recording sensors.

4.4.5 Methodology and Results

This section describes the post processing performed on the data. First the

initial filtering, tagging and windowing performed on the data is described.

Then it is explained how the DWT is used to extract features from the various

sensors before an explanation of how the regression tree classifier is used to

classify the individual signal epochs as either clean or as containing an apnea

event. Finally classification accuracy results are presented,

A number of post processing steps were completed prior to the feature

selection stage of classification. Initially each signal was filtered to remove

any unwanted frequencies. The ECG signal was bandpass filtered between

0.05 Hz and 20 Hz. The DC components were filtered to remove any DC

offset from the signal while the ECG frequencies below 20 Hz have been

shown to contain the majority of the desired ECG components. Frequencies

above this frequency are required if detection of arrhythmias is desired [173].

The respiration signal bandpass cut-off frequencies were 0.05 Hz and 0.8 Hz as

advised by Hejjel et al. in [173]. This upper limit was chosen as the maximum

frequency of human breathing is unlikely to exceed this value [174]. Finally,

the accelerometer data was low-pass filtered with a cut-off frequency of 0.8 Hz

106



to again be capable of representing the respiration signal. All filtering was

completed using 2nd order butterworth filters. The DC offset was not removed

from the accelerometer signals to allow their use in the determination of all

positional changes. Following the signal filtering, each signal was normalised

to ensure no biasing during classification.

Using the event information, available post analysis of the PSG data, the

epochs of ECG, respiration and acceleration data relating to apnea events

were tagged for each patient. This tagged data was truncated into individual

windows, each 20 seconds in length. As an apnea must have a duration longer

than 10 seconds to be classified as an apnea event [175], a window length of

20 seconds was chosen to allow for adequate representation. Each window

was individually tagged as either clean or as containing an apnea event to

allow for classification.

Following the windowing of the data, a total number of 1082 windows

containing an apnea event were available. As the number of clean windows

(9087) was much higher than the number of apnea contaminated windows,

a random selection of 864 clean windows was chosen to ensure the data was

not biased. These 864 clean windows were chosen from sleep segments where

patients did not move in their sleep thus reducing the noise imposed on the

accelerometer.

The DWT was again employed to extract discriminative features from

raw sensor data due to its success in section 3.3.3. More detail on the DWT

process employed here can be found in section 2.3.3 and any modifications

made to the process are explained next. The energy of the signals at each

decomposition level were chosen as the features for classification. To ensure

independent features, the signals chosen to generate the features were the

detail signals at each level and the final approximation signal. The energy of

each signal s(n) was calculated as:
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E =
∑
n

|s(n)|2. (15)

The Daubechies 5 mother wavelet was implemented [176] and the signals

were decomposed to the 5th level. Therefore for each window of data, only 6

features were calculated for each signal modality. Additional tests were run

whilst applying additional signal features, but results were not observed to

improve significantly in order to warrant their inclusion.

0

0

1

1

X < 0.4 X >= 0.4

Y >= 0.33Y < 0.33

Z >=0.78Z < 0.78

Node

Result

Branch

0: Non Apnea Event
1: Apnea Event

Figure 29: Simple example of a decision tree with three input features X, Y
and Z.

In this work, classification is performed using a decision tree [177]. In

a decision tree the class labels (i.e. Apnea/Non-Apnea) act at the leaves

and the logical conjunctions (nodes) act as the branches that lead towards

class labels. An example of a simple decision tree is presented in Figure 29.

When a decision tree is being trained, it analyses the inputted feature set

from each individual observation and develops a weighted path to every class

label. Therefore, as each observation in the training set is analysed the tree

becomes incrementally refined. Once the decision tree has been trained, any
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new observation from the test data-set can be assigned to a particular class

according to its particular feature set. Classification algorithms are then

evaluated by establishing how accurately they can determine the correct class

label for each observation in the test data-set.

The decision tree classification algorithm has previously been implemented

successfully on all three of the signals analysed in this paper (acceleration [26],

ECG [178] and respiration [179]). This particular classifier was chosen due to

its robustness, success in similar work and ease of use.

The purpose of the analysis performed in this section was to determine the

highest classification results obtainable when classifying between apnea and

non-apnea events when using only simple available sensors. The signals from

the three independent sensor modalities (ECG, respiration and acceleration)

were available to generate the feature set from which the class regression

tree classifier was trained. Due to the availability of the three signals, seven

individual combinations of feature sets could be obtained, as can be seen from

Table 21.

Early Fusion Experiment

Employing information from all three signals (i.e. row 1 in Table 21)

resulted in an 18 element feature set, using a combination of any two of

the signal modalities (i.e. row 2, 3 or 4) produced 12 features while only 6

features were available when using the signals independently (i.e row 5, 6,

7). Table 21 presents the F1 score results obtained when employing the seven

different feature sets. Figure 30 presents the results from Table 21 visually

and in descending order.

