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Abstract

The lack of linguistically motivated translation units or phrase pairs in Phrase-based Sta-

tistical Machine Translation (PB-SMT) systems is a well-known source of error. One ap-

proach to minimise such errors is to supplement the standard PB-SMT models with phrase

pairs extracted from parallel treebanks (linguistically annotated and aligned corpora). In

this thesis, we extend the treebank-based phrase extraction framework with percolated de-

pendencies – a hitherto unutilised knowledge source – and evaluate its usability through

more than a dozen syntax-aware phrase extraction models.

However, the improvement in system performance is neither consistent nor conclusive

despite the proven advantages of linguistically motivated phrase pairs. This leads us to

hypothesize that the PB-SMT pipeline is flawed as it often fails to access perfectly good

phrase-pairs while searching for the highest scoring translation (decoding). A model er-

ror occurs when the highest-probability translation (actual output of a PB-SMT system)

according to a statistical machine translation model is not the most accurate translation

it can produce. In the second part of this thesis, we identify and attempt to trace these

model errors across state-of-the-art PB-SMT decoders by locating the position of oracle

translations (the translation most similar to a reference translation or expected output of

a PB-SMT system) in the n-best lists generated by a PB-SMT decoder. We analyse the

impact of individual decoding features on the quality of translation output and introduce

two rescoring algorithms to minimise the lower ranking of oracles in the n-best lists.

Finally, we extend our oracle-based rescoring approach to a reranking framework by

rescoring the n-best lists with additional reranking features. We observe limited but opti-

mistic success and conclude by speculating on how our oracle-based rescoring of n-best

lists can help the PB-SMT system (supplemented with multiple treebank-based phrase

extractions) get optimal performance out of linguistically motivated phrase pairs.
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Chapter 1

Introduction

“Poetry is what is lost in translation.”

Robert Frost

“A convincing demonstration of correctness being impossible as long as the

mechanism is regarded as a black box.”

Edsger W. Dijkstra

Multilingual online chatting, automatic email translation, multilingual video games,

relief and aid workers communicating at a disaster-struck foreign country, cross-lingual

search on the web, multilingual customer support, machine-aided human translation: each

of the afore-mentioned scenarios currently uses or has the potential to use machine trans-

lation (MT) technology in some fashion.

Machine translation is the design and implementation of software systems that can

automatically translate text occurring in one natural language to another. MT, one of the

earliest non-numeric applications of computers (Hutchins, 2000), has gained sustained

resurgence since the meteoric rise of multilingual user-generated content on the web in

both academia1 and industry2 in an attempt to bridge the language barriers in global com-
1 Examples in Academia: Availability of open-source software such as Moses (Koehn et al., 2007)

statistical machine translation system [http://www.statmt.org/moses] and Apertium (Forcada
et al., 2009) rule-based machine translation platform [http://www.apertium.org], and freely avail-
able parallel corpora such as the Open Parallel Corpus (Opus) (Tiedemann, 2009) [http://opus.
lingfil.uu.se/] and the European Parliament Proceedings Parallel Corpus (Europarl) (Koehn, 2005)
[http://www.statmt.org/europarl/].

2 Examples in Industry: Emergence of language technology solutions and services such as SDL Au-

1

http://www.statmt.org/moses
http://www.apertium.org
http://opus.lingfil.uu.se/
http://opus.lingfil.uu.se/
http://www.statmt.org/europarl/


munication in an increasingly globalised economy and information society.

Since its recommendation as a viable enterprise in Warren Weaver’s historical mem-

orandum (Weaver, 1949), a number of approaches have been implemented with varying

degrees of success. Some of these are Rule-based Machine Translation (RBMT) (Probst

et al., 2002; Sanchez-Martinez and Forcada, 2007), data-driven models like Example-

based Machine Translation (EBMT) (Nagao, 1984; Carl and Way, 2003) and Statistical

Machine Translation (SMT) (Brown et al., 1990; Koehn, 2010).

Figure 1.1: (a) Knowledge representation in SMT, (b) Decoding in SMT

These approaches primarily differ with respect to how translation knowledge is stored

(knowledge representation) and how it is used to translate unseen text (decoding). The re-

search described in this thesis touches both these areas with respect to SMT. Figure 1.1(a)

illustrates the formulation of a text and its translation (parallel corpora) into statistical

models, and Figure 1.1(b) depicts a SMT decoder selecting, from amongst a number of

possible translations, the candidate with the highest probability.

Currently SMT is the most widely researched paradigm (Figure 1.2), and arguably

the most effective as it continues to be the top-performing engine or a core component

of the highest ranking multi-engine system at shared tasks and large-scale evaluations

like IWSLT3 (International Workshop on Spoken Language Translation), NIST4 (National

Institute of Standards and Technology Open MT Evaluation), and WMT5 (Workshop on

Statistical Machine Translation).

There exist many different flavours of SMT depending on the representational format

tomated Translation [http://www.sdl.com/products/automated-translation/], Lingo24
[http://www.lingo24.com/], and Asia Online [http://www.asiaonline.net/].

3 http://workshop2013.iwslt.org/
4 http://www.nist.gov/itl/iad/mig/openmt12.cfm
5 http://www.statmt.org/wmt14/

2

http://www.sdl.com/products/automated-translation/
http://www.lingo24.com/
http://www.asiaonline.net/
http://workshop2013.iwslt.org/
http://www.nist.gov/itl/iad/mig/openmt12.cfm
http://www.statmt.org/wmt14/


Figure 1.2: Pie chart
to show number of re-
search papers published
since 2010 within each
MT paradigm; Rule-
based: RBMT (8%),
Example-based: EBMT
(4%), and Statistical:
SMT (88%). Source:
MT Archive (December
2013) at http://www.
mt-archive.info

of bilingual text (also known as translation units) used for statistical modeling: word-

based (Brown et al., 1990, 1993), phrase-based (Marcu and Wong, 2002; Koehn et al.,

2003), or tree-based (Chiang, 2007; Wang et al., 2010). Figure 1.3 illustrates the three

types of representational formats characterised by the manner in which the source (Hindi

sentence) and the target (English sentence) is aligned. The first type operates at the word

level as its translation unit, while phrase-based models align flat sequence of words or

chunks, and tree-based models align recursive or hierarchical chunks (which may be la-

belled at each node) as translation units.

Figure 1.3: Three types of SMT: word-based, phrase-based, and tree-based.

Both phrase-based and tree-based (also known as syntax-based) SMT models are at

the forefront of research and experimentation in the field, with improvements to the estab-

lished methodologies being constantly proposed and implemented. Thus the state-of-the-

art in MT is a dynamic target. For the sake of consistency and homogeneity in this thesis,

we conduct all our experiments, modifications, analyses on the Phrase-based Statistical

3

http://www.mt-archive.info
http://www.mt-archive.info


Machine Translation (PB-SMT) model.6

While there are several alternatives to designing a PB-SMT system, we describe the

state-of-the-art log-linear phrase-based model (Och and Ney, 2002) with standard config-

urations, as implemented in the open-source statistical machine translation system Moses7

(Koehn et al., 2007), and used throughout in all our experiments. The schematics are

demonstrated in Figure 1.4 and referred to throughout this thesis.

Figure 1.4: Schematic diagram of all the modules in a Phrase-based Statistical Machine
Translation System.

A PB-SMT system takes as input a large corpus of sentences in a source (input)

language (‘s’ for short) and their human translations in the target (output) language (‘t’

for short). Additional target-language data is also often used to build language models.

PB-SMT systems extract knowledge in the form of sub-sentential alignments from large

amounts of parallel corpora (sentence-aligned bilingual texts, also known as bitexts) to

represent them as source–target phrase pair probability models. In PB-SMT, knowledge

representation is also known as modeling. This step includes processes like extraction of

translation units (phrase pairs) from word-aligned parallel corpora and defining a num-

6 Note that, in theory, our methods can be adapted to the tree-based SMT models with trivial changes: (1)
The treebank-based phrase extraction system can easily be implemented in syntax-based systems by either
retaining the node labels or assigning generic labels in order to maintain the structure. (2) The oracle-based
rescoring system is independent of the decoding algorithm and can thus be implemented in syntax-based
systems as well.

7http://www.statmt.org/moses/

4
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ber of probabilistic attributes (features) for each of these translation units (feature scoring

in Figure 1.4). Some of the features in PB-SMT systems include source–target trans-

lation conditional probabilities (translation model or TM), target-language probabilities

(language model or LM), and source–target relative order conditional probabilities (re-

ordering model or RM).

Phrase-based SMT Tree-based SMT
Translation Model avails of string-based
chunks

Translation Model avails of recursive
string-based chunks (labeled or unla-
beled)

Language Model consists of n-gram prob-
abilistic database of target language

Language Model same as PB-SMT; alter-
natively with labeled or unlabeled recur-
sive structure (Shen et al., 2008; Tu et al.,
2010)

Reordering Model operates on distance-
based model

Reordering Model not required (taken
care of by translation model)

Decoding algorithm employed is Stack-
based (Beam search)

Decoding algorithm employed is Chart-
based

Time & Space Complexity better Time & Space Complexity worse

Table 1.1: Phrase-based SMT and Tree-based SMT: A contrastive analysis

PB-SMT systems use phrases as their basic translation unit. These phrases are merely

strings of consecutive words, having no linguistic motivation whatsoever. Hence, unlike

approaches in RBMT and certain EBMT variants, standard PB-SMT systems do not at-

tempt to utilize linguistic syntax, leading to several errors like reordering, i.e. incorrect

word order in the translation (Galley and Manning, 2008), and dropping of significant

words like verbs (Ma and McKeown, 2009). SMT research is empirically driven and mo-

tivated by ideas that seek to reduce errors and improve system performance. Tree struc-

tures seek to overcome the shortcomings of PB-SMT arising from the lack of exploiting

knowledge from formal or linguistic theories of syntax of any kind (Koehn, 2010).8 Ta-

ble 1.1 summarizes the major differences between phrase-based and tree-based SMT in

terms of individual modules. Thus the tree-based SMT paradigm attempts to counter the

afore-mentioned shortcomings of PB-SMT by exploiting the syntactic (structural) rela-

8 For a detailed overview of application of these theories in MT, see Chapter 11 of Koehn (2010) pp.331–
369.
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tionships between chunks (with varying degrees of success), but at a cost to the decoding

complexity (Chiang, 2007).

In another line of research, Tinsley (2010) extracted linguistically motivated chunks

(i.e. flat sequences of words respecting syntactic boundaries) from parallel treebanks

(node-aligned parse trees of parallel corpora or bitext) to be used directly in the PB-SMT

framework. We too incorporate syntax in PB-SMT using the parallel treebank extraction

framework (cf. Section 2.2) as an alternate method of phrase extraction; syntactic infor-

mation is in the same format as string-based phrases and incurs no additional decoding

cost.

Figure 1.5: Four types of phrase pairs used in PB-SMT.

Parallel treebanks are obtained by parsing (assigning syntactic tree-like structure to

text) both the source-language and target-language data and aligning corresponding nodes

from these parse trees. There exist different types of treebanks depending on the anno-

tation or syntactic theory used to parse the text: constituency,9 dependency.10 Figure

1.5 shows four types of phrase pairs we implement in our PB-SMT system (one stan-

dard non-linguistic [STR] and three linguistically motivated extracted from parallel tree-

banks [CON, DEP, and PERC]). We introduce a hitherto new annotation format called

percolated dependencies – obtained via a method of deriving dependency trees from

9 Example of a phrase structure treebank is the Penn Treebank for English (Marcus et al., 1993) [http:
//www.cis.upenn.edu/˜treebank/].

10 Example of a dependency structure treebank is the Prague Dependency Treebank for Czech (Hajič
et al., 2000) [https://ufal.mff.cuni.cz/pdt2.0/].

6
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consituency trees using Head Percolation (Magerman, 1995) – and investigate their in-

corporation into the PB-SMT pipeline with several new syntax-aware models. This leads

us to our first research question:

(RQ1) Are phrase pairs extracted from percolated dependency treebanks a useful knowl-

edge source for PB-SMT?

Through a range of MT evaluation experiments on a combination of one or more of the

syntax-aware models in Chapter 2, we show that adding percolated dependency induced

phrase pairs to a MT system generally improves the translation performance. Therefore

the answer to RQ1 is yes. However we observe that our syntax-aware models do not show

consistent performance in automatic evaluation and translation accuracy is lost when all

four types of phrase pairs are merged into one MT system. A qualitative analysis then

leads us to believe that good phrase pairs fail to be selected by the decoder as the optimal

translation. This leads us to the second part of our research.

(RQ2) Can the PB-SMT system obtain optimal performance out of linguistically motivated

phrase pairs?

In order to investigate this, we need to delve deeper and understand what is meant by

optimal performance of a PB-SMT system. PB-SMT systems decode a source-language

sentence into the target-language by selecting the most likely translation. There is an in-

termediate step between modeling and decoding known as parameter estimation or tuning

which determines the optimal way of combining the features in a log-linear model (Och

and Ney, 2002). The TM, LM, and RM features from Figure 1.4 are combined in a log-

linear model, the coefficients of which are optimized on an objective function measuring

translation quality such as the BLEU metric (Papineni et al., 2002), using Minimum Error

Rate Training (MERT) as described in Och (2003). Under the standard procedure, this

parameter optimization is computed using a small parallel corpus, known as the develop-

ment (‘dev’ for short) set.
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An SMT decoder non-exhaustively explores the exponential search space of transla-

tions for each source sentence (in the test set), scoring each hypothesis using the formula

(Och and Ney, 2002) in (1.1) (decoding in Figure 1.4).

score(t|s) =
M∑
i=1

λihi(s, t) (1.1)

The variable h denotes each of the M features (probabilities learned from language

models, translation models, etc.) and λ denotes the associated feature weight (coeffi-

cient). The candidate translation, amongst all the competing hypotheses, having the high-

est decoder score is deemed to be the best translation according to the model. The list

of hypotheses of candidate translations for a particular sentence ranked according to their

decoder score is called the n-best list of translations (where n refers to the number of can-

didate translations or hypotheses generated) and the highest-scoring candidate is labelled

as the 1-best translation.

The post-processing module from Figure 1.4 is often an optional module and involves

processes like recasing, detokenization, and most importantly reranking or rescoring of

the n-best list of translations.

The last module as per the schemata given in Figure 1.4 concerns the evaluation of

the output of a MT system. Typically system performance is assessed by using automatic

evaluation metrics like BLEU (Papineni et al., 2002), which measure the similarity of MT

output to a human-produced translation (reference translation). SMT systems consist of

a number of components engaged in complex interactions and automatic evaluation pro-

vides very little insight into where the translation errors occur. Often improvements in the

model are not registered by these metrics. Germann et al. (2004) identify several types of

translation system errors, i.e. cases when the heuristic search-based decoder fails to out-

put a high-quality optimum translation. Search errors occur when the decoder fails to find

the optimum or highest scoring translation according to the model. Model errors occur

when a good translation (candidate translation most similar to the reference translation,

also known as the oracle translation) is not the highest scoring translation, i.e. it is posi-

8



Figure 1.6: Types of system errors in a SMT system.

tioned lower in the n-best list of translations. Recently, Auli et al. (2009) defined a third

error type called induction errors which refers to cases when the optimum translation is

absent from the search space owing to various pruning strategies, etc. Figure 1.6 visu-

alises these different type of errors. There are still other methods of error analysis which

focus on manually or semi-automatically classifying errors in the system outputs (Vilar

et al., 2006; Toral et al., 2012). These error classifications mainly deal with a surface-level

linguistic check of the MT output in terms of lexical elements and grammatical construc-

tions and are outside the scope of the research in this thesis which seeks to identify the

cause for the surface-level errors in terms of model errors.

SMT research is empirically driven and motivated by ideas that reduce errors and im-

prove system performance. Our research focusses on identifying and minimizing model

errors which indicate that the 1-best candidate translations are not always the best trans-

lations (most accurate or closest to a reference translation) produced by the system. The

term oracle is used to denote the candidate translation in the n-best list of translations

which is most similar to the reference translation. This leads to our third research ques-

9



tion.

(RQ3) Does pushing oracles up the n-best list minimise model errors and improve perfor-

mance of a PB-SMT system?

The decoding task for the PB-SMT models considered in this research has been shown

to be NP-hard (Knight, 1999). This exponential complexity of the search space implies

that the decoder performs a non-exhaustive search (using heuristic search methods) to

find the best possible translation for a given input leading to a number of system errors

mentioned previously. Our research aims to conduct a deep diagnostic analysis of this

complex system by using oracle reranking to identify the origin of model errors. We then

propose to implement modifications in terms of features and their weights to minimize the

model errors.

We also aim to show that model errors can be reduced by reranking oracles and im-

proving the optimization algorithm. This leads to our fourth research question.

(RQ4) Can additional features in a reranking framework help minimise model errors?

In Chapter 4, we test out our oracle-based methods on extra features (such as more

sophisticated language models like part-of-speech LMs) not used in the decoding stage.

This helps us in answering the fourth research question. Finally, we determine the answer

to our final research question that ties our oracle-based rescoring work with our initial

parallel treebank-based phrase extraction experiments.

(RQ5) Can the oracle-rescored system help the PB-SMT system to better exploit linguisti-

cally motivated chunks?

In order to answer this question, we modify our oracle-based rescoring framework by

considering a translation hypothesis from a syntax-aware system (a MT system composed

of syntax-aware models induced from parallel treebanks introduced in Chapter 2) as the

oracle in contrast to a standard non-linguistic PB-SMT system hypothesis.

10



In Machine Learning (learning statistical models from large amounts of data), over-

fitting and underfitting are two important concepts.11 Underfitting implies a condition

when the model is too sparse to be effective. On the other hand, overfitting refers to the

condition when there are too many features in the model resulting in an overgeneraliza-

tion. Broadly speaking, augmenting the phrase pair set with treebank-aware constraints12

and discarding any linguistic labels (Chapter 2) can be likened to an underfitting sce-

nario while reranking MT outputs with numerous coarse-grained and fine-grained features

(Chapter 4) can be seen approaching the overfitting scenario. Thus a systematic diagnosis

based on an oracle-based study (Chapter 3) can be said to be a mid-point, bridging the

deficiencies in underfitting and shortcomings of overfitting in MT models.

Having set the scene, and noted the specific RQs to be explored in this thesis, an

overall summary of the research goals is an exploration of what is lost in translation, i.e.

knowledge in the models that fails to be retrieved at the termination of the MT process.

At the end of Chapter 2 we will conclude that, in spite of proving more accurate, syntax-

aware phrases fail to be scored by the decoder as the most likely (highest probability)

translation. This knowledge is lost in the pipeline. Consequently, we seek to trace and

rescore translation hypotheses to minimize this loss in the two remaining core research

chapters (3 and 4). This sort of error analysis in turn leads to shedding light on some of

the black box processes13 in the MT pipeline and demonstrate why the MT system decides

upon a particular translation as the output.

Thus far, we have identified two avenues for research in the dominant framework of

PB-SMT: linguistically motivated knowledge representation, and using system error di-

agnosis and analysis of the PB-SMT modeling-optimization-decoding pipeline to exploit

this linguistic knowledge. We present the treebank-induced PB-SMT chunks as a case-

11 Okita (2012) also deals with the issue overfitting in SMT. However it focusses on the word alignment
stage of PB-SMT.

12 Treebank-aware constraints refer to limiting the non-linguistic phrase pairs by filtering out those phrase
pairs which do not adhere to linguistic boundaries introduced by the parallel treebanks.

13 Although the software system used in our experiments (Moses) is open-source and none of the pro-
cesses can be labeled black box in the technical sense, a majority of PB-SMT research, unlike the focus in
this thesis, tends to avoid modifying certain processes like phrase extraction and tuning and treat them as
black boxes.
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study for identifying sub-optimal performance of PB-SMT modules. In this way we hope

to trace the origin of deficiencies in the PB-SMT pipeline and minimize model errors

through optimization and reranking. To summarize, this thesis presents our research on

analysing errors in the PB-SMT system.

The remaining chapters of this thesis will seek to address the research questions

through the inclusion of background information, overviews of past approaches and a

series of experiments.

Chapter 2 In this chapter, we investigate the uniqueness and utility of linguistically

motivated phrase pairs induced from percolated dependency trees in a standard PB-SMT

system. After replicating the results of Hearne et al. (2008), we introduce the percolated

dependency-induced translation model and scale up the training data used in our exper-

iments by a factor of 13. Furthermore, we experiment with concatenating all possible

combinations of the four types of phrase pairs (STR, CON, DEP and PERC) giving rise

to 15 translation models with varying degrees of syntax-awareness. We also report our

analyses of the degree of overlap and contribution of each phrase pair type in decod-

ing. After presenting our results on employing several phrase pair combination and se-

lection strategies including confusion network-based system combination and all-option

candidate selection criteria, we conclude the chapter with the insight that the PB-SMT

modeling-optimisation-decoding pipeline does not always select the most accurate candi-

date translation as the most likely (highest scoring) translation. This addresses RQ1 and

RQ2.

Chapter 3 In this chapter, we explore the realm of model errors in PB-SMT by

identifying the rank of oracle translations in the n-best lists generated by the decoder. We

investigate rescoring the n-best lists to push the oracles up the ranks by reestimating the

weights of the features used by the PB-SMT decoder. We introduce two novel rescoring

methods. We experiment along several dimensions (two MT evaluation metrics used to

identify the oracle, four language directions, and seven n-best list sizes) giving rise to
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140 different MT systems. After conducting a range of contrastive analyses we conclude

with our recommendations for minimising model errors in specific language pairs. This

addresses RQ3.

Chapter 4 In this chapter, we extend the oracle-based training of the previous chap-

ter and rescore the n-best lists by introducing additional features in a reranking (post-

decoding) framework. Note that we distinguish between rescoring and reranking in that

rescoring implies using the same set of features as used in decoding, while reranking

implies introducing additional features. This addresses RQ4 and RQ5.

Chapter 5 In this chapter we summarise the contributions of this thesis and com-

plement it with a number of potential research directions in the near future.

1.1 Publications

The research presented in this dissertation is more of an analytical and diagnostic

study into the inner workings of a PB-SMT system. The novel concepts introduced in

this research (percolated dependencies in PB-SMT, sub-optimal performance in syntax-

aware PB-SMT, and oracle-based rescoring in PB-SMT) were published in several peer-

reviewed conference proceedings.

• Srivastava and Way (2009) introduces the concept of phrase pairs induced from

percolated dependencies as a unique and useful knowledge source for syntax-aware

PB-SMT (Machine Translation Summit 2009)

• Srivastava et al. (2009) extends the previous work and is a multi-author collabora-

tion demonstrating combination strategies for systems with multiple phrase extrac-

tion models and concluding that PB-SMT systems give sub-optimal performance

(Example-Based Machine Translation Workshop 2009)

• Srivastava et al. (2011) introduces our oracle-based rescoring strategies for training

in PB-SMT (European Association for Machine Translation Conference 2011).
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Chapter 2

Treebank-based Phrase Extraction

In this chapter, we will address the first two research questions (RQ1) and (RQ2) posed

in Chapter 1 by describing the extraction of phrase pairs from parallel treebanks anno-

tated with percolated dependencies and evaluating the incorporation of these linguisti-

cally motivated chunks into the PB-SMT system. We extend this parallel treebank-based

framework by introducing a novel annotation format called percolated dependencies

and investigate their incorporation into the PB-SMT pipeline with several new translation

models (cf. 2.5). As shown in Figure 2.1, this chapter focuses on alternative phrase

extraction methodologies in a PB-SMT system.

The research strands covered in this chapter include parallel treebank induced phrase

extraction, percolated dependencies, combining multiple translation models, and syntax-

based reordering.

2.1 Syntax-aware Models in SMT

Incorporation of linguistic knowledge into the phrase extraction process has shown mixed

results in recent years. For instance, Koehn et al. (2003), demonstrated that using syntax

to constrain their phrase-based system actually harmed translation quality. In contrast,

all of the following approaches have shown that augmenting the baseline string-based

translation model with syntax-aware word and phrase alignments causes translation per-
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Figure 2.1: Schematic diagram of the modules in a Phrase-based Statistical Machine
Translation System: Phrase Extraction.

formance to improve.

Groves and Way (2005) extract Example-based Machine Translation (EBMT) phrase

pairs by monolingually chunking both the source and target sides using closed-class

marker words (Green, 1979) and then aligning the resulting chunks using mutual infor-

mation techniques.

Tinsley et al. (2007) extract phrase pairs by obtaining phrase structure parses for both

the source and target sides using monolingual parsers and then aligning the subtrees using

a statistical tree aligner. Hearne et al. (2008) go a step further by building on the work of

Tinsley et al. (2007) and adding phrase pairs induced from dependency parse trees. Note

that all these approaches work on string-based translation models, i.e. syntactic knowl-

edge is merely used to extract linguistically motivated phrase pairs. The phrase translation

tables1 still contain unannotated translations of strings, just like in Moses (Koehn et al.,

2007).

As is clear from this description, virtually all this work was done at Dublin City Uni-

versity (DCU). There also exist a number of other approaches (Chiang, 2005; Quirk et al.,

2005; Galley et al., 2006) which have developed different models where the incorporation

of syntax has shown itself to be beneficial. However such models are not restricted to the

1 Phrase tables contain a list of source–target language phrase pairs with associated probabilities.
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string-based translation model, but fall under tree-based SMT, and are thus beyond the

scope of our research.

(a) (b)

the green witch ↔ la bruja verde
green witch ↔ bruja verde

the ↔ la
green ↔ verde
bruja ↔ witch

Figure 2.2: Example of (a) a parallel treebank entry and (b) the set of extracted phrases;
From Srivastava et al. (2009)

Figure 2.2 shows a constituency tree-aligned fragment from a parallel treebank and

the resulting surface-level phrase pairs or chunks extracted. This technique of parallel

treebank-induced phrase extraction has been used in a number of papers (Tinsley et al.,

2007; Hearne et al., 2008) including our own. In Section 2.2, we extend the experiments

of Hearne et al. (2008) by adding another syntax-aware phrase extraction methodology

in the parallel treebank framework, namely percolated dependencies (Magerman, 1995).

We also scale up the volume of the training data, and compare and contrast the resultant

phrase tables and models (cf. sections 2.5.2 and 2.5.3).

2.2 Parallel Treebank-based Phrase Extraction

The standard method of extracting phrase-pairs from parallel data involves using union

and intersection heuristics on both source-to-target and target-to-source word alignments

(Och and Ney, 2003), in the Moses system (Koehn et al., 2007). This string-based ex-

traction methodology gives rise to ‘non-linguistic’ chunk pairs, henceforth known as

STR(ing).

In this section, we seek to investigate the performance of the baseline Moses MT sys-

tem by changing one step only, namely the phrase extraction process (appearing as the
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black shaded box in Figure 2.1). Specifically, this entails using three sets of syntactically

motivated phrase pairs such as those extracted from node-aligned parallel treebanks. Tins-

ley et al. (2007) and Hearne et al. (2008) extracted phrase-pairs from constituency-aligned

and dependency-aligned data, giving rise to two types of linguistic chunk pairs: CON and

DEP respectively. Both these data sets were obtained by monolingual parsing of training

sentences, subtree-aligning the parsed trees, and extracting word and phrase alignments.

A prerequisite for this approach is the existence of constituency and dependency parsers

for both the source and target languages.

Hearne et al. (2008) demonstrated on a very small set of training data that combin-

ing string-based extraction (baseline Moses) with either of the syntax-induced phrase ex-

tractions resulted in improved translation accuracy with a general trend toward preferring

dependency-based over constituency-based phrases. However, there exist more robust and

accurate phrase structure parsers than dependency structure parsers for most languages in

NLP applications, which has led to alternate measures of automatically generating depen-

dencies from phrase structure parses (cf. Nivre (2006) : 129–131).

In this piece of work, we heuristically obtain dependency parses by using lexical head

information in constituency parse trees. While the head percolation tables themselves are

nothing new (details in the following section (2.3)), the use of phrase pairs induced from

them as a separate knowledge source in PB-SMT phrase tables is novel. This method

of annotating and subsequently aligning percolated dependency parses gives rise to an-

other set of aligned chunks: PERC. We then evaluate the uniqueness and utility of these

alignments against STR, CON, and DEP alignments, and combinations thereof. A sub-

stantial portion of this research was previously published in Srivastava and Way (2009)

and Srivastava et al. (2009).

2.3 Percolated Dependencies

Syntactic theory deals with how sentences are structured or how the words are arranged

in sentences (cf. van Valin Jr. (2001) : 1–5; 86–106; 110–142). There are two main ap-
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proaches to describing syntactic structure, namely constituency grammar2 (constituency

tree in the example below) and dependency grammar3 (dependency tree in the example

below).

Example of a sentence and its corresponding dependency and constituency tree:

Sentence It is the case of Alexander Nikitin .

Constituency Tree S

NP

PRP

It

VP

VBZ

is

NP

NP

DT

the

NN

case

PP

IN

of

NP

NNP

Alexander

NNP

Nikitin

.

.

Dependency Tree is

It case

the of

Nikitin

Alexander

.

2 Constituency grammar entails grouping words into units called constituents.
3 Dependency grammar entails classifying the words into head (dominant element) and its dependents.

18



It is possible to obtain a dependency parse for a sentence from its constituency parse by

exploiting lexicalized heads, i.e. head words of each phrase or constituent. In the absence

of this information, a head percolation table (hand-coded rules) is used to select the head

node in each constituent structure. For example, the syntactic head of a phrase (NP (DET

The) (NN box)) is the node (NN box). Head percolation tables were first introduced in

Magerman (1995) and implemented in Collins (1997).

Head percolation tables are so called because, to extract head-dependent information

from a constituency parsed treebank, the lexical items are percolated like features from

the heads to their parent projections. A head percolation table consists of hand-coded

rules identifying the head-child of each node. We implemented the algorithm described

in Xia (2001) to obtain head-dependent relations between words of a sentence. The head

percolation algorithm will output the head or governor for each word in the sentence. In

case the word is the head word of the sentence (e.g. is in the example above), it will be

assigned a default value as its head.

Dependency trees can also have labels, i.e. classifying the relationship between each

head and dependent word. For instance, the relationship between the dependent the and its

head word case is det, short for determiner. Note that the above example of a dependency

tree shows unlabelled dependencies which is what the output of the head percolation

algorithm resembles. In our work, DEP dependency trees are obtained from a dependency

parser (labelled dependencies) and the PERC dependency trees are obtained using the head

percolation algorithm on constituency trees (unlabelled dependencies).

In order to further illustrate the workings of the head percolation algorithm, Figure

2.3 shows a constituency tree for the sentence. The head percolation algorithm applies

the head percolation table to determine the head word for each word in the sentence and

percolates these up the trees. Figure 2.4 shows the same constituency tree with each node

subscripted with the head word of the corresponding subtree. For instance, the subtree PP

is subscripted with the preposition as to reflect the fact that the noun phrase a nonexecutive

director is dependent on the preposition as.
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In our approach to phrase extraction, we construct translation units or phrase pairs

from aligned source–target constituents (CON) and aligned source–target groupings of

a head word with its dependents (DEP, PERC). The idea is to segment a sentence into

meaningful syntactic units (syntax-aware phrase pairs) rather than any arbitrary sequence

(STR).

Producing phrases via a semi-automatic and language-independent process of mor-

phological and syntactic analysis may remove the need for compatible NLP tools per

language pair, which generalises the approach to language pairs where no such tools ex-

ist.

2.4 Data and Tools

We outline the MT system and data used in our experiments before describing the mul-

titude of techniques in Section 2.5 to evaluate the impact of phrase pairs extracted from

percolated dependencies.

CORPORA TRAIN DEV TEST
JOC (sentences) 7,723 400 599
EUROPARL (sentences) 100,000 1,889 2,000

Table 2.1: Statistics of French–English corpus used in treebanking experiments

We use two different datasets as shown in Table 2.1. We obtain results on a small par-

allel corpus of approximately 7,700 parallel sentences—the JOC English–French parallel

corpus (Chiao et al., 2006) [7,723 train + 400 dev + 599 test sentences]—and a larger set

of 100,000 parallel sentences extracted from the freely available Europarl corpus (Koehn,

2005) [100,000 train + 1,889 dev + 2,000 test sentences]. The JOC corpus contains ex-

cerpts from the Official Journal of the European Community and the Europarl corpus

contains parliamentary proceedings of the European Union. Both datasets fall under the

same domain. Experimenting on the JOC corpus allows us compare our results directly

with those of Hearne et al. (2008), while at the same time we successfully scale up their

work by almost 13 times in the larger experiment.
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Figure 2.5: Four types of phrase extraction applied to PB-SMT.

We also used an open source tree aligner (Zhechev, 2009) to obtain subtree-alignments

for the linguistic chunks CON, DEP, and PERC. The tree aligner works by performing a

greedy search on all possible alignments between the tree pair nodes and scores using lex-

ical probabilities to select the highest-scoring alignment hypothesis. Constituency parse

trees were obtained by using the Berkeley parser (Petrov et al., 2006) for both the French

and English sides, and dependency parse trees were obtained from the English and French

versions of the Syntex parser (Bourigault et al., 2005). The dependency structures were

converted into a bracketed format to enable use of the tree aligner. This is graphically

depicted in Figure 2.5.

We used GIZA++ (Och and Ney, 2003)for word alignment, SRILM (Stolcke, 2002)

for building a 5-gram language model, Minimum Error Rate Training (Och, 2003) for

tuning, and the Moses beam search decoder (Koehn et al., 2007) in each of our systems.

Thus the only difference between each system is in the phrase table used in the translation

model.

2.5 Experiments

2.5.1 Vanilla Merge Translation Tables

For the purposes of our experiments, we create 15 possible combinations of translation

tables from the four types of phrase extractions, namely STR, CON, DEP, and PERC. The

combination of two or more systems is carried out by merging the individual phrase ta-
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bles and re-estimating the phrase translation scores as defined in Moses. We label this

method of combination vanilla merge.4 For example, the translation table of the system

C+D+P is computed by concatenating the extracted phrase tables CON, DEP, and PERC

and then re-estimating the probabilities. Each of the 15 configurations were run on both

the JOC and Europarl datasets in the French–English translation direction. The results are

displayed in Tables 2.2 and 2.3 respectively. We evaluate the MT system performance us-

ing five evaluation metrics. These are BLEU (Papineni et al., 2002), NIST (Doddington,

2002), METEOR (Banerjee and Lavie, 2005), WER (Word Error Rate; (Niessen et al.,

2000)) and PER (Position-independent WER; (Leusch et al., 2003)). Note that statistical

significance tests on the different system performance for all experiments were computed

using bootstrap resampling methods on BLEU described in Koehn (2004). An improve-

ment in system performance at a confidence level above 95% (p-value = 0.05) is assumed

to be statistically significant. The bold-faced figures in Tables 2.2 and 2.3 indicate the

best -performing systems on a particular evaluation metric.

