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ABSTRACT 

Today, technology has progressed to allow us to capture our lives digitally such as 

taking pictures, recording videos and gaining access to WiFi to share experiences 

using smartphones. People’s lifestyles are changing. One example is from the 

traditional memo writing to the digital lifelog. Lifelogging is the process of using 

digital tools to collect personal data in order to illustrate the user’s daily life (Smith 

et al., 2011). The availability of smartphones embedded with different sensors such 

as camera and GPS has encouraged the development of lifelogging. It also has 

brought new challenges in multi-sensor data collection, large volume data storage, 

data analysis and appropriate representation of lifelog data across different devices.  

This study is designed to address the above challenges. A lifelogging system 

was developed to collect, store, analyse, and display multiple sensors’ data, i.e. 

supporting multimodal access. In this system, the multi-sensor data (also called data 

streams) is firstly transmitted from smartphone to server only when the phone is 

being charged. On the server side, six contexts are detected namely personal, time, 

location, social, activity and environment. Events are then segmented and a related 

narrative is generated. Finally, lifelog data is presented differently on three widely 

used devices which are the computer, smartphone and E-book reader.  

Lifelogging is likely to become a well-accepted technology in the coming years. 

Manual logging is not possible for most people and is not feasible in the long-term. 

Automatic lifelogging is needed. This study presents a lifelogging system which can 

automatically collect multi-sensor data, detect contexts, segment events, generate 

meaningful narratives and display the appropriate data on different devices based on 

their unique characteristics. The work in this thesis therefore contributes to automatic 

lifelogging development and in doing so makes a valuable contribution to the 

development of the field. 
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CHAPTER ONE  

INTRODUCTION 
 

1.1 Overview 

Many people write a diary in order to memorise their daily life and to prevent 

forgetting. Indeed, there is a growing movement of people called the Quantified Self 

who record and log aspects of their lives for reasons such as healthcare, efficiency, 

or general understanding of the self (http://quantifiedself.com). For example, a 

quantified self-enthusiast may estimate how much they drive every year, how many 

times they went shopping every month, what their daily blood glucose levels are, and 

so on. However, maintaining a diary or supporting detailed Quantified Self-analysis 

requires substantial investment of time and efforts. It is not typically achieved by the 

majority of people.  

Fortunately, in the past decade, we have seen the introduction of numerous new 

devices such as the smartphone. The widespread usage of smartphones results in the 

accumulation of vast amounts of personal data. As sporadic capturing of data moves 

towards “always-on” capture, it becomes necessary to develop a lifelogging system 

which can segment the lifelog data stream into some manageable units and extract 

human readable content automatically. According to Smith et al. (2011: 1), 

lifelogging is “in essence, the collection of data in order to illustrate a person's life”. 

A lifelogging system enables a user’s life experience to be recorded automatically, 

and totally captured, allows for future access, and replays data via computing devices 

(Allen, 2008; O’Hara et al., 2008a; 2008b).  

http://quantifiedself.com/
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This study adopts the idea of “total capture”, i.e. capture as detailed an archive 

of life experience as possible (O’Hara et al., 2008a; 2008b).  Total capture 

lifelogging is possible with meaningful output and minimal cognitive overhead.  

In this thesis, a lifelogging system is developed to investigate the lifelog 

activities. This system mainly includes four components namely data collection, 

storage, analysis and display as shown in Figure 1.1. The data in this system is from 

multiple sources, i.e. collected from different sensors. It is also called data streams. It 

provides more useful, future-proof and flexible personal life archives. 

Figure 1.1: The work in this thesis 

 

 

 

 

 

 

 

 

 

Source: The author (2013) 

 

Indeed O’Hara et al. (2008b: 6) give a good overview on what motivates us to 

investigate lifelog activities “... Every piece of information is such that it is very 

unlikely, but just possible, that it is valuable. Before technology allowed 

comprehensive storage, our strategy was usually to try to estimate which information 

is likely to be more valuable and to keep that. Now there is no reason to stick to that 
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philosophy...”. In other words, we should collect whatever we are able to, i.e. “total 

capture”. In our research, we argue that the more data we gather, the richer the 

resultant lifelogs will become. However, because we are still in the early days of 

lifelogging, many computational techniques that mine knowledge and patterns from 

our personal life archives may not be known yet. It is more useful to capture as much 

data as possible now, because it is impossible to re-capture data after the fact.  

Lifelogging has many promising applications, e.g. transmitting professional 

knowledge (Bush, 1945), supporting the data owner’s memory (Sellen et al., 2007) 

and health monitoring (Lane et al., 2011). There may be many other potential yet 

undiscovered areas in which lifelog can be exploited since users can be creative in 

utilising products.  

There are many challenges in terms of lifelogging system development. These 

include the multiple sensors’ data collection tool, large volume data storage, data 

analysis (combining data from multiple sources, segmenting events and generating 

narratives), and displaying analysis results using appropriate user interfaces based on 

different devices. The challenges and our work on how to address these challenges 

are presented as follows. 

 Multiple sensors’ data collection tool: From SenseCam to Smartphone 

Existing lifelogging tools are customer-based devices or are combined with 

some external hardware, e.g. SenseCam (Hodges et al., 2011; Hodges et al., 

2006) and DejaView (de Jager et al., 2011). SenseCam is a wearable camera 

worn via a lanyard around the neck as presented in Figure 1.2. It was designed 

to take photographs passively without user’s intervention. The SenseCam is 

expensive and difficult to buy. It is also not easy for people to carry them 



4 

 

permanently as people may forget. Sometimes, other people around the carriers 

are quite cautious about it and may be concerned about the ethics. In addition, 

these devices can only collect picture data and cannot totally capture a person’s 

life. Therefore, in this research, we make use of the ubiquitous smartphone as 

our lifelogging device.  

The focus of this research is not to develop new hardware devices, to gather a 

minutely detailed lifelog, or to explore new and novel approaches to machine 

learning for data analysis; it is to explore how we can use the readily available 

tools to develop new approaches of managing and presenting detailed lifelogs. 

In this study, we use the smartphone to collect sensor data, the support vector 

machine learning (SVM) technique to analyse data. For presenting lifelog data, 

we use three devices as computer, smartphone and E-book reader.  

Figure 1.2: SenseCam  

 

Source: Hodges et al. (2011) 
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The smartphones allow us to capture and access data/information in a ubiquitous 

manner (Smith et al., 2011), because they are embedded with heterogeneous 

sensors and always-on networking capability. Furthermore, the smartphone can 

have a robust operation system (OS) such as Android or iPhone OS (iOS) which 

are compatible with computer systems. Most importantly, we are able to develop 

new programmes (apps) to enhance the functionality of the smartphone. This 

makes it much easier to popularise the lifelogging system on all smartphones 

employing the same OS without any code change after one lifelogging app is 

developed on the smartphone. We have already shown that the smartphone is an 

ideal device to replace (and enhance) the SenseCam, which was the principal 

lifelogging device of the past decade (Gurrin et al., 2013). Finally, the 

smartphone becomes very intimate to people’s life, because it is one of the 

typical devices used in people’s life. Based on these features of the smartphone, 

this study will develop a lifelogging app running on the Android platform. The 

details will be described in Chapter 3.  

 Large volume data storage 

Battery and storage are a smartphone’s most important resources in the 

lifelogging system. Even though most smartphones support external SD storage 

cards, it is quite a small space compared with a computer’s storage capacity. On 

the other hand, the collected data cannot be sent to the server directly, because 

wireless is not available all the time and wireless connecting cost a lot of battery 

life. Therefore in the lifelogging system designed and described in this study, all 

sensor data is stored on the phone SD card temporarily and then is transmitted to 
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the server only when the smartphone is being charged. This is because data 

transmission using wireless is a battery consuming action, whether it is by WiFi 

or mobile network.  

 Data analysis by combining data from multiple sources: from image only to 

multiple data sources such as location, activity and environmental noise etc. 

For lifelogging users, most lifelog data is not easy to access directly because it 

can come from different sensors, each of which has a different data format and a 

different value range. We have not been able to find a data management tool 

such as a search engine that can be applied directly on lifelog data because of a 

semantic gap between the user’s query and the system. This study will show 

how six different kinds of contexts may be detected from different sensor data. 

They are personal, time, location, activity, social and environment. 

 Data analysis on segmenting events from the context change detected by 

sensors 

Our lives are continuous; there is no concept of a self-contained document. Our 

days are viewed as being composed of one chronological and continually 

unfolding document. The current generation of data management software  

(database and search engines) are not designed to handle such data streams; 

hence it is necessary to segment the data stream into a sequence of events that 

can later serve as retrieval and linkage units to help users to access their lifelog 

data (Doherty and Smeaton, 2010). This is not a typical challenge for 

information retrieval as in most cases the document segmentation naturally pre-

exists (e.g. WWW pages) or is relatively easy to generate. In our lives, however, 

there is one clue that can help us to segment life into different events; the change 
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of context can signify a new event. In Chapter 5, we propose an approach to 

segment lifelog data into events using support vector machine learning (SVM) 

techniques because of their excellent performance on binary classification. 

 Data analysis on generating narratives for building digital diary  

Biologists have found that “Narrative” or “Paragraph” activate more brain 

regions than “Word” and “Sentence” which helps humans to recall the past 

events (Xu et al., 2005). The narrative/paragraph describing daily events have 

five essential attributes which are “When”, “Where”, “Who”, “What” and 

“How”. There are mainly three processes to generate narratives from the 

segmented events, namely fabula, sjuzet, and discourse generation. In this study, 

fabula is a series of sentences based on the detected contexts and segmented 

events; sjuzet is a paragraph of narratives generated from the fabula without the 

repeated sentences; and discourse is a paragraph of narratives with an illustrated 

picture/keyframe taken during the event. More details of generating narrative 

will be described in Chapter 6. 

 Displaying analysis results  

The availability of new devices such as the smartphone and the E-book reader 

indicates that computers are not the only way to access personal electronic data. 

However it also presents new challenges on how to represent data on these 

different devices during the design of the lifelogging system. These new devices 

have different features, i.e. smartphone has a smaller screen with colour while E-

book reader has a larger screen with black and white. In order to investigate how 

to display lifelog data more appropriately on these devices, we surveyed users’ 

experience and reviewed the display performance of different devices on eight 
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interfaces for displaying lifelog data. The eight interfaces are images, images 

and annotations, images and icons, images and narratives, animations, diaries, 

icons, and narratives. More details and results will be described in Chapter 7. 

1.2 Hypotheses 

To address the new challenges in lifelogging research as multiple sensors’ data 

collection, large volume data storage, data analysis and representing lifelog data on 

different kinds of devices, a lifelogging system is developed in this dissertation. 

Three hypotheses are proposed based on the literature reviewed in Chapter 2 and are 

summarised as follows. 

Hypothesis 1: Event segmentation can be performed effectively by 

detecting the changes in sensor data.  

Hypothesis 2: A meaningful textual narrative that accurately represents 

an event can be generated automatically.  

Hypothesis 3: Different access devices benefit from different 

representations of lifelog data.  

1.3 Deliverables from Dissertation 

The major deliverables resulting from the work carried out during this dissertation 

include:  

1) Firstly, in this study, a new generation of lifelogging tool has been developed 

to collect, store, analyse and display lifelogging data automatically. It does 

not require any user input to operate. A user just wears the smartphone and 

may the lifelog at any point afterwards. Therefore, this could reduce the 
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barriers-to-entry into lifelogging for a user who may not have been engaged 

in the process before.  

2) A lifelogging tool which can collect a full range of sensor data from a 

smartphone in a power-efficient manner. Since the system is context aware, it 

can learn the user’s situation and decide which sensor needs to be turned on or 

off in order to maintain all-day data capture.  

3) Approaches to extract semantic concepts from raw sensors which help to bridge 

the semantic gap between the human and machine. 

Figure 1.3: The comparison between the most similar work (Byrne et al. 

2011) and this work  

 

Note: The blue parts are new compared with Byrne et al. (2011).  

Source: The author (2013) 
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4) A real-time lifelogging system which can analyse lifelog data such as face 

detection and upload data to a server in real-time. With that, users can easily 

browse and share their status using a web browser.  

5) A first mapping of lifelog events through representation on multiple popular 

devices. In the existing research, Byrne et al. (2011) is the most similar one to 

the model in this study as shown in Figure 1.3. The model in this study is more 

comprehensive than that of Byrne et al.’s (2011). This work offers suggestions 

on the most suitable representations to enable fast access to lifelog data using 

different devices.  

6) Methods for obtaining a user’s location using a fusion of GPS, WiFi, Bluetooth 

and Base Station in order to complement their strengths and weaknesses. 

Compared with using GPS alone, locating a user by WiFi and Bluetooth will 

dramatically extend the smartphone battery life.  

7) A new approach using support vector machine learning (SVM) to segment 

lifelog stream data into events.  

8) A new user activity generation tool based on real-world accelerometer.  

9) An approach to generate a narrative of event using all the concepts extracted 

from physical and virtual sensor data.  

1.4 Contribution of this Study 

Lifelogging is believed likely to become a well-accepted technology in the coming 

years (Doherty, 2008). The manual logging, i.e. writing paper diaries to record every 

daily event, is not possible for most people and not feasible in the long term. The 

automatic life logging, i.e. the lifelogging system in this study, is needed. 
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Lifelogging has many promising future applications. Examples include transmitting 

professional knowledge (Bush, 1945), supporting the data owner’s memory (Sellen 

et al., 2007), health monitoring (Lane et al., 2011) and the wide range of usages 

suggested by Bell and Gemmell (2009) in their book “How the e-memory revolution 

will change everything”. Many other potential yet undiscovered areas exist where 

lifelogs may be exploited by users in future generations. This study introduces a new 

lifelogging system which includes multiple sensors’ data collection, large volume 

data storage, data analysis through detecting contexts, segmenting events, generating 

narratives and representing results to users. By doing so, this study has shown that 

event segmentation can be performed effectively by detecting the changes in sensor 

data; a meaningful textual narrative that accurately represents an event can be 

generated automatically; and different access devices benefit from different 

representations of lifelog data. Along with the deliverables indicated in the previous 

section, the work in this dissertation therefore contributes to automatic life logging 

development.  

1.5 Thesis Structure and Outline 

Figure 1.4 presents the structure of this thesis. Chapter 1 introduces an overview of 

this dissertation which includes the background, hypotheses, expected deliverables, 

contribution of the study, and the structure of the thesis.  

In Chapter 2, a comprehensive overview of the relevant literature is provided in 

relation to the history and implications of lifelogging. Thereafter, it introduces the 

evolution of the lifelogging tool from SenseCam to smartphone for data collection. It 

also investigates the previous research on event segmentation and narrative 



12 

 

generation approaches employed in other domains apart from lifelogging. Finally, 

this chapter exploits how other researchers summarised and visualised large amounts 

of sensor data.  

Chapter 3 describes the methodology employed in different processes of the 

proposed lifelogging system. It firstly describes the data collection based on multiple 

sensors and the Android platform. Then the data analysis techniques employed in 

this study such as term weighting and SVM are introduced. Finally, it presents all of 

the experiments used in data analysis and data representation process of the system. 

Figure 1.4: The structure of this thesis 

 
Source: The author (2013) 
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Chapter 4 presents the details on combining different data streams, i.e. data 

collected from multiple sensors. Following that, it discusses the need to and explains 

how to convert raw sensor data into semantic contexts. The process of implementing 

virtual sensors for different contexts is described. Compared with the physical 

sensors, it is shown that the virtual sensors can be easily employed with better fault 

tolerance. 

Chapter 5 focuses on the event segmentation in the data analysis process. It 

firstly provides a detailed explanation on how to segment sensor data into events. It 

also demonstrates the attributes to be extracted from raw sensor data and the contexts 

used to segment sensor data into small events. It then describes the experiments for 

testing hypothesis 1 which proposes that the event segmentation can be performed 

effectively by detecting changes in contexts. Finally, to select a good keyframe for 

each event, three contexts’ (social, activity and environment) effect on selecting 

users’ keyframe for their daily life are investigated where the best keyframe selection 

method (combining face detection and image quality) is found. 

Chapter 6 provides an approach to generate a narrative for each event in the 

proposed lifelogging system. The concepts of fabula, sjuzet and discourse used in 

previous research are used to generate meaningful and effective narrative summaries 

of events (Cheong and Young, 2008). These concepts are used in testing hypothesis 

2 which proposes that a meaningful textual narrative that accurately represents an 

event can be generated automatically.  

Chapter 7 presents the last process of the proposed lifelogging system – 

representation of results. To assist a user’s access to their lifelogs, an investigation 

was conducted on which user interface is more appropriate on different devices for 
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accessing lifelog data. Results from the user experience experiment indicate the 

different data displaying performance on different lifelogging devices. This allows 

us to test hypothesis 3 which proposes that different access devices benefit from 

different representations of lifelog data. 

Finally in Chapter 8, a brief summary of this study is firstly provided. The 

contribution and limitation of this study is discussed. Recommendations are made for 

future research.   
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CHAPTER TWO  

BACKGROUND AND HYPOTHESES 
 

2.1 Introduction 

In this chapter, the history and implications of lifelogging are introduced. Thereafter, 

the evolution of lifelogging tools for data collection from SenseCam to smartphone 

is summarised. The previous research on context detection, event segmentation and 

narrative generation employed in other domains apart from lifelogging is then 

reviewed. Finally, how other researchers summarised and visualised large amounts 

of sensor data are provided. Figure 2.1 presents the work in this chapter. 

Figure 2.1: Work in Chapter 2 

 

Source: The author (2013) 
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2.2 The History of Lifelogging  

Throughout human history, people have tried to record daily events to enable these 

events to be recalled at a later stage, i.e. from cave painting to writing paper diaries. 

For this work, we are concerned with lifelogging practice, i.e. digitally capture and 

display user’s life. As far back as the end of the Second World War, Vannevar Bush 

introduced the Memex which is a life knowledge organisation hypermedia system 

operating as a desk-based device (Bush, 1945). Memex introduced new concepts 

such as information links or trails, which are created by the individual or by others. 

Memex was described as an “enlarged intimate supplement to one’s memory” (Bush, 

1945). In these words, Bush (1945) identified some of the key issues for maintaining 

a personal lifelog: enlarged (store as much information as possible), intimate (private 

to the owner) and supplemental (working in synergy with one’s memory). As 

defined by Smith et al. (2011: 1), lifelogging is “in essence, the collection of data in 

order to illustrate a person's life”. The concept of lifelogging in this study focuses 

on the digital tools for data collection, storage, analysis and display.  

Only in recent years has the Bush equal vision of lifelogging become feasible 

[which occurred] through advances in sensor data, data storage and, and information 

access, which are indeed the focus of this thesis. Ten years ago, the hardware to 

support lifelogging was not readily available.  

Early pioneers such as Steve Mann (Mann, 1997) developed customised 

lifelogging and ubiquitous computing hardware, called EyeTap Digital Eye Glass. It 

is the earliest recorded lifelogging tool. Since the development of the Microsoft 

SenseCam about ten years ago (Hodges et al., 2006), lifelogging has attracted 

increased attention from scholars and practitioners. There is now a suite of new 
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technologies that can monitor and log aspects of a person's life, ranging from single 

sensor devices to the multi-sensor smartphone apps and custom devices such as 

Oxford Metrics Group (OMG) Life Autographer (www.autographer.com). 

Beginning with the single sensor devices, a good example is the Fitbit Tracker, a 

health monitoring lifelogging tool (www.fitbit.com). It is a wearable device that 

utilises an on-board accelerometer to measure data such as the number of steps 

walked, energy burn and the quality of sleep. The author would consider this to be a 

basic lifelogging device. At the other end of the scale are full-featured lifelogging 

devices such as the Autographer and Memoto which use a wide range of sensors to 

log many aspects of a person's life, e.g. camera, accelerometer etc. Applying 

semantic context extractor tools, such as the one in this thesis can turn these devices 

into extensive lifelogging tools. Memoto (memoto.com) is similar to Sensecam but is 

a smaller wearable lifelogging camera which can take two pictures per minute and 

includes a reduced sensor set (e.g. no accelerometer). At the time of writing 

(September 2013), it is still in development by Memoto AB based in Sweden. 

Autographer is an evolution of the original Sensecam that now incorporates a 

relatively high quality camera, GPS and many of the original SenseCam sensors. The 

Autographer has gone on sale in August of 2013. 

Other devices worth mentioning include wearable video cameras (single sensor 

life capture devices) such as the Looxcie camera. Looxcie (www.looxcie.com) is a 

wearable video camera that facilitates live streaming of video and on-board capture 

of many hours of video data. Finally, there are the general purpose computing 

devices that can be programmed to act as lifelogging devices. One example is the 

smartphone, which we use in this work. Another example is Google Glass. 

http://www.autographer.com/
http://www.fitbit.com/
http://memoto.com/
http://www.looxcie.com/
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Developed by Google Inc., Google Glass (www.google.com/glass/start) is a 

wearable computing device that can be programmed to capture video/photos of what 

the wearer sees as well as providing real-time information and feedback via an 

optical head-mounted display. What is important to note here is that the range of 

lifelogging devices is increasing in recent years. 

Until now, lifelogging has appeared to be an extreme activity carried out by only 

a small number of people (e.g. Bell and Gemmell, 2007; Doherty et al., 2011; Mann, 

1997). There are three main reasons why personal lifelogs have not been used for the 

general population: 1) privacy and ethical concerns (Nguyen et al., 2009); 2) 

overwhelming amounts of data (Sellen and Whittaker, 2010); and 3) limited device 

availability.  

On 1) the privacy and ethical concerns, it is our conjecture that personal lifelog 

is likely to follow the experiences of smartphone cameras, Facebook and other social 

networking sites and smartphone location tracking services. Once the personalised 

experience (Nakamura et al., 2010), wellness (Lane et al., 2011) and memory capture 

and sharing (Mathur et al., 2012) present a wide range of benefits to end users; these 

concerns will likely become of secondary importance. In other words, society will 

develop an acceptable usage policy and embrace the new technology. In this study 

we assume that there will be willing lifeloggers in the future who will benefit from 

the findings of this research. 

Secondly, for the overwhelming amounts of data, existing research has indicated 

that lifelog data can be summarised into useful knowledge through:  

1) segmenting it into a series of distinct events or activities (Doherty et al., 

2011),  

http://www.google.com/glass/start
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2) automatically labelling those events from both the content (Doherty et al., 

2011) and context (Jain and Sinha, 2010),  

3) automatically detecting faces to identify those episodes that are more 

interesting to reflect on (Doherty et al., 2012),  

4) presenting segments of this personal lifelogs to the user as required,  

5) analysing this data to provide new knowledge to the user.  

This is our driving force. We aim to identify the challenges and build a 

semantically rich lifelog and evaluate it using various access approaches.  

Thirdly, we have limited device availability. Current lifelogging data collection 

tool, e.g. SenseCam, helped bring lifelogging work to memory and to public health 

researchers. However, it is still confined to a tiny segment of the population. Based 

on our work (Qiu et al., 2011; Qiu et al., 2012) as well as the work by de Jager et al. 

(2011), this situation is about to change. In this work we have demonstrated that the 

smartphone is the new supporting technology for generating personal lifelogs with 

real-time ability and supports human prospective memory. Using smartphone 

significantly reduces the costs and provides lifelogging data analysis in a real time 

manner. 

2.3 The Potential Implications of Lifelogging 

Lifelogging has many promising future applications. Examples include transmitting 

professional knowledge (Bush, 1945), supporting the data owner’s memory (also 

called memory aids) (Sellen et al., 2007; Wood et al., 2012), health monitoring 

(Doherty et al., 2013; Lane et al., 2011), a mental health tool (Rennert and 

Karapanos, 2013; Son et al., 2013), a social network analysis tool (Sueda et al., 
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2012), and even as an urban design tool (Ihara et al., 2011). Lifelogs can help 

objectively supply data and reveal potential errors inherent in self-reporting (Doherty 

et al., 2013). There are likely to be many other potential yet undiscovered areas 

where lifelogs may be exploited by users in future generations. They may invent 

some unexpected creativity in utilising products.  

The potential for personal lifelogs is enormous. We do acknowledge that there 

are challenges to overcome, such as privacy concerns, data storage, data security and 

the development of a new generation of search and organisation tools. However, it is 

believed that these challenges will be overcome. This research will represent an 

important contribution and turning point for society. The quantified individuals 

know more about themselves than ever before, have more knowledge to improve 

their lives, and can share life events and experiences in richer detail with friends.  

2.4 The Evolution of the Lifelogging Tool for Data Collection 

Lifelogging research is encouraged by the arrival of new technologies. The initial 

lifelogging research used individual devices such as SenseCam (Hodges et al., 2006) 

and DejaView (de Jager et al., 2011). More recently lifelogging tools include 

smartphones embedded with more sensors and new platforms. We will begin with a 

discussion of the SenseCam. 

2.4.1 SenseCam 

The SenseCam was developed by Microsoft Research in Cambridge U.K. It is a 

wearable camera worn via a lanyard around the neck as shown in Figure 1.2 (page 

4). The SenseCam is designed to take photographs passively without a user’s 

intervention. It was initially created as a tool to visually record life experience and 
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has been extensively used by memory professionals. It is about the size of a four-

pack of AA batteries. None of the technologies included in the SenseCam are in 

themselves a great advancement, but it has become the pre-eminent passive capture 

device in academic research. The SenseCam captures an image approximately every 

22 seconds when triggered by onboard sensors (Hodges et al., 2011). Because the 

SenseCam is a wearable device, these images are oriented with the wearer and thus 

capture life activities first-hand. Unlike a digital camera, the SenseCam has a fisheye 

lens, to maximise the field of view, and incorporates multiple sensors including light 

sensors (intensity and colour), a multi-axis accelerometer, a thermometer and a 

passive infrared sensor to detect the presence of a person. All these mean that a 

SenseCam can normally capture up to 5,000 images per day, depending on the 

wearer’s activities. More social interactions will instigate more image captures 

(Hodges et al., 2011). This concept of automatic capture is essential for any form of 

personal lifelogging data collection.  

Although SenseCam is quite small and easy to carry, its primary limitation is its 

off-line analysis (Hodges et al., 2006). A typical SenseCam wearer takes the camera 

off and uploads the content at the end of the day. Although the SenseCam gathers 

thousands of photographs per day (powerful memory cues and sources of evidence 

for semantic computer vision technologies) and tens of thousands of sensor streams, 

it is limited in on-board sensing and off-line processing.  

Furthermore, the main obstacle to the widespread adoption of SenseCam is that 

it requires users to purchase, maintain and operate a dedicated hardware device; it 

cannot integrate users’ lives seamlessly (Rawassizadeh et al., 2012). It is proposed 

that greater adoption would be greatly facilitated if the SenseCam functionality could 
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be integrated with a device that users already own and are accustomed to charging 

and maintaining such as smartphone (Gurrin et al., 2013).  

2.4.2 Smartphone 

Due to the limitations of SenseCam (such as high cost, on-board sensing and off-line 

processing), there have been some attempts at integrating the lifelogging tool on 

different devices. For example, Abe et al. (2009) implement a lifelogging tool on a 

remote control which can record a user’s browsing history on TV, temperature, 

location, and acceleration. Gellersen et al. (2002) implemented a lifelogging tool on 

a cup to monitor users’ drinking behaviours. However, neither a remote control nor a 

cup is easy to carry every day and everywhere.  

One obvious solution is the increasingly ubiquitous smartphone. Moving from 

the SenseCam to the smartphone as a lifelogging tool is important because a 

smartphone has more sensors and new platforms (e.g. Belimpasakis et al., 2009; 

Cheng et al., 2010; Chennuru et al., 2012; Lu et al., 2010). In our own research, we 

have shown that the smartphone can act as a real-time SenseCam equivalent (Gurrin 

et al., 2013). However, most lifelogging research groups are facing one big 

challenge: battery life. 

Battery life directly affects how much a user can benefit from the mobile device. 

This is because the lifelogging applications/systems implemented on a smartphone 

usually drain the battery very fast (e.g. Hansen et al., 2009). For example, the 

wireless communication in smartphone utilises more battery than any other 

functionality apart from the CPU. In a lifelogging system, the wireless connection 

needs to be turned on as all location information comes from it (Rawassizadeh et al., 
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2012). To overcome the battery consumption issue, a lot of research uses the 

context-aware technique in lifelogging systems (e.g. Doswell, 2006; Gurrin et al., 

2008). Context-aware techniques are efficient as they automatically turn the sensor 

on/off to save the battery life based on the environmental conditions. For example, 

SensLoc developed by Kim et al. (2010) will turn WiFi on automatically when there 

is no GPS signal.  

In this study, we develop a context-aware lifelogging system based on the 

Android smartphone. The proposed lifelogging system doesn’t require any specific 

hardware or additional devices. In addition, it enables the capture of a full day’s data 

with a smart power managed strategy. Full details will be discussed in Chapter 3. 

2.5 Lifelog Data Storage 

Lifelog data storage is not the most important issue for users as mobile devices have 

increasingly large storage (Coughlin, 2008). However, it should be kept in mind that 

lifelogging tools are developed to capture a person’s day-to-day activities in the 

longer term. Even large capacity devices can be filled very quickly. For example, a 

SenseCam can capture up to 5,000 photographs per day. Its onboard memory is 

enough to store one week’s data. Unless the data is removed from the device in time, 

SenseCam may corrupt the data collected during the whole period. For example, it 

may overwrite the old file or stop collecting data (Byrne, Kelly & Jones, 2012).  

Rawassizadeh et al. (2012) propose that a server with enough storage capacity 

must be the main location for storing data, while local storage on the lifelogging tool 

can only be used as the temporary storage. This is because there is less disk space 

available on smartphones and other portal devices than on data servers. Similar 
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solutions have been used in other relevant projects. For example, iRemember can 

immediately transmit this form of data via a high-speed wireless network to a large-

capacity server where the data is archived (Vemuri et al., 2006). However, in the real 

world, the high-speed wireless internet is not available everywhere. For example, in 

many urban areas, there is no WiFi hotspot available at all. The mobile network is 

available most of time, but it will cost the user too much financially to upload the big 

volume of data to the server. Additionally wireless connecting costs a lot in terms of 

battery life.  