A number of interesting conclusions can be inferred from the information

presented in Figure 30. Primarily, the results obtained provide a high classi-

fication accuracy, similar to that achieved by de Chazal et al. (89 %) [180]
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# Signals Employed F1 Score

1 Respiration ECG Acceleration 0.912
2 Respiration ECG ˜ 0.831
3 Respiration ˜ Acceleration 0.890
4 ˜ ECG Acceleration 0.914
5 Respiration ˜ ˜ 0.750
6 ˜ ECG ˜ 0.830
7 ˜ ˜ Acceleration 0.879

Table 21: F1 score obtained post classification using a early sensor fusion
approach. Table presents the change in F1 score when employing different
combinations of the three available signals to generate features.

and Yilmaz et al. (80-90 %) [168]. De Chazal et al. used power spectral

density estimates of the R-wave maxima and R-R intervals from ECG data

to identify apnea events. Yilmaz et al used an R-peak detection algorithm on

PSG recordings (ECG included) with a SVM to identify apnea events. This

result proves that the employment of the simple sensors with a low number

of features is a viable option for sleep apnea classification.

Of the three signals, the respiration signal can be seen to have the lowest

individual classification accuracy whilst also adding little in terms of classi-

fication improvement when added to other signal modalities. The inclusion

of the respiration signal features with the acceleration signal features sees a

rise in classification accuracy of only 0.011, whilst its inclusion with the ECG

signal features results in a lower accuracy improvement of just 0.001. Inter-

estingly the highest classification results are obtained when the respiration

signal is omitted during feature selection. This result may be due to the ac-

celerometer signal being capable of more accurately representing the subject’s

respiration, thus the respiration signal obtained using the stretch sensor does

not provide any additional useful information.

Of the three sensors, the accelerometer signal proved to be the best when

employing the sensors independently. By using only a single sensor, the ac-

curacy dropped by a mere 0.035 compared to the highest accuracy obtained.
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Figure 30: Impact of changing the input signals on the determined F1 score
using an early fusion approach.

This result demonstrates the functionality of solely using the accelerometer

signal to attempt to classify sleep apnea events. Accelerometer sensors are

very cheap to produce and can be easily attached to the subject using either

a strap or an adhesive. Also, as the sensors do not require direct contact with

the skin (as ECG does), it is less likely to output inaccurate or false results

over a full night of testing due to the motion of the subject causing movement

of the sensor with respect to the skin.

The combination of the accelerometer signal with the ECG signal provides

the best results when employing the full “Smartex” system. This combination

results in an accuracy of 0.914 allowing for a high confidence rate when applied

over a large number of apnea events.
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Late Fusion Experiment

In this experiment the same methodology was used as in the previous

section with the exception that a late fusion approach was applied instead of

an early fusion approach. Again seven individual combinations of feature sets

could be obtained, as can be seen from Table 22.

As expected classification results when only using a single modality was

the same with the late fusion approach as the early fusion approach. Clas-

sification results are lower across all combinations when compared to their

early fusion equivalents. This could occur for a variety of reason’s one of

which could be that decision tree classifiers perform better when they have

more features that they can directly compare to one another when creating

rule-sets for class prediction.

Classification results from different sensor combinations are very similar

between late fusion and early fusion experiments with the exception that the

respiration sensor adds noise to its combination with the ECG sensor and

lowers the classification accuracy compared to using the ECG sensor on its

own. This is akin to how the classification performance is improved in the

early fusion experiment when the respiration sensor is omitted.

# Signals Employed F1 Score

1 Respiration ECG Acceleration 0.910
2 Respiration ECG ˜ 0.857
3 Respiration ˜ Acceleration 0.892
4 ˜ ECG Acceleration 0.908
5 Respiration ˜ ˜ 0.786
6 ˜ ECG ˜ 0.851
7 ˜ ˜ Acceleration 0.890

Table 22: F1 score obtained post classification using a late sensor fusion
approach. Table presents the change in F1 score when employing different
combinations of the three available signals to generate features.
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Figure 31: Impact on the determined F1 score of changing the input signals
using a late fusion approach.

