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Abstract

The linear quadratic regulator (LQR) has been shown to have very attractive

stability robustness properties. However, some authors have shown that LQR may

suffer from poor robustness when special perturbations in its state-space formula-

tion were introduced. This thesis continues the study of the stability robustness of

LQ regulators. To acquire good stability robustness, weight selection is first inves-

tigated. For general cost weighting matrices, a new lower bound on the minimum

singular value of the return difference is proposed. New guaranteed stability mar-

gins are also presented. This gives a formal mathematical basis for guidelines for

the designer to improve stability robustness. As the weight on the plant’s inputs

approaches zero, the exact bound on the perturbations which ensures stability is

compared with the guaranteed margins. It is shown that the stability robustness

properties are preserved in a general sense. Then, a numerical analysis of the con-

ditioning of the continuous-time algebraic Riccati equation (CARE) is presented.

The condition numbers of the CARE are utilized to measure the sensitivity of LQR

subject to parameter changes. It is shown that the condition numbers grow sig-

nificantly when the weighting parameters on the system state and input matrices

approach zero and infinity. This has application to the applied control situation

because it can be used to detect hidden vulnerabilities in LQR systems.
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Chapter 1

Introduction

1.1 Motivation of the thesis

In the context of the control problem, the basic idea is not only to stabilize a plant

but also to involve the achievement of some desired performance specifications,

such as bandwidth, disturbance rejection, noise reduction, reference tracking and

so on. For those purposes, modern control design methods have been extensively

used to acquire a great deal of fundamental and also empirically based knowledge of

the systems. Linear optimal control is one approach which often gives the designer

satisfactory results with respect to the stability and the performance of the con-

trolled systems. One advantage of it is that the mathematical optimization methods

are adopted so that a control law for a linear system can be readily derived based

on a prescribed objective function. The resulting computational procedures may

then often be applied to nonlinear systems. Moreover, if the plant states are all

available, good robustness properties of the optimal regulators used can be clearly

revealed in terms of the stability margins. A famous example is full state feedback

design with linear quadratic regulator (LQR) design. As the state space represen-
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tation is a natural way for system description by LQR the system performance can

be managed and the plant inputs and the control input can be synthesized using

an optimal control law by solving the Riccati equation. Meanwhile, the guaran-

teed stability robustness is automatically provided by LQR, unlike pole placement

techniques, for instance. A comprehensive study was first reported by Kalman in

1960 [Kalman, 1960]. The stability and optimality conditions were analyzed in a

mathematical way and his treatment was in the frequency domain in terms of the

return difference. The last result nicely built a connection between classical control

theory and modern control theory, which gave the designer some perspectives on

the robust stability as in the classical point of view. The return difference plays

the key role in the analysis of feedback properties. Moreover, another interesting

analysis is the asymptotic behavior of the LQR as the weights approach the ex-

treme cases. This further indicates that weight selection techniques can be used

to improve the performance in the cheap control regulators on various systems.

One approach involves minimizing the integral square error, instead of the system

states, under the extreme condition of the input weights going to zero. The ideal

characterizations provide us some valuable insights into whether the maximum ac-

curacy can be achieved [Kwakernaak et al., 1972]. The perfect regulation problem

was also investigated in the context of the cheap regulator problem and the cheap

servomechanism problem even for systems with non-minimum behaviours [Qiu et

al., 1993]. As is known, the right half plane (RHP) zeros of the open loop sys-

tem always exert some limitations on the overall performance by the analysis of the

sensitivity function and the complementary sensitivity function [Freudenberg et al.,

1985]. However, the limitations on the cheap regulators can be directly character-

ized by the complex plane plots of the RHP zeros. Anderson and Moore [Anderson

et al., 1970] have shown that LQR can have attractive stability margins, i.e. infinite
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gain margin, phase margins of ± 60◦ and gain margin of 0.5 for single input single

output (SISO) plants, based on the return difference equality [Kalman, 1964]. Such

robustness results were then generalized to the multivariable case in a classic paper

[Safonov et al., 1977], which quantitatively characterized a great many tolerable

perturbations, even nonlinear ones. Similar results were obtained in [Lehtomaki et

al., 1981], but their analysis was based on the multivariable Nyquist theorem, and

so was quite different. In this way, the perturbations were not required to be stable,

which was assumed in [Safonov et al., 1977]. In general, both works showed that

LQR has excellent stability robustness properties. To treat both the stability and the

performance issues of LQR and linear quadratic Gaussian (LQG) in the multivari-

able feedback design, in [Doyle et al., 1981] frequency domain methods were used

to graphically interpret the limiting conditions of the stability and performance as

well as the magnitude bound of the unstructured uncertainty in the complex plane of

the loop transfer function. The singular values of the return difference matrix were

used to quantitatively characterize the behaviour of LQR controllers. It is worth not-

ing that the famous guaranteed stability margins were shown to be inadequate for

tolerating some realistic perturbations. In other words, the stability robustness was

also constrained by the asymptotic high frequency behaviour of LQR with respect

to the crossover frequency of the loop. As a result, all the works above have shown

that LQR possesses excellent stability robustness and ideal asymptotic responses,

especially in non-minimum phase systems. However, a dissenting voice came from

[Soroka et al., 1984]. They argued that the optimal LQR may suffer from poor sta-

bility robustness when, even, small changes occur particularly in the input matrix.

Their examples shows that the expectation of stability properties of LQR may be

destroyed. Suggestions had also been made later by Grimble and Owens [Grimble

et al., 1986] in order to improve its robustness. It was noticed that the examples
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used by both of them were situated in the extreme circumstances when the input

weight approached zero and regulation error was to be minimized, which was the

“cheap” control problem with high feedback gains. In spite of this, it would be a

disaster to have unstable modes in the slightly perturbed system. Thus, it leads us to

think about a first question: whether this particular type of perturbation considered

above is included in range of tolerable ones generalized in [Safonov et al., 1977]?

Recently, in [Zhang et al., 1996] the well-known robustness properties of LQR

were again questioned when the variations of the open-loop gain were considered.

In this case, simultaneous parameter changes in the system matrix and the input

matrix were treated. The deviations of the system states were to be minimized and

a tuning parameter was included in the state weighting matrix. It was demonstrated

that as the tuning parameter went to infinity, even a small perturbation may result in

the instability of the closed-loop system. Hence, we further need to ask: when per-

turbations happen in the state space form of the plant, how would the perturbations

affect the closed-loop transfer function? Will those perturbations be out of the wide

range of those characterized by Safonov et al. [Safonov et al., 1977]. Is there an-

other way out to directly measure the sensitivity of LQR in the face of uncertainties

in the plant? Instead of analyzing the perturbations in the feedback control frame-

work, we turn to the basic and important optimization process of all LQR problems.

We attempt to analyze the optimal and stable solutions of the continuous-time alge-

braic Riccati equation (CARE) which are used to synthesize the optimal LQR gain.

One advantage in the perturbation analysis of the CARE lies in the fact that there

is a good deal of work done on the theory and numerical solution of the CARE.

Secondly, the primary purpose of perturbation analysis for the CARE is to find out

how the Hermitian positive semi-definite (p.s.d) solutions of the CARE will behave

when the coefficient matrices related to it suffer from perturbations. Therefore, it
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is natural to attempt to solve the sensitivity issue of LQR, due to perturbations oc-

curring in the system matrices, in terms of numerical methods. In addition, it is,

sometimes, not easy to examine the open loop structure which may be sensitive to

the perturbations [Grimble et al., 1986]. However, the analytic condition numbers

of the CARE provides us with useful insights. Also, notable work was done by Sun

[Sun, 1998]. He established a necessary condition for the perturbed CARE solution

to be a stabilizing one using an approximation to first order. More interestingly,

explicit expressions for the absolute condition numbers of the CARE were derived,

as well as relative ones. Those values offer a quantitative measurement of the sen-

sitivity of the CARE solution to the coefficient matrices subject to various errors.

Furthermore, the sensitivity of the CARE solution with respect to each coefficient

matrix can be clearly revealed separately by those numbers. So the next question

to ask is: what behaviors will the CARE solutions of the two special exampless

mentioned be like in terms of their corresponding condition numbers?

1.2 Research questions and hypotheses

In linear feedback control theory, a negative voice for using state-variable method

came from Horowitz et al. [Horowitz et al., 1975]. They questioned the feasibility

of LQR in engineering designs. Khalil [Khalil, 1981; 1984] further showed that

small modelling errors may destabilize the systems in output feedback control de-

signs. When both plant and controller are subject to perturbations, Cobb [Cobb,

1987; 1988] argued that robust compensation can hardly be achieved. Meanwhile,

Soroka et al. [Soroka et al., 1984] argued that linear quadratic optimal regulators,

especially for cheap control problems, may suffer from poor robustness when the

open-loop plant is subject to small parameter variations. Improvements had been
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made by Grimble et al. [Grimble et al., 1986] so as to mitigate the disastrous ef-

fects of these perturbations. Again, Zhang et al. [Zhang et al., 1996] cautioned that

the guaranteed stability margins by LQR with high weight on the state should be

treated carefully when variations in the open-loop gain are considered.

Another key idea in the analysis of the robustness of LQR is to study the per-

turbation of the algebraic Riccati equation, which leads to the optimal control gain.

In spite of the classical stability robustness of LQR against unstructured perturba-

tions, it is requred to investigate the robustness properties of LQR when both the

input and state weighting matrices are considered. It is believed that based on the

return difference equality, the singular value method can be utilized for estimating

the singular values of the return difference. In this way, guaranteed stability mar-

gins may be established. For structured perturbations, particularly in the application

of cheap control, the distinction between unstructured and structured perturbations

should be emphasized. The general robustness property, presented by Safonov et al.

[Safonov et al., 1977], is expected to cover the situation of parameter variations in

cheap control. From a mathematical point of view, it is straightforward to inves-

tigate the perturbation of the algebraic Riccati equation. As the condition number

provides an efficient tool for measuring the sensitivity of the solution of ARE, it

is expected that it may be used to indicate the conditioning of the cheap control

problem.

1.3 Contributions of the thesis

This thesis contributes to the following aspects in the linear quadratic optimal con-

trol area:

1. Proposal and evaluation of the guaranteed stability margins of LQR with re-
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spect to general weighting matrices

2. Illustrating of the distinction between structured and unstructured perturba-

tions in cheap control problems and evaluation of the condition numbers for

detecting the system’s vulnerability

1.4 Structure of the thesis

This thesis is organised as follows:

Chapter 2 presents a brief history of automatic control. Some history of the

LQR theory is also presented.

Chapter 3 first gives a review of basic LQR theory. For analyzing the robustness

properties of LQR, the return difference equality is developed. It nicely connects

the weighting matrices and the system matrices. The eigenvalue and the singular

value properties of the return difference are presented.

Chapter 4 first gives a review of stability margin analysis. The optimality and

the stability of linear optimal control system are presented based on the Nyquist

plot of the return difference. Also, the robustness problem of LQR is formulated.

Following this, the general robustness results of LQR are presented. Eventually, the

excellent stability margins of LQR are established using a special selection of the

input weighting matrix.

Chapter 5 investigates the singular value properties of the return difference in

relation to a more general class of weighting matrices. A new lower bound on the

minimum singular value of the return difference is evaluated based on the return

difference equality. This leads to the guaranteed stability margins of LQR for a

wider class of weights. Simultaneously, the effect of tuning the state weighting

matrix for improving the robustness is discussed. At last, some numerical examples
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are presented to demonstrate the effectiveness of our results.

Chapter 6 first gives a brief review of the cheap control problem. After that, the

examples by Soroka et al. [Soroka et al., 1984] and Zhang [Zhang et al., 1984]

are presented. The distinction between structured and unstructured perturbations is

emphasized by comparing the perturbation bounds. Next, some history of the alge-

braic Riccati equation, as well as a concept of the condition number, is presented.

The basic perturbation theory of the continuous-time algebraic Ricaati equation is

also presented. The condition numbers of two examples are evaluated. By exam-

ining the condition numbers of some real control problem, condition numbers are

proved to be useful for the detection of the vulnerability of LQR system.

Chapter 7 contains our conclusions. In this chapter, a summary, as well as the

contributions of this thesis, are presented. Some suggestions for future work are

then proposed.
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Chapter 2

Background

In this chapter, some history of automatic control and the LQR theory is reviewed.

2.1 History of automatic control

In this section, a brief history of automatic control is presented.

The usage of automatic control dates back to ancient times from 300BC to

1200AD. In this period, the Greek and Arab [Mayr, 1970] civilizations created and

developed float regulators for a water tank to track time accurately, which initial-

ized the progess of feedback control. The French physicist Ren Antoine Ferchault

de Raumur [Egerton, 2006], who established the famous Raumur scale, introduced

the system for temperature control purposes in the 18th century. It is worth men-

tioning the Watt governor [Marsden, 2002], which is regarded as one of the great-

est invention in the control area during that period. Many governors were built

based on it at that time. In order to analyze the stability condition of the gover-

nor mechanism, mathematical control theory was developed. Several researchers,

such as a British astronomer, Airy, [Airy, 1840] introduced the well-known dif-
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ferential equations to characterize the dynamic behaviour of the governor. Later,

Maxwell [Maxwell, 1868] solved the governor problem by investigating the stabil-

ity of the system via the roots of the characteristic equation. Earlier than this time,

Hermite [1854] provided an effective procedure for determing whether a polyno-

mial had certain properties for the stability of the a system. However, his work

was not widely published. The Russian scientist Vyschnegradsky [Vyschnegrad-

sky, 1876;1877] used a linear differential equation to investigate the behaviour of

an automatic feedback system. Thus, the stability of the system could be deter-

mined by the roots of that equation. Both of three mentioned above identified how

the stability of a system was determined by a polynomial having certain properties

and came up with effective methods for determing whether a given polynomial ac-

tually possessed such properties. Later, Routh [Routh, 1877] proposed a solution

on this problem and Hurwitz [Hurwitz, 1895] proposed a necessary and sufficient

condition for all roots of an equation having negative real parts. A Russian mathe-

matician Lyapunov [Lyapunov, 1893] developed a stability theory which has been

extensively studied into modern times.

Proceeding to the middle 1900’s, classical control began with the work by re-

searchers at Bell Telephone Laboratories, who developed the frequency-domain

methods for stability analysis as opposed to the time domain. In 1932, Nyquist

[Nyquist, 1932] derived the famous Nyquist stability criterion, which is a graphic

tool for analyzing the stability of control systems. In the 1940’s, Bode [Bode, 1945]

investigated the plots of the frequency response of the transfer function in the com-

plex plane, known as Bode plots, and also introduced the classic notions of gain and

phase margins. Another great contribution to classical control came from work done

by the Radiation Laboratory at the Massachusetts Institute of Technology (M.I.T.).

There, the frequency-domain approaches were proven to be successful when ap-
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plied to practical design problems by Hall [Hall, 1946] in 1946. Also, the Nichols

Chart was developed by Nichols in 1947.

With the developemnt of optimal control in the 1960’s, going back to the anal-

ysis in the time-domain, the era of modern control began, which overcame some

of the limitations of classical control. Among the outstanding researchers in this

period were Pontryagin and Bellman. A notable work by Kalman and co-workers

[Kalman, 1960; Kalman et al., 1961] is regarded as one of the cornerstones of

modern control theory. Their great contributions lay in the development of Lya-

punov theory in the time-domain approach for both time-varing and nonlinear sys-

tems, the establishment of linear quadratic regulator theory and the proposal of the

Kalman filter. A great attempt in combining modern and classic control was made

in the 1970’s. In this decade, two of the major contributions were from Rosen-

brock [Rosenbrock, 1974] and Postlethwaite et al. [Postlethwaite et al., 1977]. It

is worth mentioning the work by Horowitz, who developed quantitative feedback

theory (QFT). Papers published by Doyle et al. [Doyle et al., 1981] and Safonov

et al. [Safonov et al., 1981] advanced robust modern control design. Based on the

work of MacFarlane et al. [MacFarlane et al., 1977], the singular value theory was

incorporated into the robust design of multivariable systems.

2.2 Some history of the LQR theory

As mentioned in the last section, feedback loops have been used since ancient times

[Bissell, 2009]. One of the earliest ”modern” applications was Watt’s governor for

controlling the rotational velocity of steam engines. One natural approach to con-

trol theory is to appeal to mathematical optimisation. An early application of op-

timisation to feedback systems was from Hall [Hall, 1943]. Hall treated the linear
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servomechanism problem. He developed the theory of the servomechanism com-

pensator based on the criterion of minimizing the integral squared error. Newton et

al. [Newton et al., 1957] further extended basic servomechanism theory to a broad

category including nonlinear stochastic systems. The least squares control problem

was mathematically formulated by Kalman [Kalman, 1960] in a rigorous way. His

work formed the basic theory of the linear quadratic regulator (LQR). Later, Kalman

studied the inverse problem of optimal control theory. The primary contribution in

[Kalman, 1964] is the return difference equality (RDE), for single-input systems.

The RDE is a rigorous frequency-domain characterization of optimality. The return

difference inequality (RDI) in the multi-input case was studied by Anderson [An-

derson, 1966]. To analyse the closed-loop sensitivity, a similar inequality relating

the generalized return difference was derived by Kreindler [Kreindler, 1968]. In the

light of ther RDE, MacFarlane [MacFarlane, 1970] used the eigenvalue properties

of the return difference matrix to extend Kalman’s optimality criterion [Kalman,

1964] to multivariable cases. Meanwhile, nonlinear optimal control problems were

extensively studied in that time. The comprehensive study of linear optimal control

began with the work by Anderson et al. [Anderson et al., 1971]. They showed that

LQR not only can have good stability margins, but also can have good tolerance

to nonlinearities as shown in [Anderson, 1969]. Later, such robustness results of

LQR including both gain and phase margins were generalized to the multivariable

case by Safonov et al. [Safonov et al., 1977], while authors in [Anderson, 1969;

Wong, 1975; Wong et al., 1977; Barnett et al., 1966] only obtained the result re-

lating to the gain margin. In [Safonov et al., 1977], good tolerance to nonlinear

perturbations was proved and a wide range of dynamic perturbations which can be

tolerated by LQR was characterized. Unlike in [Safonov et al., 1977], Lehtomaki et

al. [Lehtomaki et al., 1981] studied the stability robustness of LQR by examining
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the singular value properties of the return difference transfer function matrix. They

also argued that to acquire good stability margins, the weight on the inputs should

be chosen to be a scalar times the identity matrix, rather than any diagonal matrix

or any matrix. Similar robustness results relating to control weighting was reported

later by Anderson et al. [Anderson et al., 1989] and Maciejowski [Maciejowski,

1989]. Stability margins for the discrete-time LQR were also comprehensively

studied by Shaked [Shaked, 1986]. Recently, similar to the work by Safonov et

al. [Safonov et al., 1992], Arvanitis et al. [Arvanitis et al., 2001] established new

guaranteed stability margins for the discrete-time case.
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Chapter 3

Linear quadratic regulator

Linear quadratic regulator has been proven to be successful in solving full state

feedback problem since 1960. In this chapter, a brief historical study of LQR is first

presented. Then the basics of LQR theory is presented. The property of the return

difference of LQR is extensively studied at last.

3.1 Review of basic LQR theory

Consider a finite-dimensional, linear, time-invariant (FDLTI) system given in state

space form

ẋ(t) = Ax(t) +Bu(t) (3.1)

y(t) = Cx(t) (3.2)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, x(t) ∈ Rn, y(t) ∈ Rp,u(t) ∈ Rm. Here,

x(t), u(t) and y(t) denote the system state, the controlled input and the output,
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u(t) y(t)
- B - (sI − A)−1 - C -

Figure 3.1: The open loop LQR system

respectively. LQR theory optimizes the performance index J(x, u) given by

J(x, u) =

∫ ∞
0

[
x(t)TQx(t) + u(t)TRu(t)

]
dt

Q = QT ≥ 0, R = RT > 0

(3.3)

The positive definite cost weighting matrix R is exerted on the control input so as

to keep the control efforts be bounded over a specified period of time. At the same

time, it is required to let
∫∞

0
[x(t)TQx(t)] to be small, where the cost weighting

matrix Q is symmetric positive semidefinite. It may be shown that [Kalman, 1960],

the optimal control law is given by

u(t) = −Kx(t) (3.4)

where K = R−1BTP and P = P T > 0 is the solution of the Riccati equation:

PA+ ATP +Q− PBR−1BTP = 0 (3.5)

Assume the pair [A,B] is stabilizable and [A,Q
1
2 ] is observable. These conditions

are enough to guarantee that there is a unique positive-definite solution P to the

Riccati equation [Anderson et al., 1989] and that the closed loop system is stable.

The plant without a feedback loop is shown in Fig. 3.1. The transfer function
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r̂ u(t) x(t) y(t)+

−
- m - B - (sI − A)−1 - C -

�K

6

Figure 3.2: The closed loop LQR system

of the plant V (s) is given by

V (s) =
Y (s)

U(s)
= C(sI − A)−1B (3.6)

where U(s) and Y (s) are the Laplace transforms of the control input u(t) and the

output y(t).

The plant with the optimal gain K is shown in Fig. 3.2. So the open loop

transfer matrix To(s) is given by

To(s) = KΦ(s)B (3.7)

where Φ(s) = (sI − A)−1. The closed loop transfer matrix Tc(s) is given by

Tc(s) = KΦK(s)B (3.8)

where ΦK(s) = (sI − A+BK)−1.
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r̂
r(t)
→

i(t)
→ x(t) y(t)+

−
- m e e B -(sI − A)−1 - C -

�K

6

Figure 3.3: Breaking the closed loop LQR system in the input’s side

3.2 The return difference

In this section, we shall derive the return difference transfer matrix at the plant’s

input.

Consider breaking a point at the input side of the plant shown in Fig. 3.3.

Denote the injected signal as I(s) and the response as R(s) at that breakpoint. The

return ratio Z(s) is defined as the transfer function from the input I(s) to the ouput

signal R(s), which is given by

Z(s) =
R(s)

I(s)
= −K(sI − A)−1B (3.9)

The return difference F (s) is defined as the transfer function from the input I(s) to

the error signal I(s)−R(s), which is given by

F (s) =
I(s)−R(s)

I(s)
= I +K(sI − A)−1B (3.10)

The closed loop and the open loop transfer function matrices are correlated by
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the return difference matrix as follows

Tc(s) = F−1(s)To(s) = To(s)F
−1(s) (3.11)

It has been shown that [Chen, 1968; Rosenbrock, 1969]

det[F (s)] =
Ψc(s)

Ψo(s)
(3.12)

where Ψc(s) = det(sI − A + BK) is the characteristic polynomials of the closed

loop system and Ψo(s) = det(sI − A) is the characteristic polynomials of open

loop system. det[F (s)] denotes the determinant of the return difference transfer

function matrix.

3.3 The return difference equality

The return difference equality, derived from the algebraic Riccati equation, was first

introduced by Kalman to represent the frequency domain characterization of opti-

mality for single input LQR systems. It was later generalized to the multivriable

case by MacFarlane [MacFarlane, 1970]. It has been widely used for the quantita-

tive analysis of the stability and the performance of such systems. In this section,

we shall present the derivation of the return difference equality.

Consider the algebraic Riccati equation by eqn. (3.5):

PA+ ATP +Q− PBR−1BTP = 0

where P ≥ 0,R > 0 andQ ≥ 0. Let the super scriptsH and T denote the conjugate

transpose of complex matrices and the transpose of real matrices, respectively. As
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(sI − A)H = s∗I − AT , we have

P (sI − A) + (sI − A)HP = 2Re(s)P − PA− ATP (3.13)

By the fact that PBR−1BTP = KTRK and PA + ATP = PBR−1BTP − Q

where K = R−1BTP , eqn. (3.13) equals to

P (sI − A) + (sI − A)HP = 2Re(s)P +Q−KTRK (3.14)

For all values of s for which (sI − A) is invertible, multiply eqn. (3.14) on the left

by BT (sI − A)−H and on the right by (sI − A)−1B

⇒ BT (sI − A)−HPB +BTP (sI − A)−1B

= BT (sI − A)−H [2Re(s)P +Q](sI − A)−1B

−BT (sI − A)−HKTRK(sI − A)−1B

As BTP = RK and PB = KTR,

⇒ BT (sI − A)−HKTR +RK(sI − A)−1B

+BT (sI − A)−HKTRK(sI − A)−1B =

BT (sI − A)−H [2Re(s)P +Q](sI − A)−1B

Recalling that To(s) = K(sI − A)−1B and G(s) = (sI − A)−1B, we have

⇒ THo (s)R +RTo(s) + THo (s)RTo(s)

= GH(s)[2Re(s)P +Q]G(s)
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⇒ (I + To(s))
H R(I + To(s))−R

= GH(s)[2Re(s)P +Q]G(s)

⇒ (I + To(s))
H R (I + To(s))

= R +GH(s) [2Re(s)P +Q]G(s)

(3.15)

When s ∈ jR, eqn. (3.15) gives

F (s)HRF (s) = R +GH(s)QG(s) (3.16)

The above equation is called the multivariable return difference equality. It is noted

that eqn. (3.15) is valid only for those values of swhen (sI−A) is invertible. When

s ∈ jR and (sI−A) is invertible, eqn. (3.16) is the return difference equality. If not

specified, we assume that all s satisfying the condition that (sI − A) is invertible

throughout the dissertation.

For single input system, the input weight R is a scale parameter. It is conve-

nient to express the input matrix B and the optimal gain K as vectors b and k,

respectively. Assume Q = qq′, eqn. (3.16) becomes

r|1 + k′(sI − A)−1b|2 − r = |q′(sI − A)−1b|2 (3.17)

⇒ |1 + to(s)|2 = 1 +
1

r
|h(s)|2 (3.18)

where to(s) = k′(sI − A)−1b and h(s) = q′(sI − A)−1b. This equation is often

referred to as the scalar return difference equality.
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3.3.1 The return difference inequality

The so-called return difference inequality, implied by the return difference equality,

can be applied for analyzing the stability robustness and optimality of LQR systems.

In the following, we shall present the return difference inequality in both single-

input and multi-input cases.

For multivariable systems, the multivariable return difference equality eqn. (3.16)

explicitly implies

FH(s)RF (s) ≥ R, ∀s ∈ jR (3.19)

where F (s) = I + K (sI − A)−1B. It is noted that the above matrix inequality is

very useful for analyzing the robustness propeties of multivariable optimal systems.

For single loop systems, the scalar return difference equality eqn. (3.18) gives

|f(s)| ≥ 1, ∀s ∈ jR (3.20)

where f(s) = 1 + k′(sI −A)−1b. It is noted that eqn. (3.18) is known as Kalman’s

return difference inequality and it plays an important role in the inverse optimal

control problem.

3.3.2 The eigenvalue property of the return difference

MacFarlane [MacFarlane, 1970] had established some neccesary conditions for op-

timality for linear optimal systems based on the eigenvalue property of the return

difference matrix. We shall give a brief review of his main result here.

Recalling the multivariable return difference equality

F (s)HRF (s) = R +GH(s)QG(s), ∀s ∈ jR (3.21)
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Let γ(s) be an eigenvector of F (s) and λ(s) be the corresponding eigenvalue, so

that

F (s)γ(s) = λ(s)γ(s)

⇒ γH(s)FH(s) = λ(−s)γH(s)

(3.22)

Pre-multiply and post-multiply eqn. (3.21) by γH(s) and γ(s), respectively, we have

λ(−s)γH(s)Rλ(s)γ(s) = γH(s)Rγ(s) + γH(s)GH(s)QG(s)γ(s) (3.23)

As Q ≥ 0, eqn. (3.23) implies that

|λ(s)|2γH(s)Rγ(s) ≥ γH(s)Rγ(s) (3.24)

⇒
(
|λ(s)|2 − 1

)
γH(s)Rγ(s) ≥ 0 (3.25)

As R > 0 and consequently γH(s)Rγ(s) > 0, to satisfy eqn. (3.25) it is necessary

that

|λ(s)| ≥ 1, ∀s ∈ jR (3.26)

The above inequality implies that for any Q ≥ 0 and R > 0, all the eigenvalues of

the return difference transfer function matrix will be always greater than or equal to

1 for the whole frequency range.

3.3.3 The singular value property of the return difference

Compared to the result of the eigenvalue property of the return difference studied

in the last section, the singular value property of the return difference can not be

definitively treated. Instead, if the control weight matrix R is chosen as a scalar
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times the identity matrix, i.e. R = ρI , the multivariable return difference inequality

eqn. (3.19) becomes

FH(s)F (s) ≥ I (3.27)

Let σ(F ) be any singular value of F (s) and v and z are the corresponding left and

right singular vectors, so we have

F · v = σ(F ) · z

v∗ · FH = σ(F ) · z∗
(3.28)

Therefore, eqn. (3.27) implies that

σ[F (s)] ≥ 1, ∀s ∈ jR (3.29)

From eqn. (3.29), it is obvious that the minimum singular value σ[F (s)] is greater

than or equal to 1. Next, we consider the situation for a general control matrix R.

Using R = R
1
2 ·R 1

2 and pre- and post-multiply eqn. (3.19) by R−
1
2 , we have

R−
1
2FH(s)R

1
2 ·R

1
2F (s)R−

1
2 ≥ I (3.30)

⇒
[
R

1
2F (s)R−

1
2

]H
·
[
R

1
2F (s)−

1
2

]
≥ I (3.31)

σ
[
R

1
2F (s)R−

1
2

]
≥ 1, ∀s ∈ jR (3.32)

From eqn. (3.32), it is shown that the singular value property of the return difference

is explicitly not revealed for the case of generalR, meaning that we cannot conclude

that σ[F (s)] ≥ 1.
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3.4 Conclusion

In this chapter, it is shown that LQR theory has been extensively studied for a long

time. With the introduction and the development of the return difference equality,

the eigenvalue and singular value properties of the return difference are shown to

be highly related to the selection of the cost weighting matrices.
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Chapter 4

Stability robustness of LQR

In this chapter, stability margin analysis is first briefly reviewed. Based on the

Nyquist stability criterion, the optimality, as well as the stability, characterization

of LQR is graphically interpreted in terms of the frequency loci of the return differ-

ence. A general robustness result is revisited in a formal mathematical way. Finally,

the classic stability margins, as well as the tolerance of the crossfeed perturbations,

by LQR are presented when a special selection of the input weighting matrix is

considered.

4.1 Brief review of stability margin analysis

In Section 2.1, it was shown that robust control theory has developed rapidly in the

late 1970’s and early 1980’s. As a classical tool, stability margin analysis quantifies

a control system’s tolerance to model uncertainty. As compared with the classical

stability margins of robustness design methods, such as the root locus and Nyquist-

Bode theories, the multivariable stability margin (MSM) provides a more refined

mathematical formulation for the analysis of robustness in feedback control sys-
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tems, especially for multivariable systems. Stability margin theory has been widely

studied since 1975 [Safonov, 2012]. However, the history of stability robustness

dates back to 1945 [Bode, 1945].

The concepts of gain and phase margins were used to quantify the robustness

of single-input single-ouput (SISO) feedback systems. Horowitz [Horowitz, 1963]

later clarified the robust control problem in a mathematical way.

Until 1975, the focus on optimal control had been shifted to robust control due

to the influential work by Wong and Athans [Wong et al., 1975] (especially in North

America).

In [Wong et al., 1975], it was proven that multiloop linear quadratic regula-

tors (LQR) can tolerate a 50% gain margin (decrease) and an infinite gain margin

(increase) in each feedback loop against real uncertainties. Safonov et al. [Sa-

fonov et al., 1976;1977] further showed a general robustness result which covered

frequency-dependent complex uncertainties. They also showed that multivariable

LQR can tolerate a phase margin of ±60◦. Another major advance was the use

of the singular value decomposition (SVD), a method which was introduced at the

1978 Allerton Conference.

Doyle [Doyle, 1979] used the singular value property of the return difference

transfer function matrix to interpret the classical control notions for robustness anal-

ysis. A notion of principal gains, similar to singular values, was later presented by

MacFarlane [MacFarlane, 1979]. Diagonal scaling was extensively investigated to

reduce the conservativeness of singular value robustness by various authors. A great

deal of research on the singular value method [Safonov et al., 1981; Doyle et al.,

1981; Cruz et al., 1981; Lehtomaki et al., 1981] was published in 1981, particularly

for LQG optimal control problems.
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Meanwhile, to deal with structured uncertainty, the structured singular value µ

was introduced by Doyle [Doyle, 1982] (Actually, it is the reciprocal of the MSM,

which was introduced earlier by Safonov). Another successful application of the

singular value decomposition was to investigate the guaranteed stability margins of

discrete-time LQR systems proposed by Shaked [Shaked, 1986]. Similar stability

margin results were reported by Hans et al. [Hans et al., 1988] and Bourles et al.

[Bourles et al., 1994]. It is worth mentioning that Safonov et al. [Safonov et al.,

1992] gave a new insight into the singualr value property of LQR. Arvanitis et al.

[Arvanitis et al., 1997] studied the stability margins of discrete LQR with cross-

product terms in the performance index. They established a relationship between

weight selection and the guaranteed stability margins based on the return difference

equality. Arvanitis et al. [Arvanitis et al., 2001] further established some new ro-

bustness bounds using the singular value properties of the return difference transfer

function matrix. Consequently, stability margin results were determined in relation

to the selection of weights under less restrictive assumptions.

4.2 Nyquist plot for optimality

Before proceeding to the quantative analysis of the robustness of LQR, we shall give

some graphical interpretations, for example Nyquist plots, of the eigenvalue and

the singular value properties of the return difference based on the Nyquist stability

criterion.

4.2.1 Kalman’s criterion for optimality

Although in [Kalman, 1964] the return difference inequality was proposed and used

for solving the inverse optimal control problem, it provides some advanced aspects
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Figure 4.1: Illustration of the Nyquist stability of LQR

for analyzing the sensitivity and robustness of the LQR problem.

For example, for single input systems, based on the Nyquist criterion the scalar

return difference inequality implies that the distance from−1 to the open-loop gain

is always greater than or equal to 1 for all ω. This can be interpreted intuitively

by examining the Nyquist plot of LQR. In Fig. 4.1, it is observed that the Nyquist

diagram will never enter the unit circle N centered at the critical point (−1, 0).

Assume that L(s) and L′(s) are the perturbation transfer functions configured

in Fig. 4.1. When the Nyquist curves of L(s) and L′(s) hit the real axis at points

a ≤ −2 and a′ ≥ 0, kL(s) or kL′(s) will not penetrate the critical point (−1, 0) if

the perturbation gain k satisfies k ≥ 1
2
.

The maximal phase tolerance corresponds to the phase angles of the intersection

points b and b′ between unit circles N and M . The latter circle M centered at the

origin is introduced for the sake of interpreting the phase margins. It is clear that

LQR controllers can tolerate a phase shift |φ| ≤ 60◦ and retain stability.
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As a result, the single input LQR controllers have a phase margin φi of |φi| ≥

60◦, a gain margin of 50% (decrease), and infinite gain (increase) margin.

4.2.2 Nyquist loci of the return difference

As was shown in the previous chapter that the singular value property of the return

difference is not readily revealed for multivariable systems, MacFarlane [MacFar-

lane, 1970] instead used the eigenvalue property of the return difference to graphi-

cally interpret the optimality.

Recall that, regardless of any weighting matrices, the magnitude of the eigen-

value of the return difference is always greater than or equal to 1

|λ(s)| ≥ 1, ∀s = jR

By the fact that

detF (s) =
l∏

i=1

λ(s), ∀s ∈ jR (4.1)

we have that

| detF (s)| ≥ 1, ∀s = jR (4.2)

That is to say the complex plane contour of | detF (s)| will never penetrate the unit

circle with the origin as its center.

4.3 Stability robustness of LQR

From the analysis of the previous chapter, LQR has good stability robustness, for

example a gain margin of [1
2
,+∞) and a phase margin of [−60◦,+60◦], but only

when the weight on the input is chosen as a scalar times the identity matrix. In this

29



section, we shall present general robustness results of LQR against unstructured

perturbations, for example multiplicative perturbations, based on the method used

by Anderson et al. [Anderson et al., 2007].

4.3.1 Introduction

To the author’s knowledge, there are generally three main approaches to generaliz-

ing the robustness results for LQR. Firstly, a comprehensive treatment of both gain

and phase margins was from Safonov et al. [Safonov et al., 1977]. Although the

method they used to present the main result appear to be old-fashioned, they pre-

sented the robustness result of LQR by tolerating both linear and nonlinear pertur-

bations in a rigorous way. The second one came from Lehtomaki et al. [Lehtomaki

et al., 1981], who usded the multivariable Nyquist theorem for stability analysis of

linear quadratic Guassian (LQG) control. The proof they reported was quite differ-

ent from that used by Safonov, however it was further shown that the perturbation

is not necessary to be assumed stable. The third one, which gives a simple and

straightforward approach, was reported by Anderson et al. [Anderson et al., 2007].

The key idea relied on the application of the multivariable return difference equality.

4.3.2 Problem formulation

In this section, we shall present the basis of the perturbation problem for LQR.

Assume the perturbed LQR system is illustrated in Fig. 4.2. The multiplicative

perturbation transfer function is denoted as L(s). The nominal LQR system is

defined by eqns. (3.1) and (3.2). Consider a perturbed system which is given by

(Γ)


˜̇x = Ãx̃+ B̃ũ

ũ = −Kx̃ = −R−1BTPx̃
(4.3)
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−
- m - L(s) - K(sI − A)−1B -

6

Figure 4.2: LQR system with multiplicative perturbation

where Ã and B̃ are the perturbed system and input matrices, P = P T > 0 is

the solution of the nominal plant’s algebraic Riccati equation by eqn. (3.5). The

characteristic polynomial of the perturbed closed loop transfer function matrix is

given by

Ψ̃o(s) = det(sI − Ã) (4.4)

and similarily the perturbed closed loop transfer function matrix is obtained by

Ψ̃c(s) = det(sI − Ã+ B̃K) (4.5)

4.3.3 Classical results on the robustness of LQR

In this section, we shall present what is currently known about the general robust-

ness of LQR. Excellent stability margins are presented for a special choice of R.

Theorem 1. The perturbed LQR system shown in Fig. 4.2 will be asymptotically

stable if

i) The pair [Q
1
2 ,Γ] is detectable
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ii) L(s) is a rational transfer function matrix

iii) for all s ∈ jR

L(jω)R−1 +R−1L∗(jω)−R−1 ≥ 0 (4.6)

The above result quantifies a wide range of non-destabilizing perturbations in

open-loop dynamics. See the prove by Anderson et al. [Anderson et al., 2007].

4.3.4 The diagonality of R

In this section, we shall present a robustness result relating the diagonality of the

input weight R.

When R is diagonal and L is also diagonal, so that

R =



r1 0 . . . 0

0 r2 . . . 0

...
... ri

...

0 0 . . . rm


, L =



l1 0 . . . 0

0 l2 . . . 0

...
... li

...

0 0 . . . lm


(4.7)

the general robustness result of eqn. (4.6) implies that

lHi + li ≥ 1 (4.8)

This, in turn, implies that if li is real, the gain margin will be [1
2
,+∞). Similarily,

when li = eiθ, the phase margin will be [−60◦,+60◦]. Now, consider the cross

coupling between any two input lines in L such as

L =

 I X

0 I

 (4.9)
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and partitioning R into

R =

 R1 0

0 R2

 (4.10)

then to satisfy the inequality by eqn. (4.6) we have to let

 R1 0

XHR1 R2

+

 R1 R1X

0 R2

 ≥
 R1 0

o R2

 (4.11)

⇒

 R1 R1X

XHR1 R2

 ≥ 0 (4.12)

AsR1 > 0 andR2 > 0, a neccesary and sufficient condition for satisfying eqn. (4.12)

is to let

R2 −XHR1R
−1
1 R1X > 0 (4.13)

XHR1X < R2 (4.14)

Thus, to satisfy eqn. (4.14) it is sufficient to let

σ2(X) <
λmin(R2)

λmax(R1)
(4.15)

When any two diagonal entries ofR are distinct from each other, especially λmin(R2) <

λmax(R1), a small bound on σ2(X) will be expected. In other words, only when

R = ρI , LQR has good robustness, for example a gain margin of [1
2
,+∞) and a

phase margin of [−60◦,+60◦]. It is noted that eqn. (4.15) only gives a sufficient

estimate of the bound of X and this may appear rather conservative. Nevertheless,

choosing an input weighting matrix R which is far from a scalar times the identity

would cause problems in obtaining good stability margins in each loop.
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For non-diagonal R, Lehtomaki et al. [Lehtomaki et al., 1981] and Anderson

et al. [Anderson et al., 2007] used a example to show that LQR may have arbitrarily

small gain margins.

4.3.5 Classic stability margins

In the last section, it has been shown that the frequency-dependent perturbations

tolerated by LQR are directly related to the control weight matrix R based on the

multivariable return difference inequality. In this section, we shall present a robust-

ness result for LQR in terms of the stability margins using the minimum singular

value of the return difference transfer function matrix.

First, we shall introduce a robustness theorem by Lehtomaki et al. [Lehtomaki

et al., 1981] which established a relationship between the bound on the tolerable

peturbations and the minimum singular value of the return difference matrix.

Theorem 2. The characteristic polynomial of the perturbed closed loop system

Ψ̃c(s) has no closed right half plane (CRHP) zeros if for all sufficiently large Rd:

a) Ψ̃o(s) and Ψo(s) have the same number of CRHP zeros.

b) if Ψ̃o(jω0) = 0, then Ψo(jω0) = 0.

c) Ψc(s) has no CRHP zeros.

d) σ[L−1(s)− I] < α(s) , σ[I + To(s)], s ∈ ΩRd
(4.16)

where ΩRd
is denoted as the Nyquist D-contour, T0(s) is the loop transfer function

matrix and L(s) is the perturbation transfer function matrix.

e) any one of the following is satisfied at each s ∈ ΩRd
:

i) α ≤ 1 (4.17)

ii) LH(s) + L(s) ≥ 0 (4.18)
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iii) 4(α2 − 1) · σ2[L(s)− I] > α2 · σ2[L(s) + LH(s)− 2I] (4.19)

From eqn. (4.16), two main results follow. Firstly, it may be shown that a suffi-

cient condition for stability is to have the frequency-dependent loci of σ[L−1(s)−I]

stay below the σ-plot of the return difference F (s). Thus, the quantity α(s), as a

function of s ∈ ΩRd
, is regarded as a reliable measure of the multivariable stability

margin. s ∈ ΩRd
is the Nyquist D-coutour. If we further denote α0 as a global mini-

mum singular value of the return difference, then a worst case perturbation bound is

estimated by eqn. (4.17). Here, it is convenient to work with σ[L−1(s)− I] instead

of σ[L(s)−I] [Lehtomaki, 1981] for the stability margin analysis of LQR and LQG

problems. A second result is that eqn. (4.18) gives the general robustness result of

LQR presented in the previous sections.

Next, we shall introduce several results which give an explicit interpretation

of the stability margins in relation to the minimum singular value of the return

difference.

Corollary 1. If all the conditions of Theorem 2 hold and

σ[I + To(s)] ≥ α0, ∀s ∈ ΩRd
(4.20)

for some constant α0 ≤ 1, then the system has a gain margin β

β =
1

1± α0

(4.21)

and a phase margin θ

θ = ± cos−1

[
1− α2

0

2

]
(4.22)

in each loop.
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The above result implies that if a pure gain γi is inserted into the feedback loops

of the system of Fig. 4.2, by eqn. (4.21) we have that

1

1 + α0

< γi <
1

1− α0

(4.23)

is sufficient to ensure stability. Similarily, for the insertion of a phase ejφi into the

feedback loop, eqn. (4.22) provides a phase margin

|φi| < cos−1

[
1− α2

0

2

]
(4.24)

For the system which is subject to the crossfeed perturbation, we have the fol-

lowing result

Corollary 2. Suppose that all the conditions of Theorem 2 hold and

σ[I + To(s)] ≥ α0, ∀s ∈ ΩRd
(4.25)

for some constant α0 ≤ 1, then for the crossfeed perturbations

L(s) =

 Ik X(s)

0 Im

 or

 Ik 0

X(s) Im

 (4.26)

where Ik is the k × k identity matrix and

σ[X(s)] < α0, ∀s ∈ ΩRd
(4.27)

the perturbed closed loop system will be stable.

In the previous sections, it was shown that whenR = ρI , then σ[I+To(s)] ≥ 1.

We can readily obtain two robustness results for LQR with this special input weight.
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Corollary 3. If R = ρI and either Q > 0 or To(jω) 6= 0,∀ω, LQR has a gain

margin of [0.5,+∞) and a phase margin of [−60◦,+60◦].

Corollary 4. If R = ρI , then LQR can tolerate crossfeed perturbations given by

eqn. (4.26), satisfying

σ[X(s)] < 1, s ∈ ΩRd
(4.28)

4.3.6 Conclusion

In this chapter, we gave a comprehensive review of the stability robustness of the

LQR problem. It has been shown that the return difference inequality plays an im-

portant part in characterizing the robustness property of LQR. Combined with the

Nyquist stability criterion, a general robustness result, as well as a graphic inter-

pretation of the complex plane loci of the return difference, was presented. The

stability margins and the tolerance of crossfeed perturbations by LQR are presented

when R = ρI .
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Chapter 5

Guaranteed stability robustness

It has been shown that, based on the multivariable return difference inequality, the

set of perturbations tolerated by LQR is highly related to the weighting matrix on

the input. Specifically, when the input weighting matrix is selected as a scalar times

the identity matrix, the LQ regulators have classic stability margins. However, for

the situation in which non-diagonal cost weighting matrices in the performance in-

dex are considered, the robustness of LQR has not been studied yet. Inspired by

the work on discrete-time systems [Shaked, 1986; Arvanitis et al., 1997; Arvani-

tis et al., 2001], new lower bounds on the minimum singular value of the return

difference transfer function matrix is presented. It leads to the guaranteed stability

margins, as well as the tolerance to crossfeed perturbations. We also investigate the

effect of tuning the state cost weighting matrix so that the stability robustness can

be improved.
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5.1 Motivation

Previous works on the estimation of the minimum singular value of the return differ-

ence were mostly based on the multivariable return difference inequality. To obtain

the classic stability margins, one has to select the input weighting matrix asR = ρI .

However, in most situations, the selection of the cost weighting matrices is not that

restricted. Therefore, there is a requirement for guidelines for the designer to ac-

quire good stability robustness by selecting appropriate cost weighting matrices. To

deal with this problem, it is useful to consider the multivariable return difference

equality, which nicely relates the return difference to the weights in the frequency

domain. For exmaple, Shaked [Shaked, 1986] has obtained the guaranteed gain

and phase margins for the discrete-time LQR system. More recently, Arvanitis et

al. [Arvanitis et al., 1997; 2001] have presented stability margin bounds for LQR

in the discrete-time case for various special cases. It is believed that the singular

valued decomposition technique can be successfully applied to the continuous-time

case.

5.2 A new lower bound on the minimum singular value

of the return difference transfer function matrix

In this section, a new frequency-dependent lower bound on the minimum singular

value of the return difference is presented in terms of the system and cost weighting

matrices. A new constant lower bound of the minimum singular value of the return

difference is also presented with respect to the input cost weighting matrix.
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Theorem 3. For LQR controllers, the minimum singular value of the return differ-

ence transfer matrix F (s) at the plant’s input will satisfy:

σ[F (s)] ≥

√
σ2(R

1
2 )

σ2(R
1
2 )

+
σ2[H(s)]

σ2(R
1
2 )

= α̂(s), ∀s ∈ jR (5.1)

where H(s) = Q
1
2 (sI − A)−1B.

Proof. Consider that the return difference matrix F and its singular value decom-

position (SVD)

F · v = σ(F ) · u

v∗ · FH = σ(F ) · u∗
(5.2)

where v and u are the left and right singular vectors, respectively. Multiply eqn. (3.16)

on the left by v∗ and on the right by v, giving

v∗FHRFv = v∗(R +GHQG)v (5.3)

Combining eqns. (5.2) and (5.3) gives

σ2(F )u∗Ru = v∗(R +GHQG)v

⇒ σ2(F ) =
v∗(R +GHQG)v

u∗Ru

⇒ σ2(F ) =
v∗Rv + (v∗G∗Q

1
2 )(Q

1
2Gv)

u∗Ru
(5.4)
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The facts that

σ2(R
1
2 ) ≤ v∗Rv ≤ σ2(R

1
2 ), σ2(R

1
2 ) ≤ u∗Ru ≤ σ2(R

1
2 )

σ2(Q
1
2G) ≤ (v∗G∗Q

1
2 )(Q

1
2Gv) ≤ σ2(Q

1
2G)

(5.5)

show that eqn. (5.4) implies that

σ(F ) ≥

√
σ2(R

1
2 )

σ2(R
1
2 )

+
σ2(Q

1
2G)

σ2(R
1
2 )

Theorem 3 gives a frequency-dependent lower bound on σ[F (s)] with respect

to the cost weighting and system matrices.

Corollary 5. For any R > 0, we have

σ[F (s)] ≥ σ(R
1
2 )

σ(R
1
2 )

= α̂0, ∀s = jω ∈ jR (5.6)

Proof. As σ2[H(s)] ≥ 0, it follows trivially from eqn. (5.1).

The above result estimates the lower bound of σ[F (s)] by the input cost weight-

ing matrix R [Chen et al., 2014]. It is shown that when σ(R
1
2 ) is closed to σ(R

1
2 ),

the quantity α̂0, as a single constant bound, goes close to 1. It is worth mentioning

that if σ(R
1
2 ) is far from σ(R

1
2 ), we will have a very small α̂0, which may appear

rather conservative. To overcome this conservativeness, we shall also consider the

effects contributed by H(s), or simply by the state weighting matrix Q. However,

when R = ρI , it is again verified that all the singular values of the return difference

are greater than or equal to 1.
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Corollary 6. If R = ρI , then

σ[F (s)] ≥ 1, ∀s ∈ jR (5.7)

Proof. If R is diagonal,⇒ σ(R
1
2 ) = σ(R

1
2 ). Thus, eqn. (5.7) follows trivially from

eqn. (5.6).

5.3 Guaranteed stability margins

As a new lower bound of the minimum singular value of the return difference has

been established, we shall present the associated guaranteed stability margins in

this section.

Corollary 7. For any R > 0 and Q ≥ 0, LQR has the guaranteed gain margin

(GM) and phase margin (PM) given by

GM =
1

1± α̂0

, PM = ± cos−1

[
1− α̂2

0

2

]
(5.8)

where α̂0 , σ(R
1
2 )/σ(R

1
2 ).

Proof. It follows trivially from Corollary 1 and Corollary 5.

Compared to the classic stability margins stated in Corollary 3, this provides

a more general result by considering the selection of an arbitrary input weighting

matrix, rather than R = ρI . It shows that when σ(R
1
2 ) is close to σ(R

1
2 ), we can

expect relatively large stability margins. It should be pointed out that the guaran-

teed stability margins estimated by a simple lower bound on σ[F (s)] may be very

conservative. Even so, this gives a formal mathematical basis for guidelines for the

designer to improve stability robustness. As analyzed in the estimate of the lower
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bound of σ[F (s)], to obtain improved stability margins, we shall also consider how

the σ-plot of H(s) will behave with respect to the state weighting matrix Q.

Corollary 8. For any R > 0 and Q ≥ 0, LQR will remain stable in the presence of

the crossfeed perturbations satisfying

σ[X(s)] < α̂(s), ∀s = jω ∈ jR (5.9)

where

α̂(s) ,

√
σ2(R

1
2 )

σ2(R
1
2 )

+
σ2[H(s)]

σ2(R
1
2 )

(5.10)

Proof. It follows trivially from Theorem 3 and Corollary 2.

From eqn. (5.9), it is shown that the upper bound on the crossfeed perturbations

is estimated by the frequency-dependent bound of the minimum singular value of

σ[F (s)]. Compared to the existing result stated in Corollary 4, it gives an improved

result by the inclusion of both the system matrices and the state weighting matrix

Q.

5.4 The selection of Q

In the previous sections, new lower bounds on the minimum singular value of

σ[F (s)], as well as the increasing guaranteed stability margins, were presented. It

was shown that the minimum singular value behaviour ofH(s) also plays a key role

in improving the robustness of LQR. In this section, we shall investigate how the

state weighting matrixQ can be tuned so that the robustness of LQR is improved. It

is shown that for low frequencies, by simply enlarging the minimum singular value

of Q, the estimated lower bound increases, thereby improving the robustness.
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We will first study the singular value behaviour of H(jω) for high frequencies.

As ω → ∞, then (jωI − A)−1 → 0. Eventually, H(jω) will vanish to 0, which

makes no contribution to the bound. Assume A is invertible, for low frequencies

H(jω) will tend to −Q 1
2A−1B. By the fact that for any three matrices A,B,C we

have that σ(A ·B · C) ≥ σ(A) · σ(B) · σ(C), we have

σ[Q
1
2A−1B] ≥ σ(Q

1
2 ) · σ(A−1) · σ(B) (5.11)

⇒ σ[Q
1
2A−1B] ≥ σ(Q

1
2 ) · [σ(A)]−1 · σ(B) (5.12)

Based on Theorem 3, the above result gives a constant lower bound on the minimum

singular value of σ[F (s)] for low frequencies. Then we have

Corollary 9. For low frequencies, the minimum singular value of the return differ-

ence transfer matrix F (s) at the plant’s input will satisfy:

σ[F (s)] ≥

√
σ2(R

1
2 )

σ2(R
1
2 )

+
σ2(Q

1
2 ) · σ2(B)

σ2(R
1
2 ) · σ2(A)

= α̂low (5.13)

The constant quantity α̂low in eqn. (5.13) gives a reliable estimate of the bound

of σ[F (s)] for low frequencies. It gives a less conservative bound than α̂0 presented

in Corollary 5. Moreover, for a given open loop plant, if σ(Q
1
2 ) is increased, it is

observed that the bound α̂low will be increased, consequently improving the robust-

ness of LQR.

44



5.5 Illustrative examples

In this section, several examples are presented for illustrating the effectiveness of

our results. All the experiments are performed using MATLAB R2012a.

The open loop system matrices are randomly generated. All the weighting ma-

trices in the performance index satisfy R = RT > 0 and Q = QT ≥ 0. In order to

check whether the pair [A,B] is stabilizable, the Hautus test is implemented. The

test is also used to ensure the detectability of the pair [A,Q
1
2 ]. When all condi-

tions above are satisfied, we use the MATLAB function lqr to compute the unique

Riccati solution P ≥ 0 satisfying eqn. (3.5). The frequency response of the re-

turn difference transfer matrix, F (jw), is simulated in the frequency range between

[10−3, 103]. As a result, the σ-plot of F (jw) is captured. It should be mentioned that

the σ sign shown in all Matlab figures represent the the minimum singular value.

Firstly, we investigate the characterisation of the minimum singular value of

the return difference with a diagonal input weighting matrix, particularly a scalar

times the identity. Secondly, we compare the frequency-dependent lower bound

stated in Theorem 3 with the σ-plot of the return difference F (jω) with general

cost weighting matrices selected. The global minimum of σ[F (jω)] is compared

with the constant lower bound given by Corollary 5. Thirdly, we investigate the be-

haviour of σ[F (jω)] for low frequencies by comparing it with frequency-dependent

bound generalized in Corollary 9. Finally, the behaviour of σ[F (jω)] is investigated

with respect to the state weighting matrix Q.

1. The case of R = ρI

The open loop systems are randomly generated. We have simulated 1000

LQR systems with R = ρI and random Q ≥ 0. All the results show that the

global minimum of σ[F (jω)] is always greater than or equal to 1.
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σ(R
1
2 ) σ(R

1
2 ) σ(R

1
2 )/σ(R

1
2 )

Case 1 1.0496 3.0275 0.3467

Case 2 1.4816 2.5926 0.5715

Case 3 0.1812 2.4502 0.0740

Table 5.1: Illustration of the singular values of R
1
2 in three cases

2. The case of general R and Q

(a) We shall first compare the new lower bound α̂(s) with the minimum

singular value of F (s). All the system matrices and the cost weighting

matrices are randomly generated. Some examples are shown in Fig. 5.1,

Fig. 5.2 and Fig. 5.3. The σ-plot of the return difference transfer matrix

is plotted in the solid line, while the lower bound α̂(s) is represented in

the dashed line. Table 5.1 also lists the maximum and minimum singular

values of R
1
2 , as well as the ratio. Fig. 5.1, Fig. 5.2 and Fig. 5.3 show

that the frequency-dependent bound α̂(s) follows closely the σ-plot of

the return difference. Comparing them to Table 5.1, it is shown that

the global minimum of σ[F (s)] is greater than the ratio of the singular

values of R
1
2 . However, for Case 3, it is shown that although the ratio is

small, σ[F (s)] is above 0.6. This example shows that the bound can be

conservative.

(b) Secondly, we shall illustrate the effectiveness of the constant lower bound

α̂0. After simulating 1000 random LQR systems, it was found that the

global minimum of σ[F (s)] is above α̂0. Here, several examples are

presented in Table 5.2.
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Figure 5.1: Illustration of the new lower bound on the minimum singular value of
F (s) of Case 1
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Figure 5.2: Illustration of the new lower bound on the minimum singular value of
F (s) of Case 2
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Figure 5.3: Illustration of the new lower bound on the minimum singular value of
F (s) of Case 3
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(c) Thirdly, we shall demonstrate the validity of the bound α̂low for low

frequencies. After testing 1000 random LQR systems, it was observed

that the global minimum of σ[F (s)] in the low frequency range is above

α̂low.

α̂0 0.283 0.315 0.618 0.153 0.512 0.364 0.353 0.312 0.159 0.527

σ[F (s)] 0.645 0.840 0.958 0.681 0.888 0.692 0.849 0.873 0.688 0.894

Table 5.2: Illustration of the minimum singular value of F (s) and α̂0

Remarks: The simulation results show that all the bounds in terms of the sys-

tem and the cost weighting matrices provide a reliable estimation of σ[F (s)].

In particular, when R = ρI the σ-plot of F (s) is above one. This gives the

classic stability margins. It should be noted that these bounds may be very

conservative. The tuning of the σ-plot of H(s) needs to be further studied.

α̂low 0.270 0.380 0.451 0.562 0.383 0.474 0.282 0.117 0.033 0.646

σ[F (s)] 1.195 0.998 0.976 1.247 1.070 0.800 1.404 1.062 0.890 1.252

Table 5.3: Illustration of the minimum value of F (s) and α̂low for low frequencies

50



3. The effect of Q

Finally, we will examine the behaviour of the σ-plot of F (s) by tuning the

weighting matrix Q. After simulating hundreds of randomly generated ex-

amples, it was found that by simply increasing σ(Q) the σ-plot of F (s) is

improved. One of our simulation examples is illustrated in the following

figures. Fig. 5.4 depicts the σ-plot of F (s) and the bound α̂(s) when Q is

unchanged. After decreasing the size of Q by a factor of 0.1, the result is

shown in Fig. 5.5. It is shown that in the low frequency range, σ[F (s)] has

dramatically decreased. However, when the size of Q is increased by a factor

of 10, as shown in Fig. 5.6, for low frequencies the σ-plot of F (s) has been

greatly improved. This suggests that in most cases, by rescaling the size of

Q, σ[F (s)] can be improved, which results in good robustness of LQR.

5.5.1 Real control example

In this section, we shall investigate the stability robustness result of a real control

problem when non-diagonal cost weighting matrices are selected.

The example we study here is a state variable model of two rolling carts [Dorf

et al., 2010] shown in Fig. 5.7. M1 and M2 defined on the figure are mass of carts.

k1 and k2 are spring constants. b1 and b2 are damping coefficients. u1 and u2 are

the external forces acting on the first cart and the second cart seperately. p and q

are positions of carts. The carts are assumed to have negligible rolling friction.Any

existing rolling friction are considered to be lumped into the damping coefficients.

The free-body diagram of mass of two carts are shown in Fig. 5.8. ṗ and q̇ are

velocities of M1 and M2, respectively.

Assume p̈ and q̈ are acceleration of M1 and M2, respectively. According to
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Figure 5.4: Illustration of the low frequency lower bound on the minimum singular
values of F (s) with Q unchanged
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Figure 5.5: Illustration of the low frequency lower bound on the minimum singular
values of F (s) with decreased Q
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Figure 5.6: Illustration of the low frequency lower bound on the minimum singular
values of F (s) with increased Q
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Figure 5.7: The model of two rolling carts
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Figure 5.8: Free-body diagram of two rolling carts: (i) Cart 2; (ii) Cart 1

Newton’s second law, for mass M1 we have

M1p̈+ b1ṗ+ k1p = u1 + k1q + b1q̇ (5.14)

For M2 we have

M2q̈ + (k1 + k2)q + (b1 + b2)q̇ = u2 + k1p+ b1ṗ (5.15)

Define x1 = p and x2 = q. Then define x3 = ẋ1 = ṗ and x4 = ẋ2 = q̇. So we

have p̈ = ẋ3 and q̈ = ẋ4. By eqn. (5.14) and eqn. (5.15), the state-space model is
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obtained by

ẋ1 = x3 (5.16)

ẋ2 = x4 (5.17)

ẋ3 =
1

M1

(−k1x1 + k1x2 − b1x3 + b1x4 + u1) (5.18)

ẋ4 =
1

M2

[k1x1 − (k1 + k2)x2 + b1x3 − (b1 + b2)x4 + u2] (5.19)

Eqns. (5.16), (5.17), (5.18) and (5.19) can also be written as matrix form

ẋ = Ax+Bu (5.20)

where

x =



x1

x2

x3

x4


=



p

q

ṗ

q̇


, u =

 u1

u2



A =



0 0 1 0

0 0 0 1

− k1
M1

k1
M1

− b1
M1

b1
M1

k1
M2

−k1+k2
M2

b1
M2

− b1+b2
M2


(5.21)

B =



0 0

0 0

1
M1

1
M2

0 0


(5.22)
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If p is chosen as the output, then we have

y =

(
1 0 0 0

)
= Cx (5.23)

Suppose the following parameter values are specified for this two rolling carts

model: k1 = 150N/m, k2 = 700N/m, b1 = 15N/m, b2 = 30N/m, M1 = 5kg

and M2 = 20kg. The state space of the two rolling carts model is specified as

A =



0 0 1 0

0 0 0 1

−30 30 −3 3

7.5 −42.5 0.75 −2.25


, B =



0 0

0 0

0.2 0.05

0 0


(5.24)

It is clear that this system is controllable.

Next, we shall investigate the behavior of the minimum singular values of F (s)

when σ(R
1
2 ) decreases in a continuous way. When the cost weighting matrix Q is

the identity matrix, it is clear that the pair [A,Q] is observable. As the cost weight-

ing matrix R is a 2 × 2 matrix, we shall first let all the two singular values of R

be equal to 1. The σ-plot of the return difference transfer function matrix F (s) is

plotted as data 1 by the blue line in Fig. 5.9. It is seen that all the σ[F (s)] are

above 1. Next, we decrease σ(R
1
2 ) by a factor of 1.3. The simulation results of the

minimum singular value of F (s) are shown by the four lines with different colours.

All of them are blow the blue line. The lowest points of those lines represent the

global minimum of σ[F (s)]. They are used to evaluate the stability margins. As we

can see, all the minimum points of the following four curves (green line, red line,

cyan line, magenta line) decrease in a continous way as σ(R
1
2 ) decreases. Thus,

according to (4.21) and (4.22) in Corollary 1, stability margins become progres-
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sively smaller. The exact gain margin and the guaranteed gain margin quantified in

Corollary 7 are compared in Table 5.4. The exact phase margin and the guaranteed

phase margin quantified in Corollary 7 are compared in Table 5.5.
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Figure 5.9: Illustration of the behavior of the minimum singular values of F (s)
when the minimum singular value of R decreases.
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σ(R
1
2 ) 1.0 0.769231 0.591716 0.455166 0.350128

GM 0.5 0.500003 0.500011 0.500024 0.500045

Gm 0.5 0.532749 0.565217 0.597136 0.628253

Table 5.4: Comparison of the exact gain margin and the guaranteed gain margin
when minimum singular value of σ(R

1
2 ) decrease

σ(R
1
2 ) 1.0 0.769231 0.591716 0.455166 0.350128

PM 60◦ 59.99932◦ 59.9972◦ 59.99354◦ 59.98807◦

Pm 60◦ 52.02013◦ 45.23973◦ 39.42857◦ 34.41799◦

Table 5.5: Comparison of the exact phase margin and the guaranteed phase margin
when minimum singular value of σ(R

1
2 ) decrease

It is shown that when σ(R
1
2 ) = 1, the classic stability margin (gain margin

0.5 and phase margin 60◦) are acquired. The exact stability margins are progres-

sively getting smaller as σ(R
1
2 ) decreases. The guaranteed stability margins are

also decreasing. In other word, as the cost weighting matrix R deviate from the

scalar times the identity matrix, the system will lose the stability margin smoothly.

This will give control designers a guideline to choose the cost weighting matrices

regarding the stability robustness of LQR.
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5.6 Conclusion

In this chapter, new lower bounds on the minimum singular value of the return

difference matrix were presented. The associated guaranteed stability margins, as

well as the tolerance to crossfeed perturbations, were established. It was shown

that to obtain relatively large margins, one may choose the input weighting ma-

trix R so that σ(R
1
2 ) is close to σ(R

1
2 ). This gives a formal mathematical basis

for guidelines for the designer to improve the robustness. A new constant lower

bound on σ[F (jω)] for low frequencies was also presented with respect to the

open loop system and the cost weighting matrices. It has been shown that when

σ(R
1
2 )/σ(R

1
2 ) = 1, the classic stability margins are obtained. When the cost

weighting matrix R is selected in which σ(R
1
2 )/σ(R

1
2 ) deviate from 1 progres-

sively, the classic stability margins will be lost smoothly.
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Chapter 6

Distinction between structured and

unstructured perturbations

In the previous chapter, it was shown that LQ regulators can have classic stability

robustness when a special class of the cost weighting matrices is selected. How-

ever, some authors [Soroka et al., 1984; Zhang et al., 1996] have argued that LQR

may suffer from poor robustness when the system matrices are subject to small pa-

rameter changes. In particular, Soroka et al. [Soroka et al., 1984] studied a cheap

control problem in which the entries of the input matrix is pertubed by small vari-

ations. In this chapter, we revisit the robustness of cheap control against structured

perturbations. The distinction between strucutred and unstructured perturbations is

worth re-emphasizing [Fu et al., 1989] for the stability analysis of LQR. We also

investigate the perturbation issue of the algebraic Riccati equation in solving LQR

problems. By means of condition numbers, the vulnerability of LQR system to

structured perturbations can be detected.

61



6.1 Introduction

In classical control theory, linear quadratic regulators (LQR) are well-known to

have excellent stability robustness. For instance, it has been shown that the mul-

tivariable LQR controllers have a tolerance of 50 percent gain reduction, infinite

(increase) gain margin and 60◦ phase margin in each loop [Safonov et al., 1977].

However, Soroka and Shaked [Soroka et al., 1984], among others, argued that linear

quadratic optimal regulators may suffer from poor robustness when the open-loop

plant, especially the input matrix, is subject to small parameter variations. Improve-

ments had been made by Grimble et al. [Grimble et al., 1986] so as to mitigate the

disastrous effects of these perturbations. Again, Zhang et al. [Zhang et al., 1996]

cautioned that the guaranteed stability margins should be carefully treated when

variations in the open-loop gain are considered. Mainly, they were concerned with

variations in the system’s state-space matrices. Their analyses of robustness prop-

erties were based on the characteristic transfer functions. The return difference was

used to compute the optimal gain and then the exact bounds of parameter changes

were determined so that the closed-loop characteristic polynominals were Hurwitz.

There are two broad categories of robust stability results [Fu et al., 1989]. One

considers perturbations whose structure is known but with parameters whose exact

values are unknown. This is the structured uncertainty approach. The other ap-

proach is the unstructured uncertainty approach, where one considers additive or

multiplicative perturbation whose internal structure is unknown, but is stable and

gain-bounded. It is important to keep the distinction between these two categories

in mind.

Although the above-mentioned results are quite straightforward, it is not appro-

priate to directly compare the bounds on the allowable structured perturbations with
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the guaranteed stability margins. Stability margins presume the perturbation is in

the open-loop. If not, stabiliity margins make no claim.

We attempt to analyze the robust stability bounds of the LQR problem in [Sa-

fonov et al., 1977]. Instead of considering stability margins, the exact structured

perturbation bounds are compared and contrasted with the unstructured bounds

provided by the return difference inequality, bounds which are stronger than the

stability margins described above. It will be shown that the robustness properties

are preserved in a general sense. It will also be shown that the closed-loop may be

very sensitive to variations in the state-space dynamical model of the plant, espe-

cially in case of low objective function weights on the plant’s inputs. This gives a

caution in designing high gain LQR controllers. Furthermore, the analysis provides

guidance in choosing LQR weights.

In order to investigate the stability and vulnerability of LQR system against

structured perturbations in general situations, we shall study the perturbation the-

ory of the algebraic Riccati equation. Condition numbers are used to measure the

sensitivity to the solution of the Riccati solution. It is also shown that they can be

utilized to detect the vulnerability of the optimal control systems.

The rest of the chapter is organized as follows. In Section 6.2, a brief history

of cheap control is presented. The example of Soroka et al. and the example of

Zhang et al. are presented in Section 6.3. By comparing the perturbation bounds,

the distinction between structured and unstructured perturbations is established in

Section 6.4. In Section 6.5, the basic perturbation theory of the algebraic Riccati

equation is reviewed and the concept of condition number is introduced. Some

illustrating examples are presented in Section 6.6. In the last section, we give our

conclusions.
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6.2 Cheap control

In this section, we shall give a brief introduction of the so-called cheap control

problem. It originates from the work by Kalman [Kalman, 1964]. The resulting

asymptotic properties of the closed-loop poles [Graham et al., 1953; Ashkenas

et al., 1962; Chang, 1961], were generalized to the multivariable case by Kwak-

ernaak and Sivan [Kwakernaak et al., 1972], which results in cheap control. Kwak-

ernaak et al. [Kwakernaak et al., 1969] and Friedland et al. [Friedland et al., 1970]

had earlier shown that the closed-loop system is insensitive to paramer variations

in the sense of cheap control. Later Kwakernaak et al. [Kwakernaak et al., 1972]

presented necessary and sufficient condition for achieving perfect perfomance in

cheap control problem. The cheap control problem was rigorously treated from a

mathematical point of view by Jameson et al. [Jameson et al.,1975]. Francis [Fran-

cis et al., 1978] generalized the result of [Kwakernaak et al., 1972]. [Sannuti et al.,

1985; Saberi et al., 1987] made comprehensive study of the cheap control problem.

Consider a FDLTI system in state space form

ẋ(t) = Ax(t) +Bu(t), t ≥ 0 (6.1)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n, x(t) ∈ Rn,u(t) ∈ Rm. We attempt to

minimize a scalar cost functional

J(ε) =
1

2

∫ ∞
0

[x(t)TQx(t) + ε2u(t)TRu(t)]dt, ε > 0 (6.2)

The state weighting matrix Q is symmetric positive semidefinite and the input

weighting matrix R is symmetric positive definite. Here, ε is a small scalar pa-

rameter. As ε → 0, the cost of the control u(t) is cheap relative to that of the state
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x(t). Therefore, the cheap control problem discussed above is also known as the

low control weighting problem. It is equivalent to the hight state weighting problem

with a scalar cost functional with respect to a positive parameter β →∞ instead

J(β) =
1

2

∫ ∞
0

[β2x(t)TQx(t) + u(t)TRu(t)]dt, β > 0 (6.3)

6.3 Problem formulation

6.3.1 The case of Soroka et al.

In this section, we shall present the example considered by Soroka et al. [Soroka et

al., 1984].

Consider the following cheap control problem shown as follows:

A =

 −1 0

0 −2

 , b =

 1

1

 , c =

[
1 −1

]
(6.4)

It is noted that in [Soroka et al., 1984] the vector c was shown as c =

[
1 1

]
rather than c =

[
1 −1

]
. Apparently it is a typographical error.

The performance index to be minimized is

J =

∫ ∞
0

[
y2(t) + ru2(t)

]
dt, r > 0 (6.5)

The well-known return difference equality is found to be

[1 + to(−s)]′[1 + to(s)] = 1 +
1

r
g(−s)′Qg(s) (6.6)
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where g(s) = (sI−A)−1b,Q = c′c, t0(s) = k(sI−A)−1b and k is the optimal gain.

Note that Q is singular. From eqn. (6.6), the return difference is readily obtained by

f(s) = 1 + t0(s) =
s2 + s

√
5 + 2q + q

(s+ 1)(s+ 2)
(6.7)

where q ,

√
4 +

1

r
and

t0(s) =
(
√

5 + 2q − 3)s+ (q − 2)

(s+ 1)(s+ 2)
(6.8)

By eqn. (6.7) the optimal gain matrix is given by

k =

 k1

k2


′

=

 1 + q −
√

5 + 2q

2
√

5 + 2q − q − 4


′

(6.9)

Consider now a small perturbation ε in b, namely bε = (1 + ε, 1)′. The return

difference of the perturbed system is given by

fε(s) = 1 + tε0(s) =
s2 + d1s+ d2

(s+ 1)(s+ 2)
(6.10)

where

tε0(s) =
(d1 − 3)s+ (d2 − 2)

(s+ 1)(s+ 2)
(6.11)

is the perturbed open-loop transfer function and the coefficients of the characteristic

polynominal are

d1 =
√

5 + 2q + ε(1 + q −
√

5 + 2q) (6.12)

d2 = q + 2ε(1 + q −
√

5 + 2q) (6.13)

It is clear that necessary and sufficient conditions for stability are that (i) d1 > 0
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and (ii) d2 > 0. By eqn. (6.12) and eqn. (6.13), it may be shown that a necessary

and sufficient condition for stability for all ε satisfying

|ε| < εL = min (δ1, δ2) (6.14)

where

δ1 =

√
5 + 2q

1 + q −
√

5 + 2q
(6.15)

δ2 =
q/2

1 + q −
√

5 + 2q
(6.16)

As r → 0 then q →∞, δ1 →
√

2
q

and εL = δ1. Thus, for any ε < 0 and |ε| >
√

2
q

the closed-loop system will be unstable. That is to say, as the control weighting

goes to zero, the bound on parameter variation for not destabilizing the closed loop

system will be very small. As compared to the classic stability margins, for exam-

ple a gain margin of [0.5,+∞), this result turns out to be somehow disappointing.

In Soroka et al. [Soroka et al., 1984], the individual entries in the system’s b matrix

are perturbed differently. Hence, from the very definition of gain margin, gain mar-

gin bounds make no claim. Gain margin bounds cover situations where the b matrix

is perturbed by multiplication by a real gain. In other words, if both elements of b

are perturbed by ε as [1 + ε, 1 + ε]′, the perturbation can be treated as a pure gain

inserted into the nominal open loop. In this situation, it is clear that the bound εL

for stability will satisfy [0.5,+∞). As a result, the remarkable result of unstruc-

tured perturbations in Corollary 3 is not applicable to the case of Soroka et al. who

consider structured perturbations. Therefore, we shall investigate the perturbation

bound based on the general robustness property of LQR characterized by Theorem

1. This bound is evaluated according to the H-infinity norm bound of the perturba-

tion transfer function whose coefficients depend affinely on the perturbation param-
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eters. By comparing this H-infinity norm bound with the exact perturbation bound

given by eqn. (6.11), we are able to investigate whether the robustness properties of

LQR are preserved in a general sense.

6.3.2 The case of Zhang et al.

In this section, we mainly study the “example” by Zhang et al..

Unlike the example of Soroka et al. [Soroka et al., 1984], Zhang et al. [Zhang

et al., 1996]’s example complicates things by the involvement of perturbations in

both the system matrix and input matrix. The plant considered is

G(s) = k
s− 1

s2
(6.17)

The performance index is

J =

∫ ∞
0

(x′q′qx+ u2) dt (6.18)

where

q = [
√

2r − r, r] (6.19)

and r is a positive tuning parameter. As there may have plenty of state-space re-

alization of eqn. (6.17) a stabilizable and detectable one with respect to gain k is

obtained by

A =

 0 0

−k 0

 , b =

 1

k

 , c = [0, 1]. (6.20)
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The optimal input may be shown to be

u(t) = −hT x(t) (6.21)

Assume

L(s) = hT (sI − A)−1B (6.22)

g(s) = q (sI − A)−1B (6.23)

The return difference equality is given by

[1 + L(s)] [1 + L(−s)] = 1 + g(s) g(−s) (6.24)

The formula for the optimal gain h with respect to gain k and parameter r is found

to be

hT = [h1, h2] (6.25)

where

h1 =

√
(
√

2r − r + rk)2 + 2kr + rk, h2 = −r (6.26)

The closed loop polynominal is then

t(s) = s2 + (h1 + h2k)s− h2k (6.27)

If the nominal value of k is set to 1, the associated nominal h is given by

h = [h′1, h
′
2], h′1 = 2

√
r + r, h′2 = −r (6.28)
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The nominal closed-loop polynominal is then

t′(s) = s2 + 2
√
rs+ r (6.29)

which is always stable when r > 0.

Consider next perturbing this nominal k with small error e by

k′ = 1 + e (6.30)

Then the perturbed closed-loop system is

t′′(s) = s2 + (2
√
r − re)s+ r(1 + e) (6.31)

It is shown that if

2
√
r − re > 0 (6.32)

and

r(1 + e) > 0 (6.33)

then the system will be stable. The closed-loop system will lose its stability when

very small errors show up

e = e∗ =
2√
r
→ 0, as r →∞ (6.34)

By the stability theorem of Lehtomaki et al. [Lehtomaki et al., 1981], it may be

shown that either of the following two conditions must hold to ensure the stability

Cond. 1 Q > 0 and r(s) ≤ 0, s ∈ ΩR (6.35)

Cond. 2 ΦOL(jw) 6= 0, ∀w and r(s) < 1, s ∈ ΩR (6.36)
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As Q = q′q, condition 1 is violated. The denominator of g(s) in eqn. (6.23) is s2.

Consequently, condition 2 is again violated. Hence, it cannot be argued that LQR

may suffer from poor robustness because of this special example. However, if we

replace the Q simply by a tuning parameter r just like in the case of Soroka et al.,

then

Q = r × I (6.37)

All the conditions eqn. (6.35) and eqn. (6.36) will be satisfied.

6.4 Bounds comparison for the case of Soroka et al.

In this section, we investigate whether the robustness result in Theorem 1 covers the

particular LQR problem of Soroka et al. The approach is to compare the bounds on

ε for stability.

When R = r, the condition for the stability of the perturbed LQR system in

Theorem 1 is

Re[L(jw)] ≥ 1

2
, ∀ω (6.38)

where Re[·] denotes the real part of a complex number.

As is shown in Fig. 4.2, the perturbation L(s) is readily given by

L(s) =
tε0(s)

t0(s)
(6.39)

where t0(s) and tε0(s) are given in eqns.(6.8) and (6.11), respectively. By eqn. (6.38)

and eqn. (6.39), the necessary and sufficient condition for stability for all ε satisfy-

ing

|ε| ≤ εS = min (β1, β2) (6.40)
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where

β1 =
1
2
(
√

5 + 2q − 3)

1 + q −
√

5 + 2q
(6.41)

β2 =
1
2
( q

2
− 1)

1 + q −
√

5 + 2q
(6.42)

The derivation of the bounds β1 and β2 is detailed in appendix. As r → 0 (q →∞),

it is clear that εS = β1. Recall that in this circumstance the exact bound εL is found

to be δ1, as analyzed in Section 2. It is obvious that β1 < δ1. In other words, the

bound εS guaranteed by Theorem 1 is smaller than the exact bound εL. Therefore,

the well-known robustness result of LQR shown in Theorem 1 is preserved in this

particular case [Chen et al., 2014]. However, the remarkable result of Corollary 1 is

not applicable for this case. If both elements of b are perturbed by ε as [1 + ε, 1 + ε]′

can be treated as a pure gain inserted into the nominal open loop. In this situation,

it is clear that the bound εL for stability is given by 0.5 based on Corollary 1. This

then recovers the classic stability margins.

6.5 Perturbation theory of the CARE

In this section, we first present a brief review of the algebraic Riccati equation

(ARE) and condition number. The robustness problem of LQR with respect to

structured perturbations is investigated relying on numerical perturbation analysis

of the continuous algebraic Riccati equation (CARE). We seek to use the condi-

tion numbers of the algebraic Riccati equations to detect the vulnerability of LQR

systems.
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6.5.1 Some history of algebraic Riccati equation

In this section, we will give a brief review of the algebraic Riccati equation. The

history of the Riccati equation, in name of Riccati, begins in the early 18th cen-

tury. Escherich [Escherich, 1898] used the eigenvector method to solve the Riccati

equation. Kalman [Kalman, 1960] first introduced the Riccati differential equation

for solving an optimal control problem. Later, Potter [Potter, 1966] and Klein-

man [Kleinman, 1968] presented a numerical analysis of the solution of the ARE.

A comprehensive treatment began with the book by Wonham [Wonham, 1970].

Willems [Willems, 1971] and Coppel [Coppel, 1974] studied the continuous-time

algebraic Riccati equation (CARE). In the meantime, Martensson [Martensson,

1971] summarized the eigenvector approach for solving the ARE. A new algorithm

to solve the ARE was proposed by Laub [Laub, 1979]. A generalized Schur ap-

proach was treated in [Pappas et al.,1980; Arnold et al., 1984]. Some books [Bit-

tanti et al.,1991; Mehrmann et al., 1991; Lancaster et al., 1995] extensively studied

the application of the solution of the ARE to various areas, especially to the linear

optimal control problem. Benchmark examples for solving AREs were set up by

Benner et al. [Benner et al., 1997] for comparison purposes.

6.5.2 Brief review of condition numbers

The conditioning of the ARE has been studied for a long time. A general concept

of condition dates back to [Rice, 1966]. It was applicable to many areas by Geurts

[Geurts, 1982]. Bucy [Bucy, 1975] introduced the notion of structural stability for

Riccati equations. Laub [Laub, 1979] pointed out the relationship between the con-

ditioning of the ARE and stability in optimal control problems. Based on the theory

of [Rice, 1966], Byers [Byers, 1985] introduced the condition number for the ARE
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as a measure of the sensitivity of the solution of the ARE subject to perturbations

in a rigorous way. The notion of stability radius for the perturbation analysis of

ARE was generalized by Hinrichsen and Pritchard [Hinrichsen et al., 1986]. Chen

[Chen, 1988] sharpened the results of Byers. At the same time, Hewer and Kenny

[Hewer et al., 1988; Kenny et al., 1990] related the condition number of the ARE to

the damping property of the linear control problem. Similar results were reported

by Xu [Xu, 1996], He [He, 1997] and Hewer et al. [Hewer et al., 1998]. Sun

[Sun 1998; 2002] made progress in computing the condition number in an explicit

form. Zhou et al. [Zhou et al., 2009] further presented tighter bounds for condition

numbers of the ARE. The application of condition numbers of ARE to real control

problems can be found in [Zietsman et al., 2008].

6.5.3 Condition number

In this section, the concept of condition number is illustrated.

Consider an algebraic equation

Ax = B (6.43)

If A and B are additively perturbed as A+4A and B +4B, the solution x+4x

satisfies

(A+4A)(x+4x) = B +4B (6.44)

⇒ Ax+ A4x+ (4A)x+4A4x = B +4B (6.45)

It is, then, to investigate the upper bound on 4x. As is usual, the analysis is done
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to first order. Therefore, by eqns. (6.44) and (6.43) we are interested in

(4A)x+4A4x = 4B (6.46)

If A is invertible, eqn. (6.46) implies that

4x = A−14B − A−1(4A)x (6.47)

Consequently, the upper bound of4x is established in terms of 2-norm

||4x||2 = σ(A−1)||4B − (4A)x||2 ≤
1

σ(A)
(6.48)

This shows that, as is well known, the sensitivity of this problem is determined by

how close A is to being non-invertible.

6.5.4 The continuous-time algebraic Riccati equation

(CARE)

Rather than consider the effects of various perturbations on the LQ full-state feed-

back system, numerical perturbation analysis of Riccati equations will be used as a

tool to measure the sensitivity of the CARE solution. On that account, we will only

concentrate on solving the CARE. Commonly, the CARE may be written as

Q+ AHX +XA−XGX = 0 (6.49)

where

G = BR−1BH (6.50)
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A ∈ Cn×n, B ∈ Cn×m, Q ∈ Hn×n, R ∈ Hm×m (6.51)

and

Q, G ≥ 0 (6.52)

It is noted here that the task is to seek a Hermitian positive semi-definite (p.s.d)

solution X , which also makes A − GX stable. It is known that [Laub, 1979] two

conditions suffice for a unique p.s.d solution to the ARE to exist. The first one

is to assume that (A,G) is a stabilizable pair. This requirement is to assure the

optimality of the optimization problem. Since optimality does not imply stability

[Kalman, 1964], the condition for the stability will need to be given by (C,A) is a

detectable pair, where C is a full-rank factorization (FRF) of Q, i.e.

CTC = Q (6.53)

and rank(C) = rank(Q). In this way there exists a uniqe Hermitian p.s.d. solution

X of the CARE, and also a stable

A−GX (6.54)

is ensured.

Next, we consider the effects of the perturbation on the solution of the CARE.

To the end, assume X to be a solution to the perturbed CARE

Q+ A
H
X +X A−X B R

−1
B
H
X = 0 (6.55)
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where

A = A+4A, Q = Q+4Q, G = G+4G, X = X+4X (6.56)

The perturbations considered here only occur in the system matrix A and input

matrix B. Uncertainties in the matrix B lead to the errors in the coefficient matrix

G. Now, the primary problem is to find upper bounds on

||X −X|| (6.57)

Also we are interested in whether the solution X is p.s.d.

Before proceeding, we shall define a set of linear operator as follows:

L : Hn×n → Hn×n (6.58)

Then for any V ∈ Hn×n, Ω ∈ Hn×n, we have

LV = ΩHV + V Ω (6.59)

Next, we define a second family of linear operator as follows:

P : Cn×n → Hn×n (6.60)

Then for any M ∈ Cn×n, F ∈ Hn×n, we have

PM = L (FM +MF ) (6.61)
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Thirdly, let J be defined as

J : Hn×n → Hn×n (6.62)

Then for any N ∈ Cn×n, we have

JN = L−1 (FNF ) (6.63)

The objective of following analysis is to seek a first-order bound on the solution X

of the CARE [Sun, 1998]. By eqns. (6.49), (6.55) and (6.56), it may be shown that

(
A−GX

)H4X +4X
(
A−GX

)
= −Z + d14X + d24X (6.64)

where

Z = 4Q+4AHX +X4A−X4G (6.65)

d1

(
4X

)
= −

[(
4A−4GX

)H4X +4X
(
4A−4GX

)]
(6.66)

d2

(
4X

)
= 4X

(
G+4G

)
4X (6.67)

The above derivation involves matrix algebra and letting second and higher order

terms equal to zero. Recall that

Acl = A−GX (6.68)

By eqns. (6.58) and (6.59), eqn. (6.64) becomes

L4X = −Z + d1

(
4X

)
+ d2

(
4X

)
(6.69)

As Acl is invertible, the operator L is invertible. By eqns. (6.61), (6.63) and (6.65),
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we have

L−1Z = L−14Q+ P4A− J4G (6.70)

Define l, q, j as

l = ||L−1||−1, p = ||P||, j = ||J|| (6.71)

||4A||+ ||4G||2||X|| (6.72)

Let s = ||G||2 and s = s + ||4G||2. By eqns. (6.67) and (6.71), it may be shown

that

||d14X|| ≤ 2d||4X|| (6.73)

||d24X|| ≤ s||4X||2 (6.74)

Define e as

e =
1

l
||4Q||+ p||4A||+ j||4G|| (6.75)

Therefore, by eqns (6.70), (6.73), (6.74) and (6.75), the upper bound on 4X is

found to be

||4X|| ≤ e+
2d

l
||4X||+ s

l
||4X||2 (6.76)

Let y = ||4X||. Next, we need to solve

sy2 −
(
1− 2d

)
y + le = 0 (6.77)

To seek a positive solution of eqn. (6.77), it is to let

d <
l

2
, e ≤ (l − 2d)2

4ls
(6.78)
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Eqn. (6.78) can be equivalently expressed as

d+
√
lse <

l

2
(6.79)

The solution to (6.77) is obtained by

w =
2le

l − 2d+
√(

l − 2d
)2 − 4lse

(6.80)

If eqn. (6.79) is satisfied, the bound eqn. (6.80) will give a unique Hermitian p.s.d

solutionX with the constraints of nonnegative definite property ofQ,G,Q,G . It is

noted that for sufficiently small ||
(
4Q,4A,4G

)
||, the relative perturbation bound

for the solution X will satisfy

||X −X||
||X||

≤ ||Q||
l||X||

||4Q||
||Q||

+
p||A||
||X||

||4A||
||A||

+
j||G||
||X||

||4G||
||G||

(6.81)

As a consequence, condition numbers will be derived based on this first order bound

on the CARE solution.

6.5.5 Condition number of CARE

Condition numbers are actually scalars which reflect the first order perturbation

bound for the solution of the CARE as the perturbations approach zero. They are

classified depending on how the perturbations go to zero. Based on the theory of

condition numbers [Byers, 1985] define the condition number κ(X) of the CARE

solution X as

κ(X) = lim
δ→0

sup
ρ
(
4Q,4A,4G

)
≤δ

||4X||F
hδ

(6.82)
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where the perturbations are defined as

ρ
(
4Q,4A,4G

)
=

∥∥∥∥(4Qa ,
4A
b
,
4Q
c

)∥∥∥∥
F

(6.83)

with positive numbers a, b, c. By inspecting eqn. (6.81), Sun [Sun, 2002] presented

two explicit expressions for condition numbers with respect to coefficient matrices

Q, A and G as κQ(X), κA(X), κG(X). If we take it that

h = a = b = c = 1 (6.84)

then

κQ (X) =
1

l
, κA (X) = p, κG (K) = j (6.85)

Eqn. (6.85) are the expression of the absolute condition numbers.

Let κrQ(X), κrA(X) and κrG(X) denote the relative condition numbers with re-

spect to each coefficient matrix. By selecting

a = ‖Q‖F , b = ‖A‖F , c = ‖G‖F , h = ‖X‖F (6.86)

It may be shown that

κrG (X) =
j‖G‖
‖X‖

, κrA (X) =
p‖A‖
‖X‖

, κrQ (X) =
‖Q‖
l‖X‖

(6.87)

In addition, the overall relative condition number κr(X) is given by

κr (X) =
1

‖X‖F

√(
‖Q‖F
l

)2

+ (p ‖A‖F )2 + (j ‖G‖F )2 (6.88)
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Then
1√
3
κByer(X) ≤ κr(X) ≤ κByer(X) (6.89)

6.6 Numerical results

In this section, we implement the examples in [Soroka et al., 1984] and [Zhang

et al., 1996] to illustrate the validity of our results. We also implement some real

control problem to verify our results. All the calculations were performed using

MATLAB R2012a.

6.6.1 The case of Soroka et al.

Consider the CARE with coefficient matrices

A =

 −1 0

0 −2

 , b =

 1

1

 , Q = cc′ =

 1 −1

−1 1

 ,
G = b ∗ b′/r, where c = [1, −1]

(6.90)

where r is a scalar positive tuning parameter. The pair (A,G) is stabilizable and the

pair (A,Q) is detectable. Suppose that the perturbations in the coefficients are

4Q = 10−j

 5 −2

−2 4

 , 4A = 10−j

 0.3 −0.2

0.1 0.1

 ,
4G = 10−j

 0.2 0.1

0.1 −0.3


(6.91)

where

Q = 4Q+Q, A = 4A+ A, G = 4G+G (6.92)
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and j = 12. Let X be the unique symmetric p.s.d solution of the perturbed CARE

Q+ A
H
X +X A−X B R

−1
B
H
X = 0 (6.93)

r ‖X̄−X‖F
‖X̄‖F

e
‖X‖F

CQ(X) CA(X) CG(X) Cr(X)

1.00E-01 3.42E-12 6.38E-12 1.73E+00 1.53 3.66E+00 4.33E+00

1.00E-02 6.85E-12 1.55E-11 4.35E+00 1.39 1.69E+01 1.75E+01

1.00E-03 2.59E-11 7.12E-11 2.03E+01 1.60 6.71E+01 7.02E+01

1.00E-04 9.79E-11 2.77E-10 7.91E+01 1.83 2.45E+02 2.58E+02

1.00E-05 3.45E-10 9.76E-10 2.79E+02 1.99 8.45E+02 8.89E+02

1.00E-06 1.16E-09 3.27E-09 9.33E+02 2.09 2.81E+03 2.96E+03

Table 6.1: Comparison of the relative error of the CARE solution X with the es-
timated upper bound and the condition numbers with respect to each coefficient
matrix in the case of Soroka et al.

We used MATLAB function care.m to compute the unique symmetric p.s.d

solution X of the CARE eqn. (6.49) and the unique symmetric p.s.d solution X of
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the perturbed CARE eqn. (6.93). The exact relative error

∥∥X −X∥∥
F
/ ‖X‖F (6.94)

can be readily obtained. Next, we compute the condition numbers given in eqn. (6.87)

and eqn. (6.88) as the parameter r decreases by a factor of 10. By eqn. (6.81) we

are also able to compute the upper bound on ||X −X||. The numerical results are

shown in Table 6.1. The parameter r is the cost weighting matrix on the control

input. e
||X||F

and ‖X̄−X‖F‖X̄‖F
are the estimated upper bound and exact relative error of

the CARE solution X, respectively. CQ(X), CA(X) and CG(X) are the relative

condition numbers with respect to the coefficient matrices Q, A and G. The quan-

tity Cr(X) is the overall relative condition number. Comparing the approximate

upper perturbation bounds in eqn. (6.81) with the exact relative error, it shows that

the estimated upper bound is very close to the exact relative error. Therefore, this

estimation is shown to be very effective and the condition numbers can serve as a

good indication of the true perturbation bounds of the solution X . It is also no-

ticed that the condition numbers with respect to the coefficient matrices Q and G

increase dramatically as r decreases, while the condition numbers with respect to

the coefficient matrix A remained almost the same. That is to say, as r approach

zero small perturbations in the coefficient matrices Q and G may result in a large

relative change in the CARE solutions. In addition, it is observed that the condition

number of the coefficient matrix G is much larger than that of the coefficient matrix

Q, which means that the perturbations in G is the dominating factor in affecting

the CARE solution. By inspecting the overall condition numbers, it is concluded

that as r decreases, the CARE becomes more sensitive to the perturbations in its

coefficient matrices. In a word, the numerical results in terms of condition numbers
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correlate well with the perturbation analysis in terms of control methods analyzed

in the previous chapters.

6.6.2 The case of Zhang et al.

Recall that

A =

 −1 0

0 −2

 , b =

 1

1

 ,
Q = q′q, G = bb′

(6.95)

where

q =
[√

2r − r, r
]

(6.96)

and r is a positive tuning parameter. The pair (A,G) is stabilizable and the pair

(A,Q) is detectable. Assume we have the same perturbations given by eqn. (6.91)

as the case of Soroka et al. [Soroka et al., 1984]. We use the MATLAB func-

tion care.m to compute the unique symmetric p.s.d solution X of the CARE,

eqn. (6.49), and the unique symmetric p.s.d solution X of the perturbed CARE,

eqn. (6.93). The approximate perturbation upper bound, the exact relative bound

and the condition numbers are compared in Table 6.2. Here, r is the tuning param-

eter with respect to the cost weighting matrix Q. It is seen that the approximate

perturbation upper bounds follow the exact relative error quite well as the parame-

ter r goes up. By comparing the condition numbers related to their corresponding

coefficient matrices, it is found that the condition numbers with respect to the co-

efficient matrix G, as a dominant factor, were much larger than the other two and

they grew significantly as r increases. Thus, it is concluded that the solution of

the CARE are more sensitive to perturbations to the coefficient matrix G, which
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also resulted in a significant overall condition number. Eventually, as was analyzed

in the previous chapters, small perturbations in b in this particular case may cause

instability as r approaches infinity, the numerical results in terms of the condition

numbers corresponds well with real control situations.

r ‖X̄−X‖F
‖X̄‖F

e
‖X‖F

CQ(X) CA(X) CG(X) Cr(X)

1 2.97E-12 9.69E-12 0.78 4.25 1.76E+01 1.81E+01

10 3.56E-13 2.95E-11 3.30 2.38 1.46E+02 1.47E+02

20 2.72E-13 5.61E-11 6.34 2.16 2.85E+02 2.85E+02

30 2.47E-13 8.27E-11 9.36 2.07 4.23E+02 4.23E+02

40 1.83E-13 1.09E-10 12.36 2.01 5.60E+02 5.60E+02

50 1.51E-13 1.36E-10 15.35 1.98 6.96E+02 6.97E+02

Table 6.2: Comparison of the relative error of the CARE solution X with the es-
timated upper bound and the condition numbers with respect to each coefficient
matrix in the case of Soroka et al.

6.6.3 Real control example

We shall also analyse the vulnerability of real control problem to structured pertur-

bations via condition numbers.
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The example we use is the two rolling carts system, which has been studied in

Section 5.5.1. Recall that the state space system

A =



0 0 1 0

0 0 0 1

−30 30 −3 3

7.5 −42.5 0.75 −2.25


, B =



0 0

0 0

0.2 0.05

0 0


The criterion is to minimize the cost function

J(ε) =

∫ ∞
0

[
xTQx+ εuTRu

]
, ε > 0 (6.97)

where the cost weighting matrices Q,R are the identity matrices and ε is a positive

tuning parameter. All the coefficient matrices in the CARE are perturbed by small

variations. When the parameter ε decrease from 1, the simulation result is shown in

Table 6.3. The parameter ε is the positive tuning variable which decreases by a fac-

tor of 10. The second and the third column represent the exact relative error and the

estimated upper bound of the CARE solution X. By comparing these two columns,

it is shown that the estimated upper bound is very close to the exact relative error.

The last three columns represent the relative condition numbers with respect to the

coefficient matrices Q,A and G. The relative condition numbers with respect to

the coefficient matrix Q are kept unchanged. When ε = 1, the relative condition

number of the coefficient matrix A is fairly large. As ε decreases, the condition

numbers of A decrease monotonically. Eventually, the relative condition number of

A stay at round 80. The last column represent the relative condition number with

respect to the coefficient matrix G.
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ε 1.00E+00 1.00E-01 1.00E-02 1.00E-03 1.00E-04 1.00E-05

Cr(X) 1.33E+02 1.31E+02 1.20E+02 1.27E+02 8.31E+02 8.20E+03

Table 6.3: Illustration of the overall relative condition numbers in the two rolling
carts model

ε 1.00E-06 1.00E-07 1.00E-08 1.00E-09 1.00E-10 1.00E-11

Cr(X) 8.18E+04 8.18E+05 8.18E+06 8.18E+07 8.18E+08 8.18E+09

Table 6.4: Illustration of the overall relative condition numbers in the two rolling
carts model

It is shown that the condition numbers ofG increase dramatically as ε decreases.

It is concluded that the coefficient matrix G is more sensitive to the perturbations

than the coefficient matricesQ andA. Specially, large relative condition numbers of

A indicateA is also sensitive to the variations, but much less vulnerable thanG. The

overall relative condition number is presented in Table 6.3 and Table 6.4. It is shown

that as ε decreases the overall relative condition number increase dramatically. That

is to say, the system is very vulnerable to structured perturbaions in the state-space

matrices. If we perturb the first entry of the nominal input matrix B by very small

variation, it is shown that one of the poles of the perturbed closed loop system

resides in the right half plane of the complex plane. Therefore, the closed loop

system becomes unstable. This has further corroborated that condition numbers

can be used to test the vulnerability of the system to strucutred perturbations.
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ε ‖X̄−X‖F
‖X̄‖F

e
‖X‖F

CQ(X) CA(X) CG(X)

1.00E+00 2.1E-13 1.14E-11 1.43 133.20 1.98E-01

1.00E-01 1.92E-13 1.11E-11 1.39 131.30 1.87E+00

1.00E-02 1.26E-13 9.34E-12 1.25 119.11 1.33E+01

1.00E-03 1.56E-13 9.18E-12 1.50 90.19 8.94E+01

1.00E-04 3.2E-13 1.02E-11 1.80 79.36 8.27E+02

1.00E-05 3.4E-13 1.04E-11 1.86 79.57 8.20E+03

1.00E-06 3.43E-13 1.04E-11 1.86 80.15 8.18E+04

1.00E-07 3.43E-13 1.04E-11 1.86 80.39 8.18E+05

1.00E-08 3.7E-13 1.04E-11 1.86 80.48 8.18E+06

1.00E-09 3.23E-13 1.04E-11 1.86 80.50 8.18E+07

1.00E-10 2.17E-13 1.04E-11 1.86 80.51 8.18E+08

1.00E-11 3.32E-13 1.04E-11 1.86 80.52 8.18E+09

Table 6.5: Comparison of the relative error of the CARE solution X with the es-
timated upper bound and the condition numbers with respect to each coefficient
matrix in the two rolling carts model

89



6.6.4 Analysis

In general, the condition numbers of two examples in [Soroka et al., 1984] and

[Zhang et al., 1996] were compared and the exact relative error, as well as the es-

timated upper perturbation bound, was investigated. It is found that the estimated

upper perturbation bound follows quite well the exact relative error. Also as the

weight increases or decreases, the condition numbers with respect to the coefficient

matrix G becomes dominant, which contributes significantly to the increasing phe-

nomenon of the overall condition number. The first observation indicates that this

perturbation bound estimation reflects the real change of the CARE solution very

well. As a result, the condition numbers based on this criterion will be treated as an

effective way to measure the sensitivity of the CARE when the coefficient matrices

are subject to various errors. Furthermore, by investigating the condition numbers

of real control problem, it is concluded that numerical perturbation analysis of the

CARE in terms of the condition numbers can be utilized to reflect the vulnerability

of LQR system to strucutred perturbations.

6.7 Conclusion

In this chapter, the robustness property of LQR against structured perturbations was

revisited in this chapter. In particular, we studied the counter-example of Soroka et

al.. It was shown that the excellent robustness result regarding the stability margins

is not applicable. The stability bounds on the perturbations determined based on the

general robustness result are compared with the exact ones. It was shown that the

robustness properties of LQR are preserved in a general sense. The distinction be-

tween structured and unstructured perturbations must be made. We then investigate

the perturbation situation of the CARE’s in the case of Soroka et al. [Soroka et al.,
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1984] and the case of Zhang et al. [Zhang et al., 1996] in terms of their condition

numbers. The condition numbers for some real control problem are also investi-

gated. It is shown numerically that the condition numbers provides an effective

way to detect the vulnerability of LQR system.
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Chapter 7

Summary and conclusion

In this chapter, a brief summary of this thesis is presented. The contributions in

the area of mathematical optimal control theory are also presented. Finally, some

suggestions are made for future research.

7.1 Summary of the thesis

The purpose of this thesis is to investigate the stability robustness of linear quadratic

regulators against both unstructured and structured perturbations. In regard to un-

structured perturbations, the singular value technique is applied to the return differ-

ence equality, which yields novel robustness results which involve both cost weight-

ing matrices. When the choice of the cost weighting matrices are not quite obvious,

this provides a guideline for LQR designers to acquire satisfying stability robust-

ness. For structured perturbations in some cheap control problems, the distinction

from unstructured perturbations shall be made with respect to the classic notion of

stability margins. Condition numbers are utilized to detect the vulnerability of LQR

systems to variations.
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A summary of automatic control and the linear quadratic regulator

It was noted that automatic control has a long history dating back to ancient

times. In the early and middle periods of the twentieth century, classical

and modern control theory have enjoyed a rapid development. Due to the

work by Kalman and other researhers [Kalman, 1960; Kalman et al., 1961],

optimal control plays an important part in modern control. As one of the

major contributions in this area, the LQR theory has been extensively studied

by many researchers. In the meantime, the stability margin analysis provides

a mathematical formulation for analyzing the robustness in feedback control

systems. Based on the return difference inequaliy, it has been shown that

LQR can have excellent stability margins.

A summary of cheap control problem

With the advent of LQR, cheap control has gained much attention. It is shown

that it has good stability robustness to parameter variations. Many authors

have studied the conditions for achieving perfect performance in cheap con-

trol problem, which makes it more attractive.

A summary of the perturbation analysis of the algebraic Riccati equation

It was noted that the Riccati equation has been studied for centuries. For op-

timal control problems, it has proven to be a key in synthesizing the optimal

gains. It has then been extensively studied and tested, and benchmark ex-

amples have been proposed. The concept of condition number has also been

proposed for measuring the sensitivity of the solution of the algebraic Riccati

equation subject to variations. The proposal of an explicit way to evaluate the

condition number gives a quantatitive aspect to the conditioning of the ARE.
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Chapters 2-4 Some history of automatic control, particularly of the LQR theory,

is presented in Chapter 2. The return difference equality (RDE), which is

comprehensively studied in Chapter 3, is the core idea for analyzing the ro-

bustness properties of LQR. In Chapter 4, it has been shown that both the

eigenvalue and the singular value properties of the return difference can be

used to study the optimality and stability robustness of optimal control sys-

tems. In there, it has also been shown that LQR can have a general robustness

property based on the return difference inequality. By selecting a special in-

put matrix, namely a scalar times the identity matrix, the classic stability

margins are obtained. These results show that the linear quadratic controllers

can have a very good tolerance of a wide variaty of perturbations.

Chapter 5 Although LQR can have excellent stability margins, such as infinite

gain margin, phase margins of ± 60◦ and downside margin of 0.5, Chapter 5

presents more general guaranteed stability margins with respect to both the

plant’s state and the input matrices. This can be achieved by directly analyz-

ing the return difference equality using the singular value method. As a result,

a new lower bound on the minimal singular value of the return difference is

proposed and evaluated. Thus, this gives us new guaranteed stability margins

for LQR. The effect of tuning the state weighting matrix is also investigated

for improving the robustness. For example, it is shown that σ(Fi(jω)) is im-

proved when σ(Q) is increased. When σ(R
1
2 )

σ(R
1
2 )

deviate from 1 in a continous

way, the classic stability margins will be lost progressively. This gives a for-

mal mathematical basis for guidelines for the designer to improve stability

robustness.
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Chapter 6 Despite the fact that LQR can have excellent stability margins against

unstructured perturbations, it is shown by Soroka et al. [Soroka et al., 1984]

and Zhang et al. [Zhang et al., 1996] that LQR, particularly for some cheap

control problems, may suffer from poor robustness when the input matrix is

subject to small variations. However, it is not applicable to utilize the classic

notion of stability margin to cover these situations of structured perturbations.

The perturbation bound evaluated based on the general robustness property of

LQR is compared with the exact stability perturbation bound. Consequently,

it is shown that the stability robustness properties are preserved in a general

sense. It is also shown that the closed-loop may be very sensitive to variations

in the state-space dynamical model of the plant, especially in the case of

low objective function weights on the plant’s inputs. This gives a caution

in designing high gain LQR controllers. Furthermore, the analysis provides

guidance in choosing LQR weights.

The algebraic Riccati equation (ARE) plays an important part in linear op-

timal control theory. It is natural to analyse LQR problem with structured

perturbations relying on the perturbation analysis of the continuous-time al-

gebraic Riccati equation. The perturbation situations of the CARE’s in the

cases of Soroka et al. [Soroka et al., 1984] and the case of Zhang et al.

[Zhang et al., 1996] are explored in terms of the condition numbers. The

condition numbers are utilized to quantitatively measure the sensitivity of the

CARE solutions. With their explicit formulae specified, numerical results

showed that the condition numbers are good for the detection of the optimal

system’s vulnerability.
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7.2 Contributions of the thesis

The contributions of this thesis in the area of mathematical optimal control theory

are listed below.

Proposal of a new lower bound on σ(F (s)) and new guaranteed stability margins

We have generalized this by considering the robustness properties of LQR

when both weights are considered, especially for non-diagonal weights. By

applying the SVD to the RDE, some relationships between the σ-plot of

Fi(jw) and the LQR weights are obtained. A new lower bound on the min-

imum singular value of the return difference is established. The guaranteed

stability margins are related to the singular values of R. The effect of tun-

ing the state weighting matrix for improving the robustness is studied. It is

shown that, by appropriately tuning the weights, the stability robustness of

LQR can be improved. It is also shown that when the input weighting matrix

R deviates from ρI , the classic stability margins may be lost progressively.

This yields guidelines for LQR designs.

Distinction between structured and unstructured perturbations

The robustness properties of some special cheap control problems are revis-

ited. For the example of Soroka et al. [Soroka et al., 1984], the excellent

robustness result regarding the stability margins is not applicable. The stabil-

ity bounds on the perturbations determined based on the general robustness

result are compared with the exact ones. This shows that the robustness prop-

erties are preserved in a general sense. Thus, one should be more cautious in

the designs of high gain LQR controllers.

Two cheap control problems considered by Soroka et al. [Soroka et al., 1984]
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and Zhang et al. [Zhang et al., 1996] are revisited here. The condition num-

bers are evaluated when either increasing the state weighting parameter or

decreasing the input weighting parameter. It is shown that the CARE’s be-

come more sensitive to perturbations in the coefficient matrices in both cases.

It is found that the perturbation analysis correlates well with the classic stabil-

ity robustness results. The conditioning of the Riccati equation for a textbook

example is presented. The simulation result shows that condition number is

useful for detecting hidden vulnerabilities in LQR problems.

Some new results in mathematical control theory:

1. Theorem 3

2. Corollary 5

3. Corollary 7

4. Corollary 8

5. Corollary 9

7.3 Suggestions for future work

Some suggestions for future research are listed below.

1. The new lower bound on the return difference was evaluated only in relation

to the singular values of the state weighting and input weighting matrices.

The bound, for example in Corollary 9, may appear to be very conservative.

By inspecting the inequality shown in Theorem 3, it is worth considering the

shape of σ[H(s)] instead of Q only. The effect of tuning Q requires more

investigation.
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2. We have pointed out that the distinction between unstructured and structured

perturbations for some cheap control problem should be made. However, the

case only covers one parameter variation in the input matrix. It is feasible

to evaluate the perturbation bound based on the general robustness result of

LQR. Howerever, when considering the case of Zhang et al. [Zhang et al.,

1996], which assumes two independent parameter changes in both the sys-

tem and input matrix, it would be somehow difficult to directly calculate the

H∞ perturbation bounds. A vector block diagram technique can be utilized

to separate the perturbation from the loop dynamics. Based on the Nyquist

criterion, the stability robustness can be revealed. In addition, when the per-

turbations happen in the gain of the plant’s transfer function, one could ask

how do different types of the state space realization of the plant affect the

robustness properties.

3. The relationship between the perturbation analysis of the continuous-time al-

gebraic Riccati equation and the robustness properties of the control problem

are not very strong. Recall that the optimal gain, as a link between them,

is obtained by solving the Riccati equation. If we re-optimize the perturbed

LQR system, the new optimal gain will ensure stability. This re-optimization

procedure will create a new Hermitian positive semi-definite (p.s.d) CARE

solution by solving the perturbed CARE. Our task is to relate the CARE so-

lution change to the optimal gain change in the right way so as to resolve the

robustness issues in real control situations.

4. Singular perturbation analysis can be applied to cheap control problems. The

resulting high-gain closed-loop system is closely related to a standard singu-

lar perturbed system [Kokotovic et al., 1999], one could instead investigate
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the robustness of the latter system with uncertainty [Chen et al., 1990; Shao,

2004]. The sensitivity of such systems to the uncertainty could be examined.

This would give us another way to analyze the stability robustness of LQR.
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