In this thesis, we propose a strategy to cope with the above issues. The strategy 

is to store all sensor data on the phone’s SD card temporarily and transmit it to the 

server when the smartphone is being charged. This will address both real-time access 

and optimising battery consumption  

2.6 Lifelog Data Analysis 

In the past decade, a number of lifelogging tools were developed to facilitate 

research. However, all researchers in the lifelogging community are facing the same 

challenge regarding the efficient access of information which is useful to the user 

(Aizawa et al., 2004; Tancharoen et al., 2006). We will introduce six contexts used 

in data analysis before introducing the data analysis techniques employed in this 

study. They are personal, time, location, activity, social and environment contexts. 

2.6.1 Detecting Contexts 

Most lifelog data is in numeric, image or other multi-media format. How to 

efficiently access the information using an easy and useful way for users is the 

common challenge facing most researchers in the lifelogging community (Aizawa et 
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al., 2004; Tancharoen et al., 2006). One approach is to transform the sensor data into 

the context which is easy for users to read. For example, GPS data contains three-

dimension information: latitude, longitude and altitude. The digits indicating latitude, 

longitude and altitude make no sense to users in their raw format. If the three-

dimension GPS data is transformed to a location context, such as a home address, it 

will be very easy for the user to read and understand. Besides location context, we 

propose that there are five other commonly used contexts including time, personal, 

activity, social and environment which could be detected from sensors (Chen and 

Kotz, 2000; Kern et al., 2003). 

The traditional approach for using the lifelog data is to scan/browse the lifelog 

data and find the event of interest by users. However, it is very time consuming and 

has low accuracy. Take the photograph as one example; photographs have been used 

mostly as lifelog data source. To generate useful description, users need to 

scan/browse a large volume of lifelog photographs to find the content with interest. 

Due to the extremely large volume of photograph data, it is obviously a time 

consuming activity. In addition, the accuracy is very low. As shown in Doherty et al. 

(2012), it takes on average more than ten minutes for a normal and healthy 

individual to locate an event of interest from a two and half-year lifelog and this is 

with only a 25% success rate. If one cannot recall the date or time as an access 

mechanism it would take several days or weeks to watch an entire lifelog for one 

year, using a photograph browser to discover the experience of interest (Aizawa, et 

al., 2004a). Another example is textual search engines. Textual search engines have 

been used for decades and are considered as an efficient and effective method of 

information retrieval (Baeza-Yates and Ribeiro-Neto, 1999). However, they can only 
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search text documents which require a human to annotate first (Hatcher et al., 2004). 

Even though multimedia information retrieval techniques can search multimedia 

information using a search engine, most retrieval comes from related textual media 

data, such as description, subtitle, caption and comments which are mostly generated 

manually.  

Context is widely accepted in computing science to semantically add meaning to 

non-textual data. Schilit et al. (1994: 85) stated that the constituents of context are; 

“the location of use, the collection of nearby people, hosts, and accessible devices, 

as well as to changes to such things over time”. On a conceptual level, it is also 

argued that further issues such as temperature, environmental noise level and social 

situation are of interest and can be usefully employed as additional sources of 

contextual metadata.  

Dey (2001: 3) provided the following general definition, which is probably the 

most widely accepted: “Context is any information that can be used to characterize 

the situation of an entity. An entity is a person, place, or object that is considered 

relevant to the interaction between the user and the application, including the user 

and the applications themselves”. This definition clearly states that context is always 

bound to an entity. In other words, the information describing the situation of an 

entity is context. However, in using indefinite expressions such as “any 

information” and “characterize the situation”, the definition is very general. In 

another paper, Dourish (2004: 21) gave more detail about the notion of context. He 

stated that “context is a form of information, context is delineable, context is stable” 

and “context and activity are separable”. Dey et al. (2001: 106) extended their 

definition of context with the statement that “Context is typically the location, 
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identity and state of people, groups, and computational and physical objects”. This 

study adapted this definition. The author has taken all the available sources of 

context and utilised them in this work as a source of semantics and evidence for 

semantic enrichment. The six contexts used in this study include personal, time, 

location, activity, social, and environment. How to detect these contexts from lifelog 

data will be presented in Chapter 4. 

2.6.1.1 Personal Context 

Personal context is widely used in context-aware systems for describing the user’s 

profile (Cheverst et al., 2000). Personal context not only contains gender and age, 

but also personal habits and personal life patterns which can be derived from activity 

and social contexts. The existing lifelogging systems identify different behaviours 

based on different user profiles. For example, the context-aware guide system can 

recommend to the user a route based on their interests (Abowd et al., 1997). 

Mazhelis et al. (2011) developed a recommendation system which determines the 

probability of a route the user will drive based on the historical data. Personal 

context also contains and decides other contexts. For instance, different people have 

different home addresses and different social relationships. It is difficult to separate 

the personal context from other contexts. People’s activities and travel behaviours 

might be decided by personal context (Liu et al., 2013). For example, a user’s age 

can influence his location pattern and social activity. Most elder people do not work 

full time and spend much of their time at home. Their activity intensity is quite low 

compared to that of a young person.  
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2.6.1.2 Time Context 

Time is part of the measuring system used to sequence events, to compare the 

durations of events, the intervals between them, and to quantify rates of change such 

as the motions of objects. The temporal position of events with respect to the 

transitory present is continually changing; events happen, then are located further 

and further in the past (Dowden, 2011). There are two catalogues of time; absolute 

time and relative time. According to Newton (1802) absolute time exists 

independently of any perceiver and unlike relative time progresses at a consistent 

pace throughout the universe. As humans, we can only understand relative time, 

which is the measurement of perceivable objects in motion (like the moon or sun).  

Previous lifelogging tools used different time clocks which makes it difficult to 

integrate data. For example, in previous research, SenseCam was used to capture 

photographs, and a GPS receiver was used to collect location information. However, 

the devices used different system clocks. We have focused on identifying a way to 

synchronize the time on different devices. The SenseCam will lose the time setting 

when it is out of power. This makes it very difficult to integrate location with visual 

data (Gemmell et al., 2005). In this work, all sensor data collected on a smartphone 

is timed with one clock. The system also records satellite time when it captures GPS 

data. It is thus very easy to identify any data with the wrong timestamp by comparing 

the two timestamps. The server can also correct data using satellite time 

automatically.  

2.6.1.3 Location Context 

Location is one of most commonly used contexts. It not only enables many location-

based services (Abe et al., 2009; Azizyan et al., 2009), but can also be used for the 
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identification of a user (Shi et al., 2011). Many studies have been conducted to 

extract location context through two stages: 1) investigating suitable techniques to 

acquire a user’s location such as GPS and WiFi; and 2) transforming the location 

information to some meaningful information for users, such as transforming GPS 

data to a semantic meaningful text annotation, e.g. home.  

In the first stage, most of the research focuses on investigating suitable 

techniques to acquire a user’s location. GPS is widely used in lifelogging research 

because it is the most accurate and direct method for acquiring a user’s location. 

However, GPS is not flawless. Compared with other ways (e.g. WiFi), GPS needs 

specialist hardware and requires a certain amount of time to start from a “cold-start” 

mode which consumes a lot of battery power (Rekimoto et al., 2007). Furthermore, it 

cannot work inside big buildings where the indoor environments are typically 

complex (Gu et al., 2009). For example; walls, equipment and humans influence the 

propagation of electromagnetic waves which leads to multi-path effects for GPS. 

Some interference and environmental noise sources from other wired and wireless 

networks degrade the effectiveness of GPS positioning. Meanwhile, most human 

activities occur indoors. For example, one study by Klepeis et al. (2001) has shown 

that people spend approximately 89% of the time indoors and 5% in a vehicle with 

the remaining 6% spent outdoors.  

The history of using cell-tower ID to identify location is another commonly used 

location technique. Compared with other sensory data such as GPS and WiFi scans, 

using cell ID to acquire location has no extra cost because it is available on most 

handheld devices (Trevisani and Vitaletti, 2004) and it can even work in buildings. 

Recently some research groups employed it to locate users (e.g. Liu et al., 2013; Shi 
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et al., 2011). However, its accuracy is the lowest of all locating sensors. To get more 

accurate indoor location, some researchers have tried using infra-red, ultrasound, 

radio-frequency identification (RFID), wireless local area network (WLAN), 

Bluetooth, sensor networks, ultra-wideband (UWB), magnetic signals, vision 

analysis and sound (e.g. Bargh and de Groote, 2008; Kaleja et al., 1999; Pahlavan et 

al., 2000). The existing studies all used stations whose locations are known and are 

in environments which are already set-up for such contextual data collection. 

Therefore, they are not suitable for general use in real world lifelogging.  

Recently, WiFi locating techniques have started to gain more attention. 

Compared with GPS-based locating, using WiFi for locating takes less time to 

acquire accurate location. More importantly, it can work inside a building (Rekimoto 

et al., 2007). To utilise the advantages of different location sources, Kim et al. (2009) 

demonstrated that their system which combines GPS and WiFi data sources is more 

efficient than using a single source. Inspired by Kim et al.’s (2009) findings, this 

study will use GPS, Cell ID, WiFi entry and Bluetooth as the location context 

sources.  

Compared with location, users are more interested in “places” such as the home 

and the work place. This is because a place is a locale which is important to a user 

and carries important semantic meanings for them (Liu et al., 2013). This encourages 

the second stage of location context research: transforming location to a place that is 

meaningful for users. Concerning the actual analysis of location data to mine 

important concepts, Wolf et al. (2001) reported a technique which analyses GPS trips 

in order to automatically identify trip purpose and to maintain travel diaries. Liao et 

al. (2007) identified significant places by using a trained modelling technique on a 
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small dataset of four people. Ashbrook and Starner (2003) described a clustering 

technique to identify meaningful locations and received positive evaluation from 

multiple users. Finally, Kang et al. (2004) described an approach to automatically 

identify significant places using the clustering technique. They received positive 

evaluations on short (two day) logs from a small number of people.  

This research differs from all the above. It reports an experiment for mining 

significant locations using a fast processing, threshold-free approach which is based 

on text retrieval. This approach is evaluated on a multi-year location archive which 

will be described in Chapter 4. 

2.6.1.4 Activity Context 

Automatic recognition of human activities, such as sitting, driving, lying and 

walking, is one of the most important and challenging areas in lifelogging research 

(Takata et al., 2008). Different from other contexts such as time and location which 

is detected at one time point; the activity context requires combining data collected 

from many sources during a period. To mine and extract useful information from the 

extremely large volume of data, a machine learning technique is adopted by 

researchers to address this issue (e.g. Fitzgibbon and Reiter, 2003). As shown in 

Table 2.1, a lot of research based on machine learning has been conducted in the past 

decade on detecting semantic activity context. 

Detecting activity context using machine learning is a nascent research area. By 

reviewing the results of past research on activity detecting, it was found that no 

single algorithm could produces the best overall performance. For example, Lu et al. 

(2010) found that the optimal performance could be achieved by different machine 

learning techniques for different contexts. For example, they found that support  
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Table 2.1: Examples of detecting activity context from lifelogging data using machine learning techniques 

Source Contexts Algorithms 

Bao and Intille, 

2004 

Walking, Walking carrying items, Sitting & relaxing, Working 

on computer, Standing still, Eating or drinking, Watching TV, 

Reading, Running, Bicycling, Stretching, Strength-training 

Scrubbing, Vacuuming, Folding laundry, Lying down & 

relaxing, Brushing teeth, Climbing stairs, Riding elevator, 

Riding escalator 

C4.5 Decision tree and Naive Bayes 

Berchtold et al., 

2010 

Walking, No-movement, Standing, Lying, Climbing stairs, 

Cycling, Holding, Talking on phone, Typing text message 
Fuzzy Logic 

He and Jin, 

2008 
Running, Standing still, Jumping, Walking SVM 

Jatobá et al., 

2008 

Lying, Standing, Jogging, Walking, Climbing upstairs, Climbing 

downstairs 

ANFIS, CART decision tree, ID3 decision tree, Nearest 

Neighbor, k-Nearest Neighbor and Naive Bayesian 

Kao et al., 2009 
Brushing teeth, Hitting, Knocking Working at a PC, Running, 

Swinging, Walking 
FBF-based 

Lara et al., 

2011 
Walking, Running, Sitting, Ascending, and Descending. 

Naive Bayes, Bayesian Network, C4.5 Decision tree, 

Neural Network, Decision Stump and etc. 

Lee et al., 2011 
Lying, Standing, Walking, Going-upstairs, Going-downstairs, 

and Driving 
Artificial neural networks 

Maurer et al., 

2006 

Sitting, Standing, Walking, Ascending stairs, Descending stairs, 

Running 

C4.5 Decision Trees, k-Nearest Neighbor, Naive-Bayes 

and the Bayes Net classifier. 

Tapia et al., 

2007 

Lying down, Standing, Sitting, Walking, Running, Ascend 

stairs, Descend stairs, Cycling 
C4.5 Decision tree and Naive Bayesian 

Yan et al., 2012 
Stand, Slow Walk, Sit Relax, Sit, Normal Walk, Escalator Up, 

Escalator Down, Elevator Up, Elevator Down, Down Stairs 
C4.5 Decision tree 

Zhu and Sheng, 

2009 

Walking level, Walking upstairs, Walking downstairs, and 

Running 
Markov models 
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Table 2.2: Comparing machine learning algorithms  

 
Decision 

Trees 

Neural 

Networks 

Naïve 

Bayes 
kNN SVM 

Rulelearner

s 

Accuracy in general ** *** * ** **** ** 

Speed of learning with respect to number of attributes and the number of 

instances  
*** * **** **** * ** 

Speed of classification **** **** **** * **** **** 

Tolerance to missing values *** * **** * ** ** 

Tolerance to irrelevant attributes  *** * ** ** **** ** 

Tolerance to redundant attributes  ** ** * ** *** ** 

Tolerance to highly interdependent attributes (e.g. parity problems)  ** *** * * *** ** 

Dealing with discrete/binary/continuous attributes  **** *** ***  ***  **  *** 

Tolerance to noise ** ** *** * ** * 

Dealing with danger of over fitting  ** * *** *** ** ** 

Attempts for incremental learning  ** *** **** **** ** * 

Explanation ability/transparency of  

knowledge/classifications  
**** * **** ** * **** 

Model parameter handling *** * **** *** * *** 

Note: **** stars represent the best and * star the worst performance  

Source: Kotsiantis et al. (2007) 
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vector machine learning (SVM) is best for cycling, the Gaussian Model for driving 

and walking, and the Decision Tree for running. Furthermore, even for the same 

contexts, the different optimal algorithms were found in different studies (Lara et al., 

2011). Kotsiantis et al. (2007) compared the best-known classification algorithms, 

and found that there was no one machine learning algorithm whose performance can 

be greater than all other classification techniques as shown in Table 2.2.  

Based on the above description on “no best” machine learning technique, we 

decided to adopt a conventional and proven technique - support vector machine 

learning (SVM) as our machine learning methodology. As can be seen from Table 

2.2, SVM provides generally good performance (Kotsiantis et al., 2007). More 

details on SVM and its applications in this research are presented in Chapter 3. 

2.6.1.5 Social Context 

Social context indicates “who”, for example (“who” is talking to the user). Bluetooth 

can be used as a sensor to collect social context. It is a short-range wireless protocol 

which enables the exchange of data among two or more devices. It is increasingly 

routinely included in a wide variety of electronic devices from home computers to 

portable laptops, smartphones, tablets, keyboards, mice, mp3 players and 

headphones.  

By gathering and analysing the presence of nearby Bluetooth devices, Nicolai et 

al. (2006) defined the concept of familiarity within the Bluetooth space. Their work 

demonstrated that social context could be drawn from general encounters with 

devices. They defined three types of social relationship: “familiar”, “familiar 

strangers” and “strangers”. A “familiar” can be detected as a person familiar to the 

user, typically the user’s friends, family or work colleagues. “Familiar strangers” are 
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the people encountered on a somewhat regular basis, for example, in a pub or a shop. 

Typically interaction will never occur with these people. Finally a “stranger” is 

outside the friends/family/work-colleagues group. In the work by Lavelle et al. 

(2007), the authors presented an approach for utilising a mobile device’s Bluetooth 

sensor to automatically exploit the familiarity of other devices in order to decipher 

which users are important to individual users in the real world.  

In the lifelogging domain, Doherty and Smeaton (2008b) have investigated 

whether face-to-face conversation would affect the importance of the events. In a 

paper by Aizawa et al. (2004a), the authors emphasised that detecting a 

conversation’s importance benefits efficient retrieval from a lifelog. This thesis will 

employ www.face.com, which is a technology platform with best-in-class facial 

recognition software to detect faces from photographs (Kotsiantis et al., 2007).  

In previous research, authors have tried using phone call data to recognise 

people’s relationships (Quercia et al., 2010; Ye et al., 2009). For example, if a 

smartphone calls another smartphone rarely during working hours, but often in the 

evenings and during the weekend, then it is likely that these calls are from a friend or 

family, rather than a work colleague.  

It is the combination of these three sets of information (i.e. Bluetooth, face 

detection and phone call) that gives a much stronger indication of the social 

connections to the people we encounter.  

2.6.1.6 Environment Context 

Environment contexts are widely adopted in the context-aware field to indicate 

“what the user is doing”. The context-aware system can change device’s behaviours 
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when the environment changes. The environment around a user such as temperature, 

noise and light is constantly changing. There has been initial research investigating 

how important the environment context can aid user recall of past experiences 

(Hirakawa, 2007). For example, Siewiorek et al (2003) have classified 

environmental noise level into three states: low, medium and high. A low value 

describes a quiet environment, whereas medium value identifies common situations 

such as talking and the high value states the environment such as a pub or bar. 

According to the environmental noise level, the system sets up the phone ring 

volume. In lifelogging, the environment context mainly includes that ambient 

temperature, ambient light brightness, environmental noise level and weather etc. To 

make the lifelog data more meaningful, Lee and Cho (2007) had considered 

collecting weather information. Doherty et al. (2007) described using the 

environmental data, i.e. the temperature and environmental noise level to segment 

lifelog data into events successfully. 

2.6.2 Combining Multiple Data Streams 

A sensor is a converter that measures a measurable attribute and converts it into a 

signal which can be read by an observer such as a computer or smartphone 

(Janardhan and Kumar, 2012; Majumder and Ray, 2012). For lifelogging users, most 

lifelog data is not easy to access directly because it can come from different sensors, 

each of which has a different data format and a different value range. There is no 

data management tool such as a search engine that can be applied directly on lifelog 

data because of a semantic gap between the user’s query and the system data 

(Smeulders et al., 2000). This semantic gap indicates the lack of coincidence 
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between the knowledge that sensor data can give a user and the actual meaning of 

the sensor data. Most of the sensor data, such as GPS, is in numeric form which does 

not support very well most conventional user queries. To enable user searching and 

exploration of lifelog data, the raw data needs to be transformed into semantic 

contextual annotations that the user can understand and use. For example, GPS needs 

to be transformed to an address or a meaningful place such as home.  

Physical sensors are the most frequently used. These are hardware sensors and 

their function is usually very simple. This is because they are designed to be linear or 

linear to some simple mathematical function of the measurement (Janardhan and 

Kumar, 2012). They simply collect data; the consoles will read data with specific 

protocols and store the data using a specific data format (Majumder and Ray, 2012). 

However, physical sensor data is not typically designed to be human-readable, but in 

a form suitable for transmission and processing (Albertos and Goodwin, 2002). In 

this thesis, when sensors are mentioned, they mean physical sensors from which 

most lifelog data is collected. 

Because the outputs of different physical sensors are in different formats, a way 

must be found to fuse them in order to acquire a united interface. To address this 

problem, we will introduce the concept of virtual sensor in Chapter 4.  

Generally, the virtual sensor is defined as a software sensor which has three 

functions: 1) combining different format data collected from multiple psychical 

sensors; 2) transforming the combined different format data into a natural language 

which could be easily understood by humans; and 3) sharing the data through the 

web. Virtual sensors provide indirect measurements of abstract conditions by 

combining sensed data from multiple physical sensors, but can be used just like a 
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physical sensor (Costantini and Susstrunk, 2004; Kabadayi et al., 2006). As 

mentioned above, the outputs of virtual sensors are in natural language which can be 

understood by humans (Lu et al., 2010). In addition, it enables researchers with 

different technical background to dig the data. For example, a researcher in 

healthcare can explore the link between sitting length and obesity from the virtual 

sensors outputs when a researcher in computing science shares data. The current data 

sharing function is less developed. A preliminary study was conducted by Lu et al. 

(2010) where they implemented a virtual sensor to export the outputs which can be 

used by other application on the phone. However, the outputs are not easily accessed 

by other researchers. Another study was conducted by Kim (2011) who used web 

services to share the outputs from the virtual sensor. Kim’s (2011) work enables 

researchers to collaborate via the Web, but it is only open to researchers who have a 

background in programming languages such as SQL to make enquiries. This study 

will implement a set of virtual (software) sensors to enrich the raw sensor streams 

with semantically meaningful annotations. In addition, we implement the data 

sharing function through the web. More details will be discussed in Chapter 4. 

2.6.3 Segmenting Events 

2.6.3.1 What is an Event? 

The definition of an event varies among research groups (Zacks and Tversky, 2001). 

According to Zacks and Tversky (2001: 3) “an event is a segment of time at a given 

location that is conceived by an observer to have a beginning and an end”. 

However, the timescale of an event could be from a few seconds to a few hours. For 

example, picking up a pen from the ground is an event while a four-hour drive can 



39 

 

also be considered as an event. Furthermore, an event is also conceived as having a 

hierarchical structure, as being composed of parts, or subevents (Hard et al., 2006).  

Events depend on context and occur at different granularities or resolutions 

(Jain, 2008). When asking people to describe what they did during the day, they 

might list a few of events, such as "I got up at seven, then prepared my breakfast. 

After I had my breakfast, I began to drive to work...". Such sentences are typical 

descriptions of events. People segment the complex dynamic world and the 

continuous flow of lifelog information into a modest number of meaningful units 

(events) (Kurby and Zacks, 2008). To discover what an event is, one approach is to 

ask for users’ opinions directly (Newtson, 1973). Following this instruction, Zacks 

and Swallow (2007) asked users to watch short movies of single actors performing 

everyday activities and to segment them into events by pressing a button whenever 

they believed a boundary occurred. Although Zacks and Swallow (2007) did not give 

users any special instructions, the segmentation results were remarkably consistent. 

Observers agreed with each other on the event boundaries. Inspired by this, the 

current study attempts to automatically locate the event boundaries by training 

dataset using support vector machine learning (SVM) technique based on human 

decision boundaries. 

2.6.3.2 Why Use Events? 

Since there is typically a huge amount of data in a lifelog, it is unlikely that 

individuals can organise every piece of information and remember where they put it. 

An organisational structure is needed to summarise the data into meaningful chunks 
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of information for a user to read. To achieve this, it is necessary to understand how 

people organise information and items in their memory.  

Studies on autobiographical memory have suggested that we organise our 

experiences into events. Brown and Schopflocher (1998) developed an event-cueing 

technique to explore the nested structure. They found that clusters of events people 

recall together are usually causally related, temporally adjacent, or similar in content. 

Kurby and Zacks (2008) found that people observe the complex dynamic world in 

terms of events. They also found that organising ongoing activity into events will 

integrate information over the recent past to improve predictions about the near 

future. Therefore, the context-free event segmentation used in lifelogs is a harder 

problem as it is unguided. It is noted that unless otherwise stated, the author is using 

the context-free, i.e. the ‘artificial’, non-psychological sense of ‘event’. The 

motivations for using event segmentation are summarised as follows.  

 An event is a natural unit for human memory.  

Zacks et al. (2006: 466), who studied how representation in the brain works, 

states that humans store memories as events: “... segmenting ongoing activity 

into events is important for later memory of those activities... ”. This research 

suggests that human event segmentation is context-related, whereas lifelog event 

segmentation is context-free. 

 An event is a reasonable unit for lifelog data management.  

The lifelog dataset consists of many types of sensor data that are continuous and 

lack natural breakpoints. Lifelog data must be organised into logical and 

meaningful units. For example, an image browser uses one image as one unit. A 
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search engine considers the document as its unit. This work on lifelog typically 

considers the event as the unit of retrieval.  

 There is no major context changing in one event. 

Newtson et al. (1977: 858) noted that “... breakpoints [between events] tend to 

correspond to points at which the most physical features of the action are 

changing...”. Therefore the most natural way to segment an event is to find the 

breakpoints. When some context changes, it will generate a breakpoint. 

Accordingly the big change usually happens at the breakpoint which separates 

two events. A single event usually shows little or no change in major.  

2.6.3.3 Approach to Event Segmentation 

Obeid et al. (2010: 132) noted the following about events.  

 

“we take events to be associated with patterns of change. An event must 

involve at least one object over some stretch of time or involve at least one 

change of state…”  

 

 

In the lifelogging domain, Loui and Savakis (2000) mentioned segmenting 

users’ album photographs using date and time. Additionally, the images content 

could be considered if the image’s date and time are not available. Lin and 

Hauptmann (2006) described a k-means clustering algorithm to cluster images 

together using their visual features. A weakness of this approach is that the number 

of events/clusters must be fixed to a value k, but in the real life, the number of 

everyday events can vary from day to day (Doherty and Smeaton, 2008a). 

Furthermore, this algorithm couldn’t recognise the boundaries of events. Wang et al. 

(2006) segmented their lifelog video into five-minute clips, however the real life 
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could not be segmented based on a fixed time length; we need something more 

flexible than a fixed duration or fixed number of event segmentation approaches.  

Considering change of context has been used to segment events. For example, 

Cheng et al. (2010) segmented lifelog data by detecting peaks of activity change. 

Osada and Yoshino (2012) segmented an event using the change of address. In their 

research, Chen et al. (2011) segmented a long-term lifelog into events; but they 

mostly focused on grouping lifelog data into events using the Textilling algorithm 

without considering the continuity of lifelogs. Segmenting events based on one 

single data source is not the only approach. Doherty et al. (2011) separated a day’s 

images into some event groups using the context from photographs and also used a 

combination of accelerometer, light, passive infrared, and temperature sources.  

Figure 2.2 shows a first generation WWW interface to a large SenseCam image 

archive that implements such an event segmentation approach. 

Figure 2.2: An event-based browsing tool for visual SenseCam archives 

 

Source: Doherty, Moulin and Smeaton (2011) 
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In their experiments, Doherty et al. (2011) only considered changes in visual 

features. In real life, some activities could not be easily segmented. For example, 

when a user is driving, the landscape may change dynamically and constantly. 

Obviously, the driving activity would be segmented into many events using image 

data only because the similarity of adjacent images is very low when the user is 

driving. In their study, Smith et al. (2011) talked about using location to segment 

lifelog data into events, such as home and the work place. Inspired by this, the 

current research considers the change in every physical and virtual sensor as a source 

data to segment events.  

Based on the above description, we hypothesise the following: 

Hypothesis 1: Event segmentation can be performed effectively by 

detecting the changes in sensor data.  

2.6.3.4 Keyframe Selection 

After events are segmented from lifelog data streams, each event may contain 

numerous pictures and hence users are therefore still faced with large volumes of 

data. One approach is to select one most relevant picture representing the event, 

called “keyframe selection” based on the histogram intersection distance (Doherty et 

al., 2008).  

 (   )  ∑     ( ( )  ( )) 
                            (Equation 2.1) 

where X and Y are histograms with n attributes, and X
(i) 

denotes the count of the 

i
th 

attribute of X.
 

Keyframe selection is a very common task in the video analysis domain. 

However in the lifelogging domain, there are very few researchers working in this 
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area. Six keyframe selection methods were investigated by Doherty et al. (2008): 1) 

middle image, 2) within event, i.e. the closest to all the other images in the event; 3) 

cross event, i.e. the closest to all the other images in the given event, but also is most 

distinct (histogram intersection distance, see Equation 2.1) from all the other images 

in the other events (Grauman and Darrell, 2005); 4) image with the highest quality 

(the contrast and salience quality measures); 5) within event and image quality 

fusion, i.e. the closest to all other images, and also has a good quality score (the 

contrast and salience quality measures); and 6) cross event and image quality fusion, 

i.e. with a good image quality (the contrast and salience quality measures), and also 

the most distinguishable from the keyframes in the other events. 

In those six approaches, the image quality method achieved the best results 

(Doherty et al., 2008). Therefore, the method of image quality is adopted in this 

study. One limitation in the existing keyframe selection is that researchers only 

considered the image itself but did not consider the effect of other contexts such as 

the social context. The social context is an important indicator for keyframe. For 

example, Doherty and Smeaton (2008b) found that the photographs with faces are 

identified by users to represent important events. Based on this idea, this study 

investigates the effect of different contexts (i.e. social, location and environment) on 

keyframe selection as described in Chapter 5. 

2.6.4 Generating Narratives  

2.6.4.1 What is a Narrative? 

“When somebody tells you his life... it is a narrative achievement” (Bruner, 2004: 

692-693). Hardy (1968: 5) stated the relationship between life and narrative as “we 
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dream in narrative, daydream in narrative, remember, anticipate, hope, despair, 

believe, doubt, plan, revise, criticize, construct, gossip, learn, hate, and love by 

narrative”. As described by Riedl and Young (2004: 5), “A narrative is a sequence 

of events that describes how the story world changes over time”.  

Indeed, narrative is one of most important approaches to spreading knowledge 

(Carr, 1986; Tuffield et al., 2005). From the earliest times, humans began to transmit 

knowledge as narrative, such as telling stories or cave writing. Narrative is not only a 

combination of concepts, as Niehaus and Yong (2009: 75) stated, but “rely on the 

readers to use narrative conventions and reasoning to complete their understanding” 

and thereby bring their own meaning into the topic. Biological research shows that 

reading a narrative activates more brain regions than reading just words and 

sentences (Xu et al., 2005). Furthermore narratives can also be used to support 

keyword text searches using information retrieval techniques (Chen, 2009; Jaimes et 

al., 2004), which is the natural method that users have to locate knowledge using 

WWW search engines. 

