Orthogonal Variability Modeling to Support Multi-Cloud
Application Configuration

Pooyan Jamshidi, Claus Pahl

IC4 — the Irish Centre for Cloud Computing and Commerce,
Dublin City University, Dublin, Ireland

{pooyan. j anmshi di, cl aus. pahl } @onputi ng. dcu.ie

Abstract. Cloud service providers benefit from a vast mayasitcustomers due
to variability and making profit from commonalitibetween the cloud services
that they provide. Recently, application configuratdimensions has been in-
creased dramatically due to multi-tenant, multiidexand multi-cloud paradigm.
This challenges the configuration and customizatibeioud-based software that
are typically offered as a service due to themsid variability. In this paper, we
present a model-driven approach based on variahilddels originating from
the software product line community to handle sonchiti-dimensional variabil-
ity in the cloud. We exploit orthogonal variabilityodels to systematically man-
age and create tenant-specific configuration astbaoizations. We also demon-
strate how such variability models can be utilizethke into account the already
deployed application parts to enable harmonizedbgagents for new tenants in
a multi-cloud setting. The approach considers appbn functional and non-
functional requirements to provide a set of validltircloud configurations. We
illustrate our approach through a case study.

Keywords: Multi-cloud, Variability, Multi-tenancy, Cloud Arckécture

1 Introduction

In the delivery model of software systems, a fredlyestudied shift can be observed
[1] in which software products are no longer daldeto customers as packages or
deployed in-house (on-premises), however, theydapoyed at a central or (poten-
tially distributed) location(s) and offered to austers online (Software-as-a-Service;
SaaS). In on-premise deployments, application ussr®nly one instance of a software
application that is developed in a software houskdeployed on-premises. Obviously,
such application can be tailored to behave in ataowe with specific customer require-
ments in case the standard product functionaldizsot perfectly fit with the very
specific customer's requirements (in terms of bessnprocess support or particular
non-functional requirements) in place [2]. Howetkis approach will not be profitable
if the variations become unmanageable. To makentioi® cost-beneficial and yet to
satisfy particular customer needs, a novel apprbastbeen proposed many years ago

within which different products, based on softwareduct core containing general re-
quirements shared by all customers, can be gederatesoftware product line [3].

The concept of software variability was first sedliin the software product lines
community [4]. Traditionally, variability only corders on-premise single-tenant soft-
ware. This approach follows the idea that softvpaicelucts containing specific features
have to be built before shipping the software,(design-time binding). Software prod-
ucts that are delivered through online channelsyelver, only profits from runtime
binding since it would be undesirable to restarealeploy a version whenever changes
are made (such case is a norm in design-time klindtim example). In software prod-
ucts, which are accessible online, the higher tmdigurability of a product is, the more
variable a product would be. A variable productsim provide customers with a set
of options using a single codmse in such a way that each tenant is able to dave
unique configuration. Since the software instasagow deployed in one location, mul-
tiple customers can potentially use the same instafthe software. Sharing a software
instance with multiple users, however, makes itasgible to have customized products
for specific customers. In other words, multi-tetgoftware is able to fulfil all different
customer requirements, while still taking advantafighared resources [5]. In this set-
ting, tenants are customers using the applicatimhusually consisting of multiple us-
ers within the same organizational context or cominterests [6].

The work reported in [7] use the concept of exteraatime variability in software
product line to represent the variability managetme8aaS context. They refer to such
type of variability as customer-driven variabiliguch usage of external variability to
represent tenant-based variability is also showseireral other research work, e.g., [5,
8-10]. One of the commonalities within such vaegstf work is that they use a sort of
variability model to represent very specific neetienants to make the online software
product a configurable entity to allow for the viay requirements. However, with the
new type of development in the accessibility optias well as deployment variability
in the cloud, the application configuration andtousization becomes a complex and
unmanageable process due to the large variahilitge solution space. The newly in-
troduced dimensions are orthogonal to the tenagtip configuration and, in this pa-
per, we propose to use a multi-dimensional vaitgbihanagement to address the
newly raised concerns that we discuss in the fotigw

Multi-cloud configuration. Multi-cloud deployment [6, 11] is particularlyfe€tive
in dealing with the situations where users are lyidéstributed around multiple data
centers, country regulations limit options for stgrdata in specific data centers, and
circumstances where public clouds are used joinitii on-premises resources. The
main difficulty is to deal with the wide range cfloyment options at different layers
on different cloud platforms [12]. Such dimensi@ms certainly orthogonal to the ap-
plication architecture and make a large soluticacsgfor the deployment architecture.
Consequently, there is a need to enable multi-ctieployment specific configuration.

Multi-device configuration. With the raise of smartphones and devices in one ha
and heterogeneity in the platforms, tenants araired to access to the cloud-based
services on specific devices. Consequently, theeerieed to enable multi-device and
cross platform configuration, which is also orthngbto both the application and de-
ployment architectures.

To address these challenges, we pro@déM, a model that integrates three vari-
ability models each addressing specific challemggarding tenant-specific, multi-de-
vice and multi-cloud configuration. Cloud applicativariability can thus be described
using30VM. We use a video processing application as a rgnesample to describe
the approach. This application contains more thay®d0 different configurations.
However, the approach proposed here is not spdoiticis application and can cover
different cloud-enabled application domains that banefit from multi-cloud deploy-
ment, such as process-aware applications [13].

2 Resear ch Challenges

With the rise of multi-tenant cloud-based applicas, the dimensions for configuring
the software that is usually offered as a serviee leen also increased dramatically.
The functionality and quality that individual tenameed from a software application
are typically different from each other. As a cansnce, in order to attract enough
customers, cloud service providers are required [®, 10, 12](i) To cater for the
varying requirements of potential tenants by pringdenant-specific configurations.
(ii) To make sure that they can handle the varieti¢lseofleployment options in terms
of, for example, infrastructure offerings$ii) To configure the tenant-specific configu-
ration by considering the variability of the devddbat each tenant needs to interact.

For example, SaaS applications allow users to migtothe captions used in the
application as well as adding and modifying businesocesses implemented in the
systems. Such tenant-specific adaptations of a Sppiation affect all layers of the
application. From functional requirements to busgnprocesses and all the way down
to database schemas. Tenants do not only haveusamguirements with respect to
functional features, but also require different+fionctional requirements. While some
tenants want an application to be highly availabther tenants are not so much inter-
ested in high-availability, but care more abouslety performance. Traditionally, this
was handled through different pre-configured sofengackages with different prices.
However, cloud allows a more robust delivery modelshich software is licensed on
a subscription basis and is hosted on cloud pladdyy independent vendors or service
providers. Therefore, cloud service providers fte® following challenges when it
comes to the configuration and customizations eit thoftware applications:

Challengel. Tenant-specific configuration and customizations. Cloud applications
are typically multi-tenant and each tenant reqitg#®wn specific functional and non-
functional requirements.

Challenge2. Multi-cloud configuration. The main difficulty is to deal with the wide
range of deployment options at different layerddferent cloud platforms. Such di-
mensions are certainly orthogonal to the applicaticchitecture and make a large so-
lution space for the deployment architecture.

Challenge3. Multi-device and cross-platform configuration. With the rise of
smartphones and devices on the one hand and hetetibgin the platforms that they
support, tenants are required to access to thel-dlased services on specific devices.

We highlight these challenges through a case stuthe next section.

3 Running Example

To highlight the challenges and to exemplify oupraach, we introduce a video-pro-
cessing application [10], which is a cloud-enaldgdtem deployed on a multi-cloud
environment. In this example, the video processiofjware is offered as a service,
which has the capability to be customized for défé tenants based on their required
functions, quality and end-point devices. The aggtlon comprises a number of com-
ponents as depicted Fig. 1. The system is illustrated in three different desttural
views, i.e., application architecture, deploymeawxhiecture and accessibility devices.

Tenants can choose different subsets of the cormp@neonsidering that the archi-
tectural constraints are not violated. One of thestraint is that the configuration must
include Player (VP), Decoder (Dec) and Data-Prav{@) components, which form
the core of the video processing (this represémsdmmonalities among the derived
products). The functional variability of the vidpoecessing application is as follows:
Video-Manager (VM) component, which offers a graphiUl to add and remove vid-
eos. lcon component, which injects a tenant-spehfjo into the videos before they
are played. Subtitle (Sub) component, which intcedusubtitles as overlays on videos.

The StreamProcessor (SP) is parent of the Dectmtar,and Subtitle components.
This abstraction enables the tenant to choose hioation of the three inheriting com-
ponents. Note that in this setting different suth#@ecture of the system can potentially
be deployed on different cloud platforms. This éz@use all deployment of the same
parts provide the same functionality, but differtieir non-functional properties. For
example, the VideoPlayer-StreamProcessor bindingakzed by the pipes and filters
style on Windows Azure and Amazon AWS. Both deplepis facilitate playing a
video, but Azure deployment offers a different reridg resolution and performance
than AWS does. Furthermore, the accessibility ertwo deployments is different. For
example, AWS deployment does not provide refriggrand accessibility.

For each tenant an own configuration/deploymenhefapplication can be created.
For our example, we assume three tenants: thetdinsint (T1) does not use any op-
tional component, whereas the second tenant (T2§ibaided to use the Subtitle com-
ponent to enhance the application. The third te(i&8) has decided to have all the
functionalities. Besides the functionality that ledenant is required, they require their
own specific non-functional requirements (NFRsJ. (Eigure 2), which characterize
how the provided functionality can be fulfilled. 8des, each tenant requires to access
the functions in different devices, s€able 1.

Table 1. Tenants configuration and Requirements.

Tenants | Components | NFRs Accessihility
T1 VP, Dec, DP| Bandwidth: 1000MB/s PC, Mobile (Android),
Availability: Standard, Latency: 19 Mobile (i0S), Refrigerato
T2 VP, Dec, Bandwidth: 1000MB/s All
Sub, DP Availability: Standard, Latency: 0.[Ls
T3 VP, Dec, Sulj Bandwidth: 10MB/s PC (Mac OS), Car
Icon, DP, VM| Availability: Super, Latency: 0.01g

The architectural style of the video-processingliapfion is pipes and filters. Such
architectural style when realized on cloud platferatiows for the on-demand provi-
sioning of multi-part job processing. It can be diser instantaneous or delayed de-
ployment of a heterogeneous, scalable “grid” ofkeomodes that can quickly crunch
through large batch processing tasks in parallel#6-16]. Numerous batch-oriented
applications are in place that can leverage suetbemmand processing including video
transcoding. The video-processing application bebas follows:

1. Users interact with the end-points, which is deptbgn a cloud platform. This com-
ponent controls the process of video managemenplaythg.

2. Raw video data is transformed to a cloud storadeglaly available and persistent
data store. The transcoding tasks are insertea lejastic queue.

3. Worker nodes are cloud instances that can be scéledker nodes pick up tasks
from the input queue and perform single tasks dnatpart of the list of batch pro-
cessing steps. Interim results from worker nodesbeastored in a storage.

4. Progress information and statistics are storedhestorage as well. This component
can be either a cloud storage or a relational datab

Video Stream
Player rocessor

P

S| __,

Appli¢ation

| Icon | |Subt|tle| Decoder iArchllecture

iT " Video Data ||
T Manager Provider

e o o o e

v
Storage
Input Worker
Queue Nodes Queue

Cloud Platform X (Amazon)

Deployment
Architecture

Endpoint

Cloud Platform Y (Azure)

Fig. 1. Application and deployment architecture of videogessing system.

The video-processing application is a multi-teraaaS application and as we indi-
cated inTable 1, each tenant requires its own specific functiarad non-functional
features accessible on specific platform. The rnochaillenge here is how to deal with
the wide range of deployment options and this sitnabecomes more challenging
when we consider multi-cloud. In this work, we agkir the complexity of multi-cloud
application configuration through a model that wgaduce in the next section.

4 Approach

In order to build highly scalable applicatiomsylti-cloud deployment is appropriate
[11, 17]. The objective of this work is to providenodel-based approach that facilitates
tenant-specific configuration and customizationsdpplications that run on multiple
independent clouds.

Accessibility Application
Device Variability Variability
_________:_-;::—r R ch- Wﬁln: Tegend
_________________________________ & Mandatory
= = == WPQusm & Optonal
Mobile Semi-Mobile | |Appliance Fix Platform — '.

OF g
Icon | | Subtitle | Decoder

1
1
1
1
1
1
1
1
1
1
1
1
i y i o
1
1
1
1
1
1
1
1
1
1
1
1

Deployment
Variability

A
- / ~
FStandard |F Highly-available FSuper-hlghly avilable I
g F ‘Windows, A_ure | FAma onAhS F Gocgleplatform

Manual T O —
Zreduires>
<reqylides> i

i:l Single instance | I:I Multiple Instances |“—<1'!'q'uﬁ’e:>

Storage |

N Prd | A DB
Architeghure Patt - |

rchiteghure Pattén _- RN

-~
- Single Instance] [Multiple Instances oo specific QL No-5Ql
Ppe and filters \:Ic ache aside ":IBuy Signal |

Fig. 2. Orthogonal variability model showing the accedgibdriven, application-driven and de-
ployment-driven variability.

Multi-cloud denotes the usage of multiple, indepantctlouds by a client or a ser-
vice. A multi-cloud environment is capable of presiag user demand and distributing
work to resources deployed across multiple clo@8% [A multi-cloud is different from
federation where, a set of cloud providers voluntarily internect their infrastructures
to allow sharing of resources among each other. Hgrid deployment can be con-
sidered as a special case of multi-cloud wherepgtication is deployed in both on
premise infrastructure as well as cloud platform$)ch type of deployment model is
essential in cases where critical data need tepeik house in corporate data centers.
We have reviewed different application types anec#j requirements of them that
necessitate multi-cloud deployment — see the supgiéary materials here [15].

In a multi-cloud configuration perspective, partsh® application can be deployed
at either PaaS, laaS or both levels [17, 19]Fsg€l. The wide range of cloud providers
likely to host the application makes the choicdidlift. To fit these requirements and
dimensions, we find 15 possibilities in terms oft@ans, reported in [15]. The key rea-
sons behind such multi-cloud migration are as fadip

» Users are widely distributed where they are locatedind multiple data centers.

< Country regulations limit options for storing dataspecific data centers, e.g., EU.
« Circumstances where public clouds are used jowitly on-premises resources.

« Cloud-based application must be resilient to tlss lof a single data center.

To address the challenges identified in this paperefine an orthogonal variability
model used tdi) capture cloud providers visible options for tesaspecific deploy-
ment and(ii) enable tenants to configure functional and noretional aspects of the
application (iii) enable tenants to choose their preferences ofsitiility options.

In this work, we combine three different varialyilihodels at different levels of ab-
stractions regarding the three above-mentioned ezoscinto a single model (i.e.,
30V M) that gives strong support to all tenants involiredloud deployment. As illus-
trated inFig. 2, the approach allows users(tpdefine a functional specification of the
system through choosing the options in the appdinavariability model ¥Mg,,.).
Also, it allows user§ii) to select alternatives for realizing and deploytmgapplication
on a (multi-)cloud environment as well as selectimg non-functional preferences of
the system in the deployment variability modéM,,,,,). Such aspects themselves
affect some internal non-visible aspects of thaesys(red triangles ifrig. 2), which
are only visible for the development team of theudibased application. This will be
realized by combining several valid cloud configimas to fit the requirementsiii)
To choose the accessibility options that are regubyy the users comprising multi-
device and multi-platform capabilities in the aibiity variability model ¥ M .cess)-

Therefore,30VM consists of three variability models at differéaels regarding
different concerns of multi-cloud application deptwents.V Mg, is a fully fledged
variability model that represents both functionaintnonalities and variabilities of the
cloud-based software products. HowewaV¥.,;,, andVM..; represent only vari-
abilities that determines the non-functional aspeétthe cloud-based products. They
represent, in other words, a reference point torevidéfferent variants regarding the
deployment options or accessibility can be attachée variants manifest a concrete
variability in terms of deployment or accessibility this model, all variation points in
VM gepioy @andVM,,..ss are related to at least one functional variaity,,,,., and all
variations inVMg,,. are related to at least one variation point iheiv M., Or
VM, .cess- This reduces the complexity of the variabilityasband therefore enhances
the readability of the model facilitating a robagplication customization.

For definingV' My, andV M., we use feature model defined in [20], while for
specifyingV Mep,0,, We employ the OVM (Orthogonal Variability Modetitroduced
in [3]. The reason behind such choice ¥, is that the OVMs are smaller and
less complex since they only model variability aotithe commonalities. This is useful
in the context of multi-cloud environments since fioodeling the deployment space
we only need to consider different variability thestich platform may offer and not
thinking about their commonalities.

The 30VM model distinguishes between different roles: aypion developers
(Dev), cloud experts (Ops) and the tenants (Tepplidation developers provides the
functional variability and commonality points ofettsystem, resulting in the corre-
sponding variability model (i.eVMg,,,.). Cloud experts are involved in the platform

specific descriptions. They describe cloud platfeariability and commonality points,
thus providing the corresponding variability mo@ed., VMg,,,,,) to the architecture.
Cloud experts are also responsible for providirgatcessibility variability model (i.e.,
VM,.cess)- TENANLS are all user groups involved in extdynasible option (bold trian-
gles inFig. 2) selection through such orthogonal variability ralsd Using such an ap-
proach only requires having necessary knowledgedperly configure the cloud ap-
plication and to properly cooperate to develop strmbwledge to the system. We wiill
describe the usage process of our approach ifl dethe next section.

5 Multi-Cloud Deployment Support

Having specified the variability of cloud appliaais, the three variability models can
be used to further support the customization amdogenent lifecycle. In this section,
we describe a process to perform such deploymeatiliging 30VM via the example.

In order to customize a cloud-based applicat{@ntenants need to decide which
variants, whether they are functional or non-functionabocessibility aspectshould
become part of their application. Therefore, tenants need to have the capability to
choose among the potential configuration optionarder to bind the variability of the
cloud application. In the product line engineerisgyeral approaches are existed to
realize such a customization support [7].

After binding the tenant-specific variability otéoud-based applicatiofij) the de-
ployment actions should be accomplished in order to prepare the application for users
belonging to that tenant. The deployment actioqeedd on the binding of the deploy-
ment variability, which itself depends on the clqidtform and the information about
already bounded variability, i.e. deployed featuwfthe application. Therefore, to bind
the deployment variability, the cloud platform ne¢al consider the tenant-specific var-
iability as well as the binding information abobetparts of the application that have
already been deployed for other tenants.

Some variation points must be bound because ofndigpeies to variants that have
been chosen by the binding of the tenant-spec#itability. For each open variation
point, the cloud service provider is aware of tlsgible variants because it already
knows the variability model viaOVM. Now the most appropriate variant for the pro-
vider must be chosen. This can be done thrdiighannotating individual variants
with, for example, a cost parameter and using apétion algorithms to find the least
expensive variant combination. This, however, igooel the scope of this paper.

The deployment actions do not only depend on tiis but also on the services
that are used for a particular tenant. For theisesvthat are used in a single instance
mode, the cloud service provider must make sureethaugh resources are available
to run the new tenant on the instance of the serviat is already deployed. In multi-
cloud setting, this however can manage through ringration from one platform to
another one if the resources are not sufficientimparticular platform. For the services
in multiple instances mode, the appropriate inftastire must be provisioned. In sum,
the purpose of this step (&) to perform the required reconfiguration to adjust the
platform for proper deployment of the application.

We now describe the above—mentioned customizatioh deployment process
through our running exampl€able 2 shows three possible configurations for the video
processing application. The table shows the bourattednatives for each variation
point (here we only concentrated BM.,,,,). Config. 1 and Config. 2 are the same
in terms of external variability points, since ewemriation point is bound with the
same variant. Note that they differ in the platforamiation point; however, platform
variation point is internal and is not visible teettenants. Therefore, these two config-
urations are externally equivalent and the samenview of tenants. The result of
such situation is that two tenants that bind akkmal variability points in a similar way
can end up with two different solutions, as onaitsoh for example is deployed on a
cloud platform while the other is deployed on aeotplatform. Such configuration,
although might have the same functional behavitery may show different non-func-
tional behaviour due to heterogeneous cloud plat$or

Table 2. Exemplary configurations of the video processiygtem.

Variation point Config. 1 Config. 2 Config. 3

_ | Availability | Standard Standard Super available

& | Bandwidth | 1000 1000 10

g Storage Multiple-instance| Multiple-instance Geo-specifimgle instance
Yl pB SQL SQL No-SQL

Platform Azure AWS Azure/AWS/Google

e Compute Multiple-instance| Multiple-instance Multiple-instaa

g Elasticity Auto-scale Auto-scale Auto-scale

— | Pattern Pipes and filters Pipes and filterg Cache-asideePand filters

The deployment for tenant 3 (Config. 3) must primvisresources for the storage
service as this tenant chose to store the datpdcaifec location and cannot share its
data with the other tenants due to security corsc@rnerefore, the service must also be
deployed in single instances mode, as privacy itant to that tenant. As the tenant
also selected the option of super availability, aipplication is deployed on multiple
cloud platforms. Now a situation arises where téBarquires the resources on Google
cloud platform in which the functionality of thedé@o processing application is not
deployed since the other two tenants are on Azatle®dVS platforms (cfFig. 1).

Once atenant decides to unsubscribe from a clpplitation, it must be undeployed
from the system [7]. This might be as simple asaéng a line in a configuration
setting. However, in case a tenant has used sertfiagare deployed on multiple cloud
platforms, these services must be undeployed frach specific platform by issuing
platform specific undeployment commands. Never#glet is important to know
which combination of functionality, accessibilitpé deployment has been used by a
tenant to perform the necessary steps to undeptogdrvices.

In addition to provisioning and de-provisioningipts, “tenant transfer” scripts can
be generated that describe how a tenant is traadférom one configuration to another
one or from one specific platform to another platfar hybrid or even multiple plat-
forms.

6 Related Work

Multi-cloud application configuration. Quinton et al. [21] present a model-driven ap-
proach based on feature models and ontology tol&édeterogeneity in cloud variabil-
ity and managing cloud configurations. The approemhsiders technical as well as
non-functional requirements to provide a set ofdvabnfigurations. Their focus is
mostly on managing the heterogeneity in multi-cleagironments via a mapping from
an ontology model to platform specific feature mede&his work is the closest existing
work to our approach. However, our main conceiio isvanage functional and acces-
sibility aspects in accordance with multi-cloud kbgpnent aspects in a homogenous
variability model that different roles in developmt® and operations (known as
DevOps) can cooperate to build up the model andigieca unified model that tenants
can choose their preferences through it withoutiiratg specific technical knowledge.

Sampaio et al. [22] propose an approach that fai@k modeling, deployment and
configuration of software applications over muléileterogeneous laasS clouds. In this
approach, the application to be deployed is sptifising open standards to be run in
VMs while our approach is based on the variabititydel that enable tenants to choose
from three different aspects of the system considéts tenant-specific requirements.

Brandtzeaeg et al. [23] propose a component-basetagipthat leverages the exist-
ing deployment descriptors into a domain-spec#itguage (DSL). The DSL is used
to model the deployment and an interpreter is piedito identify which resources have
to be used in the platform to fulfill requirementdthough this work facilitates a semi-
automated deployment, they do not consider thedotdfer heterogeneity.

Paraiso et al. [24] present a multi-cloud PaaSasifucture deployed on existing
laaS/PaasS. This infrastructure is based on an sgeice model. Contrarily to our ap-
proach, they do not need to consider the capabdlitpnfigure the multi-cloud platform
since they use the same service model for both Sad®aaS.

Multi-tenant application configuration. Mietzner et al. [7] show how variability mod-
eling techniques from software product line carpsurpcloud service providers to man-
age the variability of cloud-based applications trhnt specific configurations. They
propose using explicit variability models to sysatitally derive customization and
deployment information for individual tenants. Gaddt al. [9] introduce the new con-
cept of Variability as a Service (VaaS) model tiere cloud providers from develop-
ing expensive variability models by decreasingvgability management complexity.

More recently, Quinton et al. [8] propose an auttapproach to face the config-
uration of cloud-based applications. Their approadiomates the deployment of such
configurations through the generation of executabt@ts. Schroeter et al. [10] iden-
tify requirements for runtime architecture addnegshe individual interests of tenants
in multi-tenant architectures. They show how dyraanichitectures can be extended
for the development of multi-tenant applicationkisTwork, as opposed to the other
approaches, concentrates on the variability aatbbitecture level.

These above mentioned work although inspiring, #reyonly applicable for single
platform SaaS based applications as opposed tappnoach, which targeted multi-
cloud environments. In fact, in terms of technicahtribution, all of the multi-cloud
configuration management approaches, are an eatea[7].

7 Conclusion and Outlook

We presented how orthogonal variability models taborrowed from software prod-
uct line engineering, can be used to model vaitgbi 3 different yet important as-
pects of cloud applications in the multi-cloud eowiments. We have applied the con-
cepts of configuration management from softwar@pedline engineering to the prob-
lem of deployment support for multi-cloud applicais and have demonstrated the ben-
efits of our approach by means of a case study k&hdenefit of the proposed model
is to manage different interrelated deployment efspthrough a unified model consists
of models at different levels of abstractions.

In our future work, we plan to automate this apptohy developing a tool that en-
ables the creation of tHR0VM variability models facilitating the automated dapl
ment of multi-cloud application at runtime. We plememploy the approach in the
context of a multi-cloud runtime adaptation meckamia similar approach as have
been pursued in projects like MODACIouds [19], GMF [25], mOSAIC [26] and
OPTIMIS [27], however, targeting different concer(iy uncertainty handling in elas-
tic systems, i{) multi-cloud auto-scaling,iif) auto-scaling in data-intensive applica-
tions and i) the application of control theory in auto-scal[2§].

Acknowledgments. The research work described in this paper was stgghdy the
Irish Centre for Cloud Computing and Commerce (I@4) Irish national Technology
Centre funded by Enterprise Ireland and the Ingtustrial Development Authority.

References

1. Jamshidi, P., Ahmad, A., Pahl, C.: Cloud Migration &&sh: A Systematic Review. IEEE
Trans. Cloud Comput. 1, 142-157 (2013).

2. Sun, W., Zhang, X., Guo, C.J., Sun, P., Su, H..v@of as a Service: Configuration and
Customization Perspectives. 2008 IEEE Congress aric8srPart Il (services-2 2008). pp.
18-25. IEEE (2008).

3. Pohl, K., Bdckle, G., Linden, F. Van Der: Softwareguct line engineering. (2005).

4. Svahnberg, M., van Gurp, J., Bosch, J.: A taxonainyariability realization techniques.
Softw. Pract. Exp. 35, 705-754 (2005).

5. Kabbedijk, J., Jansen, S.: Variability in multi-tert environments: architectural design
patterns from industry. Adv. Concept. Model. Receat.INew Dir. (2011).

6. Wilder, B.: Cloud Architecture Patterns: Using MiasfisAzure. (2012).

7. Mietzner, R., Metzger, A., Leymann, F., Pohl, K.:riMaility modeling to support
customization and deployment of multi-tenant-aw@oftware as a Service applications.
2009 ICSE Workshop on Principles of Engineering Ber@riented Systems. IEEE (2009).

8. Quinton, C., Romero, D., Duchien, L.: Automated S@decand Configuration of Cloud
Environments Using Software Product Lines PringplEEE CLOUD 2014. (2014).

9. Ghaddar, A., Tamzalit, D., Assaf, A., Bitar, A.: \&bility as a service: outsourcing
variability management in multi-tenant saas apgiticas. Adv. Inf. Syst. Eng. (2012).

10. Schroeter, J., Cech, S., Goétz, S., Wilke, C., ABmahn,Towards modeling a variable
architecture for multi-tenant SaaS-applicationsocBedings of the Sixth International

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Workshop on Variability Modeling of Software-Intéews Systems - VaMoS '12. pp. 111
120. ACM Press, New York, New York, USA (2012).

Petcu, D.: Multi-Cloud. Proceedings of the 2013 riné¢ional workshop on Multi-cloud
applications and federated clouds - MultiCloud A.31. ACM Press, New York, New York,
USA (2013).

Koetter, F., Kochanowski, M., Renner, T., Fehling,l@ymann, F.: Unifying Compliance
Management in Adaptive Environments through ValigbDescriptors. 2013 IEEE 6th
International Conference on Service-Oriented Comyguaind Applications. IEEE (2013).
Jrad, F., Tao, J., Streit, A.: A broker-based fraox for multi-cloud workflows.
Proceedings of the 2013 international workshop aitiMloud applications and federated
clouds - MultiCloud '13. p. 61. ACM Press, New YoNew York, USA (2013).

Homer, A., Sharp, J., Brader, L., Narumoto, M., Sseam T.: Cloud Design Patterns:
Prescriptive Architecture Guidance for Cloud Appiicas. Microsoft (2014).

Jamshidi, P., Pahl, C..: Cloud Migration Patterns -pgiementary Materials,
http://www.computing.dcu.ie/~pjamshidi/Materials/CMEnI.

Fehling, C., Leymann, F., Retter, R., Schupeck, Wbjtfgr, P.: Cloud Computing Patterns.
Springer Vienna, Vienna (2014).

Petcu, D., et al.: Experiences in building a mOSaAfC€louds. J. Cloud Comput. Adv. Syst.
Appl. 2, 12 (2013).

Grozev, N., Buyya, R.: Inter-Cloud architectures appliaation brokering: taxonomy and
survey. Softw. Pract. Exp. 44, 369-390 (2014).

Nitto, E. Di, Silva, M.A.A. da, Ardagna, D., Casatg,, Craciun, C.D., Ferry, N., Muntes,
V., Solberg, A.: Supporting the Development and 1@pen of Multi-cloud Applications:
The MODACIouds Approach. 2013 15th International $gsium on Symbolic and
Numeric Algorithms for Scientific Computing. pp. 4423. IEEE (2013).

Kang, K., Lee, J., Donohoe, P.: Feature-orientedtiyet line engineering. IEEE Softw.
(2002).

Quinton, C., Haderer, N., Rouvoy, R., Duchien, Lowards multi-cloud configurations
using feature models and ontologies. ProceedingeeoP013 international workshop on
Multi-cloud applications and federated clouds - tlibud '13. p. 21. ACM Press, New
York, New York, USA (2013).

Sampaio, A., Mendonca, N.: Uni4Cloud: an approacketliaon open standards for
deployment and management of multi-cloud applicesioProceeding of the 2nd
international workshop on Software engineeringdoud computing - SECLOUD '11. p.
15. ACM Press, New York, New York, USA (2011).

Brandtzeaeg, E., Mohagheghi, P., Mosser, S.: Towadisrain-specific language to deploy
applications in the clouds. CLOUD Comput. 2012. (9012

Paraiso, F., et al.. A Federated Multi-cloud Paa®astructure. 2012 IEEE Fifth
International Conference on Cloud Computing. pp. 392-IEEE (2012).

Ferry, N., Chauvel, F., Rossini, A., Morin, B., SolipeA.: Managing multi-cloud systems
with CloudMF. Proceedings of the Second Nordic Sysiypa on Cloud Computing &
Internet Technologies - NordiCloud '13. ACM PresgwNYork, New York, USA (2013).
mOSAIC EU project, http://www.mosaic-project.eu/.

Ferrer, AJ., et al.. OPTIMIS: A holistic approatth cloud service provisioning. Futur.
Gener. Comput. Syst. 28, 66—77 (2012).

Jamshidi, P., Ahmad, A., Pahl, C.: Autonomic reseuptovisioning for cloud-based
software. Proceedings of the 9th International Sysiym on Software Engineering for
Adaptive and Self-Managing Systems - SEAMS 20149pp-104. ACM Press, New York,
New York, USA (2014).