SYSTEM BLEU NIST MET WER PER
STR (S) 31.29 6.31 63.91 61.09 47.34
CON (C) 30.64 6.34 63.82 60.72 45.99
DEP (D) 30.75 6.31 64.12 61.34 46.77
PERC (P) 29.19 6.09 62.12 62.69 48.21
S + C 32.87 6.55 65.04 58.70 44.93
S + D 32.69 6.55 64.98 58.66 44.81
S + P 32.34 6.48 64.56 59.42 45.51
C + D 31.24 6.41 64.40 60.28 45.76
C + P 30.99 6.36 63.84 60.47 45.81
D + P 31.40 6.41 64.41 60.28 45.87
S + C + D 32.70 6.53 64.86 58.45 44.73
S + C + P 32.49 6.48 64.65 58.82 45.22
S + D + P 32.62 6.51 64.82 58.72 45.07
C + D + P 31.46 6.41 64.33 59.90 45.58
S+C+D+P 32.82 6.55 65.03 58.35 44.77

Table 2.2: Summary of the results on JOC test data

4 This is so named because it is the most direct way of combining multiple phrase translation tables
wherein each table is weighted equally with no bias.
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SYSTEM BLEU NIST MET WER PER
STR (S) 28.50 7.00 57.83 57.43 44.11
CON (C) 25.64 6.55 55.26 60.77 46.82
DEP (D) 25.24 6.59 54.65 60.73 46.51
PERC (P) 25.87 6.59 55.63 60.76 46.48
S + C 29.50 7.10 58.55 56.62 43.40
S + D 29.30 7.08 58.43 56.84 43.62
S + P 29.45 7.10 58.54 56.73 43.43
C + D 26.32 6.69 55.56 59.97 45.90
C + P 26.37 6.62 56.05 60.41 46.40
D + P 26.57 6.74 55.83 59.53 45.62
S + C + D 29.29 7.09 58.48 56.70 43.41
S + C + P 29.49 7.10 58.50 56.59 43.45
S + D + P 29.39 7.09 58.49 56.80 43.65
C + D + P 26.90 6.75 56.14 59.38 45.53
S+C+D+P 29.40 7.09 58.49 56.67 43.49

Table 2.3: Summary of the results on Europarl test data

Automatic System-level Evaluation

What is quite clear from analysing the results on both the JOC and Europarl corpora is

the very strong baseline5 performance of the STR system. For the pairwise comparison,

any system combination omitting STR-induced phrase pairs underperforms. Note that in

their experiments, both Groves and Way (2005) and Tinsley et al. (2007) acknowledge, as

we do here, that n-gram-induced phrase pairs are required for both improved translation

performance and coverage.

Working on the JOC corpus allowed us to directly compare our novel phrase induction

method against the work of Hearne et al. (2008). While we could not improve upon

their results (when substituting D with P in any system in Table 2.2) for the JOC corpus,

running experiments on the 13 times larger Europarl data set showed clear performance

gains (a relative increase of as high as 2.49% in BLEU when replacing D with P in any

system in Table 2.3) over their method when the PERC phrases were utilised. Even if

our method did not outperform theirs, our method would still be of use if no separate

dependency parser were available for either the source or target language or both.

5 The term strong refers to the significant difference in the evaluation scores of STR against those of the
syntax-aware systems CON, DEP and PERC.
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While the best-performing system combination on both tasks was where STR and

CON phrases were merged, for almost all metrics, the lowest WER rates were observed

when PERC chunks were included.

Automatic Sentence-level Evaluation

In addition, there are quite a few sentences (when computing sentence-level WER scores

for each of the four base systems, PERC ranked 2nd best with over 25% sentences on both

JOC and Europarl datasets, or 546 out of 2000 sentences) where PERC performs better

than any other system, as in (1) below.

(1) Source: La commission entend-elle garantir plus de transparence à cet égard?

Ref: Does the commission intend to seek more transparency in this area?

STR: Will the commission ensure that more than transparency in this respect?

CON: The commission will the commission ensure greater transparency in

this respect?

DEP: The commission will the commission ensure greater transparency in

this respect?

PERC: Does the commission intend to ensure greater transparency in this

regard?

Note that the propensity of the baseline STR model to omit the verb can be seen to

good effect here. Both CON and DEP phrases repeat the translation of the subject NP.

In contrast, the translation using PERC phrases is both fluent and accurate, despite not

mimicking exactly the reference translation and so is not considered a perfect translation

by BLEU.
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Manual Evaluation

The lexical differences between the outputs and the reference translation (ensure versus

seek and greater versus more in (1)) lead us to speculate that the gains from PERC are not

accurately reflected in the automatic evaluation scores. That is, perfectly acceptable target

sentences are output via PERC which are unreasonably penalised by the MT evaluation

metrics. Accordingly, we also performed a manual evaluation on a random selection

of 100 sentences from the Europarl testset. A human annotator6 was shown pairs of

sentences along with the source and reference translations and asked to grade whether

one system was better than the other or if they were of equal calibre. Table 2.4 shows the

results where a human evaluator judged the translation quality of 100 random sentences

between systems which contained and did not contain PERC chunks. The sum of each

row amounts to 100 indicating the total number of sentences judged.

System Equivalent 1st System 2nd System
Pairs Performance is Better is Better
C & P 46 27 27
D & P 35 30 35
S+C & S+P 60 27 13
S+C & P 28 57 15
S+C & S+C+P 37 37 26
S+D & S+P 58 24 18

Table 2.4: Summary of Pairwise System Comparison (Number of Sentences) by a Human
Annotator for select systems: Europarl data

To summarise, while PERC and CON systems performed better than each other on the

same number of sentences (27%), PERC performed 5% better than DEP. When compar-

ing systems S+C and S+C+P (where the automatic evaluation score differences were not

statistically significant), the former system was 11% better. However, there were a num-

ber of sentences (26%) in which PERC was responsible for an output’s superior quality,

although no pattern was immediately discernible.

This leads credence to our belief that the gains from PERC-enabled systems are not

accurately reflected in the automatic evaluation metrics (BLEU, NIST, METEOR, WER,

6 The annotator was a bilingual speaker of French and English.
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PER). We conducted a range of other tests in order to evaluate the uniqueness (degree of

difference from other phrase extractions) and utility (contribution to MT system perfor-

mance) of PERC chunks, as described in subsequent experiments.

2.5.2 Phrase pair Overlap

Phrase Common Uniq. Align. Uniq. Align.
Types to Both in 1st type in 2nd type
STR & CON 161,314 1,983,162 501,822
STR & DEP 144,834 1,999,642 438,698
STR & PERC 143,162 2,001,314 421,850
CON & DEP 399,220 263,916 184,312
CON & PERC 497,159 165,977 67,853
DEP & PERC 376,377 207,155 188,635

Table 2.5: Number of common and unique alignments (phrase pairs) for each method:
Europarl data

The total number of entries in each of the four phrase tables (Europarl data) are STR:

2,144,476, CON: 663,136, DEP: 583,532, and PERC: 565,012. We can see that the

CON t-table is just 31% of the size of the full STR t-table, with DEP just 27% and PERC

even smaller at just 26% of the size. By correlating the t-table7 sizes and the system

performance in Table 2.3 of the four base systems,8 it can be concluded that the much

smaller pure syntactic systems (CON, DEP, and PERC) give a high-quality yield.

Table 2.5 compares pairs of phrase tables and displays the overlap as well as unique

phrase pairs extracted under each of the four methods. It is interesting that despite the

huge size of the STR phrase table, there is very little overlap with any of the other methods;

the largest overlap with STR is using CON phrases, but this amounts to only 7.5% of the

STR phrase table derived via CON, and only 24% of the CON phrase table derived via

STR.

The largest overlap in pure numerical terms is between CON and PERC; 75% of the

CON phrase table is common with PERC, whereas 88% of the PERC phrase pairs are
7 T-table or translation table is another term for phrase table.
8 These are STR, CON, DEP and PERC systems.
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common with CON. Given that the PERC phrases are derived directly from the CON trees,

one might have expected these two to have the biggest intersection. However, surprisingly,

the output (translated sentences produced by CON and PERC systems) has a 30% overlap

only. Therefore, it seems that despite a huge overlap in the phrase table configurations,

the systems are different enough to produce different translations. We leave for future

work an investigation into any bias here.9 We also acknowledge the fact that different

parsers could jointly produce even more new phrase pairs.

Note that the overlap numbers (column 2 (Common to Both) from Table 2.5) refer to

identical phrase pairs in both phrase tables under consideration, i.e. overlap on both the

source language (French) and the target language (English) side. The remaining phrase

pairs in each of the two phrase tables under consideration (Unique Alignments in each

type: columns 3 and 4 from Table 2.5) are bound to have phrase pairs wherein there

is an overlap on the source language side but not on the target language side, and vice

versa. We perform a deeper investigation into such one-sided overlaps between the six

pairs of phrase tables and report in Table 2.6 on the number of phrase pairs10 which have

a common source language phrase aligned to a dissimilar target language phrase, i.e.

overlap on the source side only. This will demonstrate whether we are extending existing

phrases in one phrase table with additional translations from another phrase table.

Phrase Ext. Src. BLEU IMP. Ext. Src. BLEU IMP.
Types Alig. in 1st type Over 2nd Alig. in 2nd type Over 1st
STR & CON 143,317 3.86 211,203 1.0
STR & DEP 141,112 4.06 203,363 0.80
STR & PERC 132,607 3.58 189,189 0.95
CON & DEP 88,706 1.08 80,279 0.68
CON & PERC 67,747 0.50 50,102 0.73
DEP & PERC 73,052 0.70 66,873 1.33

Table 2.6: Number of extended phrase pairs (overlap on source side only) and BLEU

score improvements for combined system over single system for each method: Europarl
data

Table 2.6 gives the number of phrase pairs that overlap on the source language side in

9 Specific details are covered in Chapter 5, Section 5.3.1.
10 Note the phrase pairs in Table 2.6 (Extended Source Alignments in each type: columns 2 and 4) are a

subset of the phrase pairs in Table 2.5 (Unique Alignments in each type: columns 3 and 4), respectively.
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a pairwise comparison of the four types of phrase tables. The BLEU IMP. (columns 3 and

5) are displayed to verify the impact of the extended phrases in terms of BLEU evaluation

metric. As evident, there is a direct correlation between the number of unique phrase pairs

on the target side and the system level performance. This is as expected – the norm being

more data implies better performance.

For each of the four phrase extraction methods, the average number of phrase pairs per

sentence and the highest number of phrase pairs in a sentence were computed as follows:

JOC corpus– (STR: 35.37 (134), CON: 17.62 (71), DEP: 17.82 (71), PERC: 8.45 (53))

and Europarl corpus– (STR: 20.33 (45), CON: 10.82 (27), DEP: 10.67 (27), PERC: 10.66

(26)). Similar performance is seen between the three non-STR methods on Europarl,

whereas on JOC our PERC model produces fewer alignments. The smaller number of

phrase pair alignments might very well prove useful for systems with a smaller footprint

requiring smaller t-tables (Sanchez-Martinez and Way, 2009).

STR Phrase Pairs CON Phrase Pairs
la commission ↔ the commission la commission ↔ the commission

des ↔ of the le conseil ↔ the council
, mais ↔ , but ce rapport ↔ this report
, nous ↔ , we le rapport ↔ the report

, je ↔ , i en europe ↔ in europe
DEP Phrase Pairs PERC Phrase Pairs

la commission ↔ the commission la commission ↔ the commission
le conseil ↔ the council le conseil ↔ the council
ce rapport ↔ this report ce rapport ↔ this report
le rapport ↔ the report le rapport ↔ the report

l’ union ↔ the union l’ ue ↔ the eu

Figure 2.6: Top 5 phrase pairs (with target length constrained to 2 words) for each of the
four phrase extractions, namely STR, CON, DEP, and PERC: Europarl data

A small sample of the types of chunks produced by each of the four phrase extraction

methodologies in Figure 2.6 gives a clearer picture of how STR phrase pairs differ from

the linguistically motivated phrase pairs (CON, DEP, and PERC). For example, the STR

t-table contains a large number of non-linguistic sequences of words, often containing

punctuation marks.

Having investigated the differences between the chunking methods, the next, more
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important step is to evaluate whether these unique chunks are of use in PB-SMT.

2.5.3 Phrase Type Used in Decoding

The PB-SMT decoder Moses translates (as is the norm) a sentence by segmenting the

sentence into phrases and selecting their translation from the phrase table. Moses (Koehn

et al., 2007) can be run in ‘trace’ mode (-t switch) in order to investigate what particular

phrases are being selected to derive the translation at any particular time.

TABLE JOC EP
STR (S) 2090 3423
CON (C) 95 419
DEP (D) 111 402
PERC (P) 236 385
S & C 44 287
S & D 87 280
S & P 61 275
C & D 301 330
C & P 91 364
D & P 31 305
S & C & D 196 222
S & C & P 73 259
S & D & P 8 220
C & D & P 780 322
ALL 1261 238
NONE 656 4017

Table 2.7: Analysis of which phrases the decoder uses in decoding the test data, when
trained on the S+C+D+P translation model

In Table 2.2, we demonstrated that all four sets of phrase pairs could be combined

in one phrase table in what we called the ‘S+C+D+P’ system. In order to translate the

Europarl test set of 2,000 sentences, 11,748 phrases were found to be of use. These

comprised 5204 STR phrases (of which 3423 were unique, i.e. not produced by any of

the other three phrase tables), 2441 CON (419), 2319 DEP (402), and 2368 PERC (385).

When it came to a pairwise comparison, the biggest overlap was between CON and PERC.

As with our finding regarding Table 2.5, we will investigate in further work whether there

was any bias between these two phrase induction methods. In the case of the JOC corpus,
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for a test set of 599 sentences, 6,121 phrases were found to be of use. These comprised

3820 STR (2090 unique), 2841 CON (95), 2775 DEP (111), and 2541 PERC (236). Note,

however, that for the JOC corpus, we found the biggest overlap to be between the CON

and DEP phrase tables. As far as triples are concerned, by far the greatest overlap was

between CON, DEP and PERC, with an intersection of 780 phrase pairs (the next nearest

was just 196). Overall, 1261 phrase pairs were found by each of the four methods. The

details for both corpora can be found in Table 2.7.

In another experiment (Section 2.5.5), we extract each of these resources as separate

phrase tables in the log-linear framework, as it should be the case that where a set of

phrase pairs has been verified by all four methods, these can be considered to be of high

quality, and worthy of a large weight in the combination of translation resources.

2.5.4 System Combination

An alternative to combining the phrase tables (either directly or via some prioritised

weighting) is to use Minimum Bayes Risk and Confusion Network decoding (MBR-CN

framework; (Du et al., 2009)) to combine phrase pairs at the system level (after decoding)

rather than at the phrase table level (during training). This was evaluated by combining

the four base systems – STR, CON, DEP, and PERC – as well as performing a system

combination on the entire set of 15 systems. These results were published in Srivastava

et al. (2009).

System BLEU NIST METEOR
MBR (4 systems) 0.2952 6.85 0.5784
CN (4 systems) 0.3070 7.06 0.5852
MBR (15 systems) 0.3260 7.32 0.6050
CN (15 systems) 0.3251 7.33 0.6039

Table 2.8: Results of MBR-CN system combination on the systems in in Table 2.2:
Europarl data

The results of these experiments are shown in Table 2.8. The results demonstrate
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that, when combining only the four systems (against the STR, the best-performing system

in this sub-group), there is a 7.16% relative improvement in BLEU score. Furthermore,

when all 15 systems are passed through the Confusion Network (row 4 in Table 2.8), we

see a 12.3% relative improvement in BLEU score. The improvements are reflected across

all evaluation metrics. We attribute these gains to the fact that the translation output pro-

duced by the CON and PERC systems (which had the biggest overlap in their phrase pairs:

cf. Section 2.5.2) has a mere 30% overlap (i.e. only 30% of the translations are identical).

Therefore, it again seems that despite a huge overlap in the phrase table configurations, the

systems are different enough to produce different translations. Consequently, the diver-

gences between the phrase tables produced by the various phrase segmentation strategies

can be successfully exploited using a system combination framework.

2.5.5 Multiple Translation Tables

In using multiple knowledge sources (STR, CON, DEP, PERC), so far we have used a sin-

gle translation table while decoding. The different types of phrase pairs were all merged

into one, with their relative frequencies recalculated. The drawback to this vanilla merging

is that if induced by only one of the extraction methodologies, correct phrase alignments

could be assigned a lower probability than incorrect alignments occurring in all extraction

methodologies.

SYSTEM BLEU NIST METEOR WER PER
BASES 26.43 6.66 55.63 60.16 46.57
BASEC 23.27 6.24 53.38 63.56 49.08
BASED 22.88 6.23 52.99 63.81 49.06
BASEP 23.13 6.25 53.14 63.58 48.95
BASEPS 26.75 6.73 55.99 59.65 46.11
ALLPS 22.66 6.15 52.86 64.13 49.50
ANYPS 26.65 6.72 55.88 59.69 46.21
BASEPCDS 26.60 6.72 55.98 59.86 46.26
ALLPCDS 21.11 5.92 51.50 65.86 50.91
ANYPCDS 26.58 6.66 55.65 59.97 46.53

Table 2.9: Summary of the results on multiple translation tables: Europarl data
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One way to overcome this is not to merge but consider each knowledge source sepa-

rately as a stand-alone translation table. We conducted experiments (shown in Table 2.9)

on two techniques of using multiple translation tables: ALL and ANY. Under the ANY

setting, the phrase pair can be present in any of the t-tables. However, the order in which

the decoder views each t-table is determined by the user. Therefore, ANYPS is different

from the configuration ANYSP. Under the ALL setting, a phrase pair must be present in

and scored by all the t-tables in order to be selected by the decoder. Hence, performance

under the ALL combination is inferior to that under ANY.

Both configurations were compared against the baseline system in two scenarios: (1)

Using two translation tables (STR and PERC); (2) Using four translation tables (STR,

CON, DEP, and PERC). The multiple translation table strategy did not help as it was ei-

ther worse or equal to the performance by a system using vanilla combination.

2.5.6 Other Decoder Configurations

Given an input string of words to translate, a number of phrase translations could be

applied. Each such applicable phrase translation is called a translation option in stan-

dard SMT literature. We experimented with the method used by the decoder to select the

translation options from a given phrase table. None yielded any gains. We used Minimum

Bayes Risk (MBR) to determine the best translation instead of log-linear score compu-

tation in the baseline. Letting the decoder see all translation options (ALL-OPTS) rather

than a fixed 20 options per phrase (standard setting in BASELINE) did not help either. The

results for the S+C+D+P system are shown in Table 2.10. Most of these experiments ei-

ther gave a lower system performance or a performance on a par with the baseline system.

SYSTEM BLEU NIST METEOR WER PER
BASELINE 26.60 6.72 55.98 59.86 46.26
MBR-SCORE 26.56 6.70 56.13 59.91 46.14
ALL-OPTS 26.51 6.71 55.91 59.90 46.24

Table 2.10: Summary of the results on using MBR and ALL-OPTS on the SCDP system:
Europarl data
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2.5.7 Reordering Tables

So far we have only used parallel treebank-induced chunks in the phrase table, and not

the reordering table. The reordering table retained the Moses baseline (STR) orientations

even in systems which did not contain STR chunks in the phrase table. Theoretically, it

is good practice for both the phrase and the reordering tables to contain the same phrase

pairs. This led us to create reordering tables for phrase pairs induced from parallel tree-

banks. However, somewhat surprisingly, this modification proved to be yet another in-

stance where we were not able to outperform the baseline. All systems in Table 2.11 were

tested on STR-based reordering tables (Base) as well as reordering tables containing only

syntactic phrases in the phrase table (Self).

In order to generate reordering tables for phrase pairs induced from parallel treebanks,

the syntactic phrases were rendered into the same format as their non-syntactic counter-

part. This implies generating a lexical weighting, i.e. a word alignment between source-

language and target-language phrase pairs. Thus each phrase-pair extracted from the parse

trees has its word alignment (source-language and target-language word mappings) gen-

erated. If a word alignment cannot be found the phrase pair is rejected.11 This technique

ensures that all systems are compatible and all phrase entries considered are in the orien-

tation model. This also implies that the number of phrase pairs collected for translation

and orientation (reordering) tables is often less than the initial number of phrase pairs ex-

tracted from parse trees. Thus all phrase entries considered are in the orientation model.

SYSTEM BLEU NIST METEOR WER PER
CONBase 23.27 6.24 53.38 63.56 49.08
CONSelf 22.78 6.13 51.86 64.60 50.55
DEPBase 22.88 6.23 52.99 63.81 49.06
DEPSelf 22.24 6.00 50.95 65.19 51.46
PERCBase 23.13 6.25 53.14 63.58 48.95
PERCSelf 22.50 6.10 51.58 64.59 50.69
SCBase 26.70 6.72 55.88 59.76 46.23
SCSelf 26.70 6.69 55.49 60.05 46.53

Table 2.11: Summary of the results on creating reordering tables from phrases contained
in the phrase table: Europarl data

11 Note this same technique is used to create the translation tables.
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It is apparent that the orientation models learnt from baseline phrases are extremely

important to system performance. This once again reinforces our notion that syntax-based

phrases can augment the performance of a string-based system, but not replace it alto-

gether. Therefore, the differences between the reodering models of the S+C system (last

two rows in Table 2.11) are considerably less than in stand-alone syntax-based systems

(Base and Self configurations of CON, DEP, and PERC).

Perhaps the distance-based reordering model is not sufficient to take advantage of re-

ordering information stored in syntactic phrases. One way to exploit syntactic reordering

models would be to implement and use hierarchical reordering models in the PB-SMT

framework, as shown in Galley and Manning (2008). At the time of this work, this model

implementation12 was not yet available. This is again outside the scope of our work as it

implies using tree-based SMT models.

2.5.8 Oracles amongst SCDP

In order to address our second research question stating whether the PB-SMT system is

able to optimally exploit linguistically motivated phrase pairs or the PB-SMT pipeline is

flawed, we make some general observations on the afore-described experiments.

In Section 2.5.6 the failure of ALL-OPTS model to outperform the baseline system

demonstrates that a system which takes into account all the translation options (and is

therefore very time-consuming) instead of performing a non-exhaustive search, still fails

the access translation options or phrase pairs which are linguistically motivated and hence

more accurate.

In Section 2.5.1, we observe that accuracy is lost in the vanilla merge combining

models, that is the performance of all four phrase extractions merged together (SCDP)

is worse than when using just two of them (SC). An additional experiment is performed

which shows that the system SCDP is worse than the system obtained by selecting the

translation amongst S, C, D, P closest to the reference (has the best sentence-level score).

This is similar to selecting an oracle translation amongst 4-best lists as shall be described

12 The hierarchical reordering model was implemented in Moses in 2010.

36



in the next chapter.

This will help support two claims: (1) Different phrase extractions do not merge well

in the decoder when used in combination implying that the PB-SMT system is flawed,

and (2) Significant redesigning (reranking either post or during decoding) is required

to profitably exploit multiple knowledge sources. Moreover, the SCDP table contains

combined information from S, C, D, and P phrase tables and hence should not give sub-

optimal performance because it has access to all the phrase pairs. This implies the phrase

pairs are scored erroneously and must be rescored.

2.6 Conclusions

While producing smaller translation models and believed to contain more useful (syntax-

aware) phrases than the standard string-based extraction, the syntax-based extractions

may perform worse than the PB-SMT string-based baseline, especially as the amount of

training data increases (cf. Zollmann et al. (2008)). Lopez (2009) argues that due to

the lack of systematicity in MT system development, it is extremely difficult to compare

systems purporting to be of different types, and nigh on impossible to pinpoint exactly

to which component any gains in performance might accurately be attributed. However,

it has been observed by many researchers that rather than replacing one with the other,

combining both types of induced phrases into one translation model can significantly

improve translation accuracy. Thus we can supplement SMT phrases with syntax-aware

phrases.

Most system development today uses one particular approach to generate phrase pairs

for use in translation, namely that of Koehn et al. (2003) (or perhaps more accurately,

using the word- and phrase-alignment scripts in Moses (Koehn et al., 2007)). However,

some researchers have pointed out that system performance can be increased when chunks

induced by other methods (EBMT (Groves and Way, 2005); constituency parsers (Tinsley

et al., 2007); dependency parsers (Hearne et al., 2008); percolated dependencies (Srivas-

tava and Way, 2009)) are added to the SMT phrase table.

37



Figure 2.7: Bar graph
to show that adding PERC

chunks (red bar) to any
system (blue bar) generally
boosts the BLEU score:
Europarl data. These systems
are also reviewed in Table
2.3.

Figure 2.8: Bar graph
to show that adding PERC

chunks (red bar) to any
system (blue bar) generally
boosts the NIST score: Eu-
roparl data. These systems
are also reviewed in Table
2.3.

The general point is the following: adherence to one approach may lead to sub-optimal

system performance; if any one phrase pair induced by some other method proves to be

useful, then ignoring other approaches will cause translation performance to deteriorate,

even when the data size is increased (Srivastava and Way, 2009).

Accordingly, in this chapter we investigated whether phrase pairs induced via head

percolation (Magerman, 1995) might prove useful in PB-SMT. In a number of experi-

ments, we showed that the number of chunks, and their content, was different for each

of the four methods: STR, CON, DEP, and PERC. Furthermore, we showed that system

performance improved significantly when PERC phrases were added to the phrase table

of any other system. Figure 2.7 shows that adding PERC chunks to any system shows a

general trend towards boosting scores for BLEU. While we do not include similar graphs

for the other automatic evaluation metrics, this tendency is confirmed across all evaluation

metrics used in our experiments for both corpora. Figures 2.8, 2.9, 2.10, and 2.11 show

the same for NIST, METEOR, WER, and PER scores respectively.

The utility of percolated dependencies in PB-SMT was validated on two tasks for
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Figure 2.9: Bar graph
to show that adding PERC

chunks (red bar) to any
system (blue bar) generally
boosts the METEOR score:
Europarl data. These systems
are also reviewed in Table
2.3.

Figure 2.10: Bar graph
to show that adding PERC

chunks (red bar) to any
system (blue bar) generally
boosts the WER score (dis-
played as accuracy scores for
uniformity with other met-
rics): Europarl data. These
systems are also reviewed in
Table 2.3.

Figure 2.11: Bar graph
to show that adding PERC

chunks (red bar) to any
system (blue bar) generally
boosts the PER score (dis-
played as accuracy scores for
uniformity with other met-
rics): Europarl data. These
systems are also reviewed in
Table 2.3.
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French–English: a small (JOC) and a larger (Europarl) dataset. Working on the JOC

corpus allowed us to directly compare our novel phrase induction method against the work

of Hearne et al. (2008). While we could not improve upon their results for the JOC corpus,

running experiments on the far larger Europarl data set showed clear performance gains

over their method (dependencies using a parser) when the PERC phrases were utilised.

In any case, our method would still be useful in language pairs for which no separate

dependency parser was available.

It was also discovered through automatic evaluation measures that the S+C system

gave the best performance. However, lack of statistical significance in the results and

manual evaluation leads us to believe that PERC is useful enough to warrant further inves-

tigation. Therefore, percolated dependencies appear to be a useful knowledge source for

PB-SMT.

2.7 Summary

In this chapter we observed that our syntax-aware models do not show consistent perfor-

mance in automatic evaluation. However, a qualitative analysis leads us to believe that

good phrase pairs fail to be selected by the decoder as the optimum translation.

After carrying out experiments on several additional configurations of the decoder,

system combination, and the reordering models, we conclude that we have exhausted

most approaches to utilize syntax-aware phrases. Instead, we need to conduct a diag-

nostic analysis of the PB-SMT decoding pipeline to trace how the syntax-aware phrases

are picked up or dropped by the decoder. We put forth a new hypothesis: the PB-SMT

modeling-optimization-decoding pipeline is flawed. This leads to our next area of re-

search: oracle-based training covered in Chapter 3.
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Chapter 3

Oracle-based System Diagnosis

A Statistical Machine Translation (SMT) decoder generates an n-best list of candidate

translations for each sentence. The decoding task for the PB-SMT models considered in

this thesis has been shown to be NP-hard (Knight, 1999). This exponential complexity

of the search space implies that the decoder performs a non-exhaustive search such as

the heuristic beam search1 to find the best possible translation for a given input leading

to a number of system errors namely search errors, model errors, and induction errors

(Germann et al., 2004; Auli et al., 2009). Model errors occur when the highest-scoring

translation according to the model (1-best) is not the most accurate translation to be gen-

erated as measured by its similarity to the human reference translation (an oracle).

In the last chapter, we concluded that the translation models composed from multiple

knowledge sources (STR, CON, DEP, PERC) give sub-optimal performance. For exam-

ple, it was observed that the combined system S+C+D+P scored 26.60 BLEU points as

opposed to 28.77 BLEU points scored by a system that merely selects the best translation

from amongst individual outputs of S, C, D, and P systems (cf. Section 2.5.8). This leads

us to believe that the decoder fails to select more accurate phrase pairs in the construction

of the optimum translation, as a result of the model errors.

Accordingly, in this chapter we analyse these model errors, investigate the paramet-

ric differences between the 1-best and the oracle translation and attempt to try and close

1 It is true that even if beam search is not used, there may still be system errors.
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this gap by proposing two rescoring strategies to push the oracle up the n-best list. We

conduct a range of evaluations across several dimensions: n-best list sizes, language direc-

tions, and evaluation metrics. We observe modest improvements over the baseline SMT

system trained on Europarl corpora (Koehn, 2005). We present a detailed analysis of the

oracle rankings to determine the source of model errors, which in turn has the potential to

improve the performance of the baseline (STR) system as well as syntax-aware models.

After an introduction to model errors in Section 3.1 and a brief overview of related

approaches in Section 3.2, we present in Section 3.3 the baseline SMT system, corpora,

and related tools used in all our experiments along with an overview of the parameters or

features employed in the baseline system. We then describe in Section 3.4 a method to

identify the oracles in the n-best lists, and our analytical approach to determine whether

the basic features (used in decoding) help or hurt the oracle rankings. Section 3.5 outlines

our algorithm on modifying the feature weights to help push the oracles up the n-best

lists followed by detailed system-level evaluation in Section 3.6. In Sections 3.7 through

3.10, we report on additional analytical experiments followed by a contrastive analysis

across all language directions and n-best list sizes in Section 3.11. We conclude with our

remarks on how to obtain the best of the available n translations from the MT system

together with avenues for further research on incorporating our methods in mainstream

reranking paradigms explored in the following chapter. Figure 3.1 is a reproduction of

Figure 1.4 showing a schematic diagram of all the modules of a PB-SMT system. It

highlights the tuning module (parameter estimation) as the main research focus of this

chapter.

3.1 Model Errors in PB-SMT

Phrase-based SMT (PB-SMT) systems typically learn translation, reordering, and target-

language features from a large number of parallel sentences. Such features are then com-

bined in a log-linear model (Och and Ney, 2002), the coefficients of which are optimized

on an objective function measuring translation quality such as the BLEU metric (Papineni
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Figure 3.1: Schematic diagram of the modules in a Phrase-based Statistical Machine
Translation System: Tuning or Parameter Estimation.

et al., 2002), using Minimum Error Rate Training (MERT) as described in Och (2003).

An SMT decoder non-exhaustively explores the exponential search space of transla-

tions for each source sentence, scoring each hypothesis using the formula of Och and Ney

(2002) in (3.1):

score(e|f) =
M∑
i=1

λihi(e, f) (3.1)

The variable h denotes each of the M features (probabilities of target language phrases

(e) given source language phrases (f) learned from language models, translation models,

etc.) and λ denotes the associated feature weight (coefficient).

The candidate translation (in the n-best list) having the highest decoder score is deemed

to be the best translation (1-best) according to the model. Automatic evaluation metrics

measuring similarity to human reference translations can be modified to generate a score

on the sentence level instead of at system level. These scores can, in turn, be used to

determine the quality or goodness of a translation. The candidate having the highest

sentence-level evaluation score is deemed to be the most accurate translation (oracle).

In practice, it has been found (Hasan et al., 2007) that the n-best list rankings can

be fairly poor (i.e. low proportion of oracles in rank 1), and the oracle translations (the

candidates closest to a reference translation as measured by automatic evaluation metrics)
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occur much lower in the list. This is demonstrated in Figure 3.2. Model errors (Germann

et al., 2004) occur when the optimum translation (1-best) is not equivalent to the most

accurate translation (oracle). This can be formulated as Equation 3.2. The aim of this part

of the thesis is to investigate these model errors by quantifying the differences between

the 1-best and the oracle translations, and to evaluate the impact of the features used in

decoding (following parameter estimation via MERT) on the positioning of oracles in the

n-best list.

MODEL ERROR =

 0 : rankoracle = 1

1 : rankoracle 6= 1
(3.2)

Figure 3.2: Number of model errors (as a percentage) with varying n-best list sizes for
the devset of French→English WMT 2009 system

.

3.2 Approaches to Minimizing Model Errors

One way to minimize the problem of low ranking of higher quality translation candidates

in the n-best lists has been to extract additional features from the n-best lists and rescore

them discriminatively. These reranking approaches differ mainly in the type of features

used for reranking and the training algorithm used to determine the weights needed to

combine these features.

Och et al. (2004) employed nearly 450 syntactic features to rerank 1000-best transla-

tion candidates using MERT optimized on BLEU. These same features were then trained
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in a discriminative reranking model by replacing MERT with a perceptron-like splitting

algorithm and ordinal regression with an uneven margin algorithm (Shen et al., 2004).

Unlike the aforementioned approaches, Yamada and Muslea (2009) trained a perceptron-

based classifier on millions of features extracted from shorter n-best lists of size 200 of

the entire training set for reranking, and computed BLEU on a sentence level rather than

at the corpus level as we do here.

Hasan et al. (2007) observed that even after the reference translations were included in

the n-best list, less than 25% of the references were actually ranked as the best hypotheses

in their reranked system. They concluded that better reranking models were required to

discriminate more accurately amongst the n-best lists. In this chapter we take a step in

that direction by trying to observe the impact of existing features (used in MERT and

decoding) on the positioning of oracle-best hypotheses in the n-best lists to motivate new

features for a reranking model.

Our work is most related to Duh and Kirchhoff (2008) in that they too devise an algo-

rithm to recompute the feature weights tuned in MERT. However, they focus on iteratively

training the weights of additional reranking features to move towards a non-linear model,

using a relatively small dataset. While most papers cited above deal with feature-based

reranking (and as such are not directly related to our proposed approach), they constitute

a firm foundation and serve as a motivation for our oracle-based study. We focus on the

features used in decoding itself and recompute their weights to determine the role of these

features in moving oracles up (and down) the n-best list.