Our life is a sequence of events and actions. Everything we see, learn, and do 

becomes part of a story. This is the way we learn about the world around us and this 

is the way we should present our knowledge (Schank, 2000). A narrative may thus 

be seen as a way of presenting the captured events using all contexts of what had 

happened (Fatah gen Schieck et al., 2003).  

In the lifelogging domain, some researchers have noticed the importance of 

generating narratives from lifelog data. In the existing research into lifelog, the 

textual annotation has been used to describe each event (Aizawa, 2005). As indicated 
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by Xu et al. (2005), narratives are known to have cognitive processing advantages 

when compared with annotations.  

In a more recent study, Niehaus and Young (2009) mentioned that the user 

would like to add information in order to complete his understanding by using 

inferences when reading narratives. With these inferences, the facts and events 

presented follow a smoother logic, and they seem much more cohesive. To the 

reader, narrative is not only the combination of annotations; but more than that; 

narrative can give more information to users when they read it by adding more 

relative knowledge.  

2.6.4.2 Approach to Narrative Generation 

Narrative has shown potential to help people recall their lives; however, users do not 

want to spend time editing or authoring their narratives, if there is no tool to aid their 

efforts (Appan et al., 2004). For lifelogging, the narrative should describe how the 

life experience has progressed and changed over time. Rather than being a sequence 

of ‘I did < something > at that < time >’, ‘I did < something else > at the < time > 

at that place’, the narrative generation process should aim to represent life 

experience in a more natural manner, for example, the ‘I did something else at the 

next event time’ narrative could be represented more naturally as ‘After arrival, I 

started to < something > at about < time >’. The narrative generation in this study 

consists of three sub-processes, namely fabula, sjuzet, and discourse generation. The 

fabula
1
 and sjuzet

2
 are from Russian words and have been “described by modem 

                                                 
1 Fabula: “фабула” means that the sequence of events, or history, as they apparently happened in the 

Story (McVeigh, 2008). 

2 Sjuzet: “сюжет” narrative ordering of the plot, or story itself (McVeigh, 2008). 
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literary theorists as, respectively, the timeless and the sequenced aspects of story” 

(Bruner, 2004: 694). In other words, the fabula is the raw material for a story and the 

sjuzet is how the story is told, i.e. the structure. According to Cheong and Young 

(2008), a fabula is a story world that includes all the events, characters, and 

situations in a story. In this study, fabula is a series of sentences based on the 

detected contexts and segmented events; sjuzet is a paragraph of narratives generated 

from the fabula without the repeated sentences; and discourse is a paragraph of 

narratives with an illustrated picture/keyframe taken during the event. A detailed 

example for fabula, sjuzet and discourse is provided in Table 6.1 in Chapter 6.  

Narrative generation is a process that involves the selection of narrative content 

(the events that will be presented to an audience), ordering of narrative content, and 

presentation of narrative content through discourse (Riedl and Young, 2010). When 

describing a narrative approach to data representation, Harper et al. (2007: 3) 

concluded that “the ability to juggle-up the narrative of life to create evocative 

stories was also a bonus”. Gemmell et al. (2005) described how to use many types 

of data collected by the MyLifeBits system to construct stories as a response to 

queries. With the additional captions of images and audio clips, the narrative can be 

generated as shown in Figure 2.3. In their experiments, Gemmell et al. (2005) mostly 

used time and location contexts, hence only simple narratives can be generated.  

Additional research has taken place on generating narrative presentation on 

lifelogs. For example, Byrne et al. (2011) asked participants to manually choose 

multimedia data collected by lifelogging tools and to organise them to generate 

stories. Therefore, it is not real narrative generation but storytelling. In Hammerl et 

al. (2012), the narratives they generated were a list of activities ordered by time. 
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Inspired by and extended these existing studies, this study generates narratives based 

on multiple types of contexts and the segmented events. The details will be described 

in Chapter 6. 

Based on the above description on the concept (what), advantage (why) and the 

process (how) of narratives, we propose the following hypothesis. 

Hypothesis 2: A meaningful textual narrative that accurately represents 

an event can be generated automatically.  

Figure 2.3: The interface of telling stories with MyLifeBits 

 
 

Note: All images associated with a narrative are generated using time and location. 

Source: Gemmell et al. (2005) 

 

2.7 Displaying Results 

With the development of new devices such as the smartphone, data representation on 

multiple devices has become an important research topic. However, the existing 
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research mainly focuses on “universal accessing”. For example, Hess et al. (2011) 

investigated the user requirements and preferences across device media systems. 

They argue that it is required for a universal access on different devices. The content 

needs to be shared and accessed between personal and shared devices. Fleury et al. 

(2012) reported an approach to transform video content from a mobile device to a 

television. Recent software solutions such as Apple’s Bluetooth File Exchange allow 

for over-the-air transfer of content such as photographs or documents between paired 

(Source from Wikipedia).  

More attention is needed to consider the differences in devices such as size of 

the screen and the availability of a keyboard. Ubiquitous computing scenarios not 

only enable the “ubiquitous accessing”, but also bring a challenge for system and 

user interface designers. Different types of devices have different interaction 

expectation standards. For example, the user interface based on keyboard and mouse 

has become very successful among PC users. The user interface based on multi-

touch screen allows intuitive ease in navigation and catches the fancy of millions of 

smartphone and tablet users (Tambe, 2012). It becomes increasingly difficult to 

optimally represent content across the myriad of devices currently available, due to 

different size, resolution, interaction mechanisms and environment of use. 

Human-computer interaction (HCI) experts have realised the importance of 

characteristics of output devices on interface design (Robertson et al., 1996). As 

Tambe (2012: 24) stated in his work, “Clearly, different products representing 

different paradigms require different solutions. When the needs and habits for a 

product are different in another medium, a paradigm shift is needed”. Lifelogs are 

made of different kinds of contexts. They can also be presented in different ways. 
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There might be no single optimal way to present lifelog data on every device. The 

best way to display lifelog data is using different representation techniques on 

different devices for different usage scenarios.  

Therefore, we propose the following hypothesis. 

Hypothesis 3: Different access devices benefit from different 

representations of lifelog data.  

2.8 Summary 

In this chapter, we reviewed the history of lifelogging and the current status of 

research in this area. In comparison with other research topics, lifelogging is quite a 

young and open research area. In the first stage of lifelogging research, most 

researchers focused on developing suitable lifelogging tools which needed less user 

effort and could be widely used in the wider population. Having been studied in 

other research (e.g. Doherty et al., 2011), the SenseCam could not achieve this goal. 

The arrival of smartphones not only changes the concept of a phone, but also gives a 

new hope to lifelogging research because of its online computation and networking 

capability. This motivates the current research to develop a new generation of 

lifelogging tool based on the Android smartphone which is one of most popular 

smartphone OS’s. Furthermore, smartphone can be seamless integrated into daily 

life, is resource efficient, secure, and facilitates long-term digital preservation. 

Because the data collected from many sensors are in different numerical 

formats, it needs to be transformed into meaningful and understandable contexts. In 

this chapter, previous research on context detection and event segmentation was 
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reviewed. Six contexts are detected as personal, time, location, activity, social and 

environment.  

Narrative is the most acceptable form of knowledge for humans and its 

advantages were documented in other domains. In this chapter, we reviewed the 

relevant literature on the definition of narrative (what), the reason to use it (why) and 

the approach to generate it (how).  

In the last part of this chapter, we reviewed the existing work on how to display 

the lifelog data analysis results. Most of research focuses on the display in only type 

of device. Based on the unique characteristics of different devices, we propose that 

different access devices benefit from different representations of lifelog data.  
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CHAPTER THREE  

RESEARCH METHODOLOGY 
 

3.1 Introduction 

In this chapter, the methodology employed for different aspects of the research is 

presented. It firstly describes the data collection based on multiple sensors and the 

Android platform. Then the data analysis techniques such as term weighting and 

support vector machine learning (SVM) and their applications in data analysis are 

introduced. Finally, it presents the methodology employed for experiments in data 

analysis and data representation processes of the system. Figures 3.1, 3.2 and 3.3 

show the main points addressed in this chapter, the overview of the proposed 

lifelogging system and its architecture. 

Figure 3.1: Work in Chapter 3 

 
Source: The author (2013) 
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Figure 3.2: The lifelogging system overview 

  

Note: The system can automatically collect data and upload it to a server. Users can 

access their data through a web browser. 

Source: The author (2013) 

 

 

Figure 3.3: The lifelogging system architecture 

 

 Source: The author (2013) 
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The lifelogging system developed in this study not only contains data collection 

but also includes data storage, data analysis and the user interface to represent the 

results. Figure 3.3 shows a new architecture for lifelogging systems. The data is 

collected by a smartphone and then sent to a server when the phone is being charged. 

The server reads and processes all the users’ data. On the user side, data can be 

accessed using a web browser. Once the user is logged into the website, data can be 

accessed by browsing through information retrieval tools. The details are shown in 

the following subsections. 

3.2 Lifelog Data Collection 

In this study, lifelog data is collected from multiple sensors based on the Android 

platform, without requiring any user input.  

3.2.1 Multiple Sensors 

The smartphones used for data collection have multiple sensors. They include the 

accelerometer, GPS receiver, Bluetooth, and camera. These sensors are good data 

sources for researchers to investigate a user’s activities. For example, a GPS receiver 

provides the user’s location information; a camera provides picture/image 

information.  

For data collection, the lifelogging system not only collects a user’s personal 

information using physical sensors, but also collects related information such as 

weather information from the internet and a location gazetteer. With the location and 

time information, the weather information for the user can be found by some online 

weather service. All the data captured is shown in Table 3.1. 
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Table 3.1: A full set of available sensors and default sampling rate 

Sensor Name Data Granularity 

Accelerometer 3 Directions’ Acceleration, Time 5 readings/second 

Bluetooth MAC address, Name, Type, Time Every 2 minutes 

Base Station 
Base Station ID, Country Code, Area 

Code, time 
event-driven 

Camera Photograph, Time 
2 photographs 

/minute 

GPS Latitude, Longitude, Elevation, Time Every 20 meters 

Noise Noise Level, Time Every 30 seconds 

Music Track name, Artiest name, Time event-driven 

Phone Call 
Phone Number, Start Time, End Time, 

Type 
event-driven 

Power Status Charging Status, Time event-driven 

Screen Status Screen on/off event-driven 

SMS Phone Number, Time, Send/Receive event-driven 

Taken 

Photograph* 
Photograph, Time event-driven 

WiFi  
MAC Address, Name, Signal Strength, 

Time 
Every 2 minutes 

Weather 

Weather, Distance (km), Cloud (%), 

Temperature(℃), Discomfort index (%), 

Rainfall (mm), Snowfall (cm), Humidity 

(%),Wind direction, Wind speed(m/s), 

Sea-level pressure (hPa) 

Every 30 minutes 

Note: The frequency can be modified using a configuration file. * indicates that the 

system records the user’s photograph taken event. 

 

3.2.2 Android Smartphone Platform 

In this study, the lifelogging system is developed based on the Android smartphone 

platform. Google releases the Android code as open-source under the Apache 

License. Any smartphone complying with the license requirements can run the 

Android system. Because it is a customer-based virtual machine, the same app can 

be used on smartphones with different versions of the Android operating system. It 
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means that the lifelogging tool can be deployed on any smartphone which is running 

the Android system. Based on the Android platform, the proposed lifelogging system 

has the following features.  

 It does not disturb the user’s interaction.  

The system runs like a background service. It has no interface. Once the user 

installs and finishes the configuration, it can be started automatically when a 

user turns the smartphone on. It can detect screen status. It will stop collecting 

data and release related the resource when the screen is on or when the user is on 

a phone call. When the phone’s screen is off, it will awake and run in the 

foreground to maximise use of the phone’s resource.  

 It does not require the user to organise lifelog data.  

It doesn’t ask the user to organise data manually. It uploads and organises data 

automatically when the smartphone is being charged. Because most lifelogging 

users are not experts on computing, they can easily make mistakes which affect 

the data quality. On the other hand, updating and organising data can be boring 

and time consuming work, due to which the users may stop using the lifelogging 

tool. The automatic organisation of data solves this issue.  

 It is context aware.  

Collecting more data means consuming more battery resources. For example, if 

a smartphone keeps the GPS on, the battery can only work for 5 to 8 hours. 

Collecting more data also means using more bandwidth and processor time 

when it sends data back to the server. It also costs more, in terms of battery life 

because wireless networking consumes a significant amount of battery resources 
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during data transmission. Furthermore, additional data increases the amount of 

data which needs to be analysed. The analysis processing, such as using SVM 

machine learning to segment events, takes a longer time when more data is 

applied.  

In the proposed lifelogging system, we only begin to collect some information 

when it is necessary. For example, it the GPS sensor will be turned off 

automatically when a user sits down to have coffee, and turn the GPS receiver 

on when a user leaves the coffee shop. It can also learn the user’s location 

pattern automatically and judge if it is necessary to turn on the GPS sensor. It 

can reduce sampling frequency and extend battery life yet retain the same 

detailed lifelog capture. It can choose an optional sensor to collect data if there 

are more than one data source. For example, if WiFi and GPS are available in 

the area, it will choose WiFi as a location source when the WiFi’s location is 

known in the system. Using WiFi for location information would consume less 

battery life and return a comparably accurate result. 

 It implements data security.  

It has higher data security since all data is encrypted on both the smartphone and 

server sides. When the system collects some sensitive data such as phone 

numbers, it encrypts the data using the password-based encryption (PBE) 

method (Ab Rahim, 2004). For photographs, the system will not encrypt whole 

image files, but only the header of the JPG file (Huang et al., 2009). On the 

other hand, a user needs a password to access the file via a web browser or user 

application. The password can be set up or changed only when using the 

smartphone. In our system, we use the SIM card series number as the encryption 
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key. This ensures that the user will not lose any information, even when he or 

she changes their phone. The user can also access their data on any Android 

smartphone with the same SIM card. 

 It does not require specific hardware.  

The software can run on any device which is installed with Android later than 

version 2.2. It can automatically detect available sensors. If some sensors are not 

available, the system can also run normally, simply not gathering information 

from the sensors. 

 There is no time gap among sensors.  

There is no time gap among the sensors. A globally synchronized clock is 

crucial when several sensors work together (Martincic and Schwiebert, 2005). 

The previous lifelogging tools were implemented with different devices working 

independently of each other. For example, in previous research, a SenseCam 

was used to capture photographs, and a GPS receiver was used to collect 

location information (Gemmell et al., 2005). However, the devices used 

different system clocks. There is no effective way to synchronize the time of 

different devices. In addition, SenseCam will lose the time setting when it is out 

of power. This makes it very difficult to integrate location and visual data 

(Gemmell et al., 2005). In this work, all the sensor data collected are timed with 

one clock. The system also records satellite time when it captures GPS data. It is 

very easy to identify any data with the wrong timestamp by comparing the two 

timestamps. The server can also correct data using satellite time automatically 

when data is uploaded. 
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 It ensures longer battery life.  

As reviewed in Chapter 2, the smartphone is an appropriate lifelogging data 

collection tool. However, in past research, very few successful lifelogging 

applications have been developed on the smartphone as it still not feasible due to 

considerable battery limitations (Doherty et al., 2011). The proposed lifelogging 

system employs a clever power management strategy (i.e. context aware). The 

smartphone’s battery can work for at least a full day. It can even work longer 

after it has learned the user’s regular life pattern.  

 It supports real time mode.  

Real time networking is getting more and more popular. People are very 

interested in sharing information in real time. If a user activates real time mode 

on, the software will detect the important moments and upload to the server 

immediately. For example, if a face is detected from a photograph, the 

photograph will be uploaded to the server immediately. Other related 

information such as location and environmental noise level will also be sent. In 

this study, to extend the battery life, the system is not running in the real-time 

mode, but it can be turned on easily when necessary. 

 It is extensible.  

In the future, more new sensors may be integrated into smartphones. In order to 

deal with that, the software in this project implements a flexible architecture 

based on the Android API which can automatically detect a new sensor and read 

its data. On the server side, a flexible framework which can identify sensor type 

with the header of the data file is also implemented. For example, the current 
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experimental smartphone does not have a light sensor and does not collect light 

intensity information. However, when the system is installed on a smartphone 

with a light sensor, the system will automatically find the light sensor and 

collect light level information. When the server receives the data file, it will read 

the header of the file in order to discover the sensor type and decide where the 

data will be stored. If it is a new sensor, the system will create a new table for 

the new sensor automatically. 

3.3 Lifelog Data Storage 

The battery and storage are among the smartphones’ most important resources. Even 

though most smartphones support external SD storage cards, they have quite small 

memory compared with a computer’s storage. The collected data could not have 

been sent to the server immediately, because access to a wireless network is not 

available all the time and everywhere for transmitting data. In addition, using 

wireless for data transmission has a high cost in terms of battery consumption. 

Therefore, we design the system to store all sensor data on the phone SD card 

temporarily and transmit it to the server only when the smartphone is being charged. 

By doing so, the system ensures enough battery usage for data transmission. 

Furthermore, this system reduces the data file size which helps to avoid large 

volume data loss when the wireless network becomes disconnected during 

uploading. For instance, this study didn’t adopt any of the most commonly used data 

formats such as XML and JSON, because XML and JSON tags waste a lot of storage 

and bandwidth (Wang, 2011). Another reason is that photographs are binary files and 
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they can’t be stored using XML or JSON data format file. The data structure of our 

system is shown in Figure 3.4.  

Figure 3.4: Data file structure 

 

Note: The accelerometer data file contains 30 readings, each line containing one 

time-stamp. The server will associate a timestamp with each reading when it is read. 

Source: The author (2013) 

 

The data file contains “UUID”, “Data Type”, “Device ID” and “Sim card ID” on 

the first line. The “UUID” is the unique ID of the file; it will be stored in the 

database when the file is read. The system does not read it again if the ID is already 

in the database. It thus avoids re-reading the data file under a multi-thread situation. 

“Data Type” can give system information about which sensor this file is generated 

from. The system decides to start related proceedings to process it, because it is 

made up of several services which can process different types of data files. “Device 

ID” and “Sim card ID” can be used to identify the smartphone and user. The 

remaining lines are data lines. For most kinds of data lines, each line contains one 

time-stamp and one reading of values. But for accelerometer data files, each line 

contains 30 readings and one time-stamp to save storage space. Because wireless is 

not stable as a wire data transmission method, it is easy to lose data. This study sets a 

maximum data file size of 200k for photograph files, because it decreases the data 

risks during data transmission. Once the data file reads the limitation, it creates a 

new file and encrypts the old file into binary format. All new data is then written into 

the new file.  
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Normally, the smartphone generates about 300Mb of data every day in gathering 

data. A smartphone with a 4 GB SD card can store about 12 days’ lifelog data. With 

regard to battery life, the system does not upload all data in real time. It only uploads 

data when the phone is being charged. At the same time, it sorts all data files by time 

and sends them to the server. When the data integration file is checked, the server 

will send back a flag which confirms the success of transmission. Then the system 

will remove the file from the SD card. The detail of pseudocodes on transmitting 

data from smartphone to server at both phone and server sides are shown in Figures 

3.5 (phone side) and 3.6 (server side). 

Figure 3.5: Pseudocode for data transmission from phone to server (phone side) 

 
 

Source: The author (2013) 

3.4 Lifelog Data Analysis 

The lifelogging system in this study not only collects data, it also gives feedback to 

users which might be of benefit to them. However, the bulk of the data collected by 

the system is numerical such as latitude and longitude which does not make sense to 

the users.  

WHILE true  
 Let system sleep for 1 second 

 SET POWER_STATUS= get charging status 

 IF POWER_STATUS THEN 

  SET NETWORK_STATUS= Wifi status 

  IF NETWORK_STATUS THEN 

   List all the data file by time 

   SET fileCount to 0 

   SET fileNumber to the number of data files 

   FOR i=0 to fileNumber  
Post file to the web service with fileType and SimcardID, 
return true if it is sent to server and delete the data file 
from SDcard 

   Next  

  END IF 

 END IF 

END WHILE 
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Figure 3.6: Pseudocode for data transmission from phone to server (server side) 

 
 

Source: The author (2013) 

 

To enable the user to view this information, such data should be something that 

users can understand. In our system, the server receives and stores data sent by the 

phone side. It also collects additional information (such as weather information) 

from the internet. It translates raw sensor data into the contexts which are 

understandable by the user. For example, it translates the latitude and longitude to 

the address, and defines the semantic meaning of the address for the specific user, 

such as “home” and “workplace”. 

The data analysis component is based on the server side which includes 

detecting contexts, segmenting events, and generating narratives which will be 

introduced in more detail in Chapters 4 to 6. The main functions are: 

SET fileType= getPostParameter(fileType) 
SET simcardID=getPostParameter(simcardID) 
SET dataFile=getPostFile() 
SET fileHead=read(dataFile) 
SET fileID= getPhoneID(fileHead) 
SET userID= getUserIDFromDatabase(simcardID) 
IF fileID in database THEN 

 Delete the file and end function 

END IF 

SET fileIntergrity= checkFileIntergrity(dataFile) 
IF fileIntergrity is false THEN 

 Send fail flag to client and end function 

END IF  
SWITCH(fileType) 
 CASE imageFile: 
  Decrypt the file header with simcardID 

  Write the file path in database 

  Move the image to the image folder 
  BREAK 

 CASE sensitiveFile: 
  Decrypt the file header with simcardID 

  BREAK 

 DEFAULT: 
   

END SWITCH 

Send a success flag to client and end function 



64 

 

 Decoding and verifying data file: The data files sent back by the smartphone 

may not be integral due to wireless failure. This component would decode the 

entire received file and verify them. If the file is complete, it will be stored in the 

database or in a specific format file. A flag indicates the successful transmission 

will be returned or it will remove the failed file and send an error message to the 

phone user/client.  

 Collecting external data: In some cases, external data sources can provide 

valuable information. With a user’s time and location information, the server 

can collect information such as weather information from on-line services.  

 Segmenting events: Typically, in a full day, a person encounters more than 20 

individual events, with each event lasting 30 minutes on average (Doherty and 

Smeaton, 2008a). This work employs the machine learning approach to identify 

events from sensor streams by detecting changes of contexts.  

 Semantic analysis software (virtual sensor) for sensor streams: The output of 

the sensors consists of raw sensor streams. To support real-time analysis, 

semantic analysis tools are needed at both server and smartphone sides. These 

act as virtual (software) sensors to enrich the raw sensor streams with 

semantically meaningful annotations. For example, using raw accelerometer 

values, we can identify the physical activities of a user, e.g. walking and driving 

(Qiu et al., 2011). The following virtual sensors are used: semantic date/time, 

meaningful location, personal physical activity, social interactions, environment 

context, semantic visual concepts automatically identified from the photographs 

and personal context of the user’s life patterns. Using these sources, we can 
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semantically enrich the annotations of events and construct a narrative to 

describe each event needed for both search and presentation.  

 Indexing and retrieving events: In order to retrieve life experiences, the users’ 

experiences and their annotations are indexed. This work employs an off-the-

shelf search engine to index the narratives for every piece of life experience 

data. It also provides keyword search through the e-memory archive, ranking 

and presenting the multimedia life experience data to the user through a web 

interface. 

3.4.1 Data Analysis Techniques 

In this study, a large quantity of sensor data, also referred to as data streams, was 

collected by participants, most of which was not readable by humans. To mine and 

extract useful information from data, term weighting and support vector machine 

(SVM) techniques were employed in this study. Term weighting approaches are 

widely used in information retrieval to help users to find the highest related 

document according to their query. Term weighting occurs through analysing the 

statistical occurrence of terms in the natural language as well as in the document 

itself. SVM is one of most commonly used classification tools in the data mining 

area (Quackenbush, 2001).  

3.4.1.1 Term Weighting  

It is noted that this subsection on term weighting is mostly based on one of our 

papers as Qiu et al. (2010) which is an output of author’s PhD studies.  

In text retrieval, one of the initial challenges faced by researchers in the field 

was how to identify the most important terms in a piece of text and in a language as a 
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whole. Finding a solution to this problem would allow for retrieval of ranked lists of 

documents and not just sets of documents based on Boolean logic. The solution lies 

in the work of Luhn (1958) which claims that the frequency of word occurrence in 

an article furnishes a useful measurement of word significance. This means that term 

frequency information from both documents and language as a whole can be used to 

identify and weight highly the important terms in a language. 

This is achieved using various approaches to term weighting, with the most 

well-known being the TF*IDF ranking technique (Robertson et al., 1997).  

 TF refers to Term Frequency. It’s a measure of how important a term is to a 

document by simply counting its frequency of occurrence in the document.  

 IDF is a global document collection score that identifies how important the term 

is to the document collection as a whole.  

 TF*IDF ranking associates term importance weights with terms in documents by 

employing two term frequency components;  

 TF and IDF. The more a term occurs across all documents, the less 

discriminating it is as a query term and the lower its IDF value is. Consequently 

the less a term occurs the more discriminating it is and hence the more desirable 

it is as an aspect of document ranking and so it will have a higher IDF value.  

 IDF is basically the inverse of a score called DF (Document Frequency) which 

is a count of the number of documents that a term occurs in.  

 TF*IDF weighting allows for the calculation of a term importance weight for the 

occurrence of a unique term in a document and is calculated using the following 

equation: 
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The conjecture is that, since the distributions of locations (a naturally occurring 

phenomena) follows a similar distribution law to the distribution of words in natural 

language, it should be possible to utilise term weighting techniques, such as TF*IDF 

to automatically identify important locations in a person’s location log 

(Mitzenmacher, 2004).  

It is however noted that where location log analysis differs from text IR is that in 

text IR, the least useful words are the words that occur most often, for example ‘and’ 

and ‘the’. In location log analysis the most frequently occurring terms are likely to 

be the most important places in a person’s life i.e. home and work locations. In 

addition, for this research the concept of a document needs to be defined in terms of 

location logs. It is assumed that a document is a month of location logs. Identifying 

an individual trip unit as a document does not make sense because a trip will 

typically not contain an extended time period anchored in one location. 

3.4.1.2 Support Vector Machine Learning (SVM) 

It is noted that this subsection on SVM is mostly from one of our papers as Qiu et al., 

(2011) which is an output of author’s PhD studies.  

In this study, some tasks could be seen as a classification process. For example, 

event segmentation could be seen as identifying event boundaries from all units. 
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There are only two classes in the dataset, event boundary and no-boundary. For 

context detection, it can be seen as the process of selecting certain data units 

containing the context attributes. In real life, when people select a good apple to eat, 

they usually select the ripe or nearly ripe apple with full colour, no discoloration, 

good shape and smooth peel, because their experience tells them that such an apple 

tastes good. For a computer, selecting a good apple is a simple task as well, if the 

apple’s colour, shape and smoothness could be described in a suitable way, such as 

by numbers which can be processed by the computer. For example, the apple could 

be labelled as a good one using some thresholds if its colour C ∈[Cm…Cn], shape S 

∈[Sm…Sn],  and its smoothness P ∈[Pm…Pn].  

However, in some areas, the process could be very complicated, such as using 

gene expression phenotype for identification and classification (Duan et al., 2005). 

Genes may have thousands of features; and identifying gene combinations to 

distinguish and separate the healthy patients from the sick ones could not be simply 

identified using some numbers, because even humans do not have such 

acknowledge. To address that issue, scientists tried to make the computer learn from 

data, so called machine learning. It is defined by Mitchell (1997: 2) as:  

“A computer program is said to learn from experience E with respect to 

some class of tasks T and performance measure P, if its performance at 

tasks in T, as measured by P, improves with experience E”.  

 

Based on this theory, hundreds of machine learning algorithms are developed. 

SVM is one of them suitable for binary classification tasks (Tao et al., 2013). 

a. Classification Algorithm 

A SVM is a learning algorithm originally developed by Vapnik (1999). It is a 

technique suitable for binary classification tasks without loss of generality. One 2D 
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example is shown in Figure 3.7, where several possible linear hyperplanes could be 

used to separate the two classes. For each two-class classification, an optimal 

hyperplane is searched that separates an n-dimensional feature space into two 

different classes: one class representing the category to be detected and the other one 

representing all other categories.  

Figure 3.7: An illustration of two hyperplanes (F1 and F2) which can identify 

two separate classes 

  
Note: F1 and F2 represent two separate classes: class 1 and class 2. The Hyperplane 

F1 separates the data with the maximum margin. F2 separates the data, but not with 

the maximum margin. 

Source: The author (2013) 

 

A perfectly separable hyperplane is considered optimal when the distance to the 

closest training samples is maximised for both classes. This distance is called the 

“margin”. The margin is parameterised by the support vectors which are obtained 

during the training stage. By maximising the margin, we can search for the 

classification function that can most safely separate class 1 from class 2. For a two-

class SVM, the decision function for a test sample x has the following equation: 
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Where, αi is the learned weight of the training sample xi. The training samples 

with αi > 0 are the so-called support vectors. yi is the class label of xi (+1 or -1); and 

b is a learned threshold parameter; K (xi, x) is the response of a kernel function for 

the training sample xi and the test sample x, which measures the distance (or 

similarity) between the two data samples and maps the distance onto a higher 

dimensional space in which the hyperplane separator and its support vectors are 

obtained. Once the support vectors are known, the decision function for an unseen 

test sample x is thus obtained. 

In some cases, the hyperplane cannot separate two classes perfectly. As shown 

in Figure 3.8, hyperplane F2 cannot separate class 1 from class 2 completely; one 

class 1 point is misclassified; however, it has a better ability to generalise because it 

has a wider margin for both classes. In this case the margin is “soft”. SVM 

maximises the margin width while minimising errors.  

b. Kernel Function 

The motivation behind mapping to a higher dimensional feature space (e.g. from 2D 

to 3D) is that this higher-dimensional space data could become more easily separated 

or better structured, referred to as the kernel function. 

