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Abstract

This thesis presents an Efficient Active B-Spline/Nurbs Model for Virtual Sculpting. In
spite of the on-going rapid development of computer graphics and computer-aided
design tools, 3D graphics designers still rely on non-intuitive modelling procedures
for the creation and manipulation of freeform virtual content. The ’Virtual Sculpting’
paradigm is a well-established mechanism for shielding designers from the complex
mathematics that underpin freeform shape design. The premise is to emulate familiar
elements of traditional clay sculpting within the virtual design environment. Purely
geometric techniques canmimic some physical properties. More exact energy-based ap-
proaches struggle to do so at interactive rates. This thesis establishes a unified approach
for the representation of physically aware, energy-based, deformable models, across
the domains of Computer Graphics, Computer-Aided Design and Computer Vision,
and formalises the theoretical relationships between them. A novel reformulation of
the computer vision approach of Active Contour Models (ACMs) is proposed for the
domain of Virtual Sculpting. The proposed ACM-based model offers novel interaction
behaviours and captures a compromise between purely geometric and more exact
energy-based approaches, facilitating physically plausible results at interactive rates.
Predefined shape primitives provide features of interest, acting like sculpting tools
such that the overall deformation of an Active Surface Model is analogous to traditional
clay modelling. The thesis develops a custom-approach to provide full support for
B-Splines, the de facto standard industry representation of freeform surfaces, which have
not previously benefited from the seamless embodiment of a true Virtual Sculpting
metaphor. A novel generalised computationally efficient mathematical framework for
the energy minimisation of an Active B-Spline Surface is established. The resulting
algorithm is shown to significantly reduce computation times and has broader ap-
plications across the domains of Computer-Aided Design, Computer Graphics, and
Computer Vision. A prototype ’Virtual Sculpting’ environment encapsulating each
of the outlined approaches is presented that demonstrates their effectiveness towards
addressing the long-standing need for a computationally efficient and intuitive solution
to the problem of interactive computer-based freeform shape design.
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1Introduction

Over the past five decades, the computer has become a seemingly indispensable model-
ling tool. Indeed, it is difficult to think of an area in which computer-based modelling
cannot be used to some advantage. The extent to which we can make use of computer-
basedmodels is highly dependent on our ability to create andmanipulate computerised
representations of objects and phenomena of interest. For this reason, providing intuit-
ive design metaphors and accompanying tools for computer-based shape modelling
and deformation continues to be a key challenge across research communities in design,
e.g., Computer-Aided Design (CAD), Computer-Aided Geometric Design (CAGD),
Computer-Aided Manufacturing (CAM), Computer-Aided Engineering (CAE), and
also in other disciplines such as Computer Graphics, Computer Vision, Visualisation
and many more.

This thesis is primarily concerned with the interactive design of freeform surfaces.
Freeform surface design encompasses those techniques for the design of smoothly
varying surfaces, characterised by strict requirements on surface quality and aesthetics,
with looser tolerances and dimensioning constraints than more functional forms of
design. Initially developed for automotive and aerospace industries, these surfaces
have become increasingly important in surface design. Freeform surfaces are now the
standard in CAD for surface design and are used across various domains for creating
purely aesthetic surfaces for artistic purposes, for creating aesthetic surfaces that also
perform a function, and even for highly technical surfaces. Their application can be
seen in areas as diverse as prototyping, engineering design, consumer product design,
computer graphics, animations, special effects, medical visualisation, architecture,
sculpture, etc.

Traditionally, modelling and graphics have been regarded as two related but quite
separate fields of study. Modelling encompasses those geometric techniques for de-
scribing object shapes by means of mathematical and abstract relationships suitable
for processing by a computer, while graphics has been seen to cover those techniques
for handling the visual display and manipulation of such computer-based models.
In recent years, computer-based modelling has become a largely interactive process,
relying on computer graphics techniques for defining geometric specifications. For
freeform modelling, where the aesthetics of the final shape are paramount, the ‘Virtual
Sculpting’ paradigm has long been hailed as a natural and intuitive design metaphor.
By emulating traditional clay sculpting in an interactive environment, the task of ma-
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nipulating complex mathematical models can be hidden behind the familiar1 physical
action of moulding and manipulating inelastic substances such as clay.

The ability to intuitively create is core to supporting the design process and intuitive
design tools should shield designers from complicated underlying mathematics and
physics, removing the need for user expertise. Since its inception (Parent, 1977), Virtual
Sculpting has been hailed as a means of doing just that. This thesis examines employing
the Virtual Sculpting paradigm for intuitive interactive design of freeform surfaces.

1.1 Challenges in Freeform Surface Design and
Analysis

There are two main processes involved in freeform surface design. Firstly, the creative
design process, whereby aesthetics are the primary consideration and form is favoured
over function. Secondly, for many applications, freeform surfaces must subsequently
undergo physical analysis, whereby the physical behaviour of the surface is simulated
and/or analysed, e.g., for production/manufacture or graphics/animation, etc. While
largely separate, the two processes are highly inter-dependent and typically the over-
all design requires iterative cycles of the two processes until the desired design and
behaviours are simultaneously achieved. For Virtual Sculpting, the creative design
process incorporates analysis techniques. It is therefore necessary to consider both
design and analysis simultaneously. This section outlines the main challenges facing
both the design and analysis processes in current CAD workflows.

1.1.1 Challenges in Design

With sophisticated software facilitating the visual display of complex graphic content,
and the wealth of geometric and deformable modelling techniques at our disposal, it
might be reasonable to think that the creation of virtual content could be a straightfor-
ward process. However, where automation of content capture is not possible, describing
complex objects in terms of geometric relationships, even for skilled designers, can be
a daunting task.

Shapes can be specified in many ways, but a technique that has become popular
in CAD is using a control mesh, specified by a series of connected control points, to
govern a smoothly varying surface that approximates the mesh. For freeform surfaces
designed in this way, B-Splines/Non-Uniform Rational B-Splines (NURBS) are the de
facto standard representation in CAD. Such surfaces are built upon complex underlying
mathematics such that traditional methods of generating and deforming such models
require prerequisite knowledge or experience in order to utilise design tools effectively.
Many computer graphics modelling and CAD environments require skilled labour and
large time investments on the part of the designer, as current modelling tools regularly

1Most people are introduced to physical clay modelling from an early age in the form of Play-Doh or
plasticine
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require the manual manipulation of numerous control points via a keyboard/mouse
while monitoring modifications on a 2D visual display (Knopf and Igwe, 2005). While
a competent designer can transfer their ideas onto paper within minutes, conveying the
same idea via a CAD system may take hours, days or even weeks (Piegl, 2005). Figure
1.1(a) illustrates the traditional design pipeline used in current CAD environments.

Virtual Sculpting environments generally rely on combinations of various shape
modelling and deformation techniques. Some physical deformation properties can
be mimicked using purely geometric approaches. However, such approaches do not
provide amechanism for simulating the realmechanics of a physical deformation. More
intuitive energy minimisation approaches incorporate the principles of continuum
mechanics and account for the material properties of the objects being deformed, but
struggle to do so at interactive rates. Several attempts have been made to incorporate
Virtual Sculpting techniques within CAD environments. However the techniques
proposed to date in the literature employmultiple disparate representation technologies
(Dachille IX et al., 2001, Gao andGibson, 2006, Pungotra et al., 2010). The introduction of
disparate representation technologies constitutes what shall be referred to in the thesis
as a ‘seam’ in the design pipeline. Conversions between representations at these seams
typically create bottlenecks. Additionally, the alternative representations employed
are only approximations of the CAD geometry, which shall be referred to in the thesis
as ‘exact’. Approaches to date do not facilitate a ‘seamless’ integration. Accordingly,
there is little evidence to suggest that industry is adopting the representations. Figure
1.1(b) illustrates the current situation in the literature with regard to Virtual Sculpting
of B-Spline/NURBS freeform surfaces in CAD.

Although computer graphics and CAD tools have evolved rapidly in recent years,
the task of computer-based modelling is still beset with practical and conceptual usab-
ility difficulties (Gain and Marais, 2005), to such an extent that 3D graphics designers
still rely on many non-intuitive modelling procedures for the creation of complex con-
tent (Knopf and Igwe, 2005). In spite of more than thirty years of research in the area
of Virtual Sculpting, many designers still choose to create 3D content by digitising a
preliminary clay maquette created in the physical world rather than the virtual world.
In Toy Story, the movie touted as the first feature film entirely created by computer an-
imation, NURBS representations were used and several of the more detailed characters
were created in physical clay before digitisation (Massie, 1998).

A novel interactive approach built upon the Virtual Sculpting paradigm would
facilitate intuitive design, free from reliance on prerequisite knowledge. In order to
achieve this, the analysis pipeline must also be examined such that elements of the
analysis pipeline can be incorporatedwithin the design process. In order for industry to
consider adopting Virtual Sculpting techniques, a seamless integration must be sought.
Figure 1.1(c) shows a desirable workflow that would not only have the potential to
greatly reduce the time investments currently made by designers, but may also open
up the domain of 3D computer graphics design to the lay person.
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1.1.2 Challenges in Analysis

Since the advent of CAD, the design process and the physical analysis process have been
largely separate. This has been mainly due to the divide in representation technologies.
It is difficult to design in polygon representations, but these representations have been
required for the analysis process where finite element meshes are needed by the Partial
Differential Equation (PDE) solvers. Designers generate CAD files, typically using
B-Spline/NURBS representations, and these must be translated into analysis-suitable
Finite Element Method (FEM) geometries. This situation is depicted in Figure 1.2(a).
The conversion between the two representations at this point introduces an additional
seam in the design and analysis pipeline, and as discussed in Section 1.1.1, such a seam
not only causes a large bottleneck, but also results in an approximation of the exact
CAD geometry. The time spent on such conversions can constitute up to 80% of the
total analysis time (Cottrell et al., 2009).

While numeric approaches are generic and therefore universally applicable, analytic
solutions, where possible, can be significantly more efficient. Additionally, analytic
solutions are generally superior for processes like manufacturing that place higher
demands on geometric precision. When a surface is stored via an analytic representation
instead of discrete geometry, an ‘exact’ mathematical definition is available. This makes
accurate analyses possible. On the other hand, meshes, built from discrete data, are
inherently disconnected from the CAD geometries from which they were created.
Poor design decisions can be made as a result of analyses of discrete representations.
Unless the designer/analyst has tight control over the discrete geometry’s resolution,
the discrete model may not accurately represent the original model. It is essential
that designers/analysts ensure adequate resolution is achieved such that important
topological information is preserved.

Recent research by Hughes et al. (2005), Cottrell et al. (2009), Hughes et al. (2010),
and Auricchio et al. (2012) has advocated employing a CAD B-Spline/NURBS model
right through the CAD pipeline from design to analysis. Iso-geometric Analysis (IgA)
has provided a mechanism for maintaining a parametric representation for the analysis
process. Although IgA is nonstandard in industry, there is growing evidence that it
is making headway on the more established FEM techniques. While this removes the
unnecessary bottlenecks in the pipeline (see Figure 1.2(b)), numerical methods are still
employed to ultimately solve the system. The technique is computationally expensive
as a result.

Figure 1.3(a) depicts the traditional analysis pipeline that adopts discrete FEM
representations for numerical analyses. Figure 1.3(b) depicts the incorporation of
IgA in the analysis pipeline. This facilitates the preservation of the original CAD
representation. However, a computationally expensive numeric solver is ultimately
used to perform the analyses. Finally, Figure 1.3(c) illustrates a more desirable situation
that preserves the CAD representation throughout the analysis process.
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1.1.3 Historical Context

In order to address the issues discussed in Section 1.1.1 and 1.1.2, an appreciation of
how the current state of the art developed is useful. Figure 1.4 depicts a summary of
the key developments that underpin the research conducted in this thesis. Each of
these developments and the subsequent research they inspired will be addressed in
greater detail, where appropriate, throughout the thesis. Its presence at this point is to
illustrate the development of the state of the art discussed in this chapter, and also to
further introduce a context for the research presented in this thesis.

From Figure 1.4, it can be seen that FEM techniques were technically mature (Strang
and Fix, 1973) before the fields of CAD and CAGDwere even established (Cottrell et al.,
2009), let alone before B-Spline/NURBS representations were standardised (Piegl and
Tiller, 1997). The foundations of a Virtual Sculpting paradigm can be traced back to
shortly before this standardisation occurred (Parent, 1977).

Physically aware Deformable Models began to develop shortly after. Figure 1.4
also shows that research efforts were conducted concurrently in various and largely
disconnected research communities, e.g., Elastically Deformable models (Terzopoulos
et al., 1987) in Computer Graphics, Active Contour Models (Snakes) (Kass et al., 1987)
and B-Snakes (Menet et al., 1990) in Computer Vision and Visualisation, and Dynamic
Nurbs (Terzopoulos and Qin, 1994) in Computer Graphics and CAD/CAGD.

Research activity in B-Spline/NURBS arguably underwent a decline in the late
1990s and early 2000s. The status quo was largely accepted in CAD and CAGD, where
they were standard, while other domains less tied to B-Spline/NURBS representations
focused on exploring alternatives.

In 2005, Hughes et al. (2005) suggested that FEMmeshing of CAD/CAGD represent-
ations was unnecessary and that the analysis process should be adapted to work with
the original CAD/CAGD representations, and coined the term IgA. Within a few years,
it was evident that this research had triggered a new research drive in CAD/CAGD
representations. Another key development came from the Computer Graphics domain,
where Cashman (2010) successfully developed a unified model for B-Spline/NURBS
models and their main competitor in Computer Graphics, Subdivision Surfaces.

With this research has come a renewed interest in facilitating a Virtual Sculpting
paradigm in CAD/CAGD (Gao and Gibson, 2006, Pungotra et al., 2010). The Virtual
Sculpting techniques suggested to date for CAD/CAGD representations have yet to
embrace the idea of IgA. This is perhaps due to the computational overhead currently
associated with IgA Analysis. Recent research has begun to explore analytic solutions
to reduce this overhead (González-Hidalgo et al., 2013).
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1.2. Thesis

1.1.4 Discussion
As outlined in Section 1.1.1 and 1.1.2, the CAD design and analysis pipelines each
come with their own specific set of challenges. In order to improve the intuitiveness of
design process, the Virtual Sculpting paradigm may be employed. However, to achieve
this, elements of the analysis process must be incorporated in the design process.
The conversions between design and analysis representations in conjunction with
the numerical techniques employed by the analysis process have thus far limited the
utility of analysis in design. In the Automotive Industry a mesh for an entire vehicle
takes approximately 4 months to create. Design decisions, in contrast, can be made
on a daily basis (Cottrell et al., 2009). Additionally, once a mesh has been generated,
refinement requires a link back to the CAD representation. This situation is highly
undesirable. Cottrell et al. (2009) state that “The benefits of design optimization have
been largely unavailable to industry. The bottleneck is that to do shape optimization
the CAD geometry-to-mesh mapping needs to be automatic, differentiable, and tightly
integrated with the solver and optimizer. This is simply not the case as meshes are
disconnected from the CAD geometries from which they were generated”. To achieve
a Virtual Sculpting paradigm, each of these challenges must be met simultaneously.

1.2 Thesis
This thesis aims to address each of the challenges discussed in Section 1.1. The over-
all objective is depicted by Figure 1.5 that combines each of the presented desirable
situations. This section presents a summary of the approaches taken.

Traditional Active Contour Models (ACMs), used extensively in computer vision,
are energy minimising curves defined within the domain of an image that can deform
to fit image features by latching onto potential minima generated by the appropriate
processing of the image. Such models are physically motivated and approximate the
physical properties of real materials, offering a compromise between purely geometric
and more exact energy-based approaches. This thesis proposes a novel reformulation
of ACMs for the domain of Virtual Sculpting. In the proposed technique, ACMs are
employed within a Virtual Sculpting environment where predefined shape primitives
provide the features of interest. These primitives act as sculpting tools, providing
visual guides facilitating intuitive deformation results, such that the overall approach is
analogous to traditional clay modelling. The compromise offered by an ACM-based ap-
proach facilitates physically-plausible results at interactive rates. An additional novelty
of the proposed ACM-based approach is that it facilitates the design of proximity-
based tools that offer different interaction behaviours to those offered by collision based
sculpting techniques.

B-Spline/NURBS representations have become the de facto standard in industry for
the representation of freeform surfaces. Where local control properties, flexibility and
compact representation are desirable, B-Spline/NURBS are a natural choice of surface
representation. However, these representations have not yet fully benefited from the
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1.2. Thesis

seamless embodiment of a true Virtual Sculpting paradigm. This thesis addresses this
issue, and develops a customised ACM-based approach providing full support for
B-Spline/NURBS representations. The analytic continuous mathematical description
of B-Splines/NURBS makes them a particularly suitable choice as the underlying rep-
resentation for the proposed ACM-based approach. The interactive Virtual Sculpting
of Active B-Spline/NURBS Surfaces enabled by the customised approach offers a more
intuitive alternative to complex and tedious manual control point manipulations and
also facilitates data exchange between existing CAD systems.

The key to achieving the desired objectives, using the above approaches, is an ana-
lytic solver that can be used in both the design and analysis processes. The preservation
of the model would remove the 80% bottleneck while the inherently tailored analytic
solution would make the remaining 20% analysis time faster. Additionally, an analytic
solution would facilitate the preservation of the “exact” description of the geometry.
This would simultaneously remove the need for costly conversions of representation
and the resulting approximations they introduce. Such a solution would offer a “seam-
less” design/analysis pipeline, facilitating accurate interactive design and both faster
and more accurate analyses. Additionally, such a system would integrate directly with
existing CAD systems.

The direct implementation of an Active B-Spline/NURBS Surface requires min-
imising its associated energy function. In this thesis, existing approaches to dealing
with the energy minimisation of an Active B-Spline/NURBS Surface are examined.
The complexity of B-Spline/NURBS mathematics has led to a preference for generic
numeric techniques. The analysis conducted in this thesis leads to the development of
a novel efficient mathematical framework based on an analytic evaluation of the associ-
ated stiffness matrix. This framework forms the basis of an efficient algorithm which
is shown to reduce significantly the computational complexity, and thus computation
time, of the stiffness matrix evaluation. The effectiveness of the proposed approach
for the calculation of each individual energy term making up the stiffness matrix is
demonstrated through a metric comparison with existing approaches. The approach is
shown to fully extend to the remaining elements of the energy equation such that the
force-balance equations can be solved analytically.

The mathematical framework developed not only enhances the interactive Virtual
Sculpting approach presented in this thesis, but also has broader applications across
the domains of Computer Vision and Computer Graphics.

A prototype Virtual Sculpting environment encapsulating each of the outlined
approaches is presented that demonstrates their effectiveness towards addressing the
long-standing need for an efficient and intuitive solution to the problem of interactive
computer-based freeform shape design.
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Design/ Analysis 

Virtual Sculpting/ 
Analysis  

via Analytic Solver 

Visualise/ 
Simulate 

CAD B-Spline/NURBS  
Model 

CAD B-Spline/NURBS  
Model 

Figure 1.5: Proposed Seamless Virtual Sculpting Approach that preserves the analytic representation
throughout the design and analysis processes

1.3 Contributions
This section details the contributions presented in this thesis. The section begins with
a summary statement outlining the overall contribution and a list of core contribu-
tions. Details of each individual contribution are then provided, aligned to the outline
structure of the document.

1.3.1 Contribution Summary

The immediate contribution of this work is the overall method that provides, for the
first time, a seamless Virtual Sculpting design and analysis framework for freeform
surfaces, that is fully compatible with existing CAD frameworks. The innovative Ana-
lytic solver developed facilitates the preservation of the model integrity throughout
the design and analysis processes such that the 80% bottleneck in the traditional CAD
pipeline is removed and the subsequent analyses are “exact”. Additionally, the solver
is shown to reduce the computational complexity of the analysis such that it can handle

12
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physics-based deformations of the analytic surface up to 4 times faster than the current
state of the art numeric solver. This effectively makes the remaining 20% of the analysis
process 4 times faster. This solver not only allows the incorporation of the analysis
process in the design process, thus facilitating Virtual Sculpting for intuitive design,
but can also readily replace current numeric solvers for the analysis process.

The core contributions of the thesis are:

• A comprehensive cross-disciplinary Literature Review.

• A unified approach for the representation of cross-domain Deformable Models.

• A novel ACM based approach to Virtual Sculpting of Active B-Spline/NURBS
Surface Models.

• A novel efficient mathematical framework for the seamless and exact analytic
physical analysis of Active B-Spline/NURBS models.

Secondary contributions of the thesis are:

• An Efficient Gaussian Quadrature approach tailored for analysis of Active B-
Spline/NURBS models, with accompanying algorithms.

• An Efficient Analytic approach for analysis of Active B-Spline/NURBS models,
with accompanying algorithms.

• Full treatment of the Integral of a B-Spline basis function with accompanying
algorithms.

• Augmented treatment of the Derivative of a B-Spline basis function with accom-
panying algorithms.

• Novel physical and graphical interpretations of the underlying mechanics of the
analytic solution.

• The extension of the Analytic Approach to handling varying material properties.

• The extension of the Analytic Approach to handling varying mass, damping
and forcing functions.

• The extension of the Analytic Approach to the important case of NURBS.

• Comprehensive theoretical and experimental stress testing and evaluation of
the algorithms developed.

• A Prototype Virtual Sculpting Environment.

• A Java 3D Library for Active B-Spline/NURBS.

A list of publications associated with this research can be found in Chapter 7 Section
7.2.

13



1.3. Contributions

1.3.2 Contribution Detail and Thesis Outline

The following is a breakdown of contributions presented in this thesis that correspond
to the main thesis chapters:

• Due to the multidisciplinary nature of freeform shape design and analysis, there
is a vast amount of literature in the area. This has served to confuse and over-
whelm general practitioners. In this thesis, the literature review clarifies the
various available methods relating to shape representation, deformation, and
the various combinations of the two, such that practitioners may make appro-
priate decisions regarding the recited techniques by providing a systematic de-
scription of their assumptions and setup in each case. No other work was found
in the literature that considers the full spectrum of techniques across different
domains. (Chapter 2)

• The use of techniques based on energy minimisation for the implementation
of physically aware deformable models is widespread across the domains of
Computer Vision, Computer Graphics, and CAD. However, there is no common
thread that generalises the disparate approaches for use across the different do-
mains. In this thesis, a unified approach for the representation of suchmodels
is developed, and the theoretical relationships between the different models
are formalised. It is also demonstrated that mathematical similarities between
seemingly different models can be introduced as a consequence of the solution
employed to perform the energy minimisation. (Chapter 3)

• A novel ACM based approach to Virtual Sculpting is developed using Active
B-Spline/NURBS Surface models. In the proposed technique, predefined shape
primitives provide the features of interest. These primitives act as sculpting tools,
providing visual guides that facilitate intuitive deformation results, such that the
overall approach is analogous to traditional clay modelling. The main benefit of
the proposed technique is that it facilitates the seamless integration of a Virtual
Sculpting methodology in a CAD environment. The Virtual Sculpting of Active
B-Spline/NURBS Surfaces enabled by the customised approach offers a more
intuitive alternative to complex and tedious manual control point manipulations.
The Active B-Spline/NURBS formulation provides an exact mathematical de-
scription of the surface throughout the process, such that there is no division
in representation. Additionally the ACM-based approach facilitates different
interaction behaviours to those provided by existing sculpting techniques. The
compromise offered by an ACM-based approach contributes to facilitating phys-
ically plausible results at interactive rates. (Chapter 4)

• An innovative Efficient Mathematical Framework is developed, based on a
novel analytic solution for the energy-basedminimisation of aB-Spline/NURBS
surface model, which is shown to handle the deformations of the analytic sur-
face up to 4 times faster than the current state of the art numeric solver. While
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initially designed to facilitate the seamless integration of a Virtual Sculpting
paradigm within the CAD design process, this solver can also readily replace
current numeric solvers for the analysis process, such that the overall approach
is fully integrated, efficient and truly seamless. The overall result is the removal
of the 80% bottleneck, and exact analyses that are 4 times faster than the current
state of the art. As part of the development of the mathematical framework, sev-
eral distinct contributions make up the overall contribution. These contributions
are as follows: (Chapter 5)

– Gaussian Quadrature is the current state of the art technique in IgA for
the energy-minimisation of an Active B-Spline surface. As part of the de-
velopments presented in this thesis, an enhanced Gaussian Quadrature
approach is derived and developed. Optimisations are achieved by tailor-
ing the approach to take advantage of combined problem-specific efficiencies
and derived approach-specific efficiencies. Additionally, algorithms for its
implementation are developed and implemented. The optimisations are
equally applicable to Active NURBS surfaces.

– A novel fully Analytic approach to the energy-minimisation of an Active
B-Spline Surface is derived and developed. The resulting algorithm is
shown both theoretically and experimentally to be up to 4 times faster than
the tailored Gaussian Quadrature approach developed. The approach is
shown to handle complex conditions such as mass, damping and varying
material properties and forcing functions. It is also shown to be applicable
to NURBS surfaces.

– Full treatment of the Integral of a B-Spline basis function is developed
and presented. This is an area found to be lacking coverage in the literature.
Several algorithms are provided for its evaluation in various situations.

– Augmented treatment of the Derivative of a B-Spline basis function is
developed and presented, covering situations neglected in the literature.
Accompanying algorithms are developed and presented.

– Novel physical and graphical interpretations of the underlying mechan-
ics of the analytic solution are developed and presented.

– Extension of the proposed Analytic Approach to handling varying mater-
ial properties is developed and presented.

– Extension of the proposed Analytic Approach to handle mass, damping
and forcing functions is developed and presented.

– Extension of the proposed Analytic Approach to the important case of
NURBS is developed and presented.

– Comprehensive theoretical and experimental stress testing and evaluation
of the algorithm is performed, and the algorithm is shown to perform
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well numerically for extreme cases. An in-depth analysis of the cause of
small numerical round off inaccuracies in computing the algorithm is presen-
ted and techniques are discussed for controlling their already small impact.

• A prototype Virtual Sculpting environment is developed, implementing each
of the algorithms developed. The environment is presented as further ‘proof of
concept’ of the applicability of each of the outlined contributions to the domain
of Virtual Sculpting for CAD. (Chapter 6)

• An auxiliary contribution of this research is the development of a JAVA 3D
library implementing Active B-Spline/NURBS surfaces, partially based on cus-
tomised versions of the algorithms presented in The NURBS Book by Piegl and
Tiller (1997), and completewith the novel algorithms developed during the course
of this research.
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2Literature Review

Due to themultidisciplinary nature of freeform shape design and analysis, there is a vast
amount of literature in the area. This has served to confuse and overwhelm the general
practitioner. An understanding of interactive freeform surface modelling requires a
good grasp of the literature relating to shape representation, deformable modelling,
and interactive design or Virtual Sculpting practices. This chapter presents a thorough
exposition of the literature necessary to fully contextualise freeform surface modelling.
For each of the three fundamental topics identified, the chapter presents the following:
firstly, a background to the topic, secondly, a review of the literature in the area, and
thirdly, a context for the outstanding challenges in the area. The pertinent mathematical
constructs and models used to capture the various shape representations, to describe
the deformation of these shapes, and to facilitate their interactive modification within a
Virtual Sculpting paradigm, are presented at the appropriate stages. The main goal of
the chapter is to set out the current state of the art in shape modelling and deformation.
This is to enable appropriate decisions in later chapters, regarding the recited techniques,
by providing a systematic description of their assumptions and setup in each case.

2.1 Shape Representation
Geometricmodelling is an ancient field of study concernedwith representing shape and
spatial relation information throughmathematical and abstract descriptions. Geometric
modelling technologies play a critical role in computer graphics model creation by
providing complete and accurate geometric data. The advent of computers and the
subsequent advances in computational power have facilitated the implementation of
complex mathematical shape representations in the digital domain. Today, geometric
information is pervasive in computing and supports the creation, communication,
visualisation, animation, and interrogation of digital models.

Approaches to computer-based geometric modelling for digital shape represent-
ation vary substantially in the literature relating to Computer Graphics, CAD and
Computer Vision. This is because there is presently no single representation of shape
that can be seen as a universally satisfactory solution to the disparate problems that
arise across the host of different applications within each domain.

Drawings and sketches are often used as the primary media for the communication
of an object’s shape information. Using drawings or sketches, three-dimensional shape
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2.1. Shape Representation

information is typically presented using two-dimensional drawings of the silhouette of
the object under a perspective projection. Shape information is also often communicated
by describing an object’s shape in terms of other well known shapes. These techniques
are generally successful for conveying the shape information of simple or well-known
objects where the three-dimensional details can be deduced from a-priori knowledge
and/or intuition. For less familiar and more complex objects, such schemes often prove
to be inadequate.

Early industry attempts to adopt a standard means of shape communication, or to
represent objects in a standardisedway, resulted in engineering drawings that described
objects using a collection of planar orthogonal projections from different view points.
Thesemultiple views helped to further convey the three-dimensional information of the
object. However, these drawings still relied heavily on a-priori information and intuition
for successful shape communication. Early computer-based shape representations
were heavily influenced by real world shape communication techniques. As processing
power increased, these digital representations drew more and more from complex
mathematical descriptions of shape and spatial relations studied in geometry.

This section presents an overview of geometric modelling techniques for digital
shape representation, approached with an historical perspective to provide a sense of
the evolution of shape representation and to provide a context for the use of shape
representation for the interactive shape modelling discussed in later sections.

