
A Robust Client-Driven Distributed Service
Localisation Architecture

Luke Collins, Ming-Xue Wang, Lei Xu and Claus Pahl
School of Computing

Dublin City University
Dublin 9, Ireland

Email: luke.collins4@mail.dcu.ie, mwang@computing.dcu.ie, lxu@computing.dcu.ie, claus.pahl@dcu.ie

Abstract—The fundamental purpose of service-oriented com-
puting is the ability to quickly provide software resources to
global users. The main aim of service localisation is to provide
a method for facilitating the internationalisation and localisation
of software services by allowing them to be adapted to different
locales. We address lingual localisation by providing a service
interface translation using the latest web services technology to
adapt services to different languages and currency conversion
as an example of regulatory localisation by using real-time data
provided by the European Central Bank. Units and Regulatory
Localisations are performed by a conversion mapping, which
we have generated for a subset of locales. The aim is to
investigate a standardised view on the localisation of services by
using runtime and middleware services to deploy a localisation
implementation. We apply traditional software localisation ideas
to service interfaces. Our contribution is a localisation platform
consisting of a conceptual model classifying localisation concerns
and the definition of a number of specific platform services. The
architecture in which this localisation technique is client-centric in
a way that it allows the localisation to be controlled and managed
by the client, ultimately providing more personalisation and trust.
It also addresses robustness concerns by enabling a fault-tolerant
architecture for third-party service localisation in a distributed
setting.

Keywords - Service Localisation; Service-oriented Computing;
Service-oriented Architecture.

I. INTRODUCTION

Distributed web services can provide business and private
consumers with computing abilities which may not be fea-
sible for them to develop in-house. These web services are
currently in high demand in the context of cloud computing
[3], [21]. However, the area of services computing introduces
new issues, for example, in areas like Europe, where there
is a wide range of languages spoken, services are very often
only developed for single language and are only supported
for that single language.Equally, adapting services to different
regulatory environments with different legal systems, taxation
and units in place is equally challenging. Often it is the
case that companies do not have the resources or capability
to develop multilingual products. Localisation encapsulates a
large number of issues which need to be addressed in this
context. These include, but are not limited to:

• Language Translation - conversion of services based
on language. e.g., English→ French.

• Regulatory Compliance Constraints - conversion of
services based on information such as taxation and
other regulatory constraints.

• Currency Conversion - conversion of services based
on currency, e.g., Euro→ Dollar.

• Units Conversion - based on standard units measure-
ments, e.g., Metric→ Imperial.

Further concerns such as standardised vocabularies and con-
ventions could be added.

Localisation is typically performed on textual content (i.e.,
strings) and refers to either languages only or physical location.
However, the purpose of this work is to develop a method
of localising services by implementing a ’mediator’ type
service which interacts between the Application Programming
Interfaces (APIs) of the service provider and the requester.
This mediator largely automates the service interface locali-
sation process. We are going to focus on a number of locale
dimensions such as language, taxation, currency and units. An
example of a request which requires localisation can be seen
in Figure 1, which illustrates an example of a financial service
provided to a range of locales (locations or regions requiring
equal conversions).

Fig. 1: Overview of Requests Requiring Localisation

We aim to provide service-level language translation tech-
niques to localise services (including API interfaces) to differ-
ent languages as part of a lingual translation idea. Regulatory
translation which includes currency, units and taxation among
other legal governance and compliance rules will be provided
by standards-based mappings. Regulatory translation is impor-
tant for applications to comply with varying regional laws and
regulations.

The objectives of service localisation include primarily
the introduction of service-centric localisation techniques. A
specific need is to make localisation techniques available
at runtime for dynamic localisation, which is required for
currencies and other variable aspects. A localisation mediator
takes care of this task. Thus, Service Localisation (SL) pro-
vides a mechanism for converting and adapting various digital
resources and services to the locale of the requester. A greater
end-to-end personalisation of service offerings is an aim.
A Localisation Provider act as an intermediary between the
service provider and the requester. In our proposed platform,
this is supported by a mediation service. We will provide a
novel architecture where in addition to the new concept of
service interface localisation, this can even be controlled by
the user at the client-side.

By generating a common platform solution for these locali-
sation issues, we allow the ability to dynamically localise Web
services to be made with little effort. Our key contributions are:

• Software Localisation at Service Level - the main
concern is a standardised mapping within a potentially
heterogeneous environment.

• Adaptation and Integration - the main concern is
the maintenance of service quality after it has been
localised through adaptation.

• Client-side Control - the main concern is a robust,
fault-tolerant coordination solution that allows locali-
sation to be managed client-side.

The novelty of the proposed solution lies in filling a
gap between service adaptation techniques (largely ignoring
the regulatory and lingual aspects) and existing service in-
ternationalisation, which looks into localisation concerns, but
only to a basic extent covering data formats and unit and
currency conversions. An important aspect of this investigation
is a robust coordination platform that not only allows service
consumers to define and manage the localisation behaviour,
this platform also needs to be able to address the challenges of
services provided across a distributed setting with failure and
non-applicability of localisation policies as a consequence. We
aim to show through a concrete example an appropriate use of
service localisation. The example also attempts to illustrate
various benefits and use cases. We also discuss motivating
factors behind using a localisation technique.

In the next section, we discuss the motivation behind devel-
oping a Service Localisation implementation. Section 3 defines
a platform architecture for Service Localisation. In Section 4,
we introduce aspect-specific localisation techniques which we
investigated and implemented. In Section 5, we investigate the
coordination solution for the client-side management of the
localisation settings. Section 6 introduces the implementation
and evaluates our solution to the Service Localisation problem.
Section 7 contains the related work discussion. In Section
8, future directions and possible extended infrastructures are
explored.

II. MOTIVATION

Our main focus is a platform for service localisation, which
makes a shift from the typical ”one size fits all” scenario
towards a more end-to-end personalised service scenario.

Currently, services computing suffers from localisation and
adaptability issues for multiple users in different regions. These
issues could be overcome if a multi-lingual and multi-regional
solution was developed [17], [24].