As shown in Figure 3.9, two classes in two dimensions can only be separated 

completely using a non-linear curve. However, when they are mapped to three 

dimensions, they can be separated simply by a linear hyperplane. The choice of an 

appropriate kernel function K(x, y) is critical to the classification performance. K 

should be positive, definite and symmetric (a.k.a. Mercer’s condition) (Vapnik, 

1999), to guarantee the convergence of SVM training. 
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Figure 3.8: An illustration of an imperfectly separable hyperplane F2 

  
Note: F1 and F2 separate two classes: class 1 and class 2. The Hyperplane F1 has 

classified two classes completely without any classification errors, but it may cause 

over-fitting. F2 has lower classification accuracy, but has the bigger margin than F1. 

F1 has high accuracy but not with the maximum margin. The margin of F2 to the data 

point is “soft”. It does not separated two classes completely. 

Source: The author (2013) 

 

Figure 3.9: An illustration of how the kernel function works 

  
Note: In two dimensions, the two classes can only be separated by a curve. When 

two dimensional data points are mapped to three dimensions, the two classes can be 

linearly separated. 

Source: The author (2013) 
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A number of general-purpose kernel functions have been based on the different 

distance metric of features. The most commonly used kernels are linear kernel, 

polynomial kernel, sigmoid kernel and gaussian radius basis function (RBF) (Zhang 

and Wang, 2011). This study employs the RBF kernel (see Equation 3.3) which is 

the most commonly used kernel function used in support vector machine (SVM) 

classification, because less parameters need to be set and the kernel values never go 

to infinity or zero even when the degree is large (Hsu et al., 2003).  

 )||||exp(-  y) (x;K 
2

yx                              (Equation 3.3) 

 

Where >0, r and d are kernel parameters.  

c. Parameter Selection 

Usually, a SVM can work on its default setting. Some parameters can be set up to 

improve classification accuracy, to increase generalisation, and to avoid over-fitting 

(Auria and Moro, 2008)  

In the above section, we have discussed the process used by SVM to find the 

optimal hyperplane by maximising the margin and minimising the overall risk. 

However, in some situations, maximising the margin may cause higher classification 

errors, while simply improving classification accuracy may reduce generalisation. In 

other words, the machine may work well on the training set but could perform 

inefficiently on a new sample. To address this issue, SVM models generally have a 

cost parameter, C, that controls the trade-off between allowing training errors and 

forcing rigid margins. The smaller C is, the wider the margin is, the higher the risk is 

in causing a classification error, and the higher the generalisation is.  
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Except for this global parameter, the RBF kernel has a specific parameter as  It 

defines how far the influence of a single training example reaches, with low values 

representing “far” and high values representing “close”. If it is overestimated, the 

RBF kernel will work like a linear kernel. On the other hand, if underestimated, the 

function will lack of regularisation. For example, in the lifelogging system in this 

study, the decision on an event boundary will be highly sensitive to the 

environmental noise in training data.  

The accuracy of a SVM model is largely dependent on the selection of the 

model parameters. To find the best combination of parameters, a common strategy is 

to separate the data set into two parts: a training part and a testing part. The 

prediction accuracy obtained from the testing part is used to ascertain the 

classification accuracy of an independent data set. This procedure is known as cross-

validation. In v-fold cross-validation, one first randomly splits the training dataset 

into v disjoint subsets of equal sizes. Sequentially one subset is tested using the class 

trained on the remaining dataset. A model is trained v times using all the different 

subsets. The overall performance of that model is then calculated as the mean 

accuracy of the v classification runs (Hsu et al., 2003). The LibSVM software is 

adopted in this study. It provides a grid search which modifies the values of each 

parameter across the specified search range by using geometric steps to find the 

optimal parameters (Hsu et al., 2003). 

d. Advantages and Disadvantages of Using SVM for this Study 

According to Tao et al. (2013), support vector machine learning (SVM) is found to 

provide higher classification accuracies than other machine learning approaches. It 

has advantages in solving small sample learning, data nonlinearity and data high 
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dimensionality problems mean that it has been used in a lot of classification research 

in recent years.  

In this study, we choose SVM to classify our data, mostly due to the following 

five reasons:  

 SVM has relatively low sensitivity to the number of training samples.  

SVM defines the classification model by exploiting the concept of margin 

maximisation (Melgani and Bruzzone, 2004). It appears to be especially 

advantageous in the presence of heterogeneous classes for which only few 

training samples are available. Because SVM can find the maximum gap 

between classes, most computational overhead resides in the training phase.  

 The same algorithm solves a variety of problems with little tuning.  

By introducing the kernel, SVM provides flexibility in the choice of the 

threshold separating the instances (Auria and Moro, 2008).  

 SVM provides good out-of-sample generalisation.  

Since the kernel implicitly contains a non-linear transformation (Auria & Moro, 

2008), a good out-of-sample generalisation is provided by SVM if the 

parameters are appropriately chosen. This means that, by choosing an 

appropriate generalisation grade, SVM can be robust, even when the training 

sample has some bias (Auria and Moro, 2008).  

 The classification complexity in SVM does not depend on the feature space. 

The performance of SVM is relatively insensitive to the number of data points 

and the classification complexity does not depend on the dimensionality of the 

feature space (Joachims, 1999).  
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 The SVM is easy to use.  

A lot of applications and libraries on SVM which are written in different 

programming languages are available online. There are a few parameters users 

need to deal with. For example, when the RBF kernel is used, the user only 

needs to adjust C and  to get the best accuracy. Some SVM applications such as 

LibSVM also provide tools to help the user find the optimal parameters 

automatically (Chang and Lin, 2011). Furthermore, SVM can be run on a 

smartphone (e.g. Zhao et al., 2011). This will reduce the effort required to move 

activity detection on phone side. It will decrease the server’s load dynamically 

on processing lifelog data. Users will not depend on the server for information 

when the network is unavailable.  

 

We acknowledge that SVM also has limitations which may affect the data 

analysis performance (Kotsiantis et al., 2007). For example, SVM has a slow speed 

in training data due to its cross-validation method, i.e. finding the best setting from a 

large range of potential ones. In addition, SVM methods are designed for binary 

classification, i.e. all of the results are true or false. To apply SVM in the case of 

multi-classification problems, users have to use a one-against-all strategy several 

times. SVM can solve a multi-classification problem but it is based on a single 

optimisation method where the parameters have low accuracy. However, these two 

limitations are not serious concerns. In our data, the training dataset is not extremely 

large. Indeed using a SVM does not require a great deal of time. In addition, we have 

found that our data only needs training once. The time is also not a serious issue in 

this study as the users do not need real-time processing for all data. We applied a 
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one-against-all strategy rather than the multi-classification strategy which avoids the 

low accuracy issue. 

We choose SVM to classify our data not because it is the best at machine 

learning, however there are no algorithms that can be the best on all the cases, but 

because we wanted to demonstrate that the machine learning technique can be 

applied in our case. Choosing a best algorithm from hundreds of classification 

algorithms and their variants would not be deemed so necessary in this study. The 

focus of this work is on utilising the outputs of the SVM, not on developing new or 

optimised machine learning approaches. 

e. Four Steps to Use SVM 

The process of using SVM to detect contexts include four steps; choosing training 

dataset, extracting the optional features of data, training the classification model, and 

evaluating the classification. These four steps are described in more detail below. 

 Step 1: Choosing training dataset 

Typically, there are two catalogues of data in the training set: positive and 

negative instances. Some SVM tools support multi-labelled classification but are 

typically solved by combining independently produced binary classifiers 

(Weston and Watkins, 1999).  

To detect concepts from multimedia, a set of target concepts must be chosen. 

Usually, similar concepts should be avoided, such as lake and sea. For example, 

Cusano et al. (2004) defined seven concepts, which are quite different to each 

other. They are buildings, ground, skin, sky, snow, vegetation and water. 

Usually, machine learning research has assumed that the class distribution in the 

training data is reasonably balanced, because it has been observed that a 
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disproportional abundance of negative examples decreases the performance of 

learning algorithms (Brank et al., 2003; Kubat and Matwin, 1997). For example, 

it is not suitable to identify “working on computer” and “checking email” 

activities in a lifelog.  

 Step 2: Extracting the optional attributes of data  

In order to classify instances or to separate people into two or more groups, we 

need to know some information about them. For example, “skin” may be the key 

attribute to classify apples into two groups: good and bad. They are not the only 

attribute that can be used. Other attributes such as water percentage could be a 

key attribute for choosing a good apple. Sometimes, some attributes will be used 

together. For example, a good apple should have a good skin and contain more 

water. However, to find optional attributes is very important.  

The previous research has shown that the classification performance is 

determined by the way in which the attributes are selected (Rakotomamonjy, 

2003). It seems that using more attributes provides more discriminating ability. 

With a finite training sample, a high-dimensional attribute space may be empty 

and many separators may perform well on the training data but few may 

generalize well (Bradley and Mangasarian, 1998).  

Incorrect attributes may also bring more errors to the classification process. For 

example, to find a good apple the weight of an apple could be considered. 

Perhaps, co-incidentally in the training set all good apples are bigger than bad 

ones. Therefore size would be having more weight in the generated model. 

Obviously, such a model would not be the best model to classify good apples 

from bad ones.  
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 Step 3: Training the classification model 

In a lifelog, most concepts could not be detected using simple thresholds. The 

relation of attributes may not be linear. In general, the RBF kernel is a 

reasonable first option because it can handle the case when the relation between 

class labels and attributes is non-linear. There are two parameters for an RBF 

kernel: C and . It is not known beforehand which C and  are best for a given 

problem. To identify a good C and a good , cross-validation and grid-search 

would usually be used (Hsu et al., 2003). Some SVM libraries such as LibSVM 

usually provide the tools to search for optional parameters based on training data 

(Chang and Lin, 2011).  

 Step 4: Evaluating the classification 

SVM usually evaluates itself using its training data with cross-validation. In v-

fold cross-validation, a training set would be separated into v subsets of equal 

sizes. Each subset is tested sequentially using the classifier trained on the 

remaining v-1 subsets. Thus, each instance of the whole training set is predicted 

once. The accuracy of cross-validation is calculated using a percentage of data 

which are correctly classified (Bradley and Mangasarian, 1998).  

 

This study will improve lifelog information accessibility by using the above two 

techniques, i.e. the term weighting and support vector machine learning (SVM) on 

the three aspects. They are the location context detection using term weighting, 

activity context detection and event segmentation using SVM. More details on these 

aspects are described in Chapters 5 and 6. 



79 

 

3.4.2 Applications of the Term Weighting and SVM in Data 

Analysis 

3.4.2.1 Detecting Location Context using Term Weighting 

It is noted that this subsection is mostly from one of our papers as Qiu et al. (2010) 

which is an output of author’s PhD studies.  

We used the term weighting technique to identify significant locations in this 

study. It is faster and less reliant on rules than other clustering based techniques. As 

mentioned earlier there are a number of components of a commonly used term 

weighting scheme such as TF*IDF. By employing the components of TF*IDF term 

weighting (TF, DF, IDF) four weighting techniques can be defined for identifying 

the important locations from personal location logs. In this study, the author was 

interested in locating a number of important location types:  

 Home/Work locations  

The locations we most frequently visit, would be important for many locations 

applications. The volunteer user had purchased a new home, so was expected to 

locate in both homes.  

 Social locations 

These are the locations that are most similar and the locations that we attend 

periodically, but not every day. It is expected that the system would be able to 

identify important social locations from the archive automatically. These social 

locations are those which the individual returns to again and again, such as 

family home, a relative’s home and socialising locations.  
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 Travel, extended visit locations 

These locations are the places where the individual has spent some time, but 

visits do not reoccur so frequently. For example, holiday locations or work 

travel locations.  

 Pass-through locations 

These locations are the places where we pass through often but rarely stop. 

These are exemplified by short linger/stay durations which occur frequently. An 

example of these locations is the shops that we pass through on our way to work 

every day.  

 

The location of user is important to classify users’ activities. For example when 

a user is going to a shop, the activity is more than walking, but shopping. This 

experiment will combine the activity data and location data to get more detail of 

activities. In the experiments, the important location region and the time the user 

stays there will be considered to decide the important moments.  

3.4.2.2 Detecting Activity Context using SVM 

It is noted that this subsection on the application of SVM in detecting activity 

context is mostly from one of our papers as Qiu et al. (2011) which is an output of 

author’s PhD studies.  

Four activity contexts detected automatically by the system are sitting/standing, 

lying, walking and driving. The steps for detecting activity context using SVM are 

shown in Figure 3.10. In the process, the training data is classified into two classes 

(binary classification) for each activity. Following that, the optimal parameters for 
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each of the four activities are identified. The optimal parameters and training data are 

used to train the classification model for each activity. Each of the four models is 

then evaluated using five-fold cross-validation. 

Figure 3.10: Process of classifying raw acceleration data into user activities 

 
Source: Qiu, et al. (2011) 

 

A number of attributes are used as input to the activity classifier, and these are 

described in detail below. 

 Raw acceleration data: Raw data can be used to judge the posture of the 

mobile device. Due to gravity, the value of the accelerometer axis is about 1G. 

For example, when the user lies down, the horizontal axis’ value decreases while 

the longitudinal axis’ value increases.  

 Standard deviation: This attribute is used to calculate the strength of activities. 

If the accelerations change rapidly, there is a strong likelihood that the user is 

walking or driving rather than sitting/standing or lying. 

 Range: This attribute can be used to better distinguish driving from walking. 

When the user is driving, the Standard Deviation may be the same as walking. 
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However the range of values which change is smaller than for the walking 

activity. For example, when the user is walking, the maximum acceleration in 

the y direction can be 5 while it will be 3 when the user is driving.  

Because accelerations were collected from a 3-axis accelerometer, a total of 9 

attributes (raw acceleration data, standard deviation and ranges for each of the three 

axes) are used for one reading of acceleration. 

3.4.2.3 Segmenting Events using SVM 

Following the four steps of SVM, the lifelogging system in this study segments the 

events from the raw data and the contexts extracted from sensors. 

 Step 1: Choosing training dataset 

After collecting sensor data and uploading it to the server side, the participants 

were asked to annotate the event boundaries. The dataset with the annotated 

event boundaries is chosen to be the training dataset.  

 Step 2: Extracting the optional attributes of data  

Based on the users’ and researcher’s own experience, some attributes are 

extracted from the contexts. Example attributes in this study are speed, signal 

strength change of WiFi hotpots, etc.  

 Step 3: Training the classification model 

Lifelog data collected in this study was generated by different sensors. The 

attributes extracted from sensor data have very different value ranges. Before 

being used they must be standardised. Standardisation is a very important step 

before training data. The main advantage of standardisation is to avoid attributes 

in greater numeric ranges dominating those in smaller numeric ranges. After 
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standardisation, all attributes are equal to the SVM. To identify a good C and a 

good , the two parameters for an RBF kernel we used the LibSVM to train our 

model.  

 Step 4: Evaluating the classification 

SVM usually evaluates the training dataset itself. In v-fold cross-validation, a 

training set would be separated into v subsets of equal sizes. Each subset is 

tested sequentially using the classifier trained on the remaining v-1 subsets. In 

this study, we adopted five-fold cross-validation. To evaluate the effectiveness 

of SVM on event segmentation, three different metrics were used: precision, 

recall, and F1-Measure (i.e. a single measure that incorporates both precision 

and recall as defined in Section 5.6). 

3.4.3 Approach to Generate Narrative 

As Mateas and Senger (1999) suggested, narrative is a family resemblance concept, a 

cover term for a rich set of ideas expressed textually. Our model of an event follows 

from the fact that all data in a lifelog has relevance to real-life; the “When”, 

“Where”, “Who”, “What” and “How” to users. Therefore, to generate a narrative 

involves trying to answer those questions as accurately as possible, so as to 

accurately describe an event or a sequence of events.  

As has been noted above, the narrative generation in this study consists of three 

sub-processes, fabula, sjuzet, and discourse generation. The fabula and sjuzet are 

from Russian words and have been “described by modem literary theorists as, 

respectively, the timeless and the sequenced aspects of story” (Bruner, 2004: 694). In 

other words, the fabula is the raw material for a story and the sjuzet is how the story 
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is told, i.e. the structure. According to Cheong and Young (2008), a fabula is a story 

world that includes all the events, characters, and situations in a story. In this study, 

fabula is a series of sentences based on the detected contexts and segmented events; 

sjuzet is a paragraph of narratives generated from the fabula without the repeated 

sentences; and discourse is a paragraph of narratives with an illustrated 

picture/keyframe taken during the event. A detailed example for fabula, sjuzet and 

discourse is provided in Table 6.1 in Chapter 6.  

3.5 Lifelog Data Representation 

The user interface is one of the most important parts of the system for users. This 

study conducts research on finding the best user interface to show users’ lifelog data 

on different devices. User interfaces (UIs) are provided to enable users to browse and 

search their lifelog data. One example of a UI is shown in Figure 3.11  

Figure 3.11: Web interface of event view 

Note: The uploaded data can be segmented into events by an event segmentation 

model, and the user can view them by events. 

Source: The author (2013) 
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When lifelog data is uploaded to the server, the server will check data integrity, 

detect contexts, segment data into events, select a keyframe, generate a narrative for 

each event, and store all information in the database. Once those narratives are 

generated, the background service will index them. The user can access them using a 

web browser. Because the narratives are indexed by search engine, users can search 

them by query as well. 

With the presence of mobile devices (e.g. smartphone), accessing digital data 

does not have to be taken place at a fixed place such as at home on a desktop. Users 

like to access data in any location and on different devices. Smartphones, digital 

TVs, E-book readers, hand-held tablets, etc. are part of the new generation of digital 

devices. They have the capability to access digital data even for a range of users such 

as the elderly people and young children. Compared with a computer or laptop, 

many of these portable devices are somewhat limited in computing power. On the 

other hand, they support different (not necessarily limited) input and output 

capabilities. Therefore, it cannot simply be assumed that the prior research on access 

to lifelogs, which was conducted mostly on computers, will be suitable to the new 

generation of devices. These devices support ubiquitous access, with different 

display capabilities and interaction methods. It is proposed that there is no one-for-

all representation of lifelog data on different devices. Chapter 7 will explore what 

interaction methodologies work best across the range of modern computing devices. 

All of the semantics, segmentations and narratives generated to date in this 

evaluation are utilised. We tested the following three main categories of devices; the 

computer, smartphone and E-book reader.  



86 

 

3.6 Experiment Configuration 

Lifelog study always involves privacy concerns (Allen, 2008). Even data that can 

only be accessed by the users themselves, some participants still feel uncomfortable 

about collecting and viewing their life experience. This means that lifelog studies 

can only be carried out using a very small sample. For example, in Smith et al. 

(2011) there was only one participant involved. Even the most famous lifelogging 

project “MyLifeBits”, had only one experiment participant (Gemmell et al., 2002).  

In this study, seven groups of participants were recruited to carry out seven 

experiments. The participants employed in the experiments are working in different 

areas and don’t have prior knowledge of lifelog studies, although they are familiar 

with using computers. Information about the participants involved in the experiments 

is shown in Table 3.2. Further details of experiments are listed in subsequent 

chapters. 

In this study, a survey approach is employed to gather users’ experience on the 

display performance of eight user interfaces (UIs) on three devices: computer, 

smartphone and E-book reader. The eight UIs are images, images and annotations, 

images and icons, images and narratives, animations, diaries, icons, and narratives. 

Four criteria are used to evaluate the display performance as visual appeal, 

subjective satisfaction, potential for errors and speed of use. Visual appeal is 

believed to dominate impression judgments (Lindgaard et al., 2011). The other three 

criteria (effectiveness, efficiency and satisfaction) were defined by the international 

standard ISO/IEC 9241-11 and have been used by Shneiderman and Plaisant (2005). 

More details are presented in Chapter 7.  
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Table 3.2: The experiment configuration for all tasks in this study 

Chapter Experiment  Experiment Description Participant(s) Period 

4 
Activity 

Recognition 

Recognise user’s activities 

using one accelerometer 
1 2 weeks 

4 
Multi-Source 

Location Fusion 

Calculating user’s location 

using GPS, WiFi , Bluetooth 

and Base Station 

5 3 months 

4 

Identify 

Important 

Location 

Separating personnel 

location history into 4 types 
1 

39 

months 

5 
Event 

Segmentation 

Segmenting lifelog data 

stream into events 
5 2 weeks 

5 
Keyframe 

Detection 

Find the photograph which 

can represent a whole event 
3 2 weeks 

6 
Narrative 

Generation 

Generating narratives from 

users’ lifelog data 
5 2 weeks 

7 

Multimodal 

Accessing 

Lifelog Data 

Using different devices to 

access personal lifelog data 

which are represented using 

different user interfaces. 

17* 
8-30 

minutes 

Note: * indicates that in this experiment, there was one data owner and 16 

participants evaluating the displaying performance.  

 

 

3.7 Summary 

This chapter described the methodology employed in this study. Although SenseCam 

is the most common lifelogging tool (Hodges et al., 2011), it is already out of date. 

In this study, a smartphone is employed by us to develop a new generation 

lifelogging system. Lifelog data are made up of numbers. To support user’s access, 

two data mining techniques are proposed and introduced: namely term weighting and 

SVM, to detect meaningful context from massive lifelog data and segment events. 

More details will be presented in Chapters 5 and 6. This chapter also generally 

described the experiments and survey employed in this study.  
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CHAPTER FOUR 

DETECTING CONTEXTS 
 

4.1 Introduction 

The previous two chapters presented the background of this study and the 

methodology employed at the different processes of the lifelogging system. This 

chapter focuses on the context detection in the data analysis process. It firstly 

presents details on combining different data streams, i.e. data collected from multiple 

sensors. Following that, it motivates the need to convert raw sensor data into 

semantic contexts and describes how this is achieved. Finally the process of 

implementing virtual sensors for different context detection is provided. Figure 4.1 

shows the position of this chapter’s work in the whole model. 

Figure 4.1: Work in Chapter 4 

 

 

 

 

 

 

 

 

Source: The author (2013) 
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4.2 Using Six Contexts to Represent Life 

To present a meaningful reflection of daily life, context needs to be detected and 

extracted from the heterogeneous sensor data source. Contextual data needs a lot of 

information to adequately characterise situations. This study adopts the widely used 

set of contexts (i.e. phrases) to indicate the “When”, “Where”, “Who”, “What” and 

“How”. “When” is about time; “Where” is about location; “Who” is about other 

people; “What” is about the environment; and “How” is about the manner in which 

the action is being performed. In reality, the user is the key to decide the contexts. To 

answer “When”, “Where”, “Who”, “What” and “How”, in this study, all contexts 

are grouped into six categories. They are the Personal, Time, Location, Activity, 

Social, and Environment Contexts, as shown in Figure 4.2. We will now discuss how 

to detect contexts from raw sensor data. 

Figure 4.2: The relationships between context sources 

  
Source: The author (2013) 
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4.2.1 Personal Context 

Personal context indicates the user profiles, e.g. age, gender, and habits. Personal 

context can be manually created or extracted from other context sources. For 

example, the proposed lifelogging system in this study can learn the user’s life 

patterns through the user’s travel log history in a highly accurate and low battery 

consumption way.  

The lifelogging system in this study will scan the user’s location history for a 

period and then estimate the user’s travel habit. After knowing the user’s life 

patterns, the system will change the frequency for data collection. For example, if the 

system knows that the user usually stays at home during the night time, the GPS data 

may be turned off at night time. By doing so, the battery of the phone is extended. 

The pseudocode for this function is presented in Figure 4.3. 

4.2.2 Time Context 

Previous lifelogging tools were implemented with different devices which may use 

different time clocks (Gemmell et al., 2005). For example, in previous research, a 

SenseCam was used to capture photographs, and a GPS receiver was used to collect 

location information. However, the devices used different system clocks and 

presented different timestamps at the same time.  

In this work, all the collected sensor data are timed with one clock. The system 

also records satellite time when it captures GPS data. It is very easy to identify any 

data with the wrong timestamp by comparing the two timestamps. The server can 

also correct data using satellite time automatically.  
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Figure 4.3: Pseudocode for detecting personal context using location history 

 

Source: The author (2013) 

 

Time keeping is a critical element in coordinating activities. In this study, local 

time is used to coordinate the sensor data. The time is acquired from the timestamp 

on every physical sensor reading and virtual sensor reading. Time will also 

synchronise with mobile networks automatically. If a smartphone is unable to 

acquire the correct time, e.g. when the user is abroad, the system will correct the 

time using satellite time acquired by the GPS receiver. To optimise system 

performance it does not collect all of the sensor data at the same time. Some sensor 

readings (e.g. accelerometer) occur every second while others (e.g. photographs and 

Bluetooth) occur a number of times per minute. Furthermore, some sensors only 

SET base_rate=0.8 
WHILE 
IF user at home THEN 
 SET isHome=true 
 saveAtHomeTime(time,isHome) 
ELSE 
 SET isHome=false 
 saveAtHomeTime(time,isHome) 
END IF 
 SET getAtHomeRate=getAtHomeRateBasedOnHistory(Time) 
 
IF isHome and  getAtHomeRate >base_rate THEN 
 change the sensor scan (WiFi, Bluetooth,GPS) to normal frequency  
 // because radio consume most of battery  
 IF accelerometer values have no change THEN 
  Let the system sleep for 5 minutes 
  // The system will keep the cpu running  
 ELSE 
  Wake up the system 
 END IF 
ELSE 
 change the data scan to normal frequency 
END IF 
 
IF screenOn THEN // user begin to use phone 
 change the sensor scan to normal frequency 
END IF 
LOOP 
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return their values when some specific events occur. For example, phone call data is 

only available when the user receives a phone call. Therefore, time is chosen to be 

the key binding agent for sensor readings. The semantic interpretation of time 

adopted is shown in Table 4.1. 

Table 4.1: Detail of time contexts detected from time 

Name Description 

Season* Spring, Summer, Autumn, Winter 

Day time* Morning, Afternoon, Evening, Night 

Week day* 
Monday, Tuesday, Wednesday, Thursday, Friday, 

Saturday, Sunday, Weekend 

Month* 
January, February, March, April, May, June, July, August, 

September, October, November, December 

Relative Time Yesterday, Last week, Last hour, Last minute, Last month 

Note: Time concepts can be separated into absolute time and relative time.  

* indicates absolute time. 

 

4.2.3 Location Context 

4.2.3.1 Fusing Different Location Sources 

To detect location context, WiFi is mainly used alongside GPS, Bluetooth and the 

Base Station data. Choosing these sensors is based on the consideration of cost, 

range, granularity and requirements by this study such as detecting location context 

using GPS sensor. WiFi consumes less power than GPS. We thus would like to use 

more WiFi than GPS. However, WiFi has less accuracy than GPS. To save the 

power and improve the accuracy, we designed an approach to combine the WiFi with 

GPS.  

The Media Access Control address (MAC address) is a unique identifier for the 

WiFi network. In this study, we do not transmit WiFi MAC addresses to physical 
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locations on smartphone, but only when they are uploaded to the server. The GPS 

receiver stays off when WiFi hotspots are available or the user is not moving. The 

system will turn the GPS receiver on when the user begins to move or when a new 

WiFi MAC address is detected. When the server receives the WiFi and GPS data, it 

will match the WiFi with the GPS automatically. The process of matching the WiFi 

and the GPS is shown in Figure 4.4. By applying the process on WiFi data, each 

WiFi will match a GPS point and the accuracy will be improved when more data is 

received. 

Figure 4.4: The progress to find coordinates for WiFi hotspots 

 
Note: The code is implemented as SQL storage function. It runs weekly on the 

server. It will achieve better accuracy for each WiFi when more data collected.  

Source: The author (2013) 

 

In a study of a total of 19,147 unique WiFi MAC addresses collected by five 

users in a three-month period in 2011, 7,136 WiFi hotspots were obtained with the 
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latitude and longitude in less than one second and 3,754 in less than two seconds. A 

total of 14,628WiFi hotspots show less than one minute time gap with nearest GPS 

point and are used in this study.  

There are two types of WiFi. One is fixed, such as the wireless network at one 

house. The other one is embedded in portable devices which can move, such as 

laptops and smartphones called “portable hotspot”. Obviously, the portable WiFi 

hotspots cannot be used for detecting location context. They need to be separated 

from fixed WiFi hotspots. In this system, two approaches are used to detect portable 

WiFi hotspots. 

Firstly, we use the distance threshold. For each WiFi MAC address, GPS may be 

collected more than three times at different time points (usually on different days). 

Three distances are calculated between two GPS locations out of three. If two 

distances values are larger than 200 meters, this WiFi is seen as a portable WiFi 

hotspot. It is put in the portable WiFi list which will not be used for location context 

detection. That WiFi hotspot will be ignored when it appears next time. 

Secondly, we compare the adjacent WiFi hotspots. For each WiFi hotspot, its 

adjacent WiFi hotspot list is collected twice at two time points (usually on different 

days). If its adjacent WiFi list is completely different from the other one, this WiFi 

hotspot is seen as a portable WiFi hotspot. Similarly, its MAC address will be put in 

the portable WiFi hotspot list and will be ignored when it appears next time. 

In past research, some scientists have tried to use Blutooth to detect a user’s 

location (Mizuno et al., 2007). In this study, 17,090 unique Bluetooth data was 

collected as shown in Table 4.2. In the Bluetooth data, only 245 Bluetooth in 

desktops are used to detect location context in this study as they are fixed to a place. 
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9,784 Bluetooth data were found to be embedded on 4,114 smartphones. 570 laptops 

were detected. As smartphones and laptops are movable, these Bluetooth data are not 

used in this study.  

