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Abstract Quantitative modelling of gene regulatory networks (GRNs) is still lim-
ited by data issues such as noise and the restricted length of available time series,
creating an under-determination problem. However, large amounts of other types of
biological data and knowledge are available, such as knockout experiments, anno-
tations and so on, and it has been postulated that integration of these can improve
model quality. However, integration has not been fully explored to date. Here, we
present a novel integrative framework for different types of data that aims to en-
hance model inference. This is based on evolutionary computation and uses differ-
ent types of knowledge to introduce a novel customised initialisation and mutation
operator and complex evaluation criteria, used to distinguish between candidate
models. Specifically, the algorithm uses information from (i) knockout experiments,
(ii) annotations of transcription factors, (iii) binding site motifs (expressed as posi-
tion weight matrices) and (iv) DNA sequence of gene promoters, to drive the al-
gorithm towards more plausible network structures. Further, the evaluation basis
is also extended to include structure information included in these additional data.
This framework is applied to both synthetic and real gene expression data. Models
obtained by data integration display both quantitative and qualitative improvement.
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1 Introduction
Gene regulatory network reverse engineering is an important aim of Systems Bi-
ology [7], as models obtained can be used for analysis and simulation in contexts
often difficult to realise in laboratory experiments. Approaches using mathematical
modelling, ranging from qualitative to quantitative, have been applied to discovery
of GRNs from gene expression data [10]. However, the size of GRNs and the nature
of the data (high dimensional, noisy, insufficient for analysis of dynamics), limit ro-
bustness when mimicking natural behaviour. This is particularly true for quantitative
models, which aim to simulate very detailed patterns of expression, increasing the
number of parameters to be inferred. However, such models can provide extremely
useful insight on the gene expression process, where improvement of reverse engi-
neering techniques is an ongoing aim of Systems Biology [16].

Given the challenges posed by available gene expression data and poor model ro-
bustness to date, a new direction is integration of several data types, [16], and these
reports have started to appear, mostly for coarse-grained analysis [8]. These inte-
grate expression data with other types of measurements, such as binding affinities
or protein interactions, to better discriminate between candidate models, but usually
are limited, (i.e. use only one additional data type, besides time-course data). How-
ever, several such data-types are available, and the hypothesis is that combining all
of these, can further increase modelling power. Recently, Drosophila Melanogaster
datasets have been integrated, but again for qualitative analysis only [3]. Here, a
novel inferential framework for quantitative models, based on Evolutionary Com-
putation (EC), is presented (EGIA - Evolutionary optimisation of GRNs - an Inte-
grative Approach). Although other methods are also possible, the EC approach has
been selected as it provides increased flexibility, implicit parallelism and has proved
to be a suitable search method for underdetermined problems, noisy data and large
search spaces [1]. The hypothesis tested is that integration of diverse large-scale bi-
ological data improves qualitative and quantitative performance of models inferred.

The strength of the newly-introduced platform is the number of data types to
be combined and the flexibility of integration. The novel customisation of different
stages of the Evolutionary Algorithm permits more knowledgeable exploration of
the search space and more informative evaluation criteria, based on the data avail-
able. This is crucial for improving the performance of the models inferred, both
quantitatively and qualitatively. Furthermore, a general methodology for GRN infer-
ence from multiple data types is developed. This includes an error structure analysis
to identify the stage of the algorithm at which each data type should be integrated.

2 Methods

2.1 Data

Both synthetic and real datasets are used to assess algorithm performance. Synthetic
networks are from the DREAM4[12] competition. This is a research community
competition where data from known GRNs are published and researchers have the



EGIA 3

task of reverse engineering the original networks. These networks are carefully gen-
erated so as to resemble real GRNs. The data used here, generated by networks of
10 and 100 genes respectively, contain both time-series measurements and knockout
experiments. The set of known interactions are used for qualitative evaluation, and
MSE for dual-knockout experiments for quantitative.

For real data, a sub-network of 27 genes involved in Drosophila melanogaster
embryo development is analysed. A single-channel (SC) microarray dataset [21],
is used for training, while a dual-channel (DC) dataset [11] is used for quantita-
tive evaluation. Cross-platform normalisation (namely XPN, [17]) has been per-
formed prior to model inference. For qualitative evaluation, 16 interactions from the
Drosophila Interactions Database (DROID) [13], version 2010 10, are considered
gold-standard. Additional data types are also integrated: (i) knockout experiments
for 8 genes, which were used to compute log-ratios against wild-type experiments
[11, 5, 20, 4, 6], (ii) pair-wise correlation between gene expression patterns, (iii)
Gene Ontology (GO) [14] annotations, which assign the function of transcriptional
regulation to 17 of these genes and (iv) binding site affinities for 11 transcription
factors (computed using known cis-regulatory modules and position specific weight
matrices - PSWMs [15, 2]).