A. Motivating Scenarios

The different localisation issues of a service can be illus-
trated. The scenarios described below are used to illustrate
benefits to service localisation:

• End-User Services: Some software-as-a-Service
providers only support one region with one specific
language. There is a possibility to perform localisation
both statically (compile-time) and dynamically (run-
time), which typically involves localising service
values and interacting messages.

• Business Services: Various business centric applica-
tions including applications for documentation and
analysis could be localised to support various legal and
regional locales. Business services typically require
more customisation than end-user consumers.

• Public Sector Services: As governments outsource
their computing infrastructure to external providers,
it is becoming more important for the providers to
supply solutions which take into account various
regulatory governance aspects such as currency and
taxation and also lingual localisation.

Another scenario which provides a detailed view of the
benefits of service localisation could be a service provider,
used to manage company accounts for its customers. This
could be a company which has offices in different global
locations and would like to provide localisation based on
customer region and localisation for its individual offices.

• Regulatory: Conversion of data between standards
and their variants, e.g., based on different units of
measurement Metric→ Imperial.

• Currency: Conversion of between currencies, e.g.,
Euro→ Dollar.

• Lingual: Translation of service related data between
languages. This could include free text, but also
specific vocabularies based on business product and
process standards such as GS1 or EANCOM.

• Taxation: Different customers have different taxation
requirements, e.g., VAT rates. Localisation of accounts
software can take this into account for each locale.

B. Use Cases and Requirements

In order to demonstrate the need for localisation of Web
services, we chose to demonstrate the issue using a concrete
case of an environment which utilises service-level access to
a stock exchange interface. Imagine an Irish user who wishes
to access data from the New York Stock Exchange, which is
provided in an English format with the currency in dollars. A
user in France may also wish to access data from the New
York Stock Exchange using a French interface where local
regulations require French to be used for data and/or service
operations. Therefore, there must be a mechanism to convert

the currency to Euro or to another currency which the requester
specifies. There must also be a mechanism to convert the
language to that of the requester.

At application level, two sample calls of a stock exchange
data retrieval service for the two different locales (IE-locale
with English as the language and EUR as the currency and FR-
locale with French as the language and EUR as the currency)
retrieve the average stock price for a particular sector - in this
case the financial sector as follows:

• Retrieve(20/08/2012, F inancial)→ 30.50 EUR

• Récupérer(20.08.2012, F inancier)→ 30, 50 EUR

In the US-locale with English as the language and USD as the
currency, the same API call could be the following:

• Retrieve(08/20/2012, F inancial)→ 38.20 USD

The following elements in this case are localisable:

• Date: in order to preserve regulatory governance, the
date format requires to be changed depending on the
requester locale.

• Language: names of functions from the API are trans-
lated between languages.

• Currency: values are converted as normal and this
would apply to any other units.

This list can vary depending on the environment where dif-
ferent regulatory constraints might apply. In general, it can
be expected that there is always a linguistic element to the
localisation of any product, but elements may also include
taxation and units of measurement. If it was the case that the
requesters were trying to access weather forecasts for their
own region and formatted in their own locale, then it would
be necessary to utilise a conversion for units of measurement:

• Prévision(20.08.2012)→ 30◦Celsius

• Forecast(20/08/2012)→ 15◦Celsius

In the US-locale with English and imperial units, the same API
call could be Forecast(08/20/2012)→ 87◦Fahrenheit.

III. LOCALISATION FRAMEWORK

Localisation of service interfaces requires a framework
to be implemented to facilitate various localisation meth-
ods. These various methods, implemented as services in our
proposed localisation architecture, are used to facilitate the
localisation of localisable elements or artefacts. This paper
focuses on the dynamic localisation of service-level interface
descriptions.

A. Information Architecture

With every service there are various elements which may
be localised. These elements include:

• Service specifications/descriptions (APIs)

• Models (structural/behavioural)

• Documentation (for human consumption)

Fig. 2: Conceptual Architecture of the Localisation Platform.

• Messages exchanged between services

Services are normally written to be independent of locales,
however localisation is often needed to further personalised
or adapt a service to specific contexts. A localisation platform
should be based on attributes which vary from locale to locale,
like time or date format. Language is also an attribute which
can be localised.

A service localisation platform requires a number of ele-
ments. These elements can be pre-translated fragments in static
form or can be dynamic translation systems. Figure 2 aims
to demonstrate the concept of a policy and mappings based
system architecture, which can be scaled when additional
processes are attached to the mediation process. In the platform
architecture, user-specific locale policies are applied to service
endpoints. For example, in a WSDL file we may localise mes-
sages and operation names. Rules for each type of translation
would be stored in a rules database (General Rules Repository).
Similarly, mappings between common translations would be
stored in a mappings database (Translation Memory). Note,
that we will discuss the distribution and management of
services between client and provider in Section V.

B. Systems Architecture

A mediator operates between users (with different locales)
and several service providers (with different locales) by provid-
ing core localisation services, such as currency conversion and
language translation. The architecture supports the following:

• Static Mappings: these could be the mapping of one
language to another or one unit to another, pre-
translated in translation memories.

• Dynamic Localisation: when translation mappings are
not stored, dynamic localisation is required in order
to obtain a correct translation and store the mapping.

• Policy Configuration: in order to configure the various
locale policies, we must generate particular translation
rules, supported by a logical reasoning component.

• Negotiation: this is the exchange of locale policies
through the form of XML and SOAP from a web
services point of view.

• Localisation of Services: the mappings between the
remote service and the localised service description

must be stored in a mappings database (Translation
Memory) so the localised service has a direct rela-
tionship with the remote service.

The workflow of the mediator process is concequently
Negotiation → PolicyConfiguration → Localisation →
Execution.

Some examples shall illustrate the functionality of the
platform. Table I defines two different locales in the format
of XML profiles. A mismatch between the requester locale
and the provider locale needs to be bridged by the mediator
localisation service. The language as a lingual aspect and
country, currency and unit codes are regulatory concerns.