Table 4.2: The statistics of all types of collected Bluetooth data 

Number Device Type Number Device Type 

59 0(MISC) 87 528(MODEM_OR_GATEWAY) 

1 1344(Unknown) 1 16 (Unknown) 

3 768(NETWORKING ) 12 1408 (Unknown) 

13 
256(UNCATEGORIZ

ED ) 
1 

1024(AUDIO OR VIDEO 

UNCATEGORIZED) 

4 1600(Unknown) 245 260(DESKTOP) 

108 
1028(WEARABLE_H

EADSET ) 
39 1664(Unknown) 

3 
264(COMPUTER_SE

RVER ) 
1,738 

1032(AUDIO OR VIDEO 

HANDSFREE) 

1 
1796(WEARABLE_W

RIST_WATCH ) 
570 268(LAPTOP) 

1 
1044(LOUDSPEAKE

R) 
2 3584(Unknown) 

17 
272(HANDHELD_PC

_PDA) 
12 1052(PORTABLE AUDIO) 

1 4352(Unknown) 24 276(PDA) 

2 
1060(SET_TOP_BOX

) 
1 5544(Unknown) 

9,784 
516(PHONE_CELLU

LAR) 
70 

1084(DISPLAY AND 

LOUDSPEAKER) 

98 
7936(UNCATEGORI

ZED) 
75 520(PHONE_CORDLESS) 

1 1280(PERIPHERAL) 4,114 524(PHONE_SMART) 

3 1288(Unknown)   

Note: The “Unknown” types of data can be distinguished according to their ID 

number in the front. They were collected from the devices which are not defined on 

developer.android.com  

 

Previous research has shown that locating using mobile phone Base Stations is 

not very accurate especially when only one Base Station is acquired (Liu et al., 

http://developer.android.com/
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2007). However, mobile phone Base Station signals can cover most of a country. 

Therefore, in this study, when other locating sources are not available, mobile 

phones’ Base Stations are used. The steps to identify the user’s location using Base 

Stations are described below:  

1. List all the location clusters (cluster algorithm will be described in the next 

section) which have the same mobile phone Base Station ID.  

2. Order all selected clusters by the total duration of user linger time.  

3. The centre point of the cluster where the user spent the longest time will be 

chosen as the location.  

4.2.3.2 Clustering Location Points 

Those location points cannot be directly used because they carry little in the way of 

semantic knowledge. Actually two location points for the same location rarely have 

the same spatial coordinates because of the fusion of locations. For instance, at 

different times’ changing GPS points for the place “home” are not identical, 

although they are very close to each other. Thus modelling is required to group 

different location points with the same semantic meaning. To address this, density-

based clustering is applied as demonstrated in Figure 4.5.  

Figure 4.5: Clustering location points  

  
 

Source: The author (2013) 
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All of an individual’s location points are put into one dataset and clustered into 

several geographical regions. When there is at least one point within an already 

clustered point, the new points are added to the cluster. In this way, a cluster is 

formed as a closure of points. Location points from the same place are directly 

clustered into a density-based closure. In this study, all addresses are acquired using 

Google geolocation. Clustering will dynamically reduce request frequency, because 

requests are received only once for each cluster.  

4.2.3.3 Detecting Meaningful Location Context 

Detecting meaningful location context helps to generate a more understandable 

narrative. For example, saying “the user is at home (place)” is more understandable 

than saying “the user is at 580 Collins Ave (address)”. Using the term weighting 

technique described in previous chapter, this section carries out an analysis of a 

three-year travel log to detect meaningful locations. The results confirm the validity 

of applying term weighting technique in location context detection, which provides 

support for using it in the proposed lifelogging system. The experimental dataset and 

the results are presented below. 

a. Experimental Dataset  

In this experiment, a rich dataset is used. It is a user’s three-year travel log data 

collected from mid November 2005 to January 2009. Location data is collected from 

GPS every ten seconds. The user was very dedicated to turning on the GPS at most 

of the time and this recording achieved over 99.5% of all available days. Within this 

travel log, trips to work, holidays, and shopping were recorded. Walking from one 

building to another in one place was not recorded primarily due to the start-up time 
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of turning on GPS. For example, the user might have arrived in another building 

before the GPS was turned on.  

Using a gazetteer, the GPS data was transformed into three-tier location names 

(town, city and country). For example, GPS co-ordinate 30.299982, -97.591782 is 

converted to the following place name: Walter E. Long Lake, Texas, United States. 

By doing so, the data is more semantically meaningful. 

When detecting location context, the last known GPS was employed for the GPS 

coverage breaks. For example, if the user entered into a building for an hour, and the 

GPS was not on, the last known GPS point, i.e. the building’s location, was used as 

the location for this period.  

The employed travel log contains location data from 43 countries. Every 

movement was logged by the user, including walking, driving and any airline flights 

taken during that period. The user’s lifestyle is such that a reasonable amount of 

international travel was undertaken during that period, about twelve international 

trips per year. Since airline location is included, the number of countries visited 

seems artificially high, as flying over a country would result in it being given a 

location log. Table 4.3 shows the countries actually visited by the user (normal text) 

and the countries that the user simply passed-through while in an airplane (italic 

text). It is noted that the countries that the user visited for less than one hour and 

locations that were over sea and not associated with any one country were ignored 

(286 hours). Table 4.4 shows the number of GPS points logged, countries visited, 

actual named places visited and the average duration spent at each location, year by 

year, and in total. The reason the average time spent at each location dropped 

significantly was because the user bought a car in 2005. 
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Table 4.3: Countries visited and hours spent there 

Country Hours Country Hours Country Hours 

Ireland 19,824 Norway 4,073 China 1,316 

South Korea 750 UK 625 US 268 

Singapore 253 Hong Kong 133 Finland 131 

France 101 Japan 82 Denmark 56 

Germany 54 Sweden 41 Russia 33 

Holland 29 Poland 15 India 5 

Belgium 4 Ukraine 3 Malaysia 3 

Mongolia 2 Estonia 2 Afghanistan 2 

Canada 1 Belarus 1 Turkmenistan 1 

Latvia 1 Pakistan 1   

Note: The countries with Italic are the countries the user had never been to.  

 

Table 4.4: Summarising the location log 

Year Points Countries Places 
Avg Time 

(mins) 

2009 20,878 6 1,096 33 

2008 361,312 36 14,527 36 

2007 318,638 33 11,492 45 

2006 305,869 11 7,091 74 

2005 14,910 8 388 174 

Sum 1,021,607 43 27,508 61 

 

 

b. Results  

Table 4.5 outlines the accuracy of identifying the four location types (e.g. 

home/work place, social visit, long visit and passing through) using each of the four 
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algorithms previously described. To achieve these figures the precision at cut-off 

levels (1, 3, 5 & 10) for each month and the overall average precision were 

calculated. Table 4.5 shows the best performing algorithms to identify (in bold) the 

four location types. 

Table 4.5: Average precision for 1, 3, 5 and 10 locations using term weighting 

method 

 Home/Work Social Visit Long Visit Passing Through 

TF*DF  

P@ 1/3 

P@ 5/10  

1.0 0.83 0.0 0.0 0.0 0.16 0.0 0.01 

0.59 0.51 0.06 0.07 0.23 0.24 0.22 0.32 

TF*IDF  
0.26 0.28 0.45 0.49 0.16 0.15 0.58 0.58 

0.28 0.29 0.38 0.35 0.15 0.17 0.58 0.59 

TF  
0.97 0.8 0.0 0.11 0.03 0.15 0.0 0.14 

0.57 0.51 0.16 0.17 0.19 0.19 0.26 0.32 

DF  
0.58 0.55 0.0 0.01 0.37 0.37 0.11 0.14 

0.50 0.46 0.04 0.07 0.28 0.25 0.28 0.36 

Note: P@Rel = precision at total number of possible relevant items. 

 

Clearly TF*DF is the best way to locate work/home locations, although it is only 

a little better than TF. DF shows promise in being able to locate places of long visits, 

although the precision values are not as high as expected. TF*IDF does find 

significant social and visiting (holiday) locations, as expected, although once again 

not as successfully as expected. Finally, a P@Rel (precision at total number of 

possible relevant items) evaluation gives a score of 1.0 for identifying the three 

home/work locations when using TF and TF*DF ranking techniques. Simple 

location frequency analysis (TF) is not effective at finding any location other than 

Home/Work, and in this case, we have shown TF*DF to be more effective than TF 

only.  
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One remaining issue with these results is that the place of work and the place of 

home have not yet been separately identified. To this end, a rule-based assumption is 

employed in the process. Home is dominant between 6pm and 6am, while work is 

dominant between 6am and 6pm. Assuming this, TF*DF ranking is employed to 

calculate home and work locations and it was found that P@1 for home was 1.0 and 

P@1 for work was 1.0, which is as expected. Since the user moved home during the 

logging period, p@2 is actually also 1.0, which illustrates robustness of the process 

and the proposed techniques. 

4.2.4 Activity Context 

The activity context covers the activities the user was currently involved in and 

answers the question “What did the user do and how?” It can be described by means 

of explicit goals, tasks, and actions. The proposed lifelogging system can record 

multiple sensors relating to activity. For instance, GPS is widely used to detect the 

speed of movement. However, GPS is not available in all situations such as indoors 

and is not always accurate. Compared with GPS, an accelerometer consumes less 

battery but can be used to detect more activities; namely sitting/standing, lying, 

walking and driving.  

Accelerometers are the most promising motion sensors for physical activity 

assessment in free-living subjects (Meijer et al., 1991). This study employs the 3-

axis accelerometer to classify the user’s daily physical activities. Figure 4.6 

illustrates the volunteer user who is wearing the experimental smartphone and the 

directions of the accelerometer axes. For this purpose, the frequency and amplitude 
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characteristics of human body acceleration will ultimately determine the technical 

specifications of the accelerometer.  

Figure 4.6: A user is wearing our experimental smartphone 

  
 

Note: X axis points left, Y axis points down and Z points to the front.  

 

Source: The author (2003) 

 

Figures 4.7 to 4.10 illustrate the 3-axis graphs for the user’s different activities, 

i.e. sitting/standing, lying, walking and driving. Due to gravity, one acceleration of 

3-axis is always about 1G, so if the value of this axis changes to less and another axis 

increases, the detection algorithm will note that the mobile phone’s angle with the 

ground has changed. Sitting/Standing is quite straightforward to detect; when the 

user is sitting, all the surrounding accelerations exhibit little change (shown in Figure 

4.7). Lying is the easiest activity to detect in this study. As shown in Figure 4.8, the 

acceleration on axis Z becomes negative value because of gravity. It is the very 

obvious feature to recognize lying from other activities.   
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Figure 4.7: Graph of 3-axis accelerations for sitting/standing 

 Source: The author (2013) 

 

Figure 4.8: Graph of 3-axis accelerations of lying  

Source: The author (2013) 

 

Figure 4.9: Graph of 3-axis accelerations of walking 

Source: The author (2013) 
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Figure 4.10: Graph of 3-axis accelerations of driving 

 Source: The author (2013) 

 

Walking is a very different activity to classify (shown in Figure 4.9), as all three 

accelerations change a lot. The accelerometer has more sensitivity than humans. 

When driving on the road, even if road is flat where people don’t have detected 

movement, an accelerometer detects minor vibrations (shown in Figure 4.10). The 

SVM was employed as a machine learning tool to classify activities, given its 

widespread use in classifying accelerometer-based activity (Ravi et al., 2005). It can 

be used to classify multi-class data, but in this study a binary-class classification 

which has higher accuracy is adopted.  

The resulting accuracy of detection for each activity is shown in Table 4.6 and 

summarised in Figure 4.11. It can be seen that all four activity contexts have a high 

accuracy rate ranging from 94% to 98%. Some wrong estimation (i.e. confusion) is 

explored. 20 Driving instances were classified as Walking because of sub-optimal 

road conditions. 144 Driving instances were also classified as Sitting/Standing 

because of red lights or stop signs. 105 Sitting instances were classified as Driving 
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most likely because of peculiarities in some sitting or standing actions for unknown 

reasons.  

Figure 4.11: The accuracy of each activity model  

Note: 

The range is from range 94% to 98%. 

Source: Qiu et al. (2011) 

 

Table 4.6: Confusion matrix of each activity model 

 Driving Walking 
Sitting or 

Standing 
Lying 

Driving 1,647 20 144 2 

Walking 9 4,066 185 0 

Sitting or 

Standing 
105 207 6,557 73 

Lying 7 5 234 3,949 

Note: The data in each row is the user’s annotation.  

 

Table 4.7: Data source for detecting activity context 

Data Source Activities 

Accelerometer and Compass Sitting/Standing, Driving, Walking, Lying 

Phone Status Talking on the phone, Charge Phone 

Screen Status Playing with phone 

Camera Taking a photograph 

Music Player Listening to music 
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As behaviours can be changed between periods of photograph captures, 207 

Sitting/Standing instances are classified as Walking and 185 Walking instances are 

classified as Sitting/Standing. Given the difficultly in distinguishing Lying from 

Sitting/Standing, 234 Sitting/Standing instances are classified as Lying. For many of 

these misclassifications, a simple smoothing step post-classification, would address 

most of these problems and this is planned for future work. Besides accelerometer 

data, the system collects other activities, such as the phone screen status and phone 

call status. The activity contexts are described in Table 4.7. 

4.2.5 Social Context 

The social context captures the relationships between user and others such as friends 

or family, as shown in Table 4.8. A relationship expresses a semantic dependency 

between two or more people that emerges from certain circumstances they are 

involved in. Additionally, a relationship is not necessarily static and may evolve and 

disappear dynamically. In this study, Bluetooth, phone calls & SMS, and face 

detection are used to detect social context.  

Table 4.8: Data source for detecting social context 

Data Source Social Context 

Phone Call and SMS Friends/ Family 

Bluetooth Colleague /Family/Stranger 

Photograph Face-to-face conversation 

  

Bluetooth is a short-range wireless protocol which enables the exchange of data 

among two or more devices. It is increasingly included in a wide variety of 

electronic devices including home computers to portable laptops, smartphones, 
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tablets, keyboards, mice, mp3 players and headphones. By detecting the other 

Bluetooth signals around the user, the system can estimate the relationships between 

the users and others. This lifelogging system will scan the frequency the other 

Bluetooth signals appear during some period. For example, if a smartphone captures 

a Bluetooth signal rarely during working hours, but often in the evenings and during 

the weekend, then it is likely that this Bluetooth is from a friend or family, rather 

than a work colleague. This applies to the phone call and SMS. The pseudocode for 

this function is presented in Figure 4.12. 

Figure 4.12: Pseudocode for detecting social context using Bluetooth  

 
 

Source: The author (2013) 

 

Face-to-face conversation is one of the most essential forms of social activity in 

our daily lives and a means by which people convey and share information and 

SET bluetoothList=getUniqueBluetoothPhoneListFromDatabase() 
SET weekCount=getWeekNumber() 
SET bt_count=length of bluetoothList 
FOR i=1 to bt_count 
 SET weekHourList=getWeekdayHourFromDatabase(bluetoothList.get(i))  
 // select distinct 
datepart(hh,time),datepart(dw,time),datepart(week,time),datepart(yy,time)  
 //from BluetoothTable where mac_address=bluetoothList.get(i) 
 SET number=getCountOfBluetoothAppearFromDatabase(bluetoothList.get(i)) 
 // select distinct datepart(dy,time),datepart(yy,time)  
 //from BluetoothTable where mac_address=bluetoothList.get(i) 
 
 IF bluetoothList.get(i) appear in work time AND number>weekCount THEN 
  label the person "Colleague" 
 END IF 
 IF bluetoothList.get(i) appear in home time AND number>weekCount THEN 
  label the person "Colleague" 
 END IF 
 IF bluetoothList.get(i) appear in home and work time AND number>weekCount 
THEN 
  label the person "Friend" 
 END IF 
 IF number==1 THEN 
  label the person "Stranger" 
 END IF 
NEXT  
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emotions. This thesis employed www.face.com, which is a technology platform with 

“best-in-class” facial recognition software to detect faces from our photographs 

(Kotsiantis et al., 2007). The lifelogging system in this study applies the face 

detection technique to detect the social context. 

It is the combination of these three sets of information (Bluetooth, phone call 

and SMS, and face detection) fused together that gives a much stronger indication of 

the social connections of the people we encounter. 

4.2.6 Environment Context 

Environment context in this study captures the noise level and weather information. 

As shown in Table 4.9, the current context set is detected from the photograph 

(camera), online weather service and environmental noise level (microphone). The 

photographs provide a unique insight into the user context by employing visual 

processing algorithms to visually analyse each image and to identify what is present 

in each image. Pre-existing visual processing tools are employed to identify the 

‘What’ of an image, where what is a listing of concepts including vehicle, office, 

door, horizon, etc. In addition to simply providing user context, the photographs act 

as an integral aspect of the lifelog and are a key attribute of any interface into a 

digital lifelog.  

Table 4.9: Data source for detecting environment context. 

Data Source Environment Context 

Photograph (camera) 

car/bus/vehicles, indoor, outdoor, office, toilet/bathroom, 

stair, door, buildings, vegetation, road, sky, tree, grass, inside 

vehicle, view horizon 

Weather service (online) warm/cold, windy, sunny/cloudy/raining/snowing, wet / dry 

Environmental noise 

level (microphone) 
quiet, noisy 

http://www.face.com/
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4.3 Implementing Virtual Sensors 

To fuse all sensor values, it is necessary to implement a function which can return 

the correct value at any point in time. The data is collected mostly from physical 

sensors and is not human-readable. In addition, it has different frequencies and 

generates a time gap. For example, available WiFi is scanned every two minutes. 

Physical sensors cannot return corresponding value immediately. WiFi can only 

generate one reading when the hotspot is found. One scanning action may take more 

than one minute. Accelerometers can generate more than five readings every second. 

But they do not work in real-time. There is always a time gap between readings. 

However, in some situations, the sensor value can be predicted. For example, a 

user’s current location can be predicted using his previous locations and location 

patterns. Because the software gathers different sensor data at different frequencies, 

the data is returned with different timestamps. Furthermore, raw sensor data is not 

easily shared. If a virtual sensor supplies the user with raw sensor data, all 

applications using it will also need to implement the data mining module. That will 

not only waste time, but it is also difficult to ensure that all users’ output is 

consistent.  

In this study, we use five virtual sensors to solve above issues. They are time, 

location, activity, social and environment virtual sensors. As described in Chapter 2, 

a virtual sensor is a software sensor which has three functions: 1) combining 

different format data collected from multiple physical sensors; 2) transforming the 

combined different format data into a natural language which could be easily 

understood by humans; and 3) sharing the data through a web interface. To improve 
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the speed of the virtual sensors all sensors data are pre-processed. Virtual sensors can 

generate the meaningful semantic knowledge to better fit with a user’s expectations.  

 Time virtual sensor: The time sensor will return a different format of time 

depending on the user’s input parameters. For example, it can return “Morning”, 

when the user queries it with specific parameters. In this study, the time sensor 

is implemented by a segment code. It does not contain any data.  

 Location virtual sensor: The main function of the location sensor will supply 

the most accurate location to the user. Furthermore, the process is transparent to 

the user application. The output of the location sensor not only includes the 

address, but also other information such as home or work place. As mentioned 

above, the location information is calculated not only using GPS information, 

but also using WiFi and Base Station. For the location sensor, if GPS is 

available, the latitude, longitude and accuracy data will be returned to the user. 

The address and length of stay will also be returned. When the GPS is not 

available, the WiFi access point or Bluetooth will be transmitted to the GPS 

point. If the location information comes from a WiFi access point, the minimal 

time span will also be returned in case the user uses it to filter out some values. 

If GPS, WiFi and Bluetooth are not available, the Base Station will be 

considered as location information.  

 Activity virtual sensor: As mentioned above, accelerometers can be classified 

into four different activities as sitting/standing, lying, walking and driving. For 

the activity sensor, when a new accelerometer sensor data is read to the 

database, the SVM classifier will be executed and the results will be stored in 

the database. By requesting the activity sensor, the user’s activities such as 
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walking, sitting can be returned. For other activities such as phone calls, a 

message can be requested using a specific time range. For this sensor, user ID, 

time, time period and type are input parameters. The sensor will return different 

activities according to different type parameters.  

 Social virtual sensor: Once a new photograph is received, the system will judge 

if the photograph is blank. If the photograph is not blank, it will be processed by 

a face detection process. If a face is detected from the photograph, the number of 

faces and corresponding face’s position and size will also be stored. Bluetooth 

information was considered as an important social context data source. Almost 

every smartphone has a Bluetooth adapter. Bluetooth can be used to predict the 

relationships. Some users like to turn it off to save battery life. In our study, we 

found that 10% of users had Bluetooth switched on. During the pre-processing 

stage, the Bluetooth and location information were gathered for retrieval. The 

relationship between the device owner and user can be predicted. For example, 

if the devices appear in the user’s home and also in other place the owner of the 

Bluetooth can be the user himself or his friend. Social virtual sensor can be used 

by inputting user ID, time, time range, type. The face, relationship and related 

information can then be sent back.  

 Environment virtual sensor: The environment virtual sensor mainly supplies 

noise information such as “noisy” and “quiet”, although it can also acquire 

location information from the location sensor. With time and location 

information, it can locate the weather information and return it to the user. To 

enhance the response speed, all the weather information was downloaded and 

stored in the database when any new location was detected.  
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4.4 Summary 

Physical sensor data is easily collected but very difficult to semantically understand 

as most of it is made up of numbers. It needs to be converted into semantic contexts 

such as personal, time, location, activity, social and environment contexts. This 

chapter introduced how these contexts were detected. In particular, we applied term 

weighting into the location context detection and the SVM into the activity context 

detection. Lastly, this chapter presented how to implement the virtual sensor in order 

to combine different format data; transform the combined data into a natural 

language; and to share the data through the web. 
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CHAPTER FIVE 

SEGMENTING EVENTS 
 

5.1 Introduction 

This chapter provides a detailed explanation of the approach used to segment sensor 

data into events. It shows what attributes are extracted from sensor data based on 

which events are segmented. The experimental process and results are presented for 

testing hypothesis 1 which proposes that event segmentation can be performed 

effectively by detecting changes in sensor data. Finally, to select a suitable keyframe 

for each event, three users’ keyframe selection methods for their daily lives are 

compared. The context sources leading to the best keyframe selection are 

summarised. Figure 5.1 shows the position of this chapter’s work in the whole 

model. Figure 5.2 presents the process to segment events. 

Figure 5.1: Work in Chapter 5 

 

 

 

 

 

 

 

 

Source: The author (2013) 
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Figure 5.2: The process to segment events 

 

 Source: The author (2013) 

 

As shown in Figure 5.2, the event segmentation includes two key parts namely 

attribute extraction and boundary detection. Extracting attributes needs detecting the 

change of context, and standardising unit due to the different frequency in data 

sources. We begin with the change of context as follows. 

5.2 Change of Context 

As described in Chapter 2, event segmentation has been used to organise information 

by some researchers in lifelogging community (Doherty et al., 2012). Three main 

reasons for using events are: 1) an event is a natural unit for human memory; 2) an 

event is a reasonable unit for lifelog data management; and 3) there is no big context 

change in one event. Along with the existing researchers in lifelogging domain (e.g. 

Chen et al., 2010; 2013), the lifelogging system in this study adopts the method of 

context change to segment events. 

As mentioned above, context pattern changes may generate a new event. 

However, not every context change will produce a new event. As shown in Figure 

5.3, Event E1 is from time T0 to T1. At time T1, the change of Context 1 produces a 

new event E2 and the change of Context 2 between T1 and T2 makes a new event 

E2. However, between time T0 and time T1, Context 2 has a small change but it does 

not create a new event. Between time T3 and time T4, Context 2 and Context 3 
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change at the same time, making a new event. Take one real example, picking up a 

mobile phone to check the time will usually not generate a new event, but picking up 

a mobile phone and making a phone call may constitute a new event. Using machine 

learning techniques, this study will investigate what context changes will make a 

new event, and how much change is necessary to make a new event.  

Figure 5.3: Detecting event boundaries by detecting the context changes  

  
Note: By detecting changes of context it is possible to detect an event’s boundaries. 

However, not every change of context will result in an event boundary. An event 

boundary may be made by changes of several contexts.  

Source: The author (2013) 

 

5.3 Standardising Unit into One Frequency 

The data is collected at different frequencies due to the difference in sensor 

capability and practicality. For example, weather data is sampled at 1/1800 Hz (once 

every thirty minutes), while accelerometer data from an experimental smartphone is 

captured at 5 Hz. The less frequent weather information collection is because 

weather is more stable compared with accelerometer data. To segment lifelog data 
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into events, those data or their values should be standardised to the same sampling 

frequency.  

In this study, to generate ground-truth, volunteers were recruited to collect and 

annotate lifelog data. Practically, it is not possible to ask them to annotate every 

piece of data, but they were required to annotate a data section. This study chooses 

the 30 seconds period, the same frequency as a wearable camera. 

This process orders all the photographs by capture time, then uses the time of 

each captured photograph as a reference point. All data collected 15 seconds before 

and after a photograph is captured and is considered as belonging to one unit. For 

high frequency sensors such as an accelerometer which generates five readings of 

data every second, some attributes were extracted from the 30 seconds period data 

(the detail will be discussed in following sections). For low frequency sensors such 

as the WiFi adapter which only scans WiFi access points once every two minutes, 

the WiFi hotspots collected one minute before and after the photograph are 

considered belonging to one unit. 

5.4 Extracting Attributes for Event Segmentation 

After standardising the frequency of data into units as described above, a subset of 

attributes (e.g. standard deviation) are chosen to calculate these data units while 

preserving or improving the discriminative ability of the classifier. The attribute 

selection affects generalisation performance, running time requirements, constraints 

and interpretational issues (Weston et al., 2001). As shown in Figure 5.4, 90-second 

accelerometer data is divided into three groups: 0-29, 30-59 and 60-89. It is not easy 

to identify value changes from the higher figure. However, if the standard deviation 
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attribute for each group is extracted, the changes can be found in the lower figure. If 

the values are from an accelerometer, we can say that the user’s activity strength is 

becoming stronger with time. The number of values that need to be processed 

decreases dramatically if those values can be substituted by their standard deviation. 

The lower graph has a better performance on computing than the upper one. It also 

shortens the running time. Therefore the lower graph can show the gradual trend of 

the graph. 

Figure 5.4: An example for extracting standard deviation attribute 

  

Note: Raw accelerometer data values are not used in event segmentation, but 

extracted attributes from group of data. That makes it easier to find the changing 

trend of values. The upper figure shows the raw data points; the lower figure shows 

the standard deviation (   √
 

 
∑ (    ) 
 
    ) of per 30 data points. 

Source: The author (2013) 
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5.4.1 Extracting Image Attributes  

To facilitate the calculation of image similarity, this study uses three different low-

level visual attributes to measure the similarity of images. They are scalable colour, 

colour layout and edge histogram. The attributes are based on the moving picture 

experts group (MPEG)-7 features (Manjunath et al., 2001). MPEG-7 features are a 

standard description of multimedia content (O’Connor et al., 2005). 

 Scalable colour: A colour histogram in the hue, saturation, value (HSV) 

colour space is derived using a Haar transform coefficient encoding which 

can be calculated efficiently, allowing for scalable representation (Keogh et 

al., 2001). In this study, 64 numbers are extracted to represent each image.  

 Colour layout: The compact descriptor captures the spatial layout of the 

representative colours on a grid superimposed on an image. This study first 

divides the photographs into 3x4 blocks to guarantee the resolution or scale 

invariance. Then the colour layout descriptor is obtained by the discrete 

cosine transformation of each block’s dominant colour and non-linear 

quantisation of their discrete cosine transform (DCT)-coefficients (Kasutani 

and Yamada, 2001).  

 Edge histogram: The edge histogram represents the spatial distribution of 

edges in an image (Won et al., 2002). It could be used to identify changes of 

scenes. The edge number in the photographs may increase when the user is 

walking from indoors to a park. In this dissertation, this attribute is described 

by 80 numbers.  
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The MPEG-7 visual features are represented by vector values, and are used to 

calculate the similarity of images. Euclidean distance is chosen as this has been 

shown by previous researchers to provide intuitively reasonable results (Agrawal et 

al., 1993; Wang et al., 2005a). Euclidean distance is the ordinary distance between 

two points that one would measure with a ruler and is given by the Pythagorean 

formula. It is most commonly used due to its simplicity (Wang et al., 2005b). By 

using this formula as a distance measure, Euclidean space becomes a metric space. 

The equation for the Euclidean distance is shown in Equation 5.1. 

 d(x,y)=  
i=1

n
 (x

i
y

i
)
2

                                               (Equation 5.1) 

Where x, y are two vectors and n is the number of features for each object. 

If adjacent images are sufficiently dissimilar, event boundary may exist between 

the two images. However, this is not always the case. As the phone is hung up, the 

camera may occasionally be covered by the user’s hand or clothes. To avoid 

misjudgement in this situation, this study groups five photographs as one unit in 

order to calculate the similarity of photographs.  

Figure 5.5: Image similarity calculation 

  

Note: Every image is calculated not only using its adjacent image, but also using the 

two preceding and succeeding images. 

Source: The author (2013) 
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As shown in Figure 5.5, the similarities for Image 4 are calculated between it 

and Image 2, Image 3, Image 5 and Image 6. In this process, the similarity of Image 

2 and Image 3, Image 5 and Image 6, Image 3 and Image 5, Image 3 and Image 6, 

Image 2 and Image 5, Image 2 and Image 6 are also calculated. If there are no 

photographs before or after Image 4, the similarity is zero. All the similarity 

calculations will be applied on the three low-level features using the Euclidean 

distance equation. Those similarities will be used as attributes for Image 4 as input to 

the event boundary calculation process. 

5.4.2 Extracting Location Attributes  

In this study, location is used as an important context source to identify the boundary 

between events, as it has been used as a key organisation methodology for lifelog 

data and a key clue to help user access their lifelog data (e.g. Aizawa et al., 2004b; 

Kurby and Zacks, 2008; Liao, 2006; O’Hare et al., 2005a).  

