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Abstract—Lifelogging is the ambient, continuous digital
recording of a person’s everyday activities for a variety of possible
applications. Much of the work to date in lifelogging has focused
on developing sensors, capturing information, processing it into
events and then supporting event-based access to the lifelog for
applications like memory recall, behaviour analysis or similar.
With the recent arrival of aggregating platforms such as Apple’s
HealthKit, Microsoft’s HealthVault and Google’s Fit, we are now
able to collect and aggregate data from lifelog sensors, to central-
ize the management of data and in particular to search for and
detect patterns of usage for individuals and across populations.
In this paper, we present a framework that detects both low-
level and high-level periodicity in lifelog data, detecting hidden
patterns of which users would not otherwise be aware. We detect
periodicities of time series using a combination of correlograms
and periodograms, using various signal processing algorithms.
Periodicity detection in lifelogs is particularly challenging because
the lifelog data itself is not always continuous and can have
gaps as users may use their lifelog devices intermittingly. To
illustrate that periodicity can be detected from such data, we
apply periodicity detection on three lifelog datasets with varying
levels of completeness and accuracy.

I. INTRODUCTION

Lifelogging is a phenomenon whereby people digitally
record their own daily lives in varying amounts of detail, for
a variety of purposes [1]. In a sense lifelogging represents
creating a “black box” of an individual human’s life activities
and may offer the potential to mine or infer knowledge about
how we live our lives. Lifelogging can capture data from either
wearable sensors such as cameras, accelerometers, GPS or
iBeacon locators, or sensors built into our environment such as
energy usage meters, temperature sensors or passive infra-red
sensors to detect the presence of other people.

Once sensor data has been captured it is typically uploaded
to a cloud-based server where it can be analysed, stored, and
visualised by the user who created the data and this is what
constitutes the lifelog. Various applications can then use this
data and at present, most of them are based around personal
healthcare or wellness. There are several cheap products on
the market which log caloric energy expenditure and the
types of human physical activity being performed including
the FitBit One, Lark, and the Nike Fuelband. With built-in
accelerometers and gyroscopes and a fairly simple algorithm
these can be used to count the number of steps the wearer
takes in a day. Similar products can record the duration and
quality of sleep.

More advanced lifelog devices such as the SenseCam or
Autographer, can record visual lifelogs where images and/or
video from a first person (wearer) viewpoint can capture
more detail about the wearer’s daily activities. Such visual
lifelogs can support more advanced applications other than
health monitoring including memory recall for people with
early-stage dementia [2], diet monitoring, smoking cessation,
or even some job-specific lifelogs for example from medical
practitioners. All of these applications of lifelogging, and most
others, are based around accessing the very recent past from the
lifelog and accessing discrete units of that past, corresponding
to events and as such, most lifelogs are structured in a manner
that reflects the way the brain is believed to store memories,
i.e. based around events. For example [3], [4], [5], all refer
to Cohen and Conway’s model of episodic memory [6] which
suggests that our memories of specific events and experiences
are autobiographical and personal, and can be used to recall
dates, times, places, people, emotions and other contextual
facts.

Recording lifelogs and analysing them into events so we
can recall specific events is a first-order use of creating lifelogs,
i.e. it represents the immediate benefit. But what happens
when we build up lifelogs over extended periods of time, such
as years? Companies are now offering long-term storage and
aggregation of lifelog data. Apple recently announced their
HealthKit framework for iOS 8 at WWDC 2014 while Google
announced Google Fit at around the same time. Microsoft
have their HealthVault which is a similar health data aggre-
gation and management platform. With such longitudinal and
multimodal data, we can not only detect events, but we can
try to identify and mine lifestyle patterns by considering time
correlation within one sensor stream, and/or cross-correlation
across different sensor types. To address such a challenge, we
consider both low-level data and high-level data. Low-level
here means the raw data stream we capture using ambient or
wearable sensors. After applying machine learning techniques,
low-level data can be mapped onto a higher semantic level,
so accelerometer values are turned into activity levels, or
categorised into activities like sitting, walking, or jogging.