Algorithm performance is evaluated both quantitatively and qualitatively. Quali-
tative evaluation analyses GRN topology, to assess whether known interactions be-
tween gene pairs are retrieved by the algorithm. This means that the known ad-
jacency matrix of the network is compared to the one retrieved by our algorithm.
Specifically, the AUROC (Area Under the ROC Curve) and AUPR (Area Under the
Precision-Recall Curve) are computed, measures used also in the DREAM4 com-
petition. Given that the algorithm is stochastic in nature, predictions of interactions
have been performed by using multiple models obtained in different runs, and em-
ploying a voting procedure for possible interactions. In this way, an interaction that
appears in more models is considered to be more plausible. The ranking of pos-
sible interactions is used for AUROC/AUPR computation. Quantitative evaluation
assesses whether the inferred models are able to predict the real-valued expression
levels seen in the data. This is performed by simulating a set of test data, not used
for model inference, and by computing average MSE (Mean Squared Error) values
over multiple runs.

2.2 Algorithm

EGIA seeks to exploit several types of data related to the process of gene expression,
which contribute at different stages of the evolutionary algorithm. The framework is
based on a previously introduced inferential algorithm, [9]. This algorithm has been
shown to be among the most scalable and least sensitive to noise of several methods
from the literature [18]. Based on this, we have chosen to extend it further for data
integration, by introducing novel mutation, initialisation and evaluation operators.
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2.2.1 The basic algorithm
In [9], a neural-genetic hybrid approach to GRN inference was introduced. This
models the GRN as a single-layered Artificial neural Network (ANN), consisting
of one neural unit per gene. Each unit i takes as input the expression values of the
regulators of gene gi (i.e. g j) at time point t and computes the expression level for
gene gi at time t + 1, using the input weights wi j and the logistic function S(x) =

1
1+e−x for activation:

gi(t +1) = S

(
∑

j
wi jg j(t)+bi−digi(t)

)
(1)

where bi accounts for external input, while di represents the degradation rate.
The basic algorithm divides optimisation into two phases: structure and param-

eter search. The first involves optimising network topology, i.e. the set of regulators
for each gene. This is implemented as a Genetic Algorithm, where each individual
encodes a candidate structure, as a subset of the possible regulators for the cur-
rent gene. Each candidate structure is assigned a fitness value during the parameter
search phase, which employs Gradient Descent to optimise the input weights for the
neural unit for the current gene. The final error obtained is considered the fitness
of the candidate structure. A divide-and-conquer approach is used to optimise pa-
rameters for each gene at a time, i.e. training small networks with one neural unit,
independently of the other units.

2.2.2 Algorithmic schema extension
The basic algorithm [9] optimises parameters for each gene separately, in a divide-
and-conquer manner. This approach reduces dimensionality of the system for each
optimisation run. However, the model obtained by directly combining sub-models
may not be able to correctly simulate the whole system, as separate optimisation
disregards the feed-back from the full gene set. In consequence, we have added
a second optimisation stage, which combines single-gene models and performs a
fine-tuning of complete-network parameters, using the same structure and parameter
optimisation.

One way of obtaining models that are robust to noise involves creating noisy
replicates from the available data [22]. This simulates technical replicates, and re-
sults in multiple time series to be used during inference. Here, a larger set of time-
series has been derived from available data through addition of random Gaussian
noise. This has been performed during the parameter optimisation phase, for ANN
training.

2.2.3 Custom initialisation and mutation
The basic algorithm achieves an initial population of candidate structures by ran-
domly selecting possible transcription factors for a specific gene. Similarly, muta-
tion is performed by replacing one of the regulators with a randomly chosen gene.



EGIA 5

However, many data types provide indications on which interactions between genes
are most likely. For example, binding site affinities can indicate what transcription
factors can bind to a specific gene promoter. This type of information is very valu-
able, and can be used to explore the search space in a more knowledgeable manner.
For this, we have developed a customised initialisation and mutation procedure,
which uses likelihood assignment for gene regulation. This results, for each gene
g, in a non-uniform probability mass function, which describes which of the genes
in the network are more likely to be regulators of gene g. When performing muta-
tion or initialisation, this function is used to select a candidate regulator for gene g.
This is similar to Wheel of Fortune (WOF) selection [1], (also known as the roulette
wheel), so will be addressed henceforth as WOF mutation and initialisation.