2.1.1 Wireframe Models

Developed in the early 1960s, wireframe representations were among the earliest geo-
metric modelling techniques. It is natural to humans to describe three-dimensional
objects by their outlines/edges. It is hardly surprising then that early computer-based
models represented an object’s shape with straight lines or curves connecting the con-
stituent vertices on the surface of the object. Though simple and intuitive, wireframe
schemes suffer from several deficiencies (Requicha and Voelcker, 1982), most notably
the problem of ambiguity. This problem stems from the possibility of interpreting a
single wireframe model several ways, with each interpretation representing a different
object (see Figure 2.1). A simple solution to the ambiguity problem associatedwithwire-
frame representations was to add faces. This technique led to the now well-established
boundary representations.

2.1.2 Boundary Representations/Polygon Models

Since one only sees the surface of solids, it is natural to expect a representation based
solely on the boundary of an object (Agoston, 2004). The 1970s saw boundary repres-
entations emerge as a standard representation scheme in computer graphics modelling
(Requicha and Voelcker, 1982). Boundary representations can be seen as a general-
isation of wireframe models, expressed in terms of faces, thus solving the associated
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Figure 2.1: Wireframe Ambiguity

ambiguity problem. Early boundary representations were restricted to simple set oper-
ations to produce models based on a union of an object’s bounding faces (see Figure
2.2). Today there are many different boundary representations available.

The polygonal representation is the classic representation scheme in computer
graphics. A polygonal model approximates the boundary of an object with a mesh of
planar polygonal facets. All that is required is a collection of sample vertices from the
surface of the given object and a corresponding piecewise polygonal representation
is generated by connecting these sample vertices using a polygonisation scheme (see
Figure 2.3).

Polygons, particularly triangles, have several desirable properties that make them
suitable for machine processing. They are flat structures and made up of straight edges.
Triangles have the additional property that they cannot self-intersect. Polygons are
planar, however, and can only approximate curved surfaces. This can lead to visual

U

Figure 2.2: Early Boundary Representation
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Figure 2.3: Polygonal Representation: Stanford Bunny (Rypl, 2003)

artefacts in the rendered model. However, the visual impact of the piecewise linearities
can be greatly reduced by efficient shading algorithms. One of the key advantages of
triangular mesh representations is that they are not restricted by geometric, topological,
or connectivity constraints like many other representations. Today, the vast majority of
3D models at some stage of the graphics pipeline are represented as textured polygonal
models. They have proved to be topologically flexible, generally straightforward to
create and can be quickly rendered by a computer. The advances in laser range scanning
technology has made polygonal representations even more popular in recent years.

2.1.3 Constructive Solid Geometry Models
Pure solid modelling representations emerged in the 1970s in the form of Constructive
Solid Geometry (CSG). While boundary representations have many advantages for
efficient rendering algorithms, object definitions can be complicated from a design
perspective (Requicha and Voelcker, 1982). CSG arose from the idea of expressing an
object’s shape information in terms of other well known shapes. Engineers realised that
many manufactured objects could be represented by combining geometric primitives
into a tree of successive Boolean operations and linear transformations (Ricci, 1973)
(Agoston, 2004) Cani et al. (2008).

Primitives and operators are arranged in a binary tree structure with operators at
internal nodes and primitives at the leaves. Any node may have one ‘parent’ and two
‘child’ nodes. The root node of the tree has no parent and represents the complete
model. The leaf nodes of the tree have no children and represent simple primitives.
Internal nodes may be used to represent the linear operations such as translations,
rotations, and scaling, or Boolean operations, such as union and intersection (see Figure
2.4).

CSG proved to be a more intuitive shape representation than the more machine
driven polygonal representations. Using this technique, designers built up a shape
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Figure 2.4: Constructive Solid Geometry Tree representing an object’s shape using combinations of
Boolean operations (CSG Tree [Online], n.d.)

description using the metaphor of three-dimensional building blocks. Early schemes
were very much limited to representing combinations of regular shapes. It is difficult
to deal with freeformmodels using a CSG representation. An example implementation
of a CSG scheme will be examined in Section 2.1.6.

2.1.4 Parametric Models

AlthoughCSGworkedwell for describing exact and regular shapes, it had limited scope
in the representation of free-form shapes. This problem precipitated the development
of parametric representations known as splines which gained popularity rapidly in the
1980s. Surface design with parametric splines originated in the automobile industry,
principally for car body design; in the shipbuilding industry, for the design of ship
hulls; and in the aircraft industry, for the design of wings, fuselages, and so on.

Splines are composite, continuous curves formed with polynomial sections, satisfy-
ing specified continuity conditions at the boundaries of each section. There are several
different kinds of spline, each with its own distinct set of properties, specified by the
type of polynomials used and the boundary conditions enforced e.g. Bezier Spline
curves, NURBS, etc. However, the procedure for constructing each type of spline curve
is similar.

Curves or surfaces are represented by a set or mesh of control points. The curve
or surface approximates the given control mesh, whilst guaranteeing a certain level
of smoothness. This is achieved by using the control points to weight a linear sum of
basis functions associated with each spline type.
The parametric curve C(u) is defined by

C(u) =
n

∑
i=0

PiBi(u) (2.1)
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Figure 2.5: Parametric Spline Curve

where Pi are the control points and Bi(u) are the basis functions (see Figure 2.5).
The parametric surface S(u, v) is defined by a related tensor-product patch. This is
essentially a bidirectional curve scheme (see Figure 2.6). Here, the bases are bivari-
ate functions of the parameters u and v, and are constructed as a tensor product of
univariate basis functions. This is given by

S(u, v) =
n

∑
i=0

m

∑
j=0

Pi jB j(v)Bi(u) (2.2)

This parametric scheme can be further generalised to represent volumes.
NURBS, which define surfaces using ratios of polynomials, are worth a special

mention as rational functions permit much better control over the derivatives of curves,
and hence their curvature, than polynomials alone.

Spline models are explicit representations that have the advantage that their para-
meterisations enable the reduction of several three-dimensional problems on the surface
to two dimensional problems in the parameter domain (see Equation 2.3).

f (x, y, z)→ f (u, v) (2.3)

For instance, points on a surface S can be found by simple function evaluations of

Figure 2.6: Parametric Surface
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f (u, v). Neighbourhoods on the surface can similarly be evaluated using neighbouring
points in the parameter domain.

Using such representations, even complex curves can be described by a small num-
ber of vectors. In addition to this, several of the more popular spline representations
inherently support local control of themodel, facilitating interactivemodification. How-
ever, the manual manipulation of large numbers of control points can be laborious and
is sometimes necessary for even perceptually simple changes.

Although spline representations offer many advantages, there are difficulties as-
sociated with representing closed surfaces or branching structures. Their explicit
parametric representation imposes the restriction that the parameter domain has to
match the topological and metric structure of the surface it represents. The generalisa-
tion from spline curves to surfaces uses a tensor-product construction, resulting in a
rectangular parameter space and a surface which is topologically equivalent to a plane.
Closing or looping the parameter space makes it possible to create a surface that is
topologically an open cylinder or a torus, but a single spline patch cannot represent a
surface of any higher genus.

As a consequence of their topological constraints, typical CAD models use many
surface patches in order to represent a high quality smooth surface. Where separate
spline surfaces meet, they must be manually ‘stitched’ together, and the seams do not
have the same continuity guarantees which splines provide for the rest of the surface. In
the specific cases where the surfaces have compatible knot vectors, these guarantees can
instead be achieved by careful positioning of the control points on either side of each
seam. However, numerical inaccuracy means that the composite surfaces are often not
even continuous at the seams, let alone smooth (Cashman, 2010). Recent developments
have led to more complex structures known as T-splines that allow the formation of
T-junctions within the spline control grid (Sederberg et al., 2003). These structures can
be used in conjunction with B-Splines to overcome some of their associated limitations.

In spite of their limitations, their flexibility and computational efficiency has meant
that NURBS curves and surfaces rapidly became the de facto standard for the repres-
entation of geometric information in computer processing. There are many textbooks
available devoted to the coverage of curve and surface modelling with splines. Excellent
examples are Bartels et al. (1987), Piegl and Tiller (1997), and Cohen et al. (2001).

2.1.5 Subdivision Models

Models generated using a subdivision scheme are known as subdivision models (Ma,
2005, Cani et al., 2008). Although developed in the 1970s, subdivision models did
not become widely used until the late 1990s. Much like the spline models described
in the previous section, a subdivision model is initially described by a set of control
vertices. However, unlike splines, where, for surfaces, we are restricted to the use of
a rectangular mesh structure, subdivision surfaces can be described by any arbitrary
control mesh, which means that the resulting surface generated can be of arbitrary
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Figure 2.7: Smooth Subdivision Surface defined by an iterative subdivision applied to its control mesh:
each subdivision step halves the edge lengths, increasing the number of faces by a factor
of 4 (Botsch, 2006)

topology. It is this flexibility of topology that precipitated the growth in the popularity
of subdivision models throughout the 1990s. Unlike the patchwork models required
to represent arbitrary topologies with splines, a subdivision mesh produces a single
surface, allowing us to manipulate the control net without worrying about seams or
other continuity issues.

A subdivision surface generates a smooth approximation of a polygon mesh using
the rules laid out by a subdivision scheme. Various schemes have been developed
but most involve an iterative process whereby the original control vertices are kept,
and new additional vertices are calculated as a function of the original vertices. The
process then iterates until the desired level of subdivision is achieved. The limit of this
subdivision process is a smooth limit model. Interestingly for many of the standard
subdivision schemes, in the case of uniform subdivision, the limit of this process is in
fact a spline model (Botsch, 2006) (see Figure 2.7).

The success of subdivision surfaces is evident by their use in the computer graphics
industry. Pixar switched from the use of NURBS for Toy Story 1 to the use of subdivision
surfaces in Toy Story 2 to avoid the discontinuity issues associated with spline patches.

In spite of the topological flexibilities introduced by subdivision surfaces, they still
suffer from many of the problems associated with spline models. Like spline models,
modifying the surface involves indirect editing via its control mesh, which generally
requires skilled designers with a good understanding of the underlying mathematical
representation. In addition to this, while the topology of the control mesh is flexible, its
explicit storage makes it difficult to modify after it has been defined. Recent research by
Cashman has facilitated a unified model for NURBS and subdivision surfaces, which
has resulted in increased research interest in NURBS after an arguably quiet period
(Cashman, 2010).

2.1.6 Implicit Models

Implicit surfaces were introduced in the 1980s as an alternative to splines to address
their associated topology issues (Cani et al., 2008) (see Section 2.1.4). The basic concept
is to characterise the whole embedding space of an object by classifying each point as
lying either inside, outside or on the surface bounding the object.
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Mathematically, an implicit function is a function in which the dependent variable
has not been given "explicitly" in terms of the independent variables, as in Equation 2.4
(Agoston, 2004).

f (x, y, z) = 0 (2.4)

Such functions can be used to represent a variety of shapes. A typical example of an
implicit function for a sphere is given in Equation 2.5, where r is the radius of the
sphere.

x2 + y2 + z2 − r2 = 0 (2.5)

Implicit functions in this direct form are of limited usefulness for shape represent-
ation as there is a limit to the number of intuitive objects that can be represented in
this way. However, more flexible uses of implicit representations in computer graphics
appeared in the 1980s.

The implicit function for a given surface is not uniquely determined, and can be
represented using continuous algebraic surfaces, radial basis functions, discrete vox-
ilisations, etc. The surface generated in each case, f (x, y, z) = 0, is known as the
zero-level iso-surface of the scalar field defined by the implicit function, f (x, y, z). The
most common and arguably the most intuitive representation of an implicit surface is a
distance field function whose value at a point decreases with distance from a surface.
Distance fields thus represent the surface by storing the scalar distance to the surface
at a given point (Payne and Toga 1992). The distance field of the unit sphere is given by
Equation 2.6.

f (x, y, z) = 1− (x2 + y2 + z2)
1
2 (2.6)

Here, f is the Euclidean signed distance from the unit sphere centred at the origin. By
definition, the field f (x, y, z) inherently characterises an in/out/on function where if
f (x, y, z) = 0 then the point (x, y, z) is on a surface described by the implicit function,
points satisfying f < 0 are on one side (nominally the ‘inside’) of the surface, while
those points for which f > 0 are on the other side of the same surface. Here, f does
not explicitly describe the surface, but implies its existence.

Scalar fields defined by implicit functions, like the distance field described above, can
be blended together to produce a new global scalar field whose iso-surface can be used
to represent a wide variety of organic shapes. The basic idea involves blending simple
shapes described by implicit functions to create more complex shape representations. If
you have two implicit surfaces f (x, y, z) = 0 and g(x, y, z) = 0 that are fairly continuous,
with a common in/out/on sign convention then the implicit surface defined by f + g =

0, for example, is a blend of the shapes. Such blending techniques form the basis for
‘Blobs’ (Blinn, 1982a), ‘Metaballs’ (Nishimura et al., 1985), and ‘Soft objects’ (Wyvill
et al., 1986). Figure 2.8 shows an example of the blending of two implicit surfaces.

25



2.1. Shape Representation

Figure 2.8: Implicit Surface (Ma�hew Ward, n.d.)

Because implicit surfaces conveniently define volumes, they are used frequently in
CSG-based solid modelers (Requicha and Voelcker, 1982). Boolean operations, such as
union, ∪, and intersection, ∩, can be achieved by simple min and max combinations of
the objects’ implicit functions. In order to efficiently process implicit representations,
the scalar field, F, is typically discretised in some bounding box around the object using
a spatial subdivision/decomposition/voxelisation to sample the field on a regular grid
(see Section 2.1.7).

Rendering implicit surfaces is also a difficult task. Implicit surfaces are often con-
verted to an explicit boundary representation (see Section 2.1.2) for processing and
rendering efficiencies. The de facto standard algorithm for this iso-surface extraction is
‘Marching Cubes’ (Lorensen and Cline, 1987). Marching Cubes samples the implicit
function on a regular grid and processes each cell to check for intersections. For each
cell that is intersected by the iso-surface, a surface patch is generated based on certain
local criteria. The collection of all these small pieces eventually yields a triangle mesh
approximation of the complete iso-surface.

An important property of implicit surfaces is that since they are defined as level-sets
of a scalar field function, geometric self-intersections cannot occur.

�adrics and Superquadrics

Quadrics and Superquadrics represent an interesting subset of implicit model descrip-
tions. A quadric surface is a subset of points in R3 that satisfies a general quadratic
equation of the form

ax2 + by2 + cz2 + dxy + exz + f yz + gx + hy + iz + j = 0 (2.7)

Superquadrics are a special class of shape primitives derived from quadric surfaces.
They are built on purely geometric foundations and provide a flexible family of 3D
parametric objects for use in computer-based modelling (Montagnat et al., 2001).

Superquadric surfaces are derived from quadric surfaces. However, extra flexibility
is achieved by raising each trigonometric term to an exponent. These exponents control
the relative roundness and squareness in both the horizontal and vertical directions.
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n = 0 0 < n <1 n = 1 n = 2 n > 2 n → ∞

Figure 2.9: Superellipses with varying trigonometric exponents

n = 0 0 < n <1 n = 1 n = 2 n > 2 n → ∞

Figure 2.10: Superellipsoids with varying trigonometric exponents

An ellipse is a 2D example of a quadric. The parametric representation of an ellipse
centred on the origin of the coordinate axes is

x(θ) = rx cos(θ) (2.8)

y(θ) = ry sin(θ) (2.9)

where rx and ry represent the span of the ellipse in the x and y directions, respectively.
A superellipse is defined by the parametric representation

x(θ) = rx cosn(θ) − π ≤ θ ≤ π (2.10)

y(θ) = ry sinn(θ) (2.11)

Various shapes can be generated by varying the ‘n’ parameter (see Figure 2.9). Various
shapes generated by a superellipsoid with varying trigonometric exponents are shown
in Figure 2.10.

There are similar exponential trigonometric functions available to represent all quadric
surfaces. These include ellipsoids, cylinders, cones, paraboloids, and hyperboloids.
The structures produced by these functions are known as superquadrics.

A particularly attractive feature of superquadrics is their simple mathematical
representation. Superquadrics are generally used in model construction by combining
different shapes to create complex models.

2.1.7 Spatial Decomposition
Sections 2.1.2 and 2.1.5 examine representing an object by decomposing it into smaller,
simpler pieces. Space decomposition applies subdivision techniques in the spatial
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Figure 2.11: Spatial Subdivision: Circle represented by a Uniform Subdivision of Space

domain, representing an object by subdividing the space it occupies (Agoston, 2004). In
three dimensions, volumes are divided into cubic cell elements called ‘voxels’ to form a
‘voxmap’. This is analogous to the pixels that decompose two dimensional image data
in a bitmap to form a pixmap.

The simplest decomposition scheme involves uniformly subdividing the space into
a 3D grid of voxels, usually equally sized and spaced cubes, and marking all the cubes
that intersect the object interior. The object would thus be represented by the collection
of marked cubes. For such volumetric representations, topologies can be arbitrary and
Boolean operations, such as those discussed in Section 2.1.3, are trivial to implement.
However, this representation is approximate, and the size of the individual elements
will determine the degree of accuracy. Another significant problem is the large memory
required to store the voxel grid. See Figure 2.11 for a 2D example. Other metrics can
also be used within such a decomposition scheme. Implicit surfaces (see Section 2.1.6)
are often sampled into such a discrete grid of values for efficient processing.

Themain issues with this technique are the tradeoffs betweenmemory consumption
and accuracy. When a high degree of accuracy is required, the number of cubes may be
too great for this data structure to be considered convenient. Adaptive decomposition
and structural organisation techniques such as octrees etc. alleviate storage costs, e.g.,
(Gibson et al., 2000). This technique has become more viable in recent years with
gigabytes of memory becoming a reality. Voxel-based representations have become
very popular in the visualisation of large datasets.

2.1.8 Meshfree Models

A meshfree model is essentially a model whose underlying representation does not
contain any topology information or explicit connectivity information between ver-
tices. In simple terms, it is a point-based representation rather than a mesh-based
representation.

Point-based representations are not new to computer graphics. Indeed, there are
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Figure 2.12: MeshFree Model (Stanford Bunny) (FarField Technology, n.d.)

many situations where points have long been considered inherently better model
primitives than triangles. Objects like water, trees, clouds and smoke lend themselves
better to point representations than mesh representations (Blinn, 1982b, Reeves, 1983).

Levoy M. (1985) suggested that as the visual complexity of computer generated
scenes increases, the use of classical modelling primitives as display primitives becomes
less appealing. They also put forward the notion of points as a universal meta-primitive.
Although initially somewhat overlooked by the graphics community, over the past
decade the ideas presented in this seminal paper have experienced a resurgence in
computer graphics research. Early examples of this resurgence include Rusinkiewicz
and Levoy (2000), Levoy et al. (2000), and Pfister et al. (2000).

The complexity of 3Dmodel geometry has increased to a great extent. This is mainly
due to the advancement and growing popularity of 3D scanning technologies. The
concurrent increase in available memory and processing power have made it possible
to capture and process the large data sets associated with high resolution geometric
models captured using such scanning technologies.

As discussed in Section 2.1.2, mesh-based polygon models are ubiquitous in com-
puter graphics. They have attracted interest as low level outputs for the higher level
shape representations discussed in Sections 2.1.4 to 2.1.7, as an output representation
for laser scanned objects, and have become the de facto standard shape representation
for machine processing. Although triangles are currently the most popular display
primitives, as geometry becomes more andmore complex, the triangles become smaller
and smaller, until a point where the associated overhead is no longer justified. With
advances in screen resolution falling behind those in model resolution, triangles often
only occupy sub-pixel screen regions. Processes such as generating and maintaining
connectivity information of a triangle mesh become intractable with the huge point
data sets output by modern 3D scanning devices. In such situations, it becomes easier
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to deal with the points of the data set themselves. Meshfree models have emerged as
an alternative to the traditional polygonal representation in such cases.

Point based representations can be visualised by rendering point primitives directly.
This requires a very large point cloud to reasonably approximate the shape (see Figure
2.12). A more desirable solution and an important challenge for point rendering tech-
niques is to reconstruct continuous surfaces from the irregularly spaced point samples
while maintaining the fidelity of the scanned data. In order to appear as a continuous
surface, points need extrapolation as the view is moved closer to the surface. Typically,
a point sample also has a radius to define an area around it. Such samples are called
‘surfels’ and approximate the shape of the surface linearly in their neighborhood.

The most popular conversion of point sample data to surfels is called surface splat-
ting (Zwicker et al., 2001, Kashyap, 2008). The surface splatting approach is based on
computing a surface normal at each sample’s surface point and a radial or elliptical
expansion tangential to the surface. The generated discs are called ‘splats’. These splats
overlap in order to cover the entire surface of the scanned object resulting in a hole-free
piecewise linear approximation of the input data.

Startingwith a seed point (shown in red in Figure 2.13(a)), the local normal direction
is estimated by fitting a least squares plane to the seed point and its nearest neighbors.
The splat is grown by adding neighboring sample points in the order of their projected
distances to the seed point. For each new point added, its signed projected distance is
computed and the growing stops as soon as the error becomes larger than a predefined
threshold. The centre of the splat is then set as the seed point offset by the average of
the minimum and maximum projected distances of points from the splat. Its radius is
then the distance from the centre to the point where the thresholding fails (see Figure
2.13(a)).

To ensure a hole-free surface, a surface like this could be created for every point.
However, this would be a highly inefficient scheme. The number of splats needed to
cover the surface depends on the value of the threshold. General approaches are based
on the relative distances of points to the splat centres. As points are determined to exist
inside a splat they are deactivated and will no longer be used as a seed for a new splat
(see Figure 2.13(b)).

(a) (b)

Figure 2.13: Meshfree Model Technique: (a) Moving least squares approach (b) Spla�ing Density
(Kashyap, 2008)

30



2.1. Shape Representation

(a) (b)

Figure 2.14: Meshfree Model Example: (a) spla�ing technique (b) continuous model (Pauly et al.,
2003)

The naive rendering of inter-penetrating splats results in visual surface discontinu-
ities. Therefore, final surface reconstruction is generally done by some averaging of
contributions of all splats relating to a pixel, e.g., Zwicker et al. (2001) proposed a
technique whereby, for each pixel, a weighted average is taken of the splat fragments
with similar depth values. If surface splats are to represent sharp features, all splats
that sample these features have to be clipped against clipping lines that are specified in
their local tangent frames (Pauly et al., 2003).

Note that even though each splat individually represents a surface, we have no
global surface information about the model. This is because each splat is independent
of its neighbours, and is not connected in any way with other splats (see Figure 2.14(a)).

Another popular technique for surface reconstruction, the point set surface ap-
proach, is based on the moving least-squares surface definition (Alexa et al., 2001, 2003).
The surface is locally reconstructed by fitting a polynomial to the sample points within
a small neighborhood surrounding a given point. The given point is projected onto
an implicitly defined polynomial surface. The point set surface is defined as the set
of points that project onto themselves. The splatting approach is much simpler in
its mathematical formulation and computational complexity. However, the point set
surface approach implicitly generates continuous surface representations.

Point-based models provide us with a simple structure for dealing with large or
complex data sets. The biggest advantage of point-based representations over polygonal
meshes is that they can easily be restructured. Hence, applications requiring frequent
geometry re-sampling will benefit most from point-based methods. However, point-
based models basically lack an abstract governing structure which would help the user
to quickly modify the shape in a meaningful way.

Meshfree modelling is still very much an active research area. Much of the cur-
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rent research focuses on compression, improved surface reconstructions, visualisation
techniques and the development of efficient algorithms to handle such geometric rep-
resentations directly, without resorting to manual conversion to more conventional
surface representations (Öztireli et al., 2009, Kashyap, 2008, Kashyap et al., 2010). An
excellent survey of point-based techniques can be found in Kobbelt and Botsch (2004)
and excellent tutorials in Alexa et al. (2002) and Gross (2009).

2.1.9 Discussion

Computer graphics shape representation for object modelling is verymuch an unsolved
problem. Various shape representations have evolved under a variety of influences.
Polygon/Faceted/B-rep models have several nice properties that make them a suit-
able choice for machine processing. However, although they have found a place in
user/interface representations, they are not a natural choice from a user perspective.
This need for intuitive representations led to CSG techniques. The lack of an intuitive
description within a CSG framework for free form shape descriptions precipitated the
use of parametric spline models in a digital modelling framework.

The generalisation from B-Spline/NURBS curves to surfaces uses a tensor-product
construction, resulting in a rectangular parameter space and a surface that is topologic-
ally equivalent to a plane. Closing or looping the parameter space makes it possible
to create a surface that is topologically an open cylinder or a torus, but a single patch
cannot represent a surface of higher genus. Parametric topology restrictions fueled the
development of subdivision surfaces. Topologically more flexible Subdivision Surfaces
are often used as an alternative representation to B-Splines to combat this issue. How-
ever, they too suffer from the restriction that once the topology of a virtual object has
been defined, it is difficult to modify.

The lack of a simple description for closed surfaces using parametric splines and
subdivision surfaces led to Implicit Models. It is difficult to model freeform shapes with
implicit models. Their ability to represent a shape in terms of an ‘inside’ or ‘outside’
relationship has led to implicit models being very useful in collision detections. Their
collision detection qualities in conjunction with their ability to conveniently represent
standard shapes (quadrics and superquadrics) makes them good candidates for the
representation of sculpting tools.

Tesselated surfaces are the most widely used representation for general computer
graphics shape modelling. Today, the majority of 3D models at some stage of the
graphics pipeline are represented as polygon models. Their flexibility of representation
and suitability for machine processing has always made them an attractive option for
the later stages of the pipeline. Advances in automation of content capture via laser
scanning technologies has fuelled a growth in their popularity throughout the graphics
pipeline. In spite of their advantages, the use of tesselated surfaces has drawbacks
within the domain of interactive shape modelling and deformation for organic freeform
shape design. Where automation of content capture is not available, polygonal rep-
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resentations can be difficult to define. Additionally, polygons are planar and can only
approximate smooth surfaces. This can lead to artefacts in a rendered model. Moreover,
the quality of the triangles deteriorates as the model deforms, introducing additional
artefacts.

Recent advances in technology have led to larger data-sets being used for represent-
ing shape, spawning a new trend in digital shape representation, where the polygon
mesh that has been popular since the very beginning has been set aside in many ap-
plications. However, this is another machine processing oriented representation.

B-Spline/NURBS representations remain the standard for CAD/CAGD applica-
tions. They are well suited to the task of modelling freeform shapes and have the benefit
of providing an exact mathematical description of the freeform shape. Their piecewise
representation makes local modifications possible. Their compact representation and
stability of the methods that exist for processing them are additional advantages for
CAD/CAGD.

Overall, there is no universal solution to satisfy the many problems that exist in
digital shape representation. Rather, as outlined in this chapter, particular modelling
methods have evolved for particular contexts.

2.2 Deformable Modelling Techniques
Until the 1980s, computer based modelling techniques had only allowed for the mod-
elling of rigid bodies. In 1984, Barr (1984) introduced a series of geometric operators
for deforming a solid object by transforming its co-ordinate space. These operators
paved the way for a more generalised free-form deformation technique, known as Free
Form Deformation (FFD), introduced by Sederberg and Parry (1986). This technique
facilitated the deformation of an arbitrary object via a structural hyper-patch. In the
following year, Kass et al. (1987) introduced explicit 2D Active Contours, which were
soon generalised to the 3D case by Terzopoulos et al. (1987), who coined the term
‘Deformable Models’. These seminal papers introduced models which allow for elastic
deformations of objects by incorporating concepts from continuum mechanics. The
vast scope of deformable models was quickly recognised, and these early techniques
provided an extensible framework for the construction of 2D and 3D virtual models.

Current deformable modelling techniques combine elements from geometry, phys-
ics, advanced calculus, approximation theory, statistics, and numerical computation
studies. The complexity of such problems has been the primary limiting factor in the
development of deformable models, particularly for real time applications (Müller et al.,
2002). Where accuracy is paramount, simplifications are often not acceptable. However,
as computational power increases, complex models are processed at more reasonable
rates. Today, deformable models are used for simulating car crashes (Varkonyi-Koczy
et al., 2007), tracking motion in surveillance videos (Hu et al., 2004), intuitive Virtual
Sculpting environments (Gao and Gibson, 2006), and countless other familiar applica-
tions. Highly sophisticated models are used for even complex medical applications,
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such as medical image analysis (McInerney and Terzopoulos, 1996), real-time surgical
simulations (Schein and Elber, 2004), and 3D reconstructions fromMagnetic Resonance
Imaging (MRI) or Computerised Tomography (CT) scans (McInerney and Terzopoulos,
1996).

Deformable models are now established tools in the areas of Image Analysis, Com-
puter Graphics, and Visualisation. Accordingly, as many different construction prob-
lems have different requirements, various modelling approaches have been proposed.
This section presents a survey of the research carried out to date in the area of de-
formable modelling. As this section deals with many disparate approaches tailored
for various application domains, the section organises the various approaches by tech-
nique, and provides a description, critique, and an overview of applications for each.
Finally, the ‘state of the art’ of deformable modelling is discussed through comparing
and contrasting the overall schemes, with a focus on their suitability for interactive
computer-based freeform modelling environments.

2.2.1 Non-Physics-Based Techniques

Non-physics-based techniques are purely geometric techniques used to deform virtual
objects. In such cases, the system has no knowledge about the material of the object
being deformed. These techniques are appropriate for applications where physical
accuracy can be sacrificed for computational efficiency.

Model-Based Techniques

Section 2.1 presented an overview of the various geometric models used for digital
shape representation. Model-based techniques for deformation rely on knowledge of
the model’s underlying shape representation.

Technique

Model-based deformations can be achieved by directly editing the variables or para-
meters of the original model, e.g., modifying the position of control points to edit a
spline model (Foley, 1996, Hearn and Baker, 1994).