The lifelogging system in this study collects location data from different 

sources, namely WiFi, Bluetooth, GPS and Base Station. The multiple sources 

provide more opportunities to improve the accuracy of the event segmentation 

technique. As mentioned above, to detect the event boundary is to detect the change 

of context. For GPS data, the changes can be measured by speed. The changes in 

WiFi and Bluetooth can be measured by the change of signal strength and MAC 

addresses.  

For a Base Station, the change can be captured by the change in Base Station ID. 

However, not every change of location will create a new event. For example, people 

usually identify a period of driving or walking as an event, although location changes 
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all the time. To identify the boundary of events, the rate of changes should also be 

investigated. The attributes extracted from location context include speed, current 

number, value and number of same WiFi MAC addresses. 

 Speed: Speed is calculated from GPS data. In this study, machine learning can 

use this attribute to avoid misclassifying a driving or walking event.  

 Current number, value and number of same WiFi MAC addresses: The 

changes of location may create a new event. The location changes will also 

cause the collected WiFi list to change. As shown in Figure 5.6, when the user is 

in room 1, the system can capture WiFi M1 and M2. In room 2, the system can 

capture WiFi M2, and M3. This study compares the changes of WiFi lists to 

identify location changes. If WiFi lists have no changes in a period, it may mean 

that the user hasn’t been in other rooms. If there are some changes in the list. It 

means that the user moved to an adjacent room or moved to another side of 

room. For example, the user on the left side of room 2 can capture different 

WiFi hotspots compared to the right side of the room. WiFi changes can not 

only identify location changes in buildings but also location changes outside.  

Figure 5.6: Example of four rooms and four WiFi routers 

  
Note: There are four rooms and four WiFi routers. The routers’ signal range is 

30 metres, thus a mobile phone in each room will receive a different WiFi list. 

Source: The author (2013) 
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5.4.3 Extracting Activity Attributes  

In real life, an event boundary may occur when the user’s activity changes. For 

example, it may be a new event when a user starts walking from sitting. Compared 

with other contexts, the activity is more dynamic, because humans can change 

activities in a very short time. In this study, other activity data sources such as 

answering a phone call are also considered. The following attributes are employed in 

this study.  

 Change of accelerometer’s maximum and minimum values, and standard 

deviation: These values are the key attributes to identifying the change of 

activity context. When a user begins to walk, the maximum value will increase 

in a short time. At the same time, the “Standard Deviation (SD)” will also 

increase because of dynamic changes to acceleration on the three axes. Some 

short term activity changes can only be identified by a combination of these 

attributes. For example, the user stands up and passes his friend a cup of water, 

then returns to his seat. That activity may only take 5 seconds, but that action 

will make the current maximum and minimum acceleration values quite 

different from previous values. In comparison to those values, the SD will 

change little. Their combination may remove the effects of some short period 

activities on event boundary detection. For example, picking up a cup may not 

be considered an event.  

 Change of screen status: Mobile phones are playing an increasing important 

role in our lives. The change of mobile phone status will record a user’s activity 

by phone. The change or no change to the screen status in a time unit is used to 
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classify the boundary of events. For example, a user may begin to play a game 

on the phone after coming back from a meeting.  

 Change of phone call status: Phone calls are one of most important social 

activities. They are an important key for event boundary detection.  

 Change of music player and headphone status: Many people listen to music 

when they walk, run or take the bus. The kinds of songs playing are important to 

identify a user’s interests, but are not required for event segmentation. This 

attribute is not related to what song the user is listening to but to the activities 

such as plugging in or plugging out the headphones and also the music player’s 

status. For example, the user may start the music player when he gets on a bus. 

It may be a starting point of one new event. 

5.4.4 Extracting Environment and Social Attributes  

Attributes based on environmental noise level and face detection are extracted. Most 

of the environment context sources, such as the weather, are relatively stable during 

the event. For example, the temperature might only change slightly in a whole day. 

Even if it does keep changing, people usually do not notice it very much. Another 

important source for environment context is the noise level. Siewiorek et al (2003) 

have classified environmental noise level into three states: low, medium and high. 

The low value describes the quiet environment, the medium value identifies common 

situations such as talking and the high value states the environment such as a pub or 

bar. Along with Ma et al. (2003a, 2003b), this study does not record voice but 

records the environmental noise level of the environment. According to the 
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environmental noise level, the system sets up the phone ring volume. In this study, 

the following attributes are included:  

 Change of environmental noise’s maximum and minimum values, and 

standard deviation: Similar to activity context detection, those are key 

attributes in classifying different environments. In this study, the frequency of 

the environmental noise levels is very low. The changes of environmental noise 

levels are considered in a two-minute interval around the photograph.  

 Change of face numbers: The beginning and ending of a conversation may be 

a beginning of a new event and ending of an old event. To detect the 

conversation, face detection is a key step. Change of face numbers is an attribute 

in this study.  

5.5 Dataset for Event Segmentation 

Hypothesis 1 proposes that the event segmentation can be performed effectively by 

detecting changes in sensor data. To test it, 5 users were asked to collect their 

everyday lifelog using the proposed lifelogging system for two weeks (discussion on 

sample size will be presented in Chapter 8). The configuration of the experiments is 

show in Table 3.2 in Chapter 3. When all data is uploaded to the server, users can 

browse their photographs using a web interface to annotate their data. With the 

interface, they can simply select the beginning and end photograph of every event. 

To avoid forgetting, participants were asked to annotate the data on the evening of 

data collection or the next morning.  

The annotated data is used as the training dataset for the SVM to segment events 

with a five-fold cross-validation. The results from SVM will be compared to the 
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manually annotated data. The SVM’s performance in event segmentation is 

evaluated based on the accuracy rate on event boundary detection.  

As shown in Figure 5.7, there are three panels: Calendar panel, Image List panel 

and Event list panel. Once the user logs into the system with his user name and 

password, the latest data will be displayed on the web page. Users can choose to 

browse any day’s image data by clicking the calendar. On the web page, the related 

day is highlighted if the users have uploaded that day’s data. To segment the event, 

the user can choose any photograph as the beginning of one event, and then choose 

one as the end of event. After that, the event will appear in the Event list. If the user 

makes a mistake, the event can be deleted by double-clicking it. 

Figure 5.7: User annotation interface 

  

Note: Participants can choose the beginning and end of an event by clicking on the 

images. 

Source: The author (2013) 
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Table 5.1 Statistics on event segmentation data collected 

User Images Events WiFi Bluetooth 
Noise* 

Level 
GPS 

Accelerom

eter 

Screen 

status 

Base 

Station 
Call SMS Charging 

Music 

 

1 22,246 276 78,699 7,428 11,088 1,825 667,481 482 265 42 8 18 6 

2 24,115 230 25,0342 10,788 11,959 5,323 723,687 366 378 18 5 16 0 

3 24,251 255 239,993 11,994 12,175 7,745 727,598 594 362 33 6 15 0 

4 30,256 305 293,622 15,526 15,107 10,523 907,856 368 498 35 5 20 0 

5 19,278 169 63,593 7,352 9,636 1,305 578,396 282 198 25 2 13 0 

total 120,146 1,235 926,249 53,038 59,965 26,721 3,605,018 2,092 1,701 153 26 82 6 

Note:* indicates environmental noise. 
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In this study, five participants annotated 1,235 events in their own two weeks’ 

lifelog data. As shown in Table 5.1, a total of 120,146 photographs were captured by 

five users. On average, each user wore the smartphone for 14.5 hours every day and 

a total of 926,249 WiFi hotspots were collected in addition to information on 53,038 

Bluetooth devices. However, most of the WiFi hotspots and Bluetooth device 

information were repeated because the system continued to scan and store wireless 

information even when the user was not moving. To detect activities, the system 

collected accelerometer data at 5Hz. In a two week period, a total of 3,605,018 3-

axis accelerations data readings were collected. As mentioned above, GPS 

information collected in the study is not classified by time in order to save battery 

life, but by distance. The system turns off the GPS automatically when it collects 

WiFi information matching to a specific latitude and longitude as a location source. 

Therefore, only 26,721 GPS point were collected. As there was no WiFi available in 

some areas, Base Station information was collected to aid locating users 1,701 Base 

Station IDs were collected. In addition to these, 59,965 environmental noise level 

readings, 153 phone call events, 26 SMS message events, 82 phones charging events 

and 6 music events were also identified.  

5.6 Event Segmentation using SVM 

This study employed the support vector machine learning (SVM) to segment events. 

The SVM has good generalisation ability as it is based on the principle of the 

structural risk minimisation in statistical learning theory. The details on why use 

SVM has been presented in Section 3.4. 
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Event boundary recognition is a classification problem with limited samples 

where the SVM classifier finds its usage. These experiments used LibSVM which is 

an implementation of SVM. LibSVM optimises the best parameters for the RBF 

kernel on different classifications using five-fold cross-validation (Hsu et al., 2003). 

We follow the four-steps for using SVM as:  

1) choosing the training dataset (the dataset with manual annotation by five 

participants);  

2) extracting the optional attributes of data (three methods as image only, 

location only and all attributes);  

3) training the classification model; 

4) evaluating the classification. 

The classification results are shown by confusion matrix in Tables 5.2, 5.3 and 

5.4. The effects of each of the approaches discussed earlier were investigated 

experimentally and the results are reported in Figure 5.8. To evaluate the 

effectiveness of each approach, three different metrics were used: precision, recall, 

and F1-Measure. Results in this section are reported in terms of F1-Measure as it is 

hoped to maximise both precision and recall. 

 Precision: This is a percentage measure of the boundaries proposed by the 

system that are accurate, compared with the results annotated by participants. 

 Recall: This is a percentage measure of how many of the ground truth 

boundaries were identified, compared with the results annotated by participants. 

 F1-Measure: It’s a single measure that incorporates both precision and recall. 

F
1
= 

2*precision*recall

precision+recall
                             (Equation 5.2) 



129 

 

5.7 Experimental Results on Event Segmentation 

In this study, we do not use any raw sensor data, but the attributes described in 

previous sections. An experiment is set up to investigate three approaches for 

detecting event boundaries with SVM machine learning using different datasets.  

 Using image attributes: As shown in Table 5.2, 1,563 (63.3%) event 

boundaries were detected correctly from 2,470 instances, 907 (36.6%) were false 

negatives and 982 (0.8%) false positives which are not event boundaries were 

incorrectly detected as boundaries.  

 Using location attributes: Our activities related to location and previous 

research has shown that location is one of the most important clues for people to 

recall their lives (Naaman et al., 2004). During this experiment it was found that 

users tend to separate their lives using locations. The results shown in Table 5.3 

indicate that 1,254 (50.8%) out of 2,470 event boundaries were correctly 

detected, 1,216 (49.2%) were false negatives and 1,689 (1.4%) false positive 

instances which were not event boundaries were incorrectly detected as 

boundaries.  

 Using multiple attributes: This not only includes image attributes and location 

attributes, but also activity, social and environment attributes. Those attributes 

will provide more choices to generate a classification model. In the results 

shown in Table 5.4, 1,912 (77.4%) of 2,470 event boundaries were detected 

correctly. 558 (22.6%) were false negatives and 769 (0.7%) false positive 

instances which are not event boundaries were wrongly detected as boundaries. 

This approach resulted in the best accuracy.  
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Table 5.2: Confusion matrix of the SVM classifier for colour attributes 

 Participants 

Annotation 
Event Boundary 

Not Event 

Boundary 

Event Boundary 2,470* 1,563 (63.3%) 907 (36.6%) 

Not Event Boundary 117,676* 982 (0.8%) 116,694 (99.2%) 

Note: * indicates the data is the user’s annotation. 

 

Table 5.3: Confusion matrix of the SVM classifier for location attributes 

 Participants 

Annotation 
Event Boundary 

Not Event 

Boundary 

Event Boundary 2,470* 1,254 (50.8%) 1,216 (49.2%) 

Not Event Boundary 117,676* 1,689 (1.4%) 115,987 (98.6%) 

Note: * indicates the data is the user’s annotation. 

 

Table 5.4: Confusion matrix of the SVM classifier for all attributes 

 Participants 

Annotation 
Event Boundary 

Not Event 

Boundary 

Event Boundary 2,470* 1,912 (77.4%) 558 (22.6%) 

Not Event Boundary 117,676* 796 (0.7%) 116,907 (99.3%) 

Note: * indicates the data is the user’s annotation. 

Figure 5.8: Overall classifiers performance 

 
 

Note: The optimal performance was obtained using all attributes of the classification 

model in terms of precision, recall and F1-measure.  

Source: The author (2013) 
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As shown in Figure 5.8, three criteria, i.e. precision, recall and F1-measure, 

score the highest when all attributes are used. Along with the higher accuracy rate of 

all attributes method than image only or location only attributes, it can be seen that 

using multiple attributes to detect event boundaries gives the best results. 

5.8 Keyframe Selection 

So far using the SVM to detect event boundaries has been described. Now the focus 

shifts towards discussing methods to select a representative image for each event, i.e. 

keyframe selection.  

Keyframe selection is a very common task in the video domain and has recently 

been introduced in lifelogging research (Doherty et al., 2008). Lifelogs are very 

different to video data. Video is the same for every audience where most of the faces 

belong to strangers. In lifelogs, the faces appearing most often are known (Doherty 

and Smeaton, 2008b). The location does not usually change during an event. 

Therefore, this research only investigates how much activity, social, and 

environment contexts affect keyframe selection.  

5.8.1 Keyframe Selection Experiments 

Experiments were set up to judge three approaches to select a keyframe. The three 

approaches are social, activity and environment context-based. 

 Keyframe selection based on social context: Socialising interactions are very 

important activities for people, such as talking to friends. This approach will 

detect the face from every photograph in order to investigate if faces affect the 

importance of the photograph.  
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 Keyframe selection based on activity context: Most of people’s activities 

involve sitting and much of that could be facing a computer or TV. In such 

circumstances photographs can be considered valid keyframe candidate 

photographs.  

 Keyframe selection based on environment context: The environment can 

impact on the importance of photographs, e.g. when users attend an important or 

very busy event. This experiment will investigate if the level of environmental 

noise as an indicator of environment context affects the importance of the 

photograph.  

Three users participated in this experiment. They were asked to wear the 

experimental smartphone for 14 days and to annotate all important photographs that 

represented important moments during the day. This prevented the users from 

forgetting what happened. It also helps minimise a user’s misjudgement. For 

example, in one event, where all photographs are similar, if the user is asked to 

choose one as the keyframe, he may choose one randomly. Such annotation would 

be useless for the experiment. In this experiment, the users were not requested to 

select a keyframe from each event but to select all important photographs.  

An additional requirement is that the users need to browse every photograph 

collected that day. The browser allows users to access any photograph by clicking on 

a relevant hour as shown in Figure 5.9. All photographs captured in that period will 

be displayed in the Web Browser. As illustrated in Figure 5.10, participants can rate 

photographs with different scores. The number of stars indicates the importance of 

the photograph. If a user thinks the photograph is mildly important, he can rate it 

with one star. A rating of 4 stars means it is the most important photograph for the 
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user. In total, 56,201 photographs were collected in this experiment and 637 (1.1%) 

of these were annotated as important photographs by users. The statistics of 

important photographs is shown in Table 5.5. 

Table 5.5: Statistics on keyframe selection survey data 

Rate Number Percentage 

1* 170 26.69% 

2** 224 35.16% 

3*** 171 26.84% 

4**** 72 11.31% 

Total 637 100% 

Figure 5.9: The hourly view of the user interface to select the important 

photographs 

  
 

Source: The author (2013) 
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Figure 5.10: The photograph view of the user interface which allows them to 

rate the importance of photographs 

  

Source: The author (2013) 

5.8.2 Keyframe Selection Experiments Result Analysis 

The previous sections introduced the experiment configuration of keyframe 

selection. The results on keyframe selection experiments based on different contexts 

such as social, activity and environment, are now presented. 

5.8.2.1 Effect of Social Context on Keyframe Selection 

Face-to-face conversation plays an important role in people’s daily life. The impact 

of face in important photograph selection is investigated. This experiment used the 

“www.face.com” face detection engine which is a technology platform with best-in-
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class facial recognition software to detect the number of faces in the photographs 

(Kotsiantis et al., 2007).  

As shown in Table 5.6, in 637 important photographs, 75 (11.8%) photographs 

contain faces. Only 643 (1.1%) photographs containing faces were detected in total 

56,201 photographs. It seems that photographs containing faces have a higher chance 

of being selected as important photographs. An interesting finding is that the 

proportion of photographs with faces decreases when photograph importance 

increases. There are 170 one-star important photographs and 31 (18.2%) of them 

contain faces. While in 72 four-star photographs, only 4 (5.6%) of them contain 

faces. 

Table 5.6: The importance of photographs with faces 

Importance Photograph with faces Photographs 

1 31 (18.2%) 170 

2 24 (10.7%) 224 

3 16 (9.0%) 177 

4 4 (5.6%) 72 

 

5.8.2.2 Effect of Activity Context on Keyframe Selection 

The previous chapter (Section 4.1.4) detailed the approaches used to detect four 

kinds of activities using accelerometer data such as sitting/standing, lying, walking 

and driving. The quality of photographs is affected by the light level and by the 

movement of the body. For example, most photographs taken from a wearable 

camera are blurred when users are running. The standard deviation of the 
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accelerometer’s 3-axes is an important attribute to indicate the strength of an 

activity.  

In this experiment, 30 seconds’ accelerometer values are taken around each 

photograph as one unit. The standard deviation for each axis is calculated as one 

value deviation using the average of 3-axis standard deviation. It is found that the 

greatest numbers of photographs were taken when the user had no movement or very 

low strength movement (e.g. sitting/standing or walking) because many of the 

participants are working with computers for a considerable period of time every day. 

A very small proportion of important photographs were taken when participants are 

participating in a low strength activity (e.g. walking) still because of the nature of 

participants’ work which does not require them to participate in low or high strength 

activities such as walking or running. Therefore, the number of photographs does not 

depend on activity strength, but indeed, depends on the time length of the activity 

(e.g. one photograph per 30 seconds).  

Figure 5.11: Distribution of activity strength for all photographs 

 
Source: The author (2013) 
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Figure 5.12: Distribution of activity strength for important photographs 

 
 Source: The author (2013) 

 

However, to investigate if the number of important photographs will depend on 

the activity strength, two figures are presented (Figures 5.11 and 5.12) to visually 

compare the numbers of important photographs and all of the photographs based on 

the activity strength. It can be seen that the distribution of important photographs is 

similar to the distribution of all of the photographs. Both the numbers of important, 

and all, photographs depend on the duration of activities rather than their strengths. 

Therefore, no support is found for the effect of activity on keyframe selection. 

5.8.2.3 Effect of Environment Context on Keyframe Selection 

This part reports the results on the effect of environmental noise level on important 

photograph selection. For example, talking or playing could be identified using 

environmental noise levels which can be chosen as important. However, there is no 

direct relationship between important photographs and environmental noise level as 

shown in Figures 5.13 and 5.14. The environmental noise level can be a better data 

source to detect conversation when the user is talking to people who are not facing 
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him directly. It may be possible to adjust the frequency of environmental noise 

reading and to train the corresponding model to detect conversation and then to 

investigate the impact of conversation on keyframe selecting, but this is not the focus 

of the work in this thesis.  

Figure 5.13: Distribution of environmental noise level for all photographs 

 
Source: The author (2013) 

 

Figure 5.14: Distribution of environmental noise level for important 

photographs 

 
Source: The author (2013) 
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The above results indicate that only social context has an effect on selecting 

important photographs. Therefore, in this study, an approach to select keyframe 

considering social context is used. It is outlined in the following steps:  

1. Sort all the photographs by image quality.  

2. Detect faces from all images in the event. Faces counted in the photographs 

will not be considered.  

3. If some photographs contain faces, choose the best quality ones as the 

keyframe. If no face is detected in the event, choose the best quality 

photograph as the keyframe.  

5.9 Summary 

This chapter demonstrated the process of segmenting events which is in the data 

analysis components in the lifelogging system. Through how to detect the changes in 

contexts, we standardised the unit and extracted the attributes which is the prior work 

for segmenting events.  

Using SVM, we segmented lifelog data streams into events by detecting the 

event boundaries. This study also investigated the accuracy of classification using 

colour, location and multiple attributes and found that the multiple attributes 

provided the best accuracy for classification.  

Keyframe is the representation of a whole event. This study used different 

contexts such as activity, social, and environment contexts to find the best keyframe. 

It was found that only the face presence in social context may indicate photograph 

importance correctly. Based on other research, this study considered face and image 

quality as key attributes to choosing keyframes.  
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Overall, in this chapter, we found that context could affect the importance of 

moments in a person’s life. In our lives, there are always some moments being stored 

in our long term memory. We judge the importance of photographs or moments with 

context which are collected using our biological sensors such as eyes and ears. The 

proposed lifelogging system in this study can help to sample such data. It is possible 

to detect important moments using many varied sources of context. Therefore, we 

found support for the hypothesis 1. The event segmentation can be performed 

effectively by detecting changes in sensor data. 
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CHAPTER SIX 

GENERATING NARRATIVES 
 

6.1 Introduction 

This chapter proposes approaches to generate a narrative for each event in the 

lifelog. The prior research concepts of fabula, sjuzet and discourse to generate 

meaningful and effective narrative summaries of events are explored. To give the 

user a clear narrative, in the process, some important contexts are selected to 

generate a narrative using virtual sensors. Figure 6.1 shows the position of this 

chapter’s work in the whole model. Figure 6.2 presents the process to generate 

narratives. 

Figure 6.1: Work in Chapter 6 

 

 

 

 

 

 

 

 

 

Source: The author (2013) 

Process 

Data collection 

(Multiple sources; multiple time 

points) 

Data analysis 

 Detecting contexts 

 Segmenting events 

 Generating narratives 

Data output/display 

(Different output formats based 

on different devices) 

Data Storage 

Chapter 6 



142 

 

Figure 6.2: The process to generate narratives 

Source: The author (2013) 

Table 6.1: An example of generating narratives 

Stage Event 1 Event 2 

Fabula 

It was 8.00am on Monday last 

week. 

You were at home. 

You were looking after the 

children. 

You were with Tim. 

It was very noisy.  

It was 8.10am on Monday last 

week. 

You were walking from home to 

work place.  

You were with Anna. 

It was very noisy. 

Sjuzet 

It was 8.00 am on Monday last 

week. You were looking after the 

children with Tim at home. It was 

very noisy. 

It was 8.10 am. You were walking 

with Anna from home to work 

place. 

Discourse 

It was 8.00am on 

Monday last week. You 

were looking after the 

children with Tim at 

home. It was very noisy. 

It was 8.10 am. You were 

walking with Anna from 

home to work place. 

 

As shown in Figure 6.2, there are mainly three processes to generate narratives 

from the detected contexts and segmented events, namely fabula, sjuzet, and 

discourse generation. In this study, fabula is a series of sentences based on the 

detected contexts and segmented events; sjuzet is a paragraph of narratives generated 

from the fabula without the repeated sentences; and discourse is a paragraph of 

narrative swith an illustrated picture/keyframe taken during the event. To provide a 

clear picture of these three concepts, we present an example in Table 6.1. It describes 

two events; at the Fabula generation stage, many simple sentences are generated 

from the segmented events; a paragraph is generated to describe the event at the 
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Sjuzet generation stage. Lastly, at the discourse stage, a keyframe, i.e. a 

representative image for the event, is included with the paragraph description. Then a 

narrative is generated. An example of one day’s narrative generation is shown in 

Appendix 1. 

6.2 Generating Fabula  

Fabula is the raw material of a narrative, to which we apply selections and 

transformations in order to generate sjuzet and discourse. To generate a fabula of an 

event is to answer “When”, “Where”, “Who”, “What” and “How” questions using 

simple sentences. In this study, fabula is the story composed by all the contextual 

knowledge about the user in a single-event time; although it is limited by the 

available sensors and concepts. In that period of time, some contents may be 

repeated. To describe the event, some repeated sentences need be removed. In the 

following subsections, we will discuss the process of selecting contexts and 

generating the fabula. 

6.2.1 Selecting Location Context 

Location is a very important clue for users to recall their lives, and it has also been 

shown to be a very efficient way to organise and access personal data (O’Hare et al., 

2005b). In this study, we use different location sources to calculate a user’s location 

such as GPS, WiFi, Bluetooth and Base Station. However, for people, the addresses 

are more meaningful. To express location information in user friendly names, we 

translate all location points to addresses using the Google Geocoding API. 

Furthermore, important addresses such as home are more meaningful to the user; 
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hence we use semantic location names instead, which is employed for a small 

number of semantically meaningful locations. 

For many events, there may be a set of locations involved. For example, when a 

user is driving, many different locations may be collected. However, we do not 

include all locations in the fabula. For example, when we drive to a place, we usually 

consider the starting point and the destination as the relevant locations. Therefore, 

for this type of event, we describe the beginning and end locations if the event 

involves different locations in the format of “from” one place “to” another.  

6.2.2 Selecting Activity Context 

Many activities may happen during one-event period. For example, a user may stand 

up, get a cup of coffee and sit back down again within one minute. Typically this 

would not suggest a new event in this study
3
, although the example event contains 

sitting, walking and drinking. This is because if all the changes of activities are 

described in detail in a narrative summary, a user is likely to lose interest in reading 

such a large number of long narratives.  

In the lifelogging system in this study, an approach of top activity selection is 

employed. It firstly calculates the frequencies of each activity in one event’s period. 

It then ranks the activities by their frequencies. Finally, the activity with the highest 

frequency is chosen and used as top activity for this event.  

                                                 
3 Please note that the addition of one small detail (e.g. taking tablets from pocket before taking a cup 

of coffee) could make this a very important event. However, as explained above, if all the changes of 

activities are described in detail in a narrative summary, a user is likely to lose interest in reading 

such a large number of long narratives. Due to this, the current study does not consider these 

potential important events. It will be a future research direction.  
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In the system, four main activities can be detected automatically namely sitting, 

lying, walking and driving. Information on other activities would naturally improve 

the system performance. Considering this, we designed a web-based interface (see 

Figure 6.3) for users to manually select more activities. Based on Kahneman et al. 

(2004), we initially selected 15 most common daily activities into the list for users to 

choose from as listed in Table 6.2.  

Figure 6.3: Web interface for user to add more information 

  

Source: The author (2013) 

 

Table 6.2: The fifteen activities for users to manually choose 

Socializing Relaxing Pray/worship/ meditate 

Exercising Watching TV Shopping 

On the phone Napping Caring for my children 

Housework Working Commuting 

Eating  Preparing food Computer/ e-mail/Internet  

 

Based on Kahneman et al. (2004) 
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6.2.3 Selecting Social Context 

The social context indicates who the user is talking to and engaging with. Based on 

the face detection technique, the system chooses an image with a face as a keyframe. 

It also provides labels such as ‘friend’ when the user is in a social place or 

‘colleague’ when user is in the work place or during working hours.  

Ideally, the system will achieve a higher performance if it can tell who the 

person in the image is. However, the current face recognition technique is not 

perfect. Adding face recognition into the system may generate more errors which 

would hinder the focus of this work for supporting multimodal access. To improve 

the comprehensiveness, we provide an interface (see Figure 6.3) through which the 

users can input the name of the person whose face is in the photograph. Once a user 

labels the name of a face, such changes would be detected and new narratives are 

generated with all relevant indexes updated. 

Phone communication is another source from which to select social context. For 

example, when the user is using their phone to communicate with his/her friends 

through phone call logs or texts, our system can capture all the phone calls and texts 

users have sent and received. However, users may feel uncomfortable in seeing their 

message content in narratives. Therefore, in fabula, the content of a message is not 

displayed.  

To show a user’s entire life in a lifelog, the system also provides narrative on the 

user’s behaviour of listening to music. It shows which music the user listened to and 

when he began to charge his phone in the event. By doing so, the system generates 

more detailed fabula depending on users’ input. 
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6.2.4 Selecting Environment Context 

Environments in this study include weather information and noise levels. When 

selecting environments in generating fabula for an event, this system does not 

include weather information. The reason for this is that the weather tends not to 

change dramatically during one event. For the user, they are not interested in reading 

about weather information in their narratives repeatedly. Therefore, weather 

information is not added into fabula and narratives.  

Noise is an important environmental data source. The environmental noise level 

can change in a period of an event. In the fabula, the environmental noise level is 

included if it is higher or lower than normal range. The normal range is the average 

environmental noise level during an event, across all user events. 

6.2.5 Building Fabula 

Fabula is made up of several sentences. As shown in Table 6.1, one example of 

fabula for event 1 includes: “It was 8.00am on Monday last week. You were at 

home. You were looking after the children. You were with Tim. It was very noisy.” 

Fabula are generated with the following sentences. The detail of pseudocodes 

for generating fabula is shown in Figure 6.4. 

 Time sentence: Time sentence is generated using relative time. For example, 

the events happened in yesterday is described as “Yesterday, at 8:00 am...”. If it 

happened last week, it is described as “On Monday...”. In this process, the 

system considers semantic time first. All semantic time adopted in this study is 

shown previously in Table 4.1.  
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 Location sentence: Similar to time, location sentence considers the selected 

semantic location first. For example, narrative uses “You were at home” instead 

of “You were at Glasnevin, Dublin, Ireland”. During certain events such as 

driving events where locations change all the time, the system does not generate 

location sentence, but includes the location sentence in the activity sentence.  

 Activity sentence: For events happened in different locations, such as driving 

event, the sentence would be “You drove from home to the work place.” If there 

is no location changing, e.g. user was sitting, the sentence is “You were sitting.” 