3.3 Baseline System: Data & Tools

CATEGORY TRAIN DEV TEST
DATASET Europarlv3 test2006 test2008
SENTENCES 1,050,398 2,000 2,000

Table 3.1: Statistics of French→English corpus used in oracle-based training experiments
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The set of parallel sentences for all our experiments is extracted from the WMT 20092

Europarl (Koehn, 2005) dataset for the language pair French→English after filtering out

sentences longer than 40 words (1,050,398 sentences for training and 2,000 sentences

each for development (test2006 dataset) and testing (test2008 dataset)).

We also experiment on 3 additional language pairs in order to validate the anal-

yses of our oracle-based system diagnosis: English→French, Spanish→English, and

German→English. The training sentences for all three language pairs are extracted from

the same WMT 2009 dataset as that used in the French→English language pair. Note that

the devset and testset remain the same.

Note that French→English dataset is our primary translation pair throughout our the-

sis.3 The other translation pairs are used for the purpose of vetting our rescoring strategies

and evaluating whether the language pair has any bearing on the failure or success of our

methods.

CATEGORY TRAIN DEV TEST
DATASET Europarlv3 test2006 test2008
SENTENCES 1,050,398 2,000 2,000

Table 3.2: Statistics of English→French corpus used in oracle-based training experiments

CATEGORY TRAIN DEV TEST
DATASET Europarlv3 test2006 test2008
SENTENCES 1,083,773 2,000 2,000

Table 3.3: Statistics of Spanish→English corpus used in oracle-based training experi-
ments

CATEGORY TRAIN DEV TEST
DATASET Europarlv3 test2006 test2008
SENTENCES 1,118,399 2,000 2,000

Table 3.4: Statistics of German→English corpus used in oracle-based training experi-
ments

We train a 5-gram language model using SRILM (Stolcke, 2002)4 with Kneser-Ney
2http://www.statmt.org/wmt09/
3In Chapter 2, we only used a subset (100,000 sentence pairs) of the French→English Europarl dataset.
4 http://www-speech.sri.com/projects/srilm/
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smoothing (Kneser and Ney, 1995). We train the translation model using GIZA++ (Och

and Ney, 2003)5 for word alignment in both directions followed by phrase-pair extraction

using the grow-diag-final heuristic described in Koehn et al. (2003). The reordering model

is configured with a distance-based reordering and monotone-swap-discontinuous orien-

tation conditioned on both the source and target languages with respect to the previous

and next phrases.

3.3.1 Baseline Features

LABEL DESCRIPTION
d1 Distortion: distance-based reordering
d2 Distortion: monotone previous
d3 Distortion: swap previous
d4 Distortion: discontinuous previous
d5 Distortion: monotone following
d6 Distortion: swap following
d7 Distortion: discontinuous following
lm Language Model feature
w Word penalty feature

tm1 Translation: Phrase Translation (s | t)
tm2 Translation: Lexical Weighting (s | t)
tm3 Translation: Phrase Translation (t | s)
tm4 Translation: Lexical Weighting (t | s)
tm5 Translation: Phrase penalty feature

Table 3.5: Features used in the Moses PB-SMT Decoder

We use the Moses (Koehn et al., 2007) phrase-based beam-search decoder, setting the

stack size to 500 and the distortion limit to 6, and switching on the n-best-list option.

Thus, this baseline model uses 15 features (see Table 3.5), namely 7 distortion features

(d1 through d7), 1 language model feature (lm), 5 translation model features (tm1 through

tm5), 1 word penalty (w), and 1 unknown word penalty feature. Note that the unknown

word feature which penalises for any source-language word absent from the phrase table

applies uniformly to all the candidate translations of a sentence, and is therefore dropped

from consideration in our experiments.

5 http://code.google.com/p/giza-pp/
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3.4 Oracle-based Training

The central thrust of our oracle-based training is the study of the position of oracle trans-

lations in the n-best lists and an analysis of sentences where the most likely translation

(1-best) does not match with the best-quality translation (oracle). In this section, we de-

scribe the selection procedure for our oracles followed by an overview of the baseline

system settings used in all our experiments, the rescoring strategies, and a filtering strat-

egy to increase oracle confidence.

3.4.1 N-best Lists and Oracles

The oracle sentence is selected by picking the candidate translation from an n-best list

which is closest to a given reference translation, as measured by an automatic evaluation

metric. We chose BLEU for our experiments, as despite shortcomings such as those

pointed out by Callison-Burch et al. (2006), it remains the most popular metric, and is

most often used in MERT for optimizing the feature weights. Our rescoring experiments

focus heavily on these weights. Note that BLEU as defined in Papineni et al. (2002)

is a geometric mean of precision n-grams (usually 4), and was not designed to work at

the sentence-level, as is our requirement for the oracle selection. Several sentence-level

implementations known as smoothed BLEU have been proposed (Lin and Och, 2004;

Liang et al., 2006). We use the one proposed in the latter, as shown in (3.3).

SBLEU =
4∑

i=1

BLEUi(cand, ref)

24−i+1
(3.3)

Figure 3.3 shows a sample of 10 candidate English translations from an n-best list

for a French sentence. The first column gives the relative rank number of each entry

corresponding to its decoder cost. The second column gives the respective decoder cost

(log-linear score) used to rank an n-best list and the fourth column displays the sBLEU

(sentence-level BLEU score) for each candidate translation. The candidate in the first

position in the figure is the 1-best according to the decoder. The 7th-ranked sentence is

most similar to the reference translation and hence awarded the highest sBLEU score.
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Rank Decoder Cost Sentence sBLEU
1 -5.32 is there not here two weights , two measures ? 0.0188
2 -5.50 is there not here double standards ? 0.147
3 -5.66 are there not here two weights , two measures ? 0.0125
4 -6.06 is there not double here ? 0.025
5 -6.15 is there not here double ? 0.025
6 -6.17 is it not here two sets of standards ? 0.0677
7 -6.28 is there not a case of double standards here ? 0.563
8 -6.37 is there not here two weights and two yardsticks ? 0.0188
9 -6.38 is there no double here ? 0.0190
10 -6.82 is there not here a case of double standards ? 0.563

Figure 3.3: Sample from an n-best list of translation candidates for the input sentence N’y a-t-il
pas ici deux poids, deux mesures?, whose reference translation is: Is this not a case of double
standards?

This sentence is the oracle translation for the given French sentence. Note that there

may be ties where the oracle is concerned (the 7th- and the 10th-ranked sentences have

the same sBLEU score). Such issues are discussed and dealt with in Section 3.9. Oracle-

best hypotheses are a good indicator of what could be achieved if our MT models were

perfect, i.e. discriminated properly between good and bad hypotheses.

SYSTEM BLEU NIST METEOR WER PER
BASELINE 32.17 7.70 61.34 57.10 40.96
ORACLEB100 34.90 8.08 63.65 54.78 38.52
ORACLEM100 34.32 8.02 63.63 55.13 38.88
ORACLEB250 35.75 8.19 64.22 54.09 37.93
ORACLEM250 34.99 8.11 64.20 54.56 38.37
ORACLEB500 36.45 8.28 64.70 53.63 37.44
ORACLEM500 35.57 8.19 64.74 54.11 37.87
ORACLEB750 36.80 8.32 64.95 53.32 37.17
ORACLEM750 35.81 8.22 65.01 53.88 37.62
ORACLEB1000 37.05 8.35 65.14 53.08 36.97
ORACLEM1000 36.01 8.25 65.18 53.69 37.49
ORACLEB2500 37.97 8.47 65.83 52.38 36.31
ORACLEM2500 36.73 8.34 65.89 53.12 36.84
ORACLEB5000 38.75 8.56 66.32 51.84 35.81
ORACLEM5000 37.19 8.41 66.36 52.71 36.46

Table 3.6: Summary of the French→English oracle-best systems for 100-best, 250-best,
500-best, 750-best, 1000-best, 2500-best, and 5000-best lists: devset
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3.4.2 Recalculating Lambdas

In contrast to the main reranking approaches in the literature 3.2, this work analyzes the

14 remaining baseline features (outlined in Table 3.5) optimized with MERT and used

by the decoder to generate an initial n-best list of candidates. No new features are added,

the existing feature values are not modified, and we only alter the feature weights used to

combine the individual features in a log-linear model. We are interested in observing the

influence of each of these baseline features on the position of oracles in the n-best lists.

This is achieved by comparing a specific feature value for a 1-best translation against its

oracle. These findings are then used in a novel way to recompute the lambdas using one

of the following two formulae.

• RESCsum: For each of the 14 features, the new weight factors in the difference

between the mean feature value of oracles and the mean feature value of the 1-

bests.

λnew = λold + (f̄oracle − f̄1best) (3.4)

• RESCprod: For each of the 14 features, the new weight factors in the ratio of the

mean feature value of oracles to the mean feature value of the 1-bests.

λnew = λold ∗
f̄oracle
f̄1best

(3.5)

Both formulae aim to close the gap between the feature values of oracle translations

and those of the baseline 1-best translations. The recalculated weights are then used to

rescore the n-best lists, as described in Section 3.5.

Accordingly, our experiments are essentially focused on recomputing the original

set of feature weights rather than the feature values. We reiterate that the huge mis-

match between oracles and 1-best translations implies that MERT is sub-optimal (He and

Way, 2009) despite being tuned on translation quality measures such as (document-level)
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BLEU. In recomputing weights using oracle translations, the system tries to learn trans-

lation hypotheses which are closest to the reference. These computations and rescorings

are learned on the development set (devset), and then carried over to rescoring the n-best

lists of the testset (blind dataset).

Figure 3.4: Four types of rescoring strategies used to push oracles up the n-best lists.

.

Figure 3.4 illustrates the resulting four types of rescoring systems (RESCOREDBPROD,

RESCOREDMPROD, RESCOREDBSUM , and RESCOREDMSUM ) arising out of the two rescor-

ing strategies (RESCprod and RESCsum) and two types of oracles (BLEU-oracles and

METEOR-oracles).

3.5 Experimental Design

Our analyses of the differences between the 1-best and the oracle translations follows. We

perform all our diagnostic experiments on 7 different n-best list sizes across four language

directions. Before embarking on the evaluation in Section 3.6, we briefly outline our

experimental scheme below followed by a discussion on the distribution of oracles in a

n-best list to further elucidate the task at hand.

We extract the 14 baseline features for sentences from the devset of 2000 sentences

using the WMT test2006 dataset. For each of these sentences, we compare the 1-best
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(a) 100-best (b) 250-best

Figure 3.5: Plotting oracle rank (logarithmic scale) against frequency (logarithmic scale)
for n-best list on the devset of French→English WMT 2009 systems.

and oracle-best features and compute the mean value per feature. This is then used to

compute two new sets of weights using the RESCsum and RESCprod rescoring strategies

from Equations (3.4) and (3.5), respectively. We implemented our rescoring strategies on

the devset and then applied the two new sets of weights computed on the testset of n-bests.

3.5.1 Distribution of Oracles

The research in this chapter focusses on methods for moving the oracle translations up

the n-best list. Before proceeding with our rescoring experiments, it is therefore impor-

tant to determine how the oracle translations are distributed for the baseline system, i.e.

the position of the oracle candidate in the n-best list for each sentence. Table 3.7 gives

a summary of where (at what rank) each oracle candidate is placed in the n-best list of

the development and test sets of 2000 sentences each. Figure 3.5 gives a graphical repre-

sentation of the number of oracle candidates at each position or rank in an n-best list of

French→ English devsets for (a) 100-best lists and (b) 250-best lists.

It is evident that with increasing n-best list size, the number of oracles in the top ranks

decreases. The oracle distribution changes with increasing n-best list sizes because when

the size of the list is expanded, better translations are generated which are positioned lower

in the n-best list. This is alarming as this increases the complexity of our problem with

increasing n-best list sizes. One possible method to contain this is to filter the oracles,

i.e. only use those sentences whose oracles are different enough from its peers. This
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is described in Section 3.9 as a proof-of-concept experiment. We will see from oracle

filtering that not all sentences have a good quality oracle. The filtering will balance the

tendency of high-ranking translations to be placed lower in the list.

(a) DEVSET (b) TESTSET

RANGE 100-BEST 500-BEST 1000-BEST 100-BEST 500-BEST 1000-BEST
Rank 1 725 402 308 725 415 324
Rank 2 to 5 194 87 68 176 95 69
Rank 6 to 10 121 52 37 125 67 53
Rank 11 to N 960 1459 1587 974 1423 1554

Table 3.7: Number of times an oracle occurs in a particular range of ranks in the n-best
lists of (a) DEVSET and (b) TESTSET

3.6 System-level Evaluation

In this section, we report on performance of the baseline system against four rescored

PB-SMT systems for four language pairs by pushing oracles up seven different n-best list

sizes using seven MT system evaluation scores.

Specifically, we report our rescoring results on four sets of PB-SMT systems using

four different language directions (each occupying its own sub-section): (1) French →

English, (2) German→ English, (3) Spanish→ English, and (4) English→ French.

The n-best lists for each PB-SMT system refer to the maximum number of translation

hypotheses generated by translating each source-language sentence. We have evaluated

using seven such sizes of n: 100-best, 250-best, 500-best, 750-best, 1000-best, 2500-best,

and 5000-best. The MT system evaluation scores for each of the five PB-SMT systems

(itemized in the next paragraph) are presented in seven tables (one for each n-best list

size). Each table is further divided into two sections: (a) devset: Development data on

which the lambdas are rescored and new set of weights are computed, and (b) testset:

Blind dataset used to test the effectiveness of the new set of weights.

We evaluate by comparing a baseline system against two implementations of each of

the two rescoring strategies RESCsum RESCprod. Hence there are five separate systems

tested, accounting for five rows of values under each dataset:
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• BASELINE: System using weights computed using MERT with no rescoring

• RESCOREDBPROD: System in which the MERT weights are recalculated as per

Equation (3.5) based on Oracles with respect to sentence-level BLEU score

• RESCOREDMPROD: System in which the MERT weights are recalculated as per

Equation (3.5) based on Oracles with respect to sentence-level METEOR score

• RESCOREDBSUM : System in which the MERT weights are recalculated as per

Equation (3.4) based on Oracles with respect to sentence-level BLEU score

• RESCOREDMSUM : System in which the MERT weights are recalculated as per

Equation (3.4) based on Oracles with respect to sentence-level METEOR score

In each table, each of the two sections (devset and testset) reports evaluation results us-

ing 7 system-level evaluation metrics accounting for the seven columns of values in each

table. The first five are standard MT system evaluation metrics6 used in all experiments

throughout this thesis. The remaining two measure the number of oracle translations po-

sitioned at the top ranks.

• BLEU (Papineni et al., 2002): The values are presented as a percentage with higher

values implying higher accuracy

• NIST (Doddington, 2002): The values are presented on a scale of 10 with higher

values implying higher accuracy

• METEOR (Banerjee and Lavie, 2005): The values are presented as a percentage

with higher values implying higher accuracy

• WER (Word Error Rate; (Niessen et al., 2000)): The error rates are presented as a

percentage with lower values implying higher accuracy

• PER (Position-independent WER; (Leusch et al., 2003)): The error rates are pre-

sented as a percentage with lower values implying higher accuracy
6 For a broader introduction to the MT evaluation metrics like BLEU, NIST, METEOR, WER, PER see

Tinsley (2010) : 37–43 and Owczarzak (2008) : 14–22.
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• OBLEU: % sentences containing the oracle translations at rank 1 (Oracles are iden-

tified with respect to sentence-level BLEU score)

• OMET: % sentences containing the oracle translations at rank 1 (Oracles are iden-

tified with respect to sentence-level METEOR score)

3.6.1 French to English

Herein, we report on rescoring n-best lists when translating the test2006 (devset) and

test2008 (testset) datasets from French into English. We evaluate the performance of our

RESCprod and RESCsum rescoring strategies by pitting the translation system scores of the

four rescoring systems (RESCOREDBPROD, RESCOREDMPROD, RESCOREDBSUM , and

RESCOREDMSUM ) against the BASELINE system. We also make observations on whether

the RESCprod yields better results than RESCsum or vice versa. Another comparison crite-

rion is whether the BLEU-oracles are more effective in rescoring than METEOR-oracles

or vice versa. These results are tested using seven evaluation metrics (BLEU, NIST,

METEOR, WER, PER, OBLEU, OMET) on seven n-best lists of increasing sizes from

100-best to 5000-best. We will end this section with a summary by commenting on the

general trend, if any, seen in all seven n-best lists. The motivation for experimenting on a

range of n-best list sizes is that there is no consensus in literature on the optimal size of

the n-best list. We analyse this across the language pairs in Table 3.48 in Section 3.11.

100-BEST LIST

Table 3.8 (a) gives system evaluation scores on oracle-based rescoring of 100-best

lists for the French–English devset. The BASELINE system outperforms all four rescored

systems on BLEU (with a statistically significant7 score of 32.17) and METEOR (with a

statistically significant score of 61.34) scores. The BASELINE system in turn is outper-

formed by all the four rescored systems on NIST, WER, and PER. The RESCOREDBSUM

system demonstrates the lowest (i.e. best) WER (absolute difference of 0.16 over base-

7 All statistical significance tests were performed using bootstrap resampling described in Koehn (2004).
The p-values used were 0.05, i.e. the scores are significantly different with a 95% confidence interval.
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line) and PER (absolute difference of 0.09 over baseline). Additionally all four rescored

systems outperform the BASELINE system as far as the percentage of oracles (with respect

to BLEU and METEOR) in rank 1, i.e. OBLEU and OMET scores are concerned.

The PROD rescoring (2nd and 3rd rows in Table 3.8 (a)) yields better translation re-

sults than the SUM rescoring with respect to BLEU, OMET, and OBLEU scores while

the SUM rescoring (4th and 5th rows in Table 3.8 (a)) beats the PROD rescoring on

all other metrics, namely NIST, METEOR, WER, and PER scores. When comparing

rescoring of BLEU-oracles (rows 2 and 4 in Table 3.8 (a)) with METEOR-oracles (rows

3 and 5 in Table 3.8 (a)), both sets of PROD rescoring systems (RESCOREDBPROD Vs

RESCOREDMPROD) and SUM rescoring systems (RESCOREDBSUM Vs RESCOREDMSUM )

give similar performance across all metrics.

SYSTEM BLEU NIST METEOR WER PER OBLEU OMET
(a) devset

BASELINE 32.17 7.70 61.34 57.10 40.96 36.25 36.90
RESCOREDBPROD 31.94 7.71 61.04 57.04 40.94 37.05 38.90
RESCOREDMPROD 31.94 7.71 61.04 57.04 40.94 37.10 38.95
RESCOREDBSUM 31.90 7.72 61.11 56.94 40.87 36.65 37.75
RESCOREDMSUM 31.89 7.71 61.10 56.96 40.88 36.30 37.30

(b) testset
BASELINE 32.47 7.81 61.80 56.43 40.34 36.25 37.30
RESCOREDBPROD 32.20 7.81 61.50 56.38 40.37 37.50 39.80
RESCOREDMPROD 32.21 7.81 61.51 56.37 40.36 37.50 39.85
RESCOREDBSUM 32.33 7.82 61.61 56.21 40.26 37.85 38.70
RESCOREDMSUM 32.31 7.82 61.58 56.24 40.28 37.40 37.95

Table 3.8: Summary of the French→English translation system results for 100-best list:
(a) devset and (b) testset

Table 3.8 (b) gives translation results on oracle-based rescoring of 100-best lists for the

French–English testset. Again, as on the devset, the BASELINE system is outperformed

by one or more of the four rescored systems across all evaluation metrics except the BLEU

and METEOR scores. The RESCOREDBSUM scores the lowest (i.e. best) WER and PER

scores (e.g. 56.21 WER points statistically significant) with an absolute difference of 0.22

or 0.39% over the BASELINE system).

All four rescoring systems record ranking 1% to 2% more oracles in the first position
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than the BASELINE system, with RESCOREDMPROD and textscRescoredBSUM scoring

the highest OMET and OBLEU scores, respectively.

Unlike the devset, the SUM rescoring systems (4th and 5th rows in Table 3.8 (b))

perform slightly better than the PROD rescoring systems (2nd and 3rd rows in Table 3.8

(b)) across all five system evaluation metrics: BLEU, NIST, METEOR, WER, and PER.

When comparing rescoring of BLEU-oracles (rows 2 and 4 in Table 3.8 (b)) with

METEOR-oracles (rows 3 and 5 in Table 3.8 (b)), the PROD rescoring gives similar

performance (e.g. 61.50 METEOR points in RESCOREDBPROD against 61.51 METEOR

points in RESCOREDMPROD) while the SUM rescoring shows a larger degree of variation

with the RESCOREDBSUM as slightly better than RESCOREDMSUM (e.g. 61.61 METEOR

points in RESCOREDBSUM against 61.58 METEOR points in RESCOREDMSUM ). Note

that this observation is unlike that seen on the devset in Table 3.17 (a).

Overall, the RESCOREDBSUM system gives the best performance amongst all rescor-

ing systems, especially on the testset. As stated above, this system outperforms the BASE-

LINE on all metrics except BLEU and METEOR on both the devset and the testset.

CATEGORY DEVSET TESTSET
BELU 0.84% ↓ 0.43% ↓
METEOR 0.38% ↓ 0.30% ↓

Table 3.9: Margin of difference in the BLEU and METEOR performance scores of
RESCOREDBSUM and BASELINE: French–English 100-best list

An important observation is that although BLEU and METEOR scores favour the

BASELINE system, the difference in these scores between the baseline and RESCOREDBSUM

is reduced when moving from devset to testset. Table 3.9 summarises this: the values in

the testset column are lower than the corresponding values in the devset column. This

lends credence to our claim that our rescoring strategies have a good learnability.

250-BEST LIST

Note that from here onwards, the BASELINE system remains unchanged with regards

to its translation output and therefore gives the same results on BLEU, NIST, METEOR,
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WER, and PER scores. The only difference is in the size of the n-best list which in turn

is reflected in the number of sentences ranking the oracle translation in the top position

resulting in OBLEU and OMET scores different from the BASELINE system in 100-best

list. In fact, all systems show a decrease in their OBLEU and OMET scores implying a

decrease in the number of oracles in the top ranks with increasing n-best list sizes.

SYSTEM BLEU NIST METEOR WER PER OBLEU OMET
(a) devset

BASELINE 32.17 7.70 61.34 57.10 40.96 26.30 26.85
RESCOREDBPROD 31.84 7.70 60.88 57.04 41.04 28.25 28.85
RESCOREDMPROD 31.84 7.70 60.88 57.04 41.04 28.25 28.85
RESCOREDBSUM 31.88 7.72 61.09 56.89 40.81 26.50 28.50
RESCOREDMSUM 31.88 7.72 61.07 56.89 40.83 26.45 28.25

(b) testset
BASELINE 32.47 7.81 61.80 56.43 40.34 26.80 28.10
RESCOREDBPROD 32.07 7.80 61.38 56.46 40.44 27.60 30.20
RESCOREDMPROD 32.07 7.80 61.39 56.46 40.44 27.65 30.25
RESCOREDBSUM 32.31 7.83 61.56 56.17 40.26 28.70 29.80
RESCOREDMSUM 32.28 7.83 61.54 56.17 40.27 28.35 29.55

Table 3.10: Summary of the French→English translation system results for 250-best list:
(a) devset and (b) testset

Table 3.10 (a) gives system evaluation scores on oracle-based rescoring of 250-best

lists for French–English devset. Just like in the 100-best list, the BASELINE system out-

performs all four rescored systems on BLEU (with a statistically significant score of

32.17) and METEOR (with a statistically significant score of 61.34) scores. However,

one or more of our rescoring systems performed well on the remaining five metrics:

• NIST: RESCOREDBSUM and RESCOREDMSUM perform slightly better than the

BASELINE with an absolute difference of 0.02 points

• WER: RESCOREDBSUM and RESCOREDMSUM perform significantly better than

the BASELINE with an absolute difference of 0.21 points. Both the RESCOREDBPROD

and RESCOREDMPROD systems outperform the baseline as well.

• PER: RESCOREDBSUM performs significantly better than the BASELINE with an

absolute difference of 0.15 points
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• OBLEU: RESCOREDBPROD and RESCOREDMPROD have the highest percentage

of BLEU-oracles in the 1-best position (39 more sentences than the baseline)

• OMET: RESCOREDBPROD and RESCOREDMPROD have the highest percentage of

METEOR-oracles in the 1-best position (34 more sentences than the baseline).

Note that on comparing the BLEU and METEOR scores of all the four rescoring

systems on 100-best list with their corresponding scores on 250-best list, we find that the

scores decrease. On the other hand, the WER and PER scores improve while the NIST

scores remain the same for the most part. All other observations were similar to that of

100-best lists described previously.

The results for rescoring 250-best outputs of testset appear in Table 3.10 (b). Like on

the devset, the BASELINE system gives the best scores on BLEU and METEOR, while

the RESCOREDBSUM system beats the BASELINE system as well as giving the best scores

on all the remaining metrics: NIST (absolute difference of 0.02), WER (absolute differ-

ence of 0.26 (statistically significant)), and PER (absolute difference of 0.18 (statistically

significant)).

As observed in the 100-best list, although BLEU and METEOR scores favour the

BASELINE system, the difference in these scores between the baseline and RESCOREDBSUM

is reduced when moving from devset to testset. All other observations followed the same

pattern as the 100-best list as well. An analysis of the metric score trend with increasing

n-best list size is made after Table 3.15.

500-BEST LIST

In Tables 3.11 (a) and (b), we report on rescoring 500-best lists for devset and testset,

respectively. It can be seen that the BASELINE system gives the best scores on BLEU

and METEOR. However, just like on 100-best and 250-best lists, RESCOREDBSUM sys-

tem beats the BASELINE system as well as gives the best scores for devset on all the

remaining metrics: NIST (absolute difference of 0.03), WER (absolute difference of 0.13

(statistically significant)), and PER (absolute difference of 0.14 (statistically significant)).

For the testset as well, the RESCOREDBSUM system beats the BASELINE system on the
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following metrics: NIST (absolute difference of 0.03), WER (absolute difference of 0.33

(statistically significant)), and PER (absolute difference of 0.10 (statistically significant)).

SYSTEM BLEU NIST METEOR WER PER OBLEU OMET
(a) devset

BASELINE 32.17 7.70 61.34 57.10 40.96 20.10 20.25
RESCOREDBPROD 31.72 7.70 60.80 57.10 41.05 21.75 22.40
RESCOREDMPROD 31.72 7.70 60.81 57.09 41.04 21.85 22.55
RESCOREDBSUM 31.87 7.73 61.04 56.87 40.82 20.25 21.60
RESCOREDMSUM 31.84 7.73 61.03 56.87 40.83 20.25 21.50

(b) testset
BASELINE 32.47 7.81 61.80 56.43 40.34 20.75 21.75
RESCOREDBPROD 31.95 7.78 61.18 56.57 40.58 21.15 23.65
RESCOREDMPROD 31.95 7.78 61.18 56.56 40.57 20.90 23.45
RESCOREDBSUM 32.33 7.84 61.57 56.10 40.24 22.80 23.75
RESCOREDMSUM 32.27 7.83 61.54 56.13 40.27 21.95 23.35

Table 3.11: Summary of the French→English translation system results for 500-best list:
(a) devset and (b) testset

As far as the percentage of oracles in the 1-best position is concerned, RESCOREDMPROD

scores the highest number in both OBLEU (32 more sentences than RESCOREDBSUM )

and OMET (19 more sentences than RESCOREDBSUM ) on the devset. This implies that

even though a significant number of SUM system segments match with the reference

translation segments or significantly fewer edits needed to be taken between reference

and SUM system sentences, as per the system-level NIST, WER, PER scores, a majority

of them are not oracles (resulting in low OBLEU and OMET scores). More light will be

shed on this in the analysis section after describing the results of 5000-best lists. On the

other hand, RESCOREDBSUM achieves the highest OBLEU and OMET scores on testset.

Once again, our rescoring systems seem to fare better on the testset than on the devset,8

as observed in 100-best and 250-best lists.

750-BEST LIST

Table 3.12 (a) gives system evaluation scores on oracle-based rescoring of 750-best

lists for French–English devset. Unlike the preceding n-best lists of French→English,

8 This behaviour is quite standard in SMT.
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the best-performing system according to METEOR is RESCOREDMSUM with a statisti-

cally significant value of 61.64 points (0.5% improvement over the baseline). Note that

the RESCOREDMSUM was also found to give the worst performance on all other met-

rics. A manual analysis on why the METEOR scoring metric alone seems to favour

RESCOREDBSUM system will be covered towards the end of this Section 3.6.1. The

PROD systems perform on a par with the BASELINE on NIST and outperform the BASE-

LINE on OBLEU and OMET. However, the highest percentage of METEOR-oracles in

1-best position (OMET) scores is achieved by RESCOREDMSUM .

SYSTEM BLEU NIST METEOR WER PER OBLEU OMET
(a) devset

BASELINE 32.17 7.70 61.34 57.10 40.96 17.35 18.05
RESCOREDBPROD 32.12 7.70 61.33 57.12 40.98 17.50 17.95
RESCOREDMPROD 32.11 7.70 61.33 57.12 40.98 17.45 18.10
RESCOREDBSUM 31.56 7.58 61.51 58.07 41.50 17.35 18.30
RESCOREDMSUM 31.52 7.57 61.64 58.21 41.58 17.15 18.25

(b) testset
BASELINE 32.47 7.81 61.80 56.43 40.34 18.05 18.70
RESCOREDBPROD 32.46 7.80 61.76 56.41 40.41 17.90 18.60
RESCOREDMPROD 32.47 7.80 61.76 56.40 40.40 17.90 18.60
RESCOREDBSUM 31.93 7.67 61.86 57.28 40.99 17.45 17.40
RESCOREDMSUM 31.89 7.66 61.95 57.47 41.12 17.60 17.70

Table 3.12: Summary of the French→English translation system results for 750-best list:
(a) devset and (b) testset

The PROD rescoring system (2nd and 3rd rows in Table 3.12 (a)) yields significantly

better translation results than the SUM rescoring (4th and 5th rows in Table 3.12 (a))

across all metrics except METEOR scores.

When comparing rescoring of BLEU-oracles (rows 2 and 4 in Table 3.12 (a)) with

METEOR-oracles (rows 3 and 5 in Table 3.12 (a)), the PROD rescoring gives similar per-

formance (e.g. 61.33 METEOR points in both RESCOREDBPROD and RESCOREDMPROD),

while the SUM rescoring approach shows a larger degree of variation with the RESCBSUM

as significantly better than RESCOREDMSUM on all metrics except the METEOR scores.

The results for rescoring 750-best outputs of testset appear in Table 3.12 (b). The

rescoring system with the lowest evaluation scores is RESCOREDMSUM as per all metrics
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except the METEOR score. As observed in the devset, the best-performing system is also

RESCOREDMSUM as scored by METEOR (a 0.24% improvement over the baseline). In

contrast to the devset, the RESCOREDMPROD and RESCOREDBPROD systems show slight

improvements or give on par performance with the baseline system on BLEU, NIST, and

WER.

All other observations were similar to that seen on the devset. Moreover, when com-

paring performance of the rescoring systems on devset versus testset, we find that the

testset again gives better performance over the BASELINE system. For example, the

RESCOREDBPROD records a 0.03 WER points improvement over the BASELINE system

on the testset as opposed to an underperforming 0.02 WER points on the devset.

Note that in contrast to preceding n-best lists of French→English, the PROD sys-

tems perform better than the SUM systems on all scores except METEOR. Whether this

behaviour is an anomaly or will be observed in subsequent n-best lists remains to be seen.

1000-BEST LIST

SYSTEM BLEU NIST METEOR WER PER OBLEU OMET
(a) devset

BASELINE 32.17 7.70 61.34 57.10 40.96 15.40 16.20
RESCOREDBPROD 32.11 7.70 61.32 57.11 40.98 15.55 16.10
RESCOREDMPROD 32.10 7.70 61.33 57.11 40.97 15.60 16.05
RESCOREDBSUM 31.55 7.58 61.57 58.16 41.57 15.60 16.35
RESCOREDMSUM 31.48 7.56 61.65 58.33 41.72 15.10 15.95

(b) testset
BASELINE 32.47 7.81 61.80 56.43 40.34 16.20 16.25
RESCOREDBPROD 32.48 7.80 61.77 56.40 40.40 16.20 16.30
RESCOREDMPROD 32.44 7.80 61.74 56.42 40.42 16.20 16.35
RESCOREDBSUM 31.84 7.65 61.86 57.39 41.08 15.90 15.30
RESCOREDMSUM 31.88 7.65 62.01 57.50 41.17 16.35 15.40

Table 3.13: Summary of the French→English translation system results for 1000-best
list: (a) devset and (b) testset

Table 3.13 (a) gives system evaluation scores on oracle-based rescoring of 1000-best

lists for French–English devset. Just like the preceding n-best lists, BASELINE achieves

the best score on BLEU, NIST, WER, and PER. However, the RESCOREDBPROD and

RESCOREDMPROD systems perform as well as BASELINE on NIST, METEOR, WER,
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and PER. Similar to 750-best list, the best-performing system on METEOR is RESCMSUM

with a statistically significant value of 61.65 points (0.5% relative above baseline). With

61.57 METEOR points, RESCOREDBSUM performs 0.37% relative above baseline. The

highest OBLEU and OMET scores were achieved by RESCOREDBSUM .

When comparing rescoring of BLEU-oracles (rows 2 and 4 in Table 3.13 (a)) with

METEOR-oracles (rows 3 and 5 in Table 3.13 (a)), the SUM rescoring systems show a

larger degree of mutual variation on all metrics: BLEU (favouring BLEU-oracles), NIST

(favouring BLEU-oracles), METEOR (favouring METEOR-oracles), WER (favouring

BLEU-oracles), and PER (favouring BLEU-oracles).

The results for rescoring 1000-best outputs of testset appear in Table 3.13 (b). As

observed on the devset, the best-performing system is RESCOREDMSUM as scored by

METEOR (a 0.34% improvement over the baseline, statistically significant). In contrast

to the devset, RESCOREDBPROD system shows slight improvement / give at par perfor-

mance with the baseline system on BLEU, NIST, and WER.

All other observations were similar to that seen in the devset. Moreover, when com-

paring performance of the rescoring systems on devset versus testset, surprisingly, we find

that the devset gives better performance over the BASELINE system than on the testset.

For example, the RESCOREDMSUM records a 0.31 METEOR points improvement over

the BASELINE system on the devset as opposed to an improvement of 0.21 METEOR

points on the devset. This observations is recorded on 750-best lists as well but not on the

other n-best lists evaluated so far.

On 750-best lists, we also noted that in contrast to preceding n-best lists of French→

English, the PROD systems perform better than the SUM systems on all scores except

METEOR. This behaviour is also observed in 1000-best lists. This might indicate that

RESCsum unlike RESCprod rescoring strategy improves with increasing n-best list sizes.

