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Abstract

A CAVE Automatic Virtual Environment (CAVE) is a 3D interactive environment that
enables a user to be fully immersed in a virtual world and offers a unique way to
visualise and interact with digital information.

The primary goal of this thesis is to report on the development of a new open source
CAVE software framework that provides greater access to both professional and ama-
teur CAVE environments to users of all levels.

In the first part of this thesis, the history and evolution of virtual environments as well
as the generic affordances of the modern day CAVE are characterised. This is followed
by a detailed discussion of the factors that influence immersion, the different methods
and devices of interaction, and a small project to develop a CAVE specific interaction
device is described.

In the second part of this thesis, the focus is on novel work to develop a new open
source platform for CAVE environments and the implementation of this platform in
the visualisation of real-world sensor data. This data is collected from a range of
residential and educational buildings across a local community and is used in support
of an ongoing ‘smart energy’ project which is also described in detail.

In conclusion, this thesis argues that through the development of new, easy-to-use,
open source software and the ongoing reduction in key hardware technology costs,
CAVE environments can be an effective and affordable visualisation tool for both ex-
perienced and novice users. The CAVE environment need no longer remain the sole
preserve of well-funded educational and business organisations. Rather, through tech-
nology innovations such as proposed in this work, the era of the much vaunted low-cost
CAVE is ‘virtually’ upon us.
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Chapter 1

Introduction

Three Dimensional (3D) technology has been with us in some form or another ever
since a stereographic photograph of Queen Victoria first appeared at The Great Ex-
hibition in London in 1851. More than a century and a half later, we continue to be
fascinated by 3D. From photographs, to film, to television and video games, 3D de-
lights and disappoints in equal measure. Our love-hate relationship with 3D seems to
follow a decennial cycle where it is continually repackaged alongside the latest media
technology only to slowly languish before its next reincarnation. One thing remains
steadfast however, for over 150 years we have continued to be interested in the concept
of being able to visualise images (both still and animated) in a way that replicates our
natural ability to view the world. One viewpoint is that 3D technology is nothing more
than a novelty or toy that we repeatedly tire of. Whatever the verity of this view, it
is unlikely that our 150 year love affair with 3D technology will end anytime soon.
Without question, 3D technology will continue to be developed and improved upon
until such a time that we may even find it difficult to differentiate between the real and
the virtual. While that vision may be some way off, today’s 3D technology already
has a lot to offer. This thesis discusses how existing 3D technology is already being
put to good use. In particular, it investigates a specific piece of 3D technology known
as a CAVE Automatic Virtual Environment (CAVE) and how the development of a new
open source CAVE framework (in combination with reduced hardware costs) aims to
assist in the democratisation of once costly and cumbersome 3D CAVE systems.

A ‘typical’ CAVE can essentially be described as a cube shaped room which offers
a multi-person, multi-screen, high-resolution 3D video and audio interactive environ-
ment; a full characterisation of which is provided in Chapter 2.
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1.1 Motivation

The motivation for this work came about primarily as a result of the author’s work
with the Centre for Affective Solutions for Ambient Living Awareness (CASALA),
a research organisation based at the Dundalk Institute of Technology (DkIT). One of
CASALA’s principal goals is to investigate how different technologies can help in our
understanding of people’s daily lives. This ranges from projects that explore how sen-
sor technologies can enhance older people’s sense of well-being and independence, to
projects that examine how sensor technologies can improve our understanding of en-
ergy use across homes, businesses and institutions. As part of this research, CASALA
uses a state of the art 3D CAVE to visualise and interact with realistic and abstract 3D
worlds using the vast quantities of data collected from the different projects. Over a
period of four years, many different CAVE software applications were used to develop
these Virtual Worlds (VWs), however, the high cost and/or inaccessibility of most re-
mained a constant source of frustration. At the same time, many of the traditionally
costly hardware elements that are essential to a CAVE were becoming far more afford-
able. All these factors combined to provide substantial motivation for the development
of a new software framework which could contribute to the creation of the next gener-
ation of affordable and accessible CAVE systems.

1.2 Research Contributions

There are three key contributions which this thesis aims to provide:

1. A comprehensive documentation of 3D technologies and the key factors that
need to be considered in relation to CAVE environments.

2. The development of a new open source software framework to assist in making
CAVE platforms more accessible.

3. A demonstration of the benefit of the proposed open source framework. Specifi-
cally, as an illustration of its application, it is used as the technological platform
for a comparative user evaluation to test the effectiveness of a CAVE in a range of
tasks in comparison to a traditional desktop system. Such tasks and experiments
are commonplace in data visualisation research.

The thesis also provides an additional minor contribution through the customisation of
a unique interaction device for CAVE interactions.
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1.3 Structure

This thesis is structured as follows: Chapter 2 provides a history of the birth and
development of 3D technologies over the past half century, as well as definitions of
common terms and a full characterisation of an existing CAVE. Chapter 3 discusses
the importance of immersion in a CAVE and the elements that combine to augment
it. Chapter 4 highlights the key considerations in relation to choosing the optimum
interaction modalities; it also provides a comprehensive taxonomy of interaction de-
vices and presents a small project that integrates a new type of controller device into
a CAVE. Chapter 5 takes a brief look at some key CAVE frameworks and highlights
their current deficiencies, before leading on to Chapter 6 which describes in detail a
project to develop an entirely new CAVE framework. Chapter 7 describes a project
that is collating and assessing real-world data gathered across a local community and
then demonstrates how this data is being applied and visualised in a CAVE. Chapter 8
provides details of a user evaluation experiment that compares a CAVE’s performance
and usability in comparison to a traditional desktop system. Finally, Chapter 9 pro-
vides a brief conclusion of the work and results obtained as well as a description of
potential future work.
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Chapter 2

Virtual Environments: Overview

2.1 A Brief History of ...

In 1961, the philosopher, filmmaker and inventor, Morton Heilig filed a patent for a
device called the Sensorama Simulator1 (see Figure 2.1). The device was very similar
in appearance to the video arcade cabinets that would be commonplace several decades
later and its purpose was to take users into ‘another world’ by means of its multi-
sensory capabilities. The user sat in the machine, placed their arms on an armrest in
front of them and leaned forward, with their eyes peering into a viewer. They were then
presented with a stereoscopic 3D film which took them on a pre-determined journey
such as a motorbike ride through Brooklyn in New York. As they were taken on this 3D
journey they would experience the sensation of a drive in the city through movement
and vibrations in their seat and armrest. Even the sounds, breezes and smells of the
city were conveyed to the user through the use of speakers, fans and perfume vessels
contained within the unit itself. It was hugely innovative for the time but interest from
the public and investors was lacking and it never took off.

Despite Sensorama’s commercial failure, Morton Heilig’s invention is considered of
historical importance and Heilig himself is often credited with having given birth to
the idea of Virtual Reality (VR). This reputation is further enhanced by some of his
other work, most notably his Telesphere Mask (see Figure 2.2) which he filed as a
patent as early as 19572. The Telesphere Mask was designed to present stereo images,
sound and simulate gusts of wind through a device that was worn on the head and is
the first known example of the Head Mounted Display (HMD). HMDs are in common
use in many of today’s VR systems and are once again ‘in vogue’ with the recent

1http://www.mortonheilig.com/SensoramaPatent.pdf
2http://www.mortonheilig.com/TelesphereMask.pdf
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Figure 2.1: The Sensorama Simulator
Source: (Mortonheilig.com, 2011a)

development of a low-cost, wide Field of View (FOV) device known as the Oculus
Rift3. The Telesphere Mask itself, however, never made it into commercial production
and only a prototype was ever built.

Despite the commercial failures, there is no doubting that Morton Heilig’s work was
hugely important in the formation of VR as we know it today. Although recognition
was slow to arrive (His seminal paper entitled ‘Cinema Of The Future’ (Heilig, 1992)
was only first published in English in the Massachusetts Institute of Technology (MIT)
Presence journal in 1992, some thirty seven years after he first wrote it), he is now
considered by many people to be the father of VR.

In 1961, Charles Comeau and James Bryan working for the Philco Corporation built
the first fully manufactured HMD called Headsight. Unlike Morton Heilig’s Telesphere

Mask prototype, the Philco device only used a single CRT image display but it did use
a magnetic tracking system that was linked to a remote camera (see Figure 2.3). The
camera would adjust its viewing position based on the user’s head movements and
relay the remote image back to the HMD (a type of set-up that can be referred to as
telepresence). The system was built with a view to being used as a security surveillance
system and soon after, Comeau and Bryan set up Telefactor Corporation to work on
products based on their telepresence research.

The 1960’s was an important time in the birth of VR and no one contributed more to

3http://www.oculusvr.com/
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Figure 2.2: The Telesphere Mask
Source: (Mortonheilig.com, 2011b)

Figure 2.3: The Headsight HMD (left) and linked remote TV camera (right)
Source: (Ellis, 1994)
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Figure 2.4: The Sketchpad System
Source: (Kay, 2011)

that early development than Ivan Sutherland. Before Morton Heilig’s work became
more widely recognised, Ivan Sutherland was generally considered the father of VR
(and to many he still is). Ivan Sutherland is both an engineer and academic and he
was particularly interested in computer graphics and interaction at a time when both
were virtually non-existent. His creation of the Sketchpad system (see Figure 2.4) in
1963 allowed users to draw directly on to a computer monitor using a light pen. It was
revolutionary and was the precursor to the ubiquitous GUI systems that we use today.

In 1965 Ivan Sutherland wrote a paper entitled ‘The Ultimate Display’ (Sutherland,
1965) in which he laid out a vision for the future of Human Computer Interaction
(HCI). It was a truly prophetic piece of work for its time, describing many of the
possible future uses of technology with surprising accuracy. In the final paragraph
he provided us with one of his most celebrated quotes in which he summed up the
Ultimate Display as:

“a room within which the computer can control the existence of matter. A

chair displayed in such a room would be good enough to sit in. Handcuffs

displayed in such a room would be confining, and a bullet displayed in

such a room would be fatal. With appropriate programming such a display

could literally be the Wonderland into which Alice walked.”

In 1968 he followed through on many of the visionary ideas set out in ‘The Ultimate
Display’ by creating the world’s first real-time computer generated HMD. The device
was known as the Sword of Damocles due to the fact that the HMD unit was suspended
from the ceiling by a metal frame (a reference to the Greek myth where Damocles was
seated on the Kings throne with a sword hung by a single hair over his head). The
device was crude by today’s standards, showing only basic wireframe overlays to the
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Figure 2.5: Ivan Sutherland’s wireframe room as it looked from the outside
Source: (Sutherland, 1968)

wearer (see Figure 2.5) but it did provide some of the basic elements which still exist in
today’s HMDs such as separate image views to each eye and head tracking to enhance
the sense of immersion.

In many respects Ivan Sutherland is more famous for his Sketchpad system than his
work on VR but this just highlights the incredible contributions made over a long and
distinguished career. This was recognised in 1988 when Sutherland was awarded the
Turing award for his contributions to the computing community by the Association for
Computing Machinery (ACM).

In 1974, the computer scientist and artist, Myron Kreuger created a truly unique in-
teractive environment called Videoplace (Krueger et al., 1985). By using a camera to
display a high contrast image of a user onto a projected screen, the user could inter-
act with computer generated images in real-time. His computing system was able to
recognise and analyse the silhouetted images and allow them to interact directly with
the computer generated images (see Figure 2.6). Kreuger’s work was important in
terms of advancing HCI and his work directly influenced many of the interaction de-
vices and methods available today, not only for VR, but for all forms of HCI. Modern
day gaming devices such as the Sony EyeToy or the Microsoft Kinect offer experiences
very similar to those demonstrated by Videoplace nearly forty years earlier.

Another significant event in the development of VR and how humans interact with
VWs was the creation of the dataglove. A dataglove quite simply is a glove that allows
the actions made by the hand and fingers to be translated and input into a computer
(see Figure 2.7). In 1977 Thomas Defanti and Daniel Sandin from the Electronic
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Figure 2.6: Videoplace - A human silhouette interacting with a graphical object
Source: (Krueger et al., 1985)

Figure 2.7: Dataglove
Source: (Zimmerman et al., 1987)

Visualization Laboratory4 (EVL) based at the University of Illinois at Chicago created
the world’s first dataglove called the Sayre Glove. It was named after their colleague
Rich Sayre who had come up with the original idea. The glove was lightweight and
inexpensive and was able to detect hand movements through the use of flexible tubes,
light sources and photocells on the ends of each tube. As the user bent their fingers
the amount of light reaching the photocells would decrease, providing a control device
similar to a set of sliders.

In 1980, MIT developed the MIT LED Glove. LEDs were placed at different points on
the glove and then cameras were used to detect the hand and finger motion. It was an
interesting project but it was used for motion capture rather than as a control device

4http://www.evl.uic.edu
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and was never fully developed.

In 1983, Gary Grimes, an engineer at Bell Laboratories developed the Digital Data En-

try Glove. Touch sensors were embedded strategically in the glove in order to be able
to detect eighty unique combinations of sensor readings and it was designed specifi-
cally to recognise the single hand manual alphabet for the deaf. Once again, it was not
fully developed but it was another step in the evolution of the dataglove.

Finally in 1987, Thomas Zimmerman an inventor and researcher developed a data-
glove which was given the (not so original) name DataGlove. Zimmerman’s Data-

Glove (Zimmerman et al., 1987) was able to monitor ten finger joints as well as the
hand’s position and orientation in real-time. It was also lightweight, comfortable to
wear and relatively inexpensive. All these elements combined to make Zimmerman’s
device the first truly complete interactive glove and was the first example of a commer-
cially successful dataglove. There have been many different types of glove developed
since then, but the work started in 1977 by Defanti and Sandin leading up to Zimmer-
man’s DataGlove ten years later, laid an important foundation and helped inspire the
many forms of interaction that users have with Virtual Environments (VEs) today.

Around the same time that all this work was going on in relation to datagloves, an
interaction designer named Scott Fisher working in NASA’s Ames Research Centre
was developing the Virtual Interactive Environment Workstation (VIEW) (Fisher et al.,
1987). VIEW, which was developed in 1987, was certainly not the first VR system
but it was important because it is generally considered to be the first affordable, fully
integrated VR system. It used a HMD with LCD displays to provide a high quality
image with a wide FOV to its users. It was relatively light and comfortable in compar-
ison to earlier HMDs. It incorporated real-time head tracking and also integrated the
recently developed DataGlove to provide for a truly interactive experience. It is this
combination of HMD and Dataglove such as the one developed by Scott Fisher that
conjures up the classic image that many of us have of what constitutes a VR system
(see Figure 2.8)

Another important name in the history of VR is Jaron Lanier. A multi-talented com-
puter scientist, composer, musician, writer and artist, Lanier is probably most famous
for having coined the term ‘Virtual Reality’ in the 1980’s. In 1984 Lanier set up a
company called VPL Research to develop and sell VR products. These included a
HMD called the EyePhone, a visual programming language called Body Electric, a
3D real-time render engine called Isaac as well as Thomas Zimmerman’s DataGlove.
Together these devices could be integrated to create the full VR experience and it was
the first commercial example of such a tightly integrated VR system (see Figure 2.9).
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Figure 2.8: VIEW at NASA’s Ames Research Centre
Source: (Fisher et al., 1987)

Figure 2.9: VPL Research VR Kit
Source: (Pape, 2011)
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Figure 2.10: A standard 4 wall CAVE configuration

In 1992, Carolina Cruz-Neira, Daniel Sandin and Thomas DeFanti, from the EVL re-
search lab at the University of Illinois at Chicago created the world’s first CAVE (Cruz-
Neira et al., 1992). A typical CAVE consists of four large rear projected screens placed
around the user to form an incomplete cube (see Figure 2.10). Stereoscopic projectors
present the user with stereographic images and the user wears 3D glasses in order to
correctly view them. Interaction takes place through the use of glove, wand or joystick
type controllers and immersion is enhanced through the use of head tracking. Multiple
speakers are also placed around the CAVE to provide audio from various directional
sources.

The unusually named CAVE, which is short for CAVE Automatic Virtual Environment,
is a recursive acronym that refers back to Plato’s fable The Republic. In this fable,
Socrates describes how prisoners locked up and restrained in a CAVE since childhood,
could perceive shadows cast on the CAVE’s walls to be real things and not just reflec-
tions of a reality that they are unable to see due to the conditions of their restraint.

The CAVE was a major step away from the typical HMD configuration used for VR.
It allowed for a much wider FOV for users, freed the user from wearing a cumber-
some HMD and also allowed the user to interact with the VW while still being able to
fully contextualise themselves within it. This is unlike most HMD environments that
either separate the user from their body or need to generate virtual reconstructions of
themselves. The first CAVE was presented at the ACM SIGGRAPH (Special Interest
Group on GRAPHics and Interactive Techniques) conference in Chicago in 1992 and
the fundamental design has changed very little since then. It could also be argued that
the advent of the CAVE instigated the use of the term ‘Virtual Environment’. The term
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‘Virtual Reality’ was closely associated with the classic images of legacy HMD sys-
tems but the term ‘Virtual Environment’ was one which could comfortably encompass
both types of systems. Cruz-Neira, Sandin and DeFanti have continued to contribute
significantly to the development of CAVE systems as well as many other VE/VR re-
lated technologies and have already secured their places as true pioneers in the field.

There have been many other contributions in the birth and development of VEs: peo-
ple such as Edwin Link who developed the first interactive flight trainers used in the
1930’s, Frederick Brooks who started the GROPE (Brooks et al., 1990) project in 1967
to develop haptic feedback interfaces and Michael McGreevy from NASA’s Ames Re-
search Centre who probably deserves as much recognition as Scott Fisher for his work
on VR. More recent work such as the LAIR (Denby et al., 2009) project by Barry
Denby, Abraham Campbell, Hamish Carr and Greg O’Hare also provide an important
evolutionary step in making VEs more accessible to the mainstream. The list of people
goes on and one could argue over the omission of certain names, however, despite this,
there can be no doubt that the majority of names highlighted thus far can be rightly
considered outstanding pioneers of VEs.

2.2 Definitions

Terms such as ‘Virtual Environment’ (VE), ‘Virtual Reality’ (VR) and ‘Virtual World’
(VW) are used throughout this thesis and the peculiarities and differences between
them is not always clear. There are a multitude of different explanations or definitions
available in the literature, many of which seem either at odds with each other or appear
to be direct translations of the same thing depending on the source (and to some extent
the time frame within which they were defined). It therefore seems appropriate to offer
a clear definition for each one for the sake of clarity within this document. Although
one could argue over the merits of the provided definitions, for the purposes of this
thesis, the terms are defined as specified in the following subsections. These definitions
are either taken from a generally accepted interpretation of a term, or, an entirely new
definition offered by the author.

2.2.1 Virtual Environment

The first term to be defined is ‘Virtual Environment’. It is a widely used term but
probably one of the least clearly defined. For the purpose of this thesis the following
definition is proposed by the author:
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A Virtual Environment is a collection of objects, technologies and spaces

that when used together both on and off the human body, present a three

dimensional computer generated artificial environment which a user can

view, sense and with which a user can interact.

2.2.2 Virtual Reality

When Jaron Lanier coined the term ‘Virtual Reality’ it was around the same time that
his company, VPL Research, started to manufacture and sell VR products, which were
typically in the form of HMDs and glove controllers. It is probably for this reason, that
for many people, the term ‘Virtual Reality’ conjures up the image of VPL Research’s
HMD products even though the definition which follows is very similar to the one
defined for VEs:

The computer-generated simulation of a three-dimensional image or envi-

ronment that can be interacted with in a seemingly real or physical way

by a person using special electronic equipment, such as a helmet with a

screen inside or gloves fitted with sensors5.

In essence the only real difference between VR and VEs is that VR is typically associ-
ated with the interaction of immersive VWs through HMD type systems, whereas, VEs
tend to incorporate not only the HMD systems but any other systems in which people
interact with immersive VWs (such as a CAVE). These terms are also often used in a
context which has no link to any type of hardware or software technologies but simply
to refer to a 3D world, however, this is not how they will be used in this thesis and in-
stead the term ‘Virtual World’ will be used to refer to a computer generated 3D world,
a definition of which is proposed next.

2.2.3 Virtual World

The term ‘Virtual World’ is used in many different contexts from VR to websites to
video games to social networks. Unfortunately, a definition which incorporates all
these elements does not necessarily satisfy the requirements for a definition of a VW in
the context of this thesis which focuses primarily on VEs. For that reason the following
simple definition is proposed by the author:

A concrete or abstract computer generated synthetic environment which

people can visualise and with which they can interact.

5Source: Oxford Dictionary
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Figure 2.11: The CAVE at CASALA, a technology research centre at the Dundalk
Institute of Technology

2.3 CAVE Focus

Having provided a brief overview of VEs and defined various related terms, the focus
of this thesis now turns specifically to CAVE VEs. For the purpose of this thesis,
many of the examples and experiments in relation to CAVEs are carried out using the
CASALA CAVE at DkIT, a characterisation of which is provided next.