TABLE I: Sample Environment Setup

<SLContext>
<Loca le s>

<R e q u e s t e r L o c a l e>
<LanguageCode>e f r </LanguageCode>
<CountryCode>FR</CountryCode>
<CurrencyCode>EUR</CurrencyCode>
<UnitCode>M</UnitCode>

</ R e q u e s t e r L o c a l e>

<P r o v i d e r L o c a l e>
<LanguageCode>en</LanguageCode>
<CountryCode>IE</CountryCode>
<CurrencyCode>EUR</CurrencyCode>
<UnitCode>M</UnitCode>

</ P r o v i d e r L o c a l e>

</ Loca le s>
</SLContext>

The locale definitions decide how a given service API (in
the Web service description language WSDL) is localised.
Results from a sample execution of the localisation service
(the mediator) is displayed in Tables II and III based on the
XML locale definitions of the environment in Table I. Table II
shows excerpts from an original WSDL file. Table III shows
the localised WSDL after the application of lingual localisation
in this case (translation from English (IE locale) into French
(FR locale) – for simplicity of the example, we have focused
on this single aspect only), compliant with the two locale
definitions from the first listing.

TABLE II: Sample Input - Provider Locale

<wsdl : message name=” quo teResponse”>
<wsdl : p a r t name=” p a r a m e t e r s ”

e l e m e n t =” quo t eResponse ”/>
</wsdl : message>
<wsdl : message name=” q u o t e R e q u e s t”>
<wsdl : p a r t name=” p a r a m e t e r s ”

e l e m e n t =” q u o t e ”/>
</wsdl : message>
<wsdl : p o r t T y p e name=” Quote”>
<wsdl : o p e r a t i o n name=” g e t Q u o t e”>
<wsdl : i n p u t name=” q u o t e R e q u e s t ”

message =” q u o t e R e q u e s t ”/>
<wsdl : o u t p u t name=” quo teResponse ”

message =” quo t eResponse ”/>
</wsdl : o p e r a t i o n>

</wsdl : por tType>

IV. LOCALISATION RULES AND SERVICES

We have outlined the core platform architecture in the
previous section with the central services. In order to provide

TABLE III: Sample Output - Localised WSDL

<wsdl : message name=” quo teReponse”>
<wsdl : p a r t name=” p a r a m e t e r s ”

e l e m e n t =” quo teReponse ”/>
</wsdl : message>
<wsdl : message name=” c i t e rDemande”>
<wsdl : p a r t name=” p a r a m e t e r s ”

e l e m e n t =” c i t e r ”/>
</wsdl : message>
<wsdl : p o r t T y p e name=” C i t e r ”>
<wsdl : o p e r a t i o n name=” g e t C i t e r ”>
<wsdl : i n p u t name=” c i t e rDemande ”

message =” c i t e r R e q u e s t ”/>
<wsdl : o u t p u t name=” c i t e rDemande ”

message =” c i t e rDemande ”/>
</wsdl : o p e r a t i o n>

</wsdl : por tType>

the localisation platform services, we need to realise a number
of localisation services to enable a modular service localisation
platform. Their interaction is summarised in Figure 3. Details
of underlying concepts of their operation are explained now.
We will discuss the topology, i.e. where the individual services
are provides and who manages them, behind this interaction
specification in the following Section V.

A. Rule-based Locale Definition and Conversion

At the core of our service localisation platform is a
language to specify the localisation policy rules in relation to
localisations. In most cases, languages like WSDL and other
XML languages provide information regarding the services
that are provided via an API. However, in order to encapsulate
localisation information, there is a necessity to provide a
language which will contain details in relation to the locales
of the requester and the provider. For the purpose of our
localisation platform, we use a policy language based on the
Semantic Web Rule Language SWRL, which is based on the
propositional calculus.

Fig. 3: A UML Sequence Diagram of the Platform.

A localisation layer encapsulates the various forms of
translations. It describes the relationships between localis-
able elements. For example, it contains the details of items
which can be translated. For our localisation model these are

documentation and descriptions, but also API messages and
operations. The rule language is used to define localisation
policies of two types: firstly, locale definitions and, secondly,
conversion (translation) rules. We motivate the rule set through
examples.

Firstly, there are a number of locale definition rules
provided, like Loc or hasCur, by which locales for specific
regions are described. A locale can also be described by other
rules such as hasTax, hasLang and hasUnit. Examples of
three region’s locales - IE, US, and FR - are:

IELoc(?l)← Loc(?l) ∧
hasLang(?l, ?z) ∧ hasCur(?l, ?c) ∧ hasUnit(?l, ?u) ∧
?z = en∧ ?c = EUR∧ ?u = metric

USLoc(?l)← Loc(?l) ∧
hasLang(?l, ?z) ∧ hasCur(?l, ?c) ∧ hasUnit(?l, ?u) ∧
?z = en∧ ?c = USD∧ ?u = imperial

FRLoc(?l)← Loc(?l) ∧
hasLang(?l, ?z) ∧ hasCur(?l, ?c) ∧ hasUnit(?l, ?u) ∧
:?z = fr∧ ?c = EUR∧ ?u = metric

The benefit of a formal framework for the rules is that
other rules can be inferred by from partial information. For
example, if we knew that a locale had USD as its currency
we may be able to infer its country from it:

?c = USD →?l = USLocale.

These inferred rules do not apply in general - this may not
work if we know a currency is Euro in which case it could
be one of many locales in Europe. The purpose of these rules
could be to determine inconsistencies, however. Preconditions
can clarify the remit of these rules.

Secondly, a generalised conversion between locales, e.g.,
Locale A → Locale B, is given by the following general
conversion rule:

IELoc2USLoc(?l1, ?l2)←
hasLang(?l1, ?z1) ∧ hasLang(?l2, ?z2) ∧
hasCur(?l1, ?c1) ∧ hasCur(?l2, ?c2) ∧
hasUnit(?l1, ?u1) ∧ hasUnit(?l2, ?u2) ∧
?z2 = convertLang(en, en, ?z1) ∧
?c2 = convertCur(EUR,USD, ?c1) ∧
?u2 = convertCur(metric, imperial, ?u1)

IELoc2FRLoc(?l1, ?l2)←
hasLang(?l1, ?z1) ∧ hasLang(?l2, ?z2) ∧
hasCur(?l1, ?c1) ∧ hasCur(?l2, ?c2) ∧
hasUnit(?l1, ?u1) ∧ hasUnit(?l2, ?u2) ∧
?z2 = convertLang(en, fr, ?z1) ∧
?c2 = convertCur(EUR,USD, ?c1) ∧
?u2 = convertCur(metric,metric, ?u1)

Depending on service client and provider locale, any com-
bination of mappings/translations can be generated by the core
rules.