4.4.6 Conclusion

In this section, an analysis into the use of cheap and easy to use respiration,

ECG and accelerometer sensors for the classification of sleep apnea events has

been investigated. Results have shown that the accelerometer signal provides

the best results when a single sensor is used to classify the data. This result

has, to the author’s knowledge, never previously been highlighted. Many

authors have discussed the sole use of an ECG signal to classify similar data

[180][167][168] however results shown within this work instead propose the

use of a simple accelerometer signal for classification purposes. However more

accurate results are available if features from the ECG data are also included

in the analysis. The respiration signal was determined to not improve the

classification results and thus should not be included in analysis.
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The ability to accurately classify the sleep apnea data using cheap and

easy to use sensors can allow for pre-PSG testing to take place. As PSG

testing can be prohibitively expensive, the ability to pre-test for sleep apnea

using a cheap and accurate system could allow the tests to be preliminarily

carried out outside of the clinic environment. This pre-test would reduce the

number of patients who do not suffer from sleep apnea applying for PSG

testing, thus saving them money and free up medical resources and reducing

he strain on the public sector. The availability of this pre-test would also

reduce the waiting time for PSG tests which currently can be up to 6 months

between initial referral and testing. As these systems continue to become

more accurate, the requirement for final analysis using the full PSG system

may eventually become redundant.

Early and late fusion of sensor data was also investigated in this section.

Early fusion requires less computational time than late fusion and achieved a

similar classification accuracy.

4.5 Conclusion

Several experiments have been conducted in this chapter. Initially it was

shown that two strategically placed sensors that capture the same physio-

logical information outperform a single sensor. In the fusion section, results

prove that even though early fusion requires less computational time, it is as

accurate at detecting human activities as a late fusion approach. Additionally

it was proven that adding a sensor of a different type can hinder a classifica-

tion system instead of aiding it therefore it is important to accurately gauge

whether the data that one sensor is capturing is not also being captured more

accurately by a sensor already in use.
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5 Parameter Selection Optimisation using a Ge-

netic Algorithm

5.1 Introduction

Genetic algorithms are one of the most active research areas today as they

are a state of the art approach to generating useful solutions to optimiza-

tion problems. Their popularity is motivated by a wide range of potential

applications in numerous areas. Applications where genetic algorithms have

been successfully applied include chemistry [181], manufacturing [182], engi-

neering [183], economics [184], pharmacometrics [185], bioinformatics [186],

mathematics [187], phylogenetics [188], physics [189] and computational sci-

ence [190]. Genetic algorithms have been used in the literature to select the

optimum parameters for specific classifiers [93][94] they have not to the au-

thors knowledge been been widely applied to the complete model creation

process.

Genetic algorithms are a type of optimization methodology inspired by the

mechanisms of biological evolution and behaviours of natural organisms[91].

The search for parameters mimics the mechanism of evolution by forced selec-

tion. Evolution by natural selection is the well known process where certain

evolutionary traits are passed to the next generation if they prove useful to

survival based on a myriad of external influences. However the genetic al-

gorithm more closely mimics evolution by forced selection, such as breading

a sub-species of dog for a particular purpose. The GAs are lead by a cost

function that are imposed at the outset. Genetic algorithms are a sub-group

of evolutionary algorithms that formulate solutions to optimization problems

using methods inspired by natural evolution. These methods include muta-

tion, inheritance, crossover and selection. In a genetic algorithm a proposed

solution to an optimization problem is called a chromosome and a set of these
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chromosomes is termed a population. The population evolves over numerous

generations and the algorithm converges when a particular chromosome in

the current population is deemed to be the most optimum solution.

Genetic Algorithms were first described by John Holland in the 1960s and

were continually developed by him and his colleagues into the 1970s. His

goal was not to create an algorithm to solve a specific problem, but rather

to formally study the phenomenon of adaptation as it occurs in nature and

to establish a method in which the mechanisms of natural adaptation could

be imported into computer systems[191]. In the late 1980s practical applica-

tions of the GA were feasible due to the considerable increase in computa-

tional power that had occurred in that time.. General Electric then started

selling the world’s first genetic algorithm product, a mainframe-based toolkit

designed for industrial processes. Since then GA use has spread to various

fields with much success.

There are many preprocessing and postprocessing steps required in order

to create the most accurate activity classification models. These include fil-

tering the signal, extracting discriminative identifying features and selecting

an appropriate classifier. Each of these steps can have a large number of

parameters. Choosing which parameters to investigate is complex and often

arbitrary in practice. This gives researchers a limited search space in which to

achieve optimum accuracy. In this chapter genetic algorithms are investigated

in terms of whether they can improve this cumbersome approach.

Figure 32 gives an overview of the GA process employed to achieve this

goal. The initial population is compromised of candidate solutions whose

parameters are generated purely randomly. The fitness of these candidates

are then evaluated by a fitness or cost function and ranked accordingly.