2.4 CASALA CAVE Characterisation

The CASALA CAVE is a relatively standard configuration in terms of overall CAVE
implementations (Cruz-Neira et al., 1993). It consists of a four wall rear-projection
screen configuration with each screen measuring approximately 2.0 metres by 2.6 me-
tres (see Figure 2.11). Three vertical screens are each allocated their own 120hz 3D
stereoscopic projector which is placed approximately ten metres behind the CAVE on
a purpose built stand which is approximately 2.5 metres in height. The fourth floor
screen is also allocated a 120hz 3D stereoscopic projector, however, it is attached di-
rectly to the CAVE frame and makes use of a ceiling mirror to project images on to
the floor. The CAVE also consists of five workstations and one standard PC which are
connected via CAT5e ethernet cables and a Cisco gigabit switch. The five worksta-
tions are dedicated to generating and managing the VW (four slave workstations for
each screen and one master workstation to act as systems manager). Each workstation
runs on Windows XP x64, uses an Intel Xeon quad core processor, 12GB of RAM, a
terrabyte of disk space and an NVIDIA Quadro graphics card, all of which assists in
the visualisation of highly complex 3D worlds across the distributed framework. The
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standard PC then controls the tracking system as well as acting as a hub for the three
Infrared (IR) emitters. These are placed strategically behind the screens in order to
cover 180 degrees of direction and movement by the user. The tracking system works
by means of ten NaturalPoint IR cameras6 which are spread out along the upper edges
of the three vertical CAVE screens with each pointing to a specific area of the CAVE
space in order to provide full area coverage. The tracking system identifies objects us-
ing reflective spheres which are placed onto 3D glasses and are primarily used to track
a user’s head movements. They can, however, also be used to track multiple tagged
objects at any given time. The cameras are then linked to the tracking PC (via USB
cables) which combines the data from each of the cameras to build up a full picture
of tracked objects within the CAVE. This information is then fed to a tracking client
which resides on the Master workstation and can be utilised by the VE management
software to adjust the on-screen visualisations in real-time.

Users can interact with the VWs presented to them by various means. The standard
methods for CAVE environments tend to be either dataglove, joystick, joypad or wand
style controllers. Currently a joypad, a Microsoft Kinect and a modified Nintendo Wii
Nunchuck are used to interact with the CASALA CAVE, all of which are discussed in
more detail in Chapter 4.

In terms of software, the CASALA CAVE currently uses a range of systems including
VR4MAX7, WebGL8 and SCRAPE in order to view and interact with VWs. Each of
these platforms offers a specific capability which can be useful for generating distinct
VWs and scenarios. In particular, a program which is suitable for an architectural style
environment may not be suitable for an abstract data visualisation environment. This
is discussed in more detail in Chapter 4. In Chapter 6 a novel open source frame-
work for CAVEs entitled SCRAPE is presented. Based on Processing9, it has been
developed specifically to enable CAVE users to quickly and easily develop useful data
visualisations for all types of CAVE configurations.

2.5 Conclusion

This chapter discussed some of the key people and technologies behind the evolu-
tion of VEs over the last half century. The thesis contributes to the knowledge of key
terminologies associated with VEs by clarifying many of the ambiguities which cur-
rently exist and by providing new definitions where required. The key elements that

6http://www.naturalpoint.com/
7http://www.tree-c.nl/vr4max
8http://www.khronos.org/webgl/
9http://processing.org
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constitute the CASALA CAVE are also characterised in order to clearly illustrate the
composition of a ‘typical’ CAVE.

The following chapter expands upon this theme by focusing upon the important role
that immersion plays in CAVE environments, the definitions associated with it and the
key elements that influence it.
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Chapter 3

Enhancing Immersion

3.1 Introduction

There is strong empirical evidence to prove that increased levels of immersion impact
positively upon a user’s ability to carry out tasks in a CAVE and demonstrate supe-
rior performance results when compared with traditional desktop applications (Pausch
et al., 1997). Doug Bowman from the 3D Interaction Group at Virginia Tech Uni-
versity is one of the leading authorities on VEs and has written many articles, books
and papers on the subject. In his paper entitled ‘A Method for Quantifying the Bene-
fits of Immersion Using the CAVE’ (Bowman and Raja, 2004), Bowman provides us
with a practical guide as to how we can measure and compare the impacts of immer-
sion. In his article ‘Virtual Reality: How Much Immersion Is Enough?’ (Bowman and
McMahan, 2007) he clearly lays out the benefits of Immersion and then in multiple
other publications (Bowman et al., 2005, 2009, Narayan et al., 2005, Schuchardt and
Bowman, 2007, Sowndararajan et al., 2008) he demonstrates the impact that levels of
immersion have on a range of different VE scenarios.

A primary objective of any CAVE environment, therefore, is to provide as immersive
an experience as possible into a VW. In other words, it is about trying to create an
environment that absorbs the user so that they become unaware of the physical CAVE
and its surrounds and fully experience and ‘believe’ the three dimensional world that
is generated for them.

In Janet H. Murray’s book ‘Hamlet on the Holodeck’ (Murray, 1997) she describes
immersion as being:

“a metaphorical term derived from the physical experience of being sub-

merged in water. We seek the same feeling from a psychologically immer-
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sive experience that we do from a plunge in the ocean or swimming pool:

the sensation of being surrounded by a completely other reality, as dif-

ferent as water is from air, that takes over all of our attention, our whole

perceptual apparatus.”

This is an eloquent definition, however, in relation to CAVE environments it is insuf-
ficient. There are other terms such as ‘Presence’ and ‘Telepresence’ which are often
used interchangeably with immersion to describe the same thing, but which are not.
Mel Slater from University College London who is a recognised authority on VE im-
mersion has written extensively on this subject. He argues in his article ‘Measuring
Presence’ (Slater, 1999) and in his note on presence terminology (Slater, 2003) that a
clear definition and separation of the terms is essential to avoid confusion. With this
in mind, the following subsection provides a full definition for each of the three terms.
This is followed by an overview of the ways in which presence can be measured and
the ways in which immersion can be augmented.

3.2 Definitions

• Immersion
Slater proposes that the term ‘Immersion’ should stand for what the technology
delivers from an objective point of view. The more a system delivers in terms of
number of screens, tracking, audio, 3D & display fidelity, haptic feedback etc.,
the closer it gets to replicating its equivalent real-world sensory modalities and
the more that it is immersive.

• Presence
According to Slater, presence can be interpreted as a human reaction to immer-
sion. In other words the sensation of ‘being there’. Therefore, we may consider
that a key objective for any CAVE researcher is not simply to provide an immer-
sive environment, but to provide the highest level of immersion possible in order
to augment the level of presence that a user experiences.

Slater considers that there are three main aspects to presence:

1. The sense of ‘being there’ in the environment depicted by the VE.

2. The extent to which the VE becomes the dominant one i.e. that participants
will tend to respond to events in the VE rather than in the ‘real world’.

3. The extent to which participants remember their VE experience as having

19



visited a ‘place’ rather than just having seen images generated by a com-
puter.

• Telepresence
The term ‘Telepresence’ was coined by Marvin Minsky in an article to OMNI
magazine in 1980 (Minsky, 1980). In it he described how people could use spe-
cial devices that translate the movement of an arm, hand and fingers and repro-
duce it in another place by mobile, mechanical hands. The term Telepresence,
according to Minsky, conveys the idea of these remote control tools, emphasises
the importance of high quality sensory feedback and suggests future instruments
that will feel and work so much like our own hands that we won’t notice any
significant difference.

Even though technology may have moved on somewhat since 1980 and the scope
of the original definition of the term ‘Telepresence’ may be broadened beyond
remote mechanical arm manipulation, Minsky’s description of telepresence still
makes sense in relation to controlling or manipulating remote objects in a VE.

In Jonathan Steuer’s paper ‘Defining Virtual Reality: Dimensions Determining
Telepresence’ (Steuer, 1992) he defines telepresence as:

The experience of presence in an environment by means of a commu-

nication medium.

In other words, presence refers to the natural perception of an en-

vironment, and telepresence refers to the mediated perception of an

environment.

Steuer’s definitions of presence and telepresence are somewhat at odds with what was
previously described by Slater and Minsky respectively. In reality, Minsky’s definition
of telepresence is more to do with teleoperation and what Slater defines as presence is
in many respects what Steuer defines as telepresence.

For the purposes of this thesis, it is considered that Slater’s simple definitions of im-
mersion and presence will suffice and are the most relevant in the context of a CAVE
environment; immersion being what technology can deliver in terms of replicating its
equivalent real-world sensory modalities and presence as being the human reaction to
immersion (or sense of ‘being there’). Having clarified the differences and associa-
tions, the next step is to consider the way in which levels of presence can be measured.
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3.3 Measuring Presence

As stated in Wijnand IJsselsteijn’s paper ‘Measuring Presence: A Guide to Current
Measurement Approaches’ (Baren and IJsselsteijn, 2004), there are two primary cat-
egories of measurement that are used for determining presence: Subjective and Ob-
jective Measures. Subjective Measures require participants to consciously provide a
judgement of their state with regard to their experience within a VE, whereas, Ob-
jective Measures attempt to measure a participant’s state automatically and without
conscious deliberation, but which can somehow be correlated with measurable proper-
ties.

3.3.1 Subjective Measures

Simply asking someone how immersive their VE experience was may prove highly
subjective and ineffective in accurately determining levels of presence. That being said,
most of the research carried out in this area looks at qualitative rather than quantitative
measures (usually through the use of questionnaires). In Thomas Sheridan’s paper
‘Musings on telepresence and virtual presence’ (Sheridan, 1992) he notes a number of
subjective measures. The primary category is considered to be presence questionnaires
but he also defines 4 other subjective measures: Continuous Assessment, Qualitative
Methods, Psychophysical Measures and Subjective Corroborative Measures, which are
discussed in the following:

• Questionnaires
Two of the best known and widely used questionnaires are the Presence Ques-
tionnaire (PQ) and the Immersive Tendencies Questionnaire (ITQ) as set out by
Witmer and Singer in their article ‘Measuring Presence in Virtual Environments:
A Presence Questionnaire’ (Witmer and Singer, 1998).

1. The Presence Questionnaire (PQ)
The PQ is used to measure the degree to which individuals experience pres-
ence in a VE and the influence of possible contributing factors on the in-
tensity of this experience.

2. The Immersive Tendencies Questionnaire (ITQ)
The ITQ is used to measure the capability or tendency of individuals to be
involved or immersed in a VE. in other words the ITQ does not ask specific
questions about the VE but rather the person’s ability to involve themselves
in common activities.
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Both of these questionnaires use a seven point scale to rate the answers. So, for
example, the first PQ question that Witmer and Singer propose is: ‘How much
were you able to control events?’. Answers are then rated on a scale ranging
from ‘Not Very Much’ to ‘Moderately’ to ‘A Lot’.

Some other well referenced subjective VE presence questionnaires that have
been developed over the years include Slater, Usoh and Steeds’ presence ques-
tionnaire (Slater et al., 1994), Barfield and Weghorsts’ 10 point questionnaire
(Barfield and Weghorst, 1993) and Nichols physical presence questionnaire
(Nichols et al., 2000).

• Continuous Assessment
Continuous Assessment aims to measure presence by requiring VE users to con-
tinually rate their sense of presence during the actual experience itself. The level
of presence is recorded through the use of a slider which can be continually ad-
justed by the user along a scale during the experiment. This allows fluctuations
in perceived levels of presence to be measured at any given time and helps pre-
vent against memory recall problems that may be an issue through the use of post
experiment questionnaires. Another similar method is proposed by Mel Slater
in his paper ‘A virtual Presence Counter’ (Slater and Steed, 2000) in which he
describes how users were required to call out ‘Now!’ to report transitions from
the virtual world to the real world. Critics of these type of assessments, however,
point to the fact that the act of indicating current presence levels disrupts the user
experience and, consequently, the level of presence that would otherwise be felt.

• Qualitative Measures
Qualitative Measures are a much less formal method of assessment and in gen-
eral refer to open ended discussions or interviews with VE users about their
experience with no set list of questions or required responses. This may provide
unexpected insight into the user’s experience and the factors that impact their
sense of presence, however, the open ended nature of the responses makes them
difficult to assess and compare, and may be considered more as a supporting tool
rather than a principal method of assessment.

• Psychophysical Measures
Psychophysical Measures require VE users to rate their perceived level of pres-
ence based on specific stimuli which are provided for them in the VW. A typical
experiment may require users to complete certain tasks where different measur-
able stimuli such as frame rate levels, FOV, head tracking etc., are modified and
then levels of presence are measured and compared against those changes. This
experiment helps identify which factors may have greater impact in the levels of
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presence felt by the user.

• Subjective Corroborative Measures
Corroborative Measures do not attempt to directly measure presence but instead
look at different elements which are considered to be related to presence. Dif-
ferent measures include; levels of attention and awareness of external stimuli,
memory levels of different aspects of a VW, levels of motion sickness, task time
duration etc. The theory behind Subjective Corroborative Measures is that the
results of these experiments can help ascertain levels of presence indirectly. In-
creased levels of attention to a VW and a lower level of external stimuli aware-
ness could be considered a reasonable indicator of increasing levels of presence.

3.3.2 Objective Measures

As stated previously, objective measures attempt to measure a participant’s state au-
tomatically and without concious deliberation but which can be correlated with mea-
surable properties. In Martijn J. Scheumie’s paper ‘Research on Presence in Virtual
Reality’ (Schuemie et al., 2001) he proposes two types of objective measures: Be-
havioural and Physiological.

• Behavioural Measures
Scheumie argues that people tend to respond to stimuli in a VE as if they are
unmediated stimuli when they experience a high level of presence. He therefore
proposes that by observing and measuring specific reactions of participants to
specific stimuli, it may be possible to gauge levels of presence. A practical
example of this type of behaviour can be observed in the CASALA CAVE when
participants are navigated at speed towards a specific object (such as a virtual
tree). They often react by attempting to move out of its path or by raising their
arms and hands to protect themselves. By measuring these types of responses it
may be possible to provide a more objective reading of a participant’s level of
presence.

• Physiological Measures
Scheumie argues that it may be possible to gauge a participant’s level of presence
by measuring specific aspects of the participant’s body, such as skin temperature,
heart rate, skin conductance etc. It does appear that some physiological measures
can indicate increased levels of presence, particularly in tests involving people
with specific phobias that are then placed in a VW designed to trigger those
fears. These tests can then be compared with tests where participants perform
similar tasks on a desktop PC to help corroborate any findings.
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Figure 3.1: Slater’s Pit Room
Source: (Slater, 2002)

Slater talks specifically about both Behavioural and Physiological measures in his pa-
per ‘Presence and the sixth sense’ (Slater, 2002). In this he makes reference to the ‘Pit
Room’ (see Figure 3.1) which was designed specifically to elicit a reaction from users
in a VE. Essentially it consists of two virtual rooms, one room (from which the user
initially starts) and a second room which can be accessed via a doorway. In the first
room there is nothing of any particular interest. It is a simple rectangular shaped room
with wooden floors, painted walls, four chairs and a doorway. In the second room,
however, there is an eighteen metre precipice in the centre. Users navigate around the
relatively uninteresting first room then make their way to the second room. It is at
this point that they are confronted with the precipice. Reactions such as users jumping
back to prevent themselves from the perceived danger of falling, as well as physiolog-
ical measures such as increased heart rate are not unusual, all of which would indicate
a high level of presence felt by the users. This is a somewhat extreme example de-
signed specifically to induce a reaction. In reality, it may be far more difficult to apply
behavioural and physiological measures to a more sedate virtual experience.

3.3.3 Other Considerations

One factor that hasn’t been considered so far with regards to measuring presence is the
relationship between presence and a person’s cognitive characteristics. In Corina Sas
and Greg O’Hare’s paper ‘Presence Equation: An Investigation Into Cognitive Factors
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Underlying Presence’ (Sas and O’Hare, 2003) it is argued that the greater a person’s
level of absorption, creativity, imagination and willingness to experience presence, the
more positive the impact in terms of that person’s sense of presence. While research
into this particular area of presence is still in its infancy, it does raise some interesting
questions that at the very least should be considered in the context of CAVE environ-
ments and the levels of presence that users’ experience.

Having looked at many of the different ways in which to measure presence, the next
consideration in this thesis is to investigate the ways in which presence can be aug-
mented via changes in the levels of immersion.

3.4 Augmenting CAVE Immersion

As argued by Slater, presence is a human reaction to immersion. Seeing as CAVE
designers have ultimate control over a CAVE’s immersive technologies (i.e. numerous
screens, object tracking, display fidelity etc.), it is therefore important to understand
the factors that influence immersion in order to maximise a user’s sense of presence.
These are outlined as follows:

• Photorealism
One could be forgiven for assuming that the level of immersion generated in a
CAVE is closely linked to the level of photorealism within a VW, however, this
is not the case. The sense of depth and space that the virtual world conveys is ar-
guably far more important (Durand, 2002), and implies that a cartoon or abstract
world can be just as immersive as one that is photorealistic. Techniques such as
ambient lighting or global illumination within a 3D world can have a significant
impact on the sense of depth and space conveyed to the user (Mortensen et al.,
2007).

• Reduced Ambient Light
Not to be confused with the use of ambient lighting within a 3D scene, the am-
bient light referred to here, is any light that is not generated by light thrown on
to the screens by its projectors. The more ambient light there is, the more the
user is made aware of the physical CAVE surrounds. This is likely to distract
the user’s focus on the VW and therefore their immersion into the VW. Ideally,
CAVEs should be set-up in windowless rooms where any artificial lighting can
be fully controlled.

• 3D Projectors
Projectors that are capable of displaying crisp and clear stereo 3D images are one
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of the most important aspects in enhancing the immersive effect of the CAVE.
It is the 3D projections (when combined with 3D glasses) that provide the over-
riding illusion of depth in the virtual world. The resolution provided by the
projectors can also help to support that effect, with higher resolutions providing
more clearly defined images.

• 3D Glasses
Flicker-free 3D shutter glasses or high quality polarized glasses ensure the il-
lusion of depth is as effective as possible. A high quality 3D stereo projector
with poor quality glasses is likely to have a significant negative impact in the
immersion level experienced by users.

• Screens and Seams
The number of screens in a CAVE impacts the level of immersion. A standard
four screen CAVE provides a high level of immersion, particularly when a user
is facing the centre screen. This ensures that the user’s entire horizontal FOV
(which is generally anywhere between 160 to 180 degrees) will be fully covered
by the CAVE’s three vertical screens. It is only if the user rotates his/her head a
significant angle facing away from the centre screen, or up towards the ceiling,
that there will be a break in the screen coverage. This is also referred to as a
person’s Field of Regard (FOR). CAVEs with six screens can provide complete
coverage.

Another important consideration is the way in which CAVE screens are linked
together. Any material other than the projection screen itself will interfere with
the 3D illusion, particularly in the low ambient light conditions used in CAVEs.
Many CAVE environments do not use visible seams and instead join the seams
behind the screens outside the path of a projector’s beam of light.

• Audio Set-up
Depending on the type of 3D world with which the user is interacting, the type
of audio set-up may be of greater or lesser importance to the user. Imagine the
scenario of a VW which is designed to assess a user’s ability to identify and
locate traffic sounds. Having multiple speakers placed at different points around
the CAVE would allow for the generation of traffic noise from multiple points
and help users to correctly identify which direction a vehicle is coming from.
Providing sounds that appear to come directly from the source as indicated in
the VW will contribute to the sense of immersion. The importance of this can
depend on the VW that is being explored and the tasks that the users are required
to perform. In many cases simply adding sound effects (not necessarily from the
direction of the perceived source) can help augment immersion.
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• Hardware and Software Specifications
Ensuring that CAVE hardware and software can successfully render and manage
the VW is essential. A 3D world that jitters and struggles to keep up with the
user’s movements will not provide for a highly immersive experience.

• Object Tracking
Object tracking can add to the immersive experience in different ways. Most
commonly, object tracking is used to determine the positional co-ordinates of
a user’s head within the CAVE. This data is then used to adjust the image that
the user sees on the screen. Imagine standing in the centre of a CAVE looking
at an image of a wall that is shoulder height on the screen in front of you. Be-
hind the wall some distance away is the image of a tree. In the real world if we
hunker down behind a wall, the tree behind it will be hidden from view. In the
CAVE, head tracking replicates this scenario, so as the user hunkers down, the
view will descend and the tree will no longer be visible behind the wall. In order
to achieve this, the CASALA CAVE uses ten IR cameras placed around the top
edge of the three vertical screens. These are able to detect the exact position of
three reflective balls that are placed on the user’s 3D glasses providing the x, y
and z co-ordinates of the user’s head within the CAVE space and pass that infor-
mation back to the CAVE software. This is a widely used object tracking set-up,
however, technologies such as Microsoft’s Kinect can also provide an interesting
and much lower cost alternative to traditional tracking implementations.

• CAVE Floor Area
One of the limitations of a CAVE is the fact that its usable area is generally
quite small (typically 2m2 to 3m2). This means that a user’s movements are
significantly restricted. Ironically, due to the highly immersive nature of CAVEs,
this can sometimes lead to users wandering towards the screens and becoming
disorientated. This is a significant limitation of CAVE environments and their
ability to fully immerse a user.

• Haptic Feedback
Alongside the restrictive size of CAVE environments, realistic haptic feedback
poses a huge challenge in realising the ultimate immersive dream of many CAVE
researchers (i.e. replicating the Star Trek Holodeck). The ability to be able to
touch and feel virtual objects would significantly enhance the sense of immer-
sion. This can be achieved to some limited extent through the use of force feed-
back gloves or joysticks but the technology is not yet mature. However, research
continues apace, for example, Disney Research presented a paper at SIGGRAPH
2013 demonstrating their new AIREAL haptic feedback device (Sodhi et al.,
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2013) which takes a highly novel approach to haptic interactions1.