Critique

As discussed in Section 2.1.4, modifying a model by directly manipulating its control
parameters can be laborious and far from intuitive. The manual editing of large num-
bers of parameters requires time and effort and often requires skilled designers with
experience and understanding of the underlying shape representation.

Moreover, the control afforded is often indirect, e.g., modifying control points that
do not lie on the surface of the object being modelled. Direct editing of lower level
representations, such as polygonmeshes, can also require effort and skill as smoothness
can quickly deteriorate when manually modifying vertices of a mesh. In addition to
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this, it is often difficult to maintain the original structure of the model for desirable
results.

Research in this area has addressed some of these issues by providing specific
interfaces for easingmanipulation of geometric models. Section 2.3 on Virtual Sculpting
will cover these techniques in detail.

Applications

Although direct editing of model parameters is rarely intuitive, it is often relied upon by
designers as the search for more intuitive design mechanisms is still a very active area
of research. However, a useful application of direct model editing lies in the kinematic
modification of model parameters to facilitate aesthetically pleasing deformation simu-
lations. Superquadrics (see Section 2.1.6) can be deformed very simply kinematically,
i.e., without taking mass or inertia into account. For example, a sphere can be deformed
as its radius length is changed.

Spatial Techniques: Free Form Deformation

FFD is a space-warping tool that has become very important in CAD/CAGD and
animation. Although not strictly considered FFD techniques by today’s standards,
Barr (1984) developed some useful deformation operators (bending, tapering, twisting,
and stretching), which were independent of control points (see Figure 2.15). Complex
deformations, once achieved by skilled and laboriousmanipulation of numerous control
points, could now be achieved by applying these operators to an object in a hierarchical
fashion. However, Barr’s operators are constrained to performing actions about a single
axis and the control afforded to the user is not very intuitive.

Figure 2.15: Examples of Barr’s Operators (a) Undeformed (b) Tapered (c) Twisted

Technique

In 1986, Sederberg and Parry (1986) generalised Barr’s technique and introduced the
idea of FFD as we know it today. This technique involves deforming solid geometric
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models in a free-form manner via a structural hyper-patch. For illustrative purposes, a
simplified way to implement this technique is to impose a 4x4x4 parallelepiped lattice
of control points, aligned with the x, y, and z coordinate axes, around the model to
be deformed. Once this has been done, a relationship must be established between
the control points and the model. Sederberg and Parry’s FFD is defined in terms of a
trivariate Bernstein polynomial given by

P(u, v, w) =
3

∑
i=0

3

∑
j=0

3

∑
k=0

pi jkB3
i (u)B3

j (v)B3
k (w) (2.12)

where P(u, v, w) are the model points that exist in the parameterised lattice-space, pi jk

are the lattice control points, and the remaining functions form a tensor product of
univariate cubic Bernstein polynomials, e.g., B3

i . For this example, cubic polynomials
are chosen.

Each P(x, y, z) point of the model must be re-expressed in its parametric form,
P(u, v, w) , which in this case is simply a matter of normalising the x, y, and z coordin-
ates. After any control point adjustment, every point of the model is simply mapped
through this function to find its new position (see Figure 2.16). Animation can be
achieved by interpolating over the passage of time between one set of control points
and another.

Figure 2.16: Example of FFD: (a) Non-deformed model (b) Deformed model

Critique

Sederberg and Parry’s original technique does not impose any restrictions on the degree
of polynomials used to construct the hyper-patch, or on the lattice size and orientation.
Many researchers have taken advantage of different curve properties and have refor-
mulated the technique using B-Spline curves, NURBS curves and subdivision volumes
(Kalra et al., 1992, Lamousin and Waggenspack Jr., 1994, MacCracken and Joy, 1996).
However, for all cases, the technique is the same.

36



2.2. Deformable Modelling Techniques

FFD has the advantage of being a very general technique that is not limited to any
one type of object. However this advantage is coupled with the disadvantage that the
deformation takes no account of the geometry of the object. This can make it difficult
to control the locality of deformations. FFD lattices must be applied in a piecewise
manner to achieve local deformations. It has also been argued that the manipulation of
the model space to achieve deformations is not as intuitive as direct manipulation of
the model itself. Another disadvantage of Sederberg and Parry’s FFD formulation is
the restriction on the lattice shape to be parallelepiped. Structures like circular bumps
are almost impossible to achieve using this technique and the number of control points
to be moved to define a deformation depends on size rather than shape. However,
subsequent research efforts, outlined below, have resolved some of these issues.

Coquillart (1990) developed the idea of Extended Free Form Deformation (EFFD),
which solves the shape problem of FFD. The idea is to allow the user to define the
shape of a lattice, which in turn determines/induces the shape of the deformation.
MacCracken and Joy (1996) put forward the idea of Free-Form Deformation with
Lattices of Arbitrary Topology. Hsu et al. (1992) described a way of manipulating the
deformable object directly, leading to better control of the deformation, and a more
intuitive interface than that of control point manipulation. There have been many other
developments to address the issue of local deformation (Chang and Rockwood, 1994,
Lazarus et al., 1994), to deal with distortions of polygon models Gain and Dodgson
(1999), to examine alternative embedding spaces Hua and Qin (2003), to facilitate
discontinuities Schein and Elber (2004), etc. An excellent survey of FFD techniques can
be found in Gain and Bechmann (2008).

Many of the limitation issues associated with the original Sederberg and Parry
formulation have now been resolved. Additionally, similar 2D, 1-D (Lazarus et al.,
1994), and 0-D (Borrel, 1994) spatial deformation tools have been defined for surface-
based, axial and point-based deformations respectively. Today, FFD facilitates smooth
deformations of arbitrary structures, provides local control over deformations, and
provides a computationally efficient algorithm that is easy to implement. For this
reason, most CAD systems still support FFD. However, the fact that FFD takes no
account of the geometry of the object being deformed remains its biggest disadvantage
and it is largely used in conjunction with other deformation techniques.

Applications

FFD is primarily used as a geometric sculpting tool in CAD applications (Gain and
Marais, 2005). However, it is still used for surprisingly complex modelling tasks where
one might expect to see physical modelling techniques employed, e.g., deforming
models of the human face and simulating complex medical procedures in real-time
(Sela et al., 2006, Kalra et al., 1991, Schein and Elber, 2004) (see Figure 2.17).
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Figure 2.17: Discontinuous FFD - Modelling Surgical Simulations (Schein and Elber, 2004)

2.2.2 Physics-Based Techniques

As computational power has increased, so too have the capabilities of computer based
modelling techniques. It is now possible to incorporate the principles of continuum
mechanics within the geometric structure of a model for more convincing and realistic
deformations.

Discrete Models: Mass-Spring-Damper Methods

As the title suggests, Mass-Spring-Damper (MSD) models represent physical bodies
using a collection of point masses connected by springs in a lattice structure (Eberly
and Shoemake, 2004).

Technique

MSD models are dynamic models. The spring forces acting on each node, Fs , are
usually considered to be linear (Hookean). This means that the spring force has a
magnitude directly proportional to the displacement of the spring from its rest position
and acts to restore the spring to its rest position. Damping is then introduced to the
system to account for the resistance to motion (due to friction, etc.). The damping force,
Fd, on each node, represented schematically by a dashpot, has amagnitude proportional
to that of the velocity of the node but opposite in direction to it. Without this force, a
perturbed system would oscillate forever. The spring and damping forces are given by

Fs = −ku (2.13)

Fd = −γu̇ (2.14)
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where u is the displacement of the mass points, k is the spring constant chosen to
approximate the material stiffness, and γ represents the damping constant (see Figure
2.18).

Figure 2.18: MSD Model

Combining the spring, damping, and external forces and applying Newton’s second
law of motion to an isolated MSD element gives

mü = −γu̇− ku + f (2.15)

Thus, in an MSD system, where each node is part of a lattice of MSD elements (see
Figure 2.19), the displacement, ui, of a node i , due to its j neighbouring nodes and the
external force, fi, is governed by

miüi = −γiu̇i −∑
j

ki jui j + fi (2.16)

where mi is the mass of the node, γi, its damping constant, and ki j and ui j, the spring
constants and the spring displacements, respectively, between node i and its j neigh-
bouring nodes.

Figure 2.19: MSD La�ice

Assembling all of the individual masses in the lattice, the equations of motion for
the entire system become

39



2.2. Deformable Modelling Techniques

Mü + Cu̇ + Ku = f (2.17)

where M, C, and K are the mass, damping and stiffness matrices respectively for the
deformable object, u is the vector of node displacements, and f is the vector of applied
forces (Eberly and Shoemake, 2004).

In deformable modelling, objects are discretised by a network of mass-spring-
damper elements, and deformations are simulated by the dynamics of the mass points
and springs. There are various numerical techniques, e.g., Euler integration schemes,
available for solving this system and evolving the deformation through time. Most
comprehensive numerical methods textbooks cover these techniques.

Critique

MSD systems are intuitive, generally easy to implement, and are computationally effi-
cient, making real time animations possible. Such systems handle even large topological
deformations with relative ease. They are also well suited to parallel computation due
to the local nature of interactions.

The main drawback associated with using MSD systems is that the discrete model
imposes significant approximations of the true physics that would occur in a continuous
body. This approximation of elasticity theory means that it can be difficult to define the
spring parameters that result in convincing simulations. MSD systems also suffer from a
problem known as ‘stiffness’, where large spring constants lead to poor system stability.
To ensure stability, the system must be integrated over small time-steps, resulting in
very slow simulations. On a more general note, the local nature of interactions means
that, for global deformations, there is a delay in the propagation of force effects through
a given system. Finally, MSD systems have a tendency to oscillate due to their iterative
basis.

There has been much research carried out in recent years in an effort to mitigate the
accuracy issues in MSD systems. However, most efforts have been application specific
and have resulted in hybrid models where the best features of a number of deformable
modelling techniques are combined (Etzmuß et al., 2003, Chadwick et al., 1989). Other
research has focused on improving simulation times, while ensuring stability (Hauth
and Etzmuß, 2001, Baraff and Witkin, 1998). In much of the literature, MSD systems
are generalised as sets of point masses with fixed connectivity. Energy equations can
then be defined for each point, in a similar fashion to that described below for Finite
Element Methods, which can be minimised to find new point positions. These systems
are known as Particle Systems, and are well suited for use with rectangular meshes
(Etzmuß et al., 2003).

Applications

MSD models are used for a wide range of modelling applications. They are especially
important for applications where there is a need for compromise between physical
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Figure 2.20: MSD Cloth Model (Bara� and Witkin, 1998)

accuracy and computation times. They have seen use in medical applications for soft
tissue simulations and deformations (Kuhnapfel et al., 2000). However, they are more
commonly associated with cloth simulation (Baraff and Witkin, 1998, Eberhardt et al.,
1996, Etzmuß et al., 2003) (see Figure 2.20), and facial modelling and animation (Platt
and Badler, 1981, Waters, 1987).

Continuum Models: Finite Element Methods

FEM are widely used mathematical techniques for finding approximate solutions to
PDEs (Hunter and Pullan, 2005). Most physical phenomena can be modelled using
differential and integral equations. However, the range of calculus equations that can
be solved analytically is quite restrictive, making exact solutions very difficult to obtain.
This problem was tackled by introducing numerical techniques where an approximate
numerical solution is obtained at discrete values of the independent variables. These
methods were once considered prohibitively time-consuming. However, modern com-
puters have revolutionised the field of numerical methods and have facilitated the
processing of large problems that once lay beyond reach (Logan, 2011).

The FEM is similar to the long established, and widely used, Finite Difference
Method (FDM) (Mitchell and Griffiths, 1980). However, FEM is more suitable for
dealing with complex irregular geometries. An excellent introductory text is provided
in Hunter and Pullan (2005).

Technique

Traditionally, differential equations are solved numerically using FDM (Mitchell and
Griffiths, 1980). Here, the domain of a given problem is subdivided, resulting in a finite
mesh of nodes arranged in orthogonal rows and columns. Differential equations are
approximated at the mesh nodes by replacing the continuous derivatives with finite
difference approximations. These approximations are derived from a simple truncation
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of a Taylor series expansion and reduce the problem to a set of algebraic equations
made up of simple quotients of differences between node values.

The FDM approximation for a 2-variable system is given by

∂ f (x, y)
∂x

∣∣∣∣∣∣
i j

≈
− fi−1, j + fi+1, j

2h
(2.18)

∂ f (x, y)
∂y

∣∣∣∣∣∣
i j

≈
− fi, j−1 + fi, j+1

2h
(2.19)

where fi represents the magnitude of interest at the ith node and is the characteristic
dimension of discretisation, h. A global approximation then depends on a finite set of
data specified at the boundary nodes. Using this data, a set of simultaneous equations
in terms of the unknown nodal values can be generated and solved.

In the case of deformable modelling, continuum mechanics provide the differential
equation and the deformable object becomes its domain. The PDE governing dynamic
elastic materials is given by

ρü = ∇ ·σ + f (2.20)

where ρ is the density of the material, f is the externally applied forces, ∇ ·σ is the
internal force resulting from a deformed infinitesimal volume, and ü is the node accel-
eration function.

Although the FDM technique is simple to implement, it is difficult to approximate
the boundary of irregular geometries with a regular mesh. This problem is addressed
by the more computationally expensive FEM technique.

The FEM technique works by subdividing the domain of the problem, resulting in
a discrete mesh of smaller parts known as finite elements (Hunter and Pullan, 2005).
Both FEM and FDM techniques aim to reduce a complicated differential equation to a
set of algebraic equations that can be solved numerically. The difference lies in how the
sub-regions are used. While FDM approximates the differential equation at discrete
nodes, FEM approximates the equation’s solution.

With FEM, for the 1-D casewith n nodes, a local approximation, f̃i(x), of the solution,
f (x), is defined over each element and is represented as a function of the values of
the element nodes. Typically, these functions are a set of weighted polynomial basis
functions, known as local shape functions. Assembling the local solutions gives a global
approximation, f̃ (x), which can be substituted into the original differential equation.
This results in a set of algebraic equations

f̃ (x) =
n

∑
i=0

ai f̃i(x) (2.21)
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The approximation, brought about by the discretisation of the domain, generates
an error when substituted into the original differential equation. This error is known
as the residual, and is denoted by R(x). Rather than solve the differential equation
directly for the unknown ai values, the Galerkin method (Strang, 1986) of weighted
residuals formulates an optimisation problem which aims to find the ai values that
minimise the residual

∫

d
w(x)R(x) = 0 (2.22)

where D is the domain of the problem, R(x) is the error function or residual, and w(x)
is a set of weighting functions. To ensure that the minimum residue is achieved, the
functions are carefully chosen to force R(x) to be orthogonal to the space of functions
used to approximate the solution.

This technique results in a set of simultaneous equations in terms of the unknown
nodal values. With the application of boundary conditions, this set of equations can be
solved. For simple linear and static cases, the resulting system of equations is of the
form

Ku = f (2.23)

where u is the vector describing the unknown magnitudes of interest, f is the vector
describing all known values in the system, and K is the matrix relating the two. The
overall technique is the same for higher dimensional cases.

For deformable modelling problems, a displacement-based FEMmodel is used. For
the static case, the residual can be formulated using

R = ∇ ·σ + f (2.24)

and the system can be reduced to

Ku = f (2.25)

For dynamic simulations, inertia and damping effects must be considered in the
system

where M, C, and K are the mass, damping and stiffness matrices, respectively for the
deformable object, u is the vector of unknown displacements, and f is the vector of
applied forces.
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Alternative Technique

The method of weighted residuals applied to continuum mechanics problems can be
interpreted as a variational problem of energy minimization, and many papers opt for
this simpler form. Here, a solution to the differential equation is obtained by translating
it into a minimisation problem for an energy function, E, which is a linear functional
defined on a function space Ω. The solution is then found by solving for

u ∈ Ω so that E(u) ≤ E(v)for all functions v ∈ Ω

For displacement based FEM, the function v corresponds to the continuously chan-
ging displacements of the elastic body and E is an energy equilibrium equation, defined
in terms of material displacement over the deformable object continuum.

The goal is to apply the FEM subdivision technique (as for the Galerkin method
(Strang, 1986)), to the space, Ω. The energy function for each element is then con-
sidered, and the resulting system of equations is solved for the nodal displacements
that minimise the total potential energy of the deformable object. This is achieved by
setting all partial derivatives of the potential energy equal to zero. The energy formu-
lations generally assume linear behaviour but this approach is only valid for small
deformations.

The finite elements and interpolation functions chosen depend on the geometry and
the various requirements with respect to accuracy, convergence, degrees of freedom,
computation, etc. There are usually trade-offs to be considered. Most general FEM
textbooks cover a range of possible element choices and suitable interpolation equations
(Segerlind, 1984) (see Figure 2.21).

Figure 2.21: Finite Element Shapes

Critique

Unlike MSD techniques, rather than starting with a discrete model, FEM techniques
start with the PDE and subsequently discretise it in space. Thus, FEM models produce

44



2.2. Deformable Modelling Techniques

more physically realistic simulations and can be used to model even complex soft
tissue deformations and non-linear material properties accurately. However, the use
of these systems is severely limited by heavy computational requirements. Thus far,
FEM techniques have proven to be impractical for real time applications. Because
the force vectors, in addition to the mass and stiffness matrices, are computed by
integrating over the object through time, they must be re-evaluated at each time-step,
as the object deforms. This requires significant processing time. If small deformations
are presupposed, and the topology over the time interval is constant, this processing
time can be significantly reduced. In this case, linear elastic behaviour can be assumed
and the mass and stiffness matrices can be assumed to remain constant. This ‘small
deformation’ assumption, however, does not hold for ‘soft’ bodies.

FEM models are well established and are the state of the art when it comes to
accurate modelling of complex physical deformations. Ongoing areas of research
include exploring appropriate shape functions (N. Sukumar, 2006) and facilitating
discontinuities across element boudnaries (P. Kaufmann, 2009). Most of the research
effort has, however, been devoted to speeding up the FEM process in an effort to lift
the restrictions on its use.

Finite Volume Method (FVM) (Teran et al., 2003), and Boundary Element Method
(BEM) James and Pai (1999), have been developed to solve for relevant forces more
directly. The FVM technique does this by solving for the nodal forces of an element
by distributing the internal force per unit area, calculated from the stress tensor with
respect to a given plane, evenly among the nodes of each element. Teran et al. (2003)
use this technique for simulating skeletal muscle. For the BEM technique, the volume
integral of the equation of motion is transformed to a surface integral using the Green-
Gauss theorem. This procedure only works for structures with interiors made up of
homogenous material. Although these techniques speed up the FEM process, they
limit the types of deformations achievable.

Other techniques, including condensation (Bro-Nielsen and Cotin, 1996), prepro-
cessing (Cotin et al., 1996), and modal analysis (James and Pai, 1999), have been used
to simplify complex FEM problems. Condensation techniques involve simulating only
those visible surface nodes in a similar fashion to BEM. Preprocessing techniques not
only assume linearity, but also take advantage of superposition. Here, the reaction
of each node for an infinitesimal force is pre-calculated. Applied forces are then ex-
pressed as sums of these infinitesimal forces. The stored results are then superimposed
to estimate the global deformation. This is not suitable for large deformations and
topological changes cannot be considered. Finally, modal analysis involves using only
the most significant vibration modes of the object to compute the deformation field for
applied forces. Much of the research effort in recent years has focused on hardware
acceleration techniques (El-Kurdi et al., 2007, Liu et al., 2008)

In spite of these advances computationally expensive FEM techniques are still
widely considered impractical for use in general modelling.
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Figure 2.22: Model Fi�ing using FEM (McInerney, 1992)

Applications

Because of the computational overhead associated with FEM techniques, they are
generally reserved for applications where physical realism is essential, e.g., FEM for
medical applications. However, they have been used for a broad range of applications:
shape editing in computer aided design (Celniker and Gossard, 1991), virtual cloth
modelling (Collier et al., 1991), deformation of muscles and other objects (Chen and
Zeltzer, 1992), shape fitting and tracking (Essa et al., 1993), simulating brittle and ductile
fracture for elastoplastic materials (O’Brien and Hodgins, 1999), surgical simulation,
fitting deformable models to 3D data (McInerney, 1992) (see Figure 2.22), and countless
other applications.

IgA

IgA is a recent non-standard numerical method for solving partial differential equations
involving parametric CAD representations such as splines (Hughes et al., 2005, Cottrell
et al., 2009, Hughes et al., 2010). Unlike FEM techniques that discretise the geometry
for the solver, the ultimate goal of IgA is to directly adopt the parameterised geometry
description for the PDE analysis.

Technique

In IgA the parametric representation of a B-Spline/NURBS curve is divided into finite
pieces2. The nature of B-Spline/NURBS representations, given their local control
properties, means that an exact analytic description of each finite piece is available (See
Section 2.1.4 for parametric spline function descriptions). Rather than approximate
this function with a set of standard finite element shape functions, the premise of IgA
is to use the available local analytic descriptions directly. The resulting PDE is solved
numerically using Gaussian Quadrature techniques (Press et al., 2007).

Critique

Finite Element Analysis is very much the de facto standard in industry. However, the
emergence of IgA has questioned its suitability for dealing with B-Spline/NURBS rep-
resentations. Finite Elements existed long before B-Spline/NURBS representations and

2The word ‘piece’ is adopted rather than element to avoid confusion with FEM terminology
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it may take some time before IgA becomes standard. There is much evidence of its grow-
ing popularity and its emergence has sparked a renewed interest in B-Spline/NURBS
research after an arguably slow period. The main benefit of the technique is that it re-
moves the need for computationally expensive conversions fromCAD design represent-
ations to FEM analysis representations. Additionally, access to an “exact” mathematical
description of the model is available throughout the deformation process.

Applications

IgA is a custom technique specific to dealing with the parametric geometries standard
in CAD.

Mesh-free Methods

Relatively new to the field of computer graphics shape deformation, ‘Mesh-free’, also
known as ‘Meshless’, Methods are mathematical techniques for finding approxim-
ate solutions to PDEs. The techniques of FEM, FVM, and BEM, discussed in Section
2.2.2, rely on a grid or a mesh. Meshfree methods in contrast use the geometry of
the simulated object directly for calculations. As discussed in Section 2.1.8, Meshfree
representations have become an important alternative to the traditional polygonal
representation in certain cases involving large deformations of complex models.

Technique

Instead of using a pre-defined mesh, only point generation is used in mesh-free simu-
lations. Inter-point connectivity is not defined. Since the mesh-free method does not
describe the point topology explicitly, interactions depend on distance rather than on a
specified graph of connections.

Just as the surface values of a mesh-free shape representation can be interpolated,
so too can the values of the deformation function. For the mesh-free case, the approx-
imation is based on nodes, not elements. For each point a shape function is created
much like in FEM techniques. The value of a property at any given location requires
interpolating values between neighbouring nodes. Each node represents a ‘source’ in a
smoothed, localised field. The field represents the material properties, such as density
or velocity. In order to find the value of the field at a given location or integration
point, the contributions to that field due to all nodes in the vicinity of that location are
combined. Usually, several nodes, each with a radius of influence, contribute to the
field at each integration point (See Figure 2.23).

The underlying mathematics involves a Moving Least Squares approximation of the
gradient of the displacement vector field and an element-free version of the Galerkin
method described in Section 2.2.2 (Nayroles et al., 1992, Belytschko et al., 1994, Cingoski
et al., 1998). A good introductory text can be found in Liu (2003).
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(a) (b)

Figure 2.23: Meshfree Models: (a) FEM (b) Meshfree (Cingoski et al., 1998)

Critique

FEM techniques are the de facto standard in accurate physics basedmodelling of deform-
ations. However, in circumstances where the cost and complexity of generating a finite
element mesh from the sample points outweigh the benefits, the mesh-free methods
can be more appropriate. In situations where mesh-free models representing water,
trees, clouds or smoke etc. are to be deformed, mesh-free deformation techniques lend
themselves better than FEM techniques (Blinn, 1982a, Reeves, 1983).

The topological flexibility of the mesh-free technique means that it is more appro-
priate than FEM techniques in situations where a deformation results in the underlying
mesh becoming extremely skewed or compressed as adaptive remeshing and node
refinement must take place throughout the deformation to prevent severe distortion of
the elements. For such large three-dimensional problems which are becoming more
common (see Section 2.1.8), the computational cost of re-meshing at each step often
becomes prohibitively expensive.

A disadvantage of using the technique is that the underlying point-based subdivi-
sion of the domain of the partial differential equation means that values are calculated
based on several neighbouring values. This results in a smoothing effect and restricts
the modelling of sharp edges in models.

Applications

Early use of mesh-free techniques was in simulating the dynamics of fluid and smoke
particle systems. However, as discussed, they are now finding use as an alternative
to FEM techniques in large or complex data sets where triangulation and complex de-
formations that severely alter the geometry of the original model become prohibitively
expensive for standard FEM techniques.
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Active Contour Models/Snakes

An ACM is an energy minimising curve, often defined by splines, whose energy equa-
tion is structured in such a way as to achieve a desired deformation. These models are
often called ‘snakes’, as they appear to slither across images. They are an example of
the general technique of matching a deformable model to an image using energy min-
imisation. Snakes were originally introduced by Kass et al. (1987) for solving various
computer vision problems, such as edge and contour detection, and motion tracking in
images.

Technique

The deformation of Kass’ snake is governed by an energy equilibrium equation which
considers internal snake-forces that resist stretching and bending, and external snake-
forces, including local image-generated forces and constraint forces. These constraint
forces are usually supplied by the user. The snake’s energy thus depends on its shape,
location within the image, and any user input.

The snake is defined as a parametric contour, v(s), where the curve parameter is
typically normalised, i.e., s ∈ [0, 1]. The total energy of the snake, Esnake, is then given
by the functional

Esnake(v(s)) = Eint(v(s)) + Eim(v(s)) + Econ(v(s)) (2.26)

The internal energy is given by

Eint(v(s)) =
∫ 1

0
α

∣∣∣∣
dv
ds

(s)
∣∣∣∣
2

+β

∣∣∣∣∣
d2v
ds2 (s)

∣∣∣∣∣

2

ds (2.27)

The first term in this equation imposes tension on the curve and the second term
imposes rigidity. These terms can be weighted using theα and β parameters to balance
the two effects.

The image energy is formulated to attract the snake towards features of interest.
Thus, a potential function is chosen, whose minima coincides with the interesting
feature of the image. This function is of the form

Eim(v(s)) =
∫ 1

0
P(v(s)) ds (2.28)

The simplest potential energy is the image intensity

P(v(s)) = I(v(s)) (2.29)

According to the sign of I, the snake will be attracted to either light or dark regions in
the image. Optional external energies can be added at this point to impose constraints
defined by the user.
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Figure 2.24: ACM Springs and Volcanoes (a) the volcano pushing the contour away, and (b) the spring
force a�ached to a contour control point (Molloy and Whelan, 2000)

The original formulation of Kass et al. implemented user-imposed constraints as
springs and volcanoes that provided forces that pushed or pulled the snake toward
or away from certain features or regions respectively. This idea is illustrated in Figure
2.24.

The system is then solved to find the contour that minimises the total energy.

Esnake(v(s)) =
∫ 1

0


α
∣∣∣∣
dv
ds

(s)
∣∣∣∣
2

+β

∣∣∣∣∣
d2v
ds2 (s)

∣∣∣∣∣

2

+ P(v(s))


 ds

=
∫ 1

0
F(v(s)) ds (2.30)

From the study of calculus of variations, it is known that the solution to this problem
must satisfy its Euler-Lagrange equation given by

dF
dv
− d

ds

(
dF
δv̇

)
+

d2

ds2

(
dF
dv̈

)
= 0 (2.31)

This becomes

−α d2v
ds2 +β

d4v
ds4 = −∇P(s) (2.32)

which can be solved numerically using finite differences for a local solution. The global
solution can be found bymaking the position of the snake a function of time and solving
iteratively using implicit/explicit Euler integration schemes. A good introductory text
can be found in Ivins and Porrill (2000).

Active Contours can be extended to two (surface) and three (volume) dimensions.

Critique

One of the chief virtues of snake representations is the ability to specify a wide range
of snake properties through the energy function, by analogy with physical systems. 2D
snakes have been generalised to active surfaces and active volumes, which can be used
to smoothly fit surfaces or meshes to 3D image data (Cohen, 1991, Cohen and Cohen,
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1993, Cohen, 1996, Ahlberg, 1996). Due to their reliance on calculus of variations, such
models are often referred to as variational models. These techniques can be used to aid
the creation of 3D models for visualisation purposes. The introduction of topologically
adaptive snakes (McInerney and Terzopoulos, 2000), and the incorporation of a-priori
image information for ‘smart snakes’ such as active templates and shapemodels (Cootes
et al., 2001), also stand out in the literature.

The chief limitation of Kass’ formulation of snakes was its reliance on the user
to interactively initialise the snake by placing it somewhere near the desired feature.
Cohen improved this situation by altering Kass’ energy formulations (Cohen, 1991).
This extension of the snake-concept, called balloons, added an inflation force to a closed
contour to make the contour bypass irrelevant elements in the image. Xu and Prince
(1997) introduced Gradient Vector Flow (GVF) snakes. These models define a force field
computed from the spatial diffusion of the image edge map gradient. This computation
causes diffuse forces to exist far from the feature of interest and crisp force vectors to
exist near its edges. This allows the snake to start far away from the feature of interest
and yet have the ability to draw it towards the object and force it into the boundary
concavities.

A host of statistically based models exists in this category. However, these models
require a-priori knowledge about the images for analysis and are therefore beyond the
scope of this review. Further information can be found in McInerney and Terzopoulos
(1996).

Applications

ACMs have been used for a wide variety of image processing tasks, including image
segmentation, registration, model fitting, and motion tracking (Richens et al., 1992,
Vieren et al., 1995, Ferrier et al., 1994, Derraz et al., 2004)(see Figure 2.25 for an example
of image segmentation).