B. Localisation Mediator

Based on these locale policy definitions and conversion
rules, a number of services operate. In order to provide a
transparent localisation system, a central component acts as
a mediator, as visualised in Figure 4, which in turn uses indi-
vidual services for: Lingual Conversion, Currency Conversion,
Regulatory Governance, Units Conversion, and WSDL Parsing
& Generation. Within this mediator architecture, the mediator
methods call the other localisation services of the platform.

During execution of the localisation platform, an XML
filewith the ploicy definition is first passed to the mediator
(we will look at the underlying coordination mechanism for
this in Section V). The Mediator Service then sets up a
localisation environment using the locale details provided in
LocaleConfig.xml, the component performs this via the use of
the respective interfaces. Once the locale is set up, the service
Web Service Description Language (WSDL) file is parsed and
various elements are localised resulting in a localised WSDL
file which can be used to access localised operation mappings.
This component is the work horse of the platform and can be
extended with the introduction of other localisation classes, i.e.
the architecture is modular.

Fig. 4: A Component Diagram Displaying Extensibility.

Linguistic artefacts are one of the most widely localised
elements of software today. We propose machine translation
(MT) to achieve automation. While further research into a
tailored MT solution is required to specifically address limited
textual context and controlled vocabularies for APIs, language
translation within the proposed platform is provided by the
Google Translate API. In the interest of performance, our
platform tries to make as few API calls to Google as possible.
Instead it stores translations of popular words and glossaries
within a local language mapping database (a Translation
Memory) for later retrieval. A local machine translation
system may also reduce this latency, as it would no longer
have to depend on TCP/IP performance. The conversion rule
for language translation is given by:

IELoc2FRLoc(?l1, ?l2)←
hasLang(?l1, ?z1) ∧ hasLang(?l2, ?z2) ∧

?z2 = convertLang(en, fr, ?z1)

Regulatory localisation through adaptation to other
regulatory standards is based on localising regulatory
concerns. These concerns include, but are not limited to the
following: Taxation, Currency, and Units of Measurement.
We have chosen to localise a subset of these concerns. For
the purpose of units localisation, we developed an interface
to a repository of unit conversion formulae. These formulae
provide conversions between the metric and imperial units of
measure. The conversion rule for units is given by:

IELoc2USLoc(?l1, ?l2)←
hasUnit(?l1, ?u1) ∧ hasUnit(?l2, ?u2)
∧ ?c2 = convertUnits(metric, imperial, ?u1)

Due to a large number of currencies used globally, we
propose a separate service to deal with currency conversion.
For the purpose of currency localisation, we use exchange
rates from the European Central Bank. This is in our case
supported by a MySQL database. Currencies are manipulated
based on their rate compared to Euro as the base currency.
The conversion rule for currency is given by:

IELoc2USLoc(?l1, ?l2)←
hasCur(?l1, ?c1) ∧ hasCur(?l2, ?c2)
∧ ?c2 = convertCur(EUR,USD, ?c1)

In order to parse the input in the form of WSDL files, a
WDSL service is used. This contains the methods required to
manipulate both incoming WSDL files of the service provider
and has the ability to generate a localised WSDL file. The
service can be considered as an I/O Manager. XLIFF is an
XML standard for translation that proved useful when it comes
to the localisation of WSDL file.

V. LOCALISTION - COORDINATION AND
INSTRUMENTATION

Figures 2 and 3 have defined the system architecture in
abstract terms. A key feature of our solution is the possibility
for clients to define the localisation constraints and policies
and to manage the localisation themselves to achieve a higher
degree of dynamic personalisation. In Figure 3, the Local
Service is a client-side localised facade to the actual basic
service as provided server-side. The mediator handles the
required location as discussed in the previous Section IV. In
order to manage the client-side definition and enforcement of
localisation policies, a coordination framework is necessary,
which is described in this section. For both the mediator and
the server side, we assume BPEL process engines to manage
the processes, like the mediator process Negotiation →
PolicyConfiguration → Localisation → Execution that
we introduced earlier. These generic processes and their con-
stituent services need to be adapted to the needs specific
localisation policies.

A coordination framework for localisation with protocols
as the implementation of the localisation makes process con-
sumers and providers contribute together to localisation to

ensure that defined policies are enforced. For a localised
service requested by a process consumer, there are a number of
activities including those from subprocesses within a process
that will participate in the coordinated execution (a kind of
transaction is required). The WS-Coordination specifications
are designed for transactions of distributed Web services
rather than transactions of application processes. Adaptive
processes for handling processes transactions lack coordination
mechanisms for our case to guarantee all participants working
together in a unified manner. The coordination framework
we implemented for this localisation context addresses these
limitations. It includes suitable protocols for the participants
for any application process.

The localisation framework uses a mix of local localisation
services (e.g. unit conversion), external services (currency
conversions) and hybrid techniques (e.g. for translation). This
mix of widely distributed services makes a coordination solu-
tion necessary that takes failure into account. Services might
become unavailable. Localisation policies might not be appli-
cable as a consequence. A solution that allows the applicability
of policies to be check prior to localisation execution or post-
execution are therefore required [26].

We first introduce a coordination model which focuses on
message exchange or coordination contexts between clients
and mediators that act as coordinators. A coordination protocol
for localisation policy enforcement in service transactions
is also defined. We introduce an approach based on BPEL
templates to implement the protocols with BPEL processes at
provider side.

A. The Coordination Model

The underlying coordination model is derived from WS-
Coordination and also the XACML access control policy
framework. We adapted this to the requirements of our coor-
dination mechanism for localisation policy enforcement. The
adapted coordination model uses two types of subcoordinators
for process consumers and providers. In this scenario, a
participant only interacts with its own coordinator type. The
coordination model is defined as < COOR,COORcontext >
with COOR = COORc ∪ COORp. Here, coorc ∈
COORc is a coordinator associated with the consumer and
coorp ∈ COORp is a coordinator associated with the provider.
coorcontext ∈ COORcontext captures the coordinaton context
(involved services and locale definitions). Figure 5 illustrates
how coorc and coorp interact in a coordination conversion.
Protocol X and services Xc and Xp are instances in this
coordination protocol.