• Interaction Modalities
Finally, the methods by which users interact with CAVE VWs can also have an
impact on their sense of immersion. The more natural and intuitive the inter-
action method is, the more likely users will ‘lose themselves’ within the VW.
Interaction modalities and the impact they have on our abilities and experiences
in CAVE VWs are dealt with in detail in the following chapter.

3.5 Conclusion

This chapter identified the way in which immersion can impact on a CAVE user’s abil-
ity to ‘believe’ the VW in which they are interacting. It clearly defines seemingly
synonymous terms associated with immersion and describes the ways in which pres-
ence (the human reaction to immersion) can be measured. It also lays out the different
methods that can be employed to augment the level of immersion. All of which, it
should not be forgotten, is ultimately aimed at positively impacting on a user’s ability
to perform in a CAVE.

Having previously characterised the elements that constitute a CAVE and discussed the
unique contribution that immersion provides, the next step is to look at the different
interaction modalities that can be employed. The following chapter investigates the
different methods of CAVE interaction and the key factors to consider in choosing the
right one.

1http://www.disneyresearch.com/project/aireal/
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Chapter 4

CAVE Interaction Modalities

4.1 Introduction

‘CAVE Interaction Modalities’ refers to the different input methods by which a user
can alter the state of the computer generated environment with which they are engag-
ing. The following chapter investigates how the different interaction devices being
used in a CAVE affect the VW and how these different interactions affect our abilities
and experiences within that world.

There are many possible ways in which to interact with CAVE VWs. Typical devices
include: Datagloves, joypads, wands, IR tracking devices and off-body gesture con-
trollers. Some interaction devices such as joypads and wand controllers have been
around for many decades, whereas, other devices such as the Microsoft Kinect have
only been available in the last few years. As technologies change, so too do the meth-
ods and possibilities in which to interact with CAVE environments. This is a topical
issue for many CAVE researchers (Otaduy et al., 2009, Sutcliffe et al., 2006) as the
choice of modalities has the potential to fundamentally change how a user engages
with a VW and, therefore, impacts on both the experience itself and what can be un-
derstood and learnt from it.

4.2 Key Considerations

In order to ensure that the correct interaction methods are chosen for the relevant VW
scenarios, there are two key considerations which should be taken into account before
deciding upon any particular solution and these are discussed in the following subsec-
tions.
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4.2.1 Visualisation Scenario

The first consideration relates to the type of visualisation scenario being employed,
and in particular, whether or not it is a ‘Built Environment’ style visualisation or an
‘Abstract’ style visualisation. For the purposes of this thesis, a Built Environment

Visualisation can be defined as:

A visualisation scenario where the user engages with a three dimensional

representation of the real world. A world that contains familiar objects

such as buildings, cars, people etc., and where, for the most part, the

general laws of physics are replicated within the VW.

An Abstract Visualisation on the other hand has no such constraints and is often used to
visualise raw data. In this scenario it is up to the creator of the VW to determine how
the data should be represented and what interaction possibilities should be applied.
The term ‘Abstract’ is itself defined as:

Relating to or denoting art that does not attempt to represent external

reality, but rather seeks to achieve its effect using shapes, colours, and

textures1.

By fully understanding the type of visualisation scenario required, we are in a better
position to assess the likely freedoms and constraints associated with it and, therefore,
provide for a better choice of interaction modalities.

4.2.2 Degrees of Freedom

The second key consideration is known as the Degrees Of Freedom (DOF) of inter-
action (see Figure 4.1). This is an important factor in assessing the suitability of dif-
ferent interaction devices for different types of VWs and scenarios. A device which
can provide six DOF is considered to have total freedom of movement. DOF is more
accurately defined as follows:

In engineering terms, DOF describes flexibility of motion. A mechanism

that has complete freedom of motion (even if only in a limited area, or

envelope) has six degrees of freedom. Three modes are translation - the

ability to move in each of three dimensions and three are rotation, or the

ability to change angle around three perpendicular axes.

1Source: Oxford Dictionary
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Figure 4.1: Six Degrees of Freedom - Translations and Rotations
Figure adapted by author from: (Diracdelta.co.uk, 2012)

To put it in simpler terms, each of the following is one degree of free-

dom:

1. Moving up and down (heaving)

2. moving left and right (swaying)

3. moving forward and back (surging)

4. tilting up and down (pitching)

5. turning left and right (yawing)

6. tilting side to side (rolling)2

To provide a practical example of DOF, imagine a scenario of two CAVE VWs. In
one world the user controls a car travelling along a road, in the other world the user
controls an aeroplane in mid-flight. Due to the fact that the car is fixed to the road by
the simulated forces of gravity and the mechanics of how a car travels, its movement
is restricted to two controllable DOFs (surging and yawing). An aeroplane in mid-
flight, however, does not have as many restrictions and therefore has four controllable
DOFs available to it (surging, pitching, yawing and rolling). See Figure 4.2. Due to the
difference in DOFs between the two scenarios very different interaction devices may be
required. Where a simple digital directional pad (D-pad) style controller might suffice
to control the car it may not provide sufficient flexibility of motion for the aeroplane.

2Source: http://www.fact-index.com/d/de/degrees of freedom.html
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Figure 4.2: Different DOF requirement examples

This is a simplistic example and does not take into account the particular requirements
of each simulation or any aspects particular to the CAVE. It does, however, highlight
the basic principle of DOF and its importance in relation to interaction requirements.
It also demonstrates how scenarios which fit within the same category of visualisation
(in this case the Built Environment) may require very different methods of interaction.
This is not to mention the possibilities offered by ‘Abstract’ visualisations where more
complex interaction methods may be required if they offer more DOFs to the user.

In choosing appropriate interaction devices it is often tempting to opt for those devices
that provide the greatest freedom of movement, however, this is not always recom-
mended. In most cases we should be looking to implement those devices that provide
just the required amount of DOF and no more. This assists in providing a more tightly
controlled interaction experience and avoids any unnecessary confusion for the user.

4.3 CAVE Affordances

The concepts and examples discussed so far could just as easily apply to a VW on a
desktop PC as they could to a CAVE, therefore, it is important to identify and under-
stand the specific affordances that are unique or in some way different for a CAVE.
Factors to consider include:

1. User Mobility - A CAVE user has freedom of body movement (albeit within
the restrictions of the CAVE itself) unlike the fixed position of a desktop PC
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user. How does this impact interaction? For a start, wired devices may pose
a challenge within a CAVE whereas an off body controller may prove more
difficult for a PC user.

2. Seated Vs Standing - Considering the fact that a PC user is normally seated and
a CAVE user is normally standing, does this impact our ideal method of inter-
action? Possibly yes, particularly if we are thinking of incorporating tracking,
wired devices or fixed position devices etc.

3. Field of View - Does the wide FOV within a CAVE impact on interaction? By
significantly reducing the tunnel effect as compared to a VW scene viewed on
a standard desktop monitor, it may do. Observation of the environment often
becomes easier through movement of the user’s horizontal head position rather
than through the movement of the environment around the user. This may there-
fore impact on the choice or set-up of interaction devices.

4. Immersion Levels - By its very nature, through the use and wrap-around posi-
tion of large screen displays, wide FOV, surround sound, low ambient light levels
and stereo 3D, a CAVE aims to be more immersive than a standard PC. Interac-
tion methods that support and augment immersion may be considered important
to CAVE users (e.g. head, hand and body tracking)

5. Stereoscopic Displays - Although stereo 3D is widely and cheaply available on
PCs (e.g. NVIDIA VISION3), generally speaking, it is not a standard feature
of most computers. Displaying a VW in stereo 3D adds depth for the user and
opens up new interaction possibilities. For example, a gamepad style controller
combined with tracking can be used to generate a virtual laser pointer which
in turn allows the user to select and interact with objects easily across different
depth layers (see Figure 4.3)

6. Surround Sound - Typically a CAVE will have multiple speakers placed behind
and around the screens as well as behind the main open space to provide full
surround sound and help enhance immersion. This could play a role if interaction
by voice and sound direction is important.

7. Screen Real Estate - The combined size of all CAVE screens provides users
with a lot of screen real estate in which to view their VWs and this in turn can
affect how the world is presented. So, for example, the large amount of CAVE
screen space could impact how on-screen menus are displayed in comparison to
a PC screen. If this is the case, it is important to consider whether or not this
impacts on how the user interacts.

3http://www.nvidia.com/object/3d-vision-main.html
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Figure 4.3: Virtual Laser Pointer

8. Hardware and Software - A CAVE generally requires a significant financial in-
vestment in expensive high-tech equipment which means that CAVE users often
have some unique hardware and software tools at their disposal. This may pro-
vide an opportunity to interact in different ways, for example, through the use of
expensive object tracking kit, glove controllers, force feedback devices or even
custom built controllers.

4.4 Choosing Modalities

In order to assess which methods of interaction would be most suitable for a particular
scenario the following key questions should be answered:

• What is the purpose of the virtual world?
If the purpose of the virtual world is to assess a user’s movements within a scene
then perhaps it is necessary to ensure that the interaction method is a very natural
one.

• Who is that world created for?
If the VW is specific to older people, for example, then perhaps it should imple-
ment a less dexterous method of interaction than for young adults.

• What type of world is being generated?
If the world being generated is an abstract environment such as a data model
then it may require a navigation control that provides for greater DOF.
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• What level of interaction is required?
If a user needs to manipulate objects in a scene then perhaps this will require
a specific interaction method that provides features to point, select, drag and
stretch in some way that is specific to the CAVE environment.

• Have the CAVE’s unique attributes been considered?
Do the chosen interaction devices make the most of the CAVE’s wide FOV and
stereo 3D.

The ideal type of interaction strategies for the CAVE will be different depending on
the envisaged usage scenarios. The following example demonstrates how experience
and understanding of a virtual world can be impacted by the method of interaction.

4.4.1 CASALA CAVE Example

To illustrate some of the concepts and considerations of the previous sections, in this
section a specific example (based on the author’s own experience) is presented. Using
the CAVE at CASALA, users can interact with a variety of VWs. One of these is the
to-scale replication of the Great Northern Haven (GNH) apartments that are designed
specifically for the needs of older people. Users can navigate around these virtual
apartments using a standard Playstation style gamepad controller providing two DOF
movements (surging and yawing) through the use of one of its analog thumbsticks. Ad-
ditional actions such as position resets and screen menu actions are provided through
the use of the gamepads buttons. This is the standard method for allowing users to
interact with the VW and it provides the primary method of interaction by which users
can understand and interpret the VW. To introduce another interaction method into the
mix, the user will continue to use the gamepad controller in the same way as before,
except this time, head tracking will also be incorporated. Multiple IR cameras which
are positioned around the top edge of the CAVE screens track three reflective balls
which are attached to the user’s 3D glasses and adjust the on-screen image based on
the user’s head position and orientation. This will impact the user in two key ways.
Firstly, it should enhance the sense of immersion that the user experiences by aug-
menting the parallax effect, similar to that which would be experienced in the real
world. In other words, the position of nearby objects relative to far away objects will
appear different based on the viewers position. Secondly, by engaging head tracking
the user will observe the environment according to their own particular height. Any
older users that have mobility issues and require the use of a wheel chair, for example,
will instantly see the VW from the correct height perspective. This could be a crucial
consideration if the objective of the VW is to assist in the design of homes for older
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people. Important feedback on items such as counter heights, switch levels and access
requirements could be missed. Even at its most basic level, head tracking would per-
mit any user to easily hunch down and look underneath a virtual table to discover a
previously occluded object. These scenarios could be catered for by pre-setting height
levels or could of course be simulated through the use of a standard gamepad con-
troller. It would, however, be more difficult to operate (as the use of more controls
such as a second thumbstick or D-pad would come in to play) and be far less natural
and intuitive for the end user.

4.5 Taxonomy of Interaction Devices

Having outlined some of the considerations in choosing appropriate modalities, it is
important to enumerate some of the currently available interaction methods and their
general characteristics. The aim of this is to enable CAVE developers to give due con-
sideration to a wide range of interaction possibilities before choosing any particular
one. This list is intended to be as comprehensive as possible but is by no means exclu-
sive.

Gamepad Controller
(Drilnoth, 2013)

Gamepad controllers are already a familiar device for
video gamers. Typically the user holds the device with
both hands and a number of push buttons and thumbsticks
are conveniently accessible under thumbs and forefin-
gers. At CASALA they are used to provide two DOFs in
architectural style visualisations, with the D-pad used for
navigation and its buttons acting as triggers for further in-
teractions within the VW. In more abstract style visualisa-
tions (that may require more DOF), this can be achieved
through the use of the controller’s analog thumbsticks as
well as its D-pad. While these controllers are extremely
adaptable and tend to prove very effective for those ac-
customed to them, they can appear overly cluttered and
non-intuitive to inexperienced users.
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Wand Controller
(Ar-tracking.com, 2013)

’Wand Controller’ is a somewhat generic term to define a
particular style of interaction device such as the Flystick2
(pictured), Wanda, Playstation Move, Nintendo Wii-mote
etc. While each controller has its own particular traits,
they tend to possess some key characteristics: (i) they
have a similar ’remote control’ style form, (ii) they are
held or gripped in a similar way in one hand, (iii) they fea-
ture trigger buttons and (iv) they usually support high de-
grees of DOF through tracking or on-board accelerome-
ters/gyroscopes. The intuitive yet flexible nature of wand
controllers makes them ideal for many CAVE VW sce-
narios and they are probably the most popular method of
CAVE interaction.

Interactive Glove
(Peregrine, 2013)

There are multiple glove controllers available on the mar-
ket such as the Peregrine4 (pictured), the 5DT Glove5

and the Control Glove6. Some gloves incorporate touch
sensitive points that act as the equivalent of a key press
or button press, others, such as the 5DT measure the
bend movement of specific fingers. When combined with
tracking mechanisms, glove controllers offer the possibil-
ity to navigate through VWs and manipulate and interact
with objects. Anyone who has seen the movie Minor-

ity Report can realise the potential. Unfortunately, most
currently available glove controllers do not possess the
same level of functionality, accuracy and sensitivity that
would be expected of other controllers. In spite of this,
it is worth noting that interactive gloves are still widely
used in CAVEs.

4http://theperegrine.com/
5http://www.5dt.com/
6http://fibrestructures.com/innovations.php
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Fixed Position Joystick

An integrated joystick and stand (with perhaps one or two
trigger buttons) provides an interesting method for inter-
acting with a virtual world, particularly if it is used in a
VW where only a few degrees of freedom are required.
Its fixed position helps users to focus on the virtual en-
vironment and eliminates the need to hold and carry a
cumbersome controller, however, this may limit its use-
fulness in many situations. Also, the fact that the joystick
is placed on a fixed stand will restrict movement, will
block some of the user’s view of the floor screen and may
cast additional shadows.

Dance Pad

A ‘Dance Pad’ is a flat electronic controller device that
is placed on the ground and provides the user with inter-
action through the placement of feet on specific areas of
the pad. They are typically used at home and in games
arcades for dance based videogames and can be easily
replicated through the use of floor sensors attached to a
microcontroller such as the Arduino7. The advantage of
using a dance pad (or similar floor sensing devices) in a
CAVE is that they do not require the use of hand-held or
on-body controllers and have the potential for enabling
simple and intuitive interactions. The disadvantage, how-
ever, is that interaction via foot placement alone may be
restrictive and force the user to concentrate on their foot
movements rather than on the VE itself.

7Arduino is an open source electronics prototyping platform based on flexible, easy-to-use hardware
and software. It is intended for artists, designers, hobbyists, and anyone interested in creating interactive
objects or environments.
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Voice Control
(Friedrich, 2013)

Using voice commands to control specific aspects of a
VW adds a natural and intuitive interaction modality suit-
able for CAVE environments. Through the use of voice
recognition software such as Microsoft Speech, it may be
possible to better integrate users into the CAVE by recog-
nising key words and sentences and converting them into
direct actions. Although voice control is generally not
considered a primary interaction method, it provides huge
potential when combined with other natural interaction
methods such as controller-free gesture recognition or
haptic/aural feedback.

Body Sensor-Based
Recognition
(Emotiv.com, 2011)

The possibility of being able to interact with a CAVE by
thought alone is an exciting prospect. Devices such as
Emotiv Systems EPOC neuroheadset8 offer the promise
of thought based interaction via neuro-signal information
which is collected from multiple sensors placed on the
user’s head. Unfortunately, trials carried out by the au-
thor as part of a 5 day course on ‘multimodal interaction
in virtual environments’ at Aalborg University in Den-
mark in 2011 demonstrated poor levels of reaction and
accuracy. There are, however, many other types of body
sensors that are proven to be reliable and accurate which
also offer the possibility of interacting with CAVE en-
vironments (e.g. sensors for monitoring heart rate, body
temperature, fall detection, etc.). These sensors are of-
ten low cost and easy to integrate with microcontrollers
such as the Arduino. This allows for interesting interac-
tion possibilities such as fall detection scenarios within a
virtual home or dynamic reactions within a VW scenario
based on a user’s vital sign changes.

8emotiv.com
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Phone and Tablet
Apps Integration
(Android.com, 2013)

In certain situations the use of a smartphone or tablet de-
vice could be a useful way to interact with a CAVE. Us-
ing custom-built apps, the device could be used to inter-
act with a ‘Built Environment’ simulation in real-time in
a CAVE. So, for example, the device could simulate a
home automation control panel (e.g. turning lights on or
off, activating an alarm or opening and closing blinds).
This is potentially a useful way to simulate and test real-
world home interaction scenarios. In terms of interacting
with abstract data visualisations the device could also be
used to feed data directly back into the CAVE and ad-
just the data in real-time rather than through a computer
placed outside of the CAVE space.

Object Tracking
(Iotracker.com, 2012)

Object tracking is most often achieved through the use of
IR cameras and reflective spheres. By strategically plac-
ing a selection of spheres on a CAVE’s 3D glasses within
view of special IR cameras, a user’s head movements can
be tracked. Because it is possible to know the exact posi-
tional co-ordinates of someone’s head or any other object
that is being tracked within the CAVE space, it is then
possible to use this information to interact with the VW
in other ways. One way is to use object tracking to gener-
ate a virtual pointer from a controller device allowing the
user to select, move and manipulate objects and menus in
the virtual world (refer back to Figure 4.3). Another way
could be to trigger certain actions when a tracked object
is within specific co-ordinate positions within a CAVE
space, such as opening a virtual door.
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Computer vision-based
gesture recognition
(Alphathon, 2013)

An alternative way of recognising human gestures in a
CAVE environment is by using computer vision tech-
niques to provide ‘controller-free’ interaction, whereby,
the user does not have to hold any physical device or sen-
sor. In this regard, the Microsoft Kinect probably offers
the most exciting new method of interaction. Through
the use of its RGB camera, IR depth sensor and micro-
phone array, the Kinect is able to determine a user’s exact
position within a defined range and track their detailed
skeletal movements. Then, using tools such as the Mi-
crosoft Kinect SDK9 these movements can be translated
into actions in the virtual environment, similar to the con-
figuration already implemented in the CASALA CAVE10.

Custom Controllers
(Arduino.cc, 2013)

If none of the available interaction devices fits specific
requirements, or budget, then a bespoke custom solution
can be built (see Section 4.6 where the author’s own work
in this regard is described). Low-cost, accessible micro-
controllers such as the Arduino make building or inte-
grating new devices relatively easy. The integration of
the Nintendo Wii Nunchuck in the CASALA CAVE (see
below) is a perfect example of this.

4.6 Nunchuckoo: a novel interaction device for CAVEs

As part of a larger open source CAVE visualisation project called SCRAPE, which is
discussed in detail in Chapter 6, a new easy-to-use interaction device in the CASALA
CAVE is proposed and described here. Entitled ‘Nunchuckoo’, the objective of this
project is to integrate a Nintendo Wii Nunchuck controller, an Arduino microcontroller
and the Processing visualisation programming tool to provide an intuitive, yet effective,
method of interaction for the CAVE (see Figure 4.4). It also serves as an experiment
on the ability to easily integrate new devices into the SCRAPE CAVE system, and as
an example of employing appropriate interaction modalities based on the particular
requirements of a given system.

The low-cost Nintendo Wii Nunchuck controller is employed due to its unique de-

9Microsoft Kinect SDK: http://www.microsoft.com/en-us/kinectforwindows/develop/
10See a video demonstrating this at: http://youtube.com/watch?v=fxnMMVy9tFU

41



Figure 4.4: The Nunchuckoo Controller

sign and versatility, which makes it ideal for all types of users across a wide range
of different CAVE VE scenarios. This simple ergonomic device is held in one hand
and implements just one analog thumbstick and two trigger buttons, yet allows for the
possibility of six DOF (due to its inbuilt accelerometer). This enables it to be useful
in a wide range of both built environment and abstract data interactions, and as such,
presents an interesting alternative to the standard gamepad controller. It also incorpo-
rates an I2C11 serial connection which makes the job of connecting it to non compatible
devices (such as an Arduino) significantly easier.

In support of this work, a brief summary of the set-up process is provided next, with
basic sketch test code provided in Appendix A (Full and detailed instructions are avail-
able at https://github.com/c-flynn/Nunchuckoo)

4.6.1 Set-Up Summary

Required hardware and software :

• A Nintendo Wii Nunchuck

• An Arduino microcontroller and Arduino software12. An Arduino Duemilanove
or newer (e.g. Arduino UNO) should work fine.