Figure 2.25: Active Contour Segmentation of a Tumour in MRI Brain Scan (a) Initial Placement (b)
Final Position (Derraz et al., 2004)
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Elastically Deformable Models

Terzopoulos et al. (1987) generalise Kass’ energy minimising curves to ‘Elastically De-
formable Models’ in the form of curves, surfaces and solids for use in 3D animations.
Their model is regarded as seminal in computer graphics deformable modelling literat-
ure and they coined the term ‘Deformable model’.

Technique

The technique generalises Kass’ energy minimising curve to 2D and 3D. The internal
energy of an elastically deformable surface can be specified by

Esur f ace(v(s, r)) =

∫ 1

0

∫ 1

0
αs

∣∣∣∣
∂v
∂s

∣∣∣∣
2

+αr

∣∣∣∣
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∂r

∣∣∣∣
2

+βs
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∂2v
∂s2
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2
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2

+βsr
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∂2v
∂s∂r
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2

+ P(v) dsdr (2.33)

Here, αs and αr determine the elasticity along the s and r axes respectively, while βs

and βr determine the corresponding rigidities. βsr determines the resistance to twist.
The energy is minimised by finding the surface, v(s, r), that satisfies the corresponding
Euler-Lagrange equation given by

−αs
∂2v
∂s2 −αr

∂2v
∂r2 +βs

∂4v
∂s4 +βr

∂4v
∂r4 +βsr

∂4v
∂s2∂r2 = −∇P(v) (2.34)

For use in general computer graphics applications, Terzopoulos et al. incorporate
mass and damping terms. The difference between the deformation energy of the rest
shape and the deformed shape, as calculated above, is then minimised. The dynamic
equations can then be solved using Finite Difference or Finite Element Methods.

Critique

Much like ACM/Snake models, a wide range of properties can be specified through
the energy function, by analogy with physical systems. Various energy minimisation
functions have been employed to achieve such deformations. Botsch and Sorkine (2008)
present a detailed survey of linear techniques employed. Additionally, Terzopoulos
and Fleischer (1988) model non-linear effects through a variation of the model that can
capture inelastic deformations.
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Figure 2.26: Elastically Deformable Solid (Terzopoulos et al., 1987)

Applications

By simulating properties such as tension and rigidity, in curves, surfaces and solids,
Elastically Deformable Models capture the elastic behaviours exhibited by a wide range
of deformable objects such as string, rubber, cloth, paper, and flexiblematerials. Further-
more, by including physical properties such as mass and damping, they simulate the
dynamics of such objects. The work focuses on animation and simulation applications.
Figure 2.26 shows an example of an elastically deformable solid.

2.2.3 Discussion

Purely geometric deformation techniques are faster and are generally simpler to im-
plement than their physically based competitors. Although these models tend to be
geometrically and computationally efficient, there is a heavy reliance on the skill of
the designer as deformations are achieved by manually adjusting control points and
shape parameters. Often, these adjustments are non-intuitive and a large number
of control points must be adjusted in order to achieve perceptually simple deforma-
tions. In addition, they do not simulate the underlying mechanics of a given deforma-
tion. Despite these shortcomings, FFD techniques have remained popular in CAD and
computer-based freeform modelling environments, mainly due to their generality and
low computational overheads.

Sophisticated, physics-based models, although necessary for simulating the dynam-
ics of realistic interactions, are not yet suitable for fully interactive real-time simulation
of multiple objects in virtual environments due to the current limitations of computa-
tional power.

Research indicates that MSD systems are the most widely used deformable models
at present. It is likely that their popularity originally stemmed from the simplicity of
obtaining equations and programming them. MSD models thus evolved rapidly and
implementations for nearly every conceivable type of interaction have been developed.
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This, unsurprisingly, only increased their popularity. The main advantage of the MSD
model over its competitors today is that it can approximate physical realism at real-time
rates. Although the performance of modern computers and graphics hardware has
made these physically-based animations possible in real-time, such techniques are
not ideally suited to 3D shape modelling applications due to their complexity and
computational overhead.

The Finite Element Methods are state of the art in physically based modelling
and simulation and outperform all competitors in terms of accurate modelling of
continuum mechanics in complex geometries. They also provide the most flexible
platform with respect to overcoming limitations generally associated with modelling
complex boundary conditions and material types. It is foreseeable that in coming
years, the processing speed of desktop computers will continue to improve and the
time will come when other deformable models with higher physical realism, such as
FEM models, will gain in popularity. The shear amount of research being carried out
with FEM models in areas such as surgical simulation and computer graphics, where
real-time deformations are highly desirable, is evidence enough that researchers are
working and progressing towards this time. IgA has made headway against FEM in the
area of physics-based simulations involving B-Spline/NURBS based representations,
where it is likely to become the new standard in CAD and CAGD.

ACMs fundamentally differ from the other deformable modelling techniques dis-
cussed in that they represent a generalised approach for matching a deformable model
to an image, rather than a generic deformable modelling technique suitable for com-
puter graphics modelling and deformation. These intuitive models offer the geometric
and computational efficiency of the non physics-based models, while incorporating
some of the realism achieved using those that are physics-based. Such a comprom-
ise would be very attractive in an interactive computer graphics free-form modelling
environment.

2.3 Virtual Sculpting
‘Virtual Sculpting’ has become one of themost important tools for interactive 3D content
creation for use in the film industry, special effects, computer games, etc. Introduced
by Parent (1977), interactive shape design environments based on a clay sculpting
metaphor have long been touted as a natural and intuitive solution to the complex task
of freeform shape design.

Freeform modelling is a significant sub-discipline of computer graphics concerned
with the computer-based design of 3D shapes. In contrast to functional modelling,
freeform modelling is used in situations where the primary consideration is the aes-
thetics of the final shape, rather than functional aspects such as aerodynamics, volume
or stress response. For this reason, freeform models are not generally subjected to the
same plethora of constraints associated with functional modelling. A freeform design
environment can take advantage of this freedom from constraints and afford a some-
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what more blasé attitude towards the rigorous physics-based constraints associated
with functional modelling. Virtual Sculpting is therefore primarily used in smooth
organic modelling as opposed to hard surface modelling.

Virtual Sculpting environments based on the clay sculpting paradigm rely heavily
on the shape modelling and deformation techniques discussed in Section 2.1 and Sec-
tion 2.2. Such environments can generally be characterised in terms of the underlying
shape representations and the laws governing shape deformations. Anticipating the
effects of a deformation during a sculpting session requires not only experience and
understanding of the underlying mathematics associated with the deformation, but
also familiarity with the shape representations of the models being deformed. Thus,
deformation and shape modelling techniques alone do not offer designers an intuit-
ive means for the definition of freeform shapes. As can be seen in Section 2.2, such
techniques are generally applied to the problems of editing existing shapes or creating
animations, rather than to the problem of interactive design.

A true sculpting metaphor should allow a designer to create a model using a series
of simple real-time modelling gestures. Overcoming the need for manually controlling
a large number of variables has been the goal for researchers in the area of Virtual
Sculpting. Much of the research towards achieving this goal has focused on combining
the various techniques for shape representation and deformation with an intuitive inter-
active modelling interface, providing tools for automatic editing of model parameters
in response to intuitive user interactions.

This section explores and compares current approaches to virtual sculpting.

2.3.1 Geometric Sculpting Tools
This section discusses geometric approaches to Virtual Sculpting that do not incorporate
principles from ContinuumMechanics directly. Rather, these approaches typically seek
to mimic physical properties using geometric techniques.

Direct Model Editing

Model-based methods for interactive shape editing rely on the model-based deforma-
tion techniques discussed in Section 2.2.1. Although designers used such approaches in
early modelling systems, creating and editing complex models by directly defining and
editing, interactively or otherwise, the available parameters associated with a chosen
shape representation can require time and effort and be far from intuitive. Systems
relying on such techniques generally require skilled designers with a full understand-
ing of the underlying shape representation allowing them to pre-empt the effects of
altering model parameters in order to ‘sculpt’ the model effectively.

Decay Functions as Sculpting Tools

In Parent’s seminal paper (Parent, 1977), sculpting involves the application of early
geometric algorithms such as intersection, warping, bending, etc. Parent also intro-
duced the use of decay functions in surface modelling. Here, the user attaches the
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Figure 2.27: A sample set of decay functions (Bill and Lodha, 1994)

cursor to a surface point and repositions the point. A decreasing proportion of its
movement is distributed across the mesh using a customisable interpolation routine.
In this way, movements of vertices are propagated to surrounding vertices. In Parent’s
implementation, the displacement decays as a simple power function of the surface
distance, which is calculated by counting the edges in the shortest path between a given
vertex and the selected vertex.

Allan et al. (1989) extend decay functions by employing a Euclidean measure of
surface distance and defining a variety of decay shapes (cone, bell, cusp, random,
sine). They also allow vertices to be directly bound to the selected vertex movement or
anchored in place.

In addition to providing decay functions (see Figure 2.27), Bill and Lodha (1994)
devised shaped tools described by superquadrics, ranging from rounded boxes and
cylinders to ellipses and spheres, which can simultaneously push or pull many vertices
at once (see Figure 2.28). Collision detection between the mesh and the implicit surface
tool is used to determine if points lie in, on, or outside the tool. In push mode, points
‘in’ the tool are translated in the direction of tool movement so that they are ‘on’ the
tool, while in pull mode, points ‘on’ the tool are translated with the tool movement.
Bill and Lodha (1994) also discuss adaptive smoothing and refinement operations for
processing the sculpted mesh. Shadows of sculpting tool are generated and rendered
on the mesh to enhance the sculpting experience.

While the basic operation of moving a point is central to interactive modelling,
virtual tools, such as decay functions, offer a higher level of deformation control. They
allow multiple primitive operations to be applied to a model simultaneously, in an
intuitive fashion (Bill and Lodha, 1994).

(a) (b)

Figure 2.28: Bill and Lodha Virtual Sculpting: (a) Decay Function (b) Shaped Sculpting Tool: Box-
shaped tool pushing downwards on flat mesh (Bill and Lodha, 1994)
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Implicit Sculpting

Implicit surfaces are often used for Virtual Sculpting applications because of their
ability to handle topological changes with relative ease. As discussed in Section 2.1,
implicit surfaces are often used within CSG and blending environments where the
visual effect of sculpting can be achieved with the successive Boolean combination or
blending of implicit primitives. Using such techniques, the addition of each primitive
causes the complexity of the shape to continually increase, to the point where real-time
interaction can become untenable. This can occur even in situations where the designer
is removing most of the material. An alternative option is to use a grid-based approach.

Introduced in the early 1990s by the seminal work of Galyean and Hughes (1991),
grid-based sculpting allows the user to interactively add to, remove from, or smooth
material represented by a discrete scalar field stored in a voxel grid or voxmap. This
type of interaction is also conducive to copy-paste and cut-paste actions. As discussed
in Section 2.1.7, a freeform solid can be approximately represented as a collection of dis-
crete cube-shaped volume elements (voxels), called a voxmap. To continue the 3D pixel
analogy, sculpting tools are applied to locally modify the voxmap and consequently
the solid that it represents, much as ‘paintbrush’ tools affect a pixmap in traditional 2D
paint programs.

In the approach of Galyean andHughes (1991), the field values stored in the voxmap
loosely correspond to the density of a virtual clay representing the sculpted object.
In their implementation, a ‘1’ indicates the presence of virtual material, while a ‘0’
indicates an empty cell. The tool used to edit the object’s field values, in this case a
sphere primitive, is itself represented by the same form of density voxmap. The tool
acts by combining its field contribution with the discrete field function that defines
the sculpted object. Virtual material can be deposited or removed using additions and
subtractions. Smoothing can be achieved by using a low pass filter which recomputes
each field value covered by the tool as an average of itself and its closest neighbours. The
object and tool surfaces used for display are defined as iso-surfaces of their respective
density fields. These iso-surfaces can be converted into a triangular mesh using a
marching cubes algorithm. An incremental marching cubes algorithm for the sculpted
object, i.e., the marching process is only performed in the modified region.

Wang and Kaufman (1995) extended the technique of Galyean and Hughes (1991)
to support more complex carving and sawing tools, which can be rotated with respect
to the object . They also introduced voxels with attributes such as colour and texture.
Ferley et al. (1999, 2000, 2001) extended Galyean and Hughes’ toolset to include generic
ellipsoidal primitives and resolution adaptive grids. Figure 2.29 shows the sculpting
environment of Ferley et al.

In order to achieve a sculpting metaphor more akin to clay sculpting, Ferley et al.
(2000) introduced local deformation tools with part-negative part-positive fields in
order to compress the sculpted object in the area where the tool penetrates it, while
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Figure 2.29: Implicit Sculpting: The sculpting tool is displayed in wireframe. (Ferley et al., 1999)

creating a bulge to imitate material displacement around the contact region (see Figure
2.30).

Dewaele and Cani (2004) extend the approaches of Galyean and Hughes and Ferley
et al. by using a layered model that can provide ‘Large-Scale Deformations’, ‘Volume
Conservation’ and ‘Surface Tension’ properties . As in Galyean and Hughes’ approach,
Dweaele et al. use a grid based representation for the material. In their implementation,
the grid is populated with a density field that records the quantity of matter in each
cell with values ranging from ‘0’ (an empty cell) to ‘1’ (a full cell). The surface of the
material is defined as an iso-surface of the density field, usually chosen at a given
threshold between ‘0’ and ‘1’. Dewaele and Cani’s ‘Large-Scale Deformations’ aim to
provide support for global plastic deformations such as bending and twisting. This is
achieved by defining suitable displacement fields to move matter along the material
path, rather than Euclidean distances. Volume conservation is achieved by propagating
any excess density in each cell to its nearest neighbours.

After several deformations using the two layers above, the model material has a

Figure 2.30: Shape of the deforming function. Horizontal axis is the distance from the tool center.
Vertical axis is the ratio (Ferley et al., 1999).
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Figure 2.31: Holes, folds, and prints obtained with Dewaele and Cani’s virtual clay model (Dewaele
and Cani, 2004).

tendency to loosen and spread. Cells with low density appear as material is propagated.
Those cells with density below the threshold iso-surface value are not visible. This
can give the illusion that the material’s volume is changing and can lead to strange
effects of clay appearing seemingly from nowhere when a tool’s action increases the cell
density to above the threshold. The surface tension layer aims to limit these problems
by keeping the gradient of density near the surface of the clay at an acceptable value.
Matter in cells with very low densities is moved to nearby cells with higher densities
along the gradient direction. This has the effect of mimicking surface tension and keeps
the material more compact. Figure 2.31 shows some of their sculpting examples.

Much of the remaining literature involving grid-based sculpting is focused on
providing suitable data structures for grid based representations that alleviate storage
costs and facilitate field queries at interactive rates (Bærentzen, 1998).

Distance fields, as described in Section 2.3.1, have also been used within Virtual
Sculpting applications (Perry and Gibson, 2001). However, a distance field requires
global editing, as the value of closest distance may need to be updated in an unbounded
region while editing the shape. In addition to this, distance fields are discontinuous in
concave regions, so smooth approximations of them need to be computed to preserve
a good level of continuity for the iso-surface (Cani et al., 2008). Density fields offer a
more memory efficient option as empty cells do not need to store a value explicitly. The
creation of intuitive editing tools is straightforward, and editing is local.

Other implicit representations such as the Blob Tree framework have also been suc-
cessfully used in sculpting frameworks. Here, constructive solid geometry techniques
facilitate the creation of heterogeneous objects with adaptive topology (Raviv and Elber,
1999, Schmitt et al., 2004). The disadvantage of these techniques is that everything is
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stored in hierarchy which increases in depth with each modification. Local extraction
of the surface can therefore become slow.

Unlike CSG, where primitives are stored individually in a binary tree, grid-based
models based on spatial decomposition schemes are made up of a single set of cubic
‘space’ elements or voxels, each storing a scalar value such as intensity or distance.
The immediate advantage is that the time taken to conduct each field query no longer
increases with the length of the sculpting session (Cani et al., 2008).

The principal difficulties with grid-based sculpting are the aliasing artefacts arising
from the discrete nature of voxels, which are typically reduced with low-pass filters. As
the surface is extracted from the grid, triangles are recomputed each time a part of the
model is modified. Over time, successive re-samplings can cause blurring. Moreover,
since the triangles are not persistent, attaching properties to the surface such as bumps
or texture is difficult (Stanculescu et al., 2011). The high cost of rendering can be
alleviated with local incremental updates.

A significant advantage of this sculpting approach is that the user can directly
interact with a model’s surface without any knowledge of the model’s underlying
representation. While grid-based models require large computation and storage over-
heads, they support highly complex topologies within an intuitive interface (Gain and
Bechmann, 2008).

Spatial Sculpting

Sculpting metaphors are often based on spatial deformation techniques. Most of these
techniques use a tool to define a deformation, where interactive modifications of the
tool are passed to the object being sculpted. These techniques can be used directly
within a sculpting framework, as discussed in Section 2.2.1.

More recently, much research has focused on providing a dedicated framework
built upon spatial deformations for the specific task of interactive shape modelling.
As shall be seen, a direct result of this has been the emergence of hybrid spatial tools
encoded by distance fields and decay functions, much like the tools described in Section
2.3.1. These tools provide an interface more akin to a clay sculpting metaphor.

Decaudin (1996) propose a technique that allows the artist to model a shape by
iteratively adding the volume of simple 3D shapes. This technique inflates space by
inserting a shaped tool . By inserting the tool inside the object to be sculpted, the volume
of the tool will be added to the volume of the object. If the tool is applied outside the
object, the object will be deformed but its volume will remain constant. A restriction
imposed by the deformation function used is that the tool must be star-convex with
respect to its center.

‘Wires’, introduced by Singh and Eugene (1998), are curve based spatial deformation
tools which can easily achieve a very rich set of deformations. Their technique is
inspired by the armatures used by sculptors. A wire is defined by a reference curve,
a wire curve, a scaling factor that controls bulging around the curve, and a radius of
influence. A set of reference curves describes the armature embedded in the initial
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Figure 2.32: Wires: A Geometric Deformation Technique - deformation of a shape with multiple wires
(Singh and Eugene, 1998). The first image shows the initial shape, the second shows the
reference curves and the third shows the wire curves and the deformed shape.

shape, while a set of wire curves defines the new pose of the armature. This technique
extends curve-based methods by enabling a network of 1-D curves to deform a model
by blending the contributions of each wire (see Figure 2.32).

‘Sweepers’, introduced by Angelidis et al. (2004), are space deformations defined
by gestures. The artist describes a basic deformation as a path through which a tool is
moved. The tools in this case are simple shapes. When moved along the defined path,
the tool causes a deformation of the sculpted object along the path. More complicated
deformations can be achieved by applying several tools simultaneously using a blending
formula.

Angelidis (2005) attributes the restriction of traditional freeform deformation tech-
niques to the domain of editing and animation of existing shapes rather than the creation
of new models to the lack of research into the provision of appropriate features. An im-
portant example of such a feature is the automatic prevention of self-intersections. This
is particularly important for spatial deformation techniques as no spatial deformation
can remove a self intersection in a surface once it has been created.

Angelidis et al. define a tool very similar to the tools used by Ferley et al. (2001)
and Dewaele and Cani (2004). The tool is a 3D shape defined by a field function which
smoothly decreases and vanishes at a distance. Sweeping involves weighting over space
the transformation defined by the tool’s motion and field of influence. Self intersections
are avoided by breaking up the deformation into small steps, computed so that fold-over
is prevented (Cani et al., 2008).

Sweepers in their seminal form compress and dilate space and thus provide similar
functionality to implicit sculpting tools facilitating the addition and removal of mater-
ial. Later, Angelidis et al. (2006) introduced ‘Swirling Sweepers’ for constant volume
sweeping. A ‘swirl’ is defined as a rotation about an axis whose magnitude decreases
away from its centre and smoothly vanishes at a distance, defining a divergence-free
vector field. A swirl has the effect of twisting space locally around the axis without
compression or dilation. Angelidis et al. convert this volume preserving rotation func-

61



2.3. Virtual Sculpting

Figure 2.33: Swirling Sweepers: When pushed or pulled, a sphere will inflate or deflate elsewhere
(Angelidis et al., 2006)

tion into a translation by using a ring of swirls positioned in a circle with axes along the
local tangent direction to the circle. Each of them swirls matter through the inside of
the circle. Summing their contributions has the effect of locally pulling space through
the circle (Cani et al., 2008). To hide the implementation details from the user, the
parameters of the swirls are reverse engineered from the user’s sweep gesture. Figure
2.33 shows an example of sculpting operations with Sweepers.

Gain and Marais (2005) introduce a similar technique to sweepers called ‘Warp
Sculpting’ which also uses rigid body transformations of shaped tools. Their shaped
tools are also encoded by distance fields and decay functions and are also used to
warp a sculpted object’s ambient space. Their tools rely on a pre-computed distance
field that can be applied after sampling the actual distances involved. This cuts down
substantially on closest point operations and improves the interactivity of the sculpting
process. Their technique was developed in parallel with Angelidis et al. The sculpting
interface presented by Gain et al. is more tool-based than gesture-based (see Figure
2.34). Their approach also differs from Angelidis et al. in the representation of the tool’s
trajectory.

Figure 2.34: Warp Sculpting (Gain and Marais, 2005)

62



2.3. Virtual Sculpting

Funck et al. (2006) generalise swirls using divergence-free vector fields to produce
different types of deformations including twists and bends. These types of deformations
improve the functionality of sweepers but do not fit nicely into the sweeping gestural
interface described by Angelidis et al.

The use of fold-over free space deformation to avoid self intersections makes it
impossible to change an object’s topology. Stanculescu et al. (2011) recently introduced
‘Freestyle: sculpting meshes with self-adaptive topology’ to combat this problem. In
their implementation, sweepers are combined with a specially structured temporally
coherent mesh, typically a machine vision tool, to track the sweep. The topology of the
mesh is controlled from a single user-specified resolution threshold. Any part of the
model thinner than this threshold automatically splits, while any two parts of the mesh
that come closer than the threshold distance automatically merge. Complex models
can be created using this technique (see Figure 2.35).

Figure 2.35: ‘Freestyle’: Sculpting Meshes with Self-Adaptive Topology (Stanculescu et al., 2011)

2.3.2 Physics-Based Sculpting Tools

While many of the approaches presented above mimic some physical properties us-
ing geometric techniques, the models did not generally provide any mechanism for
physically deforming a model. Physics-based deformations have become established in
computer graphics animation and simulation (see Section 2.2) and a number of these
techniques have also appeared in physics-based sculpting environments.

Terzopoulos and Qin (1994) introduced Dynamic Non-Uniform Rational B-Splines
(D-NURBS) surfaces as an extension of traditional NURBS that permit more natural
control of the geometry of the surface. D-NURBS are physics based models that in-
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Figure 2.36: D-NURBS: Examples of D-NURBS Surface Fi�ing, Solid Rounding, and Deformation
through Constraint Modification. (Terzopoulos and Qin, 1994)

corporate mass and damping distributions and internal deformation energies into
the NURBS geometric substrate. These models are governed by dynamic differential
equations which, when integrated numerically through time, continuously evolve the
controls and weights in response to applied forces. Optimal shape design is achieved
through energy minimization solved using Finite Element techniques.

The D-NURBS formulation supports interactive direct manipulation of NURBS
surfaces through constraint modification, which results in physically meaningful and
intuitively predictable motion and shape variation (Terzopoulos and Qin, 1994, Qin and
Terzopoulos, 1994, 1996). Using D-NURBS, a modeler can interactively sculpt complex
shapes by kinematically adjusting control points and weights, or dynamically by apply-
ing forces. Additional control over dynamic sculpting stems from the modification of
physical parameters such as mass, damping, and elastic properties. Design applications
discussed include solid rounding, surface fitting, dynamic FFD, and cross sectional
interactive design. Figure 2.36 shows some examples of these applications.

Later, such ideas were extended to subdivision surfaces (Qin et al., 1998, McDonnell
and Qin, 2000, McDonnell et al., 2001, McDonnell and Qin, 2002, McDonnell et al., 2005,
McDonnell and Qin, 2007a,b). Sculpting is achieved by adding or removing subdivision
control cells. See Figure 2.37 for sculpting examples. Du and Qin (2000a,b, 2001, 2005,
2007) examined incorporating such internal deformation energies into both surface and
volumetric PDE geometric substrates for similar constraint-based modelling. Figure
2.38 shows a sculpting example. Hua and Qin (2004) examined incorporating physics
into an implicit sculpting approach to provide haptic interaction.

Dachille IX et al. (1999, 2001) present a sculpting system utilising a dual representa-
tion for a B-spline surface in both mathematical and physical space. Their system is
ultimately a discrete case of D-NURBS with fixed weights. A B-Spline surface is discret-
ised using a MSDmodel. The system thus maintains two synchronised representations
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(a) (b)

Figure 2.37: Dynamic Subdivision Surfaces: (a) Extrusion by adding a cell (b) Indent by removing a
cell (McDonnell and Qin, 2000)

that permit surfaces to conform to B-Splines in the mathematical domain while exhibit-
ing physical behaviour and satisfying material properties subject to intrinsic geometric
constraints. The system allows for specification of tangent, normal, curvature and other
constraints. Surface behaviour responds to the Lagrangian equations of motion subject
to various geometric constraints. Optimal shape design is achieved through energy
minimization solved using Finite Difference techniques. Finally, the system implements
a haptic interface via the Phantom Stylus and provides a rope/spring like feature as
the interaction tool (see Figure 2.39).

In contrast, Mullenhoffe (1998) employs a continuous model and discusses obstacle
avoidance of a sphere as being akin to Virtual Sculpting. However, the obstacle avoid-
ance is computed only after the surface has reached its minimum energy configuration
subject to other constraints.

Knopf and Igwe (2005) developed a Virtual Sculpting framework based on mesh
models represented by a self-organising feature map. The action of sculpting is simu-
lated bymoving themesh according to a simple dynamicmodel based on amass-spring
system.

Gao and Gibson (2006) combine the idea of a shaped tool, by Bill and Lodha (1994),
with the physics based B-Spline model of Dachille IX et al. (1999). The tool they adopt
is a spherical implicit surface that is governed by the Phantom Stylus (see Figure 2.40).

Figure 2.38: Physics Based PDE Surface Constraint Curves and Fi�ed Surface (Du and Qin, 2000b).
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(a) (b)

Figure 2.39: Haptic Sculpting of Dynamic Surfaces: (a) MSD Discretisation (b) Rope Tool (Dachille IX
et al., 1999)

Pungotra et al. (2010) present a similar approach to that presented in Gao and Gibson
(2006) capable of dealing with B-Spline tools.

Smooth surface deformation functions with prescribed boundary conditions are
often modelled using an energy minimisation principle as described in Section 2.2.2
(Moreton and Séquin, 1992, Celniker and Gossard, 1991, Welch and Witkin, 1992, 1994,
Botsch and Kobbelt, 2004). In such cases, the surface is assumed to behave like a
physical skin, which resists stretches and bends as forces act on it. Mathematically,
this behaviour can be captured by an energy functional which penalises stretching and
bending. In each case, the energy isminimisedwhile satisfying the prescribed boundary
constraints. This technique has been adapted in various ways for use in interactive
modelers. Welch andWitkin (1992) specify a number of original and target vertices and
compute the remaining positions using a variational approach. Celniker and Gossard
(1991) define an object using a set of 3D character lines. The object is ‘skinned’, i.e., fitted
with a deformable surface defined with character lines as geometric constraints. The

Figure 2.40: Shaped Tools for Haptic Sculpting (Gao and Gibson, 2006)
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(a) (b)

Figure 2.41: ‘ShapeWright’ Sculpting Tool: (a) Character Lines (b) Interactive Sculpting with Inflation
Force (Celniker and Gossard, 1991)

surface fitting is achieved using a Finite Element solution (see Section 2.2.2). Interactive
sculpting with forces such as inflation can be used to further manipulate the object. An
example is shown in Figure 2.41.

Botsch and Kobbelt (2004) use a similar technique to allow a customisable shape
modification. The deformation is specified visually by drawing ‘handles’, which are
regions of the surface that can be pushed or pulled. Regions of the surface can be
marked ‘fixed’ or ‘free’. As the handles are manipulated, the ‘free’ surface deforms to
fit its new constraints. An example of their interface is shown in Figure 2.42.

2.3.3 Discussion

This section has described various approaches to interactive shape design based on a
sculpting metaphor.

Virtual Sculpting is very much an active area of research. Geometric techniques
seem to be favoured due to the levels of interactivity deemed necessary. While these
techniques can be visually effective, they are not physically accurate and are typically
presented as a “more suitable” alternative to physics-based sculpting where inter-
activity is paramount. While geometric techniques are seen to be computationally
less expensive, they are generally seen as a less desirable alternative to physics-based
techniques.

Although energy-based shape deformation techniques have been applied to the
problem of Virtual Sculpting, they appear to be primarily targeted at solutions for
surface fitting based on predefined constraints such that the definition of the surface,
rather than interactive deformations akin to virtual sculpting, is the primary goal.

Figure 2.42: Constraint Shape Optimization: User can customise the surface fi�ing by modifying
smoothness and sti�ness parameters (Botsch and Kobbelt, 2004)
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Those techniques that have incorporated shaped tools have relied on approximating
discretisation techniques for interactivity or static obstacle avoidance algorithms. Some
techniques seem to be hampered by a desire to use haptic interfaces. Many of the haptic
interfaces available are prohibitively expensive which severely hampers general pro-
gressive development, while those more popular techniques that use the less expensive
Phantom Stylus option are limited by the restrictions it imposes.