Figure 6.4: Pseudocode for generating fabula 

 
 

Source: The author (2013) 

SET time=getTimeContextFromVirtualSensor() 
generating time sentence 
IF userInputActivity THEN 
 SET topActivity=userInputActivity 
ELSE 
 SET activityList=getListofActivityFromVirtualSensor() 
 SET activityCount=length of activityList 
 FOR i=1 to activityCount 
  correct the wrong detected activity 
  // for example, sitting between drivings should be driving, because of 
red light 
 NEXT 
 SET topActivity= the most frequency activity in the event 
END IF 
SET locationFrom=getStartPointFromVirtualSensor() 
SET locationTo=getEndPointFromVirtualSensor() 
 
IF  locationFrom= locationTo THEN 
 generating location sentence with one location 
ELSE  
 generating location sentence using two locations 
END IF 
IF userInputActivity THEN 
 SET socialContext=userInputSocial 
ELSE 
 SET socialContext=getListofSocialFromVirtualSensor() 
 generating social sentence using socialContext 
END IF 
 
SET environmentContext=getEnvironmentFromVirtualSensor() 
generating environment sentence using  environmentContext 
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 Social sentence: If the user was speaking to somebody, the activity sentence is 

generated as “You were sitting and speaking to somebody”. If the location is 

social place, the sentence would be “You were sitting and speaking to your 

friend”. If the user answered the phone during the event, the social sentence is 

“At 8:05 am you received a 3 minutes’ phone call from Anna”.  

 Environment sentence: As mentioned above, environment is generated when 

environmental noise level is higher or lower than normal/average level. For 

example, if it was noisy, the environment sentence would be “It was very 

noisy”.  

6.3 Generating Sjuzet  

As shown in Figure 6.5, generating sjuzet involves generating a paragraph of 

narratives based on the fabula (sentences).  

Figure 6.5: Generating sjuzet from fabula 

  
Source: The author (2013) 

 

As mentioned in previous sections, an event involves at least one activity over a 

period of time or involves at least one change of context. However, not every context 

changes from event to event. For example, the user begins to make tea after sitting. 
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The only changing context is his activity. The location and environment do not 

change. If everything is described in the narrative, there will be a lot of duplications 

which would not be the ideal, nor would it appear in anyway.  

To avoid duplication, the system generates sjuzet based on some aspects of 

fabula when it is changed. For example, the location sentence of the previous event 

and current event are both “You were at home.” This sentence (fabula) is not chosen 

to generate sjuzet for the current event. This is because the user has already known 

the location information when he read the previous event narrative. It will be chosen 

to generate sjuzet when current location is not “at home”.  

6.4 Generating Discourse  

The final step is to generate the discourse, which is the content that is shown to the 

user. The discourse could be text, photograph and even film (Cheong and Young, 

2008). As we mentioned in previous sections, a good quality image would be a very 

useful addition to a lifelog. In this study, we use the keyframe photograph and the 

generated sjuzet as the discourse. As shown in the Table 6.1, the discourse for event 

1 includes a photograph taken during the event. An example of the process of 

narrative generation is shown in Appendix 1. The detail of pseudocodes on 

generating sjuzet is shown in Figure 6.6. 

6.5 Evaluating Narratives 

To investigate to what extent the narratives generated from the system can help 

people recall their past experience, five users were employed to evaluate these 

narratives. The five users collected data for two weeks. This data was analysed using 
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the proposed lifelogging system. Narratives were generated for them to evaluate 

through a web-based interface as shown in Figure 6.7.  

Figure 6.6: Pseudocode for generating sjuzet 

 
 

Source: The author (2013) 

 

Figure 6.7: Web interface for participants to evaluate narratives 

  
Source: The author (2013) 

SET prevousFabula=getPreviousEventFabula() 
SET CurrentFabula=getPreviousEventFabula() 
SET sjuzet= new Sjuzet() 
IF prevousFabula.locationSentence!=currentFabula.locationSentence THEN 
    sjuzet.locationSentence=currentFabula.locationSentence  
END IF 
IF prevousFabula.socialSentence!=currentFabula.socialSentenceTHEN 
    sjuzet.socialSentence=currentFabula.socialSentence 
END IF 
IF prevousFabula.activitySentence!=currentFabula.activitySentenceTHEN 
    sjuzet.activitySentence=currentFabula.activitySentence 
END IF 
IF prevousFabula.environmentSentence!=currentFabula.environmentSentenceTHEN 
    sjuzet.environmentSentence=currentFabula.environmentSentence 
END IF 
sjuzetContent=sjuzet.ToString() 
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The user interface in Figure 6.7 includes five components. On the top, there is 

calendar panel with which the user can choose which day they would like to 

evaluate. On the left hand side, all events that happened in that day are shown 

through keyframes. When the user clicks a keyframe in the left panel, the narratives 

generated for the event will be shown in the information panel on the right hand side. 

A map is shown to provide the location information where the photograph 

(keyframe) was taken. As well as the narratives on the right hand side, there is a 

group of radios buttons, which the user can use to rate the accuracy of the event 

narrative. An accuracy value of zero means that the generated narrative is not useful 

content at all; and of four means that the generated narrative can give the user the 

best clue to recall the events. On the bottom right hand side, there is a play button. If 

the user is not sure of the accuracy of the narrative with the keyframe, they can 

browse all photographs taken in that event using the play function. 

Figure 6.8: The results of narratives evaluation 

  
 

Source: The author (2013) 
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Overall, the results of the evaluation are positive. All of the five users have 

provided average scores higher than 3 (user1: 3.4; user2: 3.3; user3: 3.3; user4: 3.6; 

users5: 3.2). Figure 6.8 presents the results of the number of ratings by 5 users. In the 

results, most of annotated narratives are rated as 3 and 4. It indicates that the 

narratives can help the users to recall their past experiences to a great extent.  

In the results, user2 (2), user4 (4) and user5 (5) have missed some narratives (the 

number is shown in the brackets) to evaluate. Compared with the rated ones, the 

missing ratings are very rare (0.9% for user2; 1.3% for user4; 3.0% for uesr5) and 

are ignored. 

We explore the reason for the low scores to improve system performance in the 

future. Events we used to evaluate narratives are generated using our event 

segmentation model. Some (typically short) events may have not enough contextual 

information, e.g. the example given in Section 6.2.2 (a user stands up, gets a cup of 

coffee and sits back down again within one minute). The quality of narrative is thus 

reduced. Since the frequencies of low score are much less than the high score, it is 

not a serious concern in this study. 

The narratives generated from the system are not perfect. However, the 

experiment results have shown that they are sufficiently enabling users to recall their 

memories. It has achieved the goal of this study.  

6.6 Personal Life Experience Search Engine 

As an addendum to this work on generating descriptive narratives, we developed a 

personal life experience search engine. To generate readable narratives, we only 

chose parts of fabula to generate sjuzet. However, when the user searches his/her 
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personal information, they may expect that all information can be searched. Keeping 

this in mind, we indexed the fabula using Lucene
4
 (Hatcher et al., 2004) which 

contains more information. As shown in Figure 6.9, a user can search their lifelog 

data by inputting a textual query string. When users type his/her queries, the system 

will submit the query to the search engine. After the search engine returns the ranked 

results, our system will analyse and show them on the web page as a ranked list of 

events. 

Figure 6.9: The process of searching personal information using search engine 

  
Source: The author (2013) 

                                                 
4 Lucene: Apache Lucene is a free/open source information retrieval software library, originally 

created in Java by Doug Cutting. It is supported by the Apache Software Foundation and is released 

under the Apache Software License. 
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6.7 Summary 

It is our conjecture that users would desire quick automatic diary and simple episode 

summaries that are easy to understand. In this chapter, we mainly introduced the 

process of generating narratives using all kinds of concepts, i.e. fabula (sentences), 

sjuzet (paragraphs) and discourse (paragraphs with keyframes/pictures).  

Narratives can help users to recall their past experiences. To test to what extent 

the narratives can help people recall their past experience, an experiment was set up 

for users to rate the usefulness of the narratives. The results showed great support for 

using the narratives to recall users’ memories. Therefore, support is found for 

hypothesis 2. A meaningful textual narrative that accurately represents an event can 

be generated automatically. 

In addition, we developed a personal life experience search engine through 

which users can search from all of the collected information rather than only the 

essential contexts, events and narratives generated from the system.  
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CHAPTER SEVEN 

SUPPORTING MULTIMODAL ACCESS 
 

7.1 Introduction 

The previous chapters have presented data collection, storage and analysis including 

context detection, event segmentation, and narrative generation. In this chapter, we 

focus on the last process of the lifelogging system - data display. We will explore 

how to best present lifelog data on multiple accessing devices, i.e. multimodal access 

to lifelogs. Three devices for representing results are applied as computer, 

smartphone and E-book reader. Results from the user experience experiments 

indicate different data displaying performance for different lifelogging devices. 

Figure 7.1 shows the position of this chapter’s work in the whole model. 

Figure 7.1: Work in Chapter 7 

 

 

 

 

 

 

 

 

 

 

Source: The author (2013) 
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7.2 Overall User Experience Experiments and Survey 

In order to evaluate what types of output from lifelogging system are the most 

suitable for displaying lifelog data analysis results on which of the devices 

(computer, smartphone and E-book reader), we set up a few user experience 

experiments.  

7.2.1 Dataset 

We firstly chose a previous user’s lifelog data (10-day segment) after receiving his 

permission to use it. This lifelog data was processed and annotated by the data 

owner. It includes the four main activities detected from the system as 

sitting/standing, lying, walking and driving. It also includes the manual selection 

from the 15 activities as shown in Table 6.1. Example activities include socializing, 

eating, and shopping etc. From the ten days’ data, the event segmentation technique 

identified 253 events. Keyframes were extracted and narratives are generated. To 

save the participants’ time, 16 events were selected by the data owner based on his 

own experience and preference as query topics as shown in Table 7.1.  

7.2.2 Participants 

In this study, we adopted a convenient sampling strategy which is very common in 

the lifelogging domain (e.g. Schmidt et al., 2012). 16 participants were recruited to 

investigate the performance of different interfaces on different devices. 11 

participants are male and 5 are female. They are from different research groups. 

They are derived from a wide variety of research areas including information 
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retrieval (3), engineering (2), HR (2), chemical (2), data mining (2), video processing 

(3), biological (1) and cloud computing (1). 

Table 7.1: The sixteen questions for user interface test 

Queries Topic 

Q1 Find out how many times the user used computer on the 20
th

.  

Q2 Find out the time when the user left home on the 12
th

. 

Q3 Find out the time when the user was relaxing at home on the 16
th

. 

Q4 Find out the time when the user was talking to J on the 11
th

. 

Q5 Find out all the events of the user was working with A on the 9
th

. 

Q6 Find out the scene of the user was relaxing at home on the 10
th

. 

Q7 Find out the scene of the user was having a conversation with an 

unknown person on the 16
th

. 

Q8 Find out the time when the user was meeting R on the 10
th

. 

Q9 Find out scene of the user was working with a whiteboard on the 11
th

. 

Q10 Find out the colour of the user’s jumper on the 16
th

. 

Q11 Find out how often the user used a computer on the 11
th

. 

Q12 Find the scene of a bedroom on the 9
th

. 

Q13 Find out the time when the user was driving to work at on the 18
th

. 

Q14 Find out how many different people the user interacted with on the 16
th

. 

Q15 Find out the time when the user was relaxing at home on the 16
th

. 

Q16 Find the event of the user using the internet on the 10
th

. 

 

The participants rarely know about the data owner in terms to his life, friends, or 

places in which he regularly spends time. In this way, the impact (bias) of 

participants’ knowledge and experience about the data owner on the results is 

avoided. Although the sample may not be truly representative of the population, 

which may be obtained through random sampling, this method was suitable for this 

study to provide a general understanding of people’s use of technology.  
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7.2.3 Eight User Interfaces for Displaying Lifelogs 

Eight different types of user interfaces for displaying lifelogs are developed for this 

work including images, images and annotations, images and icons, images and 

narratives, animations, diaries, icons, and narratives. They are described in detail as 

below.  

 Images: In this interface, all keyframes of events are selected and shown on the 

webpage. Users can access them by computer or smartphone. On this interface, 

all events are loaded and ordered by time. The interface is shown in Figure 7.2. 

This interface is the typical interface for lifelogging users. It is used as our 

baseline interface.  

Figure 7.2: Showing user’s everyday life event with images  

  

Source: The author (2013) 
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 Images and annotations: The interface does not only contain keyframes of all 

events, but also the additional information, such as the user’s activity and event 

time. The user interface is shown in Figure 7.3. In this case, the raw semantic 

annotations are accompanying the event and this would represent a minimal 

addition to the baseline image-only interface.  

Figure 7.3: Showing user’s everyday life event with images and annotations 

  

Source: The author (2013) 

 

 Images and icons: In this interface, all users’ activities are replaced by icons, 

and they are shown with keyframes in Figure 7.4. The icon provides a quick 

reference visual cue to represent the 15 important life activities that we 

mentioned in the previous chapter and were shown previously in Table 6.1. 

 Images and narratives: The interface contains keyframes and generated 

narratives as shown in Figure 7.5. All current day’s events are shown in one 
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page. In this case, we are interested to know if the narratives are liked by the 

participants or found to be useful in locating relevant events faster.  

Figure 7.4: Showing user’s everyday life event with images and icons 

  
Note: The icons are designed for 15 activities.              

Source: The author (2013) 

 

Figure 7.5: Showing user’s everyday life event with images and narratives 

  
Source: The author (2013) 



162 

 

 Animations: This interface shows all the day’s events with keyframe and 

related narratives in animation mode from beginning to the end. The time span 

between two events is 500 ms. The UI is shown in Figure 7.6 and would be 

useful in a less-interactive, lean-back environment, such as on a TV or other 

large screen, relaxation-focused device.  

Figure 7.6: Showing the user’s everyday life event with animations 

  

Source: The author (2013) 

 

 Diaries: In this UI, keyframes and related narratives are shown in a diary style 

similar to a story book. User can view the previous or next event by clicking 

buttons. The interface is shown in Figure 7.7. This interface attempts to recreate 

the concept of a human diary of a day’s events, with the selected keyframe.  

 Icons: There are only icons shown in this UI as shown in Figure 7.8. In this 

interface, we are evaluating if semantic annotations alone can help to locate 

relevant events fast. The icon list would provide a small visual summary of a 
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day/an event suitable for small screen devices, such as a watch or ipod nano, or 

even on a next generation wearable device like Google Glass.  

 

Figure 7.7: Showing the user’s everyday life event with diaries 

  

Source: The author (2013) 

 

Figure 7.8: Showing the user’s everyday life event with icons  

  

Source: The author (2013) 
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 Narratives: There are only narratives shown on the web page as shown in 

Figure 7.9. All current day’s events will be shown in one page. This narrative 

description is replicating the concept of the basic diary entry, per event, with no 

accompanying keyframe. It is particularly suitable for generating summaries of 

periods of time, e.g. days or weeks, where a keyframe selection methodology 

has not yet been developed to be effective over long time periods.  

Figure 7.9: Showing user’s everyday life event with narratives 

 
Source: The author (2013) 

 

7.2.4 Evaluating Display Performance 

When participants answer the questions using the above eight user interfaces, their 

accuracy and time length is recorded as one source to evaluate the performance of 

the eight user interfaces on the tested devices. 

In addition, we adopted an online survey method to ask the participants to 

evaluate each user interface. Four criteria are included, i.e. visual appeal, subjective 

satisfaction, potential for errors and speed of use. Visual appeal is believed to 
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dominate impression judgments (Lindgaard et al., 2011). The other three criteria 

(effectiveness, efficiency and satisfaction) are defined by the international standard 

ISO/IEC 9241-11 and have been used by a lot of researchers, e.g. Shneiderman and 

Plaisant (2005). 

The survey was distributed to participants immediately after the experiment was 

completed. For each user interface, the participant was presented with the screenshot 

of the user interface. A seven-point Likert scale was used (1 = the lowest; and 7 = the 

highest).  

The Likert scale was named after Dr. Rensis Likert, a sociologist at the 

University of Michigan. He developed this technique and published it published in 

the Archives of Psychology in 1932 with a title of “A Technique for the Measurement 

of Attitudes” (p.1-55). Since then, the Likert scales have been used to measure 

responses’ experience and feelings through survey/questionnaire method in many 

research domains, e.g. psychology (e.g. Gong et al., 2010), business management 

(e.g. Fu et al., 2013) etc. The advantages of Likert scales include 1) they are quicker 

and more economical to collect data comparing with other data collection method 

e.g. interview; 2) they are easily adapted to various measurement situations such as 

from agreement to satisfaction; 3) the data are very easy to be analysed using statistic 

software. Meantime, some researchers criticize the Likert scales. For example, 

Jamieson (2004) outlines some common means to abuse Likert scales in practice. 

They include that the intervals between Likert scale values are not equal although 

they have a rank order. Despite the disadvantages of Likert scales, many studies have 

used them. For example, in human-computer interaction field, Shneiderman et al. 

(2010) adopted Likert scales in a survey to evaluate the user interface satisfaction. 
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Similar to Shneiderman et al. (2010), this study applies Likert scales to evaluate the 

user interface satisfaction.  

It is noted that the “potential for errors” criterion is reverse coded which means 

the larger the value is, the less errors and the better performance the user interface 

has. As the questionnaire took approximately 5-10 minutes to complete and 

questions were very simple, all participants completed their questionnaire properly. 

Figure 7.10 presents the interface example for evaluation display performance. 

Figure 7.10: An example of web interface to evaluating display performance 

 

 
 

 Source: The author (2013) 

7.2.5 Procedures 

As presented in Section 7.2.2, 16 participants were recruited to carry out the 

experiments, i.e. evaluating the potential value of the eight user interfaces on the 

three devices. The eight user interfaces (UIs) include images, images and 
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annotations, images and icons, images and narratives, animations, diaries, icons, and 

narratives. Three devices are the computer, smartphone and the E-book reader. 

As the three devices have different characteristics, not all of the eight user 

interfaces are shown for each device. For example, the E-book reader has a low 

displaying capability in white and black. Only four UIs are used and evaluated by 

participants for this device: “Images”, “Images and annotations”, “Images and 

narratives” and “Narratives” while all eight UIs are used in computer and 

smartphone. Table 7.2 presents what UIs are used for each device. 

For the 16 participants/users for the experiments on three devices, eight 

participants evaluated the display performance of computer; four participants 

evaluated the smartphone and the remained evaluated the E-book reader. All 

participants completed the experiment only once. It meant that a participant who 

evaluated all sixteen questions on the computer will not be faced with the same 

topics again on the smartphone or the E-book reader.  

Considering the interest and time of the participants, it was not necessary to 

answer all of the 16 questions for each UI. For example, the participant 1 in 

computer display answered two questions (Q1 and Q9) on images UI, two questions 

(Q2 and Q10) on image and annotation UI. The same method is applied to other 

participants for the other two devices. Another reason for applying this method is 

due to questions themselves and the devices. For the user interfaces on both 

computer and smartphone, participants can answer topics by clicking on the related 

event on the interface. For example, to answer the question Q4 (Talking to J on the 

11
th

), participants only need to click on the related photograph or narrative, and the 

system will log the answer and the spent time. For some questions such as Q9 
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(Working with a Whiteboard on the 11
th

), the participant may not find the answer 

using “Icons” UI. In this situation, the participant can just skip that topic. Once the 

topic is answered, the timer will stop and results will be logged.  

Performance was measured based on entry speed and accuracy, as well as a 

survey on four criteria (visual appeal, subjective satisfaction, potential for errors and 

speed of use). The survey was given to all participants at the end of each session to 

obtain subjective feedback.  

Table 7.2: The eight interfaces and their deployment in the experiment 

UI Computer Smartphone E-book Reader 

Images  Y Y Y 

Images and Annotations Y Y Y 

Images and Icons Y Y N 

Images and Narratives Y Y Y 

Animation Y Y N 

Diaries Y Y N 

Icons  Y Y N 

Narratives Y Y Y 

 

7.3 User Experience with Computer Display 

The experiment setup on user experience with computer display is presented along 

with the results in the following subsections. 

7.3.1 Experiment Set Up for Computer User 

In this experiment, we employed eight participants to find the answers for all sixteen 

questions shown in Table 6.1 and using eight user interfaces with computer.  
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As mentioned in the previous section, considering the interest and time of the 

participants, not all of the 16 questions are requested to be answered for each UI. For 

example, participant 1 in this experiment answered two questions (Q1 and Q9) on 

images UI, two questions (Q2 and Q10) on images and annotations UI. More details 

are shown in Table 7.3. 

Table 7.3: Experiment configuration for computer user interface test. 

Particip

ant 
Images 

Images and 

Annotations 

Images and 

Icons 

Images and 

Narratives 
Diaries Animations Icons 

Narrati

ves 

1 
Q1 Q2 Q6 Q3 Q4 Q5 Q7 Q8 

Q9 Q10 Q14 Q11 Q12 Q13 Q15 Q16 

2 
Q2 Q3 Q7 Q4 Q5 Q6 Q8 Q1 

Q10 Q11 Q15 Q12 Q13 Q14 Q16 Q9 

3 
Q3 Q4 Q8 Q5 Q6 Q7 Q1 Q2 

Q11 Q12 Q16 Q13 Q14 Q15 Q9 Q10 

4 
Q4 Q5 Q1 Q6 Q7 Q8 Q2 Q3 

Q12 Q13 Q9 Q14 Q15 Q16 Q10 Q11 

5 
Q5 Q6 Q2 Q7 Q8 Q1 Q3 Q4 

Q13 Q14 Q10 Q15 Q16 Q9 Q11 Q12 

6 
Q6 Q7 Q3 Q8 Q1 Q2 Q4 Q5 

Q14 Q15 Q11 Q16 Q9 Q10 Q12 Q13 

7 
Q7 Q8 Q Q1 Q2 Q3 Q5 Q6 

Q15 Q16 Q12 Q9 Q10 Q11 Q13 Q14 

8 
Q8 Q1 Q5 Q2 Q3 Q4 Q6 Q7 

Q16 Q9 Q13 Q10 Q11 Q12 Q14 Q15 

Note: Participants did not need to find answers using all UIs. For example, 

Participant 1 used “Images” to find answers for Q1 and Q9, and used “Images and 

Annotations” to find answers for Q1 and Q9. They only need to answer all questions 

once.  

 

In this experiment, each interface was encountered twice by each participant; for 

different questions. To avoid bias, we ensured that the topics were not repeated on 

the same interfaces and the users encountered the interfaces in different sequences. 

When the experiment begins, the web page with timer will load appropriate events to 

the interface according to the question. The timer is stopped and results are stored in 

the database when user clicks the photograph or other content for the question.  
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7.3.2 Results of Computer User Experiment 

Figures 7.11 presents the experiment results generated from the computer-based 

interfaces on accuracy, time and the four criteria (visual appeal, subjective 

satisfaction, potential for errors and speed of use) using eight user interfaces (UIs). 

The eight user interfaces are images, images and annotations, images and icons, 

images and narratives, animations, diaries, icons, and narratives.  

In terms of accuracy, the results generated from the computer-based interfaces 

indicate that both “images and narratives” and “images and annotations” have the 

highest scores - 0.94. The “images and icons”, “diaries” and “images” are 0.88, 0.88 

and 0.80 as shown in Figure 7.11. Three UI’s accuracy levels are found to be lower 

than the average score (0.79). They are the “narratives” (0.75), “animate” (0.69) and 

“icons” (0.44). 

In terms of time spent by computer participants on UIs, the results show great 

difference ranging from 7.4 to 15.8 seconds. The “images” takes the shortest time at 

7.44 seconds, which is followed by “images and narratives” (9.75), “images and 

annotations” (11.5), leaving the other five UIs taking longer than the average time 

which is 11.97 seconds: “animation” (11.56),“images and icons” (12.3), “icons” 

(13), “diaries” (14.43), and “narratives” (15.75).  

Figure 7.11 also presents the participants’ experience of the eight UIs on four 

criteria (visual appeal, subjective satisfaction, potential for errors and speed of use). 

The potential of errors is reversed coded which means the larger the value is, the less 

errors and the better performance the user interface has.  
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Figure 7.11: Evaluation results of displaying performance with computer  

 

 

 
Source: The author (2013) 
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For “images and icons”, “images”, “image and narrative” and “images and 

annotations”, participants share similar patterns on the four experience indicators, 

where the scores on visual appeal and speed of use are higher than the ones with 

subjective satisfaction and potential for errors. For “animations” and “icons”, 

participants provide the highest scores on visual appeal and similar scores for the rest 

of three indicators which are all above 3. For “narrative”, the highest score is given 

on potential for errors (>4), leaving the other three indicators at similar level ranging 

from 2.7 to 3.2. For the last UI “diary”, participants provide highest score on visual 

appeal (6.38), which is followed by subjective satisfaction (5.8), speed of use (4.5), 

and potential for errors (1.6).  

It can be seen that the scores on the visual appeal are the highest (>5) for each 

UI except for “images” and “narratives”. Participants are most subjectively satisfied 

with “diaries” (>6), and least with “narratives” (<3). Participants think the 

“narratives” has least (>5) and the “diary” has the most (<3) potential for errors 

(reversed coding). In terms of participants’ experience on speed of use, the scores are 

generally high (>4) for all UIs expect for “icons” and “narratives”.  

7.4 User Experience with Smartphone Display 

The experiment setup on user experience with smartphone display is presented along 

with the results in the following subsections. 

7.4.1 Experiment Set Up for Smartphone User 

Smartphone touch screen interfaces are more challenging due to the limited screen 

space (Chittaro, 2006). However, the smartphone is the most convenient tool for 

users to access their data. Due to its ubiquitous nature, the smartphone is the device 
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that is most likely to be used for many lifelog accesses in the real-world. In the 

smartphone experiment, we used the same UIs as the computer UI experiment. 

HTML5 was used to enhance the interface specifically for the smartphone’s 4 inch 

screens, as shown in Figure 7.12.  

Figure 7.12: User interfaces showing on smartphone 

  
 

Source: The author (2013) 

Table 7.4: Experiment configuration for smartphone user interface test 

Participant Images 
Images and 

Annotations 

Images 

and Icons 

Images and 

Narratives 
Diaries Animations Icons Narratives 

1 
Q1 Q2 Q6 Q3 Q4 Q5 Q7 Q8 

Q9 Q10 Q14 Q11 Q12 Q13 Q15 Q16 

2 
Q2 Q3 Q7 Q4 Q5 Q6 Q8 Q1 

Q10 Q11 Q15 Q12 Q13 Q14 Q16 Q9 

3 
Q3 Q4 Q8 Q5 Q6 Q7 Q1 Q2 

Q11 Q12 Q16 Q13 Q14 Q15 Q9 Q10 

4 
Q4 Q5 Q1 Q6 Q7 Q8 Q2 Q3 

Q12 Q13 Q9 Q14 Q15 Q16 Q10 Q11 

 

Note: Participants did not need find answers using all UIs. For example, Participant 

1 used “Images” to find answers of Q1 and Q9, and used “Images and Annotations” 

to find answers for Q2 and Q10. They only need to answer all questions once. 
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In this experiment, we only employed four participants as shown in Table 7.4. 

Each participant answered 16 questions using the eight different interfaces; and the 

timeout for smartphone participant is 60 seconds. The experiment configuration 

details are shown in Table 3.2. 

7.4.2 Results of Smartphone User Experiment 

Figures 7.13 presents the experimental results generated from the smartphone-based 

interfaces on accuracy, time and the four criteria (visual appeal, subjective 

satisfaction, potential for errors and speed of use) in relation to the eight user 

interfaces (UIs).  

In terms of accuracy, the results generated from smartphone indicate that both 

“images and icons” and “diaries” have the highest scores as 0.94, which are followed 

by “images and narratives”, “narratives” and “images and annotations” with both 

scores of 0.88, and “images” and “animations” with score of 0.75. The “icons” has 

the lowest score on accuracy which is 0.50.  

In terms of the time spent by computer participants on UIs, the results show 

huge difference ranging from 21.5 to 46.6 seconds. The “images and icons” takes the 

shortest time which is 21.5 seconds while the “diaries” takes the longest time which 

is 46.6 seconds. The “animations” takes the second longest time (32.3 seconds), 

which is followed by “images and annotations” (29.3 seconds) and “icons” (28.7 

seconds). For the rest of the three UIs, i.e. “images”, “images and narratives” and 

“narratives”, they take similar time at 23.8 seconds. Overall, the time spent by 

smartphone participants on each UI is longer than the time spent by computer 

participants.  
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Figure 7.13: Evaluation results of displaying performance with smartphone  

 

 

 

 
Source: The author (2013) 
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One potential reason is that the smartphone has limited screen space and it can 

only show one photograph each time. Therefore, it may take the participants more 

time to find the answers according to our prior study.  

Figure 7.13 also presents the participants’ experience of the eight UIs on visual 

appeal, subjective satisfaction, potential for errors and speed of use.  

For “animation”, “dairies” and “icons”, the visual appeal has the highest score.  

For “images”, “images and icons”, “images and annotations”, and “images and 

narratives”, their potential errors performance are better than the other three 

indicators. For “images and narratives” and “images and annotations”, participants 

provide similar scores on visual appeal and subjective satisfaction at around 4.5, and 

highest score on potential for errors (4.9 for “images and narratives” and 5.2 for 

“images and annotations”). For “narratives”, the potential for errors is given the 

highest score (3.8) with the other three indicators sharing the similar scores (2.5 for 

visual appeal, and 3 for subjective satisfaction and speed of use). For “diaries”, the 

scores on four indicators stay similar ranging from 3.5 to 4.5 (3.5 for speed of use, 

4.2 for potential for errors, 4.2 for subjective satisfaction and 4.5 for visual appeal).  

In addition, it can be seen that the scores on visual appeal are the highest (>4) 

for all of the UIs except for “narratives”. Participants are most subjectively satisfied 

with “animation” (>5), and least satisfied with “narratives” (3). Participants think the 

“animation” has most potential for errors (3) and the “images” has the least (5.5) 

potential for errors. In terms of participants’ experience on speed of use, the scores 

are quite diverse ranging from 3 for “narratives” to 5 for “images”.  
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7.5 User Experience with E-Book Reader Display 

The experiment setup on user experience with the E-book reader display is presented 

along with the results in the following subsections. 