• A WiiChuck adapter13. Alternatively, wires can be connected directly between
the Nunchuck and Arduino (see Figure 4.5).

11Inter-Integrated Circuit - Widely used communications protocol invented by Philips in the 1980’s
12http://arduino.cc
13search on: http://amazon.co.uk or https://www.sparkfun.com
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Figure 4.5: Nunchuck Arduino Direct Wire Connection
Source: (Instructables.com, 2013)

• A USB printer cable

• A copy of Processing14

Step 1 - Connect the Wii Nunchuck to the Arduino board via the WiiChuck wires as
follows: (see Figure 4.6).

Black Wire - Arduino Gnd
Red Wire - Arduino 3V3

White Wire - Arduino Analog 4
Grey Wire - Arduino Analog 5

Step 2 - Connect the Arduino to a computer via the USB printer cable and launch the
Arduino software.

14http://processing.org/download
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Figure 4.6: WiiChuck Adapter

Figure 4.7: Nunchuckoo Test Sketch

Step 3 - Add Nunchuck datastream code to the Arduino Integrated Development En-
vironment (IDE) in order to read the Nunchuck’s controller serial data. This code is
widely available on a number of Arduino related websites15. If all is working correctly
a seven column readable datastream should be visible in the Arduino’s serial monitor.

Step 4 - Add the Nunchuckoo test code (see Appendix A) to Processing. Ensure the
Nunchuck and Arduino are connected, launch Processing and open the Nunchuck-
ooTest sketch. This will open a small window which displays a grey three dimensional
cube in the centre of the window on a black background (see Figure 4.7). If everything
is set up correctly, the cube can be rotated in different directions using the Nunchuck’s

15http://pragprog.com/titles/msard/source code
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thumbstick. In order to move the cube using the Nunchucks accelerometers hold down
the the Z trigger button on the controller. The Nunchuckoo is now ready for use in any
Processing related projects.

4.7 Conclusion

As with any human-computer interaction, the choice of interaction modality is an im-
portant factor in determining a user’s experience. This chapter addressed this matter in
relation to CAVEs by highlighting the importance of visualisation scenarios and DOF
when choosing modalities. It characterised many of the elements that make CAVEs
unique and highlighted some basic questions to answer before choosing a specific
method of interaction. A taxonomy of interaction devices was provided to assess their
potential suitability for use in a CAVE and, finally, the integration of a novel interaction
device was described.

The following chapter focuses on CAVE software, assesses some of the key software
tools available and provides a critical analysis of their strengths and deficiencies. The
concept of developing a low-cost CAVE is introduced and the suitability of existing
software in any such system is discussed.
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Chapter 5

CAVE Development Frameworks

5.1 Introduction

Ever since the invention of the CAVE in the early 90’s, software development frame-
works have been available to assist in the creation of exciting new VEs that exploit
the unique characteristics and requirements of a CAVE. The number of CAVE frame-
works available has grown steadily over the years with the result that today there is
a healthy selection of frameworks from which to choose. Rather than present a full
list (which a visit to Wikipedia1 already provides), this chapter highlights a few key
frameworks that are considered worthy of note and which may prove useful (in par-
ticular to CAVE newcomers). This chapter also highlights some of the deficiencies of
these frameworks in relation to accessibility and cost, and lays the foundation for the
introduction of a new framework which aims to address some of these concerns and
supports the development of low-cost and accessible CAVE systems.

5.2 Key Frameworks

5.2.1 CAVElib

When Carolina Cruz-Neira, Thomas A. Defanti and Daniel J. Sandin developed the
CAVE in the early 90’s they also developed the CAVE Library (known as CAVELib2).
CAVELib is a low-level Application Programming Interface (API) that enables devel-
opers to focus on developing their VW, while CAVELib handles most of the CAVE

1http://en.wikipedia.org/wiki/Cave automatic virtual environment
2http://www.mechdyne.com/cavelib.aspx
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system specific elements such as, machine clustering, multi-screen displays, virtual
camera positioning and stereoscopic viewing. CAVELib merits a special mention as
it is the first piece of software dedicated to the operation and development of VEs
within a CAVE. CAVELIb is still available today, however, since 1996 it is a com-
mercially owned product that is sold and distributed by Mechdyne (one of the largest
suppliers of CAVE and CAVE type solutions worldwide). The materials, hardware and
software for the CASALA CAVE were all originally supplied by Mechdyne and in-
cluded CAVELib as part of the initial package. Although no longer used at CASALA,
CAVELib remains an important entry in the history of CAVE software and continues
to be widely deployed on many CAVE systems around the world.

5.2.2 VRJuggler

Following on from the development and subsequent sale of CAVELib to Mechdyne in
1996, Carolina Cruz-Neira and a team of students from the Virtual Reality Applications
Center (VRAC) at Iowa State University went on to develop an open source and freely
available virtual reality application development framework called VRJuggler3. The
first alpha version of VRJuggler was released in September 1998, followed by the beta
version in July 1999, with a full release being made available in October of the same
year. VRJuggler followed on very closely from the work carried out on CAVELib and
provides a reliable alternative to the commercially available CAVELib software. As
with CAVELib, VRJuggler provides a low-level framework for CAVE systems that can
handle clustering, multiple displays, head tracking, stereo viewing etc., thus enabling
developers to remain solely focused on the creation of VWs.

5.2.3 VR4MAX

Developing graphically rich, extensive and interactive VEs with tools such as CAVELib
and VRJuggler requires a significant investment of time and technical resources. If this
is not an option (or if a user simply wants a graphically rich VE), then VR4MAX4 from
Tree C Technologies provides an interesting alternative. VR4MAX’s key strength is its
ability to port 3D objects created in the popular 3DS MAX graphics software package
directly into a CAVE. This enables rich 3D worlds to be created and transferred to a
CAVE in a very short period of time. It also comes with a rich list of features such
as collision detection, terrain binding, lighting, animations, physics and atmospher-
ics. Similar to CAVElib and VRJuggler, VR4MAX also handles machine clustering,

3https://code.google.com/p/vrjuggler/
4http://www.tree-c.nl/vr4max
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multiple screens, interaction devices, head tracking and stereoscopic viewing.

A criticism that is often levelled at higher level frameworks is a lack of flexibility or
programmability. While this is often true, VR4MAX provides a useful middle ground
option, particularly as it also allows users to extend functionality through user devel-
oped scripts (using LUA5).

5.2.4 MiddleVR & getReal3D

MiddleVR6 from ‘I’m in VR’ and getReal3D7 from Mechdyne are two software prod-
ucts that are designed to work directly with the Unity8 game engine. Unity is one of the
world’s most popular software tools for the development and running of video games
across multiple hardware and software platforms and is ideally suited for the creation
and running of CAVE VWs. Unity allows for the easy importation of 3D models and
is designed to assist in the creation of highly interactive worlds with inbuilt support for
items such as collision detection, physics, lighting, head-tracking, multiple controller
devices and terrain binding. Essentially MiddleVR and getReal3D are two competing
products that enable Unity to be extended so as to be compatible with the particular
requirements of a CAVE environment similar to the frameworks discussed previously.
This enables developers to concentrate solely on their VW and not on the CAVE spe-
cific elements of their developments.

5.3 Framework Comparisons

Each framework has its own particular strengths and weaknesses. One strength which
they all share is their proven ability to afford rich interactive CAVE VEs when im-
plemented with the necessary expertise. A key concern, however, relates to the ease
with which VEs can be developed. In particular, frameworks that require expertise in
programming languages such as C, C++ and OpenGL, and require significant work on
the command line, have a smaller pool of potential users that can avail of them. This
makes many frameworks immediately inaccessible or overly complex at the very least.

Another key concern, relates to their suitability for use outside of the typical CAVE
scenario. CAVE environments in their traditional form are costly to implement and re-
quire highly skilled resources in order to develop and maintain. This tends to limit their

5http://www.lua.org/
6http://www.imin-vr.com/middlevr/
7http://www.mechdyne.com/getreal3d.aspx
8http://unity3d.com/
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use to educational institutions and big business. However, as the cost-performance ra-
tio of hardware continues to improve (particularly in relation to processing power and
3D projectors) so too does the opportunity for setting up lower cost CAVEs. Nonethe-
less, if the software remains too costly then this inevitably limits its adoption by a
wider user base.

Considering that accessibility and cost are key considerations for this thesis, Table 5.1
is included to facilitate a comparison of each framework’s key attributes.
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5.4 Conclusion

CAVE environments enjoy a reasonable level of choice in terms of software frame-
works, from traditional code intensive applications such as CAVELib and VRJuggler,
to more recent game engine based frameworks such as getReal3D and Middle VR. De-
spite the level of choice and different options, CAVE frameworks still remain relatively
inaccessible in terms of both cost and development. The following chapter presents a
new open source project to develop an entirely new CAVE framework which aims to
address the key deficiencies of existing frameworks. The proposed framework can
easily integrate into traditional CAVE environments without compromising any cur-
rent framework implementations, but is designed specifically for new CAVE users that
traditionally would not have implemented CAVE systems due to cost or other technical
barriers.
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Chapter 6

Project SCRAPE

6.1 Introduction

The CASALA CAVE is utilised in a range of different VW scenarios from built-
environment style visualisations to abstract visualisations of real-world sensor data.
These are used primarily to assist in the research and development of new ‘indepen-
dent living’ technologies for the elderly and to improve our understanding of energy
usage across communities. Over a period of four years, many different CAVE soft-
ware applications were trialled against required VW scenarios, however, the high cost
and/or inaccessibility or unsuitability of most remained a constant source of frustra-
tion. It became clear that there was a need and an opportunity to develop a new CAVE
framework. The need for CASALA was clear but the opportunity was to develop an
open source application which could be used not only in traditional CAVE systems but
also in low-cost or amateur CAVEs. Interest expressed directly to the author by people
from a wide range of disciplines regarding the possibility of setting up low-cost CAVEs
was a significant factor in the drive towards this goal. This initiated the development
of a new open software application that would enable both amateurs and profession-
als to easily set up and create interactive VWs. In order for any such application to
work, it would need to be easy to configure, easy to develop for, and usable in CAVEs
of differing sizes, dimensions and screen numbers. It would also need to facilitate a
multitude of interaction devices.

After significant research into a suitable platform on which to develop a new CAVE
framework, it was decided to use a software platform called Processing1 (P5) and to
call the project SCReen Adjusted Panoramic Effect or SCRAPE for short. Other lan-
guages, frameworks and libraries were investigated as part of the research process,

1http://processing.org
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with the key focus being on cost and accessibility. With this in mind, many software
applications that might typically be considered suitable for a new CAVE framework
were not chosen for SCRAPE. OpenGL2, for example, is an industry standard API for
graphics rendering but it is complex to work with and was therefore not considered
suitable for SCRAPE. A similar issue arises with regard to the use of scene graphs
such as OpenSG3 or OpenSceneGraph4 both of which were considered overly convo-
luted for SCRAPE. In essence, SCRAPE required an existing platform or framework
on which it could easily build. With this in mind, Java3D5, VPython6 and OpenFrame-
works7 were considered. Both Java3D and VPython provide relatively straightforward
access to 3D graphics, however, they lacked the community support and fine tuned
accessibility of P5, with its simplified Java syntax, excellent documentation and large
community supports. OpenFrameworks, on the other hand, is an open source toolkit
which could make the basis for an excellent CAVE framework, with a proven track
record, excellent documentation and an active support community. In many respects it
is the big brother of P5 (with its creators citing P5 as its precursor). While the develop-
ment team behind OpenFrameworks have gone out of their way to make it accessible,
it still requires knowledge of C++ and was therefore considered unsuitable for this
project. Above all, It was important for SCRAPE to abstract itself from lower level
APIs, libraries and languages and make itself more accessible. The P5 open source
programming language and data visualisation tool platform, created by Casey Reas
and Benjamin Fry, holds as its tenets the fundamental concepts of being freely avail-
able and easy-to-use by non-experts. While P5 has some limitations (principally, its
use of Java over C/C++, its notably basic IDE and lack of graphical interface toolkit),
it is an excellent and accessible tool for developing 2D and 3D interactive visuals. It
also has a strong user community and a wealth of useful software libraries. For all
these reasons, P5 was chosen as the platform of choice for SCRAPE.

The following section provides an overview and technical description of P5. This is
followed by a detailed analysis of the SCRAPE framework in Section 6.3, full instal-
lation and configuration instructions in Section 6.4 and an assessment of SCRAPE’s
suitability for low-end CAVE implementations in Section 6.5

2http://www.opengl.org
3http://www.opensg.org
4http://www.openscenegraph.org
5http://java3d.java.net
6http://vpython.org
7http://www.openframeworks.cc
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Figure 6.1: Processing Development Environment (PDE)

6.2 Processing

6.2.1 Overview

P5 provides users with a basic IDE which is better known as the Processing Devel-
opment Environment (PDE) (see Figure 6.1). In reality the PDE is not much more
than a notepad with some basic functions and is intended to evoke the concept of a
sketchpad where users can easily begin to sketch out their ideas in code and quickly
visualise them on-screen. It is for this reason that P5 applications are referred to as
sketches rather than programs, with each sketch being self contained in a folder of the
same name. Each sketch may contain multiple sub-sketches (which are really inner
classes of the main sketch class) and these are represented as tabs on the PDE. The P5
software can be downloaded directly from the processing.org website and it works out
of the box with no real set-up or install required. It is also compatible with Windows,
Mac and Linux operating systems.

6.2.2 Versions

During the development of SCRAPE a new version of P5 was released (P5 v2.0). There
are some significant changes to this version of P5 over previous versions, particularly
in relation to the integration of OpenGL 2 as a core library of P5 v2.0. While the
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integration of OpenGL 2 is a logical progression in the development of P5, it does
pose some issues in terms of the use of active shutter 3D with the existing P5 stereo
library. With this in mind, it was decided to remain with P5 v1.5.1 as any potential
gains in modifying the existing system were regarded as relatively small considering
the time investment required to make the necessary upgrade to SCRAPE. It is fully
expected that SCRAPE will be upgraded to function fully with P5 v2.0 in due course,
however, for the purposes of this thesis, P5 v1.5.1 is the version used.

6.2.3 Technical Analysis

The P5 environment is written in Java and programs written in the P5 programming
language are translated to Java and run as Java programs. Java was chosen by Reas
and Fry because it was seen as the best option in terms of compatibility, ease of use,
portability and performance. P5 differs from Java through its graphics library and
simplified programming style but fully accepts standard Java code. There is also a
sister project to P5 called Processing.js8 which is based on JavaScript and is intended
to bring the power of P5 to the web. While Processing.js is an interesting project, it was
not considered for SCRAPE primarily due to its incompatibility with quad-buffered
stereo 3D. That being said, web based projects such as Processing.js, WebGL9 and
three.js10 certainly have potential for the future.

P5 has essentially two modes of operation, a 2D mode and a 3D mode. For the purpose
of the CAVE it is the 3D mode that is of interest and in version 1.5.1 of P5 there are
essentially two ways in which a 3D sketch can be invoked. The first mode is called
P3D which is the default 3D renderer developed by the creators of P5. It is more than
sufficient for many 3D sketches, however, it is recommended that the other option of
OpenGL is employed. This enables sketches to avail of the full power of OpenGL
which is the industry standard graphics API for high performance 3D graphics. It also
opens up the possibility of providing stereographic images to viewers. The render
mode is determined when specifying the screen dimensions of the sketch within the
size() function:

size(800, 600, OPENGL);

It is important to note that if OpenGL is specified in this function it is also necessary
to import the relevant OpenGL library :

import processing.opengl.∗;

8http://processingjs.org
9http://www.chromeexperiments.com/webgl/

10http://threejs.org/
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Most sketches in P5 consist of two core functions: setup() and draw():

setup() is called once and is generally used to set some initial parameters such as the
size of the sketch window, the type of renderer to use etc. . .

void setup(){
size(800, 600, OPENGL);
}

draw() is called repeatedly and is used to handle the animated sketch such as rotating an
object on screen. The following demonstrates a simple sketch which uses both setup()
and draw() to present a rotating box to the viewer:

import processing.opengl.∗;
float angle = 0.0f;

void setup() {
size(400, 300, OPENGL);
}

void draw() {
// Clear the screen
background(0);

// Centre, rotate and draw box
translate(200,150,0);
rotateY(angle);
box(80);
angle += 0.01f;
}

This basic program demonstrates the simplicity with which 3D objects can be animated
and presented to the user (see Figure 6.2).

6.3 The SCRAPE Framework

Having chosen P5 as the development platform for SCRAPE, the next step was to de-
velop a flexible framework that would meet the very specific demands of both standard
and non-standard CAVE systems.
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Figure 6.2: Hello World - Basic sketch demonstrating 3D rotating cube

In some respects the SCRAPE framework is similar to many typical P5 projects. All
the relevant SCRAPE code is contained within a folder of the same name and within
that folder there exists a number of classes (.pde files), a configuration file (mpe.ini)
and a folder named code which contains the relevant imported libraries. Unlike most
P5 projects, however, SCRAPE runs multiple sketch instances across multiple ma-
chines and screens using a range of classes and functions that are highly specific to a
CAVE’s unique characteristics. Figure 6.3 provides a basic illustration of the SCRAPE
code structure, followed by a brief description of each of the SCRAPE classes and the
specific functions they perform. A more detailed breakdown of the SCRAPE code
is provided in Appendix B.

6.3.1 Core Classes

• SCRAPE.pde
This is the main class file that initialises the program, checks and applies the
necessary configurations, calculates and assigns the required camera parameters,
applies the relevant camera template and calls the necessary inner classes.

• scene.pde
Contains the code for a given scene. So for example, someone wanting to draw
an animated box would do so in scene.pde.

• stereoscene.pde
Essentially a copy of scene.pde but with modifications to enable the scene to
render in stereoscopic 3D.
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Figure 6.3: SCRAPE Code Structure
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• keyboard.pde
Defines what movements or actions to broadcast to other sketch instances based
on keyboard navigations

• joypad.pde
Checks for installed controller devices, assigns controllers (& corresponding
controls) and broadcasts movements and actions.

• nunchuckoo.pde
Communicates with an Arduino microcontroller and Nunchuck controller. Reads
and interprets movement data received from Nunchuck controller via Arduino
then broadcasts relevant actions.

• navigation.pde
Applies the relevant navigation movements and scene actions based on received
navigation messages and according to camera selection.

6.3.2 Additional Classes for Data Integration

• DBconnect.pde
Provides the necessary code to enable SCRAPE to connect and query a standard
MySQL open source database.

• initialisation.pde
Enables scene variables to be initialised outside of the core SCRAPE class for
cleaner code organisation. Also used for initial calls to database and threads
where required.

• DBthread.pde
Creates new thread for accessing database while SCRAPE is running. Making
calls to a database from within SCRAPE’s scene class would cause each instance
to pause momentarily during data access. By creating a separate thread to call on
the required database functions, scene specific variables can be updated without
causing any interruption to the running of the main SCRAPE program.

Having outlined the different SCRAPE class files, the following subsections describe
the key functions that these classes (both individually and in combination) make pos-
sible.
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Figure 6.4: Most Pixels Ever at the IAC Manhattan
Source: (Shiffman, 2012)

6.3.3 Multi-Screen Displays

Unlike most standard P5 projects, SCRAPE is required to function across multiple
screens and machines. In order to do this SCRAPE employs the use of a library called
Most Pixels Ever (MPE). The MPE library11 for P5 was developed by Daniel Shiffman
alongside Jeremy Rotsztain, Elie Zananiri & Chris Kairalla as part of a New York
University project to display students’ interactive projects on a large multi-screen video
wall (measuring 12’ x 120’) at the IAC building in Manhattan (see Figure 6.4). Daniel
Shiffman has been a key figure in the P5 community for many years and has contributed
significantly not only in terms of his code contributions with libraries such as MPE but
also through the publication of his book learning processing12 which is a ‘must have’
for anyone looking for a useful introduction to P5.

Essentially, MPE enables SCRAPE to be spanned across multiple screens by enabling
multiple instances of the same sketch to run synchronously on either the same machine
or on separate network connected machines. There are two key elements to MPE:

1. The first is to ensure that all instances of the sketch run in time synch. Each
sketch communicates with a dedicated service which ensures that sketches ren-
der the same scene at exactly the same moment. So, in the case of the ‘Hello-
world’ box sketch if there are three instances of Hello world running and dis-

playing the same scene segment, all three instances will run their sketch in per-
fect synch with the others (see Figure 6.5).

2. The second element is to allow each sketch to render a specific portion of a scene.
So for example, if a scene contains a long rectangular object such as a table that

11github.com/shiffman/Most-Pixels-Ever/
12www.learningprocessing.com/
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Figure 6.5: Multi-Sketch Synchronisation

Figure 6.6: Multi-Sketch Segment Rendering

needs to be rendered across multiple screens then MPE can instruct each sketch
which part of the scene it needs to display (see Figure 6.6). It is important to
note that each sketch is rendering the full scene but only displays the portion
specified. This could have performance implications in scenes containing many
objects or objects with high polygon counts but most CAVEs (including low-end
set-ups) are likely to have sufficiently capable processors and graphics card for
this not to be a significant issue. Many CAVEs incorporate the use of multiple
workstations which can also be used to help spread the load.

In order to achieve this, a dedicated MPE service is required. This service is written in
Java and runs directly from the command line.

$ java −jar mpeServer.jar −framerate30 −screens3

Each SCRAPE instance then references a separate configuration file called mpe.ini
which points back to the MPE service (on whatever machine it is running). This allows
each instance to obtain synchronisation with the others via the MPE service and also
to inform the service which instance it is communicating with, what the overall screen
dimensions are, what dimensions each individual screen is and the offset by which they
are rendered. The following example demonstrates a typical (non-SCRAPE) mpe.ini
file configuration:
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//−−−MPE Configurations −−−//
// Client ID (0,1,2,etc.)
id=2;

// Server address
server=192.168.1.x;

// Server port
port=9002;

// What are the client window dimensions?
localScreenSize=1024,768;

// Where is the client located in the master dimensions?
localLocation=2048,0;

// What are the master dimensions?
masterDimensions=3072,1024;

// Turn to 0 to turn off all the console printing
debug=0;

As traditional CAVE environments are made up of a multitude of different screens,
MPE provides a relatively simple method of breaking sketches up into separate com-
ponents and ensuring synchronisation. This, however, is not sufficient for a CAVE.
MPE was primarily developed for displays sitting side by side or on top of one another
on a flat 2D surface. It was never designed for screens sitting on different axes and sit-
ting at right angles to one another and it is not designed to render images from different
positions in full 3D space. To develop a fully functional CAVE system it is essential to
be able to render views of a scene from different angles and to be able to manipulate
and blend screen images in such a way as to provide a seamless representation of a
scene across multiple screens (as if the screens were one large amalgamated window
onto the world). To create this illusion, each sketch which renders the scene for an
individual screen needs to be allocated it’s own camera which can then be manipulated
in multiple ways. As there are a total of six screen positions possible in a CAVE (front,
back, left, right, top and bottom), SCRAPE needs to be able to accommodate a maxi-
mum of six separately configurable cameras. SCRAPE provides for this by including
an additional configuration option to the standard mpe.ini configuration file as follows:
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// Specify screen option: front,stern,left,right,top,bottom
wall=front;

Due to the fact that SCRAPE makes use of cameras, the ‘localLocation’ screen position
parameter is no longer required and is removed from the standard configuration file.

/##−−− Removed −−−##/
// Where is the client located in the master dimensions?
localLocation=2048,0;

As each SCRAPE instance has its own configuration file, it is therefore able to assign
it’s own specific camera position. For each sketch instance that is launched, the asso-
ciated SCRAPE.pde class file will apply one of six possible camera assignments based
on the camera option selected. It will also gather information from the rest of the con-
figuration file to determine screen size, camera axis and camera position, as well as
calculate and apply the horizontal and vertical field of view, the aspect ratio and re-
quired clipping ranges. While it is possible to work with cameras using P5’s camera()
and perspective() functions, SCRAPE uses Kristian Linn Damkjer’s Obsessive Cam-
era Direction (OCD)13 library which provides a more succinct method of managing
multiple cameras.

Please note: The OCD library in its original format does not (at the time of writing)
fully support camera placement on all virtual scene axes. Due to this the OCD library
was modified by the author and recompiled in order to resolve this issue. This modified
library is included as part of the overall SCRAPE package.

6.3.4 Scene Generation

By using P5, SCRAPE enables users to easily develop 3D worlds using either stan-
dard JAVA code or the P5 programming language, both of which are widely used, well
documented and accessible to users of of varying programming abilities. In general,
SCRAPE scenes are built similar to standard P5 3D sketches with only the inclusion
of references to some CAVE specific functions distinguishing it from a standard 3D
sketch. These are key strengths of SCRAPE in comparison to some other frameworks
which require users to code in C and reference the OpenGL API directly, which, al-
though powerful, can be very time consuming and difficult for non-expert users.

13gdsstudios.com/processing/libraries/ocd/
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6.3.5 Stereographics

The ability to display VWs in Stereoscopic 3D is an important function of any CAVE
software application and SCRAPE is no exception. In order to accommodate stereo
displays, SCRAPE includes a stereo configuration option to the mpe.ini configuration
file as follows:

// Set to ’on’ to activate stereographics
activeStereo=on;

If the ‘activeStereo’ option is activated, SCRAPE will use the stereoScene.pde class
file which wraps the entire VW scene code into one render function. SCRAPE then
uses a library named ’stereo’ (created by Charlie Roberts and Angus Forbes14 and
based on code by Paul Bourke15) which calls upon the render function for both the left
eye and right eye on each frame loop and then applies the relevant OpenGL functions
for active, passive or anaglyph stereo. Although graphics cards increasingly support
stereo 3D, it is by no means a default feature and therefore, any potential CAVE set-up
will need to verify compatibility before activating SCRAPE in 3D

6.3.6 Device Interaction

As discussed in Chapter 4, interaction devices play an important role in any CAVE
system. In order to maximise the number of input devices that can be used such as
keyboard, mice, joypads, joysticks etc., as well as the ease with which they can be
accessed, SCRAPE enables the integration of a wide range of USB devices. To do this,
SCRAPE firstly incorporates the following two configuration options in the mpe.ini
configuration file:

// Set to ’on’ if adding controllers
controller=on;

// Controller name
controllerName=Saitek Saitek P2900 Wireless Pad;

For each instance of SCRAPE that activates the ‘controller’ setting in the configuration
file, the joypad.pde class can then perform the following key functions:

• Detect and list connected devices
14https://github.com/CreativeCodingLab/stereo/
15paulbourke.net/
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• Detect and list accessible parameters

• Assign a device

• Assign device parameters

• Read device actions

• Broadcast actions to all other SCRAPE instances

Although each instance can assign its own controller, typically only one SCRAPE
instance will activate a device at any given time. To assist in the detection and as-
signment of interaction devices, SCRAPE incorporates the use of a library called pro-
CONTROLL16 developed by Christian Riekoff. This enables SCRAPE to check for
all installed input devices and their controllable actions. Once these are accessed,
SCRAPE can then assign the required device and apply the necessary parameters. A
broadcast function is also used to instantly communicate any movements or actions
to other sketch instances. This ensures that movements or actions are applied to all
SCRAPE instances and that everything remains in sync across all screens.

As detailed in Chapter 4, SCRAPE also supports a novel interaction device entitled
‘Nunchuckoo’ which provides for the integration of a Wii Nunchuck controller and an
Arduino microcontroller. This option is incorporated in the mpe.ini configuration file
as follows:

// Set to ’on’ if adding arduino and nunchuck controller
nunchuck=on;

Activating this option calls upon the nunchuckoo.pde class which is specifically devel-
oped to access serial data from devices such as the Arduino. The nunchuckoo class
performs a series of functions. Firstly it checks to see if any serial device is connected
to the computer and if so prints out a list of connected devices and their associated ports
to the P5 console window. Armed with this information the user can identify which
port the Arduino is attached to and specify the appropriate port. The nunchuckoo class
will then read the incoming data, translate controller action integer arrays into scene
actions and broadcast navigation instructions to all other SCRAPE instances to create
seamless VW interactions.

In the situation where no USB controller devices (including the Nunchuckoo) are
connected, or are simply not required, SCRAPE defaults to standard keyboard input
through the basic keyboard.pde class. This broadcasts navigation instructions to all

16creativecomputing.cc/p5libs/procontroll/
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Figure 6.7: Cameras moving relative to themselves

instances in order to facilitate basic control functionality which may be useful during
set-up, testing or demo scenarios.

6.3.7 Multi-Camera Navigation

One of the primary objectives of SCRAPE is to ensure that users are presented with
a seamless virtual display across multiple screens in three dimensions at all times.
The use of multiple cameras sitting on different axes and orientations within 3D space
is key to this. There is, however, a complication. Whenever a user interacts with a
SCRAPE instance via a keyboard, USB controller or Nunchuckoo device, it will au-
tomatically broadcast these actions to all SCRAPE instances. So, for example, if we
are navigating around a VW and we tilt the Nunchuckoo downward in order to move
forward relative to the centre screen, then a ‘forward’ motion instruction is sent to all
SCRAPE instances. If each instance was to employ a camera sitting on the same axis,
with the same orientation, this would not be an issue, however, as SCRAPE uses cam-
eras sitting on different axes pointing in different directions, then a forward motion
by all cameras will cause the cameras to decouple (see Figure 6.7). This would in-
stantly break the illusion of a seamless VW. To prevent this from happening, SCRAPE
provides the navigation.pde class which ensures that each camera moves according to
the axis upon which it sits and its primary orientation. So, for example, navigating
forward on a CAVE centre screen will cause it’s associated camera to move forward
along the z axis, whereas, the cameras associated with the CAVE’s side screens will
move sideways along the z axis and retain their primary orientation (see Figure 6.8).
This ensures that all camera movements remain in sync at all times.
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Figure 6.8: Cameras moving relative to axes and primary orientation

6.3.8 Data Access

If users wish to incorporate data from a MySQL open source database into their VW
then SCRAPE provides them with the means to do so. This is a basic requirement
for practically all data visualisations and therefore an important addition to the core
SCRAPE code. Through the use of the DBconnect.pde class file, users can specify
a database, provide the necessary credentials and define the required queries. Un-
fortunately, calling upon the DBconnect class directly from within the main scene or
stereoscene classes will cause the VW to pause momentarily each time the database is
accessed. In order to address this issue, SCRAPE provides the DBthread.pde class file
which creates a separate P5 thread. It is this thread which then calls upon the DBcon-
nect class and updates the necessary global variables without causing any interruption
to the main sketch.

In addition to the two key database access classes, SCRAPE also provides the ini-
tialisation.pde class file. This is used to initialise scene variables outside of the core
SCRAPE class, provide for better code organisation, make the initial calls to database
functions and launch the database thread on start-up. While not used exclusively in re-
lation to database initialisation and associated variables, it performs a useful function
in relation to VWs that require access to stored data.

A practical implementation of incorporating live data into a SCRAPE VW is demon-
strated in Chapter 7 where the CASALA CAVE is used to visualise live and historic
electricity usage readings from a range of buildings and homes across the local com-
munity.
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Figure 6.9: Processing set-up test image

6.4 SCRAPE Installation and Configuration

Given the inner workings of SCRAPE, this section describes how SCRAPE can be
installed and configured in a CAVE (of up to six screens). The instructions below
apply to both Windows, Linux and Mac operating systems.

6.4.1 Key Steps

6.4.1.1 Step 1

Download and install P5 version1.5.1 from the processing.org17 website onto each of
the machines that is used to serve images to the CAVE walls/screens. It is highly
recommended that the 32bit version of P5 is used as a starting point regardless of the
operating system being used.

In order to test that P5 works on any given machine simply launch the program,
paste the code below into the blank sketch code window then click on the run but-
ton (Ctrl+R). All going well, a rotating cube (similar to Figure 6.9) should appear on
screen.

# Test sketch

import processing.opengl.∗;
float angle = 0.0f;

17processing.org/download/
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void setup() {
size(400, 300, OPENGL);
}

void draw() {
background(0);lights();
translate(200,150,0);
rotateX(−PI/5);
rotateY(angle);
noStroke();
fill(255);
box(120,120,120);
angle += 0.01f;
}

6.4.1.2 Step 2

Download SCRAPE v1.5.1 from https://github.com/c-flynn/SCRAPE onto each ma-
chine. Open the ‘SCRAPE v1.5.1’ folder and copy the ‘SCRAPE’ sub-folder to the
P5 Sketchbook path. P5 sketches are always stored in the ‘sketchbook’ folder and the
sketchbook path can be viewed/modified by launching processing and going to File >

Preferences.

If individual CAVE walls/screens share a workstation then install one copy of P5 on
the machine and run multiple instances by placing the SCRAPE code in separate sub-
folders within the ‘sketchbook’ folder. For example:

• path/to/sketchbook > SCRAPEcontainer > leftScreen > SCRAPE

• path/to/sketchbook -> SCRAPEcontainer > frontScreen > SCRAPE

• path/to/sketchbook -> SCRAPEcontainer > rightScreen > SCRAPE

• path/to/sketchbook -> SCRAPEcontainer > floorScreen > SCRAPE

Double-clicking on the ‘SCRAPE.pde’ file within each ‘SCRAPE’ folder will open a
separate P5 instance. If a separate command workstation is used to manage the CAVE
screens then P5 can be installed there as well. SCRAPE works with up to six different
screen views but in theory there is no limit to the number of SCRAPE installations.
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6.4.1.3 Step 3

In order for SCRAPE to function correctly it is necessary to run a server application so
that all the individual SCRAPE sketches can communicate and stay in synchronisation
with one another. The server application can be on any one of the workstations that are
used to render a SCRAPE sketch or on any other machine as long as they are all on the
same network.

Download the file mpeServer.jar from within the ‘SCRAPE v1.5.1’ folder. The file
can be placed anywhere but if P5 is pre-installed on the machine then it is a good idea
to place it in the processing/lib directory. Open a command line terminal then navigate
to the folder containing ’mpeServer.jar’ and run the following command:

$ java −jar mpeServer.jar −framerate30 −screens5

Be sure to modify the ‘framerate’ and ‘screens’ options as required. In this example
the configuration is for a four walled CAVE using one workstation per CAVE screen
and a master node, therefore five screens have been specified. The option ‘-debug1’
can also be added to debug any issues. Once the command is run a message similar to
the following should appear:

WallServer: framerate = 30, screens = 5, debug = false
Starting server: ubuntu−home/127.0.1.1 9002

IMPORTANT: All machines that intend running at least one instance of SCRAPE
need to be able to communicate to the server node. A good way to test this is by
logging on to each machine and ensuring that they can telnet to the server node’s IP
address on port 9002:

$ telnet 192.168.1.x 9002

6.4.1.4 step 4

Before launching SCRAPE it is necessary to modify the ‘mpe.ini’ configuration file for
each instance. The ‘mpe.ini’ file included with SCRAPE is an extension of the MPE
configuration file and additional SCRAPE configurations as outlined previously in this
chapter. The file is located in the ‘SCRAPE’ folder and looks similar to the following:

//−−− SCRAPE Configurations−−−//
// Specify screen. Options are: front,stern,left,right,top,bottom
wall=front;
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// Set to ’on’ if adding controller
controller=off;

// Controller name
controllerName=Saitek Saitek P2900 Wireless Pad;

// Set to ’on’ if adding arduino and nunchuck controller
nunchuck=off;

// Set to ’on’ to activate stereographics.
activeStereo=off;

//−−−MPE Configurations −−−//
// Client ID (0,1,2,etc.)
id=0;
// Server address (localhost for testing)
server=localhost;

// Server port
port=9002;

// What are the screen window dimensions in pixels?
localScreenSize=1024,768;

// What are the master dimensions?
masterDimensions=1024,768;

6.4.2 Configuration Checklist

Most of the configuration options in the ‘mpe.ini’ file are self explanatory but there are
a few important considerations to be aware of:

• Each instance must have a unique client ID. Start with 0 and work your way up.

• Modify the ‘server’ address option to the appropriate IP.

• The server ‘port’ option can be modified if required.
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• The ‘localScreenSize’ and ‘masterDimensions’ will be the same except for floor
screens and ceiling screens. This is explained in more detail in Section 6.4.3

• Only activate the ‘controller’ or ‘nunchuck’ options on the machine that a con-
troller is connected to.

• If planning to use the ‘activeStereo’ option, ensure it is supported by the asso-
ciated computer’s graphics cards. Currently SCRAPE is only tried and tested to
work with active shutter glasses.

• If running SCRAPE on a command workstation, any ‘wall’ option can be chosen
regardless of whether or not it has also been selected for another machine. It is
only the client ID’s that must remain unique.

• If running SCRAPE on a command workstation it may only be required to dis-
play a small window on-screen. If so, simply specify smaller ‘localScreenSize’
and ‘masterDimensions’ sizes and ensure that P5 isn’t run in ‘Present’ mode.

• For the initial SCRAPE activation it is highly recommended that the ‘controller’,
‘nunchuck’ and ‘activeStereo’ options are set to ‘off’ until the initial launch has
been confirmed successful.

6.4.3 Camera Configurations

SCRAPE has been designed to manage the different cameras required for a CAVE
with little input required from the CAVE operator. The key concern is to ensure that
the ‘localScreenSize’ and ‘masterDimensions’ settings in the ‘mpe.ini’ file are set cor-
rectly. For the most part these settings will be the same, however, in the case of ‘floor’
and ‘top’ screens they are likely to be slightly different. The settings for these screens
should be as follows:

• localScreenSize will be the local screens resolution (which should be in propor-
tion to its physical dimensions)

• masterDimensions will be the same resolution as the horizontal screens (e.g.
front, left, right and back)

So, for example, if the ‘front’ screen has a physical screen size of 4 x 3 metres and
a resolution of 1024 x 768 pixels and a floor screen which is 4 x 4 metres with a
resolution of 1024 x 1024 pixels, then the ‘floor’ screens ‘mpe.ini’ file settings will be
as follows:
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front

• localScreenSize=1024,768;

• masterDimensions=1024,768;

floor

• localScreenSize=1024,1024;

• masterDimensions=1024,768;

These settings will ensure that the ‘floor’ screens field of view calculations are set
correctly in relation to the other horizontal screens and that the images displayed on
all screens are correctly aligned.

6.4.4 Troubleshooting and Additional Information

Additional installation and configuration instructions are fully available on SCRAPE’s
github repository18. This provides a comprehensive wiki and issues list to assist users
in deploying SCRAPE. As a general rule, however, the best approach to setting up
SCRAPE for the first time is to deploy and test on one machine initially with all con-
troller and stereo options deactivated and build from there. It is also recommended that
a basic test sketch is used until all framework functionalities have been fully tested. By
using this approach any issues should be easily identified and by consequence easier
to address.

6.5 Low-End CAVE Implementation

Up to this point, the CASALA CAVE has been used as the primary test platform for
SCRAPE. While this is highly useful, it does not address one of the key objectives of
SCRAPE i.e. the development of an open source CAVE framework that is suitable for
both high-end and low-end CAVE implementations.

The CASALA CAVE is a high-end CAVE implementation and therefore it is not all
that surprising to discover that SCRAPE runs effortlessly across a cluster of quad core
Xeon workstations each with 12GB of RAM and an NVIDIA Quadro graphics card.
In order to ensure that SCRAPE is suitable for low-end CAVE implementations it
was extensively tested on a relatively standard PC (Intel Core 2 Duo + 4GB RAM +

18https://github.com/c-flynn/SCRAPE
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NVIDIA GeForce GTX) to simulate a six screen CAVE. In other words six instances
of SCRAPE running at the same time on the same machine. While this is at the ex-
treme of low-end CAVE implementations it helps to demonstrate the possibilities of
SCRAPE for low-end set-ups. Six copies of the main SCRAPE folder were placed in
six key folders (named: Front, Back, Left, Right, Top, Bottom) within a main folder
named ‘SCRAPE-low-test’. Each sketch instance used a copy of the same basic test
scene and a Nunchuckoo controller was used as the main control device. The mpe.ini
configuration file was modified as necessary for each instance and the MPE service
was then activated for a total of six screens.

$ java −jar mpeServer.jar −framerate30 −screens6

Each sketch instance was then launched, one by one, until all six instances were run-
ning. Figure 6.10 illustrates how the images are displayed in sync across six windows
which represent each CAVE screen.

The test VW ran smoothly across all screens and although the test sketch is basic
and the test windows are small, it helps demonstration of the light-weight nature of
SCRAPE. It also helps support the argument that SCRAPE is suitable for low-end
CAVE environments. A short video of this test is available on the Carl Flynn YouTube
channel19

In order to test SCRAPE further, a more intensive sketch test was implemented on the
same desktop as previously (Intel Core 2 Duo + 4GB RAM + NVIDIA GeForce GTX).
This test used 4 instances of SCRAPE to replicate a more typical CAVE scenario and
involved increasing the number of polygons per sketch until such time that perfor-
mance slowdown became noticeable. In this test it was possible to run with approx-
imately 36,000 polygons per instance (i.e. 144,000 polygons in total) at a frame rate
of 30 frames per second before the on-screen display became noticeably jittery. While
SCRAPE is not expected to compete with the performance of some other dedicated
CAVE frameworks, it does, nonetheless, indicate that SCRAPE has the capacity to
provide sufficient performance even with low specification hardware. See figure 6.11
for an illustration of the performance test in action.

Note: Normally sketches are displayed at different angles to each other in a cube
shaped environment and not on a flat surface. This accounts for the distorted angles
which are apparent on the floor plane between screens in Figure 6.10 and Figure 6.11.
This is not an error but rather an important feature to ensure that SCRAPE functions
correctly within a CAVE.

19https://www.youtube.com/watch?v=eqK2TW1vxf4
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Figure 6.10: SCRAPE running across six screens on standard desktop PC

Figure 6.11: SCRAPE performance test on standard desktop PC
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6.6 SCRAPE Framework Comparisons

In Chapter 5, Table 5.1 was presented in order to facilitate the comparison of key
CAVE frameworks across a range of different attributes. In Table 6.1 the original table
from Chapter 5 is replicated, but this time, it also includes the relevant attributes from
SCRAPE. Using this table it is possible to compare it against other key frameworks
across a range of different measures and in particular in relation to areas of key interest
such as cost and indicators of accessibility.
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6.7 Conclusion

This chapter described the motivation behind the development of SCRAPE, charac-
terised the technologies that underpin it, looked in detail at how the technology func-
tions, provided the necessary resources to set it up, demonstrated its potential to func-
tion on low-end CAVE systems and compared it in relation to other frameworks across
a range of different attributes. All in order to provide the reader with a comprehensive
understanding of exactly what SCRAPE is and how (& where) it works.

In summary, SCRAPE rivals and improves upon the existing ‘state of the art’ in a few
key areas:

• Ease of implementation.

• Accessibility for both professional and novice CAVE developers.

• Flexibility to function in all types of CAVE Environments.

• Fully open source.

• Access to large support resources through use of Java and P5.

• Interaction device integration.

The following chapter expands upon our understanding of SCRAPE by providing
a practical illustration of how SCRAPE is currently employed within the CASALA
CAVE in order to visualise and interact with energy data as part of a local community
energy efficiency project.
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Chapter 7

Real-World Application of SCRAPE

7.1 Introduction

As stated previously, the CASALA CAVE is utilised in support of a range of differ-
ent research projects. One of these projects is called Sustainable Energy Efficiency

Dundalk or SEED for short. This chapter presents an overview of SEED and demon-
strates how SCRAPE is being employed to visualise SEED data and contribute to our
understanding of energy usage across a local community.

7.2 Project SEED

7.2.1 Overview

In 2012, CASALA set up the SEED project to leverage the learnings, networks and re-
lationships from previous local projects and apply them to energy related ventures. In
September of the same year, SEED was awarded a ‘Better Energy Communities’ pilot
project by the Sustainable Energy Authority of Ireland (SEAI)1. The ‘Better Energy’
programme is Ireland’s national upgrade initiative to retrofit building stock and facil-
ities to high standards of energy efficiency, thereby reducing fossil fuel use, running
costs and greenhouse gas emissions. The purpose of these projects is to support and
pilot innovative approaches to achieving high quality and efficient delivery of improve-
ments in energy efficiency within Irish communities (Howley et al., 2012) (KEMA,
2008) (McAuley and Polaski, 2011). For this pilot, SEED (in conjunction with com-
munity partners) was required to fully implement energy saving changes and install

1http://www.seai.ie/Grants/Better Energy Communities
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monitoring equipment in a range of residential and public buildings across the local
community. The pilot was fully implemented by December 2012, providing live en-
ergy data readings from all community participants directly to CASALA’s data acqui-
sition system at DkIT.

7.2.2 Related Work

Energy security has been an important research topic for many years, with reports from
agencies such as the SEAI highlighting increasingly stringent energy related goals. In
order to ensure energy security for the future, it is important to understand how energy
can be generated and used as efficiently as possible. In the book ‘Energy Efficiency:
Towards the End of Demand Growth’ (Kesting and Bliek, 2013), Stephanie Kesting
and Fritz Bliek describe a smart energy pilot project in the Netherlands where dy-
namic real-time pricing is employed to optimize the energy system in a decentralised
way. End users are both producers and consumers of energy in a market system that
allows them to either use energy themselves when needed or sell excess energy to their
neighbours in a system known as a smart grid community. In a key paper on energy
consumption (Darby, 2006), Sarah Darby demonstrates how clear feedback educates
energy users to be more efficient over a long period of time and how direct feedback in
combination with frequent, accurate billing can provide sustained energy reductions.
In the paper ‘Real-Time Recognition and Profiling of Appliances through a Single
Electricity Sensor’ (Ruzzelli et al., 2010), Ruzzelli et al. present a single sensor system
that can recognise multiple electrical appliances in real-time. It demonstrates the huge
potential for easy-to-use, low-cost sensors & systems that can provide important feed-
back on energy usage and help promote energy awareness and generate efficiencies.
Another article on energy efficiency in Sweden (Henryson et al., 2000) also argues
that feedback, while important, does not guarantee efficiencies in of itself and that it
is paramount to continue to educate and inform users about their energy usage as well
as look at their motivations to change. Important research studies such as these are
helping to inform decisions on projects such as SEED and help guide its development
into the future.

7.2.3 Project Details

As part of the ‘Better Energy Communities’ pilot, SEED committed to delivering sig-
nificant energy efficiency upgrade works, increased renewable energy generation and
implementation of an integrated energy data collection platform across a group of ten

80



Figure 7.1: Projected Annual Savings
Source: (Flynn et al., 2013)

homes, a community house, a secondary school as well as a third level college. The
actual locations are as follows:

Residential Community

• Muirhevna Mór, 10 homes in conjunction with Dundalk Town Council and Elec-
tric Ireland

• Croabh Rua, Community House, Muirhevna Mór in conjunction with Youth
Work Ireland

Public Buildings

• O’Fiaich Secondary School in conjunction with Louth VEC and the Department
of Education

• Carrolls Building, DkIT

The specific deliverables defined within the project required an investment of€808,270
by the partners to achieve an overall energy target of 16% in energy efficiency, and de-
liver savings of 1,600,129 kWh and 317,815 kgCO2 per annum (see Figure 7.1). The
payback period has been calculated at 7.25 years, with a positive Net Present Value
(NPV) of €707,704 into perpetuity at a discount of 4%. A result which, if met, rep-
resents excellent value for money for the level and scale of works undertaken. On
project initiation, Building Energy Rating (BER) assessors were appointed to estab-
lish the baseline energy ratings and this was repeated on completion to establish the
reduction in BERs for all project buildings.

In order to confirm if the 16% energy savings target is being met, accurate measure-
ments are crucial to the verification of such savings. This is achieved by monitoring
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energy usage through the use of smart metering2 and the measurable improvement in
BER ratings for the domestic and non-domestic buildings involved in the projects.

The overall benefits are multi-faceted and include empowering the local community
in terms of managing energy efficiency and cost effectiveness; the educational and re-
search & development community in terms of applied research and Living Lab learn-
ings; the local and regional economy in terms of increased access to research & de-
velopment funding (and related job creation) as well as contributing to a model of
leadership for future energy related projects.

7.3 SCRAPE Application of SEED

Having characterized the SEED project, this section explains how SCRAPE is being
used to visualise SEED data in a CAVE.

Before any data is visualised, it must first be processed in order to make the data ac-
cessible and readable to SCRAPE. In its raw form, the large amounts of data collected
as part of SEED (over 300,000 records per day) is impractical to work with directly.
In order to overcome this, the CASALA data acquisition system firstly organises the
relevant data into specific tables and fields within the database that are quick and easy
to access, and only contain the necessary data for visualisations. Of particular inter-
est are the current energy readings and total readings from each particular meter (or
zone) which can be broken down into type such as gas or electricity. Once the data
is processed, SCRAPE is then able to assign data from specific tables and fields to its
relevant on-screen representation, providing viewers with current and historic output
of SEED data in real-time.

In its current implementation, SCRAPE represents specific fields from the SEED data-
base tables as individual coloured cubes within the visualisation (see Figure 7.2). Each
of the relevant database table fields contains information such as the current and total
energy readings of a particular SEED energy meter (or zone) and this is fed back
to SCRAPE. Using this information, SCRAPE then displays the current and historic
readings for a particular meter (or zone) within a cube and uses colour variations to
highlight readings of individual cubes dynamically. The cubes also have the potential
to increase or decrease in size relative to their energy usage which can also be used to
help identify and compare usage levels. Importantly, each cube belongs to an array of
cubes that represent the overall reading for a parent grouping (e.g. electricity readings

2A smart meter is an electronic device that can measure the consumption of energy, record and store
more information than a conventional meter and provide real-time information to the customer on usage
and costs.
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Figure 7.2: SCRAPE visualising SEED data

of classrooms in a school). These arrays can then be visualised in blocks alongside
other groupings for comparison and analysis. Using this system, it is therefore possible
to compare multiple groupings and understand at a glance the energy usage of both
related and unrelated data on different levels. So, for example, it is possible to examine
the electricity usage of an individual home in isolation or in relation to other homes
by analysing different aspects of their visual representations such as size, shape and
colour. This can help identify those homes that may be using energy more efficiently
or inefficiently than others and help understand the different behaviours that lead to
these variations. It can also help to demonstrate how material disparities (e.g. electrical
devices, insulation types, building materials, heating systems etc.) between buildings
impact usage.

This type of analysis can also be applied across different building types by comparing
the energy use of an individual Muirhevna Mór home to, say, that of the O’Fiaich
school or DkIT, which may provide an interesting comparator of energy usage across
entirely different buildings. The levels of immersion provided by SCRAPE within the
CAVE enables users to contrast and compare the large number of SEED data readings
side by side, one on top of the other and layer by layer, providing the viewer with a
unique visualisation of community energy data.

As an educational tool, being able to visualise community energy data using SCRAPE
offers CASALA researchers an opportunity to engage with the students, teachers and
householders of both O’Fiaich, DkIT, Muirhevna Mór and GNH. SCRAPE can help
demonstrate how material changes and behavioural adjustments can make a significant
difference in how energy is consumed in a way that is very different to standard appli-
cation reports or web dashboards. In short, it offers a unique tool to demonstrate the
tangible benefits that SEED is achieving and provide impetus for others to follow.
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Figure 7.3: Community Energy Monitoring System

7.4 Usage Scenarios

The following subsections demonstrate just some of the current and envisaged usage
scenarios that leverage the power of SCRAPE:

7.4.1 Researchers

Up until recently the CASALA research team visualised key energy usage data indica-
tors solely through the use of the Community Energy Monitoring System (CEMS). See
Figure 7.3. CEMS is a web based system that displays important live and historical
energy output and usage readings. This is ideal for viewing energy readings from a
particular building or zone at a specific point in time. So, for example, if researchers
need to know exactly how much electricity the O’Fiaich school is currently using, this
is quickly and easily identifiable through CEMS. What CEMS and similar web based
systems are not so good at doing is visualising data from a wide range of different
datasets across all community buildings (and zones) simultaneously then contextual-
ising them in a manner that is visually coherent. A CAVE on the other hand, is more
than capable of visualising large segments of data and displaying them in a coherent
manner due to its unique characteristics as outlined in previous chapters.

At this early stage of development, CASALA researchers are primarily using SCRAPE
to compare readings across similar groupings to help identify unusual differences be-
tween similar environments as well as to help ensure data integrity. For example,
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using the CAVE it is possible to visualise complex data from over forty different zones
throughout O’Fiaich and easily identify those areas that use energy more intensively
than others at any particular point in time. This based on the shape, colour and size
of their on-screen representations (both current and historic). The visualisations can
also be interacted with through the use of the Nunchuckoo controller, enabling users to
zoom in or highlight specific areas of interest. In conjunction with the O’Fiaich school
it is possible to suggest likely factors for any significant differences in energy usage
and identify how material or behavioural changes might be applied in order to improve
efficiencies further. This can be continually visualised and assessed over time in an
ongoing process of improvement. This applies equally to individual Muirhevna Mór
homes in terms of understanding how ten homes of similar size and insulation levels
vary in their energy usage at different stages of the day, and help identify areas for
further improvement.

Once energy usage is better understood at this level, it can then be interesting to com-
pare usage across entirely different buildings or building types. This can be useful
in helping to identify key energy demand times and how energy usage can be spread
more efficiently across different users. For example, energy usage is more likely to be
lower for O’Fiaich and DkIT in the evening and higher for the Muirhevna Mór homes
as people switch on lights and televisions and prepare their evening meals. Using the
SCRAPE visualisations it is possible to highlight these interactions and point towards
interesting ways in which to use energy across the community, perhaps similar to some
of the smart grid communities seen in the Netherlands.

7.4.2 Stakeholders

Another key scenario for visualising SEED data in a CAVE is promotional. SCRAPE
offers CASALA the ability to promote the work being carried out as part of the SEED
project both to investors (such as SEAI) and the various community stakeholders in
a compelling way. By visualising and navigating complex data in a 3D space using
SCRAPE (as described in Section 7.3), it is easy to demonstrate the work that has been
carried out and the progress that has been made to date. One of the key goals of SEED
is to continue to expand its integration of energy data across the North East region and
a great way to do this is to demonstrate to potentially interested parties the scale and
value of the work carried out so far and the benefits both to themselves (particularly
financially) and to the community at large. The visualisation and interaction scenario is
similar to that used by the CASALA researchers but with a particular focus on visuals
that highlight the economic and environmental benefits that are being made through
both material and behavioural changes.
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7.4.3 Students

A key element to making projects such as SEED a success is not just in material
changes to buildings but also in changing behaviours and mindsets particularly in rela-
tion to younger generations. CASALA regularly provides tours, talks and exhibitions
that involve primary, secondary and third level students on a range of different research
subjects. SCRAPE provides CASALA with an excellent opportunity to educate stu-
dents on the benefits of energy conservation for the future.

A scenario which is currently envisaged is to develop an interactive CAVE demonstra-
tion using SCRAPE based on SEED learnings. This can be used to demonstrate the
difference that they as individuals can make in conserving energy and the impact that
could be made if every student across the region or country made a similar change.
Each student interacts with the sketch using a simple controller device (such as the
Nunchuckoo) which enables them to modify different elements within an energy us-
age simulation. This mixes real data with a test scenario that enables the student to
increase or reduce their energy usage based on a range of different criteria such as
appliances being used, times of use, insulation levels etc., in a simulated household
or building. The simulation then projects back to the student the impact that their in-
dividual changes make and extrapolates this to show how similar changes made by a
multiple of students is likely to impact on a much larger scale. This type of interactive
simulation scenario can prove to be a useful educational tool in bringing about im-
portant behavioural change not only with students but also with parties engaged both
directly and indirectly with SEED.

7.5 Conclusion

SCRAPE has demonstrated its ability to be a useful tool in the visualisation of real-
world data through its implementation as part of the SEED project. By doing so, it
strengthens its ability to be viewed as a realistic alternative to existing frameworks and
brings us one step closer to implementing CAVE environments that are both accessible
and affordable to all.

The following chapter adds additional support to this argument by carrying out a com-
parative user evaluation of SEED data using both SCRAPE and a traditional desktop
based system.
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Chapter 8

A Comparative User Evaluation using
SCRAPE

8.1 Introduction

The previous chapter provided a practical demonstration of how SCRAPE is employed
in a CAVE to visualise and interact with real-world sensor data. This chapter investi-
gates how effectively SCRAPE performs this task in comparison to traditional systems.
In order to answer this question an experiment was devised to compare user perfor-
mance (Lazar et al., 2010) in both a CAVE and a standard desktop based system. The
visualisation scenario chosen for the CAVE is the same as that described in Chapter 7,
Section 7.3 and for the Desktop it is the same CEMS system as highlighted in Chapter
7, Section 7.4.1.

Sixteen volunteers were chosen from DkIT during induction week of the college’s new
academic year and they were provided with a set of identical tasks in both the CAVE
(using SCRAPE) and on a desktop computer (using CEMS). CEMS was chosen as it
is the ‘gold standard’ within CASALA in terms of visualising energy data and has an
established group of users. The CASALA CAVE was chosen for SCRAPE due to its
availability and ability to facilitate a robust experiment in a timely manner. None of the
sixteen volunteers had previous experience of using either a CAVE or of using CEMS.

The volunteers ranged in age from nineteen to forty eight and there was a concerted
effort to avail of as many mature students as possible in order to spread the average
age base. Volunteers were also selected from the widest possible range of courses
from Business Studies to Humanities to Multimedia to Music. It was envisaged that
the experiment would have an equal number of male and female volunteers in order to
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eliminate any gender bias, however, this was not possible from the available pool of
volunteers who were predominately male. Therefore, it should be noted that only 25%
of selected volunteers were female.

The volunteers were broken up into groups of two and each group was provided with
a time slot in which to make themselves available during the day. On arrival, each
group were informed that they would be provided with a set of tasks on two different
systems. They were also informed that the tasks were based on energy usage data that
is collected from the nearby O’Fiaich secondary school. All volunteers were asked if
they had any questions before commencing and were reminded that they were free to
stop participating in the experiment at any stage. Refreshments and snacks were also
provided.

Each volunteer was required to perform a set of tasks using one system then the other.
By organising volunteers in groups of two it was possible to maximise the number of
volunteers that could be assessed during the day. One volunteer started in the CAVE
and the other started with the desktop before switching over to the other system. This
ensured that an equal number of volunteers started with either system first so as to not
skew the overall results due to familiarity with the data on just one system.

Although sixteen volunteers made themselves available for the experiment, one of the
volunteers was unable to properly visualise the data within the CAVE using the active
stereo 3D glasses. Due to this, the recorded results are based on fifteen volunteers and
not the intended sixteen. This non-completion is discussed in the final section of this
chapter.

8.2 Experimental Set-Up

Hypotheses

1. Given the same amount and type of data, SCRAPE provides for easier explo-
ration of the data than a desktop.

2. Given the same amount and type of data, SCRAPE provides for faster informa-
tion retrieval times than a desktop.

3. Given the same amount and type of data, SCRAPE provides an overall higher
level of satisfaction of interaction than a desktop.

4. Given the same amount and type of data, SCRAPE provides for a reduced error
rate on information retrieval tasks than a desktop.
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User Tasks

The user tasks are based on energy data that is retrieved from the O’Fiaich secondary
school in Dundalk Co. Louth. Each volunteer participates in five tasks for both CAVE
and Desktop systems. The prescribed tasks are as follows:

• Training Task: Record the Real Time and Today’s Total energy consumption
readings for ‘Science Room 1’ the ‘Art Room’ and the ‘Boiler House’ of the
O’Fiaich school.

• Task One: Record then add-up the Real Time energy consumption readings for
all the computer rooms in the O’Fiaich school.

• Task Two: Record then add-up the Today’s Total energy consumption for all
lighting readings in the O’Fiaich school.

• Task Three: Find and record the room that has the highest Today’s Total energy
consumption in the O’Fiaich school.

• Task Four: Record then add-up the Today’s Total energy consumption costs
for all ‘ESB’ rooms in the O’Fiaich school.

Measures

1. Task Completion Times. See Appendix C.

2. System Usability Scale (SUS) Questionnaire. See Appendix D.

Method

Each volunteer takes part in a number of identical tasks on both CAVE and Desktop
systems. Half the volunteers start with the Desktop based system (CEMS) before mov-
ing on to the CAVE system (SCRAPE) and vice versa. Upon entering the CAVE or
sitting at the desktop, the volunteer is provided with seven stapled sheets, a pen, a table
upon which to write and any necessary system tools (such as mouse, joypad or 3D
glasses). On the first page is the initial training task which is used to familiarise them
with the system. No timings are recorded for this task and volunteers are informed that
they are not being assessed during the training task. They are also free to ask as many
questions as they wish and are provided with as much assistance as required. Once
the volunteer has completed the training task and is comfortable with how the system
works, they are then asked to complete the four main tasks as described previously.
On completion of each of these tasks the volunteer informs the facilitator and a com-
pletion time is noted. Upon completion of all tasks they are then required to complete
a SUS usability questionnaire and encouraged to provide any feedback on how usable
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Figure 8.1: User interacting with SCRAPE experiment data in the CAVE

(or unusable) they found the system. Once the volunteer has completed this process on
one system they then repeat it on the other.

Error Rate

Incomplete answers are recorded for additional comparative analysis.

Note: Due to the constantly changing nature of the data, volunteers are not assessed
upon the accuracy of the actual energy readings or costs that they provide but rather
on the accuracy of room selections and number of answers provided. For example,
if a specific task expects three answers and only two are provided then this will be
considered a task error. By providing the correct room name as part of the answer, it
is possible to accurately assess a volunteers ability to correctly navigate and retrieve
the required information. For this reason the accuracy of the data itself is not deemed
to be of crucial importance, however, in future experiments it could be included to add
further weight to result findings.

User Satisfaction

At the end of the experiment, each volunteer is asked to provide feedback with regard
to their experience using either system. This information is used to provide additional
qualitative data in support of the SUS questionnaire and the quantitative tasks data.
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Equipment

Desktop
Dell i7 desktop computer
22” high resolution LCD monitor
Two button optical mouse
CEMS web application software on Google Chrome browser

CAVE
Joypad controller
5 Dell Xeon workstations
3 rear projection screen (3 metres x 2 metres) + 1 floor screen
Active shutter stereo 3D glasses
3 IR emitters for stereo glasses synchronisation
SCRAPE application software

Trial Run

A ‘trial run’ using a volunteer without previous CAVE or CEMS experience was insti-
gated a few days before the main experiment. This was used to iron out any potential
issues or difficulties that may not have been anticipated.

8.3 Results

In the case of the CAVE, volunteers used SCRAPE to collate the necessary information
by navigating around groupings of multi-coloured cube shaped objects in a 3D space
that represent data from different sources (e.g. O’Fiaich school, DkIT, GNH or the
Muirhevna homes). On the desktop system, users gathered the required information
by navigating the different sections of CEMS using a Google Chrome browser. Then
at the end of all four tasks for each system, users completed a SUS questionnaire to
provide qualitative data on the user experience.

The following subsections provide the recorded results for the task timings, SUS ques-
tionnaires and error rates respectively. All ‘void’ entries relate to volunteer no. 7 who
was unable to complete the experiment as stated previously.

8.3.1 Task Timings

From the results displayed in Tables 8.1 & 8.2 and Figure 8.2, we can clearly see that
the CAVE provided for faster completion times for each of the individual tasks, with
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the combined totals for all tasks showing a 46% difference between the two systems.
This provides strong support for the original hypotheses that SCRAPE provides for
faster retrieval times and easier exploration of the data than the desktop system.

Desktop Task Timings (Seconds)
Vol No. Sex Task 1 Task 2 Task 3 Task 4 Totals
1 M 137 129 79 129 474
2 M 67 110 140 80 397
3 M 200 170 120 103 593
4 M 93 130 254 143 620
5 F 150 170 170 195 685
6 M 210 125 120 93 548
7 M void void void void void
8 M 110 125 62 80 377
9 M 185 115 135 96 531
10 F 90 85 115 70 360
11 M 90 110 250 210 660
12 M 97 103 195 100 495
13 F 102 91 51 82 326
14 M 188 166 399 90 843
15 M 255 110 255 192 812
16 F 84 79 128 85 376

Average Task Completion Times in Seconds
137 121 165 117 540

Average Task Completion Times in Minutes & Seconds
02:17 02:01 02:45 01:57 09:00

Table 8.1: Desktop Timings Table
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CAVE Task Timings (Seconds)
Vol No. Sex Task 1 Task 2 Task 3 Task 4 Totals
1 M 76 90 20 52 238
2 M 63 120 46 105 334
3 M 93 76 65 121 355
4 M 132 94 55 84 365
5 F 182 112 40 72 406
6 M 138 115 35 108 396
7 M void void void void void
8 M 135 118 30 124 407
9 M 86 76 53 131 346
10 F 115 104 43 90 352
11 M 92 90 75 80 337
12 M 98 102 55 74 329
13 F 83 119 47 98 347
14 M 91 123 54 82 350
15 M 70 81 43 82 276
16 F 95 62 26 44 227

Average Task Completion Times in Seconds
103 99 46 90 338

Average Task Completion Times in Minutes & Seconds
01:43 01:39 00:46 01:30 05:38

Table 8.2: CAVE Timings Table
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Figure 8.2: Task Comparison Chart
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8.3.2 SUS Questionnaire

In 1986 John Brooke developed the SUS questionnaire (Brooke, 1996) as a ‘quick and
dirty’ method for measuring system usability. Since then, it has become an industry
standard and is widely used as a reliable method for assessing system usability.

As well as collating quantitative data in the form of the task timings, the data gathered
by the SUS questionnaires as part of the experiment adds further evidence in support
of using SCRAPE. From the results displayed in Figure 8.3 and Tables 8.3 & 8.4, we
can see that the CAVE obtained a SUS score of 88 and the desktop obtained a score
of 60. These scores support the hypothesis that in this particular evaluation, the CAVE
provides an overall higher level of satisfaction of interaction than the desktop system.
SUS scores are rated on a scale of zero to one hundred. The higher the score, the
more usable a system is considered to be. According to Tom Tullis and Bill Albert in
their book Measuring The User Experience (Tullis and Albert, 2008), any score under
sixty can generally be considered poor, while any score over eighty is considered quite
good. With this in mind, the obtained SUS scores for desktop and CAVE of 60 and 88
respectively, would suggest that both systems are suitable for the task in hand but with
the CAVE system showing itself to be on the upper end of the scale.

Figure 8.3: SUS Score Chart
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8.3.3 Error Rates

Error rates were calculated based on volunteers recording the expected room names
for each task and the correct number of results for each task. Every time a volunteer
incorrectly recorded a result or failed to record a result this was noted and assigned
one point. The accuracy of the recorded result was not considered due to the issues in
accurately verifying the actual result reading at the point when the users noted it.

Even though the difference in recorded error rates is marginal, the results do add further
weight in support of the hypothesis that the CAVE running SCRAPE provides for a re-
duced error rate on information retrieval tasks, with error rates 5% lower in the CAVE
than for the desktop system. Full results can be seen in Figure 8.4 and Tables 8.5 & 8.6.

Figure 8.4: Error Rate Comparison Chart
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Number of Desktop Errors
Vol No. Sex Task 1 Task 2 Task 3 Task 4 Totals
1 M 0 0 0 0 0
2 M 0 0 0 0 0
3 M 1 1 1 0 3
4 M 0 0 0 1 1
5 F 0 0 0 0 0
6 M 0 1 0 1 2
7 M void void void void void
8 M 0 0 0 0 0
9 M 0 0 0 0 0
10 F 0 1 0 1 2
11 M 0 0 1 0 1
12 M 0 1 0 0 1
13 F 0 1 0 0 1
14 M 0 0 0 1 1
15 M 0 0 0 0 0
16 F 0 0 0 0 0

Total Errors 12

Table 8.5: Desktop Errors

Number of CAVE Errors
Vol No. Sex Task 1 Task 2 Task 3 Task 4 Totals
1 M 1 0 0 0 1
2 M 0 0 0 1 1
3 M 0 0 0 0 0
4 M 0 1 0 1 2
5 F 0 0 0 0 0
6 M 0 0 0 0 0
7 M void void void void void
8 M 0 0 0 0 0
9 M 0 0 0 0 0
10 F 0 0 0 1 1
11 M 0 0 1 1 2
12 M 0 0 0 0 0
13 F 0 0 0 0 0
14 M 0 0 0 1 1
15 M 0 0 0 0 0
16 F 0 0 0 1 1

Total Errors 9

Table 8.6: CAVE Errors
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Timing data errors were not removed from the overall timing results as illustrated in
Section 8.3.1. These figures simply record the actual time it took users to complete all
tasks. Tables 8.7 & 8.8, however, provide data on the average completion times with
all timing errors removed. These revised timings result in a 41% difference in result
timings as opposed to a 46% difference in the original unrevised results. This repre-
sents a narrowing of the difference between systems but still demonstrates a significant
performance benefit for the CAVE over the Desktop system.

Desktop Task Timings
Average Completion Time in Seconds 437
Average Completion Time in Minutes 07:17

Table 8.7: Revised Desktop Timings Table

CAVE Task Timings
Average Completion Time in Seconds 289
Average Completion Time in Minutes 04:49

Table 8.8: Revised CAVE Timings Table

8.3.4 Feedback

Upon completing all tasks, volunteers were requested to provide feedback on their
experience. Their views were generally positive towards both systems, however, they
did highlight positive and negative aspects to both. A number of volunteers expressed
issues in particular with the inability to sort data. While this is a valid complaint,
it is currently a limitation on both systems and, therefore, does not particularly add
anything to the comparison debate at this point in time. Of more interest was the
feedback in relation to the resolution of the CAVE screens. Some users found the
data visualisations in the CAVE somewhat hard to read. This could be attributed to
the fact that the current CAVE screens rely on somewhat dated WVGA analog stereo
projectors, however, further study would need to be carried out to confirm if this is the
only factor.

In relation to the desktop system, some volunteers expressed the opinion that it was
slower, more cumbersome and specifically “less fun” to use than the CAVE system.
Overall, most volunteers expressed a preference for the CAVE system, commenting
in particular that it was both easier to use and easier to retrieve the data. While the
feedback provided by the volunteers is subjective, the overall sentiment tends to sup-
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port the quantitative data. Data which errs in favour of the CAVE as providing greater
performance and usability for its users for this particular scenario.

8.3.5 Statistical Validity

A sample size calculation was not carried out as part of the comparative user evalua-
tion. As such, it should be treated as a pilot study rather than a comprehensively valid
statistical assessment. For this pilot study, the 16 volunteers that participated in the
experiment were deemed sufficient in order to explore research questions around the
volunteers’ experience of both CAVE and desktop systems, and to provide sufficient
data for basic comparisons and further investigations.

8.4 Analysis & Findings

Looking at the different result categories, it can be seen how each one supports all
four original hypotheses. The data collected in relation to task timings as well as user
feedback confirms that, for this evaluation, SCRAPE provides for easier exploration
of the data and faster information retrieval times than CEMS. The SUS questionnaire
strongly supports the view that SCRAPE provides for higher levels of satisfaction of
interaction and the recorded task results show slightly lower error percentage rates.

While the overall results of the user evaluation lean favourably towards the CAVE
system, there are some specific caveats which should be noted:

Firstly, in this evaluation, volunteers were encouraged to provide written feedback but
were not strictly requested to do so. While some volunteers did, the number was small
and therefore one could argue that the feedback provided which was typically oral does
not add sufficient weight to the overall hypothesis.

Secondly, the evaluations for SCRAPE were carried out on the CASALA CAVE which
is a high-end CAVE system. Throughout this thesis we have argued the importance of
SCRAPE to work on all types of CAVE systems both high-end and low-end. While
the author does not believe that carrying out the evaluation on an equivalent low-end
CAVE system would drastically alter the results, it is accepted that this could be open
to question.

Thirdly, as mentioned at the beginning of this chapter, for one volunteer the CAVE
proved to be completely unusable. While not the norm, there are a small number of
people for whom the CAVE is not a viable solution. Inability to visualise 3D scenes,
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motion sickness, headaches and loss of balance are just a few potential issues. Sixteen
volunteers is a relatively small sample, it is therefore difficult to accurately estimate
the percentage of users that are likely to experience difficulty using a CAVE. However,
based on these figures (i.e. one in sixteen), it suggests that over 6% of any potential
CAVE users may be unable to use a system like SCRAPE.

Finally, It should be noted that whilst the experimental results are themselves inter-
esting, in that they support the concept of CAVEs for data visualization, they are not
particularly unexpected. More extensive experiments of a similar nature (Arns et al.,
1999, Prabhat et al., 2008, Ye et al., 1999) have provided ample evidence of VEs per-
forming better than their desktop counterparts. It may not, however, be as clear cut
as that. It could be argued that direct comparisons of fundamentally different systems
using traditional assessment methods do not provide accurate results. In Doug Bow-
man’s paper ‘A Survey of Usability Evaluation in Virtual Environments: Classification
and Comparison of Methods’ (Bowman et al., 2002) he argues that VE evaluations
should be assessed differently than traditional GUI systems and that traditional com-
parisons are inaccurate. In addition, the SCRAPE experiment also raises other ques-
tions that require further investigation (e.g. whether the same user evaluation results
are obtained using a low-end CAVE). While both of these considerations are important,
they are considered outside the scope of this thesis which focuses on the development
of SCRAPE. Rather, the experiment is presented in this chapter as a strong indicator of
the practical validation, usefulness and applicability of SCRAPE in a research context.
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Chapter 9

Conclusion

In Chapter 1, three key contributions were identified in relation to the development of
an open source framework for data visualisation in a CAVE. The first was to provide
the reader with a comprehensive documentation of 3D technologies and the key factors
that need to be considered in relation to CAVE environments. In Chapters 2, 3 & 4 this
was provided through the provision of the following:

• A comprehensive overview of the history of VR.

• A discussion of the key elements of immersion (a vital ingredient in any CAVE).

• The key factors to consider in relation to interaction modalities.

• A taxonomy of CAVE interaction devices.

• The proposal of a novel interaction device suitable for a CAVE’s unique charac-
teristics.

The second key contribution was to provide a new open source software framework
to assist in making CAVE platforms more accessible to both amateur and experienced
users alike. Chapter 5 firstly identified and discussed some existing frameworks that
were considered worthy of note in relation to CAVE environments. Chapter 6 then pre-
sented in detail the development of SCRAPE, an open source framework ideally suited
to visualising large datasets in a CAVE. SCRAPE was also set up in the CASALA
CAVE and employed successfully to visualise real-world sensor data from the SEED
project. Full details of this project and its application in the CAVE were then provided
in Chapter 7.

It should be noted that a direct assessment of SCRAPEs ‘ease of use’ in comparison
to other CAVE frameworks was not carried out as part of this work. While this could
be viewed as a basic omission, it is considered that the core tenet of P5 (upon which
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SCRAPE extends itself) which is based on promoting accessibility to all users, offers
sufficient credentials in of itself that a detailed comparison was not requisite. It is,
however, accepted that without a direct scientific comparison this could still be open
to question.

The third key contribution was to prove whether or not a CAVE using SCRAPE can
be more effective in a range of tasks when compared to a traditional desktop system.
The goal was to demonstrate the applicability of SCRAPE in quickly designing and
running user evaluations that are a key aspect of data visualisation research. This was
addressed in Chapter 8 where a user evaluation was carried out which compared the
CAVE (using SCRAPE) with the browser-based desktop system that is typically used
to view information for the SEED project. In this experiment, the CAVE provided for
greater performance across a range of different qualitative and quantitative measure-
ments.

Finally, there was an additional minor contribution relating to the customisation of a
unique interaction device for CAVE interactions. In Chapter 4 an overview of this
work (entitled ‘Nunchuckoo’) as well as set-up instructions were provided. Additional
test code is also included in Appendix A.

9.1 Future Work

The creation of SCRAPE was not the first foray into the development of an open
source framework for CAVE environments but it is the first to offer a development
framework that users of all programming abilities can master. Nonetheless, while it
has already proven its worth in relation to visualising data from SEED, it is far from
perfect. SCRAPE is expected to be redeveloped for compatibility with Processing v2
which has some significant upgrade features from previous versions. It is also envis-
aged that the SCRAPE code will be reorganised so as to provide greater separation
between the framework itself and the sketches that run on it. In other words, currently
there is some overlap between the code that is core to SCRAPE and code that is purely
sketch related. This may cause some confusion to novice users and runs the risk of
important framework based code being inadvertently removed. With this in mind, it is
envisaged that the framework based code will be abstracted from direct view but still
made easily available if required.

Ideally SCRAPE would be set up as a standalone installation that will simplify even
further the set-up and configuration process for end-users. SCRAPE is ideal for visu-
alising data in abstract ways but it is not necessarily the ideal tool for creating highly
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developed built environment style VWs. Whatever form SCRAPE takes in future de-
velopments, it is certain that it will continue to be used in conjunction with projects
such as SEED, and will be further developed to provide ever richer VWs that assist in
data visualisation.

9.2 Final Thoughts

A CAVE in its current format will never be a replacement for traditional methods of
visualising data, even with open source frameworks and reduced infrastructure costs.
It is unlikely that we will see one in every office any time soon, however, for those
that do use a CAVE the opportunities are exciting. As demonstrated at CASALA, a
CAVE can be a useful data visualisation tool across a range of different projects. By
fully understanding the elements that make a CAVE unique and through the continuous
development of improved technologies and reduced costs, the fortunes of the CAVE
can only improve.

As the revival of head mounted 3D displays in the form of the Oculus Rift has demon-
strated, it often takes only small changes in an existing technology to make a big dif-
ference. In 2014 the Oculus rift is paving the way for the video games community but
who is to say that in 2015 it won’t be evolutions in a CAVE that will bring us the next
step forward in terms of interactive 3D technologies. The CAVE has already proven
its worth and value to projects such as SEED and it is this author’s belief that when the
infrastructure costs become low enough and glasses free 3D becomes a reality, then
CAVE technology will be the ultimate experience many of us have been striving for.
The vision of the Star Trek Holodeck may not be all that far away...
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Appendix A

Nuchuckoo Test Code

1 // Access the arduino + nunchuck control data
2 import processing.serial.∗;
3
4 final int LINE FEED = 10;
5 final int BAUD RATE = 19200;
6 float angleX = 0.0f;
7 float angleY = 0.6f;
8
9 Serial arduinoPort;

10
11 void setup(){
12 size(400,300,P3D);
13 try{
14 String[] ports = Serial.list();
15 if(ports.length < 1){
16 println(”WARNING: Your serial list is empty!”);
17 }
18 else{
19 println(”NOTICE: serial list is : ”);
20 println(ports);
21 arduinoPort = new Serial(this, Serial.list()[0], BAUD RATE);
22 arduinoPort.bufferUntil(LINE FEED);
23 }
24 }
25 catch(Exception e){
26 println(e);
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27 println(”WARNING: Check Nunchuckoo connections!”);
28 }
29 }
30
31 // Draw scene
32 void draw(){
33 background(0);
34 lights();
35
36 noStroke();
37 fill(204);
38 translate(200,150,0);
39 rotateY(angleY);
40 rotateX(angleX);
41 box(100);
42 }
43
44 // Arduino + nunchuck actions read and rotation variables modified
45 void serialEvent(Serial port) {
46 final String arduinoData = port.readStringUntil(LINE FEED);
47 if (arduinoData != null) {
48 final int[] data = int(split(trim(arduinoData), ’ ’));
49 if (data.length == 7) {
50 // NOTE: array selections may change
51 if (data[0] < 60) {
52 angleY −= 0.02f;
53 }
54 else if(data[0] > 190) {
55 angleY += 0.02f;
56 }
57 else if(data[1] > 190) {
58 angleX += 0.02f;
59 }
60 else if(data[1] < 60) {
61 angleX −= 0.02f;
62 }
63 else if (data[2] < 400 && data[5] == 1) {
64 angleY −= 0.02f;
65 }
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66 else if(data[2] > 600 && data[5] == 1) {
67 angleY += 0.02f;
68 }
69 else if(data[3] > 600 && data[5] == 1) {
70 angleX += 0.02f;
71 }
72 else if(data[3] < 450 && data[5] == 1) {
73 angleX −= 0.02f;
74 }
75 else if(data[6] == 1){
76 angleX = 0.0f;
77 angleY =0.6f;
78 }
79 }else {
80 println(”WARNING: Data length incorrect!”);
81 }
82 }
83 }
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Appendix B

SCRAPE Code

The following pages step through the SCRAPE code files and include relevant com-
ments.

SCRAPE.pde
Core SCRAPE Class

# List of libraries to be imported:

import processing.opengl.∗;
import mpe.client.∗;
import damkjer.ocd.∗;
import javax.media.opengl.∗;
import stereo.∗;

# Majority of reference variables and assignments required to run SCRAPE:

Stereo stereo = null;
Camera camSelected;
TCPClient client;
boolean start = false;
Properties props;
String wall;
String controller;
String controllerName;
String nunchuck;
String activeStereo;
char wallChar;
float fov;
float fov2;
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float aspRatio;
float nrClip = 0.01f;
float frClip = 2000f;
float rotVar = 0.03f;
float linVar = 2.5f;
float rolVar = (rotVar∗180)/PI;
float angle = 0.0f;
String dir = ””;
float joyMove = 0.0f;
float x;
float y;
float eyeSep = 3.1f;

# Define environment properties within the setup() function:

void setup() {

# Read SCRAPE configurations file (mpe.ini) and assign values to relevant variables:

try {
props = new Properties();
props.load(new FileInputStream(sketchPath(”mpe.ini”)));
wall = props.getProperty(”wall”).replaceAll(”;$”, ””).toLowerCase();
controller = props.getProperty(”controller”).replaceAll(”;$”, ””).toLowerCase();
controllerName = props.getProperty(”controllerName”).replaceAll(”;$”, ””).

toLowerCase();
nunchuck = props.getProperty(”nunchuck”).replaceAll(”;$”, ””).toLowerCase();
activeStereo = props.getProperty(”activeStereo”).replaceAll(”;$”, ””).toLowerCase()

;
}
catch(IOException e) {

println(”unable to read config file...”);
}

# Make a new MPE client using mpe.ini file configs:

client = new TCPClient(sketchPath(”mpe.ini”), this);

# Determine aspect ratio and vertical field of view (fov)8 based on screen size settings
in mpe.ini:

8See paulbourke.net/miscellaneous/lens/ for full explanation
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aspRatio = (float)client.getLWidth()/(float)client.getLHeight();
println(”Aspect ratio is: ” + aspRatio);
fov = 2∗atan(((float)client.getLHeight()/2)/((float)client.getLWidth()/2));
println(”Vertical fov is: ” + fov);

# Use active stereo for MPE client if set in config file:

if(activeStereo.equals(”on”)) {
size(client.getLWidth(), client.getLHeight(), ”stereo.ActiveStereoView”);
stereo = new Stereo(this, eyeSep, fov, nrClip, frClip, Stereo.StereoType.ACTIVE);
println(”Active stereo is set to ’on’”);
}
else {
size(client.getLWidth(), client.getLHeight(), OPENGL);
println(”Active stereo is set to ’off’”);
}

# Create OCD camera based on screen option specified in config file:

if(wall.equals(”left”)) {
camSelected = new Camera(this, 0, 0, client.getLWidth()/2, −1, 0, client.getLWidth

()/2, 0, 1, 0, fov, aspRatio, nrClip, frClip);
}
else if(wall.equals(”front”)) {
camSelected = new Camera(this, 0, 0, client.getLWidth()/2, 0, 0, 0, 0, 1, 0, fov,

aspRatio, nrClip, frClip);
}
else if(wall.equals(”right”)) {
camSelected = new Camera(this, 0, 0, client.getLWidth()/2, 1, 0, client.getLWidth()

/2, 0, 1, 0, fov, aspRatio, nrClip, frClip);
}
else if(wall.equals(”bottom”)) {
camSelected = new Camera(this, 0, 0, client.getLWidth()/2, 0, 1, client.getLWidth()

/2, 0, 0, 1, fov, aspRatio, nrClip, frClip);
}
else if(wall.equals(”top”)) {
camSelected = new Camera(this, 0, 0, client.getLWidth()/2, 0, −1, client.getLWidth

()/2, 0, 0, −1, fov, aspRatio, nrClip, frClip);
}

else if(wall.equals(”stern”)) {
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camSelected = new Camera(this, 0, 0, client.getLWidth()/2, 0, 0, client.getLWidth(),
0, 1, 0, fov, aspRatio, nrClip, frClip);

}
else {
throw new IllegalArgumentException(’\n’ + ”Camera name not correctly specified

” + ’\n’ + ”Use one of the following in mpe config file: left, right, front, back,
top & bottom” + ’\n’);

}
println(”Currently displaying the ” + wall + ” screen”);

# Set screen char variable for use in switch statements:

wallChar = wall.charAt(0);

# Random seed set for MPE. Must be identical for all clients:

randomSeed(1);

# Call nunchuckoo() controller function if activated in config file:

if(nunchuck.equals(”on”)) {
println(”Nunchuck is set to ’on’”);
nunchuckoo();
}
else {
println(”Nunchuck is set to ’off’”);
}

# Call joypad() controller function if activated in config file:

if(controller.equals(”on”)) {
println(”Controller is set to ’on’”);
joypad();
}
else {
println(”Controller is set to ’off’”);
}

# Start the MPE client and close the setup() function:

client.start();
}
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# draw() function required but not used. frameEvent() function ensures synchronised
frame rendering instead:

void draw() {
}
void frameEvent(TCPClient c) {

# Call OCD camera feed() function for selected camera, select scene and close frameEv-
ent() function:

camSelected.feed();
if(activeStereo.equals(”on”)) {
caveSceneStereo();
}
else {
caveScene();
}
}

keyboard.pde
Inner class to assign basic keyboard interactions

# Arrow keypad actions broadcast on key press:

void keyPressed() {
if(key == CODED) {
if(keyCode == LEFT) {
dir = ”LEFT”;
client.broadcast(dir);
}
else if(keyCode == RIGHT) {
dir = ”RIGHT”;
client.broadcast(dir);
}
else if(keyCode == UP) {
dir = ”UP”;
client.broadcast(dir);
}
else if(keyCode == DOWN) {
dir = ”DOWN”;
client.broadcast(dir);
}
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}

# Spacebar keypad action to be broadcast on key press:

else if (key == 32) {
dir = ”RESET”;
client.broadcast(dir);
}
}

joypad.pde
Inner class to access control devices using proCONTROLL

# Import libraries:

import procontroll.∗;
import java.io.∗;

# Create object reference variables:

ControllIO controll;
ControllDevice device;
ControllStick stick;
ControllButton button;

# joypad() function called if specified in config file:

void joypad() {

# Check for installed input devices and their corresponding controls then print results:

controll = ControllIO.getInstance(this);
controll.printDevices();
for(int i = 0; i < controll.getNumberOfDevices(); i++) {
ControllDevice device = controll.getDevice(i);
println(device.getName()+” has:”);
println(” ” + device.getNumberOfSliders() + ” sliders”);
println(” ” + device.getNumberOfButtons() + ” buttons”);
println(” ” + device.getNumberOfSticks() + ” sticks”);
device.printSliders();
device.printButtons();
device.printSticks();
}
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# Select device specified in config file, assign parameters and call joypadAction()
broadcast function if no errors:

try {
device = controll.getDevice(controllerName);
stick = device.getStick(1); //stick no. chosen from list
stick.setTolerance(0.8f);
button = device.getButton(2); //button no. chosen from list
joypadAction();
}
catch(IndexOutOfBoundsException e) {
println(e);
println(”NOTICE: Ensure that your stick, button and slider
settings are correct for your controller. If unsure, check under
<<available proCONTROL devices>> in the log text above” + ’\n’);
}
catch(RuntimeException e) {
println(e);
println(”NOTICE: Ensure that your controller is connected and that
you named it correctly. If unsure, check that the name specified
matches exactly one of the names listed under
<<available proCONTROL devices>> in the log text above” + ’\n’);
}
}

# joypadAction() function checks stick values and button press actions then broadcasts
accordingly:

void joypadAction() {
if(device != null) {
x = stick.getX();
y = stick.getY();
if(joyMove > y) {
dir = ”UP”;
client.broadcast(dir);
}
else if(joyMove < y) {
dir = ”DOWN”;
client.broadcast(dir);
}
else if(joyMove > x) {
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dir = ”LEFT”;
client.broadcast(dir);
}
else if(joyMove < x) {
dir = ”RIGHT”;
client.broadcast(dir);
}
else if(button.pressed()){
dir = ”RESET”;
client.broadcast(dir);
}
}
}

nunchuckoo.pde
Inner class to access Nunchuckoo controller

# Import library, assign line feed, assign baud rate and create object reference variable:

import processing.serial.∗;
final int LINE FEED = 10; // ASCII code 10 denotes a line feed
final int BAUD RATE = 19200;
Serial arduinoPort;

# nunchuckoo() function called if specified in config file:

void nunchuckoo() {

# Check if a serial device is connected. If so, print results, specify port and assign
delay before serialEvent() function is called, otherwise abort:

try{
String[] ports = Serial.list();
if(ports.length < 1) {
println(”NOTICE: uh oh....your serial list is empty. You don’t
appear to have your arduino and nunchuck connected!” + ’\n’);
}
else {
println(”NOTICE: serial list is : ”);
println(ports);
println(”If your nunchuck and arduino are plugged in and not
working, check that you are specifying the correct serial list
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port and that BAUD rates are correct on the computers COM port
and also that there is no RXTX Version mismatch on processing
output window” + ’\n’);
arduinoPort = new Serial(this, Serial.list()[0], BAUD RATE);
arduinoPort.bufferUntil(LINE FEED);
}
}
catch(Exception e) {
println(e);
println(”NOTICE: Could not run nunchuckoo! Ensure that your
nunchuck and arduino are connected correctly” + ’\n’);
}
}

# Arduino + Nunchuck actions read, interpreted and broadcasted if connected and
transmitting data:

void serialEvent(Serial port) {
final String arduinoData = port.readStringUntil(LINE FEED);
if (arduinoData != null) {
final int[] data = int(split(trim(arduinoData), ’ ’));
if (data.length == 7) {
// data[0] is joystick left/right
// data[1] is joystick forward/back
// data[2] is Tilt left/right
// data[3] is Tilt forward/back
// data[4] is not currently used
// data[5] is z button
// data[6] is c button
if (data[0] < 60) {
dir = ”LEFT”;
client.broadcast(dir);
}
else if(data[0] > 190) {
dir = ”RIGHT”;
client.broadcast(dir);
}
else if(data[1] > 190) {
dir = ”UP”;
client.broadcast(dir);
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}
else if(data[1] < 60) {
dir = ”DOWN”;
client.broadcast(dir);
}

# Check accelerometer data thresholds and trigger values, then broadcast action if
conditions met:

else if (data[2] < 400 && data[5] == 1) {
dir = ”LEFT”;
client.broadcast(dir);
}
else if(data[2] > 600 && data[5] == 1) {
dir = ”RIGHT”;
client.broadcast(dir);
}
else if(data[3] > 650 && data[5] == 1) {
dir = ”UP”;
client.broadcast(dir);
}
else if(data[3] < 450 && data[5] == 1) {
dir = ”DOWN”;
client.broadcast(dir);
}
else if(data[6] == 1) {
dir = ”RESET”;
client.broadcast(dir);
}
}
}
}

navigation.pde
Inner class to listen and react to broadcast messages

# Long switch statement to handle different actions depending on OCD camera selec-
tion:

void navActions() {
if (client.messageAvailable()) {
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String[] way = client.getDataMessage();
switch(wallChar) {

# Navigation actions for front screen:

case ’f’:
if (way[0].equals(”LEFT”)) {
camSelected.pan(−(rotVar));
}
else if (way[0].equals(”RIGHT”)) {
camSelected.pan(rotVar);
}
else if (way[0].equals(”UP”)) {
camSelected.dolly(−(linVar));
}
else if (way[0].equals(”DOWN”)) {
camSelected.dolly(linVar);
}
else if (way[0].equals(”RESET”)) {
camSelected.jump(0,0,client.getLWidth()/2);
camSelected.aim(0,0,0);
}
break;

# Navigation actions for rear(stern) screen:

case ’s’:
if (way[0].equals(”LEFT”)) {
camSelected.pan(−(rotVar));
}
else if (way[0].equals(”RIGHT”)) {
camSelected.pan(rotVar);
}
else if (way[0].equals(”UP”)) {
camSelected.dolly(linVar);
}
else if (way[0].equals(”DOWN”)) {
camSelected.dolly(−(linVar));
}
else if (way[0].equals(”RESET”)) {
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camSelected.jump(0,0,client.getLWidth()/2);
camSelected.aim(0,0,client.getLWidth());
}
break;

# Navigation actions for left screen:

case ’l’:
if (way[0].equals(”LEFT”)) {
camSelected.pan(−(rotVar));
}
else if (way[0].equals(”RIGHT”)) {
camSelected.pan(rotVar);
}
else if (way[0].equals(”UP”)) {
camSelected.truck(linVar);
}
else if (way[0].equals(”DOWN”)) {
camSelected.truck(−(linVar));
}
else if (way[0].equals(”RESET”)) {
camSelected.jump(0,0,client.getLWidth()/2);
camSelected.aim(−1,0,client.getLWidth()/2);
}
break;

# Navigation actions for right screen:

case ’r’:
if (way[0].equals(”LEFT”)) {
camSelected.pan(−(rotVar));
}
else if (way[0].equals(”RIGHT”)) {
camSelected.pan(rotVar);
}
else if (way[0].equals(”UP”)) {
camSelected.truck(−(linVar));
}
else if (way[0].equals(”DOWN”)) {
camSelected.truck(linVar);
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}
else if (way[0].equals(”RESET”)) {
camSelected.jump(0,0,client.getLWidth()/2);
camSelected.aim(1,0,client.getLWidth()/2);
}
break;

# Navigation actions for top screen:

case ’t’:
if (way[0].equals(”LEFT”)) {
camSelected.roll(radians(rolVar));
}
else if (way[0].equals(”RIGHT”)) {
camSelected.roll(−(radians(rolVar)));
}
else if (way[0].equals(”UP”)) {
camSelected.boom(linVar);
}
else if (way[0].equals(”DOWN”)) {
camSelected.boom(−(linVar));
}
else if (way[0].equals(”RESET”)) {
camSelected = new Camera(this, 0, 0, client.getLWidth()/2, 0, −1, client.

getLWidth()/2, 0, 0, −1, fov2, 1, nrClip, frClip);
}
break;

# Navigation actions for bottom screen:

case ’b’:
if (way[0].equals(”LEFT”)) {
camSelected.roll(−(radians(rolVar)));
}
else if (way[0].equals(”RIGHT”)) {
camSelected.roll(radians(rolVar));
}
else if (way[0].equals(”UP”)) {
camSelected.boom(−(linVar));
}
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else if (way[0].equals(”DOWN”)) {
camSelected.boom(linVar);
}
else if (way[0].equals(”RESET”)) {
camSelected = new Camera(this, 0, 0, client.getLWidth()/2, 0, 1, client.

getLWidth()/2, 0, 0, 1, fov2, 1, nrClip, frClip);
}
break;
}
}
}

scene.pde
Inner class that lays out basic non stereographic scene

# caveScene() function called in FrameEvent() function loop if stereo set to ‘off’ in
config file:

void caveScene() {

# Clear the screen and assign basic scene parameters:

background(0);
lights();
noStroke();
fill(150);

# Position, colour, draw and rotate plane, box and sphere objects:

translate(0,200,0);
box(800,0,1000);
translate(0,−100,0);
fill(204);
rotateY(angle);
box(80);
translate(400,−150,0);
stroke(153);
sphere(200);

# Assign rotation speed:

angle += 0.02f;
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# Call navigation and joypad functions then close caveScene() function:

navActions();
joypadAction();
}

stereoScene.pde
Inner class that lays out basic stereographic scene

# caveScene() function called in FrameEvent() function loop if stereo set to ‘on’ in
config file:

void caveScene() {

# Clear the screen:

background(0);
lights();

# Apply OpenGL stereo assignments based on camera selection and call render() func-
tion for each eye. pushMatrix() and popMatrix() functions are used to save and restore
the coordinate system and ensure the image remains in sync for both eyes. OpenGL
uses a different cartesian co-ordinate system from P5 and therefore different axis con-
figurations are required:

ActiveStereoView pgl = (ActiveStereoView) g;
GL gl = pgl.beginGL(); {
if(wall.equals(”bottom”) || wall.equals(”top”)) {
stereo.start(gl,

0f, 0f, 0f,
0f, 0f, 1f,
0f, −1f, 0f);

}
else {
stereo.start(gl,

0f, 0f, 0f,
0f, 0f, −1f,
0f, 1f, 0f);

}
stereo.right(gl); // right eye rendering
pushMatrix();
render(gl);
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stereo.left(gl); // left eye rendering
popMatrix();
render(gl);
stereo.end(gl);
}
pgl.endGL();
}

# Render scene for individual eye:

void render(GL gl) {

# Push transformation matrix on to the matrix stack then use scale() function to mirror
image. This compensates for change in cartesian co-ordinates:

pushMatrix();
if(wall.equals(”bottom”) || wall.equals(”top”)){
scale(1,−1,1);
}
else {
scale(1,−1,1);
}

# Position, colour, draw and rotate plane, box and sphere objects:

noStroke();
fill(150);
translate(0,200,0);
box(800,0,1000);
translate(0,−100,0);
fill(204);
rotateY(angle);
box(80);
translate(400,−150,0);
stroke(153);
sphere(200);

# Assign rotation speed:

angle += 0.01f;
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# Pop transfomation matrix off stack, call navigation and joypad action functions then
close caveScene() function:

popMatrix();
navActions();
joypadAction();
}

NOTE: The following code listings represent additional functionality to the core SCR-
APE system and provide for the integration of live database interactions. Certain mod-
ifications will be needed in order to customise for new implementations e.g. database
connection details, new SQL queries and new variable assignments. The basic struc-
ture however should not require any major modification. Also a call to the initialisa-
tion() function will need to be added to the setup() function of the core SCRAPE class
in order to initialise the database classes.

DBconnect.pde
Inner class that provides Database Access.

# Library imports and variable assignments:

import de.bezier.data.sql.∗;
MySQL msql;

String IP = ”192.168.x.x”;
String user = ”username”;
String pass = ”password”;
String database = ”some DB”;

int[] identAry;
String[] localeAry;
String[] descAry;
float[] liveAry;
float[] totalAry;
double[] threshAry;

# Initial DB connection function:

void DBInitial(){

# Assign variables:

int i = 0;
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msql = new MySQL(this,IP,database,user,pass);

# Connect to database, count rows and set counter:

if(msql.connect()){
msql.query(”SELECT COUNT(∗) FROM some table”);
msql.next();
i = msql.getInt(1);
println(”Count result is ”+i);

# Set required array lengths:

identAry = new int[i];
localeAry = new String[i];
descAry = new String[i];
liveAry = new float[i];
totalAry = new float[i];
threshAry = new double[i];

# Close DB connection:

msql.close();
}else {
println (”Initial DB Connection Failed!”);
}

}

# Function to query database:

void DBReadings(){

# Variable assignments:

int i = 0;
int identifier;
String location;
String description;
float live reading;
float daily total;
double daily threshold;

# Connect to database, query and assign values to arrays:

133



if(msql.connect()){
msql.query(”SELECT id, location, ‘desc‘, format(some field,2),format(

some field,2), format(some field,2) FROM some table”);
while(msql.next()){

identifier = msql.getInt(”id”);
location = msql.getString(”location”);
description = msql.getString(”desc”);
live reading = msql.getFloat(”format(some field,2)”);
daily total = msql.getFloat(”format(some field,2)”);
daily threshold = msql.getDouble(”format(some field,2)”);
identAry[i] = identifier;
localeAry[i] = location;
descAry[i] = description;
liveAry[i] = live reading;
totalAry[i] = daily total;
threshAry[i] = daily threshold;
i++;
}

# Close DB connection:

msql.close();
}else {

println (”Loop DB Connection Failed!”);
}

}

DBthread.pde
Inner class that creates new thread to facilitate database calls without interruption to
main sketch

# Initialise thread

class DBthread extends Thread {
boolean running = false;

void start() {
running = true;
println(”Starting DB thread. Waiting for all clients to connect”);
super.start();
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}

# If all clients have connected and are still running then query database, reset timer and
wait for specified time before running again:

void run () {
while (running) {

if(allClientsConnected == true){
DBReadings();

timer = 30000;
println(”DB accessed! Next access in ”+timer/1000+” seconds”);

try {
sleep((long)(timer+2000));
} catch (Exception e) {println(”Sleep thread exception ”+e);}
}
}
println(”End of thread!”);
}

# Function to call in order to quit thread:

void quit() {
System.out.println(”Quitting thread!”);
running = false;
interrupt();
}
}

initialisation.pde
Inner class used to assign key variables and load images outside of main SCRAPE class
as well as initialise the database thread and make start-up calls to database functions.
Modifications will need to be made for custom environments e.g. image references
and timer settings.

# Reference variables and assignments:

DBthread sThread;

PImage bg;
PImage P5;
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PImage SEED;
PImage GNH;
PImage MUR;
PImage OFI;

int timer = 30000;
int savedTime = millis();
int totalTime = 1000;

boolean endOfGroup = false;
double efficiencyNum;
float decimalMinutes;

boolean allClientsConnected = false;

# Load images, set texture modes and assign colour options:

void initialisation(){
bg = loadImage(”starfield.png”);
P5 = loadImage(”p5−logo.png”);
SEED = loadImage(”seed−logo.png”);
GNH = loadImage(”gnh.png”);
MUR = loadImage(”muirhevna.png”);
OFI = loadImage(”ofiaich.png”);

textureMode(NORMAL);
colorMode(HSB,360,100,100,100);

color colBlue = color(204, 102, 0);
color colGreen = color(204, 102, 0);
color colOrange = color(204, 102, 0);
color colRed = color(204, 102, 0);
color colGrey = color(204, 102, 0);

# Connect to database:

DBInitial();
DBReadings();
println(”ID Array is:\n”+Arrays.toString(identAry)+”\n”);
println(”Location is:\n”+Arrays.toString(localeAry)+”\n”);
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println(”Live Reading Array is:\n”+Arrays.toString(liveAry)+”\n”);
println(”Total Reading Array is:\n”+Arrays.toString(totalAry)+”\n”);
println(”Daily Threshold Array is:\n”+Arrays.toString(threshAry)+”\n”);
println(”hour is ”+hour()+”:”+minute());

# start DB thread:

sThread = new DBthread();
sThread.start();
}
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Appendix C

Evaluation Questionnaires

The following pages list the 5 question sheets that volunteers were required to complete
for both CAVE and desktop system evaluations.
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TRAINING TASK

Volunteer Number:

Record the Real time and Today’s total energy consumption
readings for the following rooms in the OFiach school:

SDB4 Science 1

Real time: kW/h

Todays total: kW/h

SDB2 Art Room

Real time: kW/h

Todays total: kW/h

SDB1 Bolier House

Real time: kW/h

Todays total: kW/h
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TASK 1

Volunteer Number:

Record and then add-up the Real time energy consumption readings for
all Computer rooms in the OFiach school:

Note: There may be less rooms than spaces provided below.

Room name: Reading: kW/h

Room name: Reading: kW/h

Room name: Reading: kW/h

Room name: Reading: kW/h

Room name: Reading: kW/h

Room name: Reading: kW/h

Room name: Reading: kW/h

Room name: Reading: kW/h

Total: kW/h
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TASK 2

Volunteer Number:

Record and then add-up Todays total energy consumption for all
Lighting readings in the OFiach school:

Note: There may be less rooms than spaces provided below.

Room name: Reading: kW/h

Room name: Reading: kW/h

Room name: Reading: kW/h

Room name: Reading: kW/h

Room name: Reading: kW/h

Room name: Reading: kW/h

Room name: Reading: kW/h

Room name: Reading: kW/h

Total: kW/h
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TASK 3

Volunteer Number:

Find the room that has the highest Todays total energy consumption
reading in the OFiach school:

Room name: Reading: kW/h
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TASK 4

Volunteer Number:

Record and then add-up Todays total energy consumption costs for
all ESB rooms in the OFiach school:

Note: There may be less rooms than spaces provided below.

Room name: Cost: €

Room name: Cost: €

Room name: Cost: €

Room name: Cost: €

Room name: Cost: €

Room name: Cost: €

Room name: Cost: €

Room name: Cost: €

Total: €
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Appendix D

System Usability Scale

Industry standard ten point questionnaire for subjective assessments of system usabil-
ity.

1. I think that I would like to use this system frequently

Strongly Disagree Strongly Agree

1 2 3 4 5

2. I found the system unnecessarily complex

Strongly Disagree Strongly Agree

1 2 3 4 5

3. I thought the system was easy-to-use

Strongly Disagree Strongly Agree

1 2 3 4 5

4. I think that I would need the support of a technical person to be able to use
this system

Strongly Disagree Strongly Agree

1 2 3 4 5
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5. I found the various functions in this system were well integrated

Strongly Disagree Strongly Agree

1 2 3 4 5

6. I thought there was too much inconsistency in this system

Strongly Disagree Strongly Agree

1 2 3 4 5

7. I would imagine that most people would learn to use this system very quickly

Strongly Disagree Strongly Agree

1 2 3 4 5

8. I found the system very cumbersome to use

Strongly Disagree Strongly Agree

1 2 3 4 5

9. I felt very confident using the system

Strongly Disagree Strongly Agree

1 2 3 4 5

10. I needed to learn a lot of things before I could get going with this system

Strongly Disagree Strongly Agree

1 2 3 4 5
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