
Orthogonal Variability Modeling to Support Multi-Cloud
Application Configuration

Pooyan Jamshidi, Claus Pahl

IC4 – the Irish Centre for Cloud Computing and Commerce,
Dublin City University, Dublin, Ireland

{pooyan.jamshidi,claus.pahl}@computing.dcu.ie

Abstract. Cloud service providers benefit from a vast majority of customers due
to variability and making profit from commonalities between the cloud services
that they provide. Recently, application configuration dimensions has been in-
creased dramatically due to multi-tenant, multi-device and multi-cloud paradigm.
This challenges the configuration and customization of cloud-based software that
are typically offered as a service due to the intrinsic variability. In this paper, we
present a model-driven approach based on variability models originating from
the software product line community to handle such multi-dimensional variabil-
ity in the cloud. We exploit orthogonal variability models to systematically man-
age and create tenant-specific configuration and customizations. We also demon-
strate how such variability models can be utilized to take into account the already
deployed application parts to enable harmonized deployments for new tenants in
a multi-cloud setting. The approach considers application functional and non-
functional requirements to provide a set of valid multi-cloud configurations. We
illustrate our approach through a case study.

Keywords: Multi-cloud, Variability, Multi-tenancy, Cloud Architecture.

1 Introduction

In the delivery model of software systems, a frequently studied shift can be observed
[1] in which software products are no longer delivered to customers as packages or
deployed in-house (on-premises), however, they are deployed at a central or (poten-
tially distributed) location(s) and offered to customers online (Software-as-a-Service;
SaaS). In on-premise deployments, application users use only one instance of a software
application that is developed in a software house and deployed on-premises. Obviously,
such application can be tailored to behave in accordance with specific customer require-
ments in case the standard product functionalities do not perfectly fit with the very
specific customer‘s requirements (in terms of business process support or particular
non-functional requirements) in place [2]. However, this approach will not be profitable
if the variations become unmanageable. To make this more cost-beneficial and yet to
satisfy particular customer needs, a novel approach has been proposed many years ago

within which different products, based on software product core containing general re-
quirements shared by all customers, can be generated in a software product line [3].

The concept of software variability was first studied in the software product lines
community [4]. Traditionally, variability only considers on-premise single-tenant soft-
ware. This approach follows the idea that software products containing specific features
have to be built before shipping the software (i.e., design-time binding). Software prod-
ucts that are delivered through online channels, however, only profits from runtime
binding since it would be undesirable to restart or redeploy a version whenever changes
are made (such case is a norm in design-time binding, for example). In software prod-
ucts, which are accessible online, the higher the configurability of a product is, the more
variable a product would be. A variable product aims to provide customers with a set
of options using a single code base in such a way that each tenant is able to have a
unique configuration. Since the software instance is now deployed in one location, mul-
tiple customers can potentially use the same instance of the software. Sharing a software
instance with multiple users, however, makes it impossible to have customized products
for specific customers. In other words, multi-tenant software is able to fulfil all different
customer requirements, while still taking advantage of shared resources [5]. In this set-
ting, tenants are customers using the application and usually consisting of multiple us-
ers within the same organizational context or common interests [6].

The work reported in [7] use the concept of external runtime variability in software
product line to represent the variability management in SaaS context. They refer to such
type of variability as customer-driven variability. Such usage of external variability to
represent tenant-based variability is also shown in several other research work, e.g., [5,
8–10]. One of the commonalities within such varieties of work is that they use a sort of
variability model to represent very specific needs of tenants to make the online software
product a configurable entity to allow for the varying requirements. However, with the
new type of development in the accessibility options as well as deployment variability
in the cloud, the application configuration and customization becomes a complex and
unmanageable process due to the large variability in the solution space. The newly in-
troduced dimensions are orthogonal to the tenant-specific configuration and, in this pa-
per, we propose to use a multi-dimensional variability management to address the
newly raised concerns that we discuss in the following.

Multi-cloud configuration. Multi-cloud deployment [6, 11] is particularly effective
in dealing with the situations where users are widely distributed around multiple data
centers, country regulations limit options for storing data in specific data centers, and
circumstances where public clouds are used jointly with on-premises resources. The
main difficulty is to deal with the wide range of deployment options at different layers
on different cloud platforms [12]. Such dimensions are certainly orthogonal to the ap-
plication architecture and make a large solution space for the deployment architecture.
Consequently, there is a need to enable multi-cloud deployment specific configuration.