1) The process consumer sends a create coordination
context request to the activation service of coorc. It
will receive back an initialized localisation context
coorcontext (Cc) that contains the identification, a
service reference of the coorc’s protocol service and
other information for starting a coordination conver-
sation.

2) The process consumer then sends a process request
to the provider or localisation process containing the
coorcontext.

3) The context coorcontext is extracted from the SOAP
message and passed to protocol service Xp at coorp.

Now, the protocol service Xc service reference is
known to the protocol service Xp and theactual
localisation-oriented communication between the par-
ticipating services can be established.

4) The localisation coordination conversation ends with
the completion of the process execution.

B. Process Activity Protocol

The process activity protocol defines a coordination type
for coordination conversations. It is based on the coordination
model. A coordination conversation of a localisation process
is established for the coordination of the activities within the
overall process for the service consumer. The model behind the
coordination protocol is activity-centric, which means it can
be applied to any localisation process irrespective of specific
combination of localisation techniques applied. This coordi-
nation protocol applies to all activities of the processes to be
managed on behalf of the client/consumer during execution.
A coordination protocol consists of two main elements in
(ct ∈ coorcontext):

1) a message schema defines the message structure
needed for services communication between con-
sumer COORc and provider COORp for the exten-
sion element of the COORcontext.

2) a Finite State Machine (FSM) of COORc and
COORp defining the actual localisation behaviour in
an abstract model, which we will describe in more
detail now.

The process activity protocol defines runtime localisation
management for localisation processes and the responsibilities
of service providers and consumers in the acutal management
and execution of localisation as a contract. This runtime
mediation is formulated as an FSM defining the coordination
protocol. There is anFSM for every activity in the processes
that describes the behaviours of consumers and providers,
COORc and COORp, in the conversations. The idea behind
this FSM design is to instrument the states into the process
flow as these states determine which localisation polocies are
applicable.

The whole FSM is divided into two parts that are re-
sponsible for COORc and COORp separately. The COORc

FSM is a submachine of the FSM of COORp. Here, process
providers only follow that part of the protocol that is actually
defined for COORp. Similarly, consumers follow the FSM
of COORc. As the FSM implementation is executed at the
consumer and provider separately to achieve independence
and, as already emphasised, the control of the consumer,
COORc needs sufficient information about process execution
in order to execute process services at the provider side.
The FSM of COORc is defined for the submachine in the
FSM of COORp, isolated from the process. Consequently, the
protocol message schema only covers the activity information
instead of the process state information. The execution of
the COORc FSM does only require information about the
weaving request, which is instruments the original service with
the localisation techniques to adapt the service. The execution
of the COORp FSM on the other hand does only require
information about the weaving response. The motivation here
is that the same message schema can be used for different

coordination settings. A consumer can customize the FSM
of COORc for itself without affecting the COORp FSM
and other process consumers, which is one of the novelties
and selling points of our solution. Furthermore, this solution
reduces complexity in the state machine execution for both
sides. Each side does not need to know any implementation
details of other participants for its own implementation.

The design with two separate FSMs reduces the number
of states in the FSM of COORp, hence reducing the mes-
sage exchange times required between COORc and COORp

for coordination conversations. This reduces the performance
overhead, which is generally caused by any communication
between the services. Depending on current network properties
between consumer and provider, the message exchange could
reduce in delays and low performance, often not acceptable
in runtime adaptation situations as the localisation here. Of
course, we need to note here that this create an additional
requirement for the consumer side, because of the COORc

FSM needs to be implemented at the client side. On the other
hand, this allows different protocols for different localisation
settings to be defined for COORp.

We now formalise the FSMs. The FSM of COORp speci-
fies the protocol which is responsible for COORp - the FSM
of COORc is specified in more detail in [23], [24]. The
states reflect the status of the execution such as ’executing’
or ’waiting’ or ’completed’. A number of these states such
as ’violated’ or ’replacing’ is necessary to deal with error
situations that can occur in a distributed context where services
or infrastructure can fail. These error states are based on
common error handling strategies, as explained in [23], [24].

The FSM of COORp is defined as a 5-tuple
(S, sstart, F, TA, δ), where

• S = Sg ∪ S¬g is a set of states. Sl is a
set of localisation states {sman valpre , sman valpost ,
shandlingpre , shandlingpre , scancelling} directly in-
volved with process consumers or policies. The
S¬l is a set of non-localisation states {sstart,
sviolatedpre , sexecuting , sreplacing, swaiting , sskipping ,
sviolatedpost , scompensating , scom+rep, scom+ign,
scompleted, send} not directly involved with con-
sumers.

• sstart ∈ S¬l is an initial state. The coordination can
only be started by the process provider, i.e. not directly
involved with the consumers.

• F ⊆ S¬l is a set of final states {send}.

• TA = TAl∪TA¬l is a set of input symbols for the lo-
calisation actions. TAl is a set of localisation transac-
tion actions {taviolate, tavalidated, taignore, tareplace,
taskip, tacancel, tacompensate, taretry , tacom+ign,
tacom+rep} expected from process consumers, again
to handle errors. TA¬l is a set of transaction ac-
tions which are not expected from process consumers
{0, 1}. The input stream of the FSM regarding TA¬l
is decided by the process providers based on the
process state information which is not covered by the
FSM (remember that the FSM is only activity-scoped
as explained earlier).

Coordinator P

Protocol
Service Xp

Consumer

Coordinator C

2. Process request
Containing Cc

6. Process response

Protocol
Service Xc

1. Create CoordinationContext
 Return Cc

Activation
Service

Cache
 Service

Provider

3.passing Cc

4 . Query and 6. Update
coordination cache

5. Protocol Y

Fig. 5: Policy Coordination Architecture.

Coordination protocol

 BP component BP componentPG componentPG component

Coordinator P

FSM of
CoordinatorP

Coordinator C

ProxyPolicy weaver
WeavingRequest

WeavingReponseWeavingReponse

WeavingRequest

PoliciesPolicies

FSM of
CoordinatorCWeavingResponse

WeavingRequest

WeavingResponseWeavingRequest

Fig. 6: Message flow diagram

• δ is a transition system δ : S×TA→ S, see transition
graph in Figure 7.

