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ABSTRACT
Automatic detection of semantic concepts in visual media is
typically achieved by an automatic mapping from low-level
features to higher level semantics and progress in automat-
ic detection within narrow domains has now reached a satis-
factory performance level. In visual lifelogging, part of the
quantified-self movement, wearable cameras can automati-
cally record most aspects of daily living. The resulting im-
ages have a diversity of everyday concepts which severely
degrades the performance of concept detection. In this pa-
per, we present an algorithm based on non-negative matrix
refactorization which exploits inherent relationships between
everyday concepts in domains where context is more preva-
lent, such as lifelogging. Results for initial concept detection
are factorized and adjusted according to their patterns of ap-
pearance, and absence. In comparison to using an ontology
to enhance concept detection, we use underlying contextual
semantics to improve overall detection performance. Results
are demonstrated in experiments to show the efficacy of our
algorithm.

Index Terms— Visual lifelogging, concept detection,
non-negative matrix factorization, concept semantics.

1. INTRODUCTION

Lifelogging is the term used to describe the process of au-
tomatically, and ambiently, digitally recording our own day-
to-day activities for our own personal purposes [1]. With the
proliferation of mobile devices with their computational ca-
pability, lightweight nature and long-life battery, research on
applying lifelogging techniques across several domains has
become more feasible. Visual lifelogging is the term used
to describe one class of personal lifelogging which employs
wearable cameras to capture image or video of everyday ac-
tivities. These include SenseCam [2], Vicon Revue, as well
as the possibilities offered by Google Glass.

Many projects now use visual lifelogging in applications
like aiding human memory, diet monitoring, chronic disease
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diagnosis, recording activities of daily living (ADL) and so
on. Microsoft Research have pioneered this with the develop-
ment of the SenseCam and there is evidence that SenseCam
images can improve memory recall for people with memory
disorders [3]. Though dietary patterns are proven as a crit-
ical contributing factor to many chronic diseases, traditional
strategies based on self-reported information do not fulfill the
task of accurate diet reporting. DietSense [4] is an example of
lifelogging using mobile devices to support automatic multi-
media documentation of dietary choices. More recently, ev-
idence suggests that visual lifelogs provide a more accurate
measure of energy intake while individuals’ self-report often
underestimate the true value [5]. IMMED [6] is a typical ap-
plication of visual lifelogging of ADL, in which video data
of the instrumented activities of a patient are recorded and
indexed to assess the cognitive decline caused by dementia.

Metadata like date, time and location may be sufficient
for many lifelogging applications but there are others which
require searching through lifelogs based on content, and for
this to happen the automatic detection of semantic concepts
needs to be introduced. Visual lifelogs represent a new form
of multimedia which require semantic indexing and retrieval,
for which much preliminary work has already been done in
other domains. State-of-the-art techniques use statistical ap-
proaches to map low level image features to concepts which
can then be fused. According to the TRECVid benchmark
[7], acceptable results have been achieved already in many
cases particularly for concepts for which there exists enough
annotated training data. Individual concepts detected by s-
tandalone classifiers can be fused to determine high-level se-
mantics though this demands a high level of classification ac-
curacy for the underlying concepts [8]. However, in the visu-
al lifelogging domain, the challenge of improving detection
accuracy is more severe given the visual diversity of lifelog
content and the large variety of concepts compared to, say,
broadcast TV news. Even the images captured passively with-
in the same lifelogged event may have significant perceptual
differences due to the wearers’ movements. Furthermore, the
one-per-class SVM classifiers which are widespread in anal-
ysis of other kinds of images and video, will ignore whatever
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concept relationships may exist.
In this paper, we proposed an approach to model everyday

concept occurrence patterns using concept detection results as
the only input, which we use to improve concept detection in
visual lifelogs. This exempts us from the overhead of build-
ing an ontology and the need for training data. In order to
evaluate the effectiveness of this methodology, we employed
SenseCam (shown in Figure 1) as a wearable device to log de-
tails of users’ lives. SenseCam is a lightweight passive camer-
a with several built-in sensors which captures the view of the
wearer with its fisheye lens. By default, images are taken at
the rate of about one every 50 seconds while the on-board sen-
sors can help to trigger the capture of pictures when sudden
changes are detected in the environment of the wearer. Some
typical events from SenseCam images are shown in Figure 2.

Fig. 1. A variety of wearable visual lifelog devices through
the ages including SenseCam (bottom right).

The contribution of our work is three-fold. We present
an algorithm based on non-negative matrix factorization to
improve concept detection accuracy and we then model ev-
eryday concept semantics to learn the appearance patterns
of those concepts which have low-accuracy detection, which
we then boost. Finally, we compare our approach with an
ontology-based method for improving concept detection and
we demonstrate this to be advantageous in efficacy, imple-
mentation and domain independence.

The rest of the paper is organized as follows: in Section
2 we describe the multi-concept problem and we introduce
contextual semantics in lifelogged media. Our algorithm for
enhancing the detection of everyday concepts is discussed in
Section 3 and the experimental implementation and results
analysis are presented in Section 4. Finally, we close the pa-
per with conclusion and future work.

2. CONTEXTUAL SEMANTICS OF EVERYDAY
CONCEPTS

Concepts express the semantics of media in a useful way and
are usually detected by providing a meaningful link between
low-level features, and high-level understanding.

2.1. Confidence-based Concept Detection

Following the state-of-the-art in concept detection, we em-
ploy a generic one-per-class SVM classifier with confidence
results as a basis for our algorithm. This means each concep-
t detector is responsible for performing detection of a single
concept but with a distance between each instance and a hy-
per plane which exists between positive and negative concept
instances.

By defining a target concept of an image x as c, the dis-
tance of image x belonging to concept c returned by the clas-
sifier is represented as dc(x), whose sign and magnitude re-
flect the class prediction and the confidence level of that pre-
diction. Since the returned distance is uncalibrated, it can not
be used as confidence for concept judgement. A widely em-
ployed method is to use a sigmoid function to fit the posterior
probability of P (c|x) [9]:

Conf(c|x) = 1

1 + exp(Ax+B)
(1)

where parametersA andB can be obtained by fitting the max-
imum likelihood estimation from the training dataset. As-
sume we have M classifiers for M concepts, we directly bi-
narize Conf(c|x) to obtain the appearance of each concept in
image x.

2.2. Exploiting Everyday Concept Semantics

Since concepts usually co-occur within even a single image
rather than in isolation, as we can see from the exemplar im-
ages in Figure 2, the understanding of lifelogged media such
as SenseCam image streams is actually a multi-concept detec-
tion problem. While we use one-per-class classifiers, intrinsic
relationships between concepts are neglected and ultimately
this ends up with multiple isolated binary classifiers which
do not exploit concept semantics. This approach is likely to
suffer from the shortcomings of misclassification or inconsis-
tency among the detected concepts.

It is widely accepted that there is strong correlation among
concept ontological semantics and contextual semantics. For
example, ‘Road’ can be modeled as a subclass of ‘Outdoor’
while ‘Indoor’ and ‘Outdoor’ are usually mutually disjoint.
This is consistent with some cases of activities like ‘Driv-
ing’, ‘Walking’ and so on, in which the concepts ‘Outdoor’
and ‘Road’ co-occur more frequently while ‘Indoor’ and its
descendant concepts like ‘Office’, ‘Kitchen’,‘Computer’, etc.
are excluded and have less likelihood to appear in such activi-
ties. While the construction of an ontology is domain-specific
and usually subjective, the use of contextual semantics has
great potential, as pointed out more recently in the lifelog-
ging domain by [10]. Our algorithm exploiting such contex-
tual semantics to enhance everyday concept detection, is now
described.



Fig. 2. Samples of lifelogging activities (top to bottom: ‘Us-
ing computer’, ‘Reading’, ‘Walking’, ‘Cooking’, for each
row).

3. EVERYDAY CONCEPT DETECTION
ENHANCEMENT

Our algorithm is based on the concepts detection results from
a series of images taken from events which are automatical-
ly segmented based on the technique introduced in [11]. An
event corresponds to a single activity in the wearer’s day such
as watching TV, commuting to work, or eating a meal, with
an average stream of 20 events of varying duration in a typical
day.

3.1. Problem Formalization

We assume a universe of conceptsC. Let {E1, E2, ..., En} be
the set of event streams in the dataset. Event Ei is represent-
ed by successive images I(i) = {Im(i)

1 , Im
(i)
2 , ..., Im

(i)
k }.

Each image Im(i)
j might have several concepts detected, we

assume the concepts appearing in image Im
(i)
j are repre-

sented as a confidence vector C(i)
j = {c(i)j1 , c

(i)
j2 ...c

(i)
jM} for

M concepts. The whole set of SenseCam images can be
denoted as I = {I(1), I(2), ..., I(n)} which has dimension
N =

∑n
i=1 ki, where ki is the number of images in each

event Ei. Concept detection for these N images for M con-
cepts can be described as a confidence matrix:

C =


c11 c12 . . . c1M
c21 c22 . . . c2M

...
...

. . .
...

cN1 cN2 . . . cNM

 (2)

The task now is to modify the N ×M dimensional matrix C
in order to keep consistency with the underlying contextual
pattern of concepts. According to [12], matrix C can be rep-
resented as C ≈ UH , in which r columns of U are basis and
each column of H is an encoding in one-to-one correspon-
dence with a column in C. The intuition of this is to form the
confidence matrix by simply combining partial information
(columns in U ) with an additive operator since all elements
in H are non-negative. That is to say, various concepts can
be mapped to combinations of semantic units and concept-
concept contextual semantics can be evaluated through this
new sparse encoding.

3.2. Factorizing the Detection Results

Let the dimensions of component matrix U and H be N × r
and r×M . Since r is the reduced rank satisfying (N+M)r <
NM , the approximation of UH is indeed the compression
of C. The approximation factorization defined above can be
solved by optimizing the cost function defined to qualify the
quality of the approximation. Different forms of cost func-
tion and corresponding optimization can be applicable to this
problem but in factorizing the confidence matrix, the weight-
ed measure is more suitable since detection performance is
different due to the characteristics of concepts and quality of
the training set. To distinguish the contribution of different
concept detectors to the cost function, the weighted cost func-
tion is employed as

F =
1

2
‖W ◦ (C − UH)‖2F =

1

2

∑
ij

wij(cij − Ui·H·j)
2 (3)

such that U ≥ 0, H ≥ 0, where ◦ denotes element-wise mul-
tiplication, W = (wij)N×M denotes the weight matrix and
‖ · ‖2F denotes the Frobenius norm. Gradient descent method
can be applied for optimizing this problem, implemented by
updating U and H in the opposite direction to the gradient at
each iteration through

U = U − αU∂F/∂U (4)
H = H − αH∂F/∂H (5)

after each step αU , αH . ∂F/∂U and ∂F/∂H can be calcu-
lated by

∂F

∂U
= [(UH − C) ◦W ]HT (6)

∂F

∂H
= UT [(UH − C) ◦W ] (7)

and we employed αU , αH as the form

αU = U/[(UH ◦W )HT ] (8)

αH = H/[UT (UH ◦W )] (9)



where / denotes element-wise division. Note that it is not
hard to prove that under such updating rules, the cost function
in Equation 3 is non-increasing in each optimization step.

3.3. Concept Detection Enhancement

To obtain a reconstruction of the underlying semantic struc-
ture, the weights need to be set in terms of concept accuracy.
Because each confidence value cij in C denotes the probabil-
ity of concept cj occurring in the image, estimating the ex-
istence of cj is more likely to be correct when cij is high
enough. Under this premise, we carried out the concept de-
tection enhancement as follows.

First, each column of confidence matrix C is normalized
at Max − Min scale. This is then followed by construct-
ing a new sparse matrix C ′ by thresholding C, whose ele-
ment is c′ij = cij if cij ≥ threshold or 0 otherwise. The
rationale for this is to retain elements with high confidence
as “seeds” and apply the contextual information modeled by
non-negative factorization to predict other concepts in corre-
lation with these seed concepts. A sparse confidence matrix
C ′ is achieved and we denote the non-zero element set in C ′

as C1. Meanwhile, the set of C ′ − C1 can be used to denote
zero elements which need to be estimated from C1.

Then C ′ is factorized using the algorithm described in
Section 3.2. This involves the iterative optimization of the
cost function defined in Equation 3. In the optimization step,
we configure the settings of weights as wij = 1 if c′ij ∈ C1,
otherwise wij ∈ (0, 1). In this step, two factor matrix of U
and H are returned as an estimation of the contextual struc-
ture of C ′.

Finally, the approximation of C ′ can be calculated as
c′ij =

∑r
k=1 uikhkj . The new confidence values for elements

inC ′−C1 can form an estimate of concept detection to adjust
the original detection result by averaging the original confi-
dence and the new estimated value.

4. EXPERIMENTS AND EVALUATION

4.1. Experiment Setup and Dataset

To assess the performance of our algorithm, we used a set
of 85 everyday concepts as investigated in [13]. We used
a dataset including event samples of 23 activity types col-
lected from 4 SenseCam wearers and consisting of 12,248
SenseCam images [1]. Concept detectors with different ac-
curacy levels were applied and the metrics of AP and MAP
were calculated for concepts based on manual groundtruth.
Different concept detection accuracies were provided in the
dataset by varying the mean of positive class µ1 in the range
[0.5...10.0]. For each setting of parameters, we executed 20
repeated runs to avoid random performance and the aver-
aged concept AP and MAP were both calculated. Figure 3
shows the improvement in concept MAP with increasing µ1

and near-perfect detection performances are achieved when
µ1 ≥ 5.5.

Fig. 3. Averaged concept MAP with different µ1 values.

Both contextual and ontological methods are implement-
ed and compared in our experiments. Contextual enhance-
ment is carried out as described in Section 3 with concept
detection confidence as the only input. In implementing an
ontology-based adjustment algorithm, an everyday concep-
t ontology was first constructed for the set of 85 concepts
using the ontology language OWL, which is a standard Se-
mantic Web language. Both subsumption and disjointness
concept relationships are used. Subsumption is a relationship
restricting the membership of a concept. By relating two con-
cepts with disjointness, no instance of either class can be an
instance of both classes. In our implementation, the state-
of-the-art Semantic Web reasoner is also embedded straight-
forwardly to leverage explicit statements in the ontology to
create logically valid but implicit statements. Since the on-
tological method has to learn the correlation of accuracy and
multi-concept confidences before enhancement, we randomly
select half the dataset for training and the other half for evalu-
ation. The sigmoid function is used for fitting the correlation
which has a form similar to Equation 1 except for the setting
of parameters.

4.2. Contextual vs. Ontological

The effectiveness of contextual enhancement is demonstrated
in Figure 4, in which improvement is depicted at two differ-
ent concept detection accuracies, determined by µ1 = 1.5
and µ1 = 2.5 respectively. Instead of choosing a partic-
ular setting of parameters, results for k ∈ [10, ..., 80] and
threshold ∈ [0.1, ..., 0.9] are shown in Figure 4. All cases
in Figure 4 are achieved by executing the algorithm in 20 run-
s and the averagedMAP improvement across all 85 concepts
are obtained.

As shown in Figure 4, the performance of contextual en-
hancement is better when the positive class mean increases
from 1.5 to 2.5. While there are cases in which overall con-
cept detection is not obviously improved in Figure 4(a), de-
tection performance is improved in all cases shown in Fig-



(a)µ1 = 1.5 (b)µ1 = 2.5

Fig. 4. MAP improvement with various parameter configures.

ure 4(b). This is consistent with the premise that there are
some concepts whose detections are satisfactory and can be
selected as seeds to boost the performance of the other con-
cept detectors. In Figure 4(a), when threshold is chosen as
too high, there will be fewer correct concept detection results
chosen, hence overall performance could hardly be improved.
The situation is alleviated in Figure 4(b), in which the orig-
inal detection performance is better, as shown in Figure 3.
That means in Figure 4(b), more correctly detected concepts
can be used to give better estimations on the others, based on
contextual semantics modeled by the algorithm. The choice
of too “noisy” concepts can also degrade the improvement, as
depicted when threshold is small. In these cases, erroneous
detection results are likely to be chosen to C1 in the thresh-
olding procedure as described in Section 3.3. The best overall
performances are achieved when threshold value is around
0.4.

Fig. 5. Improvement comparison of contextal and ontological
approaches.

Since averagingMAP over different detection accuracies
is meaningless, pairwise comparison is depicted in Figure 5 at
different µ1 values where contextual enhancement (k = 10,
threshold = 0.3) significantly outperforms the ontological
approach in most cases, except for µ1 = 0.5 and µ1 = 1.5.
This is because the ontological approach uses one half of the

dataset to learn the distribution and only half of the dataset for
testing. Based on the prior knowledge deliberately learned
from extra training data, the ontological approach adapts to
the distribution of the dataset more easily. However, no extra
training data or processing are needed in our algorithm, which
can self-learn the contextual semantics of concepts and en-
hance overall detection performance. The poor performance
of both approaches at µ1 = 0.5 makes sense as the initial de-
tection accuracy is just too low. As shown in Figure 3, the
overall MAP at µ1 = 0.5 is nearly zero. In this case, no
correctly detected concept can be selected and utilised which
is impractical in real world applications. When initial detec-
tion performance is good enough, as shown in Figure 3 if
µ1 ≥ 5.5, there is no space to improve detection accuracy.
Therefore, for both approaches in Figure 5, the improvement
is not that significant at µ1 ≥ 5.5.

Concept coverage is another advantage of our algorithm
as demonstrated in Figure 6, using the same parameters as
Figure 5. In Figure 6, the peak performances of contextu-
al and ontological approaches (at µ1 = 1.5) are visualized
across all 85 concept AP s. Nearly 80 concepts are improved
by our algorithm whereas the number of improved concepts
by ontological approach is only 30. Because the ontologi-
cal approach is based on a pre-constructed ontology and a set
of training data, it is constrained by ontological concept rela-
tionships and having enough positive samples. In our experi-
ment, 52 concepts have available parent and disjoint concepts
after inference, and 35 of these have more than 100 positive
samples for distribution training. It seems that the ontologi-
cal approach outperforms our algorithm at limited cases, say,
the first 5 concepts in Figure 6. However, this is because of
the prior knowledge learned from one half of the dataset and
training on the other half, which is indeed a limitation of the
ontological approach. On the contrary, our algorithm is effec-
tive for most of the concepts and the overall improvement is
significant across all 85 concepts in a two-way ANOVA test
with 20 replications (p < 0.01). Similar results can be ob-
tained using other parameter settings.



Fig. 6. Improvement comparison over all concepts.

According to the above results, our contextual enhance-
ment algorithm has many advantages. First, it is data efficient
and easy to implement since no prior knowledge is needed un-
like ontology construction or distributions learned from extra
training data. Second, it is shown to be effective in signifi-
cantly improving detection accuracies for a large number of
concepts. Finally, the only input is initial concept detection
results and the algorithm is independent of any specific im-
plementation of concept detectors.

5. CONCLUSIONS AND FUTURE WORK

An enhancement algorithm is described for improving ev-
eryday concept detection performance in visual lifelogging.
Based on non-negative matrix factorization, the algorithm can
model global contextual semantics through partial concep-
t detection results which have better accuracies. The confi-
dences of less accurate concept detections are estimated and
combined with the initial results to enhance the overall de-
tection performance. By comparison with an ontology-based
approach, experiments demonstrate that our algorithm has ad-
vantages in many aspects such as easy implementation, effec-
tiveness, high concept coverage and domain independence.
Our future work is to apply this method to learn pairwise
concept correlations and exploit the automatic construction
of contextual semantic networks for visual lifelogging.
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