Energy-based techniques have not yet been fully utilised in the area of interactive
Virtual Sculpting environments.

2.4 Conclusions
One of the major advantages in computer graphics and CAD is the ability to combine
techniques in layers to achieve more complex and realistic results and tailor a solution
for a specific set of requirements. However, this may also be one of its greatest disad-
vantages as practitioners must be familiar with a host of practices in order to make
well-informed decisions. This chapter details and classifies the wealth of available
methods relating to shape representation, deformation, and the various combinations
of the two. By providing a systematic description of the assumptions and setup of each
model, the practitioner can make more informed decisions regarding the appropriate
selection of the shape representation, the method whereby it should be deformed, and
their integration into a freeformmodelling framework. No other work was found in the
literature that considers the full spectrum of techniques across different domains that
are necessary to understand the development and the current state of freeform design.
Overall, no one technique offers all of the sought after qualities for a particular applic-
ation and there are always trade-offs between realism, accuracy and computational
efficiency.

Discrete shape representations are shown to be well suited to computer processing
and manipulation, but do not generally lend themselves well to intuitive design. Con-
tinuous representations, such as CSG, provide a more intuitive solution. However, it is
difficult to work with freeform models in a CSG representation. Despite drawbacks re-
lating to the representation of higher genus surfaces, B-Spline/NURBS representations
are the de facto standard for shape representation in CAD/CAGD applications. There
is no one shape representation that stands out as being universally applicable, and
it is the designer’s prerogative to select a representation that meets their application-
specific needs. For the freeform modelling application developed in this thesis, B-
Spline/NURBS representations are the most suitable representation of the deformable
model. They are piecewise polynomial facilitating simultaneously a compact repres-
entation and ease of local modification. They are numerically very stable. They can
represent not only elementary curves and surfaces, such as circles and ellipses, but are
ideal for smoothly varying freeform surfaces.

Geometric deformation techniques are computationally fast and easy to implement,
but designer interaction with them typically occurs at a low-level, necessitating prac-
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tice and skill on the designer’s part. Additionally, such techniques are not physically
motivated and therefore their deformations do not reflect real-world deformations.
In contrast, physics-based deformation models can capture realistic deformation by
imparting material properties to the object that interact with applied forces under
the laws of continuum mechanics. These models are the state of the art for achieving
accurate deformations. However, they are difficult to implement at interactive rates
due to the computational overhead of the associated PDE solvers. Consequently, many
physics-based models compromise on their physical fidelity in order to improve the
computational efficiency. FEM is considered state of the art amongst these models.

Active Contour Models and Elastically Deformable models provide a mechanism
for describing physically active curves and surfaces. These models lend themselves
well to describing the energy of an Active B-Spline/NURBS surface. For the purposes
of animation, where accurate simulations involving time are important, Elastically De-
formable models that includemass and damping properties are suitable. For interactive
sculpting, the modelling of time as a real property is less important such that realistic
simulation of accelerations due to mass and damping become less important than the
material properties of the model, namely; elasticity and rigidity. In this thesis, the
deformable model takes its inspiration from the Active Contour Model. However, the
mass and damping properties of the Elastically Deformable model are also considered
for completeness.

The analytic descriptions for Active Contour Models and Elastically Deformable
models are typically discretised and solved using FDM or FEM appraoches, FEM
again being the state of the art. IgA represents a recent alternative to FEM for the
specific case of analysing B-Splines/NURBS geometries. IgA removes the need for
computationally expensive conversions between CAD/CAGD geometries and FEM
geometries by incorporating the B-Spline/NURBS representations directly in the PDE
solvers. Additionally, it facilitates more accurate results. Consequently, it is starting to
make headway on FEM techniques for CAD/CAGD applications. IgA is particularly
interesting to the work of this thesis as B-Spline/NURBS representations are the most
suitable underlying shape representation for the freeform deformable model.

The selection of suitable shape representations and deformable modelling tech-
niques are paramount to enabling a feasible Virtual Sculpting approach for freeform
surface design. The pertinent desirable properties for the Virtual Sculpting paradigm
are that the model interactions are interactive and exhibit physical realism. The pro-
posed approach developed in this thesis is ACM-based Active B-Spline/NURBS Sur-
faces, with an IgA approach to solving the resulting PDE, that provides a balance
between interactivity and physical realism.
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3Unification of Energy-Based Methods for
Deformable Surface Modelling

This chapter is concerned with the mathematical modelling of energy-based deforma-
tions for computing. In Chapter 2, physics-based techniques were identified as the state
of the art tools for simulating physical deformations in a body. The ever widening range
of applications includes not only industrial and artistic design, but also a host of other
applications that stem from multiple computing domains, e.g., Computer Vision, Visu-
alisation, Computer Graphics, Computer-Aided Design, Computer-Aided Engineering,
Computer-Aided Manufacturing, etc. Despite the very strong relationships that exist
between the various fields, large overlaps are not being fully exploited due to divisions
between the relevant research communities. Perhaps worse still, the similarities of the
techniques employed have led to confusion in the literature. Each domain typically
has its own set of requirements and constraints, defined by the specific applications.
This means that domain-specific modifications are often made to the more general
approach. The similarities of the techniques employed often lead to confusion resulting
in material being ported from one field to another without a full appreciation of its
origins or appropriate usage. This situation is exacerbated by the disparities that have
arisen with regard to the terminology and notation employed within each domain.
There is no common thread that generalises the disparate approaches for use across
the different domains. In this chapter, a unified representation is sought. To achieve
this, several apparent contrasting models are derived from first principles and shown
to be largely equivalent. Where they differ, the theoretical relationships between them
are formally defined.

3.1 Continuum Mechanics vs Di�erential
Geometry

ContinuumMechanics andDifferential Geometry provide the tools required to describe
changes in the configuration of a deformable body. In order to fully capture such a
change, two components must be considered: the absolute displacement of particles
in the body, and the relative displacement of particles within the body. The former
describes the rigid-body displacement that changes the absolute position of the body
without changing its size or shape. The latter describes the deformation of the body
and captures the change in the relative displacements between particles. The field
of ContinuumMechanics is concerned with modelling the strain induced by stresses
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3.1. Continuum Mechanics vs Di�erential Geometry

within the deformable body as a result of the application of external forces. Differential
Geometry facilitates the measurement of the induced displacements within the geo-
metry of the deformable model. Figure 3.1 illustrates the change in configuration of
a given section of an undeformed model that undergoes a deformation. The section
between two points p and q on the model, where subscript 0 represents the original
dimensions, is monitored as the model deforms. As might be expected, measuring the
changes in strains and stresses or measuring the changes in the local displacements,
both facilitate a quantification of deformation. This section describes the two prominent
but alternative approaches to deriving an energy-based deformable model, one more
heavily rooted in ContinuumMechanics and the other in Differential Geometry. The
section will show that the two approaches are largely equivalent. While such equival-
ences are studied in the field of Continuum Mechanics, they are often neglected in
the discussion of energy-based deformable models within the fields of CAD/CAGD,
Computer Graphics, Machine Vision and Visualisation.

3.1.1 Continuum Mechanics Approach

The ContinuumMechanics approach to modelling deformation relies heavily on two
tensors, namely the Deformation Gradient Tensor and the Displacement Gradient
Tensor. These tensors are used to quantify the strains and stresses within a deformable
body. This in turn facilitates modelling the energy of the deformation. This section
describes the construction of such a model.

Deformation and Displacement Gradients

In general, deformations are specified in terms of a deformation and/or displacement
gradient (Reddy, 2008). The deformation gradient is a measure of the derivatives of
the coordinate locations of the deformed model, (x, y, z), with respect to those of the
undeformed model, (x0, y0, z0) (See Figure 3.1). The deformation gradient matrix is
given by

F =




∂x
∂x0

∂x
∂y0

∂x
∂z0

∂y
∂x0

∂y
∂y0

∂y
∂z0

∂z
∂x0

∂z
∂y0

∂z
∂z0


 (3.1)

Alternatively, the deformation can be specified by the gradient of the displacement
function, ∇x0u(x0), where u(x0) = x− x0. The displacement gradient matrix is thus
given by

G = F− I =




∂x
∂x0
− 1 ∂x

∂y0
∂x
∂z0

∂y
∂x0

∂y
∂y0
− 1 ∂y

∂z0
∂z

∂x0
∂z

∂y0
∂z

∂z0
− 1


 (3.2)

The tensors F and G are the foundations of ContinuumMechanics.
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Figure 3.1: Model Deformation

Often the rotational component of the deformation tensor is removed bymultiplying
the tensor by its transpose. The product causes the rotational elements, R, to become
the Identity matrix, RTR = I. The Cauchy-Green rotation-independent deformation
tensor, C, is used most often in practice, and is given by

C = FTF (3.3)

Consider a parameterised curve x. A measure of the rest length, lx0 , of the curve is
given by

lx0 =
∫ ∣∣∣∣

dx0

ds

∣∣∣∣ ds (3.4)

Differentiation of the line element with respect to the parameter, and squared result
is given by

(
dlx0

ds

)2

=
dx0

ds
· I · dx0

ds
(3.5)

Similarly, the corresponding equations for the deformed configuration, lx, are given
by

lx =
∫ ∣∣∣∣

dx
ds

∣∣∣∣ ds (3.6)

and

(
dlx

ds

)2

=
( dx

dx0
· dx0

ds

)
·
( dx

dx0
· dx0

ds

)
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=
dx0

ds
·
[( dx

dx0

)T dx
dx0

]
· dx0

ds

=
dx0

ds
· C · dx0

ds
(3.7)

As can be seen, the difference between the two lengths is captured in the relative
change from I to C. In this way, a physical interpretation of the tensor is that it provides
a measure of the square of the local change in distances due to the deformation, i.e.,
dx2 = dx0 · C · dx0.

Strain

Strain describes the relative displacements between infinitesimal particles within a
body. It is quite clear that I and C, in Equations 3.5 and 3.7, quantify the change in the
lengths of the line element moving from the undeformed configuration to the deformed
configuration. The relative displacement is captured by the difference between the
undeformed and deformed configurations. The Green-Lagrange strain tensor, often
referred to as Green’s tensor or the Green-St-Venant strain tensor in the literature, is the
most popular choice when computing for representing strain (Nealen et al., 2006). The
tensor is given by

εGde f ormation =
1
2
(C− I) (3.8)

Where the displacement gradient tensor, G, is used, the alternative strain measure
is described by

εGdisplacement =
1
2
(G + GT) + GTG (3.9)

Regardless of the tensor chosen, it is usually denoted in the literature (Shabana,
2011) by

ε =



ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33


 ≡



εxx εxy εxz

εyx εyy εyz

εzx εzy εzz


 (3.10)

Stress

By the principal of virtual work, each strainmeasure has a corresponding stressmeasure
that measures the internal forces acting within a deformable body. Quantitatively, it
is a measure of the average force per unit area of a surface, within the body on which
internal forces act. This is given by

σ =
F
A

(3.11)

where σ is the stress, F is the external force and A is the area of the surface. The stress
forces arise as a reaction to external forces being applied to the body. Because the
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deformable body is assumed to behave as a continuum, the internal forces distribute
continuously within the volume of the body, resulting in deformation of the body’s
shape. Stress is generally not uniformly distributed over the cross-section of a material
body. Consequently, the stress at a given point differs from the average stress over the
entire area. Therefore, it is necessary to define the stress at a specific point in the body.
This can be expressed by the Cauchy stress tensor denoted by

σ =



σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33


 ≡



σxx σxy σxz

σyx σyy σyz

σzx σzy σzz


 (3.12)

Constitutive Equations

Constitutive laws define the relationship between the stress and the strain. The rela-
tionship can be non-linear but, in general a linear relationship is adopted. The most
popular constitutive law in Computer Graphics applications is Hooke’s Linear Material
Law, which is denoted by

σ = E ·ε (3.13)

where E is a new tensor that linearly relates the coefficients of the stress tensor to those
of the strain tensor. For isotropic materials, the coefficients of E only depend on Young’s
modulus and Poisson’s ratio, that describe the material properties.

Deformation Energy and Force

The deformation energy over the deformable body can be computed by integrating the
component-wise scalar-product of the stress and strain tensors over the body.

E =
∫
ε ·σdx (3.14)

The corresponding forces, f, are the derivatives of the energy with respect to posi-
tional parameters, x, of the model, where f is given by

f = Kx (3.15)

or the displacement parameters, u, of the model, where f is given by

f = Ku (3.16)

The stiffness matrix, K, relates the forces acting on a deformable body to its posi-
tional/displacement parameters respectively.

Finally, dynamics can be added to the model by introducing mass, damping, and
time to the system as

M
d2x
dt2

+ D
dx
dt

+ Kx = f (3.17)
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M
d2u
dt2

+ D
du
dt

+ Ku = f (3.18)

where M and D represent the mass and damping of the system respectively.

3.1.2 Di�erential Geometry Approach

An alternative approach to the problem of quantifying deformation in a deformable
body comes from the study of the Fundamental Forms of Differential Geometry. Much
like the tensors described in the previous section, Fundamental Forms provide a means
of quantifying local displacements on/in a deformable body.

In the literature, the approach is typically presented starting with parameterised
versions of the dynamic force balance equations (See Equations 3.17 and 3.18) that
concluded the treatment of ContinuumMechanics in the previous section (Terzopoulos
and Fleischer, 1988, Christensen and Floren, 2004). The general equation is given by

∂

∂t

(
µ

∂r
∂t

)
+γ

∂r
∂t

+
δε(r)
δr

= f (r, t) (3.19)

where r is the parametric description of the body, µ and γ are the mass and damping
parameters of the model, and δε(r)

δr represents the elasticity and bending properties
of the model. The fundamental theorem of solids is applied to model the elastic and
bending properties.

The fundamental theorem of solids states that two solids in space, described by a
positional vector x(u), will have the same instantaneous shape if their metric tensors
are identical functions of u = (u1, u2, u3) at time t.

The First Fundamental Form is also known as the Metric Tensor, G, and is usually
given by index notation in the literature as

Gi j(x(u, t)) =
∂x
∂ui
· ∂x

∂u j
(3.20)

In similar notation as that used in Continuum Mechanics resources, a 0 (superscripted
rather than subscripted) denotes the undeformed metric tensor.

G0
i j(x

0(u, t)) =
∂x0

∂ui
· ∂x0

∂u j
(3.21)

Terzopoulos and Fleischer (1988) state that a reasonable energy for elastic bodies is
a Euclidean norm of the difference between the fundamental tensors of the deformed
body and the fundamental tensors of the body in its natural shape. Adopting their
notation for the energy gives

ε(x) =
∫

Ω

∣∣∣G−G0
∣∣∣
2

w1
du1du2du3 (3.22)

where w1 is a weighting function that determines resistance to stretching and shearing
in the model.
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3.1.3 Discussion

The two alternative developments of the energy-based deformable models clearly
demonstrate that the models are largely equivalent. In the case of the Continuum
Mechanics description, the energy is given by

E =
∫
ε ·σdx =

∫
ε · E ·ε dx (3.23)

while in the case of the Differential Geometry description, the energy is given by

ε(x) =
∫

Ω

∣∣∣G−G0
∣∣∣
2

w1
du1du2du3 (3.24)

such that the difference in metric tensors provides the strain measurement and the
weighting function w1 provides the material properties, replacing E in the Continuum
Mechanics description.

Similar equivalences can be shown between the ContinuumMechanics andDifferen-
tial Geometry descriptions for surfaces and curves. In the case of a surface, Continuum
Mechanics draws from ‘Membrane’, ‘Shell’ and ‘Plate’ theory that treats volumetric
bodies whose thickness is small compared to their extents (Shabana, 2011). The reason
for the distinction is that where the thickness is relatively small, the distances between
nearby points is no longer a sufficient measure as the surface can be bent without per-
turbing local distances. For this reason additional tensors that measure local curvatures
as well as displacements must be considered. For a 3D deformable curve, torsion must
also be accounted for.

The equivalence between the twomodels is important and, while studied in the field
of ContinuumMechanics, is often neglected in the literature relating to CAD/CAGD,
Computer Graphics, Computer Vision and Visualisation such that assumed models are
adopted without due consideration tof their origins. Apparently contrasting models,
and resulting alternative interpretations, can lead to confusion. As an example, as-
signing a weight parameter to govern the material properties of the model is arguably
simplified in the Differential Geometry description. However, without the reference
to ContinuumMechanics, it is not necessarily apparent to a designer exactly how the
weight parameter relates to thematerial properties. Designers are left to choose weights
on an ad-hoc basis to achieve a desired result. Exposing the relationships between Dif-
ferential Geometry and ContinuumMechanics in the derivation of the energy equation
enables the designer to attribute model parameters in a more physically meaningful
way.

3.2 Deformable Surface Model
As this thesis is primarily concerned with surface deformations, a model of an energy-
based surface is now derived using the Differential Geometry approach so that mean-
ingful comparisons can be made between this description and alternative surface de-
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Figure 3.2: Di�erential Geometry: (a) Parameterised Surface S(u, v) (b) Parameterised Curve, C(t),
embedded in Surface, S(u, v)

scriptions described in the literature. The techniques can be typically generalised to
higher dimensions. A good overview can be found in (Christensen and Floren, 2004).

3.2.1 Fundamental Forms
As introduced in Section 3.1.2, Fundamental Forms are units of measure that facilitate
the determination and description of certain metric properties of curves and surfaces.

First Fundamental Form

Consider a curve, C, on a surface, S, defined by S = S(u(t), v(t)), as depicted in Figure
3.2. The arc length, s, of the curve on the surface is given by

s(t) =
∫ t1

t2

∣∣∣∣
dS
dt

∣∣∣∣ dt (3.25)

Differentiating the arc length with respect to the parameter t, and squaring the result
yields

(
ds
dt

)2

=

∣∣∣∣
dS
dt

∣∣∣∣
2

=
dS
dt
· dS

dt
(3.26)

Using the chain rule of differentiation,

dS
dt

=
∂S
∂u

du
dt

+
∂S
∂v

dv
dt

(3.27)

Accordingly,

(
ds
dt

)2

= E
(

du
dt

)2

+ 2F
du
dt

dv
dt

+ G
(

dv
dt

)2

(3.28)
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where E, F and G are called coefficients of the First Fundamental Form.

E =

(
∂S
∂u

)2

(3.29)

F =
∂S
du
· ∂S

dv
(3.30)

G =

(
∂S
dv

)2

(3.31)

The coefficients are assembled into a tensor, typically denoted G or I in the literature
given by

G =


E F

F G


 =




∂S
∂u ·

∂S
∂u

∂S
∂u ·

∂S
∂v

∂S
∂v ·

∂S
∂u

∂S
∂v ·

∂S
∂v


 (3.32)

This tensor is the Metric Tensor or First Fundamental Form of the parametric surface.

Second Fundamental Form

As discussed briefly in Section 3.1.3, for a surface, the First Fundamental Form is not
sufficient to describe the deformation. The Second Fundamental Form facilitates the
quantification of the curvatures of a surface S, by considering the curvatures along the
curve C.
Starting with

dS
dt

=
∂S
∂u

du
dt

+
∂S
∂v

dv
dt

(3.33)

the second derivative of the curve can be obtained by differentiating as follows

d2S
dt2

=
∂S
∂u

d2u
dt2

+
∂S
∂v

d2v
dt2

+
∂2S
∂u2

(
du
dt

)2

+ 2
∂2S

∂u∂v
du
dt

dv
dt

+
∂2S
∂v2

(
dv
dt

)2

(3.34)

The Second Fundamental Form is obtained by projection onto the normal, n,

n =
∂S
∂u
× ∂S

∂v
(3.35)

a =
n
|n| ·

d2S
dt2

(3.36)

a = L
(

du
dt

)2

+ 2M
du
dt

dv
dt

+ N
(

dv
dt

)2

(3.37)

The coefficients L, M and N are the coefficients of the Second Fundamental Form

L = n · ∂2S
∂u2 (3.38)
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M = n · ∂2S
∂u∂v

(3.39)

N = n · ∂2S
∂v2 (3.40)

and are gathered as

B =


 L M

M N


 =


 n · ∂2S

∂u2 n · ∂2S
∂u∂v

n · ∂2S
∂v∂u n · ∂2S

∂v2


 (3.41)

where B is the Curvature Tensor or Second Fundamental Form of the parametric surface.

3.2.2 Energy Description

The energy of the deformation can be measured, as outlined in Section 3.1.2, using the
differences of the Fundamental Forms as

ε(x) =
∫

Ω

∣∣∣G−G0
∣∣∣
2

w1
+
∣∣∣B− B0

∣∣∣
2

w2
dudv (3.42)

The Fundamental Forms in this way capture the deformation of the body as follows:

• The differences in the diagonal terms of the First Fundamental Form, G−G0,
measure scaling or stretching.

• The differences in the off-diagonal terms of the First Fundamental Form, G−G0,
measure shearing.

• The differences between the terms of the Second Fundamental Form, B− B0,
measure bending.

3.3 Non-Linear Model vs Linear Model
In the Continuum Mechanics treatment of deformation, presented in Section 3.1.1, the
strain tensor is non-linear. Non-linear terms are often linearised/omitted, e.g., the
displacement tensor reduces to Cauchy’s linear strain tensor.

εC =
1
2
(G + GT) (3.43)

In the case of the Differential Geometry approach, the equations are often simplified
by replacing the change of First and Second Fundamental Forms by first and second
order partial derivatives of the displacement function, d, such that the energy equation
becomes

ε(x) =
∫

Ω
α(‖du‖2 + ‖dv‖2) +β(‖duu‖2 + 2‖duv‖2 + ‖dvv‖2) (3.44)

where u and v subscripts are partial derivatives.
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The linear approximation is valid for small deformations that undergo linear elastic
deformation. However, for highly flexible objects like cloth, such linear formulations
can produce non-intuitive results, as the linear strain tensor does not remain invariant
under rotations. Note that the premise of linearisation in this context is to achieve a
quadratic energy functional such that the forces are linear (Botsch and Sorkine, 2008).

Various alternative functions are minimised in the literature to achieve different
results. The positional function, the gradient function, and the Laplacian function
have all been considered in the literature for various applications (Botsch and Sorkine,
2008). Such functions are commonplace in surface smoothing/fairing applications. The
minimisation is achieved by applying variational calculus to yield the Euler-Lagrange
Equation, which is then typically solved using numeric approaches.

3.4 ACM/Snake Model
ACM/Snake models were introduced in Chapter 2, Section 2.2.2. The underlying
equation, describing the internal energy of the model, is repeated here for convenience.

Eint(v(s)) =
∫ 1

0
α

∣∣∣∣
dv
ds

(s)
∣∣∣∣
2

+β

∣∣∣∣∣
d2v
ds2 (s)

∣∣∣∣∣

2

ds (3.45)

Recall that v(s) in ACM/Snake theory represents the positions of the particles. Con-
sequently, by comparing Equations 3.44 and 3.45 it can be seen that the active contour
model description is in fact the linearised version of a 2D deformable curve described
using Differential Geometry. Coupled with the derivations of Section 3.1, it is clear
that there is a direct equivalence between the ACM/Snake model and the Continuum
Mechanics model. This can be generalised for higher dimensions.

3.5 Analytic Model vs Discrete Model
In Chapter 2, the differences between a discrete model and a continuous model were
discussed. Although discrete geometry representations have their use, analytic repres-
entations are generally superior. This is especially true for design and manufacturing
processes which place higher demands on geometric precision. When a surface is
stored analytically instead of discretely, the geometry can be subsequently discretised
to any level of precision, since a perfect mathematical definition is available. Unless
the designer/analyst has tight control over the discrete geometry’s resolution, design
decisions made from analyses on the discrete representation may not accurately rep-
resent the manufactured component or system. Additionally, extra care must be taken
when using discrete geometry to ensure important topological features are preserved
in the mesh and that adequate geometric resolution is obtained.

In Chapter 2, Section 2.1, the recent advances in automation of content capture
via laser scanning technologies was noted. Automatic capture of content typically
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results in a discrete set of points or a triangulation of a discrete set of points. An
analytic description of such a surface is generally not available. In such cases, it may be
appropriate to employ aMSDmodel approach. However, where an analytic description
of the model is available, in the form of a parametric curve or surface, tools from
ContinuumMechanics and Differential Geometry facilitate a more accurate solution.
The main difficulty with a MSD system is that the model itself is discrete, unlike finite
differencing applied to analytic models where the level of discretisation can be chosen
such that as the resolution is increased, the model converges to the continuous model.

3.6 Discrete Model vs Discrete Solver
This section identifies potential areas of confusion relating to the differences between a
discrete model and a discrete solver. For simplicity, consider the linearised 2D equation
associated with the ACM/Snake model. As described in Chapter 2, Section 2.2.2 the
energy of the model can be minimised by solving its corresponding Euler-Lagrange
equation given by

−α d2v(s)
ds2 +β

d4v(s)
ds4 = −∇P(s) (3.46)

Applying finite differences to the derivative terms results in equations of the form

d2v
ds2 ≈ v(sn−1)− 2v(sn) + v(sn+1) (3.47)

which effectively places springs between each pair of finite nodes. The spring force in a
MSD model is given by

Fs = −ku (3.48)

For the ACM/Snake modelα and β provide the spring constants, while the distance
between the nodes provides the displacement u. Assembling the discrete equations
gives

Ax + Px = 0 (3.49)

Ay + Py = 0 (3.50)

and thus finite differences applied to the ACM/Snake model resolves into a spring
representation of the model.

An additional equivalence to consider is that in order to ensure a global minimum
can be achieved rather than a local minimum, the ACMmodel is made a function of
time and solved iteratively using an explicit/implicit solver such that the equation
becomes

Axt + Pxt−1 = −λ(xt − xt−1) (3.51)
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Ayt + Pyt−1 = −λ((yt − yt−1) (3.52)

In this way the solver introduces damping to the model.
This theory generalises to the non-linear casewhere the Fundamental Forms become

the units of measure and the spring force is defined by the weighting factor and the
displacement of the Fundamental Forms.

Fs = −w1(G−G0) (3.53)

Fs = −w2(B− B0) (3.54)

Overall, it is clear that there is an equivalence between the MSD model and the
finite difference discretisation of the continuous force equations. Additionally, by merit
of the type of solver used, further MSD properties can be introduced. This theory
generalises to the higher dimension case of the parametric surface or indeed a volume.
The traditional MSD model is typically considered as being defined over a rectangular
domain. In Van Gelder (1998), it is shown that it is not possible to model an isotropic
material by a triangular spring mesh. Thus, the analogy presented is restricted to this
case.

An assumed corollary of a finite discretisation of the continuous force function being
equivalent to a MSD model is that a MSD model is a finite difference discretisation of
a continuous force function. The problem with this is that it suffers the disadvantage
of resolution not being tuneable, as the continuous analytic model description is lost
and thus all a-priori knowledge of the system is lost. In the literature, the confusion is
apparent. Dachille IX et al. (1999), Gao and Gibson (2006), and Pungotra et al. (2010)
each present a Virtual Sculpting system based on B-Splines (an analytic representation)
for free form surface design. However, each approach imparts physical properties
on the model using MSD techniques. This approach is counterintuitive as an exact
solution of the model with a rectangular parameterisation is available. Additionally,
the discrete surface points of the model are evolved with no consideration to the
control point positions. This means that a global interpolation technique must be
employed to find a new ‘best-fit’ B-Spline surface. Such global interpolation schemes
for converting back to an analytic model require the setting up of a linear system where
each discrete sample point on the mesh maps to a single control point. Again, this
approach is counterintuitive as one of the merits of B-Spline representations is its
compact description.

This section highlights the importance of considering both the model and an appro-
priate solver in tandem as unexpected effects may be introduced to a system where the
solver is not fully understood. In general, solvers are treated as ’black-box’ solutions,
but it is clear that practitioners should give due consideration to their choice of solver,
particularly when modelling physical processes.
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3.7 Analytic Solution vs Discrete Solution
This section highlights ambiguities and potential areas of confusion relating to the use
of contrasting analytic and discrete solutions for the energy based minimisation of a
deformable model.

In Computer Vision, Computer Graphics, and Visualisation, the literature on act-
ive contour models suffers from many inconsistencies in approach and ambiguous
terminology. The original active contour model, introduced by Kass et al. (1987) used
a finite difference discretisation in both space and time to evolve the active contour
to its minimal energy state. Advances in active contour research have included the
incorporation of B-Spline representations (Menet et al., 1990) and NURBS representa-
tions (Meegama and Rajapakse, 2003). These representations improve on convergence
speed and facilitate local control and greater flexibility in the curve representation. An
additional benefit of the analytic B-Spline and NURBS curve descriptions, that has not
been addressed in the literature, is that their availability facilitates an analytic solution.

Ivins and Porill, well-cited in the area of active contour models (Ivins and Por-
rill, 1995),(Ivins, 1996), (Ivins and Porrill, 2000), provide a Technical Memo entitled
“Everything you always wanted to know about Snakes (But were afraid to ask)”. The
report discusses B-Snakes (Menet et al., 1990) and their implementation. It appears that
the authors adopt an analytic approach, at least where such an approach is available
in the literature, and revert to a numerical approach otherwise. It is unclear from the
original work by Menet et al. (1990) exactly what was intended. In earlier research by
Ivins, the author asserts that due to the complexity of the variational equation, before
dynamics are even considered, that an analytic solution is impossible (Ivins, 1996). This
makes the general approach awkward and inconsistent. For the variational case, where
the position of the surface points are optimised, an analytic solution using B-Spline rep-
resentation has recently become available in the field of CAD (González-Hidalgo et al.,
2013). The mathematical framework developed in this thesis (presented in Chapter 5),
will address the more complex case of solving directly for the control points, where
calculus of variations cannot be employed to simplify the equation.