C. Coordination Implementation and BPEL Instrumentation

The coordination protocol needs to be implemented to
enable coordination. The difficulty is on the provider side,
since all activities within a localisation process need to comply
with the defined protocol during the BPEL execution.

We designed a set of templates for BPEL to avoid platform
dependency, i.e. to allow this to be applied to different BPEL
engines. The protocol needs to be implemented with a BPEL
process as a coorp for activities. The process contains the flow
logic to be executed and can be driven by protocol messages.
A process instance, i.e. not the BPEL process, is associated
with a coordination conversation belonging to a consumer to
enable user-centric customisation.

In order to separate concers, we divide the FSM of
COORp into two sections. The first is process-independent,
i.e., does not require awareness of the process states. This
part of the FSM implementation is wrapped up in the main
BPEL process. The second part continues the FSM to the end

state of the main process. The first part can be implemented
as BPEL processes, but as processes separate from the main
process. Using such a hybrid approach, we can achieve a
platform-independent approach that also keeps the main BPEL
code simple. As a limitation we need to note that the BPEL
processes here are protocol-specific. We can use the BPEL
transaction scope concept in order to implement the FSMs
with BPEL as long-running transactions (LRTs). These LRTs
in BPEL focus on scopes and these scopes can even be nested.
That means that when a fault occurs, all previously committed
activities can either be compensated within the faulty process,
or compensated as an activity in the parent process.

A template approach allows for easier management. Two
templates for BPEL process development reduce the protocol
implementation effort. A template defines the abstract skeleton
of an algorithm. One or more of the algorithm steps can be
overridden by subclasses allowing to define differing local-
isation behaviours by the consumer while at the same time
ensuring that the overall protocol is followed. We extract the
first section of FSM as the non-transactional requirement FSM
for localisation process activities. The second section is then
an extension for activities to support transactions. So, the FSM

1

1

0

1

Ignore

1

Cancel

Ignore

Cancel

1Skip

1

Retry

1

0

Validated

Validated

1

Compensate

Ingore

Replace

Completed

Skipping

Waiting

Compensat
ing

Replacing

Handling Pre

Handling
Post

Violated
Pre

Violated
Post

Cancelling

Manipulating
Validating

Pre

Manipulating
Validating

Post

Executing

startstart

EndEnd

Compensate+Replace

Violate

Replace

Violate

Compensat
Ing+

Replacing

1

1

Compensate+Ignore

participant generated

coordinator_p generated

participant as activity
of process provider

Fig. 7: Transition graph for FSM for Coorp

is devided into two implementation parts with two respective
templates: the wrapper service template and the main process
template.

This process template is an implementation of the second
part of the FSM containing activity states from scompleted to
the send state. When the process is in a cancelling state, the
previous successfully executed activities can be compensated
if that is necessary. The template is designed with an activity
scope and a process scope, respectively.

Figure 8 shows the BPEL template for the activity scope
associated with activity states is also needed. The template for
each activity is a separate scope. The two services inside the
template are highlighted by grey boxes. The first service is the
wrapper service for the first part of the FSM implementation.
The required variables are passed into the BPEL process by
a BPEL <assign> activity. With the BPEL <if> control
structure, a <throw> activity throws a defined fault if the
comp variable is set to false. An attached BPEL <catchAll>
handler catches the fault and marks this scope as faulty. The
BPEL <compensationHandler> attachment is only triggered
by a successful scope if the process in a cancelling state. In
this situation, e.g. if the execution state sexecuting is skipped

in the first FSM part, the compensation handler for the activity
scope is then triggered. The scope is marked as faulty instead.
The last <if> conditional control structure marks the process
as being in cancellation status. It in this cases throws a defined
fault and to be caught in a <catchAll> handler defined in the
process scope template. Thus, the <compensationHandler>
handler at the corrwesponding activity scope is triggered.
The process activities are executed from state scompleted to
state scancelling if necessary. A utility service within the
<compensationHandler> moves on from the activity state
scancelling to the state send.

Finally, Figure 9 shows the BPEL template for the process
scope. All process activities are within a process scope – this
is associated to a <catchAll> handler. If a defined fault for
process cancellation is caught by the handler with the process
scope, all <compensationHandler>s of activity templates of
fault-free activities are executed in reverse order. Activities
in the scompleted state will transfer to the cancellation state
scancelling. In case of nested processes, the parent would
handle the situation. The violation handling would depends
on the fault policy defined in the parent process. We have
not covered these fault aspect here in details, as our focus
was on the core localisation activities, but not their fault

CatchAll CompensationHandler

Cancelling

Compensat
ing

Compensate

EndEnd

Ignore

! throw

[] Empty

! throw

comp==0

canc==1

Completed

comp=response/Comp
canc=response/Canc
sere=response/Sere

resp= response/Resource

...

StartStart
A wrapper service

for first part of
FSM

Fig. 8: Activity scope BPEL template

handling. However, given the distributed nature of control and
processing, the provision of fault handling is necessary to
provide a credible solution architecture.

VI. IMPLEMENTATION AND EVALUATION

The localisation platform presented here was fully im-
plemented in a Java prototype for the localisation tech-
niques, combined with the coordination solution based on WS-
Coordination and BPEL, that aims at studying the feasibility
of the conceptual solution. It shall be assessed based on the
following criteria here: Performance and Extensibility of the
localisation techniques. These criteria have different effects on
the end-user experience of the product. These criteria are key
performance indicators (KPI) and critical success factors (CSF)
of the localisation platform described. Please note that other
relevant aspects of the solutions, for instance the performance
of the coordination solution in a generic form have been
presented elsewhere [23], [24]. These have established an
overhead of around ten per cent for the coordination framework
- however, the ten per cent essentially come into effect if fault
handling is needed, as the templates in the previous section
indicate. As said, the focus here is on the localisation services

CatchALL

CompensateActivity scope
template

Receive

Reply

Activity scope
template

Completed

Cancelling

Completed

Cancelling

Reply

EndEnd

Compensate 1

EndEnd

Compensate 2

Fig. 9: Process scope BPEL template

themselves that are facilitated through the coordination plat-
form.