7.5.1 Experiment Set Up for E-Book Reader User 

The Barnes & Noble Nook (styled “Nook" or “NOOK") is a brand of electronic-

book reader developed by American book retailer Barnes & Noble, based on the 

Android platform (Source from Wikipedia). Nook works like a diary book, and it 

does not support animation. It can display images, but in white-black mode. Images 

on E-book reader could not supply as much information as on computer and 

smartphone. Especially for small images such as an icon, Nook could not display 

them clearly. Therefore, in the experiment on an E-book reader, we only adopted 

four UIs: “images”, “images and annotations”, “images and narratives” and 

“narratives”. We generated different pdf files containing the four UIs.  

 Images: There is only one keyframe on every pdf page. Every page represents a 

new event and it is presented to the participants with the correct day at the 

beginning of the topic.  

 Images and Annotations: There is one keyframe and related annotation on 

every pdf page.  

 Images and Narratives: There is one keyframe and related narrative on every 

pdf page.  

 Narratives: There are only narratives of many events.  

With these files, participants can access lifelogs easily as shown in Figure 7.14. 

In the experiment, we employed four participants. Two participants answered the 
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first eight questions using four different pdf files (user interfaces), and other two 

participants found the answers for the other eight questions. We also developed a 

timer system. It could record the time of the user spent on searching for the answer. 

The details of the experiment are shown in Table 7.5. Similar to the above 

experiment with computer and smartphone, users’ behaviour will be logged into the 

database as well. 

Table 7.5: Experiment configuration for E-book reader user interface test 

Participant Images 
Images and 

Annotations 

Images and 

Narratives 
Narratives 

1 
Q1 Q2 Q3 Q4 

Q5 Q6 Q7 Q8 

2 
Q4 Q3 Q2 Q1 

Q8 Q7 Q6 Q5 

3 
Q9 Q10 Q11 Q12 

Q13 Q14 Q15 Q16 

4 
Q12 Q11 Q10 Q9 

Q16 Q15 Q14 Q13 

 

Note: Participants did not need find answers using all UIs. For example, Participant 

1 used “Images” to find answers for Q1 and Q5, and used “Images and Annotations” 

to find answers for Q2 and Q6. They only need to answer all questions once. 

Figure 7.14: Showing generated lifelog pdf file with E-book reader 

  
Source: The author (2013) 
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7.5.2 Results of E-Book Reader User Experiment 

Figures 7.15 presents the experiment results generated from the E-book reader-based 

(Nook) interfaces on accuracy, time and the four criteria (visual appeal, subjective 

satisfaction, potential for errors and speed of use) using four user interfaces (UIs). 

These include Images, Images and annotations, Images and narratives, and 

Narratives. 

In terms of accuracy, the results generated from Nook indicate a stable accuracy 

for four UIs at around 0.82. 

In terms of the time spent by Nook participants on UIs, the results show a huge 

range from 48 to 95 seconds. The “images” takes the longest time which is 95 

seconds, which is followed by “images and annotations” with 73 seconds and 

“images and narratives” with 53 seconds, leaving the “narratives” with the shortest 

time which is 48 seconds. Overall, the time spent by Nook participants on each UI is 

longer than the time spent by both computer and smartphone participants. One 

potential reason is that the Nook needs time to refresh a new page. Therefore, it took 

participants longer to find the answers.  

Figure 7.15 also presents the participants’ experience of the four UIs on visual 

appeal, subjective satisfaction, potential for errors and speed of use. Participants 

have very different experience on each UI.  

For “images”, “images and annotations” and “narratives”, participants provide 

highest score on potential for errors (R) (3.5 for “images”, 4.7 for “images 

annotations” and 6 for “narratives”). For “images and narratives”, participants 

provide the highest scores to both are performance with low potential errors (5) and 

subjective satisfaction (5), followed by visual appeal (4.5) and speed of use (3.7).   
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Figure 7.15: Evaluation results of displaying performance with the E-book 

reader  

 

 

 
Source: The author (2013) 
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For “image”, the lowest score is given to subjective satisfaction (2.2). For 

“images and annotations”, participants provide similar scores on the three indicators 

with 3.5 for the speed of use and 3.2 for the visual appeal and subjective satisfaction.  

In addition, it can be seen that the scores on the visual appeal are higher for 

“images and narratives” and “narratives” (both at 4.5) than “images” and 

“annotations” (both at 3.2). This applies to the subjective satisfaction where the 

scores for “images and narratives” (5) and “narratives” (5.5) than “images” (2.2) and 

“annotations” (3.2). Participants think the “images” has the greatest (3.5) and the 

“narrative” has the least (6) potential for errors, leaving the other two UIs at the 

similar level (around 5). For the speed of use, participants think the “narratives” is 

the fastest (5.2) while the “images” is the slowest (2.8), leaving the other two UIs at 

the similar level (around 3.5). Given the while-black and text-based features of 

Nook, the results are not surprising. 

7.6 Overall Findings 

In the experiments, the computer has been shown to be the fastest approach to access 

personal lifelogs. It took the participants 12 seconds to find the answer on average on 

the computer. On the smartphone and E-book reader they took 29 and 67 seconds 

respectively. This is because their screen sizes are much smaller than the computer’s 

screen. Both the smartphone and E-book reader can only show one image at a time. 

For Nook, it needs an even longer time as it needs to refresh content to avoid 

flashing. However, compared with the computer, smartphone or E-book reader is 

more ubiquitous. It can be brought anywhere. For the computer experiment 

participants, “Images” is the fastest UI, as participants did not need to read other 
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information. The computer screen can show several images at once, so the 

participants can make their decision quickly. For Nook participants, they could not 

receive the same quality of information from images. Some information will be lost 

when images are downsized to black-white mode. However, textual narrative could 

work well. 

Due to its limited display space, the smartphone participants have to scroll down 

to see more information in the user interfaces containing images. However, the 

“Animations” UI does not require user to scroll down manually. This is why 

smartphone got the best feedback on “Visual Appeal” and “Subjective Satisfaction”. 

The “Animation” UI can satisfy most of participants. For the smartphone and 

computer, the “Narratives” UI is the slowest and with lowest accuracy. However, it 

was voted as the best one on E-book reader. In the experiment, the E-book reader 

only supports black-white. The images were also compressed with quite low quality, 

causing issues for the participants in locating the desired information quickly. 

However, E-book readers are designed for text documents; hence it can support 

“Narratives” well. The narratives use smaller screen space compared with images. 

These made “Narratives” as the most suitable content for E-book reader user.  

In the lifelogging system in this study, we chose different UIs for users to access 

their data on different devices. We usually have different aims to access lifelog data. 

For example, sometimes we may view a lifelog to search for an important event, and 

sometime we just want to browse our daily life. Hence in the lifelogging system in 

this study, we chose different UIs for users according to different aims. As shown in 

Table 7.6, we choose the “images” UI for computer, because it can help users to 

browse their data quickly. The “diaries” UI on computer suits users who want to read 
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their lifelogs. This is because computer display has higher visual appeal and 

subjective satisfaction, and lowest potential for errors. When users want to do a 

search on UI, “images and narratives” will suit them more. 

Table 7.6: The suggested user interfaces for different devices 

 Optional interface Reasons to use 

3*Top 3 interfaces 

for Computer 

Diaries 
Highest visual appeal and subjective 

satisfaction, lowest potential for errors 

Images Fastest UI for computer participants 

Images and icons 

The second fastest UI, highest accuracy, 

reasonable visual appeal, subjective 

satisfaction, potential for errors and speed 

of use 

3*Top 3 interfaces 

for Smartphone 

Images and icons Highest accuracy, fastest UI 

Animations 
Highest visual appeal and subjective 

satisfaction 

Images and 

annotations 

The second highest visual appeal and 

subjective satisfaction, reasonable speed 

and accuracy 

2*Top 2 interfaces 

for E-book reader 

Narratives 

The fastest, highest accuracy, visual 

appeal and subjective satisfaction, lowest 

potential for errors 

Images and narratives 

The fastest, highest accuracy, visual 

appeal and subjective satisfaction, lowest 

potential for errors UI with images 

 

For smartphone users, “images and icons” is the fastest UI. Therefore, we 

choose it for users to browse their lifelog data on a smartphone. Compared with the 

computer, the smartphone is not easy to scroll. We therefore chose “animations” for 

users to view their daily lifelog data. Because the smartphone can only show one 

reasonably sized image on the screen at a time, it is not easy for user to view their 

data event by event. We suggest that the user uses “images and annotations” if they 

want to access other information on phones. 
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“Narratives” has shown great potential in helping users to access their lifelog 

data using an E-book reader. We therefore suggest the “narratives” UI for E-book 

reader users. Images on an E-book reader do not contain as much information as on 

the computer and smartphone. For users who want to access their image data through 

an E-book reader, we suggest users use “images and narratives” to access their 

images according to high accuracy, visual appeal and subjective satisfaction.  

7.7 Summary 

In this chapter, we presented the last process of the proposed lifelogging system, the 

representation of results. To assist users accessing their lifelogs, we investigated the 

display performance on three devices (computer, smartphone and E-book reader) via 

eight user interfaces (UIs, as images, images and annotations, images and icons, 

images and narratives, animations, diaries, icons, and narratives). 

The results from these experiments indicate different UIs should be proposed for 

different devices. For example, “diaries”, “images”, and “images and icons” are the 

best UIs for computers to display lifelog data; “images and icons”, “animations”, and 

“images and annotations” are the best UIs for smartphone to display lifelog data; and 

“narratives” and “images and narratives” are the best UIs for E-book reader to 

display lifelog data. Based on these findings, we found support for the hypothesis 3. 

Different access devices benefit from different representations of lifelog data.  

  



185 

 

 

CHAPTER EIGHT 

DISCUSSION 
 

8.1 Overview 

The aim of this study is to develop a lifelogging system allowing users to 

automatically capture their daily lives. In this system, multiple sensors’ data are 

firstly collected through smartphones. To save battery life, the data is temporarily 

stored in the SD card in the smartphone and then transmitted to the server only when 

the phone is being charged. On the server side, the raw data is in a different format 

and has different sampling frequencies. Virtual sensors are used to fuse these data. 

Six contexts are detected from the data: personal, time, location, activity, social and 

environment contexts. Events are then segmented based on context changes. A 

keyframe (picture) is selected to represent each event. Narrative is generated based 

on detected contexts, segmented events and selected keyframes. Finally, different 

user interfaces (UIs) are adopted to display lifelog results on different devices based 

on the display performance evaluation results. 

From this work, we have shown that software sensors can be employed to detect 

meaningful semantics from raw wearable sensor data, either single sensors or 

multiple sensors together. A meaningful textual narrative representing an event can 

be generated automatically. In addition, different access devices benefit from 

different representations of lifelog data.  

Overall, we have developed a lifelogging system supporting the multimodal 

access to lifelogs. 
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8.2 Contributions 

This study introduces a new lifelogging system which includes multiple sensors’ 

data collection, large volume data storage, data analysis founded on detecting 

contexts, segmenting events, generating narratives, and the representation of results 

to users. By doing so, this study contributes to the lifelogging research in the 

following ways.  

Firstly, in this study, a new generation of lifelogging tool has been developed to 

collect, store, analyse and display lifelogging data automatically. It does not need 

user’s input. Users just carry their smartphone and review the data output afterwards. 

Therefore, it avoids some users’ fear about lacking of professional background to get 

involved in lifelogs. 

Second, the lifelogging tool has been designed to collect a full range of sensor 

data from a smartphone in a power-efficient manner. For example, the system is 

context-aware. It can learn the user’s situation and decide which sensor needs to be 

turned on or off in order to maintain all-day data capture.  

Third, approaches are found to extract semantic contexts from raw sensors using 

term weighting and support vector machine learning (SVM) techniques. This helps 

to bridge the semantic gap between the human and machine. Six contexts are 

detected: personal, time, location, activity, social and environmental context. 

Fourth, a real-time lifelogging system is developed to analyse lifelog data 

containing face detection and uploading data to a server in real-time functions. With 

that, users can easily browse and share their status using a web browser.  

Fifth, a method is presented to obtain a user’s location using a fusion of GPS, 

WiFi, Bluetooth and Base Station providing more accurate location information. The 
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combination of multiple location sensors also dynamically extended the smartphone 

battery life, compared with using GPS alone.  

Sixth, a new approach is found to segment lifelog stream data into events using 

SVM. SVM has a good generalisation ability as it is based on the principle of the 

structural risk minimisation in statistical learning theory. This provides a very good 

reference method for future researchers working on lifelogs.  

Seventh, a tool is implemented to detect users’ activities (sitting/standing, lying, 

walking and driving) based on accelerometer sensor. This helps to reduce the 

semantic gap in lifelog data analysis.  

Eighth, an approach is designed to generate a narrative of event using all the 

contexts extracted from physical and virtual sensor data. It improves the 

comprehensiveness of the data usage and accuracy in data analysis.  

Lastly, a multi-access model to access lifelogs is established based on different 

devices. Suggestions are offered on the most suitable representations to enable fast 

and effective access to lifelog data using different modalities of access.  

8.3 Applications  

This work has shown that software sensors can be employed to detect meaningful 

semantics from raw sensor data. A meaningful textual narrative representing an 

event can be generated automatically. In addition, different access devices benefit 

from different representations of lifelog data. Some implications are generated from 

this work in the context of lifelogging development. 

The lifelogging approach has many promising applications. Examples include 

transmitting professional knowledge (Bush, 1945), supporting the data owner’s 
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memory also called memory aid (Wood et al., 2012; Sellen et al., 2007), health 

monitoring (Doherty et al., 2013; Lane et al., 2011), mental health tool (Rennert and 

Karapanos, 2013; Son et al., 2013), social network analysis tool (Sueda et al., 2012), 

and as an even urban design tool (Ihara et al., 2011). Lifelogs can help objectively 

supply data and reveal potential errors inherent in self-reporting (Doherty et al., 

2013). Many other potential yet undiscovered areas exist where lifelogging may be 

exploited by users in future generations.  

Our work provides a good basis for the above applications. Researchers from 

other backgrounds can easily and efficiently use the lifelogging system developed in 

this study. Our system is based on the Android platform which is an open source. It 

means any person who is using the same platform can simply download the system 

and use it straight away.  

We acknowledge that there are challenges to be overcome, such as privacy 

concerns, data storage, security of data and the development of a new generation of 

search and organisation tools, but we believe that these will be overcome and that we 

are on the cusp of a positive turning point for society. We anticipate the era of 

quantified individuals who know more about themselves than ever before, have more 

knowledge to improve the quality of their own life and can share life events and 

experiences in rich detail with friends and contacts.  

8.4 Limitations  

This study is concerned with improving the design of the lifelogging system in order 

to provide users with more approaches to access their lifelog data. Along with its 

contributions and implications, some limitations exist.  
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In this study, all of the experiments were conducted by a small number of 

participants, all of whom were working in the university. There are two main reasons 

for using a small sample size and a convenient sample strategy. Firstly, we had 

limited access to smartphones for this experimentation, due primarily to budgetary 

limitations. Secondly, owing to the nature of lifelogging, which requires the user to 

bring the lifelogging tool everywhere all the time, it was impossible to employ a 

large population to collect data. Lifelogging, as a subject has a history of small-scale 

experimentation. For example, some lifelogging research is only based on the data 

collected by one user (Hamm et al., 2013; Smith et al., 2011). Liao et al. (2007) 

employed four participants in their study. Six participants were employed in Harper 

et al. (2007)’s research and related their stories which were found by browsing 

SenseCam footage. Even for the MyLifeBits project, all data comes from Gordon 

Bell himself (Gemmell et al., 2002). In the experiments in this thesis, the participants 

employed were from candidate’s university, but they all have different backgrounds. 

None of them had prior knowledge about lifelogging for the experiments being 

undertaken. However, it is important to point out that where possible, large-scale 

data was employed. For example, the important location-detecting data collection 

utilised three years of data; data that was gathered before this experiment was 

conceived, planned or conducted before the experiment was conducted. 

As indicated in Section 6.2.2, this study did not consider all of the activity 

context change in segmenting events. For example, a user stands up, gets a cup of 

coffee and sits back down again within one minute. It would be treated as having no 

new event in this study. However, if there is one addition of one small detail (e.g. 

taking tablets from pocket before taking a cup of coffee), it could make this a very 
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important event. The reason for this study not considering it is that if all the changes 

of activities are described in detail in narratives, a user may lose interest in reading 

such a large number of long narratives. It is a limitation of this study and is also a 

future research direction. 

This study applied the support vector machine learning (SVM) technique to 

detect activity contexts and to segment events. Four reasons for choosing an SVM 

have been presented in Chapter 3. They are:  

1) SVM has relatively low sensitivity to the number of training samples;  

2) The same algorithm solves a variety of problems with little tuning;  

3) SVM provides good out-of-sample generalisation;  

4) The classification complexity in SVM does not depend on the feature space; 

5) SVM is very easy-to-use.  

On the easy-to-use function of SVM, a lot of applications and libraries in 

different programming languages are available online. We acknowledge that there 

are some limitations using SVM such as slow speed in training the dataset and the 

fact that it only supports a binary classification feature (all results are true or false) 

(Kotsiantis et al., 2007). However, these limitations are not serious concerns in this 

study due to the fact we do not have an extremely large volume of dataset and the 

dataset only needs training once. While there might be better machine learning 

techniques, which machine learning technique is best is not the focus of this study. In 

addition, according to Kotsiantis et al. (2007), there is no algorithm that can be the 

best in all cases. Comparison of system performance using the numerous machine 

learning techniques is a future research direction. 
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8.5 Future Work 

Our work and results pose many new research questions. There are naturally a 

number of different directions of future research that could be undertaken.  

 About the lifelogging framework: The lifelogging system in this study is a 

new generation of lifelogging tool. It has several advantages over previous 

work. Firstly, it does not need the user to upload data manually. Secondly, it 

does not have a storage limit; all data is uploaded to the server and automatically 

removed from the smartphone. Thirdly, a smartphone is a two-way 

communications medium; it can also give feedback to the user. Many apps will 

be available to give the user a summary of their data in the near future. 

Furthermore, it is easy to upgrade the software and the user does not need to buy 

additional hardware.  

However, it is still far from ideal. It does not have a fish-eye lens, so it only 

has limited field of view and it does not (as yet) implement accelerometer 

triggered photograph capture. For future work, we suggest that the system 

continues to collect data unless the user stops it manually. However, for various 

reasons, the user does not want to collect data in some situations. In future, we 

will investigate ways to control data collection based on users’ context. For 

example, a user can decide to turn on or off the tool using location. If the user 

does not want to collect any information when he is at home, it can stop working 

automatically, and it can begin to work again, when the user leaves home.  

Because the software was initially developed as a lifelogging tool, it collects 

a wide range of data from all available sensors. There is no option for users to 
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choose which data they want to collect or not. In future, we will make it more 

flexible. Users can customise what data they want to collect. Hence, that will 

also open more domains, such as home security and health care, with the 

inclusion of alerts and triggers. Based on a user’s life pattern, it could also give 

the user some useful suggestion in advance. For example, it can request weather 

forecast from the web and the user’s destination from user’s location history. If 

it will rain in the user’s destination, it will remind the user to bring an umbrella 

using text to speech technique before he/she goes outside. Hence real-time 

triggers and interventions are a good potential target for future work to increase 

the capability, or real-world impact, of lifelogs. 

 About the context: In this thesis, we have explored how to detect six different 

contexts from different sources of sensor data. However, there are countless 

contexts in our lives. In future research, we will investigate additional contexts 

and also identify the most important contexts. 

 About the event segmentation: A user may have many event boundary options 

if the event’s boundary is not clear. A more flexible event segmentation 

algorithm would be necessary, one that does not impose a strict event boundary. 

It is known that events decrease in importance over time, so this should be taken 

into account. For our own future work, we will explore options for user-focused 

event segmentation approaches; we believe it will improve segmentation 

accuracy dynamically. In addition, we suggest the use of additional attributes of 

different contexts using other techniques or data mining algorithms for user to 

test and train new event segmentation models. 



193 

 

 About the narrative generation: In this thesis, we generated narratives based 

only on a limited number of contexts. However, there are a range of contexts 

which were not used in this work such as indoor, meeting, etc. from the 

photograph visual analysis of photographs. In future work, we will investigate 

narratives generation using more contexts from the virtual sensors. In addition, it 

is proposed to explore the summarisation of large amounts of event narratives to 

provide daily, weekly, etc. narrative summaries. This opens opportunities for the 

integration of novelty detection algorithms and the ability to place emphasis on 

narrative generation techniques.  

 About the personal information retrieval based on narratives: In this study, 

lifelog data searching is currently based on indexed narratives. When a user 

searches for events using our system, the search engine would analyse his query 

and return all the related results. All the results are ranked by information 

retrieval algorithms using conventional text weighting approaches. These can be 

tailored for users and also can be context sensitive with the inclusion of novelty 

detection algorithms. The weight of different contexts for different users has 

been identified in previous work (Naaman et al., 2004). In the future, we suggest 

the development of new ranking algorithms for personal lifelog information 

retrieval. 

 About the lifelog representation: In Chapter 7, we have shown some examples 

of lifelog data representation on different devices. However there are numerous 

ways to display lifelog data and this is just a starting point. More detailed and 

new approaches should be explored to generate personal info graphics. 

Examples of interfaces are presented in Figures 8.1 and 8.2.  
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Figure 8.1: Web interface with lifelog data summary 

  

Source: The author (2013) 

 

Figure 8.2: Web interface with personal travel report 

  
Source: The author (2013) 
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 About the personal information browsing and sharing: The original idea of 

lifelogging was to collect all the information about one person. However, the 

success of social networking such as Facebook has shown people’s enthusiasm 

for sharing their own information. This system collects all kinds of information. 

Users have more options to browse and share their data. For example, a user can 

choose to browse and share all photographs taken in some locations. He/she can 

also share some photographs which contain faces. Furthermore, users can 

combine all kinds of conditions to browse and share his/her information. For 

example, he/she can get all his/her photographs using environmental noise level, 

time, locations, and activities. In future, we will investigate and implement such 

approaches to browse and share lifelog data.  

Figure 8.3: Indication of driving activity detected over 6-week trial period 

 
 Source: Doherty et.al (2010) 

 

 About the lifelogging affecting change: One issue that we touched on in this 

work, but have not explored in depth, is that of affecting change in the user, as a 
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result of lifelogs. Below (Figure 8.3) is an example of a user’s driving behaviour 

changing during 6 weeks’ experiment period (Doherty et al., 2010). In this small 

‘exploratory’ experiment on developing a CO2 estimator based on the 

accelerometer output, my role was to capture and manage the accelerometer 

output from the sensors. We found that the user reduced the driving frequency or 

length after he/she had involved in the lifelogging, thus indicating a possible 

change in user behaviour.  

8.6 Final Thoughts 

Lifelogging is, we believe, going to become a well-accepted technology in the 

coming years. We can see this trend in the Quantified Self movement whose 

members log (mostly manually) aspects of their lives. However manual logging is 

not possible for most people and not feasible in a longer term; manual logging needs 

to be replaced with automatic life logging. As O’Hara et al. (2008b) suggested 

“every piece of information may be valuable”; it is worthwhile capturing as much 

information as possible. It is worthwhile logging for future use if needed. It is within 

this framework that we have focused our research. The development and evaluation 

of end-to-end lifelogging solutions, that can be effective in real-time, for real-world 

data with minimal user input. There is still a long way to go. We have suggested the 

best representation for lifelog data on multiple devices, but much more work needs 

to be done in this area. At the moment, our lifelog data collection and organisation is 

operational but the search engine to actually locate content is not working on real-

time data. It only supports very simple functionality. For example, it only indexes 

users’ narrative documents once a day when users’ data has been uploaded to the 
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server. However, we believe this work provides a good starting point which provides 

valuable clues and guidance for future researchers in this area.  
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APPENDIX 1 AN EXAMPLE OF ONE DAY’S LIFELOG 
DATA ANALYSIS 

1. Data Collection  

The data is collected by one user from 9:12am to 6:13pm on 9
th

 April 2012 (the 

home part is removed). Raw data profile is presented in Table A1.1. 

Table A1.1 Raw sensor data profile  

Item number Item number 

Image 1,076 Noise level 1078 

Accelerometer reading  161,369 SMS 3 

Bluetooth 834 Screen status 8 

WiFi 800 Base station 14 

 

2. Context Detection 

a) Time is translated to “Day, Month, Year” format. It will be translated to 

“yesterday”, if the user accesses the narrative today. 

b) Location is clustered and translated to semantic place, such as “home”.  

c) Activity of each unit is identified. 

d) Bluetooth detecting. The relationship of the user and Bluetooth owner is 

checked (from the smartphone)  

e) Face detection. The numbers of faces in each photograph are checked. In the 

new version we do face detection on two sides, phone and server, because 

sometime face detection accuracy is not high. Only when two sides have 

consistent results, we label the photograph with face. 

f) Noisy level is translated to “Noisy”, “Quiet”, or “Normal” based on its value. 
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3. Events Segmentation 

In the event segmentation process, one day’s data is segmented into 18 events using 

our event segmentation model (Trained by SVM). 

4. Keyframe Selection 

The steps to choose a keyframe include: 1) ordering photographs which contains face 

in the event by their quality (sharpness); 2) ordering photographs in the event by 

their quality (sharpness) if there is no photograph which contain face; and 3) 

selecting the first one as keyframe. The results of keyframe are shown in Figures 

A1.1 and A1.2. 

Figure A1.1 Keyframe selection results interface  

  
Source: The author (2013) 
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Figure A1.2 Keyframe selection results interface (continued) 

 

 
Source: The author (2013) 



227 

 

5. Narratives Generation  

The sentences are generated using contexts. When the user walks, only the starting 

point and destination are included. Only dominant activity is included. The fabulas 

and sjuzets are shown in Table A1.2. As shown in Figures A1.3 and A1.4, narratives 

were generated without manual inputs. 

Table A1.2 Fabula and sjuzet outputs 

Fabula Sjuzet 
It was at 9:12am on 9th April 2012. 

You were driving from home to a social place. 

It was noisy. 

 

It was at 9:18am on 9th April 2012. 

You were walking in a social place. 

It was normal. 

 

It was at 9:25am on 9th April 2012. 

You were driving from social place to the work 

place. 

It was noisy. 

 

It was at 9:38am on 9th April 2012. 

You were sitting in the work place. 

It was quiet. 

 

It was at 10:25am on 9th April 2012. 

You were walking in the work place. 

It was normal. 

 

It was at 10:28am on 9th April 2012. 

You were sitting in the work place. 

You were with your colleague. 

It was quiet. 

 

It was at 10:36am on 9th April 2012. 

You were walking in the work place. 

It was noisy. 

 

It was at 10:41am on 9th April 2012. 

You were sitting in the work place. 

It was quiet. 

 

It was at 11:32am on 9th April 2012. 

You were walking in the work place. 

It was noisy. 

 

It was at 11:43am on 9th April 2012. 

You were sitting in the work place. 

It was quiet.  

It was at 9:12am on 9th April 2012, You 

were driving from home to social place. It 

was noisy. 

 

It was at 9:18am. You were walking in a 

social place. 

 

 

It was at 9:25am. You were driving from 

social place to the work place. It was 

noisy. 

 

 

It was at 9:38am. You were sitting in the 

work place. It was quiet. 

 

 

It was at 10:25am. You were walking. 

 

 

 

It was at 10:28am. You were sitting with 

your colleague. It was quiet. 

 

 

 

It was at 10:36am. You were walking. It was 

noisy. 

 

 

It was at 10:41am. You were sitting. It was 

quiet. 

 

 

It was at 11:32am. You were walking. It was 

noisy. 

 

 

It was at 11:43am. You were sitting. It was 

quiet. 
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Table A1.3 Fabula and sjuzet (continued) 
 

Fabula Sjuzet 

It was at 12:17pm on 9th April 2012. 

You were sitting in the work place. 

It was quiet. 

 

It was at 2:37pm on 9th April 2012. 

You were walking in the work place. 

It was normal. 

 

It was at 2:44pm on 9th April 2012. 

You were sitting in the work place. 

You were with your colleague. 

It was quiet.  
 
It was at 3:19pm on 9th April 2012. 

You were walking in the work place. 

It was noisy. 

 

It was at 3:36pm on 9th April 2012. 

You were sitting in the work place. 

It was normal. 

 

It was at 5:16pm on 9th April 2012. 

You were walking in the work place. 

It was noisy. 

 

It was at 5:20pm on 9th April 2012. 

You were sitting in the work place. 

It was normal. 

 

It was at 5:38pm on 9th April 2012. 

You were driving from work place to home.  

It was noisy. 

It was at 12:17pm. It was quiet. 

 

 

 

It was at 2:37pm. You were walking. 

 

 

 

It was at 2:44pm. You were sitting with your 

colleague. It was quiet. 

 

 

 

It was at 3:19pm. You were walking. It was 

noisy. 

 

 

It was at 3:36pm. You were sitting. 

 

 

 

It was at 5:16pm. You were walking. It was 

noisy. 

 

 

It was at 5:20pm. You were sitting. 

 

 

 

It was at 5:38pm. You were driving from 

work place to home. It was noisy. 

 

 

Information augmentation: We provide a user interface for user inputting, if they 

have more detailed information about their activities and the people name they met. 

If they don’t input these data, the basic activities will be kept. The people will be 

labelled as friends if a face is detected when user is in social place and colleague if in 

the work place. Information augmentation interface is presented in Figure A1.5. 

Figures A1.6 and A1.7 show the narratives generated with manual inputs. 
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Figure A1.3 Narratives without manual inputs 

 

 
Source: The author (2013) 
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Figure A1.4 Narratives without manual inputs (continued) 

  
Source: The author (2013) 

 

Figure A1.5 Information augmentation interface 

 

 
 

Source: The author (2013) 
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Figure A1.6 Narratives with manual inputs  

 

 
Source: The author (2013) 
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Figure A1.7 Narratives with manual inputs (continued) 
 