It might be reasonable to argue that for the case of Snakes, where the data providing
the external forces, i.e., an image, is ultimately discrete, that numerical approaches are
well-suited. However, as demonstrated by Cohen and Cohen (1990), greater accuracy
and stability can be achieved by first fitting the discrete elements of the data with a
continuous function, and then solving the entire system using FEM techniques. This
approach has also been extended to the case of a deformable surface (Cohen and
Cohen, 1992, 1993, Cohen, 1996). Recent Computer-Aided Mechanical Engineering
research by Hughes et al. (2010) has called into question the use of FEM techniques for
dealing with deformable spline representations. The FEM discretisation of the model
results in an approximation of the solution, albeit a much more accurate solution than
finite differences. Hughes et al. (2010) advocate working directly with the underlying
geometry, applying gaussian quadrature to achieve exact solutions for B-Splines and
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highly accurate solutions for NURBS. The mathematical framework developed in this
thesis (presented in Chapter 5) addresses this issue.

Another area of potential confusion in the literature stems from the varying use of
the term ‘control point’. It is common in the literature for authors to refer to the discrete
points along the snake as control points, e.g., Tiilikainen (2007). The term control point
has a very specific meaning when dealing with spline curves, which are typically used
as the underlying representation of a snake model. These are the control points of the
spline rather than the ‘sample’ or ‘discrete’ points. In some cases, the forces are applied
directly to spline control points which are then evolved to a minimum configuration.
This practice is not ideal as for most spline representations, the control points do not
lie on the surface of the deformable body. For some applications, the subtlety may not
be apparent, particularly if many ‘control points’ are employed.

The literature in the areas of design and analysis also suffer from the same ambi-
guities. The literature is somewhat more consistent in approach and it is clear that
numericalmethods are favoured in general, FEM techniques being dominant (González-
Hidalgo et al., 2013, Botsch and Sorkine, 2008). However, in many cases authors are
unclear in presenting the detail of their solution. In Qin and Terzopoulos (1996), a mile-
stone paper in Computer-Aided Geometric Design, Gaussian Quadrature is discussed
as the method of choice for evaluating the integrations in their solution. The authors
make no reference to how the derivatives are dealt with. The approach of Qin et al.
already considered seminal in the literature for imparting physics-based dynamics on
a NURBS based geometric substrate, now appears to also have been somewhat ahead
of its time in its departure from FEM techniques as advocated in more recent research
by Hughes et al. (2010).

Where dynamics are involved, time must also be considered. For computer vision
applications and design-type environments the spatial accuracy is typically more im-
portant than the accuracy relating to the model’s dynamics. Where time is concerned,
stability is more important than accuracy. In such cases, less accurate and more com-
putationally efficient numerical approaches, such as finite differences, are often used to
simulate the dynamics. For computer graphics applications where realistic responses
are desirable, more accurate numerical approaches may be employed to solve for the
dynamics of the model.

A big advantage of numerical approaches is that they are generic such that they
can be applied to a host of problems without modification or tailoring. However, this
is also one of their biggest disadvantages. They do not utilise a-priori knowledge of
the system and are often inefficient as a result. To achieve the levels of accuracy often
deemed necessary, large numbers of discrete data points must be processed, resulting
in computationally expensive algorithms. Analytic solutions, where possible, can
offer significant computational savings (González-Hidalgo et al., 2013). This will be
addressed further in Chapter 5.
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3.8 B-Spline/NURBS in FEM vs IgA
B-Spline/NURBS representations are a compact way of defining a curved surface
analytically. Such representations provide a mathematically exact representation of
freeform surfaces that can be exactly reproducedwhenever technically needed. For solv-
ing energy-based systems with B-Spline/NURBS–based geometric substrates, Finite
Element Analysis is only an approximation of the geometry. There are many pitfalls as-
sociated with using polygonal representations to approximate curved boundaries. IgA
is a non-standard numerical method for solving partial differential equations, which
was introduced by Hughes et al. (2005). In the IgA framework, the ultimate goal is
to adopt the parameterised geometry description and use it for the analysis, that is,
within the model solver.

The use of B-Splines/NURBS as the basis for a numerical solver may raise questions
regarding the analytic nature of the curve description. In IgA, those basis functions that
represent the geometry also form the basis of the solution. While B-Spline/NURBS
provide an analytic description of a surface, the basis functions can be thought of as a
type of quantisation. The term ‘discretising’ implies loss of data and thus is inappropri-
ate in this case. Rather the quantised elements represent exact analytic descriptions of
finite pieces of the geometry. This is a by-product of the local modification properties
of the geometry.

3.9 Conclusions
This chapter is primarily concerned with the mathematical modelling of energy-based
deformations for computing. The equivalences between the variousmodels is important
and yet it is neglected in much of the literature relating to CAD, Computer Graphics,
Machine Vision, and Visualisation such that assumed models are adopted without
consideration to their origins. Alternative interpretations of the traditionally used
models lead to confusion in some cases. To resolve this issue, apparent contrasting
models are derived from first principles and equivalences are identified. Differences in
models stem from application-dependent approximations which are formalised in the
chapter.

It is also demonstrated that apparently contrasting models can become equivalent
depending on the choice of solver. The chapter identifies potential problem areas,
due to the lack of clarity in the literature, and presents some examples of cases where
assumed models and solvers have led to a degree of confusion. In particular, Discrete
and Analytic Models and Solvers are compared and contrasted, highlighting subtleties
in their usage that are often neglected.

Overall this chapter demonstrates that the energy-based deformable models used
across the plethora of application domains within computing are largely equivalent.
Novelties presented in the literature across these domains therefore stem from the
applications or efficiencies of the approach adopted, rather than the actual models
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themselves. What may appear to be different models for describing deformations, and
which are commonly considered as such in the literature, are each demonstrated to
be derived from the same foundations of ContinuumMechanics. As a result, several
areas of potential confusion relating to the various descriptions of an energy-based
deformable model across the host of application domains are highlighted and clarified.

The lack of a seamless energy-basedmodel that is purely analytic, capable of forming
the basis for both design and analysis, that removes scope for confusion is ever more
apparent. This issue will be addressed in the remaining chapters of this thesis.
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4Virtual Sculpting of an Active
B-Spline/NURBS Surface Model

This chapter presents a novel and seamless ACM-based technique for the interactive
Virtual Sculpting of Active B-Spline/NURBS freeform surfaces. Chapter 2 introduced
Virtual Sculpting, a well established mechanism in freeform modelling environments
that shields designers from the complicated mathematics and physics of shape deform-
ation. By emulating traditional clay sculpting in an interactive environment, the task of
manipulating complex models can be hidden behind the familiar action of moulding
and manipulating inelastic substances, such as clay. Virtual Sculpting environments
generally rely on combinations of various shapemodelling and deformation techniques.
Some physical properties can be mimicked using purely geometric approaches. How-
ever, such approaches do not provide a mechanism for simulating the real mechanics
of a physical deformation. More intuitive energy minimisation approaches incorporate
the principles of continuum mechanics and account for the material properties of the
objects being deformed, but struggle to do so at interactive rates.

Used extensively in computer vision, ACMs represent a generalised approach for
matching a deformable model to an image through the minimisation of an associated
energy functional. In Chapter 3 it was established that ACMs are equivalent to linear
approximations of the equations derived from continuum mechanics that offer a com-
promise between purely geometric and more exact energy-based approaches. In the
approach presented in this chapter, ACMs are removed from the image domain and
Active Surface Models are interactively sculpted by deforming the model, wholly or in
part, to primitives. This approach forms the basis of a shaped tool-set to facilitate intu-
itive real-time energy based Virtual Sculpting in 3D space, analogous to the traditional
clay modelling of real sculptors.

B-Spline/NURBS representations are a compact way of defining a curved surface
analytically. Such representations provide a mathematically precise representation
of freeform surfaces that can be exactly reproduced whenever technically needed.
B-Spline/NURBS representations have become the de facto standard in industry for
the representation of freeform surfaces. However, as outlined in Chapter 1, these
representations have not yet fully benefited from the seamless embodiment of a true
Virtual Sculpting paradigm. The analytic continuous mathematical description of B-
Splines/NURBS makes them a particularly suitable choice as the underlying represent-
ation for the proposed ACM-based approach. Active B-Spline/NURBS representations
are thus chosen as the underlying surface representation in this chapter.
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Chapter 2 described the various approaches to Virtual Sculpting that have been de-
veloped in recent years. Previous work has incorporated physics based principles into
a B-Spline/NURBS geometric substrate, e.g., Qin and Terzopoulos (1994), Terzopoulos
and Qin (1994), and Qin and Terzopoulos (1996). When such models have been used,
it has typically been in the context of generating a surface by smoothly interpolating
a set of skeletal constraint curves (Celniker and Gossard, 1991, Qin and Terzopoulos,
1994). The definition of the surface rather than interactive sculpting of same has been
the primary goal. Several attempts have been made to incorporate shaped Virtual
Sculpting tools within CAD environments. However, the techniques proposed to date
in the literature have adopted discrete models and rely on iterative conversions between
the original CAD model and the employed discrete model. The disparate model rep-
resentations introduce unnecessary seams into the design process. Additionally, this
does not facilitate a smooth integration with existing CAD environments (Dachille IX
et al., 2001, Gao and Gibson, 2006, Pungotra et al., 2010). Mullenhoffe (1998) employs a
continuous model and discusses obstacle avoidance of a sphere which is akin to Virtual
Sculpting. However, the obstacle avoidance is computed only after the surface has
reached its minimum energy configuration subject to other constraints.

The approach developed in this chapter differs substantially from existing tech-
niques in its application of shape derived forces, in the model evolution, and in its
preservation of the analytic model. An additional novelty of the proposed ACM-based
approach is that it facilitates the design of proximity-based tools that offer different
interaction behaviours to those offered by collision-based sculpting techniques. This
chapter does not aim to show Virtual Sculpting results, but rather sets out the theoret-
ical development of the proposed Virtual Sculpting Approach to pave the way for the
remaining chapters of this thesis.

4.1 Technical Background

4.1.1 B-Splines

A B-Spline curve is a composite, continuous, parametric curve formed with polynomial
sections. The curve is represented by a set of control points which are used to weight a
linear sum of associated basis functions. The basis functions ensure that the curve sat-
isfies specified continuity conditions at the boundaries of each section. The parametric
curve C(u) is defined by

C(u) =
n

∑
i=0

Ni,p(u)Pi (4.1)

where Pi represents the set of n + 1 control points and Ni,p(u) are the basis functions.
For a B-Spline curve, the basis functions are defined by the Cox-deBoor recursion

(Deboor, 1978)

Ni,p(u) =
u− ui

ui+p − ui
Ni,p−1(u) +

ui+p+1 − u
ui+p+1 − ui+1

Ni+1,p−1(u)

88



4.1. Technical Background

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1
Basis Functions

u

B
as

is
 F

un
ct

io
n 

V
al

ue

Figure 4.1: Cubic B-Spline Basis Functions

Ni,0(u) =





1 if ui ≤ u < ui+1

0 otherwise
(4.2)

Ni,p(u) are the basis functions of degree p in the u parametric direction, defined
over the knot vector U given by

U = {0, . . . , 0︸ ︷︷ ︸
p+1

, up+1, . . . , un−1, 1, . . . , 1︸ ︷︷ ︸
p+1

} (4.3)

The B-Spline basis functions are defined by a recursion that builds more complex
high order basis functions from simpler lower order basis functions. The seed of the
recursion is the 0th order basis function Ni,0. The knot vector specifies the distribution
of the parameter, u, along the curve. By convention, knots at the ends of the B-Spline are
repeated p + 1 times so that a B-Spline curve with m + 1 knots will have n + 1 control
points where m + 1 = (n + 1) + p + 1, and the range of u is limited to up ≤ u ≤ um−p.

Figure 4.1 shows an example set of cubic basis functions. Figure 4.2 shows the
corresponding B-Spline curve as defined by the control points shown in red.

These equations can be generalised for higher dimensions. A surface model, S(u, v),
can be represented by

S(u, v) =
m

∑
i=0

n

∑
j=0

Ni,p(u)N j,q(v)Pi, j (4.4)

S(u, v) =
[

N0,p(u) · · ·Nm,p(u)
]



P0,0 · · · P0,n
... . . . ...

Pm,0 · · · Pm,n



[

N0,q(v) · · ·Nn,q(v)
]T
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Figure 4.2: Cubic B-Spline Curve

=
[

N0,p(u)N0,q(v) . . . Nm,p(u)Nn,q(v)
]



P0,0
...

Pm,n


 (4.5)

4.1.2 NURBS

ANURBS curve can be thought of as a projection onto n-dimensional space of a B-Spline
curve defined in (n + 1)-dimensional homogeneous co-ordinate space. The definition
of a NURBS curve is much the same as that of the non-rational B-Spline curve outlined
in Section 4.1.1. However, in the case of NURBS, the basis functions are rational such
that a NURBS basis function is defined by

Ri,p(u) =
Ni,p(u)wi

∑
n
i=0 Ni,p(u)wi

(4.6)

where the new parameter, w, represents a set of n + 1 weights associated with the
control points.

Analogous to the B-Spline equations developed in Section 4.1.1, the basis functions
for a parametric NURBS surface are defined as

Rp,q
i, j (u, v) =

Ni,p(u)N j,q(v)wi, j

∑
m
i=0 ∑

n
j=0 Ni,p(u)N j,q(v)wi, j

(4.7)

In this way, NURBS can be thought of as a generalisation of B-Spline representations.
The additional degrees of freedom afforded by the new weight parameter wi, j offer
greater flexibility in design, such that a wider variety of shape descriptions are possible,
e.g., unlike B-Splines, NURBS facilitate the representation of a perfect circle. Further
information on NURBS can be found in Piegl and Tiller (1997).
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4.2 Active B-Spline Surface Model
As outlined in Chapter 3, the energy-based deformable models used across the plethora
of application domains within computing are largely equivalent. It was noted that
true novelties presented in the literature across these domains therefore stem from
the applications or efficiencies of the approaches adopted, rather than from the actual
models themselves. In this section, an Active B-Spline Surface Model is presented.
This section does not claim novelty in the idea of an Active B-Spline Surface model
itself. It is quite clear from the literature that such concepts date back to the early
1980s. However, in the literature, only very high level descriptions are provided of
the mathematical mechanics that form the basis for such models. As a consequence,
it is difficult for practitioners to develop a deeper understanding of the mathematics
and identify potential opportunities for improvement, without first developing the
equations in full. This task is not trivial and is obfuscated in much of the literature
by attempts to replace integrals with approximating summations without providing
rationale, e.g., Ivins (1996). Therefore, full treatment of the equations is provided here.
As the goal of this thesis is to preserve the continuous representation of the model
without discretisation, the full analytic mechanics of the equations are required. The
techniques discussed extend to the NURBS case, unless otherwise stated, by simply
swapping in the NURBS basis functions in place of the B-Spline basis functions.

4.2.1 Energy Model
The energy model for the Active Surface adopted in this thesis is defined, using the
Differential Geometry approach outlined in Chapter 3, as

E(S(u, v)) =
∫

σ
α11

∣∣∣∣
∂S
∂u

∣∣∣∣
2
+ 2α12

∂S
∂u
• ∂S

∂v
+α22

∣∣∣∣
∂S
∂v

∣∣∣∣
2

+β11

∣∣∣∣∣
∂2S
∂u2

∣∣∣∣∣

2

+ 2β12

∣∣∣∣∣
∂2S

∂u∂v

∣∣∣∣∣

2

+β22

∣∣∣∣∣
∂2S
∂v2

∣∣∣∣∣

2

dudv (4.8)

where E is the internal energy equation associated with the parametric surface S(u, v),
and α and β are weights that control the material properties of the surface and σ
represents the domain of the integration.

Adopting a B-Spline surface representation for S(u, v) given by

S(u, v) =
m

∑
i=0

n

∑
j=0

Ni,p(u)N j,q(v)Pi, j (4.9)

and given the derivative of a B-Spline Surface as described in Piegl and Tiller (1997) as

∂k+l S(u, v)
∂ku∂lv

=
m

∑
i=0

n

∑
j=0

N(k)
i,p (u)N(l)

j,q(v)Pi, j (4.10)
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or more compactly (the standard notation in the literature (Celniker and Welch, 1992)),

E(S(u, v)) =
∫

σ
PT ΦT

s α ΦsP + PT ΦT
b β Φb P dudv (4.13)

where

PT = [P0,0 · · · Pm,n]

Φ =
[

N0,p(u)N0,q(v) · · · Nm,p(u)Nn,q(v)
]

Φs =


Φu

Φv


 Φb =



Φuu

2Φuv

Φvv




α =


α11 α12

α21 α22


 β =



β11 0 0
0 β12 0
0 0 β22




This can be written as

E(S(u, v)) = PT Kσ P (4.14)

where

Kσ =
∫ ′

σ
Φs

T α Φs + Φb
T βΦb dudv (4.15)

Equations 4.8–4.15, inclusive, describe the internal energy of an Active B-Spline
surface. The model evolution is driven by internal forces generated by an energy
minimisation that will be discussed in the next section.

4.2.2 Internal Force Model

In order to minimise the energy, the set of control points Pa,b must be found such that

∀a ∈ (0, 1 . . . m), b ∈ (0, 1 . . . n) :
∂S

∂Pa,b
= 0 (4.16)
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4.3. Sculpting Tools

The expression can be represented more compactly by

∂E(S(u, v))
∂P

=
∫

σ
Φs

T α ΦsP +Φb
T βΦb P dudv = 0 (4.19)

which can be gathered as follows

KσP = 0 (4.20)

where K is an (m× n)× (m× n) matrix known as the stiffness matrix3.
This system of mxn equations is gathered resulting in the following; a matrix A,

comprising the basis function information; column vector P, comprising the x, y, and z
coordinates of the mxn unknown control points positions; and matrix F, comprising
the external force information.

AP + F = 0 (4.21)

A notation is adopted as this is the standard notation adopted in the literature and
by numerical texts (Press et al., 2007) when dealing with the complete system to be
solved. In the case presented here A simply comprises the Kœ, the stiffness matrix. A
is sparse due to the local control properties of the B-Spline basis functions.

4.2.3 Dynamics

Where dynamics are desired, to afford the user interactive control over the convergence,
the system can be made a function of time, t. Using an ACM-based approach, the
evolution of the model is controlled by using an implicit Euler integration scheme (Kass
et al., 1987) as follows

Pt = (A + λI)−1(λPt−1 − Ft−1) (4.22)

The solution is then iterated, where λ is the user-definable step size, until the desired
deformation is achieved.

4.3 Sculpting Tools
In the absence of external forces/constraints, the model described will collapse to a
point under the influence of its own internal forces. Force effects can be generated by
supplying the system with a force distribution of the form

3The 1
2 and 2 constant multipliers found in energy and force equations are generally encompassed by

the alpha and beta parameters.
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Fσ =
∫

σ
ΦT f dudv (4.23)

where F is the forcing matrix, σ , the domain of integration,φ, as defined in Equation
4.13, and f the force function.

Calculating the integral exactly requires a unique calculation for every type of
forcing function applied. A virtual tool is therefore the analytic description of the force
distribution. An example of such a function is connecting a material point (u0, v0) of
the surface to a point d0 in space (Qin and Terzopoulos, 1994). This is equivalent to
the spring and volcano type forces discussed in (Kass et al., 1987) for guiding an active
contour to the desired rest configuration.

f (u, v) =
∫ ∫

k(d0 − S(u, v))δ(u− u0, v− v0)dudv (4.24)

where δ is the unit delta function, k is the spring constant according to Hooke’s law, and
d0 is the point in space. This can be generalised to a unit step or smooth distribution
(Qin and Terzopoulos, 1994).

The sculpting tools proposed for the approach developed in this thesis are applied
forces that are calculated based on the Euclidean distance between the Active B-Spline
Surface model and a shaped primitive. Each shaped primitive/tool calculates its dis-
tance from the Active B-Spline Surface. The tool surface is then connected to the Active
B-Spline surface via an ideal Hookean spring relationship, thus defining the external
force distribution function, f (u, v).

f (u, v) = k(T− S(u, v)) (4.25)

where S(u, v) represents the Active Surface and T represents the tool surface.
The response of the surface to these applied forces can be adjusted by modifying

the values of theα and β parameters that control the surface’s resistance to stretch and
bend under the action of the tool.

4.4 Preserving the Model Integrity
The successful implementation of the continuous model presented in this chapter relies
heavily on its computational efficiency. While the ACM approach itself contributes to
a computationally efficient solution, it is essential that the solver is computationally
efficient. Numeric techniques such as FDM/FEM could be used to numerically solve
the system, or the more accurate approach of IgA with Gaussian Quadrature could be
employed. However, numeric techniques are computationally expensive. This section
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breaks Equation 4.13, presented in Section 4.2, into simpler terms so that an analytic
solution may be sought.

The K matrix described in Section 4.2 can be separated into a sum of integrals. To
exemplify the breakdown, the first term of the stiffness matrix (the stretch term), is
analysed

∫

σ
ΦT

u α Φu dudv (4.26)

As the function is integrated with respect to u, the basis functions of the v parameter
can be treated as constants. Breaking this term down gives

∫

σ
α11Φ

2
u +α12ΦuΦv +α22Φ

2
v dudv (4.27)

Taking the first term

∫

σ
α11 Φ2

u dudv (4.28)

and expanding gives

∫

σ
α11

[
N(1)

0,p(u)N0,q(v) · · · N(1)
m,p(u)Nn,q(v)

]T

[
N(1)

0,p(u)N0,q(v) · · · N(1)
m,p(u)Nn,q(v)

]
dudv (4.29)

A typical term in the resulting (m× n)× (m× n) matrix is

N(1)
w,p(u)Nx,q(v)N(1)

y,p(u)Nz,q(v) (4.30)

where w, y ∈ (0, 1, . . . , m) and x, z ∈ (0, 1, . . . , n). To integrate the term over the surface,
we can integrate with respect to each parameter separately. Each of the remaining integ-
ration terms will have a similar form. As the integral is separable, the first integration
over the u parameter reduces to

∫
N(1)

w,p(u)N(1)
y,p(u) du (4.31)

Chapter 5 investigates an analytic solution to the stiffness matrix, based on this
reduction. The practical implementation of the approach will be discussed in Chapter
6.
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4.5 Conclusion
In this chapter, a novel approach to Virtual Sculpting, based on a reformulation of
ACMs, is developed using Active B-Spline/NURBS Surface models. In the proposed
technique, ACMs are removed from their traditional image domain and predefined
shape primitives provide the features of interest. These primitives act as sculpting tools,
providing visual guides that facilitate intuitive deformation results, such that the overall
approach is analogous to traditional clay modelling. The interactive Virtual Sculpting
of Active B-Spline/NURBS Surfaces enabled by the proposed approach offers a more
intuitive alternative to complex and tedious manual control point manipulations and
also facilitates data exchange between existing CAD systems. Unlike existing Virtual
Sculpting approaches, the model takes its inspiration from the traditional ACM: The
forces are derived based on proximity to shaped sculpting tools and the system is made
a function of time to afford the user control over its convergence. The proximity-based
approach facilitates the design of non-contact tools that offer different interaction beha-
viours to those offered by collision based sculpting techniques; for example, consider
the contrasting behaviour of a contact and non-contact sculpting tool incorporating a
concavity.

In Chapter 1, two challenges were identified relating to the creative design of free-
form surfaces. Firstly, the traditional design process suffers from complex and unintu-
itive design mechanisms, necessitating prerequisite expertise to achieve even concep-
tually simple designs. Secondly, existing Virtual Sculpting approaches, developed to
alleviate this problem, rely on contrasting representation technologies to the existing
CADmodels and thus preclude a seamless integration with the existing CADworkflow.
These issues are illustrated in Figure 4.3(a) and Figure 4.3(b) respectively.

The approach presented in this chapter addresses these two issues by presenting,
for the first time, a Virtual Sculpting framework that operates directly on the continuous
analytic representation of existing CAD models. The main benefit of the proposed
technique is that it facilitates the seamless integration of a Virtual Sculpting metaphor
within existing CAD environments. The situation facilitated by the approach developed
is depicted by Figure 4.3(c).

In order for the system to be feasible for interactive freeform shape design, the
system must be solved in a computationally efficient manner. Chapter 5 investigates
an analytic solution to the stiffness matrix, based on the element-wise decomposition
of the stiffness matrix presented in Section 4.4. The practical implementation of the
approach will be discussed in Chapter 6.
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5Generalised Computationally E�icient
Mathematical Framework

The use of techniques based on energy minimisation for the implementation of physic-
ally aware deformable models is widespread across the domains of Computer Graphics,
Computer Aided Design and Computer Vision. Due primarily to the myriad of ap-
plications, the study of deformable models is one of the most active research topics in
computer graphics.

The key component to imparting physical properties on a geometric model is the
construction of the stiffness matrix. The generation of the stiffness matrix is one of the
more time-consuming operations in computer-based modelling applications. For inter-
active applications such as Virtual Sculpting or prototyping, performance is key, and
waiting long periods of time for models to respond to changes made is highly undesir-
able. George Allen, Chief Technologist and Technical Fellow at Siemens PLM Software,
recently addressed the academic research community, where he talked about what he
saw as the big geometric modelling problems in industrial CAD/CAM/CAE software
(Allen, 2007). Allen cited performance as one of the key issues, stating that ‘Lack of
real-time response makes some exploratory functions unusable, and this impairs user
creativity’.

In CAD/CAGD/CAM/CAE, computationally efficient bi-parametric B-Spline rep-
resentations, particularly NURBS, are the dominant technology. The study of efficient
techniques for the construction of the stiffness matrix has been an active area of research
since the introduction of computer-based deformable models in the early 1980s. The
recent popularity gain experienced by IgA has instigated a spurt of new research activ-
ity for the specific problem of minimising the energy of an Active B-Spline/NURBS
Surface (González-Hidalgo et al., 2013, Rypl and Patzák, 2012, Hughes et al., 2010).

There are several popular approaches ranging from indirect approaches that op-
erate on the geometry rather than the controls to approaches that target the controls
directly. Irrespective of the approach adopted, numerical methods (Press et al., 2007)
are often favoured for their ‘black-box’ solution with universal applicability. A disad-
vantage of such generic numerical approaches is that they typically do not fully utilise
a-priori knowledge of the system. Consequently, to achieve the levels of accuracy often
deemed necessary, large numbers of discrete data points must be processed, resulting
in computationally expensive algorithms. Analytic solutions, where possible, can offer
significant computational savings (González-Hidalgo et al., 2013).

From the literature, Gaussian Quadrature, a numerical technique, is identified
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as the ‘state of the art’. While the general Gaussian Quadrature technique is well
documented, the literature lacks implementation details for the specific problem of
generating the stiffness matrix of a B-Spline surface. To fill this gap in the literature, and
to facilitate meaningful comparisons of results, the general problem specific efficiencies
are first considered. An efficient Gaussian Quadrature algorithm is then developed
and presented that capitalises on both the problem specific efficiencies identified, and
also further approach specific efficiencies that can be gained by tailoring the approach.

This chapter aims to further address the problem of computational expense and
presents a novel, generalised efficient analytic mathematical framework complete with
accompanying algorithms for the generation of the stiffness matrix associated with an
Active B-Spline surface model. The approach is shown to generalise to the problems
of computing mass, damping, and forcing matrices. It is also demonstrated that the
approach can cope with variable mass, damping, and stiffness coefficients. No assump-
tions regarding the problem complexity, degree, or regularity of the knot vector are
imposed on the solution. Further to this is its extension for the important special case
of an Active NURBS surface using the approximation properties of B-Splines (Hughes
et al., 2010, Schumaker, 2007). Detailed analysis of the integral and repeated integ-
ral of a B-Spline basis function, areas which are lacking coverage in the literature, is
presented and algorithms for computing such integrals are developed. To illustrate
the capabilities of the algorithms and verify their respective performances, several case
studies are presented and detailed analysis of the computational efficiency, accuracy
and stability is undertaken. Metric comparisons between Gaussian Quadrature results,
Analytic results, and Exact ‘ground-truth’ results obtained using symbolic analysis are
presented and discussed.

The main benefit of the technique is the resulting algorithm that takes advantage of
the reduced computational complexity of the analytic approach leading to a signific-
ant reduction in the computation time required to evaluate the stiffness matrix. The
algorithm developed is up to 4.3 times faster than the Gaussian Quadrature approach
for the practical cases considered.

5.1 Overview of Existing Approaches
Various approaches are employed to evaluate the stiffness matrix in the context of
minimising the energy of an Active B-Spline Surface. Indirect approaches work with
points on the B-Spline surface, while more direct approaches target the minimisation
of the actual degrees of freedom of the model, i.e., the control point positions. In
either approach, numerical methods are typically used to evaluate the integrals and
derivatives involved.
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5.1. Overview of Existing Approaches

5.1.1 Indirect Approaches

For indirect approaches, where the surface is discretised so that discrete surface points
are to be optimised, the Euler Lagrange equation can be employed to simplify the
equation to one involving derivatives only.

The energy is minimised by finding the surface, S(u, v), that satisfies the corres-
ponding Euler-Lagrange equation given by

−α11
∂2S
∂u2 − 2α12

∂2S
∂u∂v

−α22
∂2S
∂v2 + 2β12

∂4S
∂u2∂v2 +β11

∂4S
∂u4 +β22

∂4S
∂v4 = 0 (5.1)

Introduced to the domain of computer vision by Kass et al. (1987) and generalised to
the 3D case for computer graphics applications by Terzopoulos and Fleischer (1988), this
technique is prominent in the literature and has been adopted by the computer-aided
design communities in the area of B-Spline surface design (Celniker and Gossard, 1991,
Welch andWitkin, 1992). Recent studies have examined analytic solutions to the partial
differential equation for B-Splines (González-Hidalgo et al., 2013). However, numerical
approaches such as finite differences and finite elements remain the most popular
choice in solving for the minimum surface point configuration (González-Hidalgo et al.,
2013, Botsch and Sorkine, 2008).