Poor performance often tends to affect software exponen-
tially as multiples of users consume a service at the same
time. The core question here is the overhead created by adding
localisation dynamically to service provisioning. Our results
show an acceptable overhead of 10-15 % additional execution
time for fully localised services (i.e., localisation involving dif-
ferent localisation aspects). The overhead is still low compared
to network latency and the average service execution time
[24]. As the application deals with multiple users, the latency
would increase due to extra loads placed on the platforms
services. This makes latency one of the key concerns of the
project. Latency is also an area to be assessed as adding the
localisation platform to the workflow of an existing process
has the potential to add to processing delays. This delay exists
due to time required to compute and also the time to initialise
the various variables. The propagation latency is displayed in
Table IV below. The figures are based on randomly distributed
service calls to external and internal localisation services (e.g.
external currency conversion or internal unit conversion or
hybrid conversions as for translations) based on stock market
services (NASDAQ, FTSE). For a number of localisation
policies, the individual response times have been aggregation
and normalised. It should be noted that figures can be affected
by environmental changes or the locale we are transforming
from and the locale we are transforming to.

As a general strategy, we have aimed to improve per-

TABLE IV: Latency Table - Localisation of Service

Service Prior (µs) Post (µs) ∆t (µs)
NASDAQ 132 182 50

FTSE 110 152 42

formance of the prototype by using pre-translated aspects
through stored mappings e.g. for currency conversions and
standard translations, which suggests that further optimisations
are possible.

A related concern is scalability of software becomes more
important when a service may have large multiples of users,
which can be the case if several clients use the localisation
framework at the same time. The performance evaluation has
been carried out for a single user to determine the overhead
of localisation for a single service call. Scalability has not
been empirically addressed for this phase of research and will
be evaluated in later prototypes that will implement a more
scalable base architecture.

• Some components of the platform would require
modification to effectively allow the infrastructure to
vertically scale-up or scale-out efficiently. Solutions
here are stateless programming and data external-
isation. Through our rule base, and the suggested
pre-translation repositories some suitable architectural
decision in this direction have already been made.

• Horizontal scalability - i.e., the addition of more lo-
calisation concerns - is conceptually easily supported
by the modular mediator architecture, which we will
address further below in the extensibility context from
an implementation view.

An interesting model to investigate the scalability is a tuple
space-based coordination approach [8], [9], [13], which would
allow a flexible and elastic assignment of localisation services
to multiple requests. Work by Creaner and Pahl [8] suggest a
good scalability poential through tuple-space for coordination.

Extensibility becomes important when dealing with com-
plete platforms like a localisation platform. During an initial
development, it is often the case that features need to be in-
cluded due to various constraints. In the case of the localisation
platform described here, some localisation services where not
developed, some of which include a service to handle taxation.
However, the platform was designed to be extendable. At a
platform level, this allows for the addition of further services
and the support for more locales.

VII. RELATED WORK

We provide a different view and perspective on the subject
compared to other publications on service adaptation [4],
[11], [17], [20] that look at adaptation from a technology
perspective. The area of localisation in its wider adaptivity
and customisation sense has been worked on in various EU-
supported research projects, such as SOA4ALL [19] and
4Caast [1]. These projects address end-user adaptation through
the use of generic semantic models. Areas such as software co-
ordination are also covered. The mOSAIC project adds multi-
cloud provision to the discussion. Our framework however is

modular and extensible and aims to provide a one-stop shop
for all localisation methods.

The platform which is described here addresses the need for
dynamic localisation of various artefacts by use of a translation
memory and a set of logical rules. Software Localisation refers
to human consumption of data which are produced by the
software - namely messages and dialogues. Our focus is on
the localisation of the service level. Service internationalisation
is supported by the W3C Service Internationalisation activity
[18], [22]. Adaptation and Integration of services based on lo-
cales and using a translation memory with rules and mappings
is new [20]. The problem of multi-tenancy is a widespread
issue in the area of cloud computing [24]. This is an area
where a lot of research is being invested in order to provide
a platform for different users with different business needs to
be kept separate and their data to be kept private. Semantics
involves the matching of services with various locales using
mappings and rule-based system [2], [6], [11].

There are implementations which can perform localisation
operations on web services [12]. The use of some of these,
however, is restricted due to their nature. Some of the other
implementations require a specific Integrated Development En-
vironment or specific proprietary libraries. They also typically
enable localisation at compile time - the proposed implemen-
tation in this paper is to enable service localisation at run
time. IBM has presented a static localisation solution suitable
for web services using its WebSphere platform [12], which
requires the WSDL files to be generated within the Integrated
Development Environment prior to deployment. This differs
from our proposed localisation platform as our solution aims
to perform transformations between locales dynamically.

VIII. CONCLUSION AND FUTURE WORK

Service localisation falls into the service personalisation
and adaptation context. There are particular engineering meth-
ods and tools which can be employed to allow services
to be adapted to different locales. A Service Localisation
implementation should allow for automatically adjusting and
adapting services to the requesters’ own locales defined by
language or regulatory environment. We have presented a
modular implementation which can enable software services to
be introduced into emerging markets which have localisation
issues. Localisation hence provides a mechanism to widen
a service provider’s target market by enabling multi-locale
solutions. The easiest solution is for a service provider to
provide a ’mediator’ service which could act as middleware
between a requester and the service provider. In order to
enhance the dynamic evolution of localisation settings, our
coordination infrastructure allows a client-side driven manage-
ment of localisation settings.

By allowing services to be localised, we are enabling
the provision of multi-locale services to create interoperable
service ecosystems (such as clouds). Due to the nature of third-
party services, it is more intuitive for service localisation to be
performed dynamically through the use of a mediator service,
controlled by the client and enacted by the provider. Service
localisation thus enables higher availability of services through
its use of innovative interfacing. This type of localisation
would be value-add for a company which may not have

the resources to perform localisation in-house. It also allows
service consumers more influence on the type of localisation
and frequency of localisation changes.