In order to build the probability mass function for each gene g, the strategy is
to assign segments on the WOF to each gene in the network, if there is any indica-
tion in the data of a possible effect of that gene on the current gene g. This number
of segments has to be defined by the user based on the reliability of the data used.
In the following we provide the values used in our experiments, empirically deter-
mined through multiple applications of the algorithm. Of course, these values can be
changed to produce a higher or lower effect on the resulting WOF. Several different
types of data can be used for this, as follows.

Correlation patterns Althought dependences between genes can be non-linear,
a good correspondence between linear gene expression correlation-based networks
and GRNs has been previously identified, [23]. In consequence, we have used Pear-
son correlation between time series data of gene pairs, to enhance solution space
exploration. Based on absolute values of the correlation to gene g, each gene i is
assigned segments on the WOF:

CORRgi =


0 if |rgi|< 1st decile
1 if 1st decile < |rgi|< 3rd decile
4 if 3rd decile < |rgi|< 7th decile
6 otherwise

(2)

where rgi is the Pearson coefficient between genes i and g. The deciles are based on
all correlation values obtained. In this way, genes that show high correlation with
the current gene will be more likely to be selected as possible regulators.

Knockout(KO) experiments Gene expression data from KO experiments can
also be used to enhance the search for network models. Absolute values of log-
ratios between wild-type and knockout samples can be used to allocate segments on
the WOF to those genes that display a large effect on other genes. The number of
segments (KOgi) allocated for each gene i on the WOF of gene g depends on the
magnitude of the log-ratio:

KOgi =


0 if |log-ratiogi|< 0.2
1 if 0.2 < |log-ratiogi|< 0.5
4 if 0.5 < |log-ratiogi|< 0.8
6 if 0.8 < |log-ratiogi|< 1.1
8 otherwise

(3)
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Gene Ontology (GO) annotations The GO database contains annotations of
which gene products have been observed to have a specific function, and annotations
of transcriptional regulator activity can be included in the EGIA framework. These
genes will be allocated additional segments (4 in our experiments) on all the wheels
of fortune of the genes in the network. In this way, known transcription factors
become more likely to be selected as regulators:

ANNOTgi =

{
0 if gene i is not annotated as TF
4 otherwise (4)

Binding site affinities Binding site (BS) affinities can be integrated in a sim-
ilar manner. To compute the affinity between a regulator and a gene, the position
specofic weight matrix (PSWM) associated with the regulator is required, as well as
promoter sequences for the gene. Using these two pieces of information, BS affinity
values for each TF i and target gene g are retrieved. For each regulator i, the average
(A) and maximum affinity (Amax), over all target genes g, is computed, and segments
on the WOF are allocated as follows:

BSgi =


0 if Agi < A
6 if A < Agi < A+ A−Amax

2
8 otherwise

(5)

where Agi represents the affinity of gene i for binding to a promoter of gene g.
Once all the segments, corresponding to the different type of data, are allocated

for all possible regulators, these are summed (Equation 6) and the segment distribu-
tion is normalised to represent a probability mass function (Equation 7).

WOFgi =CORRgi +KOgi +BSgi +ANNOTgi (6)

fg(i) =
WOFgi

∑i WOFgi
(7)

This probability mass function defines the probability that a gene i will be se-
lected as regulator for gene g during mutation and initialisation. Each target gene g
is associated with such a probability mass function. All data types mentioned can be
integrated or omitted, depending on availability. When no additional data are avail-
able, the WOF mutation and initialisation are equivalent to the random assignment
from the basic algorithm.

2.2.4 Extending evaluation
The original algorithm uses a fitness function based on the RSS between data and
simulation. This has been extended to include also the correlation between sim-
ulation and gene patterns [19]. However, this only considers time-series data for
evaluation. Using additional data during model evaluation, which might provide
information on possible structure, is one way of addressing the noise and under-
determination problem, inherent in time-series data. This changes the fitness land-
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scape, so that models which have a plausible topology as well as ability to simulate
the time-series data, correspond to better fitness.

The WOF mechanism presented in Section 2.2.3 can be thus also used for model
evaluation, by computing an average of all probabilities assigned to the model in-
teractions by the WOF. This, used in combination with the previous fitness function
discussed [19], enables construction of a fitness landscape that helps the optimisa-
tion algorithm find more plausible structures, as well as models that can simulate
continuous behaviour. The final fitness function to be minimised is:

F =
1
2 ∑

i
(oi− ti)2− cP−w

1
n ∑
(i, j)∈INT

f j(i) (8)

where the first term on the right hand side represents the squared error typical for
ANN backpropagation (oi is the expression level simulated by the model, while
ti is that observed in the data), the second the correlation term from [19], while
the last term is an average, over all pair-wise interactions present in the model, of
the probabilities obtained by the WOF mechanism. INT is the set of interactions
predicted by the model ( (i, j) is an inferred regulatory effect of i on j), while f j(i)
represents the fraction of the WOF allocated to that interaction (Equation 7). This
term is weighted by w, a parameter which needs to be provided by the user. This
evaluation criterion is used both at the single-gene and complete-model optimisation
stage.

3 Results
The customised evolutionary operators have been implemented using all data types
available and models obtained compared to the original algorithm. In order to iden-
tify which type of data is more useful, different variants of WOF and evaluation
have also been employed, by eliminating one data type at a time.

3.1 Performance on synthetic networks
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Fig. 1 Performance of WOF and extended evaluation for the 10-gene synthetic dataset.
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For the synthetic datasets (DREAM networks), only correlation patterns and log-
ratios for knockout experiments are available, so three versions of the algorithm
were compared to the basic one (Random). These three variants are denoted by All-
eval (including all data available in WOF mutation, initialisation and evaluation),
-KO (all data excluding knockout experiments) and -Corr (all data excluding corre-
lation patterns).

Figure 1 displays AUROC and AUPR values obtained after 10 runs of each al-
gorithm on the 10-gene synthetic network. It also includes average MSE over 10
runs for dual knockout simulations, and corresponding p-values of differences ob-
served (compared to the basic algorithm - Random). As the figures show, extend-
ing the evaluation criterion appears to produce both qualitative and quantitative
improvement when compared to the basic algorithm. The set of predicted inter-
actions is slightly improved when knockout experiments only are used (-Corr), but
quantitative behaviour is best (lowest MSE values) when both data types are inte-
grated. However, when knockout experiments are excluded, AUROC/AUPR values
decrease significantly. This suggests that knockout data are very important for ex-
tracting direct interactions.
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Fig. 2 WOF and extended evaluation for the 100-gene synthetic dataset.

Similarly, for the 100-gene network, qualitative and quantitative results are dis-
played in Figure 2. Introducing the enhanced evaluation criterion markedly in-
creases the number of correct interactions discovered, as shown by the AUROC
and AUPR values. The best results are obtained after excluding correlation patterns
from the data types used, indicating again that these are not particularly useful in
this context, (as found also for the 10-gene network). On the other hand, if knockout
experiments are excluded, AUROC/AUPR values decrease significantly, showing
that these data are very important in predicting a good set of interactions. From
the quantitative point of view, the novel evaluation criterion yields models with low
MSE in dual knockout simulations, (minimum values under 0.025), with best re-
sults obtained for exclusion of correlation patterns. However, although minimum
and average MSE are lower compared to the basic algorithm, the overall quantita-
tive results from multiple experiments are only statistically significant at the 10%
level (-Corr).

We have compared these results to those obtained by the participants in the
DREAM4 competition, on the same networks used in this analysis. The top three
teams, which submitted quantitative and qualitative results for both network sizes,
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have been selected for comparison. For these, AUROC/AUPR and MSE values are
given in Table 1, with best performances outlined in bold font. EGIA has obtained
the best predicted interactions for the large scale network, while for the small scale
it scored 3rd. This indicates that our method is more scalable compared to the oth-
ers. From the quantitative simulation point of view, EGIA has obtained models with
lower MSE than the other methods on dual knockouts for both network sizes al-
though, on average, behaviour is comparable to other methods. Nevertheless, given
the good qualitative results, we conclude that this framework has something to con-
tribute for extracting models with correct interactions, while it can also simulate
unseen behaviour.

Table 1 Comparison of EGIA with DREAM4 results. For the dual knockout MSE values of EGIA,
both the minimum and the average values obtained in repeated runs are provided.

10-gene
√

AUROC ∗√
AUPR

10-gene dual-KO
MSE

100-gene
√

AUROC ∗√
AUPR

100-gene dual-KO
MSE

EGIA 0.6735 0.019/0.028 0.624 0.0229/0.0324
Team 548 0.654 0.038 0.544 0.0349
Team 532 0.733 0.020 0.505 0.0303
Team 498 0.702 0.029 0.28 0.0327

3.2 Performance on the Drosophila network

For the real dataset, five variants of the algorithm have been analysed: All-eval (eval-
uation and WOF operators using all data available), -Corr (all data excluding cor-
relation patterns), -KO (excluding knockout experiments), -BS (excluding binding
site affinities), -Annot (excluding GO annotations), enabling assessment of the error
structure in these data and how this influences the models obtained. Figure 3 dis-
plays AUROC and AUPR values for the five algorithm variants. These indicate that
integrating all types of data yields the best prediction for interactions. The largest ef-
fect is from the binding site affinity data. However, all data types seem to contribute,
unlike the synthetic data where correlation patterns disimproved performance com-
pared to the basic algorithm.
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Fig. 3 Performance of WOF and extended evaluation for the 27-gene real dataset.

Quantitative evaluation was performed again by computing the RMSE with the
test dataset (DC), and Figure 3 also shows average results obtained by each of the
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algorithm variants in 10 runs, with p-values of observed differences from the basic
algorithm. Our algorithm improves quantitative behaviour, with RMSE values sig-
nificantly lower than the basic algorithm (at the 1% level for All-eval and -Corr, and
the 5% level for -KO and -Annot). This improvement means that models not only
contain more valid interactions, but also simulate test data better, i.e. improvement
in both qualitative and quantitative performance. The error structure analysis also in-
dicates that correlation patterns are once again not particularly useful for improving
quantitative performance, while binding site affinities seem to be crucial.
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Fig. 4 WOF and binding site extended evaluation for the 27-gene real dataset.

While WOF is a weak integration method, as it drives the algorithm only to-
wards promising areas of the search space, without forcing it to choose one model
or another, extended evaluation is a strong integration criterion, having the final say
in which model is better. So, while the WOF operators can be resilient to some
level of noise in the data, the evaluation criterion must include more specific data
types. Given the results from the error structure analysis for the real dataset, correla-
tion patterns, knockout experiments and GO annotation are more suitable for WOF
alone, as they provide guideline information only on potential interactions. Binding
site affinities are, however, suitable for formal model evaluation, as they have proved
to be crucial for obtaining good quantitative performance (Figure 3). For the rest of
this section, therefore, we present a similar analysis for different algorithm variants
employing only binding site affinities in evaluation, but using various forms of WOF
operators: BS-eval (using all data types for WOF), -Corr (excluding correlation pat-
terns from WOF), -KO (excluding knockout experiments), -Annot (excluding GO
annotations).

Figure 4 displays the performance for all four algorithm variants above, com-
pared to All-eval (evaluation and WOF using all data types) and Random, the basic
algorithm (no meta-data used). BS-eval produces models with better connections
compared to All-eval, while RMSE on test data is maintained at a low level (BS-eval
and -KO significantly different from Random at the 1% level).

On extending evaluation, RMSE values for training data display a slight increase,
both for synthetic and real data. One explanation for this is that the generalisation
ability of models is increased (RMSE on test data decreases), and the over-fitting of
training data is decreased. Generally, machine learning techniques need to obtain a
balance between generalisation and over-fitting, which was made possible here by
the inclusion of additional data types for training.
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4 Conclusion
This paper presented an analysis of data integration for GRN modelling. Two inte-
gration mechanisms have been analysed, namely customised mutation and initial-
isation (WOF) and extended evaluation. The error structure of available data has
been studied, to identify which data type has larger effect on the networks analysed.
WOF and extended evaluation led to both quantitative and qualitative improvement.
This supports the hypothesis that optimisation with time-series data alone is not
powerful enough, and that additional information from other data types is needed to
aid further selection of GRN models.

The error structure analysis suggested that not all data types are useful for in-
ference, however, and that great caution needs to be taken when integrating these.
For synthetic data, knockout experiments proved to be highly important to improve
predictions of regulatory interactions. For real data, binding site affinities seemed to
have the largest impact. Correlation patterns, on the other hand, were of some help
when integrated in WOF mutation with other data types, but had less individual im-
portance. This might be due to the fact that correlation does not indicate only direct
interaction, but also indirect effects, which can be captured by the models.

WOF proved to be a flexible integration tool, while evaluation provided addi-
tional rigour. For best results, only very reliable data should be used for the latter,
while noisy data can be integrated into the former, following an error structure anal-
ysis. In our experiments, best performance on real data was found by using only
binding affinities for evaluation, and all data types for WOF. This suggests that
other data types can provide only general guidelines for possible structures. For
instance, log ratios in knockout experiments, or correlations between gene expres-
sion patterns can sometimes be misleading, due to the existence of feedback loops,
related to alternative regulatory paths or indirect interactions in the real network.
The results presented here apply for the Drosophila melanogaster embryo develop-
ment network and associated datasets available for this system. In analysing other
systems, e.g. different processes or organisms, data types and quality available will
vary, so performing an initial error analysis is crucial to determining the best inte-
gration strategy.
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