A similar discrete approach to the modelling of deformable B-Splines involves
representing the surface using amass spring dampermodel. Linear springs are attached
between the discrete data points such that the minimal surface configuration can be
found by evolving the data points under the influence of mass spring damper model
forces. Typically, a B-Spline description is sought as the final representation of the
deformed model and a new B-Spline surface is fitted to the new data points using a
global interpolation scheme (Gao and Gibson, 2006, Pungotra et al., 2010).

5.1.2 Direct Approaches

Unlike the indirect, discrete approaches described above, more accurate direct ap-
proaches involve employing the continuous description of the B-Spline Surface repres-
entation to specify the geometry in the energy equations. In such cases, the control
point positions are directly optimised and the Euler-Lagrange approach cannot be used
to eliminate the integral. Numerical integration approaches are thus employed to solve
for the minimal energy configuration.

A wide range of numerical approaches are available with varying degrees of ac-
curacy. For B-Spline surfaces, given their polynomial nature, Gaussian Quadrature
with Gauss-Legendre calculated weights and abscissae is typically cited as the appro-
priate choice (Hughes et al., 2010, Schumaker, 2007). In general, Gaussian quadrature
evaluates the integral exactly with N weights and abscissae for polynomials of degree
2N − 1.
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5.1.3 Discussion

From the literature, Gaussian Quadrature is the ‘state of the art’ technique for dealing
with the exact energy minimisation of Active B-spline surfaces (Auricchio et al., 2012,
Hughes et al., 2010, Cottrell et al., 2009). However, where the number of points in a
deformablemodel is large, integrating the energy equations usingGaussianQuadrature
is a computationally intensive process. With the growing popularity of Isogeometric
Analysis as an alternative to Finite Element Analysis, the study of direct approaches has
regained momentum and has become an important research area as there is a growing
need for more efficient solutions (Hughes et al., 2010). To this end, much research
has been devoted to designing efficient quadrature rules for B-Spline representations
(Cottrell et al., 2009, Hughes et al., 2010, Rypl and Patzák, 2012). Approaches adopted to
alleviate the computational costs typically involve taking advantage of simplifications
that come into play where the B-Spline functions have a high degree of regularity, or
are defined over a uniform knot vector. In this case, the majority of the B-Spline basis
functions are simply translated versions of a single function. Taking such simplifications
into account, more efficient quadrature rules can be devised (Hughes et al., 2010), or
‘look-up tables’ can be employed storing only the unique results (Mullenhoffe, 1998).
This chapter examines the more general case.

5.2 Problem Specific E�iciencies
As outlined in Chapter 4 Section 4.2, the assembly of the stiffness matrix involves the
summation of integral terms representing different properties of the active surface.
The tensor product construction of the B-Spline surface means that each integral can
be decomposed into its constituent parametric elements such that each can be treated
separately for the purpose of evaluating the integrals before being recombined in the
overall stiffness matrix (Mullenhoffe, 1998, Hughes et al., 2010). The overall problem
reduces to the calculation of integrals of the form

∫
Ni,p(u)N j,p(u) du (5.2)

∫
N(1)

i,p (u)N(1)
j,p (u) du (5.3)

∫
N(2)

i,p (u)N(2)
j,p (u) du (5.4)

∫
N(1)

i,p (u)N j,p(u) du (5.5)

Equations 5.2–5.5, inclusive, represent four distinct terms that must be computed
for each possible combination of i and j in both the u and v parametric directions (See
Chapter 4 for further detail on their origins). In linear algebra, the resulting matrices
are known as Gramian matrices (Schumaker, 2007).

103



5.2. Problem Specific E�iciencies

0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1
Basis Functions

u

B
as

is
 F

un
ct

io
n 

V
al

ue

N
0

N
1

N
2

N
3

N
4

N
5

N
6

N
7

N
8

Figure 5.1: Cubic B-Spline Basis Functions on U = {0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 6, 6, 6}

The Gramian matrix for each term exhibits certain properties such as symmetry,
of which advantage can be taken to reduce the number of computations required.
Additionally, by the support properties of B-Splines, the Gramian matrix for a B-Spline
curve defined on a knot vector of degree p is 2(p + 1)− 1 banded and thus, many of
the elements are zero and do not need to be computed.

While the above properties are mentioned in Schumaker (2007), the literature lacks
detail on how best to take advantage of these properties. This section addresses this
gap in the literature and identifies efficiencies, based on these properties, that can be
adopted regardless of the approach used to tackle the stiffness matrix generation.

B-Spline basis functions have limited support regions. This means that a basis func-
tion is non zero over a limited number of spans, i.e., p + 1. Figure 5.1 shows an example
set of cubic basis functions defined over knot vector U = {0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 6, 6, 6}.
From the diagram, it is clear that the product Ni,p N j,p, where p in this case is 3, is only
non zero where i − p ≤ j ≤ i + p. The local support feature means that a stencil 4

can be designed that starts at the first basis function and then moves diagonally along
the Gramian matrix facilitating the computation of only non-zero products. Figure
5.2 shows a graphical representation of this stencil that incorporates every possible
non-zero product combination for a particular basis function and its p higher index
neighbours. As can be seen, the stencil terms are symmetric. By traversing the template
across each Gramian matrix, as shown in Figure 5.3, the unique non-zero values of the
Gramian matrix are identified.

Building on these problem specific efficiencies, the following sections present two
different approaches to computing the four Gramian matrices that make up the overall
stiffness matrix. Full detail of how best to take advantage of the properties and stencils
described are presented for each approach.

4The term stencil is used to refer to a mask or template that represents a common process to be applied
repeatedly at different locations.
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5.3 Gaussian �adrature Approach
The first approach considered is the state of the art Gaussian Quadrature approach.
While the implementation of the Gaussian Quadrature algorithmwas initially intended
only to facilitate bench-marking the results of the Analytic approach presented later in
the chapter against the Gaussian Quadrature approach, its practical implementation
presented several opportunities for contribution to the domain.

The mathematics of the Gaussian Quadrature approach are well documented in the
literature, and there is ubiquitous free and commercial software available providing
‘black-box’, universally-applicable solutions. To adopt such solutions, the user typically
provides a description of a single function to be integrated as an input and the software
provides the corresponding Gaussian Quadrature solution. However, for the computa-
tion of the Gramian matrices described in the previous section, this generic ‘black-box’
approach is not well-suited in terms of efficiency, as it is not tailored for the specific
problem and generates unnecessary repetition of calculations.

Implementation detail on how best to employ a Gaussian Quadrature approach in
computing the stiffness matrix of an Active B-Spline Surface is lacking in the literature.
While some problem-specific optimisations are suggested (Schumaker, 2007), they
are typically references to taking advantage of the banded nature of the Gramian
matrices to avoid unnecessary function evaluations, without discussion of how best to
take advantage of this. Additionally, such efficiencies are generic and can be adopted
regardless of the approach taken. However, tailored efficiencies that can come into play
when considering simultaneously a specific approach and its application to a specific
problem seem to be neglected in the literature.

In the development of the Analytic algorithm, presented later in this chapter, several
approach-specific efficiencies were identified. In order to present a fair comparison
between the two algorithms it was deemed necessary to also tailor the Gaussian Quad-
rature algorithm to the specific problem. It also became apparent that with suitable
tailoring, efficiencies identified for the Analytic algorithm could also be employed by a
Gaussian Quadrature algorithm.

In essence, it is the two approaches, Gaussian Quadrature and Analytic, that are
being compared. To compare like with like, it is important that the algorithms im-
plementing the approaches adopt the same efficiencies and remove redundant or un-
necessary repetition of calculations. An analytic approach is inherently tailored for
a specific problem, while numeric Gaussian Quadrature is a generic approach. Its
application to the specific problem of Active B-Spline surfaces if applied to each term

N00 N01 N02 N03

N10

N20

N30

Figure 5.2: Symmetric Stencil to generate unique non-zero product terms
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N00 N01 N02 N03 N04 N05 N06 N07 N08

N10 N11 N12 N13 N14 N15 N16 N17 N18

N20 N21 N22 N23 N24 N25 N26 N27 N28

N30 N31 N32 N33 N34 N35 N36 N37 N38

N40 N41 N42 N43 N44 N45 N46 N47 N48

N50 N51 N52 N53 N54 N55 N56 N57 N58

N60 N61 N62 N63 N64 N65 N66 N67 N68

N70 N71 N72 N73 N74 N75 N76 N77 N78

N80 N81 N82 N83 N84 N85 N86 N87 N88

Figure 5.3: Symmetric Stencil Traversal of Gramian Matrix. Note: Lower greyed values are not unique
and therefore can be omi�ed from the Gramian computation

of the Gramian matrices separately leads to unnecessary repetition of computations.
For this reason, in the algorithm developed in this thesis, the approach is applied in
a piece-meal fashion to remove this redundancy. Both algorithms benefit in the same
way from the remaining efficiencies identified.

In this section several algorithmic efficiencies are identified and discussed, and an
efficient Gaussian Quadrature algorithm, tailored for the specific problem of computing
the Gramian matrices associated with an Active B-Spline surface, is developed and
presented. The section first provides the technical background required for the imple-
mentation of a generic Gaussian Quadrature algorithm, before breaking the algorithm
up in such a way as to optimise it for the specific problem domain.

5.3.1 Gaussian �adrature

Gaussian Quadrature is a class of numerical integration techniques based on the fol-
lowing theorem:

Theorem 5.1: Let q(x) be a polynomial of degree N, such that:

∫ b

a
w(x)xkq(x)dx = 0 (5.6)

where k is any integer on [0, N − 1], and w(x) is some weighting function.
The Gaussian-quadrature computed integral is constructed as follows:

∫ b

a
w(x) f (x)dx ≈

N

∑
i=0

wi f (xi) (5.7)

If {xi} are the N roots of q(x), then there exists some set of n {wi} such that the approximation
is exact if f (x) is a polynomial of degree < 2N.

Much like other numerical integration techniques, the quadrature rule facilitates
the approximation of a definite integral of a function through a weighted sum of
values at specified points within the domain of the integration. In general, given an
arbitrary function f (x) and a weighting function w(x), Gaussian Quadrature results
in an approximation of the integral of their product. The approach will produce good
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results if the function f (x) can be reasonably approximated by a polynomial function.
The theorem states that by carefully choosing N weights and abscissae, an exact solution
can be obtained where f (x) is a polynomial function of degree < 2N. The proof stems
from the study of orthogonal polynomial systems and can be found in most numerical
analysis textbooks (Stoer et al., 2002).

Gauss-Legendre

Gauss-Legendre quadrature is a special case of Gaussian Quadrature where the weight-
ing function is simply w(x) = 1. This case is appropriate for dealing with polynomial
data. The integration is typically defined on the interval [−1, 1] such that the Gauss-
Legendre quadrature rule becomes

∫ 1

−1
f (x) ≈

n

∑
i=0

wi f (xi) (5.8)

The N evaluation points , xi, for a so called ‘N-point’ Gauss-Legendre quadrature rule
are the roots of the Nth order Legendre polynomials, Pn(x). To achieve an exact result,
N must be chosen such that the degree of the integrand does not exceed 2N − 1. The
minimumnumber of points needed to achieve an exact result for a polynomial of degree
p is given by

N =

⌈
p + 1

2

⌉
(5.9)

where d e represents the ceiling value of the enclosed function.
The Legendre Polynomials are defined by the following recursive rule:

P0(x) = 1

P1(x) = x

nPn(x) = (2n− 1)xPn−1(x)− (n− 1)Pn−2(x)

(5.10)

The roots of these polynomials are typically approximated numerically using the
Newton-Raphson iteration scheme (Press et al., 2007).

xn+1 = xn −
f (xn)

f ′(xn)
(5.11)

The initial seed for the ith root using the Newton-Raphson method is chosen as

x0 = cos

(
Π

i− 0.25
n + 0.5

)
(5.12)

The derivative of the Legendre Polynomials, needed for the Newton-Raphson iteration,
can also be expressed by a recursive relation as follows

P′n(x) =
n

x2 − 1

(
xPn(x)− Pn−1(x)

)
(5.13)

107



5.3. Gaussian �adrature Approach

Table 5.1: Gauss �adrature Sample Abscissae

N x1 x2 x3 x4 x5

2 −0.5773502692 0.5773502692
3 0.0000000000 −0.7745966692 0.7745966692
4 −0.3399810436 0.3399810436 −0.8611363116 0.8611363116
5 0.0000000000 −0.5384693101 0.5384693101 −0.9061798459 0.9061798459

Table 5.2: Gauss �adrature Sample Weights

N w1 w2 w3 w4 w5

2 1.0000000000 1.0000000000
3 0.8888888889 0.5555555556 0.5555555556
4 0.6521451549 0.6521451549 0.3478548451 0.3478548451
5 0.5688888889 0.4786286705 0.4786286705 0.2369268851 0.2369268851

The roots of the Legendre polynomials become the abscissae and act as the grid-points
for the Gauss-Legendre quadrature. The corresponding weights can be calculated
using

wi =
2

(1− x2
i )
[

P′n(xi)
]2 (5.14)

Once the N abscissae and weights over the range[−1, 1] have been calculated, any
integral range can then be mapped onto this interval by a linear transformation of
variables

∫ b

a
f (x) dx =

∫ 1

−1

b− a
2

f
( (b− a)x + (b + a)

2

)
dx (5.15)

The generic Gauss-Legendre quadrature rule then becomes

∫ b

a
f (x) dx =

n

∑
i=0

wi
b− a

2
f
( (b− a)xi + (b + a)

2

)
(5.16)

Sample values of Gauss abscissae and weights for low N are given in Table 5.1 and
Table 5.2.

5.3.2 E�icient Gaussian �adrature Algorithm

Section 5.3.1 summarises the relevant mechanics of generic Gaussian Quadrature. Fur-
ther detail can be found in most numerical textbooks, e.g., (Press et al., 2007) and (Stoer
et al., 2002). As discussed, this section considers the approach with respect to the
specific problem of constructing the stiffness matrix of an Active B-Spline Surface. The
section describes the development of an efficient algorithm for the computation of
the four Gramian matrices required for the assembly of the stiffness matrix using a
tailoredGaussianQuadrature technique. The efficiencies are algorithmic and stem from
avoiding unnecessary repetition of calculations. To exemplify the overall approach, the
technique is demonstrated for the calculation of the Gramian matrices associated with
the cubic basis functions shown in Figure 5.1.
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Figure 5.4: Gaussian points required for the exact integration of the product of two cu-
bic B-Spline basis functions e.g.,

∫
N4,3 N4,3 du on the knot vector U =

{0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 6, 6, 6}. The degree of the product is 6 requiring a 4-point Gaus-
sian �adrature.

The first step of the process requires determining the number of Gaussian abscissae
needed for exact computation of the integrals. As each term involves a product of two
basis functions, N becomes

N =

⌈
2p + 1

2

⌉
(5.17)

where d e represents the ceiling value of the enclosed function. Taking
∫

N4,3 N4,3 du for
instance, where the degree, p, of each basis function is 3, a 4-point Gaussian Quadrature
is required to achieve accurate results. Therefore, the weights and abscissae for the
4-point Gaussian Quadrature are required.

As B-Spline basis functions are piecewise polynomial, to utilise the Gaussian Quad-
rature approach, the technique must be applied to each polynomial section of each
product separately. Figure 5.4 shows the p + 1 polynomial sections over p + 1 knot
spans for the problem

∫
N4,3 N4,3 du, where N4,3 is the cubic basis function of index 4 on

the knot vector U = {0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 6, 6, 6} (See Figure 5.9). Here, the Gaussian
abscissae have been linearly transformed to lie between the end points of each knot
span. The integral of the function over each span is the weighted summation of the
function evaluations at the transformed Gaussian abscissae as outlined in Equation
5.16.

The knots of the knot-vector are the divisions of the polynomial sections, and several
basis functions exist over a single knot span. This means that it is more computationally
efficient to fully address each sample point within a span at each step, and update
the relevant terms of the Gramian matrix, rather than address each Gramian term
individually.
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Over any given span, there are p + 1 non-zero basis functions. This means that at
each Gaussian abscissa on the span, p + 1 basis functions must be evaluated, weighted,
and summed into their corresponding elements in the Gramian matrix. Taking the
first non-zero length knot span for the cubic case in Figure 5.1 as an example, there
are four non-zero basis functions, namely, N0,3, N1,3, N2,3 and N3,3. Each of these basis
functions must be evaluated at each Gaussian abscissa on the span. This process is
illustrated in Figure 5.5.

Figure 5.5: Sub-Grid of Gaussian Samples

Every possible product combination of the basis functions at each abscissa on the
span is evaluated, and weighted by the appropriate weight resulting in N× (p + 1) ×
(p + 1) terms to be summed into the appropriate elements of the Gramian matrix. For
the example case, this results in four 4 × 4 grids. This situation is depicted in Figure
5.6.

Figure 5.6: Assembly of Sub-Grid of Gaussian Samples

Taking advantage of the problem-specific efficiencies presented in Section 5.2, the
grids of product combinations are symmetric. This means that there are (p+1

2 ) + p + 1
unique terms to be evaluated at each abscissa. The ten unique values for the example
case are illustrated in Figure 5.6.

This process is repeated on a span-by-span basis until each span has been traversed
and the Gramian matrix has been filled. In this way the (p + 1) × (p + 1) grid can be
thought of as a stencil or template for each span. This idea is illustrated in Figure 5.7.

Apart from the advantage of re-using the linear transform results of each span for
several Gramian matrix updates, another benefit of this approach stems from the basis
function calculation. As can be seen from equation 4.2 (repeated here for convenience),
the basis functions at a given parametric value depend on the span in which the value
lies.

Ni,p(u) =
u− ui

ui+p − ui
Ni,p−1(u) +

ui+p+1 − u
ui+p+1 − ui+1

Ni+1,p−1(u)
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Figure 5.7: Gramian Grid: Traversal of the sampling stencil in Figure 5.6 across the knot vector for
Gramian Matrix construction

Ni,0(u) =





1 if ui ≤ u < ui+1

0 otherwise
(5.18)

Figure 5.8 illustrates how the non-zero basis functions at any value on span i are
built up from the 0th degree basis function Ni,0 at that value. The terms outside the
triangular structure are zero on the span. Computing the Gramian matrix in this way
avoids repeated calculations of key values.

The Gramianmatrices associatedwith the remaining three terms described by Equa-
tions 5.3–5.5, inclusive, can be computed simultaneously formaximum efficiency. While
these terms are lower order, and therefore require fewer Gaussian sample points to
achieve exact solutions, the re-use of key values computed for the case described for the
computation of the Gramian matrix associated with Equation 5.2, makes simultaneous
computation more efficient.

N(i-3,3)

N(i-2,2)

 N(i-1,1) N(i-2,3)

N(i,0)  N(i-1,2)

N(i,1) N(i-1,3)

N(i,2)

N(i,3)

Basis Function Evaluations

Basis Function Evaluations

Derivative Evaluations

Derivative Evaluations

Figure 5.8: E�icient Basis Function and Derivative Calculation
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The derivatives of the basis function, as needed by the remaining terms, can be
calculated using repeated application of

N(k)
i,p (u) =

p
ui+p − ui

N(k−1)
i,p−1 (u)−

p
ui+p+1 − ui+1

N(k−1)
i+1,p−1(u) (5.19)

Equation 5.19 can be applied directly where 0 ≤ k ≤ p. It is a standard formulation
and can be found in most textbooks covering B-Spline curves and surfaces. For a
detailed proof, see Piegl and Tiller (1997). Figure 5.8 illustrates how the application of
this equation to a value on the knot span i involves the reverse traversal of the triangular
structure.

The Gaussian Quadrature algorithm to compute all four Gramian matrices is sum-
marised in Algorithm 5.1. The Gramian matrices are labeled according to their respect-
ive derivative components as follows G00, G11, G22, and G10.

Algorithm 5.1 Efficient Gaussian Quadrature Computed Stiffness Terms
Compute N
Compute N abscissae and weights
for spanIndex = p + 1→ endSpan− (p + 1)

Compute upper and lower limits of span, spanIndex
for n = 1→ N

Perform linear transform of Gaussian abscissa xn
Compute p + 1 non-zero Basis Functions and required Derivatives at xn
for i = 1→ p + 1

for j = i→ p + 1
G00i+spanIndex, j+spanIndex+= wnNi(xn)N j(xn)
G11i+spanIndex, j+spanIndex+= wnN1

i (xn)N1
j (xn)

G22i+spanIndex, j+spanIndex+= wnN2
i (xn)N2

j (xn)

G10i+spanIndex, j+spanIndex+= wnN1
i (xn)N j(xn)

5.3.3 Discussion

The algorithm presented in this section is an efficient algorithm for generating the four
Gramian matrices associated with the stiffness matrix of an Active B-Spline surface
using the state of the art Gaussian Quadrature approach. By breaking up the tradi-
tional Gaussian Quadrature algorithm, the approach takes advantage of the re-use of
linearly transformed Gaussian abscissae on a span-by-span basis. Further algorithmic
efficiencies are gained by generating the B-Spline basis functions and their derivatives
on a sample-by-sample basis before assembling into the final Gramian matrices. In this
way, unnecessary repetition of computations, that would be incurred by applying the
approach directly to each individual term in the Gramian matrices, is avoided. This
is important for general Gaussian Quadrature for Active B-Spline/NURBS problems,
and also to facilitate a fair comparison with the analytic algorithm developed in the
next section. The algorithm makes no assumptions about the regularity of the knot
vector. It is worth noting that recent research by Hughes et al. (2010) and Auricchio
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et al. (2012) has proven that Gaussian Quadrature rules can be improved by taking into
account a-priori knowledge of the continuity of a B-Spline/NURBS curve across each
knot. In this research, the number of samples per span required for the computation
of the integrals can be reduced. It is likely that this approach will replace existing
Gaussian Quadrature rules as the state of the art Gaussian Quadrature approach. The
algorithmic efficiencies presented in this section are equally applicable to the reduced
Quadrature approach. The bench-marking implications of this research are further
discussed in Section 5.4.3.

5.4 Proposed Analytic Approach
This section introduces a novel and more direct analytic solution to the problem of
constructing the stiffness matrix of an Active B-Spline Surface. The section begins
by developing the mathematics of the proposed Analytic Approach to solving the
problem of constructing the Gramian matrix associated with each of the terms that
make up the stiffness matrix. A special property of the problem is identified that can
be applied for each term facilitating exact analytical solutions. Graphical illustrations
of the underlying mathematical mechanics are developed and provided for each term.

A key component in evaluating the Analytic solution is the ability to determine the
integral and repeated integrals of a B-Spline basis function. The literature in this area
points mainly to numerical approaches and there is a lack of detail with regard to an
analytic evaluation. Where the analytic approach of divided differences is discussed, it
is dismissed as being highly unstable (Schumaker, 2007). Most of the key textbooks in
the area omit a discussion on the integral of a B-Spline curve or basis function. While
the integral of a B-Spline curve is discussed briefly in (Schumaker, 2007) and (Deboor,
1978), with the migration of B-Spline evaluation practices from traditional divided
differencing techniques to those based on the more stable Cox-deBoor recursion, the
notation in the literature varies greatly. For consistency, in Section 5.4.1, a formula
for evaluating the integrals and repeated integrals is derived directly from the basis
function and derivative formulae provided in Piegl and Tiller (1997), which appears to
be the standardmodern notation. Graphical representations are also provided. Efficient
algorithms for computing the integrals and repeated integrals, based on the presented
mathematics, are developed and presented.

An additional component required is the ability to determine the (p+ 1)th derivative
of a basis function. The algorithms presented so far in this thesis and in the literature
only cater for up to the pth derivative. It is typically assumed that all higher derivatives
are 0, which is not strictly the case. Section 5.4.1 fully addresses this gap in the literature
and an efficient algorithm for the computation of the (p + 1)th derivative is developed
and presented.

Finally, an efficient algorithm is presented for the evaluation of the four Gramian
matrices. In section 5.9 the computational complexity of the approach, and the per-
formance, accuracy and stability of the algorithm are studied and discussed in detail
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and bench-marked both against the Gaussian Quadrature approach, developed and
presented in the previous section, and exact results obtained symbolically. The Analytic
approach developed is shown to be computationally less complex and consequently
up to 4.3 times faster than the Gaussian Quadrature approach for the practical cases
considered, while preserving a high degree of accuracy and stability.

5.4.1 Analytic Approach

In mathematical analysis, Integration by Parts is a technique frequently used in an effort
to simplify integrals involving products of functions. The relevant formula is given by

∫
u(x)v′(x) dx = u(x)v(x)−

∫
u′(x)v(x) dx (5.20)

To derive an analytic solution to the Gramian Matrix problem, Integration by Parts is
applied to each element to simplify the terms involving the integral of a product of
basis functions.

For dealing with the Active B-Spline surface equations, the notation g(x) and h(x)
is adopted to replace the more traditional notation, u(x) and v(x), to avoid confusion
with the parametric variables u and v. Thus, applying integration by parts, as per
Equation 5.20, to the integral

∫
Ni,p(u)N j,p(u) du ,

Let g = Ni,p(u) and dh = N j,p(u) du such that

∫
Ni,p(u)N j,p(u) du = Ni,p(u)

∫
N j,p(u) du−

∫ (∫
N j,p(u) du

)
N(1)

i,p (u) du (5.21)

Repeating the process and applying Integration by Parts successively to each new in-
tegral term generated by the preceding Integration by Parts gives

Let g = N(1)
i,p (u) and dh =

∫
N j,p(u) du

N(1)
i,p (u)

∫∫
N j,p(u) du2 −

∫ (∫∫
N j,p(u) du2

)
N(2)

i,p (u) du (5.22)

Let g = N(2)
i,p (u) and dh =

∫∫
N j,p(u) du2

N(2)
i,p (u)

∫∫∫
N j,p(u) du3 −

∫ (∫∫∫
N j,p(u) du3

)
N(3)

i,p (u) du (5.23)

Let g = N(3)
i,p (u) and dh =

∫∫∫
N j,p(u) du3

N(3)
i,p (u)

∫∫∫∫
N j,p(u) du4 −

∫ (∫∫∫∫
N j,p(u) du4

)
N(4)

i,p (u) du (5.24)

The iteration must be repeated such that the final iteration results in a product of basis
functions that includes the (p + 1)th derivative. As before, we assume cubic basis
functions such that the fourth derivative is required. Expanding Equation 5.2 with the
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partial expressions from the repeated Integration by Parts, and applying the limits of
integration for the parameter domain, e.g., [0, 1], gives

∫ 1

0
Ni,p(u)N j,p(u) du =

[
Ni,p(u)

∫ 1

0
N j,p(u) du

]1

0

−
[

N(1)
i,p (u)

∫ 1

0

∫ 1

0
N j,p(u) du2

]1

0

+

[
N(2)

i,p (u)
∫ 1

0

∫ 1

0

∫ 1

0
N j,p(u) du3

]1

0

−
[

N(3)
i,p (u)

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
N j,p(u) du4

]1

0

+
∫ 1

0

(∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
N j,p(u) du4

)
N(4)

i,p (u) du (5.25)

Similarly, Equations 5.3 through to 5.5 become

∫ 1

0
N(1)

i,p (u)N(1)
j,p (u) du =

[
N(1)

i,p (u)N j,p(u)

]1

0

−
[

N(2)
i,p (u)

∫ 1

0
N j,p(u) du

]1

0

+

[
N(3)

i,p (u)
∫ 1

0

∫ 1

0
N j,p(u) du2

]1

0

−
∫ 1

0

(∫ 1

0

∫ 1

0
N j,p(u) du2

)
N(4)

i,p (u) du (5.26)

∫ 1

0
N(2)

i,p (u)N(2)
j,p (u) du =

[
N(2)

i,p (u)N(1)
j,p (u)

]1

0

−
[

N(3)
i,p (u)N j,p(u)

]1

0

+
∫ 1

0
N j,p(u)N(4)

i,p (u) du (5.27)

∫ 1

0
N(1)

i,p (u)N j,p(u) du =

[
N(1)

i,p (u)
∫

N j,p(u) du

]1

0

−
[

N(2)
i,p (u)

∫ 1

0

∫ 1

0
N j,p(u) du2

]1

0

+

[
N(3)

i,p (u)
∫ 1

0

∫ 1

0

∫ 1

0
N j,p(u) du3

]1

0

−
∫ 1

0

(∫ 1

0

∫ 1

0

∫ 1

0
N j,p(u) du3

)
N(4)

i,p (u) du

(5.28)

Graphical representations of the process for each term are provided in Section 5.4.1.
At first it may not appear as though Integration by Parts has simplified the problem.

However, the majority of the constant terms in the equations are 0, with the exception
of those involving the basis functions at either end of the knot vector. Additionally,
the (p + 1)th derivative of the pth degree curve presents an interesting special case that
results in a simplification of the problem that will be dealt with in the next section.
In order to evaluate these expressions analytically, the special case of the (p + 1)th

derivative must be dealt with. Additionally, the derivatives and integrals of the basis
functions must be calculated.
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Special Case

Basis functions are generally treated as only existing over a finite region of the knot
vector, i.e., Ni,p exists only where ui ≤ u < ui+p+1. The piecewise nature of the
equations means that separate equations define the basis functions over each individual
knot span ui ≤ u < ui+1. In the literature, the equations provided typically deal with
defining values for basis functions within the limits of each span, e.g., Piegl and Tiller
(1997) state that k in equation 5.19 should not exceed p as all higher derivatives are
zero. If the basis functions are viewed as existing over the full range of the knot vector
with zero value outside the range ui ≤ u < ui+p+1, an interesting case develops at the
junction of each span, i.e., the knots.