Multi-device configuration. With the raise of smartphones and devices in one hand
and heterogeneity in the platforms, tenants are required to access to the cloud-based
services on specific devices. Consequently, there is a need to enable multi-device and
cross platform configuration, which is also orthogonal to both the application and de-
ployment architectures.

To address these challenges, we propose 3���, a model that integrates three vari-
ability models each addressing specific challenges regarding tenant-specific, multi-de-
vice and multi-cloud configuration. Cloud application variability can thus be described
using 3���. We use a video processing application as a running example to describe
the approach. This application contains more than 10,000 different configurations.
However, the approach proposed here is not specific to this application and can cover
different cloud-enabled application domains that can benefit from multi-cloud deploy-
ment, such as process-aware applications [13].

2 Research Challenges

With the rise of multi-tenant cloud-based applications, the dimensions for configuring
the software that is usually offered as a service has been also increased dramatically.
The functionality and quality that individual tenants need from a software application
are typically different from each other. As a consequence, in order to attract enough
customers, cloud service providers are required [5, 7, 9, 10, 12]: (i) To cater for the
varying requirements of potential tenants by providing tenant-specific configurations.
(ii) To make sure that they can handle the varieties of the deployment options in terms
of, for example, infrastructure offerings. (iii) To configure the tenant-specific configu-
ration by considering the variability of the devices that each tenant needs to interact.

For example, SaaS applications allow users to customize the captions used in the
application as well as adding and modifying business processes implemented in the
systems. Such tenant-specific adaptations of a SaaS application affect all layers of the
application. From functional requirements to business processes and all the way down
to database schemas. Tenants do not only have various requirements with respect to
functional features, but also require different non-functional requirements. While some
tenants want an application to be highly available, other tenants are not so much inter-
ested in high-availability, but care more about let’s say performance. Traditionally, this
was handled through different pre-configured software packages with different prices.
However, cloud allows a more robust delivery models in which software is licensed on
a subscription basis and is hosted on cloud platforms by independent vendors or service
providers. Therefore, cloud service providers face the following challenges when it
comes to the configuration and customizations of their software applications:

Challenge1. Tenant-specific configuration and customizations. Cloud applications
are typically multi-tenant and each tenant require its own specific functional and non-
functional requirements.

Challenge2. Multi-cloud configuration. The main difficulty is to deal with the wide
range of deployment options at different layers on different cloud platforms. Such di-
mensions are certainly orthogonal to the application architecture and make a large so-
lution space for the deployment architecture.

Challenge3. Multi-device and cross-platform configuration. With the rise of
smartphones and devices on the one hand and heterogeneity in the platforms that they
support, tenants are required to access to the cloud-based services on specific devices.

We highlight these challenges through a case study in the next section.

3 Running Example

To highlight the challenges and to exemplify our approach, we introduce a video-pro-
cessing application [10], which is a cloud-enabled system deployed on a multi-cloud
environment. In this example, the video processing software is offered as a service,
which has the capability to be customized for different tenants based on their required
functions, quality and end-point devices. The application comprises a number of com-
ponents as depicted in Fig. 1. The system is illustrated in three different architectural
views, i.e., application architecture, deployment architecture and accessibility devices.

Tenants can choose different subsets of the components, considering that the archi-
tectural constraints are not violated. One of the constraint is that the configuration must
include Player (VP), Decoder (Dec) and Data-Provider (DP) components, which form
the core of the video processing (this represents the commonalities among the derived
products). The functional variability of the video-processing application is as follows:
Video-Manager (VM) component, which offers a graphical UI to add and remove vid-
eos. Icon component, which injects a tenant-specific logo into the videos before they
are played. Subtitle (Sub) component, which introduces subtitles as overlays on videos.

The StreamProcessor (SP) is parent of the Decoder, Icon and Subtitle components.
This abstraction enables the tenant to choose a combination of the three inheriting com-
ponents. Note that in this setting different sub-architecture of the system can potentially
be deployed on different cloud platforms. This is because all deployment of the same
parts provide the same functionality, but differ in their non-functional properties. For
example, the VideoPlayer-StreamProcessor binding is realized by the pipes and filters
style on Windows Azure and Amazon AWS. Both deployments facilitate playing a
video, but Azure deployment offers a different rendering resolution and performance
than AWS does. Furthermore, the accessibility on the two deployments is different. For
example, AWS deployment does not provide refrigerator end accessibility.

For each tenant an own configuration/deployment of the application can be created.
For our example, we assume three tenants: the first tenant (T1) does not use any op-
tional component, whereas the second tenant (T2) has decided to use the Subtitle com-
ponent to enhance the application. The third tenant (T3) has decided to have all the
functionalities. Besides the functionality that each tenant is required, they require their
own specific non-functional requirements (NFRs) (c.f. Figure 2), which characterize
how the provided functionality can be fulfilled. Besides, each tenant requires to access
the functions in different devices, see Table 1.

Table 1. Tenants configuration and Requirements.

Tenants Components NFRs Accessibility
T1 VP, Dec, DP Bandwidth: 1000MB/s

Availability: Standard, Latency: 1s
PC, Mobile (Android),
Mobile (iOS), Refrigerator

T2 VP, Dec,
Sub, DP

Bandwidth: 1000MB/s
Availability: Standard, Latency: 0.1s

All

T3 VP, Dec, Sub,
Icon, DP, VM

Bandwidth: 10MB/s
Availability: Super, Latency: 0.01s

PC (Mac OS), Car

The architectural style of the video-processing application is pipes and filters. Such
architectural style when realized on cloud platforms allows for the on-demand provi-
sioning of multi-part job processing. It can be used for instantaneous or delayed de-
ployment of a heterogeneous, scalable “grid” of worker nodes that can quickly crunch
through large batch processing tasks in parallel [6, 14–16]. Numerous batch-oriented
applications are in place that can leverage such on-demand processing including video
transcoding. The video-processing application behaves as follows:

1. Users interact with the end-points, which is deployed on a cloud platform. This com-
ponent controls the process of video management and playing.

2. Raw video data is transformed to a cloud storage, a highly available and persistent
data store. The transcoding tasks are inserted by an elastic queue.

3. Worker nodes are cloud instances that can be scaled. Worker nodes pick up tasks
from the input queue and perform single tasks that are part of the list of batch pro-
cessing steps. Interim results from worker nodes can be stored in a storage.

4. Progress information and statistics are stored on the storage as well. This component
can be either a cloud storage or a relational database.

Fig. 1. Application and deployment architecture of video processing system.

The video-processing application is a multi-tenant SaaS application and as we indi-
cated in Table 1, each tenant requires its own specific functional and non-functional
features accessible on specific platform. The main challenge here is how to deal with
the wide range of deployment options and this situation becomes more challenging
when we consider multi-cloud. In this work, we address the complexity of multi-cloud
application configuration through a model that we introduce in the next section.

4 Approach

In order to build highly scalable applications, multi-cloud deployment is appropriate
[11, 17]. The objective of this work is to provide a model-based approach that facilitates
tenant-specific configuration and customizations for applications that run on multiple
independent clouds.

Fig. 2. Orthogonal variability model showing the accessibility-driven, application-driven and de-
ployment-driven variability.

Multi-cloud denotes the usage of multiple, independent clouds by a client or a ser-
vice. A multi-cloud environment is capable of processing user demand and distributing
work to resources deployed across multiple clouds [18]. A multi-cloud is different from
federation where, a set of cloud providers voluntarily interconnect their infrastructures
to allow sharing of resources among each other [18]. Hybrid deployment can be con-
sidered as a special case of multi-cloud where an application is deployed in both on
premise infrastructure as well as cloud platform(s). Such type of deployment model is
essential in cases where critical data need to be kept in house in corporate data centers.
We have reviewed different application types and specific requirements of them that
necessitate multi-cloud deployment – see the supplementary materials here [15].

In a multi-cloud configuration perspective, parts of the application can be deployed
at either PaaS, IaaS or both levels [17, 19], see Fig. 1. The wide range of cloud providers
likely to host the application makes the choice difficult. To fit these requirements and
dimensions, we find 15 possibilities in terms of patterns, reported in [15]. The key rea-
sons behind such multi-cloud migration are as follows:

• Users are widely distributed where they are located around multiple data centers.
• Country regulations limit options for storing data in specific data centers, e.g., EU.
• Circumstances where public clouds are used jointly with on-premises resources.
• Cloud-based application must be resilient to the loss of a single data center.

To address the challenges identified in this paper, we define an orthogonal variability
model used to (i) capture cloud providers visible options for tenants-specific deploy-
ment and (ii) enable tenants to configure functional and non-functional aspects of the
application, (iii) enable tenants to choose their preferences of accessibility options.

In this work, we combine three different variability models at different levels of ab-
stractions regarding the three above-mentioned concerns into a single model (i.e.,
3���) that gives strong support to all tenants involved in cloud deployment. As illus-
trated in Fig. 2, the approach allows users to (i) define a functional specification of the
system through choosing the options in the application variability model (������).
Also, it allows users (ii) to select alternatives for realizing and deploying the application
on a (multi-)cloud environment as well as selecting the non-functional preferences of
the system in the deployment variability model (��	
��
�). Such aspects themselves
affect some internal non-visible aspects of the system (red triangles in Fig. 2), which
are only visible for the development team of the cloud-based application. This will be
realized by combining several valid cloud configurations to fit the requirements. (iii)
To choose the accessibility options that are required by the users comprising multi-
device and multi-platform capabilities in the accessibility variability model (�����
��).

Therefore, 3��� consists of three variability models at different levels regarding
different concerns of multi-cloud application deployments. ������ is a fully fledged
variability model that represents both functional commonalities and variabilities of the
cloud-based software products. However, ��	
��
� and �����
�� represent only vari-
abilities that determines the non-functional aspects of the cloud-based products. They
represent, in other words, a reference point to where different variants regarding the
deployment options or accessibility can be attached. The variants manifest a concrete
variability in terms of deployment or accessibility. In this model, all variation points in
��	
��
� and �����
�� are related to at least one functional variant in ������, and all
variations in ������ are related to at least one variation point in either ��	
��
� or
�����
��. This reduces the complexity of the variability model and therefore enhances
the readability of the model facilitating a robust application customization.

For defining ������ and �����
��, we use feature model defined in [20], while for
specifying ��	
��
�, we employ the OVM (Orthogonal Variability Model) introduced
in [3]. The reason behind such choice for ��	
��
� is that the OVMs are smaller and
less complex since they only model variability and not the commonalities. This is useful
in the context of multi-cloud environments since for modeling the deployment space
we only need to consider different variability that each platform may offer and not
thinking about their commonalities.

The 3��� model distinguishes between different roles: application developers
(Dev), cloud experts (Ops) and the tenants (Ten). Application developers provides the
functional variability and commonality points of the system, resulting in the corre-
sponding variability model (i.e., ������). Cloud experts are involved in the platform

specific descriptions. They describe cloud platform variability and commonality points,
thus providing the corresponding variability model (i.e., ��	
��
�) to the architecture.
Cloud experts are also responsible for providing the accessibility variability model (i.e.,
�����
��). Tenants are all user groups involved in externally visible option (bold trian-
gles in Fig. 2) selection through such orthogonal variability models. Using such an ap-
proach only requires having necessary knowledge to properly configure the cloud ap-
plication and to properly cooperate to develop such knowledge to the system. We will
describe the usage process of our approach in detail in the next section.

5 Multi-Cloud Deployment Support

Having specified the variability of cloud applications, the three variability models can
be used to further support the customization and deployment lifecycle. In this section,
we describe a process to perform such deployment by utilizing 3��� via the example.

In order to customize a cloud-based application, (i) tenants need to decide which
variants, whether they are functional or non-functional or accessibility aspects, should
become part of their application. Therefore, tenants need to have the capability to
choose among the potential configuration options in order to bind the variability of the
cloud application. In the product line engineering, several approaches are existed to
realize such a customization support [7].

After binding the tenant-specific variability of a cloud-based application, (ii) the de-
ployment actions should be accomplished in order to prepare the application for users
belonging to that tenant. The deployment actions depend on the binding of the deploy-
ment variability, which itself depends on the cloud platform and the information about
already bounded variability, i.e. deployed features of the application. Therefore, to bind
the deployment variability, the cloud platform needs to consider the tenant-specific var-
iability as well as the binding information about the parts of the application that have
already been deployed for other tenants.

Some variation points must be bound because of dependencies to variants that have
been chosen by the binding of the tenant-specific variability. For each open variation
point, the cloud service provider is aware of the possible variants because it already
knows the variability model via 3���. Now the most appropriate variant for the pro-
vider must be chosen. This can be done through (iii) annotating individual variants
with, for example, a cost parameter and using optimization algorithms to find the least
expensive variant combination. This, however, is beyond the scope of this paper.

 The deployment actions do not only depend on the status but also on the services
that are used for a particular tenant. For the services that are used in a single instance
mode, the cloud service provider must make sure that enough resources are available
to run the new tenant on the instance of the service that is already deployed. In multi-
cloud setting, this however can manage through live migration from one platform to
another one if the resources are not sufficient in one particular platform. For the services
in multiple instances mode, the appropriate infrastructure must be provisioned. In sum,
the purpose of this step is (iv) to perform the required reconfiguration to adjust the
platform for proper deployment of the application.

We now describe the above–mentioned customization and deployment process
through our running example. Table 2 shows three possible configurations for the video
processing application. The table shows the bounded alternatives for each variation
point (here we only concentrated on ��	
��
�). Config. 1 and Config. 2 are the same
in terms of external variability points, since every variation point is bound with the
same variant. Note that they differ in the platform variation point; however, platform
variation point is internal and is not visible to the tenants. Therefore, these two config-
urations are externally equivalent and the same in the view of tenants. The result of
such situation is that two tenants that bind all external variability points in a similar way
can end up with two different solutions, as one solution for example is deployed on a
cloud platform while the other is deployed on another platform. Such configuration,
although might have the same functional behaviour, they may show different non-func-
tional behaviour due to heterogeneous cloud platforms.

Table 2. Exemplary configurations of the video processing system.

Variation point Config. 1 Config. 2 Config. 3

E
xt

er
na

l Availability Standard Standard Super available

Bandwidth 1000 1000 10

Storage Multiple-instance Multiple-instance Geo-specific, single instance

DB SQL SQL No-SQL

In
te

rn
al

 Platform Azure AWS Azure/AWS/Google

Compute Multiple-instance Multiple-instance Multiple-instance

Elasticity Auto-scale Auto-scale Auto-scale

Pattern Pipes and filters Pipes and filters Cache-aside, Pipes and filters

The deployment for tenant 3 (Config. 3) must provision resources for the storage

service as this tenant chose to store the data in specific location and cannot share its
data with the other tenants due to security concerns. Therefore, the service must also be
deployed in single instances mode, as privacy is important to that tenant. As the tenant
also selected the option of super availability, the application is deployed on multiple
cloud platforms. Now a situation arises where tenant 3 requires the resources on Google
cloud platform in which the functionality of the video processing application is not
deployed since the other two tenants are on Azure and AWS platforms (cf. Fig. 1).

Once a tenant decides to unsubscribe from a cloud application, it must be undeployed
from the system [7]. This might be as simple as removing a line in a configuration
setting. However, in case a tenant has used services that are deployed on multiple cloud
platforms, these services must be undeployed from each specific platform by issuing
platform specific undeployment commands. Nevertheless, it is important to know
which combination of functionality, accessibility and deployment has been used by a
tenant to perform the necessary steps to undeploy the services.

In addition to provisioning and de-provisioning scripts, “tenant transfer” scripts can
be generated that describe how a tenant is transferred from one configuration to another
one or from one specific platform to another platform or hybrid or even multiple plat-
forms.

6 Related Work

Multi-cloud application configuration. Quinton et al. [21] present a model-driven ap-
proach based on feature models and ontology to handle heterogeneity in cloud variabil-
ity and managing cloud configurations. The approach considers technical as well as
non-functional requirements to provide a set of valid configurations. Their focus is
mostly on managing the heterogeneity in multi-cloud environments via a mapping from
an ontology model to platform specific feature models. This work is the closest existing
work to our approach. However, our main concern is to manage functional and acces-
sibility aspects in accordance with multi-cloud deployment aspects in a homogenous
variability model that different roles in developments and operations (known as
DevOps) can cooperate to build up the model and provide a unified model that tenants
can choose their preferences through it without requiring specific technical knowledge.

Sampaio et al. [22] propose an approach that facilitates modeling, deployment and
configuration of software applications over multiple heterogeneous IaaS clouds. In this
approach, the application to be deployed is specified using open standards to be run in
VMs while our approach is based on the variability model that enable tenants to choose
from three different aspects of the system considering its tenant-specific requirements.

Brandtzæg et al. [23] propose a component-based approach that leverages the exist-
ing deployment descriptors into a domain-specific language (DSL). The DSL is used
to model the deployment and an interpreter is provided to identify which resources have
to be used in the platform to fulfill requirements. Although this work facilitates a semi-
automated deployment, they do not consider the cloud offer heterogeneity.

Paraiso et al. [24] present a multi-cloud PaaS infrastructure deployed on existing
IaaS/PaaS. This infrastructure is based on an open service model. Contrarily to our ap-
proach, they do not need to consider the capability to configure the multi-cloud platform
since they use the same service model for both SaaS and PaaS.
Multi-tenant application configuration. Mietzner et al. [7] show how variability mod-
eling techniques from software product line can support cloud service providers to man-
age the variability of cloud-based applications and tenant specific configurations. They
propose using explicit variability models to systematically derive customization and
deployment information for individual tenants. Gaddar et al. [9] introduce the new con-
cept of Variability as a Service (VaaS) model to relieve cloud providers from develop-
ing expensive variability models by decreasing the variability management complexity.

More recently, Quinton et al. [8] propose an automated approach to face the config-
uration of cloud-based applications. Their approach automates the deployment of such
configurations through the generation of executable scripts. Schroeter et al. [10] iden-
tify requirements for runtime architecture addressing the individual interests of tenants
in multi-tenant architectures. They show how dynamic architectures can be extended
for the development of multi-tenant applications. This work, as opposed to the other
approaches, concentrates on the variability at the architecture level.

These above mentioned work although inspiring, they are only applicable for single
platform SaaS based applications as opposed to our approach, which targeted multi-
cloud environments. In fact, in terms of technical contribution, all of the multi-cloud
configuration management approaches, are an extension of [7].

7 Conclusion and Outlook

We presented how orthogonal variability models that we borrowed from software prod-
uct line engineering, can be used to model variability in 3 different yet important as-
pects of cloud applications in the multi-cloud environments. We have applied the con-
cepts of configuration management from software product line engineering to the prob-
lem of deployment support for multi-cloud applications and have demonstrated the ben-
efits of our approach by means of a case study. The key benefit of the proposed model
is to manage different interrelated deployment aspects through a unified model consists
of models at different levels of abstractions.

In our future work, we plan to automate this approach by developing a tool that en-
ables the creation of the 3��� variability models facilitating the automated deploy-
ment of multi-cloud application at runtime. We plan to employ the approach in the
context of a multi-cloud runtime adaptation mechanism, a similar approach as have
been pursued in projects like MODAClouds [19], CloudMF [25], mOSAIC [26] and
OPTIMIS [27], however, targeting different concerns: (i) uncertainty handling in elas-
tic systems, (ii) multi-cloud auto-scaling, (iii) auto-scaling in data-intensive applica-
tions and (iv) the application of control theory in auto-scaling [28].

Acknowledgments. The research work described in this paper was supported by the
Irish Centre for Cloud Computing and Commerce (IC4), an Irish national Technology
Centre funded by Enterprise Ireland and the Irish Industrial Development Authority.

References

1. Jamshidi, P., Ahmad, A., Pahl, C.: Cloud Migration Research: A Systematic Review. IEEE
Trans. Cloud Comput. 1, 142–157 (2013).

2. Sun, W., Zhang, X., Guo, C.J., Sun, P., Su, H.: Software as a Service: Configuration and
Customization Perspectives. 2008 IEEE Congress on Services Part II (services-2 2008). pp.
18–25. IEEE (2008).

3. Pohl, K., Böckle, G., Linden, F. Van Der: Software product line engineering. (2005).
4. Svahnberg, M., van Gurp, J., Bosch, J.: A taxonomy of variability realization techniques.

Softw. Pract. Exp. 35, 705–754 (2005).
5. Kabbedijk, J., Jansen, S.: Variability in multi-tenant environments: architectural design

patterns from industry. Adv. Concept. Model. Recent Dev. New Dir. (2011).
6. Wilder, B.: Cloud Architecture Patterns: Using Microsoft Azure. (2012).
7. Mietzner, R., Metzger, A., Leymann, F., Pohl, K.: Variability modeling to support

customization and deployment of multi-tenant-aware Software as a Service applications.
2009 ICSE Workshop on Principles of Engineering Service Oriented Systems. IEEE (2009).

8. Quinton, C., Romero, D., Duchien, L.: Automated Selection and Configuration of Cloud
Environments Using Software Product Lines Principles. IEEE CLOUD 2014. (2014).

9. Ghaddar, A., Tamzalit, D., Assaf, A., Bitar, A.: Variability as a service: outsourcing
variability management in multi-tenant saas applications. Adv. Inf. Syst. Eng. (2012).

10. Schroeter, J., Cech, S., Götz, S., Wilke, C., Aßmann, U.: Towards modeling a variable
architecture for multi-tenant SaaS-applications. Proceedings of the Sixth International

Workshop on Variability Modeling of Software-Intensive Systems - VaMoS ’12. pp. 111–
120. ACM Press, New York, New York, USA (2012).

11. Petcu, D.: Multi-Cloud. Proceedings of the 2013 international workshop on Multi-cloud
applications and federated clouds - MultiCloud ’13. p. 1. ACM Press, New York, New York,
USA (2013).

12. Koetter, F., Kochanowski, M., Renner, T., Fehling, C., Leymann, F.: Unifying Compliance
Management in Adaptive Environments through Variability Descriptors. 2013 IEEE 6th
International Conference on Service-Oriented Computing and Applications. IEEE (2013).

13. Jrad, F., Tao, J., Streit, A.: A broker-based framework for multi-cloud workflows.
Proceedings of the 2013 international workshop on Multi-cloud applications and federated
clouds - MultiCloud ’13. p. 61. ACM Press, New York, New York, USA (2013).

14. Homer, A., Sharp, J., Brader, L., Narumoto, M., Swanson, T.: Cloud Design Patterns:
Prescriptive Architecture Guidance for Cloud Applications. Microsoft (2014).

15. Jamshidi, P., Pahl, C.: Cloud Migration Patterns - Supplementary Materials,
http://www.computing.dcu.ie/~pjamshidi/Materials/CMP.html.

16. Fehling, C., Leymann, F., Retter, R., Schupeck, W., Arbitter, P.: Cloud Computing Patterns.
Springer Vienna, Vienna (2014).

17. Petcu, D., et al.: Experiences in building a mOSAIC of clouds. J. Cloud Comput. Adv. Syst.
Appl. 2, 12 (2013).

18. Grozev, N., Buyya, R.: Inter-Cloud architectures and application brokering: taxonomy and
survey. Softw. Pract. Exp. 44, 369–390 (2014).

19. Nitto, E. Di, Silva, M.A.A. da, Ardagna, D., Casale, G., Craciun, C.D., Ferry, N., Muntes,
V., Solberg, A.: Supporting the Development and Operation of Multi-cloud Applications:
The MODAClouds Approach. 2013 15th International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing. pp. 417–423. IEEE (2013).

20. Kang, K., Lee, J., Donohoe, P.: Feature-oriented product line engineering. IEEE Softw.
(2002).

21. Quinton, C., Haderer, N., Rouvoy, R., Duchien, L.: Towards multi-cloud configurations
using feature models and ontologies. Proceedings of the 2013 international workshop on
Multi-cloud applications and federated clouds - MultiCloud ’13. p. 21. ACM Press, New
York, New York, USA (2013).

22. Sampaio, A., Mendonça, N.: Uni4Cloud: an approach based on open standards for
deployment and management of multi-cloud applications. Proceeding of the 2nd
international workshop on Software engineering for cloud computing - SECLOUD ’11. p.
15. ACM Press, New York, New York, USA (2011).

23. Brandtzæg, E., Mohagheghi, P., Mosser, S.: Towards a domain-specific language to deploy
applications in the clouds. CLOUD Comput. 2012. (2012).

24. Paraiso, F., et al.: A Federated Multi-cloud PaaS Infrastructure. 2012 IEEE Fifth
International Conference on Cloud Computing. pp. 392–399. IEEE (2012).

25. Ferry, N., Chauvel, F., Rossini, A., Morin, B., Solberg, A.: Managing multi-cloud systems
with CloudMF. Proceedings of the Second Nordic Symposium on Cloud Computing &
Internet Technologies - NordiCloud ’13. ACM Press, New York, New York, USA (2013).

26. mOSAIC EU project, http://www.mosaic-project.eu/.
27. Ferrer, A.J., et al.: OPTIMIS: A holistic approach to cloud service provisioning. Futur.

Gener. Comput. Syst. 28, 66–77 (2012).
28. Jamshidi, P., Ahmad, A., Pahl, C.: Autonomic resource provisioning for cloud-based

software. Proceedings of the 9th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems - SEAMS 2014. pp. 95–104. ACM Press, New York,
New York, USA (2014).