2500-BEST LIST

Table 3.14 (a) gives system evaluation scores on oracle-based rescoring of 2500-best

lists for French–English devset. Just like the preceding n-best lists, BASELINE achieves
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SYSTEM BLEU NIST METEOR WER PER OBLEU OMET
(a) devset

BASELINE 32.17 7.70 61.34 57.10 40.96 11.50 12.70
RESCOREDBPROD 32.10 7.70 61.33 57.14 40.98 11.70 12.45
RESCOREDMPROD 32.09 7.70 61.33 57.12 40.97 11.65 12.65
RESCOREDBSUM 31.40 7.54 61.60 58.33 41.77 11.40 11.60
RESCOREDMSUM 31.10 7.49 61.73 58.94 42.18 11.60 12.05

(b) testset
BASELINE 32.47 7.81 61.80 56.43 40.34 11.80 11.95
RESCOREDBPROD 32.44 7.80 61.75 56.44 40.40 11.65 12.00
RESCOREDMPROD 32.44 7.80 61.75 56.41 40.40 11.70 12.10
RESCOREDBSUM 31.69 7.61 61.89 57.63 41.28 11.40 10.75
RESCOREDMSUM 31.43 7.57 61.95 58.06 41.60 11.95 11.60

Table 3.14: Summary of the French→English translation system results for 2500-best
list: (a) devset and (b) testset

the best score on BLEU, NIST, WER, and PER. However, the RESCOREDBPROD and

RESCOREDMPROD systems perform as well as BASELINE on NIST, METEOR, and PER.

Similar to 1000-best list, the best-performing system on METEOR is RESCOREDMSUM

with a statistically significant value of 61.73 points (0.64% above baseline). With 61.60

METEOR points, RESCOREDBSUM performs 0.42% above baseline. Both these scores

are better than the corresponding system scores on 1000-best list. Unlike the preceding

n-best lists, the highest OMET scores were achieved by BASELINE system.

When comparing rescoring of BLEU-oracles (rows 2 and 4 in Table 3.14 (a)) with

METEOR-oracles (rows 3 and 5 in Table 3.14 (a)), the SUM rescoring systems show a

larger degree of mutual variation on all metrics: BLEU (favouring BLEU-oracles), NIST

(favouring BLEU-oracles), METEOR (favouring METEOR-oracles), WER (favouring

BLEU-oracles), and PER (favouring BLEU-oracles). This was seen on 1000-best lists

as well.

The results for rescoring 2500-best outputs of testset appear in Table 3.14 (b). As

observed on the devset, the best-performing system is RESCOREDMSUM as scored by

METEOR (a 0.24% improvement over the baseline, statistically significant). This score

is lower than the corresponding system on 1000-best list (opposite observation on devset).

In contrast to the devset, RESCOREDMPROD system shows slight improvement over the
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baseline system on WER (absolute difference of 0.02 over baseline).

All other observations were similar to that seen in the devset. Moreover, when com-

paring performance of the rescoring systems on devset versus testset, we record the same

observations as on 750-best and 1000-best lists.

On 750-best and 1000-best lists, we also noted that in contrast to preceding n-best

lists of French→English, the PROD systems perform better than the SUM systems on all

scores except METEOR. This behaviour is also observed in 2500-best lists. This lends

credence to our claim that unlike RESCprod, the RESCsum rescoring strategy improves

with increasing n-best list sizes.

5000-BEST LIST

It is observed that the performance of rescoring systems on 5000-best list follows

a similar pattern to that observed on 100-best, 250-best, and 500-best lists. Unlike the

remaining n-best lists (750-best, 1000-best, 2500-best), the BASELINE system achieves

best scores on BLEU and METEOR scores and is outperformed by one or more of the

rescoring systems (usually SUM systems) on all other metrics.

Table 3.15 (a) gives system evaluation scores on oracle-based rescoring of 5000-best

lists for French–English devset. The BASELINE system achieves the best score (statisti-

cally significant) on BLEU (32.17 points) and METEOR (61.34 points). However, just

like on 100-best, 250-best, and 500-best lists, RESCOREDBSUM system beats the BASE-

LINE system as well as gives the best scores for devset on all the remaining metrics:

NIST (absolute difference of 0.5% (statistically significant)), WER (absolute difference

of 0.67% (statistically significant)), and PER (absolute difference of 0.46% (statistically

significant)). The RESCOREDMSUM system beats the baseline too and performs slightly

worse than RESCOREDBSUM . The worst performing systems are RESCOREDMPROD and

RESCOREDBPROD as per the five MT evaluation metrics: BLEU, NIST, METEOR, WER,

and PER.

As far as the percentage of oracles in the 1-best position is concerned, RESCOREDBPROD

and RESCOREDMPROD obtain the highest scores for both OBLEU (31 more sentences
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SYSTEM BLEU NIST METEOR WER PER OBLEU OMET
(a) devset

BASELINE 32.17 7.70 61.34 57.10 40.96 9.10 10.15
RESCOREDBPROD 31.29 7.67 60.43 57.19 41.22 10.65 12.05
RESCOREDMPROD 31.28 7.67 60.43 57.21 41.23 10.60 12.05
RESCOREDBSUM 31.72 7.74 60.89 56.72 40.77 10.40 11.05
RESCOREDMSUM 31.54 7.73 60.76 56.74 40.79 10.35 11.00

(b) testset
BASELINE 32.47 7.81 61.80 56.43 40.34 8.85 9.6
RESCOREDBPROD 31.69 7.78 60.93 56.51 40.58 11.85 11.90
RESCOREDMPROD 31.72 7.78 60.94 56.51 40.56 11.80 11.95
RESCOREDBSUM 32.22 7.85 61.40 55.99 40.16 10.25 10.50
RESCOREDMSUM 32.06 7.85 61.26 56.00 40.16 10.90 11.60

Table 3.15: Summary of the French→English translation system results for 5000-best
list: (a) devset and (b) testset

than BASELINE and 5 more sentences than RESCOREDBSUM ) and OMET (38 more sen-

tences than BASELINE and 20 more sentences than RESCOREDBSUM ) on the devset. This

implies that even though a significant number of SUM system segments match with the

reference translation segments or significantly less edits needed to be taken between ref-

erence and SUM system sentences, as per the system-level NIST, WER, PER scores, a

majority of them are not oracles (resulting in low OBLEU and OMET scores).

The results for rescoring 5000-best outputs of testset appear in Table 3.15 (b). As

observed on the devset, the BASELINE system achieves the best score (statistically sig-

nificant) on BLEU (32.47 points) and METEOR (61.80 points). However, both the

RESCOREDBSUM and RESCOREDMSUM systems beat the BASELINE system as well as

gives the best scores for devset on all the remaining metrics: NIST (absolute difference

of 0.51% (statistically significant)), WER (absolute difference of 0.78% (statistically sig-

nificant)), and PER (absolute difference of 0.45% (statistically significant)). The worst

performing systems are RESCOREDMPROD and RESCOREDBPROD as per the five MT

evaluation metrics: BLEU, NIST, METEOR, WER, and PER.

As far as the percentage of oracles in the 1-best position is concerned, RESCOREDBPROD

and RESCOREDMPROD score the highest number in both OBLEU (60 more sentences

than BASELINE and 32 more sentences than RESCOREDBSUM ) and OMET (47 more sen-
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tences than BASELINE and 29 more sentences than RESCOREDBSUM ) on the testset. This

behavious was observed on the devset as well.

Our rescoring systems seem to fare better on the testset than on the devset, as observed

in 100-best, 250-best and 500-best lists. Additionally, the PROD systems easily outper-

form the SUM systems. Both these bahaviours are contrary to that observed on larger

n-best lists: 750-best, 1000-best, and 2500-best. More on such trends will be handled

below.

SUMMARY

Having reported on the performance of rescoring systems in individual n-best lists,

we would now like to comment on any general trends observed in French–English trans-

lation systems as a whole. Table 3.16 summarises the performance of our rescoring

systems on French→English data by listing the best-performing systems in each of the

seven n-best lists (rows: 100-best, 250-best, 500-best, 750-best, 1000-best, 2500-best, and

5000-best) for each of the seven evaluation metrics (columns: BLEU, NIST, METEOR,

WER, PER, OBLEU, and OMET). The table is divided into two sections: (a) devset

and (b) testset. The abbreviations used for each of the five systems are as follows: B

(BASELINE), bP (RESCOREDBPROD), mP (RESCOREDMPROD), bS (RESCOREDBSUM ),

and mS (RESCOREDMSUM ).

There is no discernible pattern visible in the type of system (B, bP, mP, bS, mS) scoring

the best scores on French→English n-best lists. Table 3.16 demonstrates that each of the

seven metrics favour different systems for different n-best list sizes. However, some facts

can still be gleaned from the evaluation results.

One or more of the rescoring systems almost always achieve the highest percentage of

oracles in the 1-best position (OBLEU, OMET). This shows that our rescoring strategies

have been successful in their primary aim of moving oracles up the n-best lists.

The BASELINE system remains unbeatable on BLEU score. However, one or both the

SUM systems perform at par or outperform the baseline on NIST scores.

The RESCOREDMSUM system is consistently the best-performing system on ME-
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SYSTEM BLEU NIST METEOR WER PER OBLEU OMET
(a) devset

100-BEST B bS B bS bS mP mP
250-BEST B bS, mS B bS, mS bS bP, mP bP, mP
500-BEST B bS, mS B bS, mS bS mP mP
750-BEST B B, bP, mP mS B B bP bS
1000-BEST B B, bP, mP mS B B mP, bS bS
2500-BEST B B mS B B bP B
5000-BEST B bS B bS bS bP bP, mP

(b) testset
100-BEST B bS, mS B bS bS bS mP
250-BEST B bS, mS B bS, mS bS bS mP
500-BEST B bS B bS bS bS bS
750-BEST B, mP B mS mP B B B
1000-BEST bP B mS bP B mS mP
2500-BEST B B mS mP B mS mP
5000-BEST B bS, mS B bS bS, mS bP mP

Table 3.16: Summary of the best-performing French→English translation systems across
all n-best lists: (a) devset and (b) testset

TEOR from 750-best to 1000-best lists on both the devset and testset. We also note

that one or more of the rescoring systems (most often RESCOREDMSUM ) outperform the

baseline on WER and PER across most n-best list sizes.

Another important observation is that there are two groups of best systems. 100-

best, 250-best, 500-best and 5000-best appear to rank the same systems at top while 750-

best, 1000-best, and 2500-best lists rank another type of systems at the top. On further

investigation, it was found that 750-best, 1000-best, and 2500-best lists appear to have the

same range of lambdas while the other group adheres to another range much closer to the

baseline system.

In addition to identifying the best-performing systems, we also note the general trend

of a metric with increasing n-best list sizes for each of the five systems. Figure 3.6

shows this phenomenon for the BLEU score on the testset. Both RESCOREDBSUM and

RESCOREDMSUM give similar performances and score at a lower level than the remaining

three systems. Also, the RESCOREDBPROD and RESCOREDMPROD systems give similar

performances to the BASELINE system (black line), even outperforming on larger n-best

lists. While the SUM systems consistently deteriorate with increasing n-best list sizes,
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Figure 3.6: Line graph to show the trends of the five PB-SMT systems for BLEU score
with increasing n-best list sizes: Europarl data, French–English, testset.

Figure 3.7: Line graph to show the trends of the five PB-SMT systems for METEOR
score with increasing n-best list sizes: Europarl data, French–English, testset.

the PROD systems remain relatively constant and even improve in accuracy.

In Figure 3.7, we plot the METEOR performance of the four rescoring systems and

the baseline system for each of the seven n-best list sizes. Here, the behaviour is erratic

and somewhat reverse of what was observed on the BLEU metric. All four rescoring

systems perform below baseline on all n-best list sizes except from 750-best to 2500-best

lists. The RESCOREDBSUM and RESCOREDMSUM give much better performance than the

RESCOREDBPROD and RESCOREDMPROD systems, which is opposite that on the BLEU

metric in Figure 3.6.

Figures 3.8 and 3.9 plot the percentage of oracles with respect to BLEU and ME-

TEOR, respectively against n-best list sizes for all five systems. Note that the phenomenon

of decreasing values with increasing n-best lists is seen across all metrics but is particu-
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Figure 3.8: Line graph to show the trends of the five PB-SMT systems for OBLEU score
with increasing n-best list sizes: Europarl data, French–English, testset.

Figure 3.9: Line graph to show the trends of the five PB-SMT systems for OMET score
with increasing n-best list sizes: Europarl data, French–English, testset.

larly prominent in the OBLEU and OMET trends. the number of oracles in the 1-best

position severely reduces as we approach 5000-best lists.

All five systems intersect each other many times but the baseline system is the worst

performing system. The SUM systems are initially the best but are gradually overtaken

by the PROD systems towards the end. We can conclude that as the n-best list size is in-

creased, more accurate oracle translations are discovered at much lower ranks and hence

prove to be more difficult in being rescored to the top ranks. This implies that the com-

plexity of the rescoring problem increases with the n-best list size.9

It is important to keep in mind that the OBLEU and OMET scores measure differ-

ent things than the other five metrics. While BLEU, NIST, METEOR, WER, and PER

9 In contrast, it could be argued that instead of increasing the complexity in terms of the expanding
search space with increasing n-best list sizes, the parameters are simply more poorly estimated.
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measure the similarity of the output (sentence ranked at the top position) to the reference

translation, OMET and OBLEU merely count how many of these first ranked sentences

are most similar to the reference from amongst the entire n-best list search space. Hence,

a system can give a high similarity score (system level METEOR) and still have only a

low percentage of these sentences as oracles (most similar to the reference translation).

Overall, the RESCOREDMSUM system is the best rescoring system on French→ En-

glish data.

3.6.2 German to English

Herein, we report on rescoring n-best lists when translating the test2006 (devset) and

test2008 (testset) datasets from German into English. We evaluate the performance of our

RESCprod and RESCsum rescoring strategies by pitting the translation system scores of the

four rescoring systems (RESCOREDBPROD, RESCOREDMPROD, RESCOREDBSUM , and

RESCOREDMSUM ) against the BASELINE system. We also make observations on whether

the RESCprod yields better results than RESCsum or vice versa. Another comparison crite-

rion is whether the BLEU-oracles are more effective in rescoring than METEOR-oracles

or vice versa. These results are tested using seven evaluation metrics (BLEU, NIST,

METEOR, WER, PER, OBLEU, OMET) on seven n-best lists of increasing sizes from

100-best to 5000-best. We will end this section with a summary by commenting on the

general trend, if any, seen in all seven n-best lists.

100-BEST LIST

Table 3.17 (a) gives system evaluation scores on oracle-based rescoring of 100-best

lists for German–English devset. The BASELINE system outperforms all four rescored

systems on BLEU (with a statistically significant score of 26.93) and PER (with an error

rate of 44.89) scores, gives similar performance to the RESCBPROD and RESCMPROD

systems on NIST and WER scores, and is outperformed by the RESCOREDBSUM and

RESCOREDMSUM systems on METEOR AND OBLEU scores. Additionally all four

rescored systems outperform the BASELINE system as far as the percentage of oracles

(with respect to METEOR) in rank 1, i.e. OMET score is concerned.
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The PROD rescoring (2nd and 3rd rows in Table 3.17 (a)) yields better translation

results than the SUM rescoring with respect to BLEU, NIST, WER, and PER scores while

the SUM rescoring (4th and 5th rows in Table 3.17 (a)) beats the PROD rescoring on the

remaining metrics, namely METEOR, OBLEU, and OMET scores. When comparing

rescoring of BLEU-oracles (rows 2 and 4 in Table 3.17 (a)) with METEOR-oracles (rows

3 and 5 in Table 3.17 (a)), the PROD rescoring gives similar performance (e.g. 26.87

BLEU points in RESCOREDBPROD against 26.86 BLEU points in RESCOREDMPROD)

while the SUM rescoring shows a larger degree of variation with the RESCOREDBSUM

as significantly better than RESCOREDMSUM . The RESCOREDBSUM scores the highest

METEOR score with an absolute difference of 0.31 over the BASELINE system.

SYSTEM BLEU NIST METEOR WER PER OBLEU OMET
(a) devset

BASELINE 26.93 7.00 57.01 65.52 44.89 13.30 13.65
RESCOREDBPROD 26.87 6.99 56.94 65.52 44.92 12.85 13.70
RESCOREDMPROD 26.86 6.99 56.93 65.51 44.92 12.95 13.80
RESCOREDBSUM 25.85 6.79 57.32 67.56 46.21 14.05 14.25
RESCOREDMSUM 25.78 6.79 57.19 67.45 46.19 13.90 13.70

(b) testset
BASELINE 27.02 7.01 57.11 65.25 45.01 11.75 11.95
RESCOREDBPROD 27.02 7.01 57.12 65.19 44.96 12.00 12.25
RESCOREDMPROD 27.03 7.01 57.10 65.17 44.95 11.95 12.30
RESCOREDBSUM 26.46 6.86 57.83 66.99 46.14 13.15 14.10
RESCOREDMSUM 26.35 6.86 57.56 66.90 46.11 12.75 14.00

Table 3.17: Summary of the German→English translation system results for 100-best
list: (a) devset and (b) testset

Table 3.17 (b) gives translation results on oracle-based rescoring of 100-best lists for

German–English testset. The BASELINE system is outperformed by one or more of the

four rescored systems across all evaluation metrics except the BLEU and NIST scores.

However, both the RESCOREDBPROD and RESCOREDMPROD systems perform at the

same level as the BASELINE on BLEU (with 27.02 or 27.03 points) and NIST (with

7.01 points). The RESCOREDBSUM scores the highest METEOR score (57.83 points

statistically significant) with an absolute difference of 0.72 or 1.3% over the BASELINE

system and an absolute difference of 0.27 or 0.5% over the second highest performing
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system (RESCOREDMSUM with 57.56 METEOR points). Both the RESCOREDBSUM and

RESCOREDMSUM systems record ranking 1% to 2% more oracles in the first position than

the BASELINE system. For example, the RESCOREDBSUM system was reported to have

43 more sentences with the oracles as 1-best than the BASELINE. Further analysis can be

found in Section 3.8.

The PROD rescoring (2nd and 3rd rows in Table 3.17 (b)) gives better translation

results than the SUM rescoring with respect to BLEU, NIST, WER, and PER scores

while the SUM rescoring (4th and 5th rows in Table 3.17 (b)) beats the PROD rescor-

ing on the remaining metrics, namely METEOR, OBLEU, and OMET scores. When

comparing rescoring of BLEU-oracles (rows 2 and 4 in Table 3.17 (b)) with METEOR-

oracles (rows 3 and 5 in Table 3.17 (b)), the PROD rescoring gives similar performance

(e.g. 57.12 METEOR points in RESCOREDBPROD against 57.10 METEOR points in

RESCOREDMPROD) while the SUM rescoring shows a larger degree of variation with the

RESCOREDBSUM as significantly better than RESCOREDMSUM (e.g. 57.83 METEOR

points in RESCOREDBSUM against 57.56 METEOR points in RESCOREDMSUM ) . Both

these observations are the same as that seen on the devset in Table 3.17 (a).

An important observation is that although BLEU and NIST scores favour the BASE-

LINE system, the difference in these scores between the baseline and the rescoring systems

is reduced when moving from devset to testset. Moreover, the RESCOREDBSUM shows a

greater improvement over the BASELINE METEOR scores in testset (absolute difference

of 0.72) than in devset (absolute difference of 0.31). This leads credence to our claim that

our rescoring strategies have a good learnability.

250-BEST LIST

As observed in French → English (Section 3.6.1), the BASELINE system remains

unchanged with regards to its translation output and therefore gives the same results on

BLEU, NIST, METEOR, WER, and PER scores. The only difference is in the size of

the n-best list which in turn is reflected in the number of sentences ranking the oracle

translation in the top position resulting in OBLEU and OMET scores different from the

BASELINE system in 100-best list. In fact, all systems show a decrease in their OBLEU
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and OMET scores, as observed previously in Section 3.6.1.

SYSTEM BLEU NIST METEOR WER PER OBLEU OMET
(a) devset

BASELINE 26.93 7.00 57.01 65.52 44.89 8.60 8.55
RESCOREDBPROD 26.85 6.99 56.92 65.48 44.92 8.30 8.70
RESCOREDMPROD 26.86 6.99 56.93 65.49 44.92 8.35 8.80
RESCOREDBSUM 25.29 6.71 57.26 68.46 46.97 8.40 8.35
RESCOREDMSUM 25.25 6.71 57.12 68.29 46.92 7.65 7.70

(b) testset
BASELINE 27.02 7.01 57.11 65.25 45.01 8.15 8.35
RESCOREDBPROD 27.04 7.02 57.12 65.14 44.93 8.25 8.75
RESCOREDMPROD 26.84 7.00 56.92 65.47 44.89 8.20 8.70
RESCOREDBSUM 25.90 6.78 57.74 67.83 46.83 7.35 8.95
RESCOREDMSUM 25.84 6.79 57.60 67.67 46.69 6.65 8.30

Table 3.18: Summary of the German→English translation system results for 250-best
list: (a) devset and (b) testset

Table 3.18 (a) gives system evaluation scores on oracle-based rescoring of 250-best

lists for German–English devset. Just like in the 100-best list, the BASELINE system

outperforms all four rescored systems on BLEU (with a statistically significant score of

26.93) and PER (with an error rate of 44.89) scores. Differing from the 100-best list, the

OBLEU also ranks the BASELINE system at the top with 8.60% sentences (i.e. 172 out of

2000 sentences) having BLEU-oracle translations in the 1-best position, followed by the

RESCOREDBSUM , RESCOREDMPROD, and RESCOREDBPROD systems having 168, 167,

and 166 BLEU-oracles in the 1-best position, respectively. However, one or more of our

rescoring systems performed well on the remaining four metrics:

• NIST: RESCOREDBPROD and RESCOREDMPROD perform at par with the BASE-

LINE

• METEOR: RESCOREDBSUM is the best-performing system with a statistically sig-

nificant value of 57.26

• WER: RESCOREDBPROD and RESCOREDMPROD perform slightly better than the

BASELINE
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• OMET: RESCOREDMPROD has the highest percentage of oracles in the 1-best po-

sition.

In contrast to 100-best list, the SUM rescoring (4th and 5th rows in Table 3.18 (a))

only beats the PROD rescoring (2nd and 3rd rows in Table 3.18 (a)) on METEOR scores

with a statistically significant value of 57.26. Unexpectedly, the OMET score seems to

favour the PROD systems which have lower METEOR scores than the SUM systems.

This observation will be discussed in some detail after observations of all the seven n-best

lists for German–English data. All other observations were similar to that of 100-best list

described above.

The results for rescoring 250-best outputs of testset appear in Table 3.18 (b). The

RESCOREDBPROD system performs at par (BLEU, NIST, METEOR) or significantly bet-

ter (WER, PER, OBLEU, OMET) than the BASELINE system across all metrics. The

RESCOREDBSUM system beats the BASELINE system as well as gives the best scores on

METEOR (statistically significant 57.74) and OMET (8.95%).

As observed in the 100-best list, the RESCOREDBSUM shows a greater improvement

over the BASELINE METEOR scores in testset (absolute difference of 0.63) than in devset

(absolute difference of 0.25). All other observations followed the same pattern as the 100-

best list as well. An analysis of the metric score trend with increasing n-best list size is

made after Table 3.23.

500-BEST LIST

In Tables 3.19 (a) and (b), we report on rescoring 500-best lists for devset and testset,

respectively. RESCOREDBSUM is the best-performing system (statistically significant)

on the METEOR metric with an absolute difference of 0.34 and 0.74 points from the

BASELINE on devset and testset, respectively. The second best-performing system on the

METEOR metric for both devset and testset is RESCOREDMSUM (devset: 57.08 points,

testset: 57.66 points). However, the SUM systems fail to outperform any other system

on any other metric, not even OMET and/or OBLEU as seen in 100-best and 250-best

German–English data.

This implies that even though a significant number of SUM system segments match
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SYSTEM BLEU NIST METEOR WER PER OBLEU OMET
(a) devset

BASELINE 26.93 7.00 57.01 65.52 44.89 6.25 7.05
RESCOREDBPROD 26.84 7.00 56.93 65.46 44.90 6.15 7.40
RESCOREDMPROD 26.84 7.00 56.92 65.47 44.89 6.10 7.40
RESCOREDBSUM 24.86 6.62 57.35 69.44 47.85 5.20 4.90
RESCOREDMSUM 24.77 6.63 57.08 69.15 47.59 5.15 5.05

(b) testset
BASELINE 27.02 7.01 57.11 65.25 45.01 6.55 7.05
RESCOREDBPROD 27.04 7.02 57.10 65.11 44.93 6.65 7.50
RESCOREDMPROD 27.07 7.02 57.12 65.10 44.92 6.60 7.45
RESCOREDBSUM 25.52 6.70 57.85 68.66 47.60 5.05 5.60
RESCOREDMSUM 25.50 6.72 57.66 68.36 47.34 4.35 4.85

Table 3.19: Summary of the German→English translation system results for 500-best
list: (a) devset and (b) testset

with the reference translation segments as per the system-level METEOR score, a major-

ity of them are not oracles (resulting in low OBLEU and OMET scores). More light will

be shed on this in the analysis section after describing the results of 5000-best lists.

On the devset (Table 3.19 (a)), we observe that RESCBPROD and RESCMPROD sys-

tems beat the BASELINE and give the best scores on WER and OMET, and perform at par

with the BASELINE system on NIST and PER. The BLEU score continues to be favour-

ing our baseline system. On the other hand, on the testset (Table 3.19 (b)), apart from

METEOR scores, the RESCOREDMPROD system seems to be the best system across all

metrics including BLEU.

Note since the BASELINE system remains unchanged across the varying n-best list

sizes (apart from the decreasing %age of oracles in rank 1: OBLEU, OMET scores),

the fact that the different rescoring systems are either performing at the same level or

outperforming (by more and more greater margins) our baseline system with increasing

n-best list sizes, lends support to the effectiveness of RESCsum and RESCprod rescoring

strategies.

Once again, our rescoring systems seem to fare better on the testset than on the devset,

as observed in 100-best and 250-best lists.
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750-BEST LIST

Table 3.20 (a) gives system evaluation scores on oracle-based rescoring of 750-best

lists for German–English devset. The best-performing system is RESCOREDBSUM as

scored by METEOR with a statistically significant value of 57.36 points. The PROD

systems perform at par with the BASELINE on NIST and PER and outperform the BASE-

LINE on WER and OMET. The largest improvement in pure numerical terms was seen

in RESCOREDBSUM with an absolute difference of 0.35 METEOR points (0.6%). Note

that the RESCOREDBSUM was also found to give worst performance on all other met-

rics. A manual analysis on why the METEOR scoring metric alone seems to favour

RESCOREDBSUM system shall be covered towards the end of this Section 3.6.2.

SYSTEM BLEU NIST METEOR WER PER OBLEU OMET
(a) devset

BASELINE 26.93 7.00 57.01 65.52 44.89 5.55 6.55
RESCOREDBPROD 26.83 7.00 56.94 65.46 44.88 5.25 6.65
RESCOREDMPROD 26.84 7.00 56.91 65.45 44.89 5.35 6.75
RESCOREDBSUM 24.66 6.56 57.36 70.08 48.41 3.45 4.20
RESCOREDMSUM 24.76 6.61 57.12 69.46 47.85 3.75 4.55

(b) testset
BASELINE 27.02 7.01 57.11 65.25 45.01 5.90 6.05
RESCOREDBPROD 27.08 7.03 57.12 65.08 44.88 5.95 6.40
RESCOREDMPROD 27.09 7.03 57.12 65.06 44.90 6.05 6.40
RESCOREDBSUM 25.16 6.63 57.78 69.40 48.29 3.75 4.05
RESCOREDMSUM 25.27 6.68 57.54 68.79 47.76 4.05 3.65

Table 3.20: Summary of the German→English translation system results for 750-best
list: (a) devset and (b) testset

The PROD rescoring (2nd and 3rd rows in Table 3.20 (a)) yields significantly better

translation results than the SUM rescoring (4th and 5th rows in Table 3.20 (a)) across all

metrics except METEOR scores.

When comparing rescoring of BLEU-oracles (rows 2 and 4 in Table 3.20 (a)) with

METEOR-oracles (rows 3 and 5 in Table 3.20 (a)), the PROD rescoring gives similar

performance (e.g. 56.94 METEOR points in RESCOREDBPROD against 56.91 METEOR

points in RESCOREDMPROD) while the SUM rescoring shows a larger degree of variation

with the RESCOREDMSUM as significantly better than RESCOREDBSUM on all metrics
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except the METEOR scores.

The results for rescoring 750-best outputs of testset appear in Table 3.20 (b). The

rescoring system with the lowest evaluation scores is RESCOREDBSUM as per all metrics

except the METEOR score. As observed in the devset, the best-performing system is

also RESCOREDBSUM as scored by METEOR (a 1.17% improvement over the baseline).

In contrast to the devset, RESCOREDMPROD and RESCOREDBPROD systems show slight

improvement / give at par performance with the baseline system on all metrics including

the BLEU score (0.07 points absolute improvement).

All other observations were similar to that seen in the devset. Moreover, when com-

paring performance of the rescoring systems on devset versus testset, we find that the

testset again gives better performance over the BASELINE system. For example, the

RESCOREDBPROD records a 0.13 PER points improvement over the BASELINE system

on the testset as opposed to a mere 0.01 PER points on the devset.

Note that as expected, most of these observations followed the same pattern as the

preceding n-best list sizes on German–English data.

1000-BEST LIST

SYSTEM BLEU NIST METEOR WER PER OBLEU OMET
(a) devset

BASELINE 26.93 7.00 57.01 65.52 44.89 5.15 6.15
RESCOREDBPROD 26.81 7.00 56.92 65.44 44.86 4.80 6.10
RESCOREDMPROD 26.82 7.00 56.92 65.44 44.86 4.95 6.20
RESCOREDBSUM 24.56 6.53 57.39 70.37 48.72 2.65 3.35
RESCOREDMSUM 24.53 6.57 57.14 69.83 48.20 2.75 3.10

(b) testset
BASELINE 27.02 7.01 57.11 65.25 45.01 5.50 5.50
RESCOREDBPROD 27.07 7.02 57.10 65.03 44.87 5.60 5.85
RESCOREDMPROD 27.10 7.03 57.13 65.02 44.85 5.60 5.85
RESCOREDBSUM 25.08 6.60 57.79 69.72 48.57 3.30 3.35
RESCOREDMSUM 25.17 6.66 57.58 69.09 47.98 3.55 3.30

Table 3.21: Summary of the German→English translation system results for 1000-best
list: (a) devset and (b) testset

Table 3.21 (a) gives system evaluation scores on oracle-based rescoring of 1000-best

lists for German–English devset. The best-performing systems are RESCOREDBPROD
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and RESCOREDMPROD because they give slightly better (WER, PER, OMET) or similar

performance (NIST) to the BASELINE system on all metrics except BLEU and METEOR.

Still, the largest improvement was seen in RESCOREDBSUM with an absolute difference

of 0.38 METEOR points (57.39 Vs BASELINE’s 57.01). However, overall (barring the

METEOR system scores), the SUM systems fared worse than the other systems.

When comparing rescoring of BLEU-oracles (rows 2 and 4 in Table 3.21 (a)) with

METEOR-oracles (rows 3 and 5 in Table 3.21 (a)), the SUM rescoring systems show a

larger degree of variation especially on the METEOR (favouring BLEU-oracles), WER

(favouring METEOR-oracles), and PER (favouring METEOR-oracles) metrics.

The results for rescoring 1000-best outputs of testset appear in Table 3.21 (b). The

best-performing system is RESCOREDMPROD with respect to BLEU, NIST, WER, PER,

OBLEU, OMET scores, and RESCOREDBSUM with respect to METEOR scores (statisti-

cally significant). The largest improvement was seen in RESCOREDBSUM with an abso-

lute difference of 0.68 METEOR points (1.2% improvement over the baseline).

Note that all these observations followed the same pattern as the preceding n-best list

sizes on German–English data.

2500-BEST LIST

SYSTEM BLEU NIST METEOR WER PER OBLEU OMET
(a) devset

BASELINE 26.93 7.00 57.01 65.52 44.89 4.25 4.85
RESCOREDBPROD 26.83 7.00 56.94 65.38 44.81 3.85 4.70
RESCOREDMPROD 26.82 7.00 56.92 65.37 44.80 3.90 4.75
RESCOREDBSUM 24.02 6.44 57.21 71.37 49.55 2.00 1.45
RESCOREDMSUM 24.17 6.49 57.11 70.78 49.08 2.15 1.50

(b) testset
BASELINE 27.02 7.01 57.11 65.25 45.01 4.40 4.50
RESCOREDBPROD 27.09 7.03 57.10 64.99 44.84 4.45 4.65
RESCOREDMPROD 27.11 7.03 57.11 64.97 44.82 4.45 4.65
RESCOREDBSUM 24.66 6.53 57.74 70.70 49.31 1.85 2.75
RESCOREDMSUM 24.68 6.56 57.54 70.26 48.89 1.85 2.90

Table 3.22: Summary of the German→English translation system results for 2500-best
list: (a) devset and (b) testset

Table 3.22 (a) gives system evaluation scores on oracle-based rescoring of 2500-best
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lists for German–English devset. The RESCOREDBSUM scores the highest on METEOR

(57.21 points) while RESCOREDMPROD scores the best on WER (65.37 points) and PER

(44.80 points) metrics.

Again, the PROD rescoring (2nd and 3rd rows in Table 3.22 (a)) yields better transla-

tion results than the SUM rescoring (4th and 5th rows in Table 3.22 (a)) across all metrics

(BLEU, NIST, WER, PER, OBLEU, and OMET) except METEOR scores.

The results for rescoring 2500-best outputs of testset appear in Table 3.22 (b). The

RESCOREDBPROD system gives a statistically significant improvement over BASELINE

on BLEU (0.3%), WER (0.43%), and PER (0.42%) metrics, while the RESCOREDBSUM

gives a statistically significant improvement over BASELINE on METEOR metric (1.1%).

When comparing performance of the rescoring systems on devset versus testset, we

find that again the testset shows a greater degree of improvement over the BASELINE

system than the devset.

Note that all these observations followed the same pattern as the preceding n-best list

sizes on German–English data, even if some metrics record a slightly lower score than the

corresponding systems in a smaller n-best list.

5000-BEST LIST

Table 3.23 (a) and (b) give system evaluation scores on oracle-based rescoring of

5000-best lists for German–English devset and testset, respectively. All PB-SMT system

behaviour adhere to the same pattern as that seen in the preceding n-best list sizes of

German-English data.

The RESCOREDBSUM system once again gives the best performance on METEOR

(0.38 points improvement over the BASELINE on devset and 0.68 points improvement

over the BASELINE on testset). While the RESCOREDMPROD system is unable to outper-

form the BASELINE on devset as per BLEU and NIST, it successfully beats the BASELINE

system on testset across all metrics.

SUMMARY

Having reported on the performance of rescoring systems in individual n-best lists,

we would now like to comment on any general trends observed in German–English trans-
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SYSTEM BLEU NIST METEOR WER PER OBLEU OMET
(a) devset

BASELINE 26.93 7.00 57.01 65.52 44.89 3.95 4.30
RESCOREDBPROD 26.83 7.01 56.93 65.32 44.78 3.60 4.05
RESCOREDMPROD 26.81 7.00 56.92 65.36 44.80 3.60 4.05
RESCOREDBSUM 23.63 6.36 57.23 72.34 50.56 1.10 1.15
RESCOREDMSUM 23.78 6.43 57.07 71.39 49.67 1.25 1.20

(b) testset
BASELINE 27.02 7.01 57.11 65.25 45.01 3.80 4.10
RESCOREDBPROD 27.11 7.04 57.11 64.95 44.79 3.85 4.25
RESCOREDMPROD 27.12 7.04 57.12 64.95 44.81 3.80 4.15
RESCOREDBSUM 24.20 6.44 57.62 71.74 50.30 1.25 1.75
RESCOREDMSUM 24.32 6.50 57.42 70.97 49.53 1.25 1.60

Table 3.23: Summary of the German→English translation system results for 5000-best
list: (a) devset and (b) testset

lation systems as a whole. Table 3.24 summarises the performance of our rescoring

systems on German–English data by listing the best-performing systems in each of the

seven n-best lists (rows: 100-best, 250-best, 500-best, 750-best, 1000-best, 2500-best,

and 5000-best) for each of the seven evaluation metrics (columns: BLEU, NIST, ME-

TEOR, WER, PER, OBLEU, and OMET). The table is divided into two sections: (a) de-

vset and (b) testset. The abbreviations used for each of the five systems are as follows: B

(BASELINE), bP (RESCOREDBPROD), mP (RESCOREDMPROD), bS (RESCOREDBSUM ),

and mS (RESCOREDMSUM ).

It is clearly evident from Table 3.24, that a general pattern is followed across in-

creasing n-best lists and that the performance is consistent for a specific metric. For

example, the RESCOREDBSUM is consistently the best-performing system on METEOR

across all n-best list sizes on both the devset and testset. We also note that although the

RESCOREDBSUM is the best-performing system as per METEOR scores, it gives one of

the lowest performances on the BLEU score. One possible reason for this is that the

METEOR scores are computed using both precision and recall while the BLEU score is

purely a precision-based metric. It was discovered that RESCOREDBSUM tends to have a

higher recall and a lower precision than the RESCOREDBPROD system.

Another important observation is that more rescoring systems outperform the baseline
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SYSTEM BLEU NIST METEOR WER PER OBLEU OMET
(a) devset

100-BEST B B bS mP B bS bS
250-BEST B B bS bP B B mP
500-BEST B B, bP, mP bS bP B, mP B bP, mP
750-BEST B B, bP, mP bS mP bP B mP
1000-BEST B B, bP, mP bS bP, mP bP, mP B mP
2500-BEST B B, bP, mP bS mP mP B B
5000-BEST B bP bS bP bP B B

(b) testset
100-BEST mP B, bP, mP bS mP mP bS bS
250-BEST bP bP bS bP mP bP bS
500-BEST mP bP, mP bS mP mP bP bP
750-BEST mP bP, mP bS mP bP mP bP, mP
1000-BEST mP mP bS mP mP bP, mP bP, mP
2500-BEST mP bP, mP bS mP mP bP, mP bP, mP
5000-BEST mP bP, mP bS bP, mP bP bP bP

Table 3.24: Summary of the best-performing German→English translation systems
across all n-best lists: (a) devset and (b) testset

(B) on the testset than on the devset.

In addition to identifying the best-performing systems, we also note the general trend

of a metric with increasing n-best list sizes for each of the five systems. Figure 3.10

shows this phenomenon for the BLEU score on the testset. Both RESCOREDBSUM and

RESCOREDMSUM perform at a lower level than the remaining three systems. Also, the

RESCOREDBPROD and RESCOREDMPROD systems are give similar performance to the

BASELINE system (black line), even outperforming on larger n-best lists.

Figure 3.10: Line graph to show the trends of the five PB-SMT systems for BLEU score
with increasing n-best list sizes: Europarl data, German–English, testset.
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Figure 3.11: Line graph to show the trends of the five PB-SMT systems for METEOR
score with increasing n-best list sizes: Europarl data, German–English, testset.

In Figure 3.11, we plot the METEOR performance of the four rescoring systems

and the baseline system for each of the seven n-best list sizes. Here, the behaviour is

somewhat reverse what was observed on the BLEU metric. The RESCOREDBPROD and

RESCOREDMPROD give once again similar performance to the BASELINE but perform at

a lower level than the RESCOREDBSUM and RESCOREDMSUM systems, which is opposite

that on the BLEU metric in Figure 3.10.

Figures 3.12 and 3.13 plot the percentage of oracles with respect to BLEU and ME-

TEOR, respectively against n-best list sizes for all five systems. Note that the phenomenon

of decreasing values with increasing n-best lists is seen across all metrics but is particu-

larly prominent in the OBLEU and OMET trends. The number of oracles in the 1-best

position severely reduces as we approach 5000-best lists. However, since this trend is

uniform across all systems and will be confirmed in other language pairs, we can con-

clude that as the n-best list size is increased, more accurate translations (the oracles) are

discovered. This implies that the complexity of the rescoring problem increases with the

n-best list size.

The RESCOREDBSUM and RESCOREDMSUM systems were outperforming the remain-

ing three systems for 100-best lists and gradually dropped much below as the n-best list

increased. This is despite the fact that these systems continued outperforming the other

systems on METEOR scores. We reiterate that the OBLEU and OMET scores measure

different things than the other five metrics. While BLEU, NIST, METEOR, WER, and
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Figure 3.12: Line graph to show the trends of the five PB-SMT systems for OBLEU
score with increasing n-best list sizes: Europarl data, German–English, testset.

Figure 3.13: Line graph to show the trends of the five PB-SMT systems for OMET score
with increasing n-best list sizes: Europarl data, German–English, testset.
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PER measure the similarity of the output (sentence ranked at the top position) to the

reference translation, OMET and OBLEU merely count how many of these first ranked

sentences are most similar to the reference from amongst the entire n-best list search

space. Hence, a system can give a high similarity score (system level METEOR) and still

have only a low percentage of these sentences as oracles (most similar to the reference

translation).

3.6.3 Spanish to English

In this section, we report on rescoring n-best lists when translating the test2006 (devset)

and test2008 (testset) datasets from Spanish into English. We evaluate the performance of

our RESCprod and RESCsum rescoring strategies by pitting the translation system scores

of the four rescoring systems (RESCOREDBPROD, RESCOREDMPROD, RESCOREDBSUM ,

and RESCOREDMSUM ) against the BASELINE system. We also make observations on

whether the RESCprod yields better results than RESCsum or vice versa. Another compari-

son criterion is whether the BLEU-oracles are more effective in rescoring than METEOR-

oracles or vice versa. These results are tested using seven evaluation metrics (BLEU,

NIST, METEOR, WER, PER, OBLEU, OMET) on seven n-best lists of increasing sizes

from 100-best to 5000-best. We will end this section with a summary by commenting on

the general trend, if any, seen in all seven n-best lists and whether this trend is similar

to that seen in the PB-SMT systems form French→ English (Section 3.6.1) and German

→English (Section 3.6.2) language directions.

100-BEST LIST

Table 3.25 (a) gives system evaluation scores on oracle-based rescoring of 100-best

lists for Spanish–English devset. The BASELINE system outperforms all four rescored

systems on BLEU (with a statistically significant score of 32.98) and WER (with an error

rate of 56.50) scores, gives similar performance to the RESCBPROD and RESCMPROD sys-

tems on NIST (7.80 Vs 7.79)and PER (40.68 Vs 40.69) scores, and is outperformed by the

RESCOREDBSUM and RESCOREDMSUM systems on METEOR. The RESCOREDBSUM

system outperforms the BASELINE on METEOR with an absolute difference of 0.08
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points.

Surprisingly, none of the four rescored systems outperform the BASELINE system as

far as the percentage of oracles (with respect to BLEU and METEOR) in rank 1, i.e.

OBLEU and OMET respectively, is concerned.

SYSTEM BLEU NIST METEOR WER PER OBLEU OMET
(a) devset

BASELINE 32.98 7.80 61.99 56.50 40.68 32.45 33.80
RESCOREDBPROD 32.91 7.79 61.94 56.55 40.69 32.20 33.40
RESCOREDMPROD 32.91 7.79 61.94 56.55 40.69 32.30 33.50
RESCOREDBSUM 32.35 7.68 62.07 57.26 41.21 31.80 31.70
RESCOREDMSUM 32.46 7.70 61.95 57.18 41.15 31.25 31.90

(b) testset
BASELINE 32.88 7.88 61.95 56.03 40.12 33.05 33.20
RESCOREDBPROD 32.88 7.88 61.95 56.02 40.15 32.80 32.70
RESCOREDMPROD 32.88 7.87 61.95 56.03 40.15 32.95 32.85
RESCOREDBSUM 32.85 7.79 62.17 56.58 40.54 31.85 32.25
RESCOREDMSUM 32.94 7.82 62.11 56.36 40.36 31.50 31.90

Table 3.25: Summary of the Spanish→English translation system results for 100-best
list: (a) devset and (b) testset

The PROD rescoring (2nd and 3rd rows in Table 3.25 (a)) yields better translation

results than the SUM rescoring (4th and 5th rows in Table 3.25 (a)) on all metrics (BLEU,

NIST, WER, PER, OBLEU, OMET) except the METEOR scores.

When comparing rescoring of BLEU-oracles (rows 2 and 4 in Table 3.25 (a)) with

METEOR-oracles (rows 3 and 5 in Table 3.25 (a)), the PROD rescoring (RESCOREDBPROD

Vs RESCOREDMPROD) gives similar performance (i.e. exactly same figures for all met-

rics) while the SUM rescoring shows a larger degree of variation with the RESCOREDMSUM

as significantly better than RESCOREDBSUM on most metrics.

Table 3.25 (b) gives translation results on oracle-based rescoring of 100-best lists for

Spanish–English testset. The BASELINE system is outperformed by one or more of the

four rescored systems across all evaluation metrics except the PER ( not statistically sig-

nificant) score. In contrast to 100-best list of German–English data, the BASELINE system

records the highest number of oracles in the 1-best position (highest OBLEU and OMET

scores). Whether this is an anomaly or is characteristic of the Spanish–English data re-
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mains to be seen.

Both the RESCOREDBPROD and RESCOREDMPROD systems perform at the same

level as the BASELINE on BLEU (with 32.88 points), NIST (with 7.88 points), and WER

(56.03 points). However, the SUM rescoring systems score the highest on both BLEU and

METEOR with the RESCOREDMSUM outperforming the BASELINE with 32.94 BLEU

points (0.2 % difference) and the RESCOREDBSUM reporting the highest METEOR score

(62.17 points statistically significant) with an absolute difference of 0.22 or 0.35% over

the BASELINE system

The PROD rescoring (2nd and 3rd rows in Table 3.25 (b)) gives better translation

results than the SUM rescoring with respect to NIST, WER, PER, OBLEU, and OMET

scores while the SUM rescoring (4th and 5th rows in Table 3.25 (b)) beats the PROD

rescoring on the remaining metrics, namely BLEU and METEOR scores. When compar-

ing rescoring of BLEU-oracles (rows 2 and 4 in Table 3.25 (b)) with METEOR-oracles

(rows 3 and 5 in Table 3.25 (b)), the PROD rescoring gives similar performance (e.g.

56.02 WER points in RESCOREDBPROD against 56.03 WER points in RESCOREDMPROD)

while the SUM rescoring shows a larger degree of variation with the RESCOREDMSUM as

significantly better than RESCOREDBSUM (e.g. 32.94 BLEU points in RESCOREDMSUM

against 32.85 BLEU points in RESCOREDBSUM ) . Both these observations are the same

as that seen on the devset in Table 3.25 (a).

An important observation is that as observed on German–English, the difference in

these scores between the baseline and the rescoring systems is reduced when moving

from devset to testset. Moreover, the RESCOREDBSUM shows a greater improvement

over the BASELINE METEOR scores in testset (absolute difference of 0.22) than in devset

(absolute difference of 0.08). This leads credence to our claim that our rescoring strategies

have a good learnability. Additionally, one of our rescoring systems (RESCOREDMSUM )

achieves the best BLEU score on the testset, which was not seen on other language pairs

on the 100-best list. Most of the other observations however adhered to the same pattern

of preceding language pairs.
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250-BEST LIST

As observed in French → English (Section 3.6.1) and German → English (Section

3.6.2), the BASELINE system remains unchanged with regards to its translation output

and therefore gives the same results on BLEU, NIST, METEOR, WER, and PER scores.

The only difference is in the size of the n-best list which in turn is reflected in the number

of sentences ranking the oracle translation in the top position resulting in OBLEU and

OMET scores different from the BASELINE system in 100-best list. In fact, all systems

show nearly a 10% decrease in their OBLEU and OMET scores, which is similar to the

pattern (albeit a higher difference in Spanish→ English) observed on French→English

and German→English in Section 3.6.1 and Section 3.6.2, respectively.

SYSTEM BLEU NIST METEOR WER PER OBLEU OMET
(a) devset

BASELINE 32.98 7.80 61.99 56.50 40.68 22.90 24.10
RESCOREDBPROD 32.92 7.79 61.93 56.52 40.68 23.00 24.10
RESCOREDMPROD 32.91 7.79 61.93 56.52 40.68 23.10 24.10
RESCOREDBSUM 32.17 7.64 62.10 57.56 41.40 23.00 22.55
RESCOREDMSUM 32.30 7.66 62.04 57.43 41.30 22.45 23.45

(b) testset
BASELINE 32.88 7.88 61.95 56.03 40.12 23.95 23.70
RESCOREDBPROD 32.91 7.88 61.99 56.00 40.15 23.95 23.70
RESCOREDMPROD 32.88 7.87 61.96 56.01 40.17 23.75 23.40
RESCOREDBSUM 32.69 7.76 62.24 56.77 40.72 21.95 22.35
RESCOREDMSUM 32.74 7.78 62.18 56.68 40.61 21.75 22.55

Table 3.26: Summary of the Spanish→English translation system results for 250-best
list: (a) devset and (b) testset

Table 3.26 (a) gives system evaluation scores on oracle-based rescoring of 250-best

lists for Spanish–English devset. Just like in the 100-best list, the BASELINE system

outperforms all four rescored systems on BLEU (with a statistically significant score of

32.98) and WER (with an error rate of 56.50) scores. Differing from the 100-best list, the

BASELINE system no longer exclusively holds the highest OBLEU and OMET scores.

The RESCOREDMPROD appears to have the highest percentage of both BLEU-oracles

(OBLEU: 23.10%) and METEOR-oracles (OMET: 24.10%) in the 1-best position.

As expected from preceding datasets and language pairs, RESCOREDBSUM is the is
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the best-performing system on METEOR with a statistically significant value of 62.10.

RESCOREDBPROD and RESCOREDMPROD perform at par with the BASELINE on NIST

and PER.

Similar to 100-best list, the SUM rescoring (4th and 5th rows in Table 3.26 (a)) only

beats the PROD rescoring (2nd and 3rd rows in Table 3.26 (a)) on METEOR scores. Also

note that from 100-best to 250-best, the SUM systems appear to give worse scores on all

metrics except METEOR, while the PROD systems essentially demonstrate similar eval-

uation scores. For example, the RESCOREDBSUM system scores 32.17 BLEU points on

250-best and 32.35 BLEU points on 100-best. A possible explanation for such behaviour

may be found in contrasting the individual parameters (lambdas) of specific features for

these systems. This is dealt with in Section 3.7. All other observations were similar to

that of 100-best list described above.

The results for rescoring 250-best outputs of testset appear in Table 3.26 (b). The

RESCOREDBPROD system performs at par with the BASELINE system (NIST, OBLEU,

OMET) or slightly better than the BASELINE system (BLEU, METEOR, WER) across

all metrics. The RESCOREDBSUM system beats the BASELINE system as well as gives

the best scores on METEOR (statistically significant 62.24).

As observed in the 100-best list, the RESCOREDBSUM shows a greater improvement

over the BASELINE METEOR scores in testset (absolute difference of 0.29) than in devset

(absolute difference of 0.11). However, on all other metrics the scores recorded for the

SUM systems are lower on the 250-best testset than on 100-best testset, similar to the

pattern seen in 250-best devset from 100-best devset.

Apart from the fact that RESCOREDMSUM is not the best-performing system for testset

on the BELU metric, all other observations followed the same pattern as the 100-best list

as well. An analysis of the metric score trend with increasing n-best list size is made after

Table 3.32.

500-BEST LIST

In Tables 3.27 (a) and (b), we report on rescoring 500-best lists for devset and testset,

respectively. RESCOREDBSUM is the best-performing system (statistically significant)
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on the METEOR metric with an absolute difference of 0.10 and 0.31 points over the

BASELINE on devset and testset, respectively.

Surprisingly, the second best-performing system on the METEOR metric for devset

is BASELINE and not RESCOREDMSUM , as seen previously. The difference in the scores

of BASELINE and RESCOREDMSUM is mere 0.02 METEOR points. However, on testset,

the second best-performing system as per METEOR metric is RESCOREDMSUM (62.10

points; absolute difference of 0.15 over the BASELINE). In contrast to 100-best and

250-best lists, the RESCOREDMSUM system also scores one of the highest percentage

of METEOR-oracles in the 1-best position (devset: 18.55%; testset: 20.00%).

SYSTEM BLEU NIST METEOR WER PER OBLEU OMET
(a) devset

BASELINE 32.98 7.80 61.99 56.50 40.68 18.35 18.35
RESCOREDBPROD 32.90 7.78 61.93 56.52 40.67 18.20 18.55
RESCOREDMPROD 32.92 7.79 61.95 56.51 40.66 18.35 18.55
RESCOREDBSUM 32.06 7.62 62.09 57.67 41.49 17.35 17.85
RESCOREDMSUM 32.26 7.65 61.97 57.46 41.38 17.70 18.55

(b) testset
BASELINE 32.88 7.88 61.95 56.03 40.12 18.95 19.45
RESCOREDBPROD 32.88 7.87 61.98 56.01 40.16 18.45 19.15
RESCOREDMPROD 32.88 7.87 61.97 56.02 40.18 18.40 19.00
RESCOREDBSUM 32.67 7.75 62.26 56.89 40.82 17.60 19.05
RESCOREDMSUM 32.71 7.77 62.10 56.73 40.68 17.80 20.00

Table 3.27: Summary of the Spanish→English translation system results for 500-best
list: (a) devset and (b) testset

On the devset (Table 3.27 (a)), we observe that RESCBPROD and RESCMPROD sys-

tems beat the BASELINE (give the best scores as well) on PER and OMET, and per-

form slightly worse (not statistically significant) than the BASELINE system on NIST and

WER.

The BASELINE system outperforms all other systems on the BLEU score (32.98

points; absolute difference of 0.06 points over RESCMPROD, the second best-performing

system). On the other hand, on the testset (Table 3.27 (b)), both the RESCMPROD and

RESCBPROD systems achieve the same BLEU accuracy as the BASELINE system at 32.88

points.

90



The highest percentage of BLEU-oracles in the 1-best position (OBLEU) was recorded

by the BASELINE on both devset and testset, together with the RESCOREDMPROD system

on devset.

Note that the BASELINE system remains unchanged across the varying n-best list

sizes (apart from the decreasing percentage of oracles in rank 1: OBLEU, OMET scores).

The RESCOREDBPROD and RESCOREDMPROD systems give similar performance from

100-best to 500-best lists. On the contrary, the RESCOREDBSUM and RESCOREDMSUM

systems appear to worsen on all metrics except METEOR scores from 100-best to 250-

best to 500-best lists. A possible reason is that the RESCsum rescoring strategy unlike

RESCprod rescoring strategy is not robust enough for increasing n-best lists. Whether this

pattern is visible in other language pairs and datasets remains to be seen and shall be

addressed under comparative analysis (cf. Section 3.11).

Once again, our rescoring systems seem to fare better on the testset than on the devset,

as observed in 100-best and 250-best lists.

750-BEST LIST

Table 3.28 (a) gives system evaluation scores on oracle-based rescoring of 750-best

lists for Spanish–English devset. The best-performing system is RESCOREDBSUM as

scored by METEOR with a statistically significant value of 62.09 points. The largest

improvement in pure numerical terms was also seen in RESCOREDBSUM with an absolute

difference of 0.10 METEOR points (0.16%) over the baseline. Note that despite this,

the RESCOREDBSUM was found to give worst performance on all other metrics. This

particular trait has also been observed on the German–English data and will be analysed

under summary at the end of this Section 3.6.3.

From the Table 3.28 (a), it can be seen that the PROD systems perform at par with the

BASELINE on NIST and WER, and outperform the BASELINE on PER and OMET.

The PROD rescoring (2nd and 3rd rows in Table 3.28 (a)) yields significantly better

translation results than the SUM rescoring (4th and 5th rows in Table 3.28 (a)) across

all metrics except METEOR scores. For example, the RESCOREDBPROD system outper-

forms the RESCOREDBSUM with an absolute difference of 0.95 BLEU points (2.9%). On
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SYSTEM BLEU NIST METEOR WER PER OBLEU OMET
(a) devset

BASELINE 32.98 7.80 61.99 56.50 40.68 15.75 15.95
RESCOREDBPROD 32.92 7.79 61.93 56.50 40.66 15.65 16.30
RESCOREDMPROD 32.92 7.79 61.95 56.51 40.66 15.70 16.35
RESCOREDBSUM 31.97 7.60 62.09 57.84 41.63 15.10 16.05
RESCOREDMSUM 32.05 7.61 62.02 57.72 41.53 15.25 16.25

(b) testset
BASELINE 32.88 7.88 61.95 56.03 40.12 16.00 17.35
RESCOREDBPROD 32.86 7.87 61.95 56.04 40.19 15.75 17.25
RESCOREDMPROD 32.87 7.87 61.96 56.03 40.19 15.75 17.15
RESCOREDBSUM 32.51 7.72 62.23 57.06 40.97 15.50 16.75
RESCOREDMSUM 32.48 7.73 62.06 56.99 40.91 15.20 16.75

Table 3.28: Summary of the Spanish→English translation system results for 750-best
list: (a) devset and (b) testset

the other hand, the RESCOREDBSUM improves over the METEOR scores of RESCBPROD

by a mere 0.16 points (0.25%). Therefore on 750-best lists, the RESCprod rescoring strat-

egy is far more effective than the RESCsum rescoring strategy.

When comparing rescoring of BLEU-oracles (rows 2 and 4 in Table 3.28 (a)) with

METEOR-oracles (rows 3 and 5 in Table 3.28 (a)), the PROD rescoring gives similar

performance (e.g. 61.93 METEOR points in RESCOREDBPROD against 61.95 METEOR

points in RESCOREDMPROD) while the SUM rescoring shows a larger degree of variation

with the RESCOREDMSUM as significantly better than RESCOREDBSUM on all metrics

except the METEOR scores.

The results for rescoring 750-best outputs of testset appear in Table 3.28 (b). As

observed in the devset, the best-performing system is RESCOREDBSUM as scored by ME-

TEOR (a 0.45% improvement over the baseline). In contrast to the devset, RESCMPROD

and RESCOREDBPROD systems give at par performance with the baseline system on all

similarity-based metrics except the Position-independent Word Error Rate (PER).

All other observations were similar to that seen in the devset. Moreover, when com-

paring performance of the rescoring systems on devset versus testset, we find that the

testset again gives better performance over the BASELINE system. For example, the

RESCOREDBSUM is only 0.37 BLEU points below the BASELINE system on the testset
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as opposed to a whole 1 BLEU point on the devset.

Note that as expected, most of these observations followed the same pattern as the

preceding n-best list sizes on Spanish–English data.

1000-BEST LIST

SYSTEM BLEU NIST METEOR WER PER OBLEU OMET
(a) devset

BASELINE 32.98 7.80 61.99 56.50 40.68 13.95 14.40
RESCOREDBPROD 32.92 7.79 61.92 56.52 40.67 14.05 14.80
RESCOREDMPROD 32.92 7.79 61.93 56.52 40.66 14.00 14.70
RESCOREDBSUM 31.83 7.57 62.15 58.06 41.79 13.65 14.35
RESCOREDMSUM 31.99 7.60 61.99 57.84 41.62 13.70 14.65

(b) testset
BASELINE 32.88 7.88 61.95 56.03 40.12 14.60 16.00
RESCOREDBPROD 32.84 7.87 61.94 56.04 40.21 14.10 15.70
RESCOREDMPROD 32.85 7.87 61.94 56.04 40.19 14.10 15.55
RESCOREDBSUM 32.29 7.68 62.21 57.31 41.19 14.15 15.60
RESCOREDMSUM 32.46 7.71 62.07 57.07 41.00 13.95 15.70

Table 3.29: Summary of the Spanish→English translation system results for 1000-best
list: (a) devset and (b) testset

Table 3.29 (a) gives system evaluation scores on oracle-based rescoring of 1000-best

lists for Spanish–English devset. Apart from the RESCOREDBSUM on METEOR, none

of our four rescoring systems seem to outperform the BASELINE system. This behaviour

appears to be prevalent in Spanish–English data unlike German–English data. However,

the BASELINE system remained the top performing system on the BLEU metric alone.

The RESCOREDBPROD and RESCOREDMPROD systems give similar performance to

the BASELINE on NIST, WER, and PER. This is also reflected in these two systems

scoring the highest percentage of oracles at rank 1 (OBLEU, OMET). The largest im-

provement on the MT evaluation metrics was seen in RESCOREDBSUM with an absolute

difference of 0.16 METEOR points (62.15.39 Vs BASELINE’s 61.99). However, overall

(barring the METEOR system scores), the SUM systems fared worse than the remaining

three systems, another common observation across n-best lists of Spanish–English and

German–English data.

When comparing rescoring of BLEU-oracles (rows 2 and 4 in Table 3.29 (a)) with
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METEOR-oracles (rows 3 and 5 in Table 3.29 (a)), the SUM rescoring systems show a

larger degree of variation especially on the METEOR (favouring BLEU-oracles), WER

(favouring METEOR-oracles), and PER (favouring METEOR-oracles) metrics.

The results for rescoring 1000-best outputs of testset appear in Table 3.29 (b). The

best-performing system on BLEU, PER, OBLEU, and OMET is the BASELINE, while

the best-performing system on METEOR is RESCOREDBSUM (statistically significant).

The largest improvement was seen in RESCOREDBSUM with an absolute difference of

0.26 METEOR points (0.4% improvement over the baseline).

Note that all these observations followed the same pattern as the preceding 750-best

list on Spanish–English data.

2500-BEST LIST

SYSTEM BLEU NIST METEOR WER PER OBLEU OMET
(a) devset

BASELINE 32.98 7.80 61.99 56.50 40.68 9.25 10.30
RESCOREDBPROD 32.91 7.78 61.91 56.54 40.68 9.60 10.85
RESCOREDMPROD 32.92 7.79 61.92 56.50 40.66 9.60 10.95
RESCOREDBSUM 31.40 7.49 62.08 58.73 42.35 9.30 10.10
RESCOREDMSUM 31.42 7.48 62.07 58.73 42.41 9.25 10.20

(b) testset
BASELINE 32.88 7.88 61.95 56.03 40.12 10.40 11.65
RESCOREDBPROD 32.83 7.86 61.94 56.06 40.20 10.30 11.40
RESCOREDMPROD 32.85 7.87 61.95 56.03 40.18 10.30 11.50
RESCOREDBSUM 31.81 7.60 62.10 57.94 41.72 9.15 9.50
RESCOREDMSUM 31.78 7.59 62.06 58.03 41.83 9.05 9.70

Table 3.30: Summary of the Spanish→English translation system results for 2500-best
list: (a) devset and (b) testset

Table 3.30 (a) gives system evaluation scores on oracle-based rescoring of 2500-best

lists for Spanish–English devset. The RESCOREDBSUM scores the highest on METEOR

(62.08 points) while RESCOREDMPROD scores the best on PER (40.66 points). The

RESCOREDMPROD also scores the highest percentage of BLEU-oracles (OBLEU: 9.60%)

and METEOR-oracle (OMET: 10.95%).

Again, the PROD rescoring (2nd and 3rd rows in Table 3.30 (a)) yields better transla-

tion results than the SUM rescoring (4th and 5th rows in Table 3.30 (a)) across all metrics
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(BLEU, NIST, WER, PER, OBLEU, and OMET) except METEOR scores.

The results for rescoring 2500-best outputs of testset appear in Table 3.30 (b). As with

other n-best lists on Spanish–English data, BASELINE remains the top scoring system as

per the BLEU and PER metrics. The RESCOREDBSUM gives a statistically significant

improvement over BASELINE on METEOR metric (0.24%).

When comparing performance of the rescoring systems on devset versus testset, we

find that again the testset shows a greater degree of improvement against the BASELINE

system than the devset. Table 3.31 illustrates this by comparing the percentage of increase

or decrease in the scores of RESCOREDBSUM over the BASELINE. This implies that

under-performing rescoring systems score closer to the baseline score on the testset than

on the devset (contrast a margin of 3.25% BLEU on testset with 4.79% below BASELINE’s

BLEU on devset), and superior rescoring systems beat the baseline by a larger margin on

the testset than on the devset (contrast an improvement margin of 0.24% METEOR on

testset with 0.15% above BASELINE’s METEOR on devset).

CATEGORY DEVSET TESTSET
BELU 4.79% ↓ 3.25% ↓
METEOR 0.15% ↑ 0.24% ↑

Table 3.31: Margin of difference in the BLEU and METEOR performance scores of
RESCOREDBSUM and BASELINE: Spanish–English 2500-best list

Note that all these observations followed the same pattern as the preceding n-best list

sizes on Spanish–English data, even if some metrics record a slightly lower score than the

corresponding systems in a smaller n-best list.

5000-BEST LIST

Table 3.32 (a) and (b) give system evaluation scores on oracle-based rescoring of

5000-best lists for Spanish–English devset and testset, respectively. All PB-SMT system

behaviour adhere to the same pattern as that seen in the preceding n-best list sizes of

Spanish-English data.

The RESCOREDBSUM system once again gives the best performance on METEOR

(0.18 points improvement over the BASELINE on devset and 0.17 points improvement
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SYSTEM BLEU NIST METEOR WER PER OBLEU OMET
(a) devset

BASELINE 32.98 7.80 61.99 56.50 40.68 7.20 8.00
RESCOREDBPROD 32.91 7.79 61.90 56.52 40.67 7.60 8.65
RESCOREDMPROD 32.91 7.79 61.90 56.51 40.67 7.65 8.60
RESCOREDBSUM 30.84 7.39 62.17 59.67 43.19 5.05 6.00
RESCOREDMSUM 30.89 7.40 62.17 59.60 43.17 5.10 6.05

(b) testset
BASELINE 32.88 7.88 61.95 56.03 40.12 8.50 9.20
RESCOREDBPROD 32.79 7.86 61.92 56.07 40.23 8.40 8.95
RESCOREDMPROD 32.80 7.87 61.93 56.04 40.18 8.40 8.90
RESCOREDBSUM 31.23 7.48 62.12 58.86 42.55 5.90 5.40
RESCOREDMSUM 31.22 7.48 62.05 58.92 42.59 5.80 5.70

Table 3.32: Summary of the Spanish→English translation system results for 5000-best
list: (a) devset and (b) testset

over the BASELINE on testset). Note that the improvement on testset is of the same

margin as on devset and not greater unlike on all smaller n-best lists.

The RESCOREDMPROD system achieves similar scores to the BASELINE system on

devset as per the NIST, WER, and PER. The RESCOREDMPROD system achieves similar

scores to the BASELINE system on testset as per the NIST and WER. The PROD systems

successfully beat the BASELINE system on devset in the percentage of both BLEU-oracles

and METEOR-oracles in the 1-best position. However, on the testset, the BASELINE

system retains the highest OBLEU and OMET percentages albeit by a lower margin.

SUMMARY

Having reported on the performance of rescoring systems in individual n-best lists,

we would now comment on any general trends observed in Spanish–English translation

systems as a whole. The empirical evidence in the form of MT evaluation results on seven

n-best lists for two datasets (devset, testset) would help us in answering the following

questions about rescoring in Spanish–English:

• Which is the best-performing and worst performing system across the n-best lists

of Spanish–English devset and testset?

• Do one or more of the rescoring systems improve over the baseline consistently?

96



• Which metric favours which type of system: RESCsum or RESCprod?

• How do the evaluation scores fare with increasing n-best list sizes for all systems?

Note that this subsection only deals with Spanish–English performance and all com-

parisons across different language pairs shall be addressed in Section 3.11.

SYSTEM BLEU NIST METEOR WER PER OBLEU OMET
(a) devset

100-BEST B B bS B B B B
250-BEST B B bS B B, bP, mP mP B, bP, mP
500-BEST B B bS B mP B, mP bP, mP, mS
750-BEST B B bS B, bP bP, mP B mP
1000-BEST B B bS B mP bP bP
2500-BEST B B bS B, mP mP bP, mP mP
5000-BEST B B bS, mS B bP, mP mP bP

(b) testset
100-BEST mS B, bP bS bP B B B
250-BEST bP B, bP bS bP B B, bP B, bP
500-BEST B, bP, mP B bS bP B B mS
750-BEST B B bS B, mP B B B
1000-BEST B B bS B B B B
2500-BEST B B bS B, mP B B B
5000-BEST B B bS B B B B

Table 3.33: Summary of the best-performing Spanish→English translation systems
across all n-best lists: (a) devset and (b) testset

Table 3.33 summarises the performance of our rescoring systems on Spanish–English

data by listing the best-performing systems in each of the seven n-best lists (rows: 100-

best, 250-best, 500-best, 750-best, 1000-best, 2500-best, and 5000-best) for each of the

seven evaluation metrics (columns: BLEU, NIST, METEOR, WER, PER, OBLEU, and

OMET). The table is divided into two sections: (a) devset and (b) testset. The abbrevia-

tions used for each of the five systems are as follows: B (BASELINE), bP (RESCOREDBPROD),

mP (RESCOREDMPROD), bS (RESCOREDBSUM ), and mS (RESCOREDMSUM ).

It is clearly evident from Table 3.33, that a general pattern is followed across increas-

ing n-best lists and that the performance is consistent for a specific metric, i.e. the same

system(s) are ranked as the best on that particular metric (with a few exceptions). For

example, the RESCOREDBSUM is consistently the best-performing system for METEOR
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Figure 3.14: Line graph to show the trends of the five PB-SMT systems for BLEU score
with increasing n-best list sizes: Europarl data, Spanish–English, testset.

across all n-best list sizes on both the devset and testset. We also note that although the

RESCOREDBSUM is the best-performing system as per METEOR scores, it gives one of

the lowest performances on the BLEU score. One possible reason for this is that the

METEOR scores are computed using both precision and recall while the BLEU score is

purely a precision-based metric. It was discovered that RESCOREDBSUM tends to have a

higher recall and a lower precision than the RESCOREDBPROD system. Secondly, ME-

TEOR scores take into account reordering issues when comparing a translation hypothesis

to a reference translation, unlike the n-gram based metrics like BLEU and NIST.

The PER scores favour the BASELINE on testset while ranking one or both PROD

systems at the top on devset. The PROD systems are ranked at the top more than the

SUM systems (cf. WER and PER scores in Table 3.33). The testset favours baseline on

larger n-best list sizes especially for BLEU, NIST, OBLEU, and OMET.

In addition to identifying the best-performing systems, we also note the general trend

of a metric with increasing n-best list sizes for each of the five systems. Figure 3.14

shows this phenomenon for the BLEU score on the testset. Both RESCOREDBSUM and

RESCOREDMSUM perform at a lower level than the remaining three systems after 100-

best lists. Also, the RESCOREDBPROD and RESCOREDMPROD systems are give similar

performance to the BASELINE system (black line), even outperforming on smaller n-best

lists.

In Figure 3.15, we plot the METEOR performance of the four rescoring systems
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Figure 3.15: Line graph to show the trends of the five PB-SMT systems for METEOR
score with increasing n-best list sizes: Europarl data, Spanish–English, testset.

and the baseline system for each of the seven n-best list sizes. Here, the behaviour is

somewhat reverse what was observed on the BLEU metric. The RESCOREDBPROD and

RESCOREDMPROD give once again similar performance to the BASELINE but perform at

a lower level than the RESCOREDBSUM and RESCOREDMSUM systems, which is oppo-

site that on the BLEU metric in Figure 3.10. The RESCOREDBSUM is the best METEOR-

performing system. There is a wider gap between the SUM systems than between the

PROD systems. This trend is evident in the BLEU scores as well.

Figures 3.16 and 3.17 plot the percentage of oracles with respect to BLEU and ME-

TEOR, respectively against n-best list sizes for all five systems. Note that the phenomenon

of decreasing values with increasing n-best lists is seen across all metrics but is particu-

larly prominent in the OBLEU and OMET trends. The number of oracles in the 1-best

position severely reduces as we approach 5000-best lists. However, since this trend is

uniform across all systems and will be confirmed in other language pairs, we can con-

clude that as the n-best list size is increased, more accurate translations (the oracles) are

discovered. This implies that the complexity of the rescoring problem increases with the

n-best list size.

The RESCOREDBSUM and RESCOREDMSUM systems were outperforming the remain-

ing three systems for 100-best lists and gradually dropped much below as the n-best list

increased. This is despite the fact that these systems continued outperforming the other

systems on METEOR scores.
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Figure 3.16: Line graph to show the trends of the five PB-SMT systems for OBLEU
score with increasing n-best list sizes: Europarl data, Spanish–English, testset.

Figure 3.17: Line graph to show the trends of the five PB-SMT systems for OMET score
with increasing n-best list sizes: Europarl data, Spanish–English, testset.
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To conclude, amongst the rescoring systems, the RESCMPROD and the RESCBPROD

systems are the best-performing systems on Spanish–English datasets.

3.6.4 English to French

So far, we have evaluated the rescoring and pushing oracles up the n-best lists of PB-SMT

systems translating from different languages into English. Herein, we report on rescoring

n-best lists when translating the test2006 (devset) and test2008 (testset) datasets from

English into French. The experiments in this set have two purposes:

• To evaluate the effectiveness of rescoring n-best lists on a language other than En-

glish.

• To facilitate comparison of the rescoring of n-best lists for a dataset in both transla-

tion directions: French→English and English→French.

We evaluate the performance of our RESCprod and RESCsum rescoring strategies by

pitting the translation system scores of the four rescoring systems (RESCOREDBPROD,

RESCOREDMPROD, RESCOREDBSUM , and RESCOREDMSUM ) against the BASELINE sys-

tem. We also make observations on whether the RESCprod yields better results than

RESCsum or vice versa. Another comparison criterion is whether the BLEU-oracles are

more effective in rescoring than METEOR-oracles or vice versa. These results are tested

using seven evaluation metrics (BLEU, NIST, METEOR, WER, PER, OBLEU, OMET)

on seven n-best lists of increasing sizes from 100-best to 5000-best. We will end this sec-

tion with a summary by commenting on the general trend, if any, seen in all seven n-best

lists.

100-BEST LIST

Table 3.34 (a) gives system evaluation scores on oracle-based rescoring of 100-best

lists for English–French devset. The BASELINE system is bested by the rescoring sys-

tems on the METEOR metric alone (textscRescoredBSUM outperforms baseline with an

absolute difference of 0.06 points). This improvement is also reflected in the highest per-

centage of METEOR-oracles moved up to the 1-best position by the textscRescoredBSUM
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system (15 sentences). However the BASELINE system achieves the highest percentage

of BLEU-oracles in the 1-best position, albeit by a nearly 50% lower margin of improve-

ment (8 sentences). The BASELINE system also gives slightly better results than all the

four rescored systems on the BLEU, WER, PER, and achieves similar NIST score as the

textscRescoredBPROD and textscRescoredMPROD systems.

The PROD rescoring (2nd and 3rd rows in Table 3.34 (a)) yields better translation re-

sults than the SUM rescoring with respect to BLEU, NIST, WER, and PER scores while

the SUM rescoring (4th and 5th rows in Table 3.34 (a)) beats the PROD rescoring on

the remaining metric, i.e. METEOR score. When comparing rescoring of BLEU-oracles

(rows 2 and 4 in Table 3.34 (a)) with METEOR-oracles (rows 3 and 5 in Table 3.34

(a)), both sets of PROD rescoring systems (RESCOREDBPROD Vs RESCOREDMPROD)

and SUM rescoring systems (RESCOREDBSUM Vs RESCOREDMSUM ) give similar per-

formance across all metrics.

SYSTEM BLEU NIST METEOR WER PER OBLEU OMET
(a) devset

BASELINE 31.05 7.48 60.88 60.04 44.93 30.30 30.85
RESCOREDBPROD 30.99 7.47 60.85 60.08 44.99 29.60 30.25
RESCOREDMPROD 31.00 7.47 60.87 60.06 44.97 29.90 30.55
RESCOREDBSUM 30.88 7.42 60.94 60.36 45.22 29.65 30.80
RESCOREDMSUM 30.86 7.42 60.91 60.38 45.27 29.90 31.60

(b) testset
BASELINE 28.14 7.01 57.77 62.54 47.42 24.90 27.55
RESCOREDBPROD 28.17 7.01 57.76 62.49 47.42 24.95 27.25
RESCOREDMPROD 28.18 7.01 57.78 62.49 47.39 24.95 27.50
RESCOREDBSUM 27.96 6.95 57.71 62.96 47.73 24.55 26.65
RESCOREDMSUM 27.98 6.95 57.72 62.93 47.73 25.20 27.00

Table 3.34: Summary of the English→French translation system results for 100-best list:
(a) devset and (b) testset

Table 3.34 (b) gives translation results on oracle-based rescoring of 100-best lists for

English–French testset. Unlike the devset, one or more of our rescoring systems outper-

form the baseline across all metrics. RESCOREDMPROD bests the BASELINE on BLEU

(absolute difference of 0.04), WER (absolute difference of 0.05), and PER (absolute dif-

ference of 0.03). On NIST and METEOR, the BASELINE and RESCOREDMPROD give
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similar performance. The RESCOREDBSUM system is able to score more BLEU-oracles

than the BASELINE, but not METEOR-oracles.

Unlike the devset, the SUM rescoring systems (4th and 5th rows in Table 3.34 (b))

perform worse than the PROD rescoring systems (2nd and 3rd rows in Table 3.34 (b)) on

METEOR as well as the other system evaluation metrics.

When comparing rescoring of BLEU-oracles (rows 2 and 4 in Table 3.34 (b)) with

METEOR-oracles (rows 3 and 5 in Table 3.34 (b)), both sets of PROD rescoring systems

(RESCBPROD Vs RESCMPROD) and SUM rescoring systems (RESCBSUM Vs RESCMSUM )

give similar performance across all metrics, just like in devset.

Overall, the BASELINE system remains the best (except for METEOR: RESCBSUM )

on devset, while the RESCMPROD system gives the best performance on the testset.

250-BEST LIST

As observed in French → English (Section 3.6.1), the BASELINE system remains

unchanged with regards to its translation output and therefore gives the same results on

BLEU, NIST, METEOR, WER, and PER scores. The only difference is in the size of

the n-best list which in turn is reflected in the number of sentences ranking the oracle

translation in the top position resulting in OBLEU and OMET scores different from the

BASELINE system in 100-best list. In fact, all systems show a decrease in their OBLEU

and OMET scores, as observed previously in Section 3.6.1.

Table 3.35 (a) gives system evaluation scores on oracle-based rescoring of 250-best

lists for English–French devset. Similar to the 100-best list, the BASELINE system gives

slightly better results than all the four rescored systems on the BLEU, METEOR, WER,

PER, and achieves similar NIST score as the RESCOREDBPROD and textscRescoredMPROD

systems. The textscRescoredMPROD system is in fact the second best-performing system

and the best rescoring system on devset. However, the RESCOREDMSUM system achieves

the highest percentage of BLEU-oracles and METEOR-oracles in the 1-best position. All

other observations were similar to that on 100-best devset.

The results for rescoring 250-best outputs of testset appear in Table 3.35 (b). Unlike

the devset, the BASELINE system is outperformed by one or more of the rescoring systems
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SYSTEM BLEU NIST METEOR WER PER OBLEU OMET
(a) devset

BASELINE 31.05 7.48 60.88 60.04 44.93 20.90 22.30
RESCOREDBPROD 30.98 7.47 60.85 60.07 44.99 20.30 22.10
RESCOREDMPROD 31.00 7.47 60.86 60.06 44.98 20.40 22.00
RESCOREDBSUM 30.68 7.37 60.81 60.70 45.53 21.00 22.05
RESCOREDMSUM 30.63 7.38 60.81 60.68 45.52 21.05 22.35

(b) testset
BASELINE 28.14 7.01 57.77 62.54 47.42 17.55 19.50
RESCOREDBPROD 28.18 7.01 57.76 62.49 47.41 17.75 19.45
RESCOREDMPROD 28.18 7.01 57.78 62.48 47.40 17.70 19.55
RESCOREDBSUM 27.88 6.91 57.69 63.15 47.98 17.45 18.40
RESCOREDMSUM 27.83 6.91 57.60 63.16 47.98 17.50 18.10

Table 3.35: Summary of the English→French translation system results for 250-best list:
(a) devset and (b) testset

on all metrics. The RESCOREDMPROD system beats the BASELINE system as well as

gives the best scores on most metrics: BLEU (absolute difference of 0.04), NIST (same

score), METEOR (absolute difference of 0.01), WER (absolute difference of 0.06), and

PER (absolute difference of 0.02).

All other observations followed the same pattern as the 100-best list. An analysis of

the metric score trend with increasing n-best list size is made after Table 3.15.

Note that on comparing the BLEU, NIST, METEOR, WER, PER scores of all the four

rescoring systems on 100-best list with their corresponding scores on 250-best list, we find

that the scores decrease on the SUM systems (RESCOREDBSUM and RESCOREDMSUM )

and remain relatively unchanged on the PROD systems (RESCBPROD and RESCMPROD).

This implies that the difference in performance quality of PROD and SUM rescoring

widens from 100-best to 250-best lists, with the PROD systems as better than SUM sys-

tems.

500-BEST LIST

Table 3.36 (a) gives system evaluation scores on oracle-based rescoring of 500-best

lists for English–French devset. Similar to the 100-best and 250-best lists, the BASE-

LINE system gives slightly better results than all the four rescored systems on the BLEU,

PER, and achieves similar NIST and WER scores as the RESCBPROD and RESCMPROD

104



systems. The RESCOREDBPROD system is in fact the second best-performing system

and the best rescoring system on devset according to four out of seven metrics. The

RESCOREDMSUM system achieves the best METEOR score (absolute difference of 0.03

over the baseline) and the highest percentage of BLEU-oracles and METEOR-oracles in

the 1-best position. All other observations such as the relative differences between PROD

and SUM systems were similar to that on 100-best and 250-best lists.

SYSTEM BLEU NIST METEOR WER PER OBLEU OMET
(a) devset

BASELINE 31.05 7.48 60.88 60.04 44.93 16.05 17.05
RESCOREDBPROD 30.99 7.47 60.86 60.06 44.98 15.50 16.95
RESCOREDMPROD 30.96 7.47 60.85 60.07 44.99 15.50 16.95
RESCOREDBSUM 30.60 7.36 60.91 60.81 45.60 16.50 17.60
RESCOREDMSUM 30.60 7.36 60.88 60.83 45.62 16.60 16.95

(b) testset
BASELINE 28.14 7.01 57.77 62.54 47.42 13.70 14.90
RESCOREDBPROD 28.17 7.01 57.77 62.51 47.41 13.75 14.90
RESCOREDMPROD 28.18 7.01 57.77 62.50 47.42 13.75 14.95
RESCOREDBSUM 27.63 6.87 57.58 63.47 48.26 12.55 13.30
RESCOREDMSUM 27.79 6.89 57.70 63.31 48.12 12.95 13.80

Table 3.36: Summary of the English→French translation system results for 500-best list:
(a) devset and (b) testset

The results for rescoring 250-best outputs of testset appear in Table 3.35 (b). Un-

like the devset, the BASELINE system is outperformed by one or more of the rescoring

systems on all metrics. This is reflected in the 100-best and 250-best lists as well. The

RESCOREDMPROD system performs slightly better than the BASELINE system as well as

gives the best scores on most metrics: BLEU (absolute difference of 0.04), NIST (same

score), METEOR (same score), WER (absolute difference of 0.02), PER (same score).

Note that the SUM systems fail to outperform any other system on any metric, not even

OMET and/or OBLEU as seen on devset.

Once again, our rescoring systems seem to fare better on the testset than on the devset,

as observed in 100-best and 250-best lists.
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750-BEST LIST

Table 3.37 (a) gives system evaluation scores on oracle-based rescoring of 750-best

lists for English–French devset. Similar to the preceding n-best lists, the BASELINE

system gives slightly better results than all the four rescored systems on the BLEU,

WER, PER, and achieves similar NIST scores as the RESCOREDBPROD system. The

RESCOREDMSUM system achieves the best METEOR score (absolute difference of 0.04

over the baseline) and the highest percentage of BLEU-oracles (24 more sentences than

the baseline) and METEOR-oracles (7 more sentences than the baseline) in the 1-best

position. All other observations such as the relative differences between PROD and SUM

systems were similar to that on 100-best, 250-best, and 500-best lists.

SYSTEM BLEU NIST METEOR WER PER OBLEU OMET
(a) devset

BASELINE 31.05 7.48 60.88 60.04 44.93 13.85 14.55
RESCOREDBPROD 30.96 7.47 60.85 60.08 44.99 13.50 14.50
RESCOREDMPROD 30.96 7.46 60.85 60.07 45.01 13.55 14.65
RESCOREDBSUM 30.41 7.34 60.84 60.98 45.74 14.10 14.05
RESCOREDMSUM 30.52 7.35 60.92 60.92 45.66 15.05 14.90

(b) testset
BASELINE 28.14 7.01 57.77 62.54 47.42 11.70 12.65
RESCOREDBPROD 28.16 7.01 57.76 62.53 47.42 11.65 12.60
RESCOREDMPROD 28.15 7.01 57.74 62.53 47.44 11.65 12.60
RESCOREDBSUM 27.50 6.84 57.44 63.68 48.43 10.00 10.55
RESCOREDMSUM 27.60 6.86 57.52 63.57 48.32 10.25 11.15

Table 3.37: Summary of the English→French translation system results for 750-best list:
(a) devset and (b) testset

When comparing rescoring of BLEU-oracles (rows 2 and 4 in Table 3.37 (a)) with

METEOR-oracles (rows 3 and 5 in Table 3.37 (a)), the PROD rescoring gives similar per-

formance (e.g. 60.85 METEOR points in both RESCOREDBPROD and RESCOREDMPROD)

while the SUM rescoring shows a larger degree of variation with the RESCOREDMSUM

as significantly better than RESCOREDBSUM on all metrics.

The results for rescoring 750-best outputs of testset appear in Table 3.37 (b). The

rescoring system with the lowest evaluation scores is RESCOREDBSUM as per all metrics.

In contrast to the devset, RESCOREDBPROD and RESCOREDMPROD systems show slight
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improvement / give at par performance with the baseline system on all metrics.

Moreover, when comparing performance of the rescoring systems on devset versus

testset, we find that the testset again gives better performance over the BASELINE system,,

especially with respect to PROD systems. For example, the RESCOREDBPROD records

the same PER score as the BASELINE system on the testset as opposed to 0.06 PER points

below baseline on the devset.

Note that as expected, most of these observations followed the same pattern as the

preceding n-best list sizes on English→French data.

1000-BEST LIST

SYSTEM BLEU NIST METEOR WER PER OBLEU OMET
(a) devset

BASELINE 31.05 7.48 60.88 60.04 44.93 12.75 13.20
RESCOREDBPROD 30.96 7.46 60.84 60.07 44.99 12.50 13.15
RESCOREDMPROD 30.95 7.46 60.85 60.07 45.00 12.50 13.30
RESCOREDBSUM 30.32 7.32 60.84 61.15 45.85 12.95 13.35
RESCOREDMSUM 30.36 7.32 60.85 61.12 45.80 12.85 13.35

(b) testset
BASELINE 28.14 7.01 57.77 62.54 47.42 10.40 11.25
RESCOREDBPROD 28.16 7.01 57.75 62.56 47.44 10.50 11.25
RESCOREDMPROD 28.16 7.01 57.74 62.54 47.45 10.40 11.25
RESCOREDBSUM 27.34 6.81 57.40 63.90 48.59 8.60 9.70
RESCOREDMSUM 27.40 6.83 57.43 63.80 48.53 8.65 9.90

Table 3.38: Summary of the English→French translation system results for 1000-best
list: (a) devset and (b) testset

Table 3.38 (a) gives system evaluation scores on oracle-based rescoring of 1000-best

lists for English–French devset. Similar to the preceding n-best lists, the BASELINE sys-

tem gives slightly better results than all the four rescored systems on the BLEU, NIST,

METEOR, WER, and PER. The RESCOREDBPROD and RESCOREDMPROD systems are

the second best-performing systems and the best rescoring systems on devset. How-

ever, the RESCOREDBSUM system achieves the highest percentage of BLEU-oracles and

METEOR-oracles in the 1-best position.

The results for rescoring 1000-best outputs of testset appear in Table 3.38 (b). Unlike

the devset, the BASELINE system no longer has the best score on any metric except ME-
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TEOR and PER. The RESCOREDMPROD system performs at the same level as BASELINE

system on most metrics: BLEU (absolute difference of 0.02), NIST (same score), and

WER (same score), OBLEU (absolute difference of 0.10), and OMET (same score).

All other observations followed the same pattern as the 750-best list. An analysis of

the metric score trend with increasing n-best list size is made after Table 3.15.

Note that on comparing the BLEU, NIST, METEOR, WER, PER scores of all the

four rescoring systems on 750-best list with their corresponding scores on 1000-best

list, we find that the accuracy decreases on the SUM systems (RESCOREDBSUM and

RESCOREDMSUM ) and remain relatively unchanged on the PROD systems (RESCBPROD

and RESCMPROD). This implies that the difference in performance quality of PROD and

SUM rescoring widens as the n-best list size increases, with the PROD systems as better

than SUM systems.

Note that all these observations followed the same pattern as the preceding n-best list

sizes on English–French data.

2500-BEST LIST

Table 3.39 (a) gives system evaluation scores on oracle-based rescoring of 2500-best

lists for English–French devset. The BASELINE system fails to be outperformed by any

other rescoring system. The RESCOREDMPROD system is the second-best system across

all metrics.

SYSTEM BLEU NIST METEOR WER PER OBLEU OMET
(a) devset

BASELINE 31.05 7.48 60.88 60.04 44.93 8.45 8.95
RESCOREDBPROD 30.95 7.46 60.83 60.09 45.02 8.40 9.20
RESCOREDMPROD 30.94 7.46 60.84 60.08 45.01 8.40 9.15
RESCOREDBSUM 29.76 7.24 60.77 61.78 46.32 8.00 8.75
RESCOREDMSUM 29.47 7.20 60.47 61.98 46.53 6.50 7.90

(b) testset
BASELINE 28.14 7.01 57.77 62.54 47.42 7.70 8.70
RESCOREDBPROD 28.14 7.00 57.74 62.58 47.47 7.60 8.65
RESCOREDMPROD 28.16 7.00 57.75 62.57 47.46 7.70 8.80
RESCOREDBSUM 26.86 6.75 57.34 64.36 49.03 5.80 6.55
RESCOREDMSUM 26.69 6.73 57.16 64.49 49.13 5.10 5.95

Table 3.39: Summary of the English→French translation system results for 2500-best
list: (a) devset and (b) testset
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Again, the PROD rescoring (2nd and 3rd rows in Table 3.39 (a)) yields better transla-

tion results than the SUM rescoring (4th and 5th rows in Table 3.39 (a)) across all metrics

(BLEU, NIST, WER, PER, OBLEU, and OMET) including METEOR scores.

The results for rescoring 2500-best outputs of testset appear in Table 3.39 (b). The

RESCOREDMPROD system gives a slight improvement over BASELINE on BLEU (0.02

points absolute improvement), while the BASELINE system appears to perform the best.

When comparing performance of the rescoring systems on devset versus testset, we

find that again the testset shows a greater degree of improvement over the BASELINE

system or smaller margin of difference from the BASELINE than the devset.

Note that all these observations followed the same pattern as the preceding n-best list

sizes on English–French data, even if some metrics record a slightly lower score than the

corresponding systems in a smaller n-best list.

5000-BEST LIST

SYSTEM BLEU NIST METEOR WER PER OBLEU OMET
(a) devset

BASELINE 31.05 7.48 60.88 60.04 44.93 7.25 7.50
RESCOREDBPROD 30.93 7.46 60.82 60.10 45.04 7.40 7.90
RESCOREDMPROD 30.96 7.46 60.84 60.07 45.00 7.40 7.80
RESCOREDBSUM 29.33 7.16 60.57 62.40 46.87 4.95 5.80
RESCOREDMSUM 29.18 7.15 60.33 62.36 46.89 4.40 5.45

(b) testset
BASELINE 28.14 7.01 57.77 62.54 47.42 5.60 6.40
RESCOREDBPROD 28.10 7.00 57.72 62.60 47.48 5.60 6.30
RESCOREDMPROD 28.14 7.00 57.75 62.58 47.47 5.65 6.40
RESCOREDBSUM 26.36 6.67 57.25 65.11 49.71 2.50 3.00
RESCOREDMSUM 26.42 6.68 57.09 64.88 49.54 3.05 3.95

Table 3.40: Summary of the English→French translation system results for 5000-best
list: (a) devset and (b) testset

Table 3.40 (a) and (b) give system evaluation scores on oracle-based rescoring of

5000-best lists for English–French devset and testset, respectively. All PB-SMT system

behaviour adhere to the same pattern as that seen in the preceding n-best list sizes of

English–French data.
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All rescored systems once again fail to best the BASELINE system on either devset

or testset. Although, the RESCOREDMPROD system achieves the same BLEU score as

baseline on testset.

As far as the percentage of oracles at first rank is concerned, RESCOREDMPROD and

RESCOREDBPROD systems record slighly higher number of sentences in both OBLEU

and OMET scores.

SUMMARY

Having reported on the performance of rescoring systems for individual n-best lists,

we would now like to comment on any general trends observed in English–French trans-

lation systems as a whole. Table 3.41 summarises the performance of our rescoring

systems on English–French data by listing the best-performing systems in each of the

seven n-best lists (rows: 100-best, 250-best, 500-best, 750-best, 1000-best, 2500-best,

and 5000-best) for each of the seven evaluation metrics (columns: BLEU, NIST, ME-

TEOR, WER, PER, OBLEU, and OMET). The table is divided into two sections: (a) de-

vset and (b) testset. The abbreviations used for each of the five systems are as follows: B

(BASELINE), bP (RESCOREDBPROD), mP (RESCOREDMPROD), bS (RESCOREDBSUM ),

and mS (RESCOREDMSUM ).

It is clearly evident from Table 3.41, that while the BASELINE system remains rela-

tively unbeaten on devset, the rescoring systems easily outperform the baseline on testset,

especially for lower n-best list sizes.

One or more of the rescoring systems almost always achieve the highest percentage

of oracles in the 1-best position (OBLEU, OMET) on both devset and testset. This shows

that our rescoring strategies, especially the RESCprod have been successful in their primary

aim of moving oracles up the n-best lists.

While the metrics may not agree with each other on the best-performing system, a

general pattern is followed across increasing n-best lists that is consistent for a specific

metric. For example, the RESCOREDBPROD and RESCOREDMPROD systems are consis-

tently the best-performing systems on testset across all metrics from 100-best to 1000-best

lists.
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SYSTEM BLEU NIST METEOR WER PER OBLEU OMET
(a) devset

100-BEST B B bS B B B mS
250-BEST B B B B B mS mS
500-BEST B B bS B B mS bS
750-BEST B B mS B B mS mS
1000-BEST B B B B B bS bS, mS
2500-BEST B B B B B B bP
5000-BEST B B B B B bP, mP bP

(b) testset
100-BEST mP B, bP, mP mP bP, mP mP mS B
250-BEST bP, mP B, bP, mP mP mP mP bP mP
500-BEST mP B, bP, mP B, bP, mP mP bP bP, mP mP
750-BEST bP B, bP, mP B bP, mP B, bP B B
1000-BEST bP, mP B, bP, mP B B, mP B bP B, bP, mP
2500-BEST mP B B B B B, mP mP
5000-BEST B, mP B B B B mP B, mP

Table 3.41: Summary of the best-performing English→French translation systems across
all n-best lists: (a) devset and (b) testset

Another important observation is that more rescoring systems outperform the base-

line (B) on the testset than on the devset. We also note that the SUM systems perform

better than PROD systems on devset, while the opposite is true and on a much larger

scale on testset. This implies that unlike on French→English, the RESCOREDBPROD and

RESCOREDMPROD systems are the best rescoring systems.

In addition to identifying the best-performing systems, we also note the general trend

of a metric with increasing n-best list sizes for each of the five systems. Figure 3.18

Figure 3.18: Line graph to show the trends of the five PB-SMT systems for BLEU score
with increasing n-best list sizes: Europarl data, English–French, testset.
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Figure 3.19: Line graph to show the trends of the five PB-SMT systems for METEOR
score with increasing n-best list sizes: Europarl data, English–French, testset.

shows this phenomenon for the BLEU score on the testset. Both RESCOREDBSUM and

RESCOREDMSUM systems perform at a lower level than the remaining three systems.

This difference widens with increasing n-best list sizes. Also, the RESCOREDBPROD and

RESCOREDMPROD systems give similar performance to the BASELINE system (black

line), even outperforming on larger n-best lists.

In Figure 3.19, we plot the METEOR performance of the four rescoring systems

and the baseline system for each of the seven n-best list sizes. Here, unlike other lan-

guage pairs, the behaviour is similar to what was observed on the BLEU metric. The

RESCOREDBPROD and RESCOREDMPROD give once again similar performance (rela-

tively constant) to the BASELINE and perform at a higher level than the RESCOREDBSUM

and RESCOREDMSUM systems.

Figures 3.20 and 3.21 plot the percentage of oracles with respect to BLEU and ME-

TEOR, respectively against n-best list sizes for all five systems. Note that the phenomenon

of decreasing values with increasing n-best lists is seen across all metrics but is particu-

larly prominent in the OBLEU and OMET trends. The number of oracles in the 1-best

position severely reduces as we approach 5000-best lists. However, since this trend is uni-

form across all systems and has been confirmed in other language pairs, we can conclude

that the increasing complexity of the n-best list search space accounts for the decreasing

oracle-ranking accuracy.

112



Figure 3.20: Line graph to show the trends of the five PB-SMT systems for OBLEU
score with increasing n-best list sizes: Europarl data, English–French, testset.

Figure 3.21: Line graph to show the trends of the five PB-SMT systems for OMET score
with increasing n-best list sizes: Europarl data, English–French, testset.
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To conclude, the French→English datasets demonstrated different behaviour from

other language pairs, especially on METEOR scores. The BASELINE system was the

best-performing system on larger n-best list sizes and the RESCOREDMPROD system out-

performed the RESCOREDBSUM system on the testset. This anomalous behaviour is ad-

dressed in Section 3.11 when we contrast performances across language pairs.

3.7 Per feature Comparison

Moving on from the system-level evaluation, we now perform a deeper analysis by look-

ing at feature values of the oracle translation and the 1-best translation for each of the

sentences in a dataset. Here onwards, all experiments have been performed on French

→ English data only. Figure 3.22 analyses which features (outlined in Table 3.5) favour

how many oracles over 1-best translations. The figures are in percentages. We only give

values for 1000-best lists, because the results are consistent across the various n-best list

sizes.

Figure 3.22: Results for a 1000-best list of filtered oracles: For how many sentences
(% given on the X-axis) does a baseline feature (given on the Y-axis) favour the oracle
translation (blue bar) over the 1-best translation (red bar). The green bar (third band in
each bar) denotes percentage of sentences having the same value for its oracle and 1-best
hypothesis.

The oracles seem to be favoured by d2 (monotone orientation) and tm5 (phrase penalty)
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features. Note that this selection is arbitrary and changes when the dataset changes. This

means that if we use a different DEVSET, a different set of features will favour the oracle

rankings. Further experimentation is required to determine whether there is a pattern to

this. Nevertheless, this computation provides some clue as to how the baseline feature

weights change during rescoring.

3.8 Movement in Rankings

Table 3.42 shows the number (n) of sentences (out of 2000) which were moved up (↑),

moved up to a position in the top-5, moved down (↓), or moved down from a position in

the top-5, and the average number of positions moved (p) for both our rescoring strate-

gies. We observe that RESCsum is more effective in promoting oracles than RESCprod.

Perhaps it is no surprise that the RESCsum formula resembles the highly effective percep-

tron formula (without the iterative loop) of Liang et al. (2006). The similarity between

the number of positions moved up and down explains why our rescoring strategies fail to

record a more marked improvement at the system level.

(a) DEVSET (b) TESTSET
SYS n↑ p↑ n5 ↑ n↓ p↓ n5 ↓ n↑ p↑ n5 ↑ n↓ p↓ n5 ↓

rescored on 100-best list
Rsum 637 24 267 776 23 278 627 24 260 794 22 278
Rprod 590 10 94 534 11 89 559 10 93 587 12 93

rescored on 500-best list
Rsum 840 122 212 875 121 185 869 129 277 850 111 199
Rprod 856 54 75 722 74 64 831 55 84 739 69 80

rescored on 1000-best list
Rsum 908 237 180 878 248 147 933 247 198 870 215 176
Rprod 918 114 63 758 163 51 895 117 73 785 148 66

Table 3.42: Movement of oracles in n-bests of (a) development set and (b) test set after
rescoring the baseline system with weights learned from RESCsum and RESCprod : how
many & how much?
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3.9 Oracle Filtering

A system composed of all the oracle hypotheses serves as an upper bound on any im-

provement due to reranking. However, one must carefully evaluate these so-called oracle

translations. There is inherent noise due to:

• the existence of a large population of identical surface-level hypotheses (but differ-

ent phrase segmentations) in the n-best list;

• the tendency of BLEU and other metrics to award the same (or very similar) score

to sentences differing in the order or lexical choice of one or two words only.

Revisiting the n-best list given in Figure 3.3, note that both the 7th and the 10th sen-

tence as well as the 1st and 8th sentence were awarded the same sBLEU score. There is

no way to distinguish between the two as far as the oracle is concerned. Furthermore, note

that this sample was carefully selected to show the variety of the n-best list. That is, in re-

ality, approximately 20 hypotheses (identical to the 1-best hypothesis at the surface-level)

occur between the 1st and the 2nd sentence in the figure.

N-BEST DIFF DIVERSE ACCEPTED
100 62.10% 48.55% 27.10%
500 55.50% 57.75% 30.50%
1000 54.05% 61.40% 32.80%

Table 3.43: Statistics of % of oracle sentences considered for rescoring experiments

Since the underlying strength of all our experiments relies primarily on the goodness

of oracles, we explore a combination of two filtering strategies to increase the confidence

in oracles, namely DIFFERENCE and DIVERSITY.

The DIFFERENCE filter computes the difference in the sentence-level BLEU scores

of the hypotheses at rank 1 and rank 2. Note that it is often the case that more than one

sentence occupies the same rank. Thus when we compute the difference between rank 1

and rank 2, these are in actuality often a cluster of sentences having the same scores. The

purpose of this filter is to ensure that oracles (rank 1) are “different enough” compared to

the rest of the sentences (rank 2 and beyond).
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The DIVERSITY filter aims at ensuring that the specific sentence has a wide variety

of hypotheses leading to a distinguishing oracle (selected using the previous filter). This

is computed from the proportion of n-best translations represented by the sentences in

rank 1 and rank 2 clusters (based on how many sentences are present in rank 1 or 2). The

motivation behind this filter is to drop sentences whose n-best lists contain no more than

2 or 3 clusters. In such cases, all the hypotheses are very similar to each other, when

scored by the sBLEU metric. We used both filters in tandem because this ensured that the

sentences selected in our final list had an oracle which was significantly different from the

rest of the n-best list, and the n-best list itself had a good variety of hypotheses to choose

from.

Thresholds for both filters were empirically determined to approximate the average

of their respective mean and median values. Sentences which possessed a value above

both thresholds constituted the set of true oracles used to recalculate the lambdas for our

rescoring experiments. Table 3.43 shows the number of sentences passing the Difference

filter (column 2), the Diversity filter (column 3) and both (column 4: the accepted set

of true oracles). Experiments were carried out for 3 different sizes of n-best lists. It is

observed that all three sets follow the same trend.

3.10 Top 5

We also perform a Top 5 BLEU-oracle evaluation (shown in Table 3.45). The difference

between the evaluations in Tables 3.44 and 3.45 is that the latter evaluates on a list of

top-5 hypotheses for each sentence instead of the usual comparison of a single translation

hypothesis with the reference translation. The sentences used in Table 3.44 are present

in the top 1 position of sentences used in Table 3.45. This means that when BLEU and

METEOR scores are evaluated at system-level, for each sentence, the translation (among

5) with the highest sBLEU score is selected as the translation for that sentence. This is

similar to the post-editing scenario where human translators are shown n translations and

are asked to either select the best or rank them. Some studies have used as many as 10
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(a) DEVSET (b) TESTSET
SYSTEM BLEU MET ORC BLEU MET ORC

rescored on 100-best list
BASE 32.17 61.34 36.25 32.47 61.80 36.25
RESCsum 31.99 61.45 36.55 32.33 61.75 35.65
RESCprod 32.13 61.35 36.30 32.46 61.78 35.60
ORACLE 34.90 63.65 100 35.26 64.01 100

rescored on 500-best list
BASE 32.17 61.34 20.10 32.47 61.80 20.75
RESCsum 31.56 61.62 20.15 31.99 62.00 19.65
RESCprod 32.08 61.30 20.15 32.43 61.75 20.65
ORACLE 36.45 64.70 100 36.80 65.12 100

rescored on 1000-best list
BASE 32.17 61.34 15.4 32.47 61.80 16.2
RESCsum 31.45 61.48 15.7 31.84 61.87 15.45
RESCprod 32.04 61.26 15.6 32.41 61.73 16.2
ORACLE 37.05 65.14 100 37.50 65.65 100

Table 3.44: Summary of the French→English translation results on WMT (a) test2006
(devset) and (b) test2008 (testset) data, using BLEU and METEOR metrics. The column
labeled ORC refers to the % of sentences selected as the oracle with respect to BLEU
metric.

translations together (Koehn and Haddow, 2009). We only use 5 in our evaluation.

The baseline system performance i.e. the standard evaluation (top-1) is shown in

Table 3.44. The last row in each subsection labeled ORACLE gives the upper bound on

each system, i.e. performance if our algorithm was perfect and all the oracles were placed

at position 1.

We observe that overall the RESCsum system shows a modest improvement over the

baseline in terms of METEOR scores, but not BLEU scores. This trend is consistent

across all the 3 n-best list sizes. We speculate that perhaps the reliance of METEOR

on both precision and recall as opposed to precision-based BLEU is a factor for this

disagreement between metrics. We also observe that the degree of improvement in the

BLEU and METEOR scores of each system from top-1 (Table 3.44) to top-5 (Table 3.45)

is more obvious in the rescored systems RESCsum and RESCprod compared to the baseline.

This gives weight to our observation that the oracles have moved up, just not to the top

position.
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(a) DEVSET (b) TESTSET
SYSTEM BLEU MET ORC BLEU MET ORC

rescored on 100-best list
BASE5 32.83 61.95 45.95 33.17 62.34 45.05
RESCsum5 32.72 62.04 45.75 33.08 62.40 45.65
RESCprod5 32.78 61.92 45.80 33.16 62.34 45.00
ORACLE 34.90 63.65 100 35.26 64.01 100

rescored on 500-best list
BASE5 32.83 61.95 24.45 33.17 62.34 25.50
RESCsum5 32.49 62.31 27.20 32.95 62.71 27.90
RESCprod5 32.74 61.89 24.75 33.12 62.30 25.80
ORACLE 36.45 64.70 100 36.80 65.12 100

rescored on 1000-best list
BASE5 32.83 61.95 18.80 33.17 62.34 19.65
RESCsum5 32.45 62.27 20.90 32.85 62.68 21.85
RESCprod5 32.70 61.88 18.60 33.13 62.30 19.85
ORACLE 37.05 65.14 100 37.50 65.65 100

Table 3.45: Top5 Eval: Summary of the French→English translation results on WMT (a)
test2006 (devset) and (b) test2008 (testset) data, using BLEU and METEOR metrics on
best of top 5 hypotheses. The column labeled ORC refers to the % of sentences selected
as the oracle with respect to BLEU metric.

3.11 Comparison and Contrastive Analyses

While we have previously summarised rescoring system performance trends in each lan-

guage pair,10 we have not yet contrasted trends across the language pairs. In this chap-

ter on exploring suitable oracle reranking algorithms, we rescored n-best lists using two

rescoring methods (Section 3.4.2) as follows:

• RESCsum: The feature weights estimated via MERT (Minimum Error Rate Train-

ing, Och (2003)) are recomputed using the difference between mean feature values

of oracle and 1-best sentences as defined in Equation (3.4);

• RESCprod: The feature weights estimated via MERT are recomputed using the ratio

of mean feature values of oracle and 1-best sentences as defined in Equation (3.5).

We identified the oracle translations using two metrics, namely sentence-level BLEU

and sentence-level METEOR. Thus each of the two rescoring methods can be classified

into two subtypes. This gives rise to four rescored systems in addition to a fifth (baseline

system, i.e. a translation system with no rescoring), as follows:

10 cf. Summary subsections under each of the Sections 3.6.1 through 3.6.4.
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• BASELINE [B]: System using weights computed using MERT with no rescoring

• RESCOREDBPROD [bP]: System in which the MERT weights are recomputed on

the RESCprod strategy based on Oracles with respect to sentence-level BLEU score

• RESCOREDMPROD [mP]: System in which the MERT weights are recomputed on

the RESCprod strategy based on Oracles with respect to sentence-level METEOR

score

• RESCOREDBSUM [bS]: System in which the MERT weights are recomputed on the

RESCsum strategy based on Oracles with respect to sentence-level BLEU score

• RESCOREDMSUM [mS]: System in which the MERT weights are recomputed on

the RESCsum strategy based on Oracles with respect to sentence-level METEOR

score

We conducted experiments on the French→English language direction to maintain

the continuity with experiments in Chapter 2 on treebank-based phrase extraction.11 In

order to test the language independence of our rescoring methods, we experimented on

two additional languages, German and Spanish. We also experimented in the reverse

direction, English→French. Thus four language directions were explored as follows:

• FR→EN: Translation system translating from French into English

• DE→EN: Translation system translating from German into English

• ES→EN: Translation system translation from Spanish into English

• EN→FR: Translation system translating from English into French

This helps us conduct contrastive analysis in two ways: (a) comparison of rescoring

n-best lists when translating from English versus translating into English, and (b) compar-

ison of rescoring n-best lists when translating from different languages (French, German,

Spanish) into the same language (English) (Tables 3.46 and 3.47).
11 Note that we have scaled up from 100,000 sentence pairs to approximately 1 million sentence pairs

from Europarl as we no longer have any syntactic parser contraints.
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There is no consensus in reranking literature on what n-best list size of the translation

hypotheses should be used. In order to test the optimal n-best list size for our rescoring

methods (Table 3.48), all four language directions have each of the five translation systems

(baseline and 4 rescored systems) rescored on seven n-best list sizes as follows:

• 100-BEST: Rescoring MT systems where each sentence has at most 100 alternate

translations

• 250-BEST: Rescoring MT systems where each sentence has at most 250 alternate

translations

• 500-BEST: Rescoring MT systems where each sentence has at most 500 alternate

translations

• 750-BEST: Rescoring MT systems where each sentence has at most 750 alternate

translations

• 1000-BEST: Rescoring MT systems where each sentence has at most 1000 alter-

nate translations

• 2500-BEST: Rescoring MT systems where each sentence has at most 2500 alter-

nate translations

• 5000-BEST: Rescoring MT systems where each sentence has at most 5000 alter-

nate translations

Note that all our experiments were performed on two translation datasets: (a) de-

vset and (b) testset. The parameters (feature weights) for rescoring the n-best lists were

trained on the devset and tested on the testset. This implies that in the course of our ex-

tensive multi-dimensional experiments, we created a total of 140 different MT systems.

For each of the 4 language pairs, we created 35 translation systems (5 types of MT sys-

tems [baseline and 4 rescored systems] for each of the 7 n-best list sizes). Additionally,

we evaluated the system performances on 7 different evaluation metrics: BLEU, NIST,

METEOR, WER, PER, OBLEU, and OMET (previously described in Section 3.7). We
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computed oracles using two different metrics: sentence-level BLEU and sentence-level

METEOR. Hence, we have focussed on the contrastive analysis of translations as per

these two metrics. This also helped us compare the two metrics across language pairs.

The purpose of this section on contrastive analyses is to try and draw some discernable

patterns across the 140 MT systems.

LANG PAIR 100 250 500 750 1000 2500 5000
(a) devset

EN→FR B B B B B B B
FR→EN B B B B B B B
DE→EN B B B B B B B
ES→EN B B B B B B B

(b) testset
EN→FR mP bP, mP mP bP bP, mP mP B, mP
FR→EN B B B B, mP bP B B
DE→EN mP bP mP mP mP mP mP
ES→EN mS bP B, bP, mP B B B B

Table 3.46: Summary of the best-performing translation systems across all n-best lists
and all language directions as per the BLEU evaluation metric: (a) devset and (b) testset

Table 3.46 summarises the best-performing systems across all language directions

(rows: English→French, French→English, German→English, and Spanish→English) in

each of the seven n-best list sizes (columns: 100-best, 250-best, 500-best, 750-best, 1000-

best, 2500-best, and 5000-best) for the BLEU evaluation metric. The table is divided into

two sections: (a) devset and (b) testset. The abbreviations used for each of the five sys-

tems are as follows: B (BASELINE), bP (RESCOREDBPROD), mP (RESCOREDMPROD),

bS (RESCOREDBSUM ), and mS (RESCOREDMSUM ). We have made the following obser-

vations.

• The BASELINE system is the best-performing system across all n-best list sizes

on the devset as per the BLEU evaluation metric because all the rescoring sys-

tems either underperformed or gave a similar performance (including statistically

insignificant results) to the baseline. We hoped to see similar patterns across all

four language directions and although none of the rescored systems outperformed

the baseline, all four language directions show the same pattern.
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• On the testset, in contrast to the above observation, one or more of our rescored

systems is the best-performing system 19 out of 28 times (68%). Note that in any

evaluation campaign it is on the testset and not on the devset that competing system

performances are compared. In cases where one of the rescored MT systems gives

a similar performance or statistically insignificant improvement to the BASELINE

system, multiple systems are reported in the table.

• The RESCprod method is the dominant rescoring strategy across all language pairs

and n-best list sizes: 18 out of 28 times (64%). A possible reason is that the

RESCsum rescoring method is similar to that of a perceptron and most likely re-

quires multiple iterations to stabilise. All our rescoring methods were computed in

just a single iteration post-MERT framework. Note that this observation pertains to

the BLEU evaluation metric alone and may not follow the pattern shown by other

metrics, especially METEOR (addressed below in Table 3.47).

• There is a distinct mismatch in performance betwen the devset and testset as re-

ported in the first two observations. As the same set of feature weights were used

to rescore both datasets, this may just be down to the variable nature of the data

itself and deficiencies in the BLEU metric regarding non n-gram-based matching

between the system translation and the reference translation (Ye et al., 2007).

• The recommendation for both EN→FR and DE→EN language directions is to al-

ways use the RESCOREDMPROD MT system as they have been proven the most

effective. Each of the five competing systems only differ in the feature weights

which lead to a different ranking of the n-best lists producing a different set of

translations and hence a different evaluation score. A closer inspection of these pa-

rameters revealed that the language model feature weight was significantly lower for

RESCsum systems. This is the most likely reason for the distinct lower performance

of RESCOREDMSUM and RESCOREDBSUM systems. While there were variations

in the remaining 13 features12 as well, none were as diverse as the language model

12 These features are described in Table 3.5 in Section 3.3.1.
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feature.

• There are anomalous cases in both FR→EN and ES→EN where the BASELINE

system starts outperforming the rescored systems as the n-best list size increases.

We were not able to find a definite cause for this and further experimentation is

required, but it may be down to the fact that quite simply, smaller n-best list sizes

suit these language directions better. We will discuss this in more detail in Table

3.48 below.

LANG PAIR 100 250 500 750 1000 2500 5000
(a) devset

EN→FR bS B bS mS B B B
FR→EN B B B mS mS mS B
DE→EN bS bS bS bS bS bS bS
ES→EN bS bS bS bS bS bS bS, mS

(b) testset
EN→FR mP mP B, bP, mP B B B B
FR→EN B B B mS mS mS B
DE→EN bS bS bS bS bS bS bS
ES→EN bS bS bS bS bS bS bS

Table 3.47: Summary of the best-performing translation systems across all n-best lists
and all language directions as per the METEOR evaluation metric: (a) devset and (b)
testset

Table 3.47 summarises the best-performing systems across all language pairs (English

→French, French→English, German→English, and Spanish→English) for the METEOR

evaluation metric. We do this because we have observed in individual language pairs that

the BLEU and METEOR metrics do not agree with each other possibly due to lack of

recall in n-gram-based BLEU while the METEOR considers both precision and recall, as

well as language-dependent processing.

We have made the following observations.

• On both the devset and testset, one or more of our rescored systems outperformed

the baseline 40 out of 56 times (71% times). Compared to the BLEU metric, this

percentage of systems is similar (68%) although the devset did not figure in there.
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• All three FR→EN, DE→EN, and ES→EN present a similar pattern individually

across both devset and testset. This is as expected. The EN→FR system demon-

strated an anomaly on the testset by having the RESCOREDMPROD system out-

perform all other systems barring the BASELINE system. Perhaps this is mostly

because it is translation into French and METEOR scores are language-dependent.

• The RESCsum method is the dominant rescoring strategy across all language pairs

and n-best list sizes: 37 out of 56 times (66%). Note that this observation contrasts

with the BLEU metric above and we speculate that the technical differences be-

tween METEOR and BLEU render one to favour one type of rescoring over other.

Any analysis on a bias will require further experimentation and comparison with

oracles generated by more metrics than sentence-level BLEU and sentence-level

METEOR.

• The recommendation for the ES→EN direction is to always use the RESCOREDBSUM

MT system as they have proven the most effective. As before, each of the five com-

peting systems only differ in the feature weights which lead to a different ranking of

the n-best lists producing a different set of translations and hence a different evalua-

tion score. We speculate that a combination of the five translation model features is

the most likely cause as they were observed to be the most impacting on inspecting

the MERT weights.

Table 3.48 shows which n-best list size is the top-performing system in each language

pair across all the evaluation metrics. We have made the following observations.

• 5000-best list sizes lead to the best-performing system the most number of times

across all language directions and all metrics.

• Despite the aforementioned observation, there are cases when a smaller n-best list

size suffices. Discernible patterns are visible when considering a particular metric

(any one column) in isolation. For example, the METEOR metric on the testset
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LANG PAIR BLEU NIST METEOR WER PER OBLEU OMET
(a) devset

EN→FR n/a n/a 100 n/a n/a 750 100
FR→EN n/a 5000 2500 5000 5000 250 500
DE→EN n/a 5000 1000 5000 5000 100 100
ES→EN n/a n/a 5000 n/a 750 5000 2500

(b) testset
EN→FR 250 n/a 100 250 100 100 2500
FR→EN n/a 5000 1000 5000 5000 5000 100
DE→EN 5000 5000 500 5000 5000 100 100
ES→EN 100 n/a 500 250 n/a n/a 500

Table 3.48: Summary of the best-performing n-best list across all language pairs and all
the evaluation metrics: (a) devset and (b) testset; A n/a implies none of the rescoring
methods outperformed the BASELINE system thus nullifying n-best list

especially favours a smaller size n-best list. This is most likely because with in-

creasing n-best list sizes, the complexity in terms of the search space of the number

of positions to move up an oracle increases.

• Our recommendation for the EN→FR system especially is to use smaller than 500-

best lists because they gave the best performance. It seems to be the case that

translating into English requires a larger n-best list size than while translating from

English.

3.12 Discussion

3.12.1 Impact of MERT features on oracles

We try to re-estimate the weights of the baseline features and observe the impact of them

on oracle rescoring. While a substantial amount of oracles are moved to the top-5 ranks

(not necessarily to the top-1), it does not automatically imply a better BLEU score. How-

ever, there is up to a 0.5% relative improvement in the METEOR scores. Perhaps this

implies low quality oracles for at least some of the sentences. Note that although we filter

away sentences before recomputing lambdas, we implement our rescoring strategies on

the entire set (i.e. no filtering). Therefore the devset and testset may contain noise which
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makes it difficult for any improvements to be seen. Overall, there are certain baseline

features (see section 4.3), which favour oracles and help in pushing them up the n-best

list.

Duh and Kirchhoff (2008) conclude that log-linear models often underfit the training

data in MT reranking and that is the main reason for the discrepancy between oracle-best

hypothesis and reranked hypothesis of a system. We agree with this statement (cf. figure

3.22). However, we believe that there is scope for improvement on the baseline features

(used in decoding) before extracting more complex features for reranking.

3.12.2 Role of oracles in boosting translation accuracy

We believe oracle-based training to be a viable method. In the next chapter, we explore

additional features (especially those used in the reranking literature such as Och et al.

(2004)) to help promote oracles. We believe that our oracle-based method can help select

better features for reranking. We have used here sentence-level BLEU as opposed to

system-level BLEU as used in MERT for oracle identification. We have also demonstrated

the effectiveness using sentence-level METEOR.

3.13 Conclusion

We analyze the relative position of oracle translations in the n-best list of translation

hypotheses to help boost oracles up a PB-SMT system. We propose two novel simple

rescoring strategies (RESCsum and RESCprod) which differ in only the manner they update

the feature weights. In general, the improvements provided by oracle-based training of

the n-best lists is dependent on the size of n and the type of translations produced in the

n-best list. For example, the RESCsum strategy is dominant on the METEOR evaluation

metric while the RESCprod strategy favours the BLEU evaluation metric. Translating into

English seems to require a larger n-best list size than translating from English. Part of this

work (French→ English rescoring on BLEU-oracles) was published in Srivastava et al.

(2011). To conclude, oracles have much to contribute to the ranking of better translations,
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feature selection, and reducing the model errors. We will conduct these experiments with

additional syntactic features in a reranking framework in Chapter 4.

3.14 Summary

In this chapter we analyse model errors, investigated the parametric differences between

the 1-best and the oracle translation and attempted to try and close this gap by proposing

two rescoring strategies to push the oracle up the n-best list: RESCsum and RESCprod. We

generated 140 MT systems and we observed modest improvements in METEOR scores

(Banerjee and Lavie, 2005) over the baseline SMT system trained on French→ English,

German→ English, Spanish→ English, and English→ French Europarl corpora (Koehn,

2005). We also reported on the patterns observed across the four language directions

and the seven n-best list sizes. We presented a detailed analysis of the oracle rankings

to determine the source of model errors, which in turn has the potential to improve the

performance of the baseline (STR) system as well as syntax-aware models. In Chapter

4 we will incorporate our methods in mainstream reranking paradigms with additional

features.
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Chapter 4

Feature-based Sentence Reranking

Typically, an SMT system undergoes a second pass decoding, wherein a number of so-

phisticated features like higher-gram and syntactic language model scores, posterior prob-

abilities, etc. are used to rescore the n-best list of translations in a process called rerank-

ing. This is done post-decoding (as shown by the black shaded box in Figure 4.1) and

can therefore include a number of translation model and language model features which

would otherwise massively increase the decoding complexity.

Figure 4.1: Schematic diagram of the modules in a Phrase-based Statistical Machine
Translation System: Reranking.

The reranking task in Machine Translation can be defined as pushing oracles up the
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n-best list. Having analysed the existence of model errors and rescored n-best lists on

decoding features using oracle-based training (OBT) in the previous chapter, here we

extend our approach to a reranking framework using more fine-grained features (described

in Section 4.4). We also compare our approach to a vanilla implementation of using

uniform weights for the new features as well as to a baseline system of using MERT-

optimized weights for the new features. Finally, we discuss the possibility of using oracle-

based reranking in improving syntax-aware MT systems from Chapter 2.

The purpose of this chapter is two-fold: to evaluate the oracle-based analytical algo-

rithm from Chapter 3 on reranking features (i.e. those not used in decoding). The second

objective is to analyse how reranking in general helps minimize model errors while main-

taining a balance at the double-edged sword of the model overfitting (too many features)

and model underfitting (too few features) in MT.

4.1 Reranking n-best Lists in PB-SMT

In practice, it has been found that the n-best list rankings can be fairly poor (i.e. low

proportion of oracles in rank 1), and the oracle translations (the candidates closest to a

reference translation as measured by automatic evaluation metrics like BLEU (Papineni

et al., 2002), METEOR (Banerjee and Lavie, 2005), etc.) occur much lower in the list. A

baseline system (first-pass decoding) is thus reranked (second-pass decoding) by extract-

ing additional features from the n-best candidates for each sentence and rescoring them.

Figure 4.2 shows a typical n-best list with numerous repetitions in the hypotheses that

differ only in the internal phrase segmentation. As most of our reranking features (mono-

lingual or bag-of-words in case of bilingual) would generate the same result for the same

surface-level hypothesis, we work with distinct n-best lists in this chapter as opposed to

regular n-best lists in Chapter 3.

Note that we focus on n-best list reranking, i.e. the translation hypothesis are rep-

resented as a sorted list of sentences. Another popular format is lattice-based rescoring

(Li and Khudanpur, 2009), wherein the translation hypothesis are represented as a con-
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Rank Sentence Decoder Cost
2:0 any other approach would lead to a major democratic deficit . -7.17474
2:1 any other approach would be a major democratic deficit . -7.19585
2:2 any other approach would lead to a major democratic deficit . -7.20819
2:3 any other approach would lead to a major democratic deficit . -7.37001
2:4 any other approach would be a major democratic deficit . -7.39112
2:5 any other approach would lead to a major democratic deficit . -7.40346
2:6 any other approach would be a major democratic deficit . -7.42145
2:7 any other approach would lead to a major democratic deficit . -7.42274
2:8 any other approach would lead to a major democratic deficit . -7.44014
2:9 any other approach would be a major democratic deficit . -7.44384

2:10 any other way of doing this would lead to a major democratic deficit . -7.45051
2:11 any other approach would lead to a major democratic deficit . -7.45619
2:12 any other way of doing this would be a major democratic deficit . -7.45701
2:13 any other approach would be a major democratic deficit . -7.46125
2:14 any other approach would lead to a major democratic deficit . -7.47359
2:15 any other way of doing this would lead to a major democratic deficit . -7.48396
2:16 any other approach would have a major democratic deficit . -7.53336
2:17 any other approach would entail a major democratic deficit . -7.54438
2:18 any other approach would be a major democratic deficit . -7.61672
2:19 any other approach would lead to a major democratic deficit . -7.61801
2:20 any other approach would result in a major democratic deficit . -7.62037
2:21 any other approach would lead to a major democratic deficit . -7.63541
2:22 any other approach would be a major democratic deficit . -7.63911
2:23 any other way of doing this would lead to a major democratic deficit . -7.64577
2:24 any other approach would lead to a major democratic deficit . -7.65145
2:25 any other way of doing this would be a major democratic deficit . -7.65228
2:26 any other approach would be a major democratic deficit . -7.65652
2:27 any other approach would mean a major democratic deficit . -7.65906
2:28 any other approach would lead to a major democratic deficit . -7.66886
2:29 any other approach would be a major democratic deficit . -7.66945

Figure 4.2: Sample (3rd sentence in testset) from an n-best list of 30 translation candi-
dates for the input sentence toute autre façon de faire entraı̂nerait un déficit démocratique
majeur., whose reference translation is: any other procedure would mean a huge demo-
cratic deficit.
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Rank Sentence Decoder Cost
2:0 any other approach would lead to a major democratic deficit . -7.17474
2:1 any other approach would be a major democratic deficit . -7.19585

2:10 any other way of doing this would lead to a major democratic deficit . -7.45051
2:12 any other way of doing this would be a major democratic deficit . -7.45701
2:16 any other approach would have a major democratic deficit . -7.53336
2:17 any other approach would entail a major democratic deficit . -7.54438
2:20 any other approach would result in a major democratic deficit . -7.62037
2:27 any other approach would mean a major democratic deficit . -7.65906

Figure 4.3: Sample (3rd sentence in testset) from an n-best list of 30 translation candi-
dates after duplicate candidates have been filtered out (distinct). The input sentence is:
toute autre façon de faire entraı̂nerait un déficit démocratique majeur., whose reference
translation is: any other procedure would mean a huge democratic deficit.

nected graph. While lattices are more compact and can store a relatively larger number

of candidates, they have the distinct disadvantage of incurring complexity costs in feature

extraction (especially for global features dependent on the entire surface-level sentence).

The main objective of the reranking approach to MT is to obtain a better translation

than the one initially generated by the decoder. Most approaches in the literature (re-

viewed in Section 4.2) extract a host of fine-grained and coarse features from the n-best

lists and rescore them discriminatively. A key research question in this domain is which

features benefit reranking of MT outputs.

4.2 Mainstream Approaches to Reranking

A number of strategies have been suggested to minimize the low ranking of higher quality

translation candidates in the n-best list. These differ mainly in the type of features used

for reranking and the training algorithm used to determine the weights needed to combine

these features. Note that the parameter estimation methods are the same as reviewed in

Chapter 3 for determining the weights of features used in decoding. The main difference

is in the sheer number of features trained at the reranking stage in contrast to a limited

number of features (about 15 to 20) exploited in the decoding stage.

Och et al. (2004) employed nearly 450 syntactic features extracted from tagged and

parsed n-best lists in a log-linear model optimized on the BLEU score (using MERT) to
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rerank translation candidates.

These same features were then trained in a discriminative reranking model by re-

placing MERT with a perceptron-like splitting algorithm and ordinal regression with an

uneven margin algorithm (Shen et al., 2004).

While the afore-mentioned approaches learned features from n-best lists of size up

to 1000 Yamada and Muslea (2009) trained a perceptron-based classifier on millions of

features extracted from n-best lists of size 200 of the entire training set for reranking.

Note that while both MERT and the perceptron-like algorithms use BLEU as the objective

function for optimization, Yamada and Muslea (2009) compute BLEU on a sentence level

rather than corpus level.

Hasan et al. (2007) observed that even after the reference translations were included

in the n-best list, only less than 25% of the references were actually ranked as the best

hypotheses in their reranked system. They concluded that better reranking models were

required to discriminate more accurately amongst the n-best lists.

Olteanu et al. (2006) use a host of complex language models in reranking since they

cannot be used to score partial hypotheses while decoding. In addition to standard lan-

guage models, they also include binary features based on presence of n-grams of indi-

vidual hypothesis in the Gigaword corpus.1 They also used the log probability of parse

tree extracted from the Charniak parser. The novel contribution of this work is that voting

might help with minimizing the overfitting by combining output of multiple local max-

ima. Instead of simply using the weights assigned by MERT for the 21 reranking features,

a set of 4-10 distinct lambda weight vectors were generated. Each vector picks a different

hypothesis for each sentence’s n-best. The best hypothesis is computed by using a voting

mechanism (incurring low-cost).

To summarize, the reranking task involves improving an existing ranking of candi-

dates that were created using local features in an underlying generative model (used in

MERT and decoding). The general approach is to extract global properties and additional

features from the n-best candidates in order to train a discriminative reranking model

1 https://catalog.ldc.upenn.edu/LDC2005T12
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(Shen et al., 2004).

An important issue in this area is feature selection: What kind of features or how many

features are useful for improving the system performance significantly? We use some of

the best proven features in our reranking model. We also conduct an oracle-based analysis

of these features similar to that carried out in the previous chapter on the MERT features.

4.3 Baseline System: Data & Tools

LANGUAGE PAIR TRAINING DEVELOPMENT TESTING
French→English 1,050,398 2,000 2,000
German→English 1,118,399 2,000 2,000
Spanish→English 1,083,773 2,000 2,000

Table 4.1: Statistics of corpora used in reranking experiments

All our reranking experiments are performed on the French–English, German–English,

and Spanish–English WMT 2009 datasets as used in our oracle-based system diagnosis in

Chapter 3. The set of parallel sentences for all our experiments is extracted from the WMT

20092 Europarl (Koehn, 2005) training dataset for all three language pairs (Europarl v3)

after filtering out sentences longer than 40 words. An additional 2,000 sentences each

are taken for development (test2006 dataset) and testing (test2008 dataset). This is sum-

marised in Table 4.1.

We train a 5-gram language model using SRILM (Stolcke, 2002)3 with Kneser-Ney

smoothing (Kneser and Ney, 1995). We train the translation model using GIZA++ (Och

and Ney, 2003)4 for word alignment in both directions followed by phrase-pair extraction

using the grow-diag-final heuristic described in Koehn et al. (2003). The reordering model

is configured with a distance-based reordering and monotone-swap-discontinuous orien-

tation conditioned on both the source and target languages with respect to the previous

and next phrases.

2http://www.statmt.org/wmt09/
3 http://www-speech.sri.com/projects/srilm/
4 http://code.google.com/p/giza-pp/
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LABEL DESCRIPTION
d1 Distortion: distance-based reordering
d2 Distortion: monotone previous
d3 Distortion: swap previous
d4 Distortion: discontinuous previous
d5 Distortion: monotone following
d6 Distortion: swap following
d7 Distortion: discontinuous following
lm Language Model feature
w Word penalty feature

tm1 Translation: Phrase Translation (s | t)
tm2 Translation: Lexical Weighting (s | t)
tm3 Translation: Phrase Translation (t | s)
tm4 Translation: Lexical Weighting (t | s)
tm5 Translation: Phrase penalty feature

Table 4.2: Features used in the Moses PB-SMT Decoder

SYSTEM BLEU NIST METEOR WER PER OBLEU OMET
(a) devset

BASELINE 32.17 7.70 61.34 57.10 40.96 12.55 13.75
ORACLEBLEU 37.62 8.42 65.56 52.64 36.57 100.00 52.90
ORACLEMETEOR 36.43 8.30 65.59 53.35 37.09 52.90 100.00

(b) testset
BASELINE 32.47 7.81 61.80 56.43 40.34 12.75 12.70
ORACLEBLEU 38.15 8.53 65.98 51.90 36.13 100.00 42.50
ORACLEMETEOR 37.01 8.43 66.07 52.47 36.62 42.50 100.00

Table 4.3: 1-best and Oracle-best systems for 100-best distinct n-best lists on
French→English: (a) devset and (b) testset

We use the Moses (Koehn et al., 2007) phrase-based beam-search decoder, setting the

stack size to 500 and the distortion limit to 6, and switching on the n-best-list option.

Thus, this baseline model uses 15 features (see Table 4.2), namely 7 distortion features

(d1 through d7), 1 language model feature (lm), 5 translation model features (tm1 through

tm5), 1 word penalty (w), and 1 unknown word penalty feature. Note that the unknown

word feature applies uniformly to all the candidate translations of a sentence, and is there-

fore dropped from consideration in our experiments.

Tables 4.3 through 4.5 show the results for the upper-bound of each system (on both

devset and testset), that is when all the oracles (selected using sentence-level BLEU and

sentence-level METEOR) are placed at the top of n-best lists. The systems ORACLEBLEU
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SYSTEM BLEU NIST METEOR WER PER OBLEU OMET
(a) devset

BASELINE 26.93 7.00 57.01 65.52 44.89 4.85 5.40
ORACLEBLEU 33.66 7.93 62.56 59.61 38.73 100.00 36.90
ORACLEMETEOR 31.92 7.77 62.94 60.83 39.54 36.90 100.00

(b) testset
BASELINE 27.02 7.01 57.11 65.25 45.01 5.05 5.10
ORACLEBLEU 34.04 7.96 62.79 59.20 38.60 100.00 38.35
ORACLEMETEOR 32.26 7.80 63.15 60.37 39.51 38.35 100.00

Table 4.4: 1-best and Oracle-best systems for 100-best distinct n-best lists on
German→English: (a) devset and (b) testset

and ORACLEMETEOR consistently outperform the baseline system by a significant differ-

ence of at least 5 BLEU points.

SYSTEM BLEU NIST METEOR WER PER OBLEU OMET
(a) devset

BASELINE 32.98 7.80 61.99 56.50 40.68 10.35 11.20
ORACLEBLEU 38.65 8.56 66.43 51.73 35.95 100.00 50.30
ORACLEMETEOR 37.41 8.44 66.53 52.38 36.44 50.30 100.00

(b) testset
BASELINE 32.88 7.88 61.95 56.03 40.12 11.30 12.20
ORACLEBLEU 38.72 8.65 66.43 51.17 35.46 100.00 50.20
ORACLEMETEOR 37.50 8.55 66.54 51.86 36.00 50.20 100.00

Table 4.5: 1-best and oracle-best systems for 100-best distinct n-best lists on
Spanish→English: (a) devset and (b) testset

4.4 Reranking Features

In this section we briefly describe the features employed in our reranking framework. We

use distinct n-best list because the 13 features give the same value if the surface string is

identical. We have used nearly a dozen additional features in our reranking framework to

enable discrimination between good and bad translations as well as pushing of oracles up

the n-best lists. These features were selected mainly due to their proven usefulness in the

literature. Moreover, they have been used in MATREX, our in-house machine translation

system presented at WMT shared tasks (Du et al., 2009; Penkale et al., 2010).

In this section, we describe these features (at-a-glance list in Table 4.6) modeling
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translations with the help of a worked example and test their advantage over the baseline

system via system-level automatic MT evaluation metrics. We also evaluate their predic-

tion power by comparing the individual values for the oracle and the 1-best candidates, as

computed in Chapter 3.

LABEL DESCRIPTION
lm3 Language Model: 3-gram
ppl3 Language Model Perplexity: 3-gram
lm4 Language Model: 4-gram
ppl4 Language Model Perplexity: 4-gram
lm5 Language Model: 5-gram
ppl5 Language Model Perplexity: 5-gram
lm6 Language Model: 6-gram
ppl6 Language Model Perplexity: 6-gram
lm7 Language Model: 7-gram
ppl7 Language Model Perplexity: 7-gram
plm3 Part-of-Speech Language Model: 3-gram
plm4 Part-of-Speech Language Model: 4-gram
plm5 Part-of-Speech Language Model: 5-gram
mbr Cost: Minimum Bayes Risk Score
np Posterior Probability: n-gram
len Posterior Probability: Sentence Length
lenr Source–Target Sentence Length Ratio feature
ibm Cost: IBM Model 1 Score (t | s)

ibm−1 Cost: Inverse IBM Model 1 Score (s | t)

Table 4.6: Features used in the Reranker after decoding

4.4.1 Language Models

The aim of language model feature is to measure the fluency of a translation. Our baseline

system uses a single language model feature (lm in Table 4.2), namely 5-gram language

model score estimated on the target language training data. We augment this with four

n-gram (3-gram, 4-gram, 6-gram, and 7-gram) and three part-of-speech (3-gram, 4-gram,

and 5-gram) language models (first seven features in Table 4.6).

The labels in the part-of-speech language model were obtained using an off-the-shelf

Maximum Entropy part-of-speech tagger (Ratnaparkhi, 1996). The only difference be-

tween regular n-gram and part-of-speech language models is that the latter models on
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sequences of part-of-speech tags instead of word sequences. All language models used

herein as well as in other experiments throughout this thesis are smoothed with modified

Kneser-Ney discounting (Kneser and Ney, 1995) interpolated with lower-order estimates

as described in Chen and Goodman (1998) and implemented in the SRILM toolkit (Stol-

cke, 2002).

The reason for using n-gram language models which are up to 2 orders higher and

lower than the 5-grams used in the baseline is two-fold. Firstly, we wished to observe the

impact of n-gram size on the ranking of translation hypotheses. More importantly, this

allowed us to observe whether the baseline language model was deficient (i.e. context

window size of 5 was insufficient) or overzealous (i.e. the context window size of 5

was too large to distinguish between good and bad hypotheses). By using part-of-speech

language models, we were able to incorporate syntax in the candidate selection process

in a very simple manner.

We also use perplexity model feature in addition to the language model probabilities

because the perplexity score is normalized over the sentence length, i.e. it does not favour

sentences of relatively shorter length (Ye at al., 2007 WMT).

4.4.2 Minimum Bayes Risk

The minimum bayes risk probability (mbr feature in Table 4.6) is an alternative to the

maximum a posteriori (MAP) translation modeled by the baseline decoder score. The

MBR score takes into account not only the likelihood of a candidate but also its similarity

to the other very probable translations. The similarity is measured using the BLEU metric

as described in Section 3.4.1 in the previous chapter.

embr =
∑
e′

BLEU(e, e′) Pr(e′ | f) (4.1)

Equation 4.1 gives the formula for computing the MBR score for a translation can-

didate e. It traverses through a pairwise comparison of the candidate e with every other

candidate e′. The baseline decoder score is a special case of the MBR probability score
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when the loss function (indicated by the BLEU metric in our formula) simply assigns

a value 1 when e is equivalent to e′ and 0 otherwise. This feature is considered useful

because it seeks to take into account the relative position of a hypothesis in its respective

n-best list.

4.4.3 Posterior Probabilities

Zens and Ney (2006) define a range of posterior probability measures for SMT. We have

used the n-gram posterior probability (Equation 4.2) and the sentence length posterior

probability (Equation 4.3) as features in our reranking framework.

Pr(en1 | fJ
1 ) =

C(en1 , f
J
1 )∑

e′n1
C(e′n1 , fJ

1 )
(4.2)

Pr(I | fJ
1 ) =

∑
eI1

Pr(eI1 | fJ
1 ) (4.3)

These posterior probabilities for all candidate translations of a particular sentence are

estimated over the search space covered by the n-best list for this sentence.

4.4.4 Source–Target Length Ratio

This feature takes into account the relative lengths of the source language and target lan-

guage sentences.

4.4.5 IBM Model 1 Score

Herein we describe two sets of features: IBM and IBM inverse. The IBM model feature

is computed using Equation 4.4 which focusses on the source–target word conditional

probabilities.

Pr(f | e) =
ε

(l + 1)m

m∏
j=1

l∑
i=0

t(fj | ei) (4.4)
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For each feature, we also give their performance on reranking the baseline system

using each of the five weighting schemes (MERT and 4 rescoring algorithms).

4.5 Experiments: Feature Combination

In order to evaluate whether the reranking features described in Section 4.4 help improve

the performance of PB-SMT systems over the baseline (reported in Section 4.3), we build

five reranking systems (RERANKMERT , RERANKBPROD, RERANKMPROD, RERANKBSUM ,

and RERANKMSUM ) for each of the three language pairs (French→English, German→English,

and Spanish→English) and contrast their translation accuracies across five MT system

evaluation metrics (BLEU, NIST, METEOR, WER, and PER). We also observe how each

of the six PB-SMT systems (baseline plus five reranking systems) vary in terms of the

percentage of oracles placed at the top rank (OBLEU and OMET). Note that the OBLEU

and OMET scores are a direct indication of the model errors (number of sentences having

oracles at the top position of an n-best list) in a system.

The devset is used to estimate the parameters (weights or lambdas) of the features in

a particular system and the testset is used to validate the effectiveness of the features and

their associated weights on ’unseen’ sentences. The specifics of the six PB-SMT systems

evaluated in this section follow:

• BASELINE: This is a basic PB-SMT system consists of 14 decoding features with

weights optimised on system-level BLEU using MERT

• RERANKMERT : This is a reranking system (i.e. the PB-SMT system undergoes a

second-stage decoding step wherein the n-best list is reranked) with 14 decoding +

19 reranking features optimised on system-level BLEU using MERT

• RERANKBPROD: This is a reranking system with 14 decoding + 19 reranking fea-

tures optimised on system-level BLEU using MERT followed by a weight adjust-

ment algorithm using the RESCprod rescoring formula on BLEU-oracles
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• RERANKMPROD:This is a reranking system with 14 decoding + 19 reranking fea-

tures optimised on system-level BLEU using MERT followed by a weight adjust-

ment algorithm using the RESCprod rescoring formula on METEOR-oracles

• RERANKBSUM : This is a reranking system with 14 decoding + 19 reranking fea-

tures optimised on system-level BLEU using MERT followed by a weight adjust-

ment algorithm using the RESCsum rescoring formula on BLEU-oracles

• RERANKMSUM : This is a reranking system with 14 decoding + 19 reranking fea-

tures optimised on system-level BLEU using MERT followed by a weight adjust-

ment algorithm using the RESCsum rescoring formula on METEOR-oracles

Thus each of the five reranking MT systems is composed of the same 33 features

differing in merely the method used to optimise the weights for combining the features in

a log-linear model (parameter estimation). The purpose of this system-level evaluation of

decoding and reranking feature combination reported in Tables 4.7 through 4.12 is two-

fold: (1) To demonstrate the utility of RESCprod and RESCsum rescoring formulas defined

in Chapter 3 on additional (reranking) features as opposed to mere baseline (decoding)

features (2) To evaluate the impact of reranking features on model errors in a PB-SMT

system.

4.5.1 French–English

Table 4.7 shows the results for reranking 100-best distinct lists on French–English devset,

evaluated using the five metrics: BLEU, NIST, METEOR, WER, and PER. We compare

the performance of five reranking systems (33 features: RERANKMERT , RERANKBPROD,

RERANKMPROD, RERANKBSUM , RERANKMSUM ) against the BASELINE system (14

features).

Three out of five reranking systems (RERANKMERT , RERANKBPROD, and RERANK

MPROD) outperform the baseline across all metrics. The remaining two reranking sys-

tems RERANKBSUM and RERANKMSUM perform slightly worse than the baseline on all

metrics except METEOR score.
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SYSTEM BLEU NIST METEOR WER PER OBLEU OMET
BASELINE 32.17 7.70 61.34 57.10 40.96 12.55 13.75
RERANKMERT 32.58 7.74 61.63 56.89 40.76 14.80 14.65
RERANKBPROD 32.49 7.73 61.51 56.97 40.86 14.90 14.60
RERANKMPROD 32.49 7.73 61.51 56.96 40.85 14.85 14.60
RERANKBSUM 31.95 7.65 61.42 57.57 41.28 12.60 12.80
RERANKMSUM 31.89 7.63 61.46 57.71 41.33 12.70 12.40

Table 4.7: Summary of the results on reranking 100-best distinct n-best lists:
French→English devset.

The best-performing system is RERANKMERT which bests the BASELINE system on

BLEU with a statistically significant score of 32.58 points (absolute difference of 1.27%

over the baseline), NIST with a statistically significant score of 7.73 points (absolute

difference of 0.39% over the baseline), METEOR with a statistically significant score of

61.63 points (absolute difference of 0.47% over the baseline), WER with a statistically

significant score of 56.89 points (absolute difference of 0.37% over the baseline), PER

with a statistically significant score of 40.76 points (absolute difference of 0.49% over the

baseline), OBLEU (45 more sentences than the baseline) and OMET (18 more sentences

than the baseline).

Both RERANKBPROD and RERANKMPROD systems give similar performance and

perform slightly worse than RERANKMERT , but significantly better than the baseline (1%

improvement over the baseline on BLEU). There is a larger degree of variation between

RERANKBSUM and RERANKMSUM systems with RERANKBSUM as the better performing

system of the two. Note that almost all reranking systems rank more oracles in the top

position than the baseline.

SYSTEM BLEU NIST METEOR WER PER OBLEU OMET
BASELINE 32.47 7.81 61.80 56.43 40.34 12.75 12.70
RERANKMERT 32.67 7.81 61.91 56.38 40.33 13.50 14.50
RERANKBPROD 32.64 7.80 61.89 56.44 40.38 14.00 15.00
RERANKMPROD 32.65 7.80 61.88 56.43 40.38 13.95 15.00
RERANKBSUM 32.35 7.74 61.93 56.86 40.68 11.75 13.10
RERANKMSUM 32.29 7.73 61.96 56.91 40.72 11.65 12.45

Table 4.8: Summary of the results on reranking 100-best distinct n-best lists:
French→English testset.
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On the 100-best distinct lists on French–English testset (Table 4.8), we see similar

performance as on devset. Again, the three reranking systems (RERANKMERT , RERANK

BPROD, and RERANKMPROD) outperform the BASELINE with RERANKMERT giving the

best scores on BLEU (32.67 points: absolute difference of 0.6% over the baseline), WER

(56.38 points: absolute difference of 0.1% over the baseline), and PER (40.33 points:

absolute difference of 0.01 over the baseline). However, unlike the devset,RERANKMSUM

gives the best scores on METEOR with an absolute difference of 0.25% over the baseline

and nearly 0.1% over the RERANKMERT . The largest number of oracles in the top-most

position were recorded by RERANKBPROD and RERANKMPROD) systems.

Thus, on French→English, the log-linear combination of decoding features (Section

3.3.1) and reranking features (Section 4.4) significantly improves the system. RERANK

MERT is the best reranking system followed by RERANKBPROD and RERANKMPROD

systems. As observed in the system-level evaluation results for oracle-based rescoring in

Chapter 3, the METEOR scores seem to favour the SUM systems. The reranking systems

record a higher margin of improvement over the baseline on the devset than on the testset.

Whether this pattern is adhered to by the other language pairs (in sections 4.5.2 and 4.5.3)

remains to be seen.

4.5.2 German–English

Table 4.9 shows the MT system evaluation results for reranking 100-best distinct lists

on German–English devset. Just like in Section 4.5.2 we compare the performance of

five reranking systems (33 features: RERANKMERT , RERANKBPROD, RERANKMPROD,

RERANKBSUM , RERANKMSUM ) against the BASELINE system (14 features).

Three out of five reranking systems (RERANKMERT , RERANKBPROD, and RERANK

MPROD) outperform the baseline across all metrics. The remaining two reranking systems

RERANKBSUM and RERANKMSUM perform below the baseline on all metrics except ME-

TEOR score. In fact the RERANKBSUM system performs nearly as well as the baseline

on BLEU and NIST, and outperforms the baseline on PER as well as METEOR scores.

The best-performing system is RERANKMERT which bests the BASELINE system on

143



SYSTEM BLEU NIST METEOR WER PER OBLEU OMET
BASELINE 26.93 7.00 57.01 65.52 44.89 4.85 5.40
RERANKMERT 27.23 7.05 57.39 65.19 44.40 4.65 5.15
RERANKBPROD 27.09 7.04 57.29 65.29 44.47 4.60 5.00
RERANKMPROD 27.09 7.04 57.29 65.29 44.46 4.65 5.00
RERANKBSUM 26.92 6.99 57.26 65.66 44.75 3.90 4.30
RERANKMSUM 26.78 6.96 57.25 65.94 44.98 3.65 4.15

Table 4.9: Summary of the results on reranking 100-best distinct n-best lists:
German→English devset.

BLEU with a statistically significant score of 27.23 points (absolute difference of 1.11%

over the baseline), NIST with a statistically significant score of 7.05 points (absolute

difference of 0.7% over the baseline), METEOR with a statistically significant score of

57.39 points (absolute difference of 0.67% over the baseline), WER with a statistically

significant score of 65.19 points (absolute difference of 0.51% over the baseline), PER

with a statistically significant score of 44.40 points (absolute difference of 1.1% over the

baseline).

However unlike French–English, the BASELINE system records the highest number

of BLEU-oracles (OBLEU) and METEOR-oracles (OMET) at the top of the n-best lists.

This implies that although one or more of the reranking systems score more accurately

than the baseline, a lower percentage of these translations are actually oracles in the

reranking systems than in the baseline. Note that since the highest number of oracles

in the top rank is 5.4% (BASELINE OMET score), i.e. merely 108 out of 2000 sentences,

there is a strong possibility that in the remaining 1892 sentences, the reranking systems

fare better than the baseline.

Both RERANKBPROD and RERANKMPROD systems give similar performance and

perform slightly worse than RERANKMERT , but significantly better than the baseline

(0.5% improvement over the baseline on METEOR). There is a larger degree of vari-

ation between RERANKBSUM and RERANKMSUM systems with RERANKBSUM as the

better performing system of the two.

On the 100-best distinct lists on German–English testset (Table 4.10), we see bet-

ter performance from our reranking systems than on devset in that all the five rerank-
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SYSTEM BLEU NIST METEOR WER PER OBLEU OMET
BASELINE 27.02 7.01 57.11 65.25 45.01 5.05 5.10
RERANKMERT 27.36 7.05 57.48 64.91 44.64 4.50 4.55
RERANKBPROD 27.37 7.06 57.49 64.92 44.61 4.65 4.55
RERANKMPROD 27.38 7.06 57.49 64.91 44.60 4.70 4.55
RERANKBSUM 27.21 7.02 57.39 65.27 44.88 4.30 4.25
RERANKMSUM 27.13 7.00 57.46 65.48 45.05 3.80 3.75

Table 4.10: Summary of the results on reranking 100-best distinct n-best lists:
German→English testset.

ing systems outperform the BASELINE as per most metrics. Unlike the devset, both

RERANKMPROD and RERANKBPROD are the best-performing systems giving the best

scores on BLEU (statistically significant 27.38 points: absolute difference of 1.33% over

the baseline), NIST (statistically significant 7.06 points: absolute difference of 0.7%

over the baseline), METEOR (statistically significant 57.49 points: absolute difference

of 0.67% over the baseline), WER (64.91 points: absolute difference of 0.52% over the

baseline), and PER (44.60 points: absolute difference of 0.9% over the baseline).

Just like on the devset, the largest number of oracles in the top-most position (OBLEU

and OMET scores) were recorded by the BASELINE system.

Thus, on German→English, the log-linear combination of decoding features (Section

3.3.1) and reranking features (Section 4.4) significantly improves the system. RERANK

MERT , RERANKBPROD and RERANKMPROD systems are the best-performing systems.

The reranking systems record a similar margin of improvement over the baseline on both

the devset and testset, unlike on French–English (Section 4.5.1).

4.5.3 Spanish–English

Table 4.11 shows the MT system evaluation results for reranking 100-best distinct lists

on Spanish–English devset. Just like in sections 4.5.1 and 4.5.2, we compare the perfor-

mance of five reranking systems (33 features: RERANKMERT , RERANKBPROD, RERANK

MPROD, RERANKBSUM , RERANKMSUM ) against the BASELINE system (14 features).

Three out of five reranking systems (RERANKMERT , RERANKBPROD, and RERANK

MPROD) outperform the baseline across all metrics. The remaining two reranking systems
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RERANKBSUM and RERANKMSUM perform better than BASELINE on METEOR and at

par with the BASELINE system on BLEU and PER.

SYSTEM BLEU NIST METEOR WER PER OBLEU OMET
BASELINE 32.98 7.80 61.99 56.50 40.68 10.35 11.20
RERANKMERT 33.22 7.82 62.13 56.27 40.52 10.75 11.50
RERANKBPROD 33.16 7.81 62.06 56.32 40.57 10.65 11.35
RERANKMPROD 33.16 7.81 62.06 56.32 40.56 10.65 11.35
RERANKBSUM 32.98 7.78 62.09 56.57 40.70 9.15 10.35
RERANKMSUM 32.96 7.78 62.11 56.57 40.69 9.10 10.45

Table 4.11: Summary of the results on reranking 100-best distinct n-best lists:
Spanish→English devset.

The best-performing system is RERANKMERT which bests the BASELINE system on

BLEU with a statistically significant score of 33.22 points (absolute difference of 0.73%

over the baseline), NIST with a score of 7.82 points (absolute difference of 0.26% over the

baseline), METEOR with a score of 62.13 points (absolute difference of 0.23% over the

baseline), WER with a statistically significant score of 56.27 points (absolute difference

of 0.41% over the baseline), PER with a score of 40.52 points (absolute difference of

0.4% over the baseline).

Similar to French–English devset and unlike German–English devset, the RERANKMERT

system records the highest number of BLEU-oracles (OBLEU) and METEOR-oracles

(OMET) at the top of the n-best lists.

Both RERANKBPROD and RERANKMPROD systems give similar performance and

perform slightly worse than RERANKMERT , but significantly better than the baseline

(0.55% improvement over the baseline on BLEU). Surprisingly, even RERANKBSUM and

RERANKMSUM systems have negligible variation in their evaluation scores.

On the 100-best distinct lists on Spanish–English testset (Table 4.12), we see bet-

ter performance from our reranking systems than on devset in that all the five rerank-

ing systems outperform the BASELINE as per most metrics. Both RERANKBSUM and

RERANKMSUM are the best-performing systems according to BLEU (33.00 points: abso-

lute difference of 0.37% over the baseline) and METEOR (62.09 points: absolute differ-

ence of 0.23% over the baseline). However, both RERANKBPROD and RERANKMPROD
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SYSTEM BLEU NIST METEOR WER PER OBLEU OMET
BASELINE 32.88 7.88 61.95 56.03 40.12 11.30 12.20
RERANKMERT 32.98 7.89 62.01 55.88 40.07 10.05 11.40
RERANKBPROD 32.98 7.89 62.03 55.84 40.05 10.35 11.50
RERANKMPROD 32.98 7.89 62.02 55.84 40.05 10.35 11.50
RERANKBSUM 33.00 7.87 62.09 56.02 40.15 9.65 11.05
RERANKMSUM 32.99 7.87 62.09 56.03 40.15 9.60 10.80

Table 4.12: Summary of the results on reranking 100-best distinct n-best lists:
Spanish→English testset.

are the best-performing systems according to NIST (7.89 points: absolute difference of

0.13% over the baseline), WER (55.84 points: absolute difference of 0.34% over the

baseline), and PER (40.05 points: absolute difference of 0.17% over the baseline).

Unlike on the devset, the largest number of oracles in the top-most position (OBLEU

and OMET scores) were recorded by the BASELINE system. This implies that although

one or more of the reranking systems score more accurately than the baseline, a lower per-

centage of these translations are actually oracles in the reranking systems than in the base-

line. Note that since the highest number of oracles in the top rank is 12.2% (BASELINE

OMET score), i.e. merely 244 out of 2000 sentences, there is a strong possibility that in

the remaining 1756 sentences, the reranking systems fare better than the baseline.

Thus, on Spanish→English, the log-linear combination of decoding features (Section

3.3.1) and reranking features (Section 4.4) significantly improves the system. RERANKMERT

is the best-performing system on devset while all four oracle-based reranking systems

(RERANKBPROD, RERANKMPROD, RERANKBSUM , and RERANKMSUM ) perform slightly

better than the baseline on testset.

4.6 Contrasting Decoding with Reranking

Table 4.13 contrasts the oracle distribution of French→ English 100-best testset for de-

coding (using the 14 baseline features) and using 13 additional reranking features.5 Thus

by using more sophisticated features we are able to reduce model errors by ranking 283

5These 13 features are a subset of the actual 19 features used for reranking. This is done as the remaining
6 features showed nearly equal proportion distribution for oracles (w.r.t. BLEU metric) and 1-bests.
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(a) DECODING (b) RERANKING

RANGE 100-BEST DISTINCT 100-BEST DISTINCT
Rank 1 251 (251) 283 (283)
Rank 2 to 5 539 (790) 570 (853)
Rank 6 to 10 216 (1006) 281 (1134)
Rank 11 to 24 517 (1523) 446 (1580)
Rank 25 to 50 278 (1801) 245 (1825)
Rank 51 to 75 128 (1929) 113 (1938)
Rank 76 to 100 71 (2000) 62 (2000)

Table 4.13: Number of times an oracle occurs in a particular range of ranks in the n-best
lists of (a) DECODING and (b) RERANKING features. The numbers in brackets give the
corresponding cumulative frequencies.

oracles at rank 1 in contrast to 251 oracles with the baseline system.

FEATURE % ORACLE % 1-BEST % BOTH
d1 7.10 10.85 82.05
d2 41.80 37.60 20.60
d3 3.95 7.90 88.15
d4 8.65 12.55 78.80
d5 41.95 41.60 16.45
d6 3.45 7.70 88.85
d7 8.95 12.90 78.15
lm 38.65 48.75 12.60
w 28.30 30.50 41.20
tm1 34.20 52.20 13.60
tm2 34.85 49.25 15.90
tm3 29.90 54.80 15.30
tm4 37.30 48.20 14.50
tm5 29.20 23.50 47.30

Table 4.14: % of sentence in which a feature favours an oracle (2nd column), a 1-best (3rd
column) or favours both equally (last column) in the n-best lists of DECODING features

The features which actually make this impact and their individual effect on oracle

ranking are shown in Tables 4.14 (decoding features) and 4.15 (reranking features). In

both tables, the first column gives the feature name (described in Table 4.2 for decoding

features and in Table 4.6 for reranking features). For each of the 2000 sentences in the

testset,6 the individual feature values were compared for the 1-best translation (baseline

system output) and the oracle translation (output most similar to the reference as per the

BLEU metric). The second column shows the percentage of these sentences for which
6Only those sentences were considered for which the 1-best translation was not the oracle translation.
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FEATURE % ORACLE % 1-BEST % BOTH
lm3 46.4 43.1 10.5
lm4 45.35 44.2 10.45
lm6 45.75 43.85 10.4
lm7 45.15 44.45 10.4
plm3 43.85 36.4 19.75
plm4 43.75 36.55 19.7
plm5 43.4 36.9 19.7
mbr 40.5 47.5 12
np 43.15 45.4 11.45
len 26.9 26.7 46.4
lenr 29.6 28.55 41.85
ibm 56.2 28.9 14.9
ibm-1 28.85 56.25 14.9

Table 4.15: % of sentence in which a feature favours an oracle (2nd column), a 1-best
(3rd column) or favours both equally (last column) in the n-best lists of RERANKING

features

any given feature has a greater value for oracle. The third column shows the same for the

1-best translation. The fourth column displays the percentage of sentences for which both

oracle and 1-best possessed the same value. If a majority proportion of sentences had the

equivalent feature value for both oracle and 1-best as in the case of d1 feature (82.05%)

in Table 4.14, then it implies that this feature is not very good in discriminating between

good and bad translations.

Figure 4.4 gives a graphical representation of Table 4.14 for decoding features on

French–English testset. We observe that for the most part, distortion features (d1 through

d7) are unable to discriminate between oracle and 1-best translations. This is because

they either generate the same value for both types of sentences or favour one over the

other evenly. It might perhaps be a good idea to not consider distortion features while

reranking. We leave this for future work.

Figure 4.5 gives a graphical representation of Table 4.15 for reranking features on

French–English testset. While the language models are mostly evenly matched on the

oracle and 1-best translations, the IBM Model 1 feature favours the oracles heavily. This

is as expected because most approaches in the literature report IBM Model 1 scores to be

highly successful in discriminating between good and bad translations.
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4.7 Conclusion

Having experimented on three language pairs (French→ English, German→ English, and

Spanish→ English), we evaluated the application of Oracle-based Training (OBT) rescor-

ing methods on n-best list reranking. We observed that the OBT scoring helps reranking

on German→ English data more than any other language pair. We also observed that

OBT is a viable method for feature selection for reranking in large feature spaces. For ex-

ample, subsequent experiments may benefit from filtering out features like the distortion

since they were ineffective in discriminating between good and bad translations.

4.8 Summary

In this chapter, we experimented on 3 different language pairs (French, Spanish, German)

to English on 100-best distinct lists using 13 reranking features in addition to 14 baseline

features. We pitted the baseline system against 5 different reranking systems (optimised

using MERT (1), and optimised using OBT (4)). All reranking systems outperform the

baseline as expected. However our OBT systems outperformed MERT-reranking only

on German→ English data. We believe that the variation between the source and target

languages proved to be a factor. In the next chapter, we summarize our thesis and revisit

our research questions.
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Chapter 5

Conclusions

5.1 Research Questions Answered

In this thesis we have posed five research questions (RQ1 through RQ5, listed below)

which have attempted to answer.

(RQ1) Are phrase pairs extracted from percolated dependency treebanks a useful knowl-

edge source for PB-SMT?

(RQ2) Can the PB-SMT system obtain optimal performance out of linguistically motivated

phrase pairs?

In Chapter 2 we explored the phrase pairs extracted from percolated dependencies-

induced treebanks and through experiments on 15 syntax-aware PB-SMT systems (one or

more combination of the four base systems: S, C, D, P), we demonstrated the effectiveness

of PERC-induced phrase pairs on translation performance. The automatic MT system

evaluation scores on French–English translations show that the S+C system gave the best

performance. However, lack of statistical significance in the results and manual evaluation

leads us to believe that PERC is useful enough to warrant further investigation. Therefore,

percolated dependencies appear to be a useful knowledge source for PB-SMT.

Using four other decoder configurations (all-options, reordering models, MBR, mul-

tiple translation models) and a qualitative analysis leads us to believe that good phrase
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pairs fail to be selected by the decoder as the optimum translation. We therefore also

demonstrated that the PB-SMT system gives sub-optimal performance in case of multiple

phrase tables.

The lessons learned from this chapter are that there are multiple techniques of per-

forming the same function (in this case phrase extraction). It is far more useful to find

an optimal way to combine each of these techniques (S, C, D, P and their combinations)

rather than relying on merely one way (e.g. S (non-linguistic)).

(RQ3) Does pushing oracles up the n-best list minimise model errors and improve perfor-

mance of a PB-SMT system?

In Chapter 3, we explore the concepts of rescoring n-best lists by identifying oracles to

help reduce model errors which in turn improves the system performance. We postulated

two rescoring strategies: RESCsum and RESCprod. We demonstrated their effectiveness

on French–English (both directions) as well as on German → English, Spanish → En-

glish PB-SMT systems. We can definitely conclude that pushing oracles up the n-best list

reduces model errors (as demonstrated by the OMET and OBLEU scores) which in turn

improves system performance as demonstrated by automatic evaluation measures. Gener-

ally speaking, the RESCsum systems were similar to the BASELINE and were more likely

to beat the baseline system on all metrics except the METEOR scores. The METEOR

score were favoured by the RESCprod systems. This implies that the ratio-based parame-

ter estimation is more suitable for metrics which take into account both the precision and

recall. While the difference-based parameter estimation (similar to perceptrons) favour

the precision-based metrics like BLEU and NIST.

(RQ4) Can additional features in a reranking framework help minimise model errors?

(RQ5) Can the oracle-reranked system help the PB-SMT system to better exploit linguisti-

cally motivated chunks?

The remaining two research questions are answered in Chapter 4. By supplementing

the 14 decoding features with 19 additional features, we successfully demonstrated the

154



utility of our rescoring strategies in a reranking (post-decoding) framework. We built PB-

SMT systems for three language pairs and demonstrated that although MERT estimation

of reranking features is the best-performing system, our oracle-based reranked systems

perform on par. One must keep in mind that OBT (Oracle-based Training) is a single

iteration algorithm as opposed to MERT.

With regards to the last research question, we conclude that although it is possible to

utilise our OBT strategies to help optimise multiple phrase extractions, it is outside the

scope of this research to demonstrate this. This is left for future work.

Figure 5.1: Schematic diagram of the modules in a Phrase-based Statistical Machine
Translation System: Thesis Overview.

Figure 5.1 summarises the PB-SMT modules investigated in each chapter. Thus in this

thesis, we have successfully explored useful modifications to three modules of a standard

PB-SMT system: phrase extraction, tuning, and reranking. The major contributions of

this thesis are as follows:

• It is possible to standardise outputs of different parsers for source and target lan-

guages used in syntax-aware PB-SMT systems by incorporating a head percolation

based induction on constituency treebanks. This implies that the head percolation
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algorithm can help minimise the differences in parser outputs when using different

softwares for different languages (example Berkeley Parser for source language and

Stanford Parser for target language).

• Percolated dependency-induced phrase pairs are significantly different from direct

dependency-induced phrase pairs. Thus we have found a hitherto unutilised knowl-

edge source for PB-SMT phrase pairs.

• It is beneficial to combine multiple techniques (phrase extractions) rather than use a

single one. The S+C+D+P system gives better translations than individual systems

S, C, D, or P.

• The PB-SMT system has not been fully exhausted as demonstrated by the existence

of the huge amount of model errors. Therefore, it is our belief that before ventur-

ing into tree-based SMT, better optimisation algorithms and combination strategies

for phrase-based SMT must be experimented upon. This thesis is a step in this

direction.

• Simple intuitive rescoring strategies like RESCprod and RESCsum can help improve

the deficiencies of Minimum Error Rate Training parameter estimation algorithm.

• In an age where there are numerous approaches of performing the same Natural

Language Processing task, one must find ways to exploit the benefits of each of

these techniques by combining the outputs in a smart manner or using rescoring /

reranking techniques in a post-processing step.

5.2 Design Decisions

The SMT research field is very diverse and active. As such, there were numerous instances

of where we were presented with a set of alternatives, and we chose a specific direction

to demonstrate the effectiveness of our ideas. Thus in addition to the research questions

stated above, we also address some of our design decisions. For example,
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• Why discard the syntactic labels when using treebank-based phrase extraction in

syntax-aware systems? We are focussing on linguistically-motivated phrase bound-

aries and not a specific phrase type (as indicated by the labels).

• Why use n-best lists in rescoring and reranking instead of lattices (a graphical

representation of translation hypotheses)? It is our belief that lattices are a nifty

space-saving mechanism or representation format and the n-best lists are easier to

modify in our experiments which rely on having access to the whole sentence rather

than parts of it. Lattices, though more compact, are computationally more complex

than n-best lists by increasing the difficulty of extracting features for each complete

sentence or hypothesis in the translation space. Future work will however address

this issue.

• Why employ sentence-level BLEU and not other metrics for oracle selection? BLEU

is the most popular metric and we also evaluated selected experiments using sentence-

level METEOR scores.

• Why only experiment on French-English data for additional experiments? This

was done for uniformity throughout experiments when correlating with percolated-

dependency induced phrase extraction system.

• Why use the specific features we use in reranking? This was done while keeping

ease of availability in mind as our primary purpose was not the innovativeness of

features but the applicability of OBT on reranking features.

• Why not use perceptron in rescoring? Our RESC-sum and RESC-prod strategies

postulate something resembling a perceptron, simpler than a perceptron or rather a

1-iteration flavour.

• Why use distinct n-best lists for reranking? We use distinct when the same surface

level string will give same scores for features.

• Why not translate from English into a foreign language in the reranking experi-

ments? This was because target language will require part-of-speech taggers for
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POS-language models which we did not have access to.

5.3 Potential Research Avenues

We have categorized the future work on the three main research strands (phrase pair ex-

traction, rescoring, and reranking).

5.3.1 Phrase Pair Extraction

We plan to work on scaling up the syntax-aware systems from 100,000 sentences up-

wards, and on other language pairs for treebank phrases. We intend to work on more

types of phrase extractions and their combinations, e.g. marker-based, discriminative

phrase alignment, alignments instead of grow-diag-final. We will also explore other mod-

els like str-con alignment or con-dep alignment rather than con-con, dep-dep for source-

target language pairings. Another investigative scenario to be explored is using Google’s

OpenFST1 (weighted finiste state transducers) to combine multiple phrase extractions.

For further future work, we plan to introduce a segmentation model in syntax-aware

systems so that the phrases to be decoded are linguistically segmented. An interesting

research question to be answered herein is whether it helps improve the performance by

decoding syntactically well-formed phrases.

It was discovered that the largest overlap in pure numerical terms was between CON

and PERC phrase tables. A useful exercise would be to conduct an investigation into

any bias here. By using two different constituency parsers to produce two sets of PERC

chunks, we plan to study the correlation between the overlap of phrase pairs in the four

phrase tables (two constituency types and two percolated dependency types) as a measure

of bias.
1http://www.openfst.org/twiki/bin/view/FST/WebHome
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5.3.2 Rescoring (Parameter Estimation)

An avenue we did not explore (as we used Europarl data with 1 reference only) was

how does OBT vary when using a dataset with multiple references and how is the oracle

selection affected.

The rationale behind logistic regression is to rely on the power of discriminative learn-

ing to optimally use all available features to predict the final target (Liu et al., 2011). But

we think that we can benefit from a tiered or hierarchical learning paradigm where in

more reliable features are used to score the n-best lists followed by a second set of less

reliable features and so on and so forth, rather than using all features at once.

Another avenue is to implement an on-the-fly MERT where the tuning is done depend-

ing on a sentence and is not done for the entire set. Hence the weights are more specific

to each sentence (cluster of features rather than the entire set), rather than for the entire

devset and testset. OBT would be helpful in a feature-selection strategy. This implies

moving towards non-linear modeling where the same set of weights and features do not

apply to all the sentences equally.

We plan to use metrics better suited for sentence-level evaluation like TER (Snover

et al., 2006). On the issue of using other metrics, we plan to use more sophisticated

(syntax-based) machine translation evaluation methods for oracle selection. A helpful

avenue will be the MT Evaluation Metric Campaigns and to choose metrics which have

the the highest correlation with human evaluation.

For future work, we will implement different flavors of perceptron for a discriminative

reranking strategy and contrast it with MERT-based and oracle-based training strategies

implemented in Chapter 3.

There are approaches in the field of optimisation which employ multi-objective func-

tions. This implied tuning weights based on not just BLEU but BLEU and METEOR, etc.

We wish to explore the applications of OBT in the same vein as employed by Duh et al.

(2012) in learning to translate with multiple objectives.

An interesting experiment is oracle-based MERT: where instead of the true reference

sentences we use oracles as a reference (i.e. translations which are reachable). We will
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need to find a way of computing this after every intermediate decoding step in the MERT

and before MERT’s weight estimation algorithm.

5.3.3 Reranking

We also plan to use a host of reranking features (Shen et al., 2004; Carter and Monz,

2011) and couple them with our RESCsum and RESCprod rescoring strategy. We will also

generate a feature based on our rescoring formula and use it as an additional feature in

discriminative reranking framework.

We seek to trace through decoder and search graph where n-best oracles are pushed

up or down. We wish to introduce phrase pair reranking rather than sentence reranking.

This will tie in with investigating lattices as n-best lists will no longer be sufficient. There

has been recent work done on oracle-based decoding (Wisniewski and Yvon, 2013) and

we wish to introduce reranking during decoding instead of post-decoding.

While outside the scope of this thesis, an idea is to use each reranking feature to get

the best ranking sentence(s) individually and then use system combination to combine the

highest ranking hypotheses into one. This will be combining both reranking features and

system combination, while doing away with the parameter estimation step.
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