Researchers in lifelogging are just now starting to realise
the potential that aggregated lifelogs which bring together data
from multiple sensors, all for a single individual, can offer. We
know that current research into lifelogging does not fully ex-
ploit time relationships when dealing with data [1]. In [7] time
series analysis methods were used to study chronologically-
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presented lifelogging images. The authors concluded that DFA
(Detrended Fluctuation Analysis) shows lifelogging data is
not a random walk but is closer to a time series with a
cyclic fluctuation. The work presented in this paper builds
upon this finding. Detecting patterns of periodicity would
give huge insights and reveal aspects of a persons lifestyle.
However, periodicity detection usually relies on data which
is both complete and has no missing values, and is accurate
with no probabilities associated with the data. With lifelogging,
this isn’t always the case as people can simply decide not to
switch on their logging devices or there can be calibration
errors with the lifelog sensors. In this paper we address how
to detect repeating patterns of lifestyle from lifelogs when the
underlying data has missing or incomplete data, or even data
which is erroneous. Once such patterns and periodicities have
been detected it is beyond the scope of this paper as to how
to use them or present them back to users. To illustrate our
work on detecting from such noisy data we work with real
lifelog datasets1 which have in-built gaps and noise. Our work
demonstrates that even with very noisy data which is also far
from being continuous, we can detect repeating patterns and
periodicities.

In the next section we examine how lifelogs are usually
analysed and structured into events and following that we
present an overview of the mathematical tools we use to detect
repeating patterns in lifelogs.

II. DETECTING EVENTS IN LIFELOGS

Most applications of lifelogs benefit from automatically
structuring the lifelog into discrete events. The challenges of
effective structuring, searching and browsing of a lifelog in
order to locate important or significant information has been
addressed as a media process which is based on 1) capture
and upload of sensor data, images or video 2) post processing
of uploaded data and 3) access to processed data. This has
been described in detail in [8] which presents the lifelog as a
repository from which information – events of importance –
can be retrieved, and this has been the access paradigm for the
lifelog.

In [9], a method that can automatically segment a collec-
tion of lifelog images captured from a wearable camera is
described. The features used to compare the similarity between
images were MPEG-7 descriptors namely colour layout, colour
structure, scalable colour and edge histogram; similarity scores
across adjacent images were calculated using those features.
The authors used a technique called peak scoring to enlarge the
dissimilarity and some automatic thresholding methods were
applied to determine the boundaries between discrete events.
In the final step of this process, event boundaries that are too
close to each other are merged. Following this approach, other
researchers would apply machine learning techniques such as
support vector machines (SVM) to train a classifier which
would be used to identify the boundaries between events in
a sequence of lifelog images. External data from other sensor
sources such as accelerometers, GPS co-ordinates or metadata,
could also be used in the segmentation process.

1As scientists our philosophy is always to make our research data openly
available to others in the interests of transparently and reproducibility but
because this is personal data from a personal lifelog we cannot publish this
easily.

Once images have been segmented into events, a single
image is selected to represent the whole event in order to
facilitate event queries from users. Several selection methods
have been investigated including selecting the middle image,
selecting the image that is most representative, and selecting
the image that is most representative but also most different
to other events. Image quality was also considered as an
important criterion in selecting key frame images and different
image quality measures have been evaluated.

When a lifelog is segmented into events for event-based
access, by default we get date and time, and perhaps location,
as keys by which we can access those events but we also
need to analyse lifelog content because of the huge benefits
that content-based access can bring. A standard approach to
multimedia access is to build a set of classifiers for a set
of pre-defined semantic concepts and to train each classifier
so that it assigns images from the lifelog, a score as to the
confidence of that semantic concept being present in the image.
In [10], thresholds were applied to determine whether a lifelog
image belongs to a concept or not. One of the most important
statistics for concept detection is the author-calculated average
number of concepts detected for each event and compared
among users.

While indexing lifelog events by the presence or absence of
a set of concepts is useful, [11] described a way that a user can
retrieve events by using queries which have far more semantics
and which can encapsulate different aspects of an information
need, specifically the when, where, who, what aspects. This
also allows for similar events to be retrieved by computing and
ranking similarity between events. Other lifelogging research
[12] has shown an interest in building an ontology of semantic
concepts that occur in everyday activities and which can be
detected in lifelogging image collections. Wang [13] used
Markov chains to model the probability distribution of objects
and of semantic concepts detected in lifelog image events.

Despite all the research carried out into applications of
lifelogging and into post-processing of lifelog data, especially
visual lifelogs consisting of images from wearable cameras, re-
search concentrating on analysis of lifelogs which investigates
longitudinal aspects and the causality and impact of patterns
detected from longitudinal analysis on lifestyle, is not apparent.
This is our particular interest and is what we focus on in this
paper.

III. BACKGROUND METHODOLOGY

Our aim is to detect and report longitudinal patterns in
lifelogs which we can regard as a form of time series, and these
patterns can be referred to as periodicities. Signal processing
theory tells us that in order to detect low-level periodicities in
any time-series, we calculate its power spectral density (PSD
or power spectrum) [14]. The PSD essentially tells us how
strong is the expected signal power at each possible frequency
of the signal. Because frequency is the inverse of period, we
wish to identify frequencies that carry most of the energy
and then from that to detect the most dominant periods. Two
estimators of the PSD could be used to detect and present
periodicities; the periodogram and the circular autocorrelation
or full cross correlation. The power spectral density can be
computed using the DFT (Discrete Fourier Transform) or FFT



(Fast Fourier Transform). PSD is also called periodogram and
we can detect and visualise periodicity using a periodogram.
The periodogram was first proposed in 1898 (Schuster, A.,
”On the investigation of hidden periodicities with application
to a supposed 26 day period of meteorological phenomena,”
Terrestrial Magnetism, 3, 13-41, 1898.) and is visualised as a
2D plot with spectral frequencies on the x-axis and the strength
of the pattern at each frequency measured on the y-axis.

In terms of lifelogging, the periodogram can be used to
detect the natural cycles that occur in lifestyle, behaviour,
and activities. Periodicity can be observed in many natural
phenomena, such as circadian rhythms associated with our
sleep, annual seasons and so on. Intuitively, we think of our
routine daily lives as composed of various forms of recur-
ring events with obvious periodicities around daily, weekly,
monthly, seasonal and annual cycles. In any kind of spectral
analysis of a lifelog we expect to see periodicity around these
frequencies. However, without the help of lifelogging devices
and the resulting lifelog, analyzing the periodicity of human
life is not a practical proposition.

We now define the tools we use to detect periodicity in
lifelogs.

A. Autocorrelation

In statistics, correlation is basically measuring how similar
two sequences are. This quantitative measurement of similarity
of signal 1 and signal 2 can be defined as:

r12 =
1

N

N−1∑
n=1

x1[n]x2[n]

Cross correlation between time shifted sequences, can be
defined as:

r12(k) =
1

N

N−1∑
n=1

x1[n]x2[n+ k]

All possible k-shifted time series could generate another
sequence of numbers only changing with k, which is called
full cross-correlation. The correlation between a signal and
time shifted version of itself is called an auto-correlation. A
lag operator is used to generate the time shifted signal and ‘0
lag’ equals to mean-square signal power. Auto-correlation can
be defined as:

r11(k) =
1

N

N−1∑
n=1

x1[n]x1[n+ k]

B. Periodogram

The normalized Discrete Fourier Transform (DFT) of a
sequence x(n), n = 0, 1, . . . , N − 1 is a sequence of complex
numbers X(f):

X(fk/N ) =
1√
n

N−1∑
n=0

x(n)e−
j2πkn
N

where the subscript k/N denotes the frequency that each
coefficient captures. Suppose that X is the DFT of a sequence

x(n). The periodogram P is provided by the squared length of
each Fourier coefficient:

P (fk/N ) = ‖X(fk/N )‖2 k = 0, 1, . . . , dN − 1

2
e

Notice here that k ranges from 0 to N−1
2 . In order to find

the k dominant periods, we need to pick the k largest values
of the periodogram. This works well for short to medium
length periods but for long periods or low frequencies, per-
formance is worse because each value in the periodogram
indicates the power at frequency interval [Nk ,

N
k−1 ] which is

too wide to capture large periodicity. Thus the accuracy of
periodicity detection at low frequency will be lower than at
higher frequency. For lifelogging, this means there is difficulty
in detecting patterns measured in years. Another difficulty
when using periodograms is spectrum leakage, which causes
frequencies that are not integer multiples of the DFT bin width
to disperse over the entire spectrum which could result in
false alarms being detected in the periodogram. However, the
periodogram is still a good way to guarantee the accuracy of
detected periods with short to medium frequency.

In the context of our work on periodicity detection from
lifelogs, one of the challenges we are faced with is missing or
erroneous data from the lifelog. For such a scenario, the Lomb-
Scargle periodogram [15] can be used to detect periodicity in
signals with missing, unevenly or unequally spaced data. This
is defined formally as

PX(ω) =
1

2

{
[
∑N
n=1 y(tn) cos(ω(tn − τ))]2∑N

n=1 cos
2(ω(tn − τ))

+

[
∑N
n=1 y(tn) sin(ω(tn − τ))]2∑N

n=1 sin
2(ω(tn − τ))

}

where τ is defined as:

tan(2ωτ) =

∑N
n=1 sin(2ωtn)∑N
n=1 cos(2ωtn)

IV. DATASETS

The purpose of this work is to determine how well period-
icity can be detected in lifelog data, focussing specifically on
how the tools perform in the scenario of missing data and gaps
in the lifelog. In this section we describe the datasets which
we have used.

A. Sleep Dataset

The first dataset represents 2.5 years of continuous nightly
sleep monitoring for an individual with a +80% capture rate.
Data was collected using the wrist-worn Lark sleep sensor2

and contains the following information:

1) Time to sleep – represents the time taken between
going to bed and falling asleep;

2) Time to rise – represents the time taken between
waking and getting out of bed;

2http://www.lark.com



3) Time asleep – represents the duration of sleep;
4) Quality – a numeric indicator of sleep quality com-

puted as a function of how well the night’s sleep
mapped to the circadian sleep (90-minute) rhythm
and how many cycles of that rhythm were completed;

5) Times woken up – represents the number of instances
of a wake-up during sleep, where “wake up” repre-
sents even a turning over in the bed;

The distribution of some of these parameters (3 and 4) is shown
in Figure 1 and the frequency of data capture is shown in
Figure 2 where a black line represents an instance of captured
data. An obvious periodicity we would hope to detect is based
on the weekly cycle where the subject tends to sleep longer
at weekends than during workdays because he has a regular
work schedule of Monday to Friday.

Fig. 1. Some of the raw sleep data

Fig. 2. Frequency of capture of sleep data

B. Sports Dataset

The second dataset represents a 10-year log of physical
exercise activities including running, cycling and swimming,
from an international tri-athlete (now retired from competi-
tion). The log contains a daily entry for distance covered for 1
or more of the sports as well as daily text comments which can
indicate mood, training effort, relative performance, weather,
etc. and these can be analysed for sentiment. sports dataset
capture 100% of activity log in 10 years. Obvious periodicities
to be detected from this data include seasons, performance
at targeted sports events, perturbations caused by occasional
injury and overall decline over the decade from ageing.

In Figure 3, the raw distances for running, cycling, swim-
ming and for aggregated activity effort is shown. The latter of
these plots accounts for days where the athlete would exercise
or compete in more than one discipline and aggregated activity
is computed according to the metabolic equivalent (MET)
where the unit of MET is 1 kcal/kg*h. To calculate this the
average speed for each of the three sports activities of the
athlete is used. In [16], the MET for each sport activity at the
average speeds indicated by the athlete are shown in Table I.

TABLE I. MET TABLE

Activity Speed (kph) MET

Running 13 12.9

Cycling 25 8.4

Swimming 3 8.9

Fig. 3. Visualization of raw data in the sports activity dataset

In the running, cycling, swimming and aggregated data
visualized in Figure 3 the X-axis represents time, while Y-
axis is the distance for the corresponding activity. From
the visualization, no obvious periodicity can be observed in
running, swimming or aggregated data but there seems to be
an annual periodicity in the cycling data.

For each sporting activity and for the aggregated data,
we applied window sizes of 7, 14, 30, 120, 365 days to
calculate the moving averages. Figure 4 shows the results of
this. Running, cycling and swimming start from 2000, 2007
and 2005 respectively. Moving average calculates the mean
value of a fixed size window and then moves the window one
day forward to get the new value. Moving average works like
a low-pass filter; the bigger the window size, the lower the
frequency can pass. Because of this, it is easier to find long-
term trends using a larger window size because short terms
shocks in the data (competitions, vacation, short-term injuries)
will be smoothed. From the moving average results, we can see
that running distance decreased over time, while the cycling
and swimming distances increased. The total amount of energy
expenditure according to MET fluctuates and no obvious trends
can be seen in the aggregated data. We can infer from this data
that after the athlete started to train for swimming in 2005 and
for cycling in 2007, he adapted himself to this by reducing the
amount of training for running.

One major difference between the sleep and sports datasets
is that the sports dataset has 100% capture rate of activity over
10 years, while the sleep dataset captures just over 80% of
the nights in a 2.5 year period. The raw figures on sporting
activities are augmented by the athlete annotating most days
with text comments which summarise the day and occasionally
report on performance or mood. These reports are infrequent
(25–30%), and so provide sparse data which we can also
examine for periodic patterns.



(a) Run

(b) Cycle

(c) Swim

(d) Aggregated

Fig. 4. Moving average values for sports dataset

We annotated the reports for mood and for performance to
create a third dataset. Four annotators were asked to annotate
the text for mood by following the following strategy: if a
comment provides an indication of mood (“feeling great” or
“not well”, “ok”), give a rating between 1 and 5, where 1
indicates the worst feelings and 5 indicates the best feelings. If
there is no indication of mood in the text, give a rating of 0. For
annotation of performance the four annotators were given the
following instruction: when a comment provides an indication
of performance (“personal best”, “strong finish”, “stopped
early”), give a rating between 1 and 5 where 1 indicates
poorest performance and 5 indicates best performance. If there
is no indication of performance in the text, give a rating of 0.

Comments made by the athlete during the year 2007 were
randomised and presented to 4 annotators. Because the marks
for mood and performance given by annotators are highly
subjective and have biases, inter-annotator agreement namely
Cohen’s Kappa co-efficient [17] was calculated across the
annotators and is presented in Table II and III.

TABLE II. INTER ANNOTATION AGREEMENT FOR MOOD

Annotator A B C D
A 1.00 0.47 0.60 0.47
B 0.47 1.00 0.41 0.48
C 0.60 0.41 1.00 0.36
D 0.47 0.48 0.36 1.00

TABLE III. INTER ANNOTATION AGREEMENT FOR PERFORMANCE

Annotator A B C D
A 1.00 0.15 0.12 0.17
B 0.15 1.00 0.35 0.37
C 0.12 0.35 1.00 0.36
D 0.17 0.37 0.36 1.00

Cohen’s Kappa coefficient ranges from 0 to 1, where a
value of 1 indicates complete agreement between a pair of
annotators, and 0 denotes complete disagreement. For mood,
we can see that annotator A highly agrees with annotator C,
while C and D are agree least with each other, though all
values are greater than 0.3. For annotation of performance, it
is obvious that annotator A has low agreement with all three
other 3 annotators. Based on this assessment of inter-annotator
agreement, we apply the following fusion strategy:

• For Mood, for each annotated comment discount the
value which is the greatest outlier and average the
remainder;

• For Performance, discount annotator A completely
and then for the other (B,C,D) annotations on each
comment, discount the one who is the greatest outlier,
then average the remainder.

The fused mood and performance data from the 4 anno-
tators are sparse and have large amounts of missing data and
gaps as shown in Figure 5 where a black line represents a mood
or performance value while whitespace indicates there is either
no comments made by the subject for that day’s activity or the
mood and/or performance indicators are absent. The gap sizes
for fused mood and performance vary between 1 and 19 days,
while mood has a mean gap of size 4.15 days compared to
3.15 for performance. This unevenly sampled data makes it a
real challenge to detect periodicity from this data and an ideal
target for the Lomb-Scargle periodogram.