A certain percentage of the top performing candidate solutions are selected

to remain in the population, this process is known as elitism. A certain

percentage of brand new random solutions are also generated for the next
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Figure 32: Genetic algorithm process

generation, to avoid a stagnant gene pool. The remaining solutions in the

next generation are “children” of the previous generation. These “children”

are created by selecting two parents, mixing or crossing the properties from

the parent, then allowing for the random mutation of single parameters of

these “children”. Once this new generation of candidate solutions set has

been fully created, each solution is evaluated with a fitness function. If any

of the solutions meet a termination criteria determined by the cost function,

such as required solution, generation count or stagnation of overall fitness

then the process is stopped. If non of these criteria are met then the process

reverts back to the selection stage and starts again.
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5.2 Related Work

Many practical classification tasks require learning of an appropriate classifier

function that assigns a given input, which is usually a series of attributes,

to one of a finite set of classes. The choice of features, attributes, feature

size and classifier type all have a direct impact on the overall accuracy of a

model. This presents a parameter selection problem in automated design of

activity classification. The feature subset parameter selection problem refers

to the task of recognizing and determining an efficient set of parameters to be

used to represent patterns from a larger set which contains often redundant,

possibly irrelevant parameters with different associated measurement costs

and or risks.

Creating classification models for large datasets is a time consuming task

as finding the most productive parameters is computationally expensive. Huang

et al. in [93] uses a GA gene-based feature selection and parameters optimiza-

tion for support vector machines (SVM). They showed that the parameters

and features subset of a SVM, a popular technique for pattern classification,

could be optimized using a genetic algorithm based approach without degrad-

ing classification accuracy. The GA was compared against other parameter

search methods such as the Grid algorithm and found that the GA based

approach significantly improved the classification accuracy whilst also having

fewer input features for the SVM which decreased classification time.

The work reported by Punch et al. in [94] employs a GA in conjunction

with a K-nearest neighbour algorithm to optimize classification by searching

for an optimal feature weighting. This warps the feature space to coalesce

individuals within groups and to isolate groups from each another. The GA

can also be used to implement efficient methods of fusing classification models

for one overall prediction goal.

In [95] the authors use a genetic algorithm to design a multiple-classifier
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system. They tested their methods on four real data sets. They found that

the GA design was less prone to overfitting compared to classifiers using: all

features; the best feature subset found by the sequential backward selection

method; and the best feature subset found by a GA (individual classifier).

They concluded that their GA-designed system used in their experiments

was more accurate than the best individual classifier in the system. designs.

The literature cited in this section focuses on using the GA to obtain

the best combination of parameters for a specific classifier which will allow

the most accurate classification model to be created. Similarly, in this work,

the goal is to employ the GA to locate the best combination of parameters to

generate the most accurate classification model however in this instance input

vector size, feature extraction parameters and different types of classifiers

will constitute the search space. This allows the GA access to the entire

classification process instead of focusing on a specific area.

5.3 Experiments

In this section various experiments were conducted using a GA for parameter

selection for classification problems. Firstly the GA is applied to a known

classification dataset for which model accuracy has been previous calculated

for all parameter possible permutations. This allows for a ground-truth to be

established and from this it is possible to ascertain whether the GA is able

to consistently optimize the choice of parameters for classification problems

more quickly than brute searching all possible combinations.

The results obtained using the ground-truth dataset can then be extrap-

olated for classification problems where the highest accuracy model is un-

known. In other words, by establishing the most optimum parameters of the

GA and exploring the average time it takes the GA to converge on the high-

est accuracy model for a given known ground-truth dataset then these GA

settings can be applied to an unknown dataset and the statistical probability
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for the G.A finding the most accurate solution can be calculated. In order

to evaluate the GAs performance with this unique dataset different popula-

tion sizes for the GA are examined to ascertain their convergence rate for

the most accurate model in the dataset. The second experiments aim was

to investigate whether the GA could locate a superior solution from a larger

parameter search space in the same amount of time taken as the brute force

approach earlier. The final experiment was to investigate whether the most

accurate models for the larger search-space could be extrapolated from the

best performing models from section 3.3.3. If these newly created models

do not contain the most accurate model then the combination of the best

parameters is stochastic.

Table 23 shows the parameters chosen when implementing the GA. The

elitism percentage is the percentage of fittest candidate solutions from each

population that will be carried over to the next generation. The crossover

probability is the likelihood that a new candidate solution will be generated

using crossover principles. The mutation probability is the likelihood that a

new candidate solution will have mutation applied to it. The new gene per-

centage is a percentage of each generation that will consist of purely randomly

generated candidate solutions. Chakraborty et al. argues in [192] that the

use of elitism hinders the possibility for such algorithms becoming trapped in

local minimum and demonstrates that values around 20% normally prove the

most effective. Experimental results in [193] have shown that large values for

crossover and mutation probability have a larger success than lower values,

hence 80% was chosen for both. Dedicating 20% to brand new candidate

solution is common in GA optimization problems and as such is implemented

in this work.
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Elitism Percentage 20%

Crossover Probability 80%

Mutation Probability 80%

New Gene Percentage 20%

Table 23: Parameters chosen for the GA

5.3.1 Benchmarking

In section 3.3.3 16,380 different models were created and investigated in or-

der to achieve the highest possible classification accuracy. These models com-

prised of four different parameters which were window length, choice of moth-

erwavelet, decomposition level and classifier. Decomposition levels between

1 and 7 were investigated. Five popular families of classifiers were employed

for sports activity classification using the discrete wavelet transform decom-

position of accelerometer signals.

John C. Platt’s Sequential Minimal Optimization (SMO) optimization

algorithm was used for the training of the support vector machine (SVM)

classifier. The IBk classifier is a simple instance-based learner that uses the

k-nearest neighbour(k-NN) algorithm for training. The Naive Bayes classi-

fier applies Bayes’ theorem with strong (naive) independence assumptions to

train its classification models. A logistic model tree (LMT) is a decision tree

with logistic regression functions at the leaves for supervised learning tasks.

A multilayer perceptron (MLP) is a feedforward artificial neural network that

utilizes back-propagation for training a network. Window lengths between 1

and 9 seconds were investigated with a step size of one second. Five moth-

erwavelet groups were employed with a total of 52 separate motherwavelets

investigated. These were the first 10 Daubechies, 7 Symlet, 5 coiflet, 15

biorthogonal and 15 reverse biorthogonal wavelets. Table 24 shows the high-

est accuracy results obtained using a single model classification model.
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Sport Classifier DWT lvl Mother W. Length(s) F1

Soccer NaiveBayes 6 rbio1.1 3 0.799

Hockey MLP 6 bior1.1 7 0.823

Table 24: Highest classification accuracies attained before optimisation

5.3.2 Experiment 1

Aim

In this initial experiment the goal was to investigate whether the GA was

able to reduce the amount of time needed to find the parameters required

to create the most accurate model. GAs with different population sizes were

used to find the optimum parameters required to create the most accurate

model. In practice users can select a number of criteria that would determine

if the algorithm should terminate such as desired accuracy level, amount of

candidate solutions constructed or if the current best result has not improved

for a certain amount of candidate solutions.

Methodology

In section 3.3.3 16,380 different models were created and investigated in or-

der to achieve the highest possible classification accuracy. Four parameters

were investigated; window length, DWT decomposition level, classifier and

motherwavelet choice. This brute force approach took approximately 5 days

to complete and achieved an accuracy of 79.9% for soccer and 82.3% for field

hockey. The GA was employed on this same dataset and the length of time

it took to find the highest classification accuracy model was investigated.

The maximum amount of candidate solutions to be created was set at 50%

of the total possible parameter permutations. This figure was chosen after

initial exploratory experiments when the majority of population experiments

concluded before 50%. Therefore it was assumed that if the GA had not

identified the most accurate model by 50% of the total possible permutations

then the algorithm was stuck in a local minimum. In Figure 33 the final
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bar in each graph indicates the number of times the GA did not locate the

optimum parameters for the most accurate classification model.

Results

Figure 33 shows the performance of different population sizes used in this

experiment. Nine population sizes were investigated ranging from 10 to 120.

Each population size experiment was conducted one hundred times in order

to give a unbiased account of each population size performance. The X-axis of

each graph indicates what percentage of the total possible parameter permu-

tations had to be calculated before the most accurate model was found. The

Y-axis of each graph shows the percentage of times the most accurate model

was created in the X-axis percentage range. For example in the graph which

demonstrates the performance of the GA whose population size was 30 it can

be seen that 15% of the time the most accurate model was created within the

first 5% of total possible models. When brute searching every possible pa-

rameter permutation(100%,) must be investigated. Figure 33 illustrates that

the majority of population sizes located the optimum parameters on average

well before 50% of the time

Figure 34 shows the average percentage of total possible solutions required

to be investigated before the optimum solution is located for each population

size. Lower population sizes must construct a larger amount of permutations

before the optimum solution is found. Population sizes from forty onwards

required a similar amount of candidate solutions to be constructed before the

optimim solution was located however the GA with a population size of 50

located the optimum parameters fastest on average.

From Figure 33 it can be observed that while the smaller population sizes

perform better than a standard brute force approach, they do not converge

on the best combination of parameters on average as quickly as the larger
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Figure 33: Comparison of GAs with different population sizes
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Figure 34: Average amount of solutions required before optimum solution
found

population sizes. Larger population sizes performed well but did not con-

verge on the optimum set of parameters on average as quickly as the middle

population sizes.

Figure 35 shows the comparison between the two best performing pop-

ulation sizes, 50 and 60, from Figure 33. It can be observed that the GA

with a population size of 60 only outperforms the population size of 50 when

8% of the possible permutations have been investigated. Therefore the GA

with a population size of 50 was found to locate the optimum parameters

most reliably. It can also be observed that the GA with a population size

of 50 will find the parameters for the most accurate model 31% of the time

within the first 10% of parameter permutations. On average however it will

also find the parameters for the most accurate mode 75% of the time within

the first 25% of the total possible parameter permutations. In addition the

GA with a population of size of fifty only failed to locate the optimum pa-

rameters for the most accurate classification model 5% of the time before the

50% termination criteria was reached. This 5% figure was the lowest failure
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Figure 35: Performance comparison of population sizes 50 and 60
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rate compared to the rest of the population sizes investigated. This result

presents many opportunities for researchers of various classification areas to

utilize generic algorithms to optimize the creation of optimum classification

models.

5.3.3 Experiment 2

Aim

In this experiment the aim was to investigate whether the GA could locate

a superior solution from a larger parameter search space in the same amount

of time taken as the brute force approach earlier.

Methodology and Results

In experiment two the number of window length permutations was in-

creased by a factor of ten by reducing the step size from one second to one

tenth of a second for all models. This increased the number of permutations

from 16,380 to 163,800. Implementing a brute force for this problem would

be infeasible as it would take approximately one and half months to complete.

This figure was estimated from the amount of time it took to generate the ini-

tial 16,380 models as that took approximately five days. The targeted model

accuracy was set at 100% and it was not expected to be achieved. The candi-

date solution count limit was set at 10% of the maximum number of possible

candidate solutions. This value was chosen as it computes the same amount

of candidate solutions as was computed in section 3.3.3 while investigating

a much larger search space. There was no convergence break limit set. The

population size was set at 50 as results from experiment one had shown that

it was the most productive figure. The GA population also reserved 20% for
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Figure 36: Experiment 2 - Football Dataset Results

Sport Classifier DWT lvl Mother W. Length(s) F1

Soccer Tree-LMT 3 db7 2.1 0.8958

Hockey Tree-LMT 1 sym5 1.5 0.8888

Table 25: Highest classification accuracies attained with optimisation

elite candidate solutions, 20% for new random genes and the remaining 60%

for possible crossover candidates and mutation candidates. There was a 80%

chance that a candidate solution would have its genes mutated or crossed

over.

Figures 36 and 37 show the amount of candidate solutions required to

be calculated before a more accurate model was created. The most accurate

Football candidate solution was 13810th while the most accurate Hockey can-

didate solution was the 9440th. An improved model accuracy of 89.58%(+9.59%)

was achieved in the Football Dataset while 88.88%(+6.5%) was achieved in

Hockey Dataset with the use of a genetic algorithm. Table 25 shows the

parameters for the best performing model for each sport.
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Figure 37: Experiment 2 - Hockey Dataset Results

5.3.4 Experiment 3

Aim

The aim of this experiment was to investigate whether the most accurate

models for the larger search-space could be extrapolated from the best per-

forming models from section 3.3.3. This is accomplished by varying each old

model’s window length with the smaller step size. If these newly created

models do not contain the most accurate model then the combination of the

best parameters is stochastic.

Methodology and Results

In experiment three the top twenty performing classification models for

each sport created by the brute force method described in section 3.3.3 were

investigated. The size of the window length permutations was increased by
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a factor of ten by reducing the step size from one second to one tenth of a

second as with experiment two. The accuracy of every model permutation

was calculated to see if there was any correlation between the previous top

performing models and the new larger search space. Investigating all permu-

tations created 1602 models for both datasets.

The maximum accuracy achieved in the Football dataset was 86.11%

which is less than the 89% achieved in experiment two. The maximum accu-

racy achieved in the Hockey dataset was 86.80% which is less than the 88.8%

achieved in experiment two. This indicates that that the optimum parame-

ters for this larger classification search-space cannot be inferred from the best

parameters from a smaller search-space.

5.4 Conclusion

Genetic algorithms are one of the most active research areas today to generate

useful solutions to optimization problems yet their potential in classification

parameter reduction has not been fully explored. In this section the genetic

algorithm was employed to optimize the discovery of a combination of param-

eters required to create the most accurate classification model from a dataset.

GAs have been utilized in many different application areas for optimization

purposes however in the machine learning field the literature has focused on

using the GA to obtain the best combination of parameters for a specific clas-

sifier which will allow the most accurate classification model to be created.

However in this work, the goal is to employ the GA to locate the best com-

bination input vector size, feature extraction parameters and different types

of classifiers. This allows the GA access to the entire classification process

instead of focusing on a specific area.

From the first GA experiment it can be observed that the GA is regularly

able to substantially reduce the time needed to locate the optimum param-

eters for a classification model. This is significant as attempting to locate
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optimum model parameters for a large dataset requires substantial process-

ing power.

Researchers generally speculate on what they believe are the most influ-

ential parameters in a classification problem and limit their investigation as it

is not feasible to investigate very large search spaces. The second GA exper-

iment shows how the GA can permit a much larger parameter search space

to be investigated. This in turn allows more accurate models to be created.

In experiment two the GA termination criteria was the amount of candidate

solutions allowed to be constructed and it was set at the same amount of

solutions generated by the brute force approach and the search space was ex-

panded ten fold. The GA improved the classification accuracy for soccer by

over 9.5% and improved the classification accuracy for hockey by over 6.5%.

Finally, experiment three was conducted to investigate whether the pa-

rameters located for this new highest accuracy model could of been extrap-

olated from the previous top candidate solutions. This was not the case

therefore the GA is required to locate the new best performing parameters.

In summary three experiments were conducted to examine whether the

GA would be able to optimise the parameter selection process for the classi-

fication framework purposed in this thesis. The results indicate that this is

possible but also that the application of the GA can lead to the creation of

even more precise classification models.
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6 Conclusion

Context-aware computing is an expansive area of research. This thesis exam-

ined one particular field of context-aware computing, namely activity recog-

nition with wearable sensors. It explains that sensor technology combined

with the power of data mining and machine learning techniques, can respond

to various needs of users in a context aware way. To facilitate research in this

area, a machine learning framework was constructed that allows automatic

human activity models to be generated for classification purposes. The auto-

matic activity recognition framework aims to recognise the actions and events

of a user utilising physiological data captured from sensors attached to the

body. However the algorithms, methods and framework that is presented in

this work can be applied to any classification problem.

6.1 Thesis outline

Chapter 1 introduces this work, providing a brief overview of context aware

computing and its future role in society. It presents the several research ob-

jectives associated with creating a machine learning framework for automatic

human activity classification. It gives a indication on the steps required to

be investigated before this outcome could be realised. It explains that phys-

iological sensors were chosen as the primary means of capturing user data

and that data will allow user context to be deciphered. It briefly presents the

research contributions of this work before giving an overview of each chapter

in this work.

Chapter 2 explores the technical background of preprocessing the raw

sensor data before looking at the literature for advanced feature extraction.

Then physiological sensors and their relevant applications are described in

detail for classification purposes followed by a look at the different data fu-

sion techniques which are investigated on their applicability for multimodal
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sensor fusion. After, this chapter there is an exploration at the state of the

art machine learning techniques, which are used for to create classification

models in this work. Finally state of the art parameter selection optimisation

techniques are introduced, which were to hasten the classification model cre-

ation process. Relevant literature is presented as a basis for the framework

design choices presented in this thesis.

Chapter 3 describes the challenges which were overcome in order to per-

form human activity recognition using a single sensor. This chapter outlines

the feature extraction techniques required to initially evaluate a users activity

performance before creating algorithms to identify various different sporting

activities. A number of experiments are undertaken in order to ascertain the

best approach to creating a classification model. A black box experiment

is compared to a thorough investigation of all parameters. These two ap-

proaches are then compared to a final approach where each activity has its

own specialised classifier. All methods proposed are compared to a literature

benchmark for evaluation purposes. Different feature extraction techniques

such as DWT, FFT and some simple time domain techniques were imple-

mented for comparison purposes. High class recognition scores are given as

evidence that the methodology presented in this work has scientific merit.

Chapter 4 explores the challenges encountered when creating a multimodal

human action recognition system. Advantages from using two accelerometers

versus a single accelerometer to identify different training activities performed

by a subject are presented. As the results prove, sensor fusion can signifi-

cantly improve the accuracy rate for classification models. Early fusion and

late fusion are the two techniques used in this chapter to fuse data from dif-

ferent sensors. Experiments are conducted that use both early and late fusion

to fuse the data from ECG, respiration and accelerometer sensors. Results

prove that even though early fusion requires less computational time, it is

similarly accurate at detecting human activities as a late fusion approach.
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After evaluating those two approaches, results obtained when using differ-

ent permutations of three sensors of different modality are presented in this

chapter. Results presented in this chapter indicate that adding sensors of

a different modality to a activity recognition system can help increase the

accuracy of said system. Results also indicate that adding a sensor which

captures physiological data that is already being accurately measured by a

different modality can decrease classification accuracy.

Chapter 5 takes the results of all the model parameter permutations dis-

covered in section 3.3 and uses them to test different genetic algorithms. This

chapter explains why genetic algorithms can help optimise the parameter se-

lection process. It also goes into detail on the role of each parameter that

makes up the genetic algorithm and process behind it. Three experiments

are conducted to investigate the genetic algorithms suitability to optimise

the process of parameter selection. The first experiment explores the use of

different population sizes and compares each GA to the brute force approach.

Experiments were conducted 100 times each to give a fair representation of

each populations ability. The second experiment increases the number of pa-

rameter permutations by a factor of ten but the number of possible solutions

investigated was limited at the same amount as in section 3.3. This showed

that the genetic algorithm could locate a new superior solution in the same

amount of time it took the brute force algorithm to search through a search

space one tenth of the size. The final experiment investigated whether this

new superior models could of been extrapolated from original best perform-

ing models in section 3.3. The main result presented in this chapter suggests

that using a GA on a similar classification parameter selection problem as

presented in this chapter will yield significant savings in computational time

or required processing power.
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6.2 Suggestions for Future Work

The experiments conducted in this work to create a classification framework

suggest there are many research areas which merit additional research. This

section analyses these possible research areas which could add to the literature

in automatic activity classification. As previously stated one area of future

work will focus on investigating utilizing all sensor in smartphones which can

capture physiological information. While various forms of feature extraction

methods are analysed and compared in this thesis there is still scope for

future research into other feature dimensionality reduction techniques such

as principal component analysis, discrete cosine transform and the Walsh-

Hadamard transform.

Furthermore there are other sensors which have grown in popularity such

as the miCoach by Adidas. It would be interesting to investigate their perfor-

mance compared to smartphones. Planned future work will look to examine

and to compare accuracy of the current major available commercial devices

and investigate whether the physiological data captured by each sensor could

be fused together to improve classification accuracy.

The success of the GA on optimising the parameter selection process war-

rants the investigation of other search heuristic algorithms. Particle Swarm

Optimization (PSO) is one such relatively new heuristic search method whose

mechanics are inspired by the swarming or collaborative behaviour of biolog-

ical populations. Successfully implementation of parameter selection opti-

misation techniques when creating classification models allows much larger

parameter search spaces to be investigated thus allowing for more accurate

models to be created.
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A Sample Signals from Section 3.3.2

Figure 38: Player Stationary

Figure 39: Player Walking
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Figure 40: Player Jogging

Figure 41: Player Sprinting
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Figure 42: Player Hitting the Ball

Figure 43: Player Tackling
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Figure 44: Player Soloing with the Ball

B Sample Signals from Section 4.3.1

Figure 45: User Jumping on a Box
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Figure 46: User Sprinting

Figure 47: User Hitting the Ball
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Figure 48: User Walking

Figure 49: User performing Agility Run
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[72] J. Malobabić, H. Le Borgne, N. Murphy, and N. O’Connor, “Detecting

the presence of large buildings in natural images,” 2005.

[73] Y. Li and C. Dorai, “Svm-based audio classification for instructional

video analysis,” in Acoustics, Speech, and Signal Processing, 2004.

Proceedings.(ICASSP’04). IEEE International Conference on, vol. 5.

IEEE, 2004, pp. V–897.

[74] C. Leslie, E. Eskin, and W. Noble, “The spectrum kernel: A string

kernel for svm protein classification,” in Proceedings of the pacific sym-

posium on biocomputing, vol. 7. Hawaii, USA., 2002, pp. 566–575.

[75] Y. Kim and H. Ling, “Human activity classification based on micro-

doppler signatures using a support vector machine,” Geoscience and

Remote Sensing, IEEE Transactions on, vol. 47, no. 5, pp. 1328–1337,

2009.

[76] V. Jakkula, “Tutorial on support vector machine (svm),” School of

EECS, Washington State University, 2006.

[77] D. Willems, S. Rossignol, and L. Vuurpijl, “Features for mode detection

in natural online pen input,” in Proceedings of the 12th Biennial Con-

ference of the International Graphonomics Society, 2005, pp. 113–117.

[78] W. Shang, H. Huang, H. Zhu, Y. Lin, Y. Qu, and H. Dong, “An adaptive

fuzzy knn text classifier,” Computational Science–ICCS 2006, pp. 216–

223, 2006.

[79] C. Christodoulou, S. Michaelides, and C. Pattichis, “Multifeature tex-

ture analysis for the classification of clouds in satellite imagery,” Geo-

151



science and Remote Sensing, IEEE Transactions on, vol. 41, no. 11, pp.

2662–2668, 2003.

[80] S. Karimifard, A. Ahmadian, M. Khoshnevisan, and M. Nambakhsh,

“Morphological heart arrhythmia detection using hermitian basis func-

tions and knn classifier,” in Engineering in Medicine and Biology So-

ciety, 2006. EMBS’06. 28th Annual International Conference of the

IEEE. IEEE, 2006, pp. 1367–1370.

[81] W. Wei, S. Visweswaran, and G. Cooper, “The application of naive

bayes model averaging to predict alzheimer’s disease from genome-

wide data,” Journal of the American Medical Informatics Association,

vol. 18, no. 4, pp. 370–375, 2011.
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