The objectives of Service Localisation have been presented
in terms of three aspects. Firstly, presented was a conceptual
framework which demonstrated key motivational reasons for
developing a multi-locale support framework. The second
part presented a modular platform, which is extensible to
allow the support of further localisable artefacts. The platform
which was implemented was using Java libraries was discussed
as this programming solution copes well with the problem
of extensibility. The third part introduces the coordination
platform, which is necessary to coordinate conversations be-
tween different service providers and consumers and manage
potential failure.

The proposed service localisation fills a gap. Software
adaptation has looked into adapting for instances services
in terms of their user’s interface needs such as data types
and formats. The two focal localisation concerns lingual and
regulatory add new perspectives to this area of research. A
different activity is the Web services internationalisation effort,
which looks into basic localisation concerns such as units,
currency or the format of dates. Our localisation solution
includes these (as we have demonstrated with the currency
aspect), but expands these into a comprehensive framework.

The context of adaptation and translations/mappings used
to facilitate this is a broad field. Our aim here was to integrate
difference concerns into a coherent localisation framework.
This relies on individual mappings. As part of our future
work, we aim to add a semantic layer, which would support
wider localisation concerns in an integrated format. Firstly, it
would allow more reliable translations for non-trivial concerns
if overarching ontologies were present. Secondly, the different
concerns themselves could be integrated by determining inter-
dependencies. Another direction of future research would be to
look into composition and specifically the behaviour of indi-
vidual service localisation in for instance service orchestrations
or other coordination models (e.g., tuple spaces as suggested
above to deal more specifically with scalability problems).

REFERENCES

[1] 4CaaSt. ”Building the PaaS Cloud of the Future”. EU FP7 Project.
http://4caast.morfeo-project.org/. 2013.

[2] D. Anastasiou. ”The impact of localisation on semantic web standards.”
European Journal of ePractice, 12:42–52. 2011.

[3] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G.
Lee, D. Patterson, A. Rabkin and I. Stoica. ”A view of cloud computing.”
Communications of the ACM, 53(4):50–58. 2010.

[4] L. Baresi and S. Guinea. ”Self-supervising bpel processes.” IEEE Trans-
actions on Software Engineering, 37(2):247 – 263. 2011.

[5] R. Barrett, L. M. Patcas, C. Pahl and J. Murphy. ”Model Driven
Distribution Pattern Design for Dynamic Web Service Compositions.”
International Conference on Web Engineering ICWE06. Palo Alto, US.
ACM Press. 2006.

[6] K.Y. Bandara, M.X. Wang and C. Pahl. ”Dynamic integration of context
model constraints in web service processes.” International Software
Engineering Conference SE’2009. IASTED. 2009.

[7] K. Chen and W. Zheng. ”Cloud computing: System instances and current
research.” Second International Conference on Future Networks, 2010.
ICFN ’10, pp. 88–92. 2010.

[8] G. Creaner and C. Pahl. ”Flexible coordination techniques for dynamic
cloud service collaboration.” In: Cubo, J. and Ortiz, G., (eds.) Adaptive
Web Services for Modular and Reusable Software Development: Tactics
and Solutions. IGI Global, pp. 239-252. 2012.

[9] E.-E. Doberkat,W. Hasselbring, W. Franke, U. Lammers, U. Gutenbeil,
and C. Pahl. ”ProSet - a language for prototyping with sets.” In
International Workshop on Rapid System Prototyping 1992. pp. 235-248.
IEEE, 1992.

[10] P. Fingar. ”Cloud computing and the promise of on-demand business
inovation.” InformationWeek, July 13, 2009.

[11] K. Fujii and T. Suda. ”Semantics-based context-aware dynamic service
composition.” ACM Transactions on Autonomous and Adaptive Systems
(TAAS), 4(2):12. 2009.

[12] IBM. ”IBM Developer Technical Journal: Developing internationalized
Web services with WebSphere Business Integration Server Foundation
V5.1.” 2010.

[13] C. Pahl. ”Dynamic adaptive service architecturetowards coordinated
service composition.” In European Conference on Software Architecture
ECSA’2010. pp. 472-475. Springer LNCS. 2010.

[14] C. Pahl. ”Layered Ontological Modelling for Web Service-oriented
Model-Driven Architecture.” European Conference on Model-Driven
Architecture - Foundations and Applications ECMDA’05. Springer. 2005.

[15] C. Pahl, S. Giesecke and W. Hasselbring. ”An Ontology-based Ap-
proach for Modelling Architectural Styles.” European Conference on
Software Architecture ECSA’2007. Springer. 2007.

[16] C. Pahl, S. Giesecke and W. Hasselbring. ”Ontology-based Modelling
of Architectural Styles.” Information and Software Technology. 1(12):
1739-1749. 2009.

[17] C. Pahl. ”Cloud Service Localisation.” European Conference on
Service-Oriented and Cloud Computing ESOCC 2012. Springer. 2012.

[18] A. Phillips. ”Web Services and Internationalization.” Whitepaper. 2005.
[19] SOA4All. ”Service Oriented Architectures for All”. EU FP7 Project.

http://www.soa4all.eu/. 2012.
[20] H. Truong and S. Dustdar. ”A survey on context-aware web service

systems.” Intl Journal of Web Information Systems, 5(1):5–31. 2009.
[21] W. Voorsluys, J. Broberg and R. Buyya. ”Cloud Computing: Principles

and Paradigms.” John Wiley and Sons. 2011.
[22] W3C. ”Web Services Internationalization Usage Scenarios.” W3C.

2005.
[23] M.X. Wang, K.Y. Bandara and C. Pahl. ”Integrated constraint violation

handling for dynamic service composition.” IEEE Intl Conf on Services
Computing. 2009. pp. 168-175. 2009.

[24] M.X. Wang, K.Y. Bandara and C. Pahl. ”Process as a service distributed
multi-tenant policy-based process runtime governance.” International
Conference on Services Computing (SCC), pp. 578–585. IEEE. 2010.

[25] H. Weigand, W. van den Heuvel and M. Hiel. ”Rule-based service com-
position and service-oriented business rule management.” Proceedings of
the International Workshop on Regulations Modelling and Deployment
(ReMoD’08), pp. 1–12. 2008.

[26] Y. Wu and P. Doshi. ”Making bpel flexible and adapting in the
context of coordination constraints using ws-bpel.” Intl Conf on Services
Computing. 2008.