Figure 5.9 shows the basis functions defined for the example cubic basis functions
defined over the knot vector U = {0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 6, 6, 6}. Repeated differen-
tiation of the basis functions leads to piecewise quadratic curves, piecewise linear
curves, and as can be seen, if the full range of u, spanning the entire knot vector, is
considered, the pth derivative of each basis function becomes a sum of weighted and
shifted Heaviside/Step functions.

The Heaviside function is the basic building block for functions with a discontinuity
(Jordan and Smith, 2002) and is defined as

H(t) =





0 when t < 0,

1 when t ≥ 0
(5.29)

The Heaviside function can be shifted so that it can represent a discontinuity at the
critical point.

H(t− t0) =





0 when t < t0,

1 when t ≥ t0
(5.30)

The Heaviside function is shown in Figure 5.10.
The Analytic solution to the energyminimisation problem described in the previous

section requires the evaluation of the (p + 1)th derivative. As described in (Piegl and
Tiller, 1997), the first p derivatives can be calculated using Equation 5.19. The (p + 1)th

derivative amounts to finding the derivative of each sum of weighted and shifted
Heaviside/Step functions.

The Dirac delta function, δ(t), shown in Figure 5.11, can be regarded formally as the
derivative of the unit function H(t) (Jordan and Smith, 2002). The relationship between
the Heaviside function and Dirac delta function is given in Equations 5.31 and 5.32.

dH(t)
dt

= δ(t) (5.31)

H(t) =
∫ t

−∞ δ(t)dt (5.32)
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Figure 5.9: Cubic basis functions and repeated derivatives on the knot vector U =
{0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 6, 6, 6}
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Figure 5.10: Heaviside Function
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Figure 5.11: Dirac Delta Function

The derivative of a sum of weighted and shifted Heaviside functions equates to a sum
of weighted and shifted Dirac delta functions. This situation is depicted for the example
case in Figure 5.9.

The ‘sifting’ property of the Dirac delta, described by Equation 5.33, facilitates the
evaluation of the special case referred to in the previous section.

∫ b

a
f (t)δ(t− t0)dt =





f (t) for a ≤ t0 < b

0 otherwise
(5.33)

Using the sifting property, the equation

∫ 1

0

(∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
N j,p(u) du4

)
N(4)

i,p (u) du (5.34)

results in a sum of weighted and shifted Dirac delta functions, weighted by the mag-
nitudes of the associatedHeaviside changes, that sample the values of

∫ 1
0
∫ 1
0
∫ 1
0
∫ 1
0 N j,p(u) du4

at the sites of the relevant Dirac deltas, i.e., the knots.
To calculate the magnitude of the Dirac delta weights, the pth derivatives at either

side of the site of the Dirac delta can be differenced. The direction of the Dirac delta is
given by the sign of the weight.

Using these mathematical tools, an Analytic solution to the stiffness matrix problem
can be found.

Graphical Representation

This section provides graphical illustrations of the mathematics presented in Section
5.4.
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The premise of Integration by Parts is to express
∫

u dv in terms of the related
functions u, v, and an ideally simpler integral,

∫
v du that can be evaluated 5. Figure 5.12

shows a graphical interpretation of theAnalytic approachwith u(x) plotted against v(x).
The integral terms

∫
u dv and

∫
v du are also marked on the diagram. As illustrated, if

the functions u, v, and
∫

v du can all be evaluated, then so too can
∫

u dv.
In the case of the energy minimisation problem, the graphical representation of

the repeated Integration by Parts for each of the four terms given by Equations 5.2–5.5,
inclusive, is shown by Figures 5.13 - 5.20, inclusive. For each case, the product of the
relevant terms is shown, together with the required integral curve. The subsequent
diagrams show the corresponding u(x) vs v(x) relationships relating to each repeated
Integration by Parts. As can be seen, each Integration by Parts results in an alternative
integral curve description, and systematically reduces the integral term to the special
case depicted in Figure 5.21. The Dirac delta functions are scaled here to reflect the
weight introduced as a result of the magnitude of the related Heaviside functions
produced by repeated differentiation of the basis function. Figure 5.22 shows the basis
function and its p repeated derivatives that bring about the Heaviside/Step functions.

u

v

∫ v2
v1 u dv

∫ u2
u1 v du

u = f(v), v = f−1(u)

0 v1 v2

u1

u2

Figure 5.12: Graphical Representation of Integration by Parts
∫

u dv = uv−
∫

v du

5The notation here reverts to standard Integration by Parts notation,
∫

u(x)v′(x) dx = u(x)v(x)−∫
u′(x)v(x) dx, not to be confused with the u and v parameters of the B-Spline surface
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Figure 5.13: Basis Function Product and Product Integral for
∫

N4,3N4,3 on U =
{0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 6, 6, 6}
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Figure 5.21: Special case: Weighted Sampling of Integral Values of the Basis Function N4,3 on U =
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Figure 5.22: Basis Function N4,3 and its derivatives on U = {0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 6, 6, 6}
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Integral of a B-Spline Basis Function

As introduced at the start of section 5.4, treatment of the integral of a B-Spline basis
function does not appear to be standard in the literature (Piegl and Tiller, 1997, Farin,
2002, Cohen et al., 2001, Bartels et al., 1987). Integrals are briefly discussed by Deboor
(1978) and by Schumaker (2007) and Kazinnik and Elber (1997). In this section an
analytic formula for evaluating the integrals and repeated integrals is derived directly
from the basis function and derivative formulae provided in (Piegl and Tiller, 1997) (A
similar derivation can be found in Kazinnik and Elber (1997)). This results in the ith

basis function equating to a weighted sum of higher degree basis functions from i to m,
the final knot, evaluated over the same knot vector. Any additional knots necessary to
support the higher order functions can be achieved by extending the p + 1 multiple
knots at the end of the knot vector. Graphical illustrations of the process and its results
are also provided in Figures 5.23–5.25.

Theorem 5.2: ∫
Ni,p =

ui+p+1 − ui

p + 1

m

∑
j=i

N j,p+1(u) (5.35)

Proof. Starting with the recursive solution for finding the derivative of a B-Spline basis
function

N(1)
i,p (u) =

p
ui+p − ui

Ni,p−1(u)−
p

ui+p+1 − ui+1
Ni+1,p−1(u)

Rearranging and integrating gives
∫

Ni,p−1(u) du =
ui+p − ui

p

(∫
N(1)

i,p (u) du +
p

ui+p+1 − ui+1

∫
Ni+1,p−1(u) du

)

Repeating this process for remaining integral term yields
∫

Ni+1,p−1(u) du =
ui+p+1 − ui+1

p

(∫
N(1)

i+1,p(u) du +
p

ui+p+2 − ui+2

∫
Ni+2,p−1(u) du

)

Substituting for second term

∫
Ni,p−1(u) du =

ui+p − ui

p

(∫
N(1)

i,p (u) du +
p

ui+p+1 − ui+1

(ui+p+1 − ui+1

p

(∫
N(1)

i+1,p(u) du +
p

ui+p+2 − ui+2

∫
Ni+2,p−1(u) du

)))

As can be seen, the additional constant multipliers cancel each other out. Repeating
this process, all additional constant multipliers cancel out. Rearranging the indexing
completes the proof.

∫
Ni,p(u) du =

ui+p+1 − ui

p + 1

(
Ni,p+1(u) + Ni+1,p+1(u) + · · ·+ Nm,p+1(u)

)
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Figure 5.23 depicts the calculation of the integral of basis function N4,3 on knot
vector U = {0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 6, 6, 6}. As can be seen, the summation of the higher
order basis functions on the same knot vector equates to the integral of the curve.
Figure 5.24 shows the integrals for all of the cubic basis functions on the knot vector
U = {0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 6, 6, 6}.

Typically the area under a basis function is 1 due to the partition of unity property
of the basis functions. However, it can be observed from Figure 5.24 that this is not the
case for those basis functions at either end of the knot vector because of the scaling
associated with the range spanned. The basis functions at either end of the knot vector
will still sum to 1. Repeated integrals can be calculated by repeated application of the
integral formula as seen in Figure 5.25.

Figure 5.25 illustrates the repeated integration of the basis function. As shown, for
each integration, the value will be 0 on its incident knot and piecewise polynomial over
the supporting knot spans. When the basis function reaches its terminating knot, it will
have reached a smooth polynomial condition (a non-piecewise function of u). While the
formula presented in this section is valid across all the knots, it is only necessary for the
piecewise descriptions of those spans supporting the basis function. If evaluations are
needed at subsequent knot values, it may be more efficient to evaluate the continuous
function in that region. For completeness, details are provided in Algorithm 5.2.

5.4.2 E�icient Analytic Algorithm

This section builds on the mathematical framework presented so far in Section 5.4,
and develops an efficient algorithm for the computation of the four Gramian matrices
required for the assembly of the stiffness matrix. The example case employed in Section
5.3.2 is reconsidered.

The main difficulty in computing the Gramian Matrices analytically lies in the
evaluation of the weighted sums of integrals. As outlined in Section 5.4.1, this in turn
amounts to an evaluation of weighted sum of higher order basis function evaluations.

In order to evaluate all of the necessary higher order basis functions, the knot vector
must first be extended to provide support for the extended basis functions. This can be
achieved by simply appending the necessary number of extra repeated knots to the end
of the knot vector. For the computation of Equations 5.25 – 5.28, inclusive, the (p + 1)th

integral is the highest order of integral required. The knot vector is therefore extended
by p + 1 knots to U = {0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 6, 6, 6, 6, 6, 6}.

As is the case for Gaussian Quadrature in Section 5.3.2, due to the re-use of values
possible, when all computations are evaluated on a single knot span, it is more effi-
cient to address the Gramian matrix generation sample-by-sample on each span. The
equivalent triangular structure for the Analytic solution is depicted in Figure 5.26. The
columns shown in bold indicate the higher order basis functions that must be evaluated
at each knot or sample point.
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Figure 5.26: Higher Order Basis Function and Derivative Evaluations

Figure 5.27 depicts the cubic basis functions and the related higher order basis
functions of degree 4 distributed over the same knot vector. It is clear from the diagram,
that over each span there are p+ 1 non-zero basis functions, and that each basis function
spans only p + 1 knots.

The integral of the basis function will be 0 on its incident knot and will have reached
a non-piecewise polynomial condition that is simply a function of u when the basis
function reaches its terminating knot. Due to the nature of the products of basis
functions being integrated, this function of u is not required for the evaluation of the
Gramian matrices. However, for completeness, an efficient algorithm for computing
the relevant function is developed and included in Algorithm 5.2.

At the knot spans of interest, where the integrals of all of the basis functions will
have non-zero values, there is amaximumof p+ 1 non-zero higher order basis functions
that can contribute to the integral samples of the p + 1 cubic basis functions that are
non-zero on the span. A sample at the terminating knot of a basis function will include
p + 1 higher order basis function contributions, while the knots internal to a basis
function will require 1, 2, and up to p contributions. The number of contributions is
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Algorithm 5.2 Integral of a basis function at u (for u beyond basisEndKnot)
function symbolicBasisFunctionIntegral
input : u, integralGrade
output : integral
uproducts0 = 1
uproducts1 = u− basisEndKnot
for gradeIndex = 2→ integralGrade− 1

uproductsgradeIndex = uproductsgradeIndex−1 ∗ uproducts1/(gradeIndex)
for gradeIndex = 1→ integralGrade

integral+= basisEndIntegralgradeIndex−1 ∗ uproductsintegralGrade−gradeIndex

independent of the degree of the contributing higher order basis functions, and thus
the conditions do not change with the grade of integral being calculated.

The trapezoidal bounding-box of Figure 5.26 illustrates the independence of the
number of contributions. While there are more than p + 1 non-zero higher order basis
functions on span i, only a maximum of p + 1 terms contribute to a given basis function
integral evaluation. As the values outside the trapezoid are not needed for either the
forward traversal evaluation of the basis functions or the reverse traversal evaluation
of the derivatives, only the values inside the trapezoid need be calculated. Note that
the extra repeated knots required for the higher order basis functions are omitted as
they are simply an extension of the last p + 1 knots and no basis function values over
the extra zero length knot spans are required.

For computing the necessary integral samples on a given knot span, it is compu-
tationally efficient to compute the single basis function and iteratively add one basis
function at a time until all necessary sums for a given span have been computed. Each
of the highlighted columns in Figure 5.26, and the terms therein, contribute to a sum-
mation.

Once the basis function summations have been computed, the weights must be
evaluated. The generation of the weights produces an ‘n-ary’ tree. An example of this
tree for the case of computing the necessary integrals of a single cubic basis function is
depicted in Figure 5.28. Each level of the tree represents a level of integrationwhile each
branch represents the necessary summation of basis functions that is to be weighted
and summed to produce the integral. Figure 5.29 compactly depicts the set of trees
(one exists for each grade of integral) required for computing the individual integrals
and includes the relevant summation terms.

The weight-tree and thus the integrals can be generated recursively. Algorithm 5.3
outlines a recursive algorithm that generates the necessary weights and summations
to return the integral of a specified basis function at a given parameter value. All
of the integrals can be calculated simultaneously by the algorithm by including the
appropriate summation at the appropriate level.

129



5.4. Proposed Analytic Approach

K
n
o
ts

0
0

0
0

1
2

3
4

5
6

6
6

6
K
n
o
tI

n
d
e
x

0
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

N
(0

,3
)

0
0

0
0

fu
n

c
ti

o
n

 o
f 

u
fu

n
c
ti

o
n

 o
f 

u
fu

n
c
ti

o
n

 o
f 

u
fu

n
c
ti

o
n

 o
f 

u
fu

n
c
ti

o
n

 o
f 

u

N
(2

,4
)

N
(3

,4
)

0

N
(1

,3
)

0
0

0
0

N
(1

,4
)

N
(1

,4
)

fu
n

c
ti

o
n

 o
f 

u
fu

n
c
ti

o
n

 o
f 

u
fu

n
c
ti

o
n

 o
f 

u
fu

n
c
ti

o
n

 o
f 

u

N
(2

,4
)

N
(2

,4
)

N
(3

,4
)

N
(3

,4
)

0
N

(4
,4

)

0

N
(2

,3
)

0
0

0
0

N
(2

,4
)

N
(2

,4
)

N
(2

,4
)

fu
n

c
ti

o
n

 o
f 

u
fu

n
c
ti

o
n

 o
f 

u
fu

n
c
ti

o
n

 o
f 

u

N
(3

,4
)

N
(3

,4
)

N
(3

,4
)

0
N

(4
,4

)
N

(4
,4

)

0
N

(5
,4

)

0

N
(3

,3
)

0
0

0
0

N
(3

,4
)

N
(3

,4
)

N
(3

,4
)

N
(3

,4
)

fu
n

c
ti

o
n

 o
f 

u
fu

n
c
ti

o
n

 o
f 

u

0
N

(4
,4

)
N

(4
,4

)
N

(4
,4

)

0
N

(5
,4

)
N

(5
,4

)

0
N

(6
,4

)

0

N
(4

,3
)

0
0

0
0

0
N

(4
,4

)
N

(4
,4

)
N

(4
,4

)
N

(4
,4

)
fu

n
c
ti

o
n

 o
f 

u

0
N

(5
,4

)
N

(5
,4

)
N

(5
,4

)

0
N

(6
,4

)
N

(6
,4

)

0
N

(7
,4

)

0

N
(5

,3
)

0
0

0
0

0
0

N
(5

,4
)

N
(5

,4
)

N
(5

,4
)

0

0
N

(6
,4

)
N

(6
,4

)
0

0
N

(7
,4

)
0

0
1

N
(6

,3
)

0
0

0
0

0
0

0
N

(6
,4

)
N

(6
,4

)
0

0
N

(7
,4

)
0

0
1

N
(7

,3
)

0
0

0
0

0
0

0
0

N
(7

,4
)

0

0
1

N
(8

,3
)

0
1

D
eg

re
e 

3 
B

-S
pl

in
e 

B
as

is
 F

un
ct

io
ns

D
eg

re
e 

4 
B

-S
pl

in
e 

B
as

is
 F

un
ct

io
ns

1 1

N
(1

,4
)

N
(0

,4
)

Fi
gu

re
5.

27
:A

na
ly

ti
c

In
te

gr
al

C
al

cu
la

ti
on

s
ov

er
K

no
t

Ve
ct

or
U

=
{0

,0
,0

,0
,1

,2
,3

,4
,5

,6
,6

,6
,6
}

130



5.4. Proposed Analytic Approach

w(i,1) 

w(i,2) 

w(i,3) 

w(i,4) 

w(i+1,4) 

w(i+2,4) 

w(i+p,4) 

w(i+1,3) 

w(i+1,4) 

w(i+2,4) 

w(i+p,4) 

w(i+2,3)  
w(i+2,4) 

w(i+p,4) 

w(i+p,3)  w(i+p,4) 

w(i+1,2) 

w(i+1,3) 

 w(i+1,4) 

w(i+2,4) 

w(i+p,4) 

w(i+2,3)  
w(i+2,4) 

w(i+p,4) 

w(i+p,3)  w(i+p,4) 

w(i+2,2) 

w(i+2,3) 
w(i+2,4) 

w(i+p,4) 

w(i+p,3) w(i+p,4) 

w(i+p,2) w(i+p,3) w(i+p,4) 

Figure 5.28: Tree of Weights for Integral Evaluation for p = 3
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Figure 5.29: Tree of Weights with Summation Terms

For simplicity, only the most complex (p + 1)th integral is shown in the algorithm.
In the algorithm, basisIndex is the index of the basis function being integrated. The
first integral is captured by the initial weight, startWeight, and therefore we start the
recursion at gradeIndex = 2, where grade is the grade of integration sought.

Although the recursive algorithm generates each unique product term required for
the integral at the cost of a singlemultiplication for the generation of each new term, and
offers an intuitive approach that gives a valuable insight to the integral problem, it is
more efficient to take a more direct ‘depth-first’ approach and traverse the tree structure
in reverse. The distributive law can be applied so that the necessary summations can
be grouped before applying the weights. Not only does this minimise the number of
multiplications that are required at each level, it also means that only the very first
branch of the tree need be considered as there is a large degree of repetition in the
lower branches of the tree. Employing the same iterative technique for the addition of
the basis functions to generate the p + 1 summations needed, summations of weighted
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Algorithm 5.3 Integral Recursion
function integralRecursion
input : basisIndex, startWeight, gradeIndex grade
output : integral, I
for index = basisIndex→ endIndex

currentWeight = startWeight ∗ weightindex,gradeIndex
I = I + weight ∗ basisSumindex,gradeIndex
if gradeIndex 6= grade

integralRecursion(index, currentWeight, gradeIndex + 1)

basis function sums can be evaluated. This cycle can be repeated iteratively so that
only p + 1 multiplications and p + 1 additions are needed at each level. The process is
graphically illustrated for the fourth integral required for the cubic case in Figure 5.30.
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Figure 5.30: E�icient Tree of Weights with Summation Terms

The integral value, Ii,grade, where i is the basis function index and grade is the grade
of integral, is initialised with the appropriate sum term of higher order basis func-
tions before passing through the iterative cycle of product summations, as depicted.
Additional integrals can be calculated in the same fashion by starting the cycle at the
appropriate level of the tree with an initial seed holding the sum corresponding higher
order basis functions. An additional benefit of this approach is that all non-zero in-
tegral samples on the knot can be calculated simultaneously by simply choosing the
appropriate weighting term at the last step of the algorithm w(i, 1) to w(i + p, 1). The
overall algorithm, calculating each integral term up to a specified maximum, is sum-
marised in Algorithm 5.4. As in Algorithm 5.3, gradeIndex iterates over the necessary
integrations up to a maximum of grade. termIndex indexes the output integral terms
being calculated and determines the initial sum of basis functions needed to initiate
the algorithm.

Once the integrals have been sampled at each of the knots, they must be scaled by
the weight introduced by the magnitude of the step change that leads to the formation
of the Dirac delta at the knot. The term “Dirac Delta Weight” will be used to refer to
this weight. The Dirac Delta Weight can be calculated by differencing the step functions
on either side of the knot. The direction of the step change gives the sign of the weight.
This process can be seen in Figures 5.21 and 5.9.
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Algorithm 5.4 Efficient Integral Calculation
Initialise integral, I
for gradeIndex = grade→ 1

for termIndex = gradeIndex→ grade
Ip, termIndex = weightp, gradeIndex ∗ Ip, termIndex
for basisIndex = p− 1→ 0

IbasisIndex, termIndex = IbasisIndex+1, termIndex+
weightbasisIndex,gradeIndex ∗ IbasisIndex,termIndex

The remaining terms to be evaluated at either end of the knot vector are typically
of 0 value for the majority of basis functions, as they are most often composed of terms
involving a product of a basis function integral and derivative, one of which is typically
0 at either end of the knot vector. Only the first and last p + 1 basis functions need
special consideration.

The Analytic algorithm to compute all four Gramian matrices is summarised in
Algorithm 5.5. As before, the Gramianmatrices are labeled according to their respective
derivative components as follows G00, G11, G22 and G10, while I00 and D00 represent
the respective integrals and derivatives. The spanIndex is the span on the knot vector
being addressed, and finally, the basisIndex indexes the non zero basis functions on
the given span..

Algorithm 5.5 Efficient Analytic Stiffness Terms
Compute extended knot vector
Compute weights
Initialise Gramian matrices with constant terms resulting from multiple knots
basisIndex = 0
for spanIndex = p→ endSpan− p

Compute p + 1 non-zero higher order Basis Functions up to degree p + p + 1
Compute p + 1 non-zero Derivative Differences up to p
Compute (p + 1)th, pth, (p− 1)th and (p− 3)th integrals (see Algorithm 5.4)
for i = 1→ p + 1

for j = i→ p + 1
G00i+spanIndex, j+spanIndex+= I00basisIndex+ j ∗ D00basisIndex+i
G11i+spanIndex, j+spanIndex+= I11basisIndex+ j ∗ D11basisIndex+i
G22i+spanIndex, j+spanIndex+= I22basisIndex+ j ∗ D22basisIndex+i
G10i+spanIndex, j+spanIndex+= I10basisIndex+ j ∗ D10basisIndex+i

basisIndex ++

5.4.3 Discussion

This section has developed and presented novel algorithms implementing an analytic
evaluation of the integral and repeated integrals of a B-Spline basis function. These
algorithms form the backbone of the novel algorithm presented for the efficient analytic
generation of the four Gramian matrices associated with the stiffness matrix of an
Active B-Spline surface. Much like the algorithm presented in the previous section
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concerning Gaussian Quadrature, the algorithm takes advantage of the algorithmic
efficiencies that can be gained by generating the B-Spline basis functions and their
derivatives on a sample-by-sample basis before assembling into the final Gramian
matrices. The key mathematical benefit of this approach is that it requires only a single
sampling of function values per span in contrast to the four samples required by the
Gaussian Quadrature approach. Additionally, the approach makes no assumptions
about the regularity of the knot vector in order to achieve this efficiency. Full testing
and comparative results for both the Analytic approach and Gaussian Quadrature
approaches developed are presented in Section 5.9.

5.5 Extension to varying material properties
In the literature, the material properties are usually treated as constants in order to
simplify the mathematics and thus far, this approach has been adopted in this thesis.
However, this section demonstrates that the special case presented in Section 5.4 also
facilitates the evaluation of the problem where the material properties are varying over
the domain of integration. The mathematical mechanics of the problem are essentially
unchanged. However, the integration by parts formula must be extended to handle the
extra term. This can be done by integrating the product rule for three terms such that

∫
u(x)v(x)w′(x)dx =

u(x)v(x)w(x)−
∫

u(x)w(x)v′(x)dx−
∫

v(x)w(x)u′(x)dx (5.36)

Applying this to ∫ 1

0
α(u, v)Ni,p(u)N j,p(u)du (5.37)

gives

∫ 1

0
α(u, v)Ni,p(u)N j,p(u)du =

[
Ni,pN j,p

∫ 1

0
α(u, v)du

]1

0

−
[

Ni,pN(1)
j,p

∫ 1

0

∫ 1

0
α(u, v)du2

]1

0

−
[

N(1)
i,p N j,p

∫ 1

0

∫ 1

0
α(u, v)du2

]1

0

+
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Ni,pN(2)

j,p

∫ 1

0

∫ 1

0

∫ 1

0
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]1

0
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0
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0
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0
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0
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0
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0
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0
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−
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0
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0
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0
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0
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∫ 1

0
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∫ 1

0
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0
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From Equation 5.38, it can be seen that the equation reduces in the same way as
those in Section 5.4.1 to a series of samples of quantities that can be evaluated, and in
the same way, the constant terms generally are 0 at either end of the knot vector. The
terms can be grouped in such a way that once theα or β function is differentiable or
integrable to the point of achieving the Dirac Delta condition with the derivatives of
either of the basis functions, an analytic solution can be obtained.
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5.6 Extension to Mass, Damping and Forcing
Function

Active B-Spline/NURBS surfaces are used to model the response, and often the dy-
namics, of a surface under the influence of applied forces according to the following
equation (Terzopoulos and Qin, 1994).

Mp̈ + Dṗ + Kp = F (5.39)

where M, D, and F are the mass, damping and forcing matrices respectively, and are
given by

F =
∫

σ
ΦT f (u, v) dudv (5.40)

M =
∫

σ
µ(u, v) ΦTΦ dudv (5.41)

D =
∫

σ
γ(u, v) ΦTΦ dudv (5.42)

The forcing function that describes the external forces applied to the Active B-Spline
Surface must be transformed such that the forces are mapped to the control points. This
is achieved by a mapping that involves the product with the B-Spline basis functions.
Thus, the forcing function can be handled in the same way as the varying material
properties as outlined above. Equally, if mass and damping properties of the surface
are to be considered, their distributions can be accommodated in a similar fashion
(Terzopoulos and Qin, 1994).

5.7 Extension to Active Volumes and Higher
Dimension Models

The energy of an Active B-Spline Volume (Doi et al., 2002) is typically given by

E(S(u, v, w)) =
∫
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∂S
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It is clear that the equation is separable in the same way as the B-Spline Surface
and that each parameter can be handled in the same way as outlined in Section 5.2
for the calculation of the corresponding Gramian matrices. The technique can also be
generalised for higher dimensions.

5.8 Extension to NURBS
Although the B-Spline representation discussed so far facilitates the modelling of a
wide range of shapes, there are a number of curve and surface types that cannot be
exactly represented using polynomials alone, e.g., circles, ellipses, hyperbolas, cylinders,
cones, spheres etc. These conics can however be represented using rational functions of
polynomials. NURBS are the rational version of B-Spline representations that facilitate
the precise representation of all the conics.

NURBS curves and surfaces were introduced in Chapter 4, Section 4.1.2. Their
treatment is much the same as that of B-Spline curves and surfaces, only in the case of
NURBS, the basis functions are rational. For convenience the relevant equations are
repeated such that a NURBS basis function is defined by

Ri,p(u) =
Ni,p(u)wi

∑
n
i=0 Ni,p(u)wi

(5.44)

Analogous to the B-Spline equations developed in Chapter 4, Section 4.1.1, the basis
functions for a parametric NURBS surface are defined as

Rp,q
i, j (u, v) =

Ni,p(u)N j,q(v)wi, j

∑
m
i=0 ∑

n
j=0 Ni,p(u)N j,q(v)wi, j

(5.45)

Further information on NURBS can be found in (Piegl, 2005).
Much like B-Splines, Gaussian Quadrature is typically used to integrate energy

functions associated with NURBS curves and surfaces (Qin et al., 1998). However, such
schemes typically offer only approximations of the integral of rational functions, as the
technique can only handle polynomials exactly (Rypl and Patzák, 2012). As discussed in
Section 5.1, for the non-rational case, simplifications are often made where the B-Spline
is defined over a uniform knot vector. Such approximations are equally applicable to
the rational case.

An analytic solution for the integral of a NURBS product is currently unavailable.
However, the Analytic approach presented in Section 5.4 can be applied to the NURBS
problem if the following simplification is made.

Over the domain of integration, the denominator of the NURBS basis functions
changes slowly when compared to the polynomial numerator. It is common practice to
select quadrature rules that give exact integration when the denominator is constant
(Auricchio et al., 2012, Hughes et al., 2010, Cottrell et al., 2009). In this case the NURBS
integrals reduce to a weighted version of those integrals presented for B-Splines (see
Equations 5.2–5.5, inclusive) and the Analytic solution presented here can be employed.
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5.9. Results

5.9 Results
Sections 5.3.2 and 5.4 presented two alternative approaches to computing the four
Gramian matrices that make up the stiffness matrix of an Active B-Spline surface. The
Analytic algorithm presented in 5.4 was developed in an effort to achieve amore elegant
and efficient solution. This section presents a detailed comparison of the alternative
approaches, and analyses results in terms of efficiency, accuracy and stability.

5.9.1 Computational Complexity

This section compares the computational complexity of the two approaches both theor-
etically and practically with real performance related results.

A Brief Note on Implementation

Sections 5.3.2 and 5.4 developmathematical and algorithmic efficiencies without regard
to programming efficiencies. A significant programming efficiency stems from the data
structures used in both the Gaussian Quadrature implementation and the Analytic
equivalent. These data structures are primarily symmetric in their nature and should be
stored as such. This makes indexing andmemory allocation efficient and also facilitates
the representation of much larger data models. The algorithms were developed in
Matlab and implemented in Java for proof of concept as part of the Virtual Sculpting
Environment presented in Chapter 6 and all experiments were run on a Dