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Abstract 

 

In this work the growth and field emission properties of vertically aligned and spatially 

ordered and unordered ZnO nanowires are studied. Spatially ordered nanowire arrays of 

controlled array density are synthesised by both chemical bath deposition and vapour phase 

transport using an inverse nanosphere lithography technique, while spatially unordered arrays 

are synthesised by vapour phase transport without lithography. The field emission 

characteristics of arrays with 0.5 µm, 1.0 µm, and 1.5 µm inter-wire distances, as well as 

unordered arrays, are examined, revealing that with the range of values examined field 

emission properties are mainly determined by variations in nanowire height, and show no 

correlation with nanowire array density. Related to this, we find that a significant variation in 

nanowire height in an array also leads to a reduction in catastrophic damage observed on 

samples during field emission because arrays with highly uniform heights are found to suffer 

significant arcing damage. We discuss these results in light of recent computational studies of 

comparable nanostructure arrays and find strong qualitative agreement between our results 

and the computational predictions. Hence the results presented in this work should be useful 

in informing the design of ZnO nanowire arrays in order to optimise their field emission 

characteristics generally. 

 

Introduction 

 

There is strong ongoing interest in the use of ZnO nanostructure arrays for device 

applications in optoelectronics [1, 2], photo-voltaics [3], gas sensing [4], catalysis [5], and 

piezo-electric energy generation [6] for example. In particular applications requiring unipolar 
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carrier operation avoid the well-known p-type doping difficulty in ZnO. Amongst these 

application areas, one of particular interest is the field of vacuum microelectronics based on 

the process of electron field emission (FE), which can be used for devices such as flat panel 

displays [7] or micro x-ray sources [8]. ZnO may be grown in a variety of possible 

nanostructure morphologies which makes it a useful material for the study of FE and, in 

particular, the study of the impact of nanowire morphology on electron emission and the 

search for optimum nanostructure morphologies. A large number of these studies rely on the 

use of “bottom-up” methods for nanostructure synthesis, similar to the case of other 

nanostructured materials, and thus such nanostructures naturally display variations in density, 

ordering, height etc. 

Array density has been proposed to have a significant impact on the efficiency and 

uniformity of FE devices [9-12]. Control of array density may be achieved using nanosphere 

lithography (NSL) and there are many examples in the literature of well ordered, periodic 

arrays of ZnO nanowires grown using NSL [1,13-16]. NSL relies on producing a lithographic 

mask comprised of a close packed monolayer of e.g. polystyrene beads which can be 

produced with differing aperture sizes and separation. It is often preferable to other patterning 

techniques such as e-beam lithography and mask lithography due to its low cost and the 

ability to easily pattern large areas. However, systematic studies of the effects on the 

efficiency and uniformity of FE devices of array density, nanowire distribution 

periodicity/uniformity, and especially non-uniformity/randomness in these quantities, in 

addition to nanowire height non-uniformity/randomness, are very rare in the literature and we 

know of no examples for the specific case of ZnO nanowires. Amongst the most significant 

work in this underexplored field is a very recent publication by Dall'Agnol and den Engelsen 

[17] which reports a computational study of these effects introduced in the context of carbon 

nanotube arrays, but more broadly applicable to ZnO and other material system nanowire 

arrays. 

 In this work, we report the use of a catalyst-free inverse NSL masking technique, 

allowing us to produce ZnO nanowire arrays without the difficulties associated with the use 

of metallic catalyst material, in particular the presence of metal nanowire tips, which may 

influence FE properties in an manner hard to determine. The use of an inverse NSL technique 

allows both low temperature deposition techniques such as chemical bath deposition (CBD) 

and high temperature techniques such as vapour phase transport (VPT), allowing a broader 

range of nanowire morphologies to be examined. We present results on the growth, 

characterisation and FE studies of ZnO nanowire arrays grown using both VPT and CBD 
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techniques. These arrays were produced with controlled inter-wire spacings of 0.5 µm, 

1.0 µm, and 1.5 µm in addition to two samples grown by VPT without controlled density. A 

total of ten ZnO nanowire arrays are examined. We comment on relevant aspects of nanowire 

morphology and how these are likely to influence FE behaviour and we compare our 

experimental results with the predictions of the most recent computational studies [17], 

finding excellent qualitative agreement in terms of the key aspects of morphology which 

determine FE behaviour. Based on this consistency between experimental and computational 

results we are confident that the results presented here will be valuable in informing the 

design of ZnO nanowire arrays in order to optimise their FE behaviour. 

 

Methods 

 

Sample preparation 

 

Silicon substrates with (100) orientation were coated with a ZnO buffer layer using a 

method combining drop coating and CBD [18, 19] to provide suitable nucleation sires for ZnO 

nanowire growth and to ensure that such growth is c-axis aligned.  

In order to deposit nanowire arrays with controlled array density, ZnO buffer layers are then 

coated with a patterned ordered silica template produced by nanosphere lithography [20]. ZnO 

buffer layers were coated with a self-assembled monolayer of polystyrene nanospheres, using a 

water transfer method [16] and allowed to dry. An acid-catalysed silica sol, prepared using of 0.5 ml 

of tetraethyl orthosilicate and 0.5 ml of hydrochloric acid in 20 ml of ethanol was deposited into the 

interstitial spaces left exposed by the close-packed nanosphere pattern. The nanospheres are then 

removed by ultrasonication in toluene and the remaining silica template is densified by being 

annealed at 550 °C with a 15 °C/min ramp rate. This results in a silica layer covering the 

substrate with a periodic array of apertures where the ZnO buffer layer is exposed (the sole 

locations where ZnO nanowires will subsequently grow) only where the nanospheres 

originally made contact with the buffer layer and masked it during the sol deposition. 

ZnO nanowires were deposited using two techniques, CBD and VPT [21, 22], with 

nanospheres of 0.5, 1.0, and 1.5 µm diameter. CBD depositions were carried out using a 25 mM 

zinc acetate solution in DI-H2O at 60 - 70°C for 90 mins. VPT depositions were carried out in a 

single zone tube furnace, using equal masses of graphite and ZnO (60 mg) as the source 

materials. The furnace was heated to 800 °C for 10 mins and then ramped to 900 °C at a rate of 
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10 °C/min. The total growth time is 1 hour after which the furnace is allowed to cool to room 

temperature. 

A more detailed description of sample preparation is provided in the supporting information. 

 

Characterisation 

 

Nanowire morphology and crystal structure were examined using scanning electron 

microscopy (SEM; Karl-Zeiss EVO series). Field emission properties were examined in a 

home-made system using a parallel-plate electrode configuration in a vacuum chamber with a 

base pressure of ~10-8 mbar [23]. A circular stainless steel anode of 8 mm diameter is used, 

and the sample was positioned at a fixed distance of (250 ± 10) µm from the anode. The 

electrode assembly is mounted in series with a current-limiting resistance of ~231 kΩ. The 

voltage is swept between 50 V and 2500 V in steps of 1 V using a high voltage source 

(Stanford PS350). The current at each step is measured using a picoammeter (Keithley 6485). 

In all cases the initial I-V measurements taken exhibit hysteresis, as has been reported 

previously in the literature [24-26]. This hysteresis disappears after adequate conditioning of 

the sample, which is carried out by repeating I-V measurements in a cyclical manner. 

Typically hysteresis is no longer observed after ~150 conditioning cycles. 

 

Results and Discussion 

. 

Figure 1 shows SEM images of ZnO nanowire arrays produced using the CBD technique. A 

feature of arrays produced in this way is extreme uniformity in nanowire height, which may be 

controlled reliably by altering the growth time. As can be seen in figure 1, CBD nanowire arrays 

exhibit excellent uniformity in array density as growth does not occur on those areas masked with 

silica.  

In contrast to nanowires deposited by CBD, those deposited using VPT are typically longer 

and tend to have more tapered tips. In general, VPT nanowire arrays tend to have large variations of 

nanowire height, even between adjacent nanowires, however this is reduced in the case of arrays 

produced using an NSL silica mask [19]. Figure 2 presents the samples produced using VPT in this 

work, parts (a) & (b), show arrays where no attempt was made to control density while parts (c) – (g) 

present samples grown using the NSL silica mask technique.  
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Figure 1: SEM images of CBD produced ZnO nanowire arrays. Parts a) and b) show an 

array with 0.5 µm interwire spacing (average height: 0.417 µm) at a tilt of 45° and 0° 

respectively. Similarly, parts c) and d) show 1.0 µm (average height: 0.541 µm)  and e) and f) 

show 1.5 µm (average height: 0.683 µm) interwire spacing arrays.  
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Figure 2: SEM images of ZnO nanowire arrays grown by VPT. Parts a) and b) show arrays 

where array density was not controlled (with average nanowire heights of 1.383 and 6.982 µm, 

respectively); c) and d) show arrays with 0.5 µm spacing (average heights of 4.702 µm and 0.797 

µm, respectively); e) and f) show arrays with 1.0 µm spacing (average heights of 3.136 µm and 

1.449 µm, respectively); g) shows a 1.5 µm spaced array (average height: 1.658 µm); h) table 

showing average nanowire height, standard deviation in height, and whether catastrophic 

arcing damage occurred during FE. 
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Field emission 

 

All samples examined exhibited some changes in morphology post-FE, however the majority 

of these changes are limited to minor melting of nanowire tips, with some small areas where 

nanowires are entirely melted. These are present on only small areas of each sample and are not 

believed to significantly affect FE performance. Examples of these areas are presented in the 

accompanying supporting information. 

On some samples however, more significant damage was observed. Structural disruption of 

the substrate such that nanowires, buffer layer, and Si substrate apparently ‘exploded’ over the 

surrounding area. Figure 3 presents an example of such damage, which typically exhibit conical 

structures consisting of Si material (based on energy dispersive x-ray measurements in the SEM 

system) which has been melted due to the high current density during an arcing event (as discussed 

further in the supporting information). This extreme damage was observed on all 3 CBD samples 

examined and on 2 (of 7) VPT samples. We note that that there was no observable FE from bare Si 

substrates or ZnO wafers at our limit of instrumental sensitivity. Furthermore the explosive damage is 

always at the Si/ZnO interface (and this is also seen for ZrN and ZrC deposits on Si, data not shown). 

We also note that the silver paste/Si wafer electrical contact at the backside of the sample always 

remains intact, supporting our explanation of the catastrophic damage as arising from arcing. 

FE data from samples exhibiting arcing damage such as shown in figure 3 was not used for 

further analysis since the impact of such damaged regions on the FE performance is not understood 

(discussed in greater detail in the supporting information). However, the nature of samples so 

affected provides very important and useful information about the morphology dependence of 

FE processes in such nanowire arrays. These samples tended to have significantly more 

uniform nanowire height than undamaged arrays. These samples correspond to all of those 

shown in figure 1 and to those shown in parts d) and f) of figure 2. As can be seen from these 

images, these arrays are extremely uniform, particularly in terms of nanowire height, whereas 

those samples unaffected by this type of damage tended to have a greater variance in height 

as shown in part h) of figure 2, where the standard deviation for nanowire height for all 

samples is presented. In those samples where array density is controlled, a large standard 

deviation in height appears to have a protective effect against extreme melting damage. 
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Figure 3: Example of a substrate disruption observed on a number of samples post-FE. 

Nanowires, buffer layer, and underlying substrate are severely disrupted. An image of one 

such disruption taken at 90° is shown in the inset and it may be sent that the conical 

structures are significantly taller than the surrounding nanowires.  

 

A possible explanation is that in the case of arrays with extreme uniformity in 

nanowire height, a defect in a localised region, such as a precipitate or a slightly taller 

nanowire, results in a single site that emits at a lower voltage and thus draws a significant 

fraction of the total current, and is thus likely to melt sooner than its surrounding (mostly 

non-emitting) nanowires, resulting in a runaway effect as described by Spindt et al. [27]. This 

catastrophic damage was not observed on samples where spacing was not controlled, and 

again we propose that this is due to the lack of height uniformity for those samples, as shown 

in the table in figure 2(h). We discuss these hypotheses further below in the context of recent 

computational predictions for the effects of randomness in nanowire array parameters. 

Analysis of FE data (presented in figure 4) is carried out as described in McCarthy et al. 

[23]. All experimental data above the turn-on voltage are converted to a Fowler-Nordheim 

(FN) plot by plotting log10(I/V
2) vs 1/V. The slope, m, of the FN plot may be written as: 
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Figure 4: FE data gathered from during FE. Part a) shows I-V curves and part b) shows FN 

plots over the voltage range where FE is the dominant emission type. 

 

where β is a geometric factor relating the potential difference to the local field at the emitter 

surface and is dependent on the nanowire array morphology, and s(y) is a function 

representing the Schottky lowering of the work function barrier; calculation of s(y) is also 

described in Ref [23]. The field enhancement factor, γ, is a dimensionless quantity which 

takes both the morphology of the nanowire array and the distance between the anode and 

sample into account. It is given by γ = β × d, where d is the anode/sample separation. 

Figure 5 shows a plot of the field enhancement factor extracted from the FE data 

plotted against the array density (the number of nanowires per µm2) for the remaining five 

samples. The density for NSL samples is calculated from the diameter of nanosphere used, 

while the density for unspaced VPT samples is an average value calculated by counting over 

sample areas of ~ 50 µm2. 

There is no clear trend which relates the array density to indicators of FE performance 

such as the field enhancement factor. It is likely that other differences in morphology are 

responsible for such variations, such as nanowire height, details of nanowire faceting and tip 

area for example. This leads to the conclusion that while nanowire array density may be a 

significant factor in determining FE properties of similar samples, it cannot be used 

effectively to compare morphologically dissimilar arrays. For this reason, an approach which 

includes other morphological factors such as nanowire height, details of nanowire faceting 

and tip area must also be considered. 
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Figure 5: Graph of field enhancement factor γ against array density. 

 

These results run counter to various reports in the literature which assume or conclude 

that lower nanowire density alone leads to enhanced FE characteristics due to a reduction in 

the incidence of closely adjacent nanowires “shielding” each other (thus effectively reducing 

the high aspect ratio advantages such as a larger field enhancement factor expected from such 

structures) [9-11, 28-30]. However the data from samples examined in this work shows no 

correlation between array density or spacing/periodicity and field emission performance. It is 

thus much more likely that the exact FE characteristics are determined by other factors such 

as variations in nanowire height, details of nanowire faceting and tip area some of which 

were not controlled in this work.  

 However, the recent computational work carried out by Dall’Agnol and den Engelsen 

[17], where the effects of randomising the nanowire height, radius (assuming circular cross-

sections), and array density on FE properties of nanotube arrays (of a structure suitable for 

comparison with our experimental data) are examined, shows that FE performance is much 

more sensitive to changes in nanowire height in certain regimes of aspect ratio. For example, 

more than one order of magnitude increase in FE current is predicted from close packed 

nanowire arrays with random heights where the nanowire spacings are less than the average 

nanowire height (as is the case for our VPT nanowire morphologies), compared to uniform 

height arrays. Much smaller increases are predicted for randomisation of the other array 

parameters (i.e. nanowire radius and array density). These results are in very good agreement 

with our results above. Firstly they support the hypothesis that the catastrophically damaged 
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regions observed in the case of arrays with extreme uniformity in nanowire height are due to 

defects in a localised region, such as a precipitate or a slightly taller nanowire, resulting in a 

single site that emits at a lower voltage and thus draws a very high (and destructive) local 

current, with few or none of the other nanowires in the array emitting. By contrast, the 

samples which did not show this catastrophic damage all have larger standard deviations in 

height and the emission current is likely to be both enhanced and (due to the random nature 

of the height variations) more uniformly distributed across the sample, preventing such 

catastrophic damage due to very large local current densities.  

Further empirical evidence, based on our data, for the strong sensitivity of the FE 

characteristics to the degree of height uniformity is shown in figure 6 which shows a plot of 

the field enhancement factor extracted from the data in figure 4 plotted against the standard 

deviation in nanowire height for each sample measured. While the correlation is not perfect, 

the plot does show a general trend of increasing γ values for samples with a greater standard 

deviation in height. These results provide some indication that the extracted γ value from 

such FE measurements on nanowire arrays may be more closely related to the standard 

deviation in the height of nanowires in the array (i.e. an ensemble property of the array) 

rather than to the geometrical properties of individual nanowires, as is the case for single or 

well-spaced emitters, and which is often also assumed to be the case for nanowire arrays [31, 

32]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Graph of field enhancement factor γ vs. standard deviation of nanowire array 

height. 
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Conclusions 

  

We have examined the FE properties of vertically aligned and spatially ordered ZnO 

nanowire array samples produced using both CBD and VPT techniques. It was found that 

nanowire array morphology plays a large role in determining FE properties. In almost all 

cases, the samples under investigation were observed to show some melting during field 

emission, but there is no indication in most cases that this is detrimental to the overall FE 

properties of a given sample. In the case of samples showing the smallest variations in 

nanowire heights, significant catastrophic damage was caused during the FE measurements. 

Regions of the sample were covered with crater-like marks which in most cases are occupied 

by a central conical Si structure. Due to concerns about the quality of subsequent I-V data 

produced by these samples, they were not examined further by FE measurements. This result 

is explained for the case of arrays with extreme uniformity in nanowire height in terms of 

localised defects, such as a precipitate or a slightly taller nanowire, resulting in a single (or a 

small number of) emitting site(s) with significant local current resulting in a runaway 

destructive process.  

The five remaining samples which did not show this catastrophic damage all have 

larger standard deviations in height and the emission current is thus likely to be both 

enhanced and more uniformly distributed across the sample. These samples revealed no 

obvious correlations in either the turn on voltages or field enhancement factors γ with the 

array inter-wire spacing, as is often expected/assumed. However, when γ is plotted against 

the standard deviation of nanowire height, we see a suggestive trend whereby FE 

performance improves when there is greater variation in height. These data indicate that the 

extracted field enhancement (γ) values from such FE measurements on nanowire arrays may 

be more closely related to the standard deviation in the height of nanowires in the array (i.e. 

an ensemble property of the array) rather than to the properties of individual nanowires. 

These results are all consistent with the results and predictions recently reported in 

reference [17] where it is shown that for the three main generic morphological variables in an 

emitter array (height, radius, separation), randomisation of nanowire radius and separation 

have only a slight effect on FE performance whereas randomisation of nanowire height has a 

significantly greater impact on FE emission performance, often orders of magnitude greater.   

Based on this strong agreement between experimental and computational results we 

are confident that the results presented here will be valuable in informing the design of ZnO 

nanowire arrays in order to optimise their FE behaviour. 
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