(a) Fused mood

(b) Fused performance

Fig. 5. Distribution of fused data from annotators

V. EXPERIMENTAL RESULTS

We applied periodograms and correlations to both datasets
to see if periodicities were apparent even with missing data
and irregular sampling. The periodogram reveals the energy
carried by each frequency across a range and is plotted as a
graph where the x-axis is frequency and the y-axis is energy. If
there is statistically significant energy carried by one frequency
or different frequencies, this will be revealed graphically.

A. Results on Sleep Dataset

Each of the parameters from sleep logging (duration,
quality, number of wakes, time in bed, etc.) has been analysed
for periodicity but rather than present all of them, we limit
ourselves to just two. For time asleep, a weekly periodicity
is clearly detected as can be seen in Figure 6. This can be
explained by the weekday/weekend cycle which is the basis for
the subject’s lifestyle of working during weekdays and having
to get up early to commute to work and then leisure activities
with later rising at the weekend. There is also a periodicity
at around the 120 day frequency, about every 4 months but
without going back to the subject to investigate, this remains
unexplained for the moment.

Fig. 6. Time asleep periodogram

For sleep quality as shown in Figure 7 there is no weekly
periodicity which tells us that even though the subject sleeps
more at weekends, he doesn’t actually sleep with better quality.
We also observe a periodicity around 128 days (ca. 4 months)
for sleep quality but at the time of writing, without conferring
with the subject, this is something we cannot explain.

Fig. 7. Sleep quality periodogram

While the other sleep parameters such as time spent in
bed, time going to bed have also yielded interesting results,
the point we wanted to make is already made, namely that
we can detect credible periodicities from lifelogs even though
there is missing data and irregular sampling.

B. Results on Sports Dataset

Since the sampling rate of our sports activity dataset is
1 day, the minimum periodic pattern of this dataset we can
detect is 2 days.In Figure 8, periodograms for the sports dataset
which does not have missing data and is consistently and
regularly sampled for the three sport activities and for the
aggregated data MET levels shows interesting results. We can
observe three significant energy levels carried by three different
frequencies consistently across all 4 subplots. These three
frequencies are around 0.14, 0.28, 0.43, which corresponding
to periods of 7 days, 3.5 days and 2.3 days. Moreover, if we
look at the plots more thoroughly, there exists a frequency
at circa 0.0027 located the near the left end of the cycling
and aggregated data subplots. This frequency corresponds to
the annual period (ca. 365 days) that we observed in the
visualization of the cycling data.

Fig. 8. Sports dataset periodograms

In order to investigate periodicity in irregularly sampled
data, a second tool we use is autocorrelation. Autocorrelation
of 10 years data is plotted in Figure 9.

Autocorrelation computes the correlation between the sig-
nal and a time-shifted version of the same signal. The x-axis
of the autocorrelation plot is time lag and the y-axis is a
measure of the correlation of the original signal and lagged
signal. If the original signal is periodic then the autocorrelation
of the signal should also be periodic and the periods will be
located at the peaks the autocorrelation plot. From Figure 9,
there are no periodicities observed in the running, swimming
or MET score aggregated data, but an annual periodicity can
be found in the autocorrelation of the cycling data. Curious
as to where the periodicities over 7, 3.5 and 2.3 days which
were found in periodograms from running, swimming and the
aggregated data, we took one year of data from 2007 to see if
we could detect periodicity in periodograms for just that year.
An autocorrelation plot for data from the year 2007 is shown
in Figure 10.

The autocorrelation plot of sports data from 2007 shows that
there is a very regular weekly periodicity in running, cycling



Fig. 9. Sports dataset autocorrelations

Fig. 10. Autocorrelation plot of sports data from year 2007

and in the total energy expenditure of activities, but a less
regular weekly periodicity for swimming. We can also find
smaller peaks between the two obviously large peaks from
running and cycling data, which may correspond to the 3.5-
and 2.3-day periodicities also detected in the periodogram.
However there are no obvious smaller peaks found in the
autocorrelation of aggregated data. A possible explanation may
be that these detected periodicities indicate the lifestyle of the
subject such as regular scheduled training sessions for running,
cycling and swimming. Another explanation might be that
there exists an inherent timetable that the subject follows in
order to balance participation in the three different activities.
For instance the timetable could be every 2 or 3 days run,
cycle or swim once. Determining this requires going back to
the subject to confirm this though this falls into the category
of exploiting rather than determining periodicities which as
mentioned earlier, is beyond the scope of this paper.

In order to detect periodicity in mood and performance,
which are unevenly sampled and have gaps in the data, the
Lomb-Scargle periodogram is applied to the mood and to
the performance data. For the Lomb-Scargle periodogram,
the period is T = 2π

f . In Figure 11, we can see that there

(a) Mood

(b) Performance

Fig. 11. Mood and performance data

are no statistically significant energy levels carried by any
of the frequencies in the LS periodogram for mood or for
performance. In other words, no periodicity is detected in
either mood or performance data which has been fused from
the annotators. Trying to rationalise this by going back to the
subject might reveal that his training schedule is oriented to
have peak performance during the months of competition, typi-
cally the Summer months, so there could be an annual cycle for
performance which could be tied to a mood performance cycle.
There may also be peaks in performance, and in mood, around
regular seasonal targets such as Winter, Spring, Summer and
Autumn events. The fact that such periodicities did not appear
does not mean that they do not exist, it just means that they
were not detected, most probably because of the sparsity of
our mood and performance data with large gaps and irregular
sampling. Not even the Lomb-Scargle periodogram was able
to overcome this disadvantage.



VI. CONCLUSIONS

In the work presented in this paper, we applied periodicity
detection on two longitudinal datasets, which include dis-
tances for athletic training and competition for an international
triathlete, over a 10 year period, and sleep quality, duration
and timing data from a subject over a 2.5 year period. The
first dataset was augmented with a pool-based annotation of
the triathlete’s daily text commentary on his training and
performance, from which we were able to get annotations
for mood, and for performance. This gave us a collection of
datasets which are rich in the variability of their regularity
of logging, from consistent and regular daily entries to much
more sporadic data with missing data and irregular sampling.

Applying moving average, we discovered that after starting
cycling and swimming at a point several years ago, the subject
decreased the amount of running while the distances for swim-
ming and cycling kept increasing. The use of periodograms
revealed that there are rhythms of repeating patterns at 7, 3.5
and 2.3 days for the running, cycling and swimming data, as
well as for when the individual activity data is aggregated
based on MET scores. An annual periodicity was also detected
in the cycling data. Using an autocorrelation plot for data from
year 2007, an obvious weekly periodicity was detected in run-
ning, cycling and aggregated MET data but the weekly pattern
for swimming is weak suggesting less rigour and regularity
associated with training in that sport. An autocorrelation plot
of running and cycling shows an unexpected periodicity at
a cycle of less than a week (2 or 3 days). This infra-week
periodicity may be caused by training schedules for different
sports in order to achieve a balanced exercise portfolio. There
are no significant periodicities detected in the Lomb-Scargle
periodogram for mood or for performance when fused from
the annotations of a set of four annotators.

Our future work will concentrate on evaluating the de-
tected periodicities using some form of qualitative evaluation.
Evaluation is always a challenging part of this research. The
relevance of any detected periodicities is quite subjective since
every individual has his/her own understanding of their own
periodicity. Both qualitative and quantitative evaluations will
be used. In qualitative analysis for case studies, researchers
usually study case-by-case independently and then draw find-
ings separately. An interview is a common way to collect
sufficient data to for qualitative analysis. After case-by-case
study, a cross case analysis could be conducted to discover
common phenomena. Future work will also focus on develop-
ing algorithms to increase the accuracy of periodicity detection,
i.e., to more precisely compute the energy spectrum and locate
periodicity. We also intend to closely investigate computational
biology algorithms such as time series motif detection.

We have demonstrated in this paper that automatic detec-
tion of periodicites from lifelog data can be achieved, even
when there is substantial missing data. We have shown that
methods based on periodograms and autocorrelation can be
used to detect periodicity on complete datasets, while Lomb-
Scargle periodograms can be used to detect periodicity on
datasets with missing data. Experiment conducted on three
datasets with different level of sparsity shows that we are able
to detect periodicity in these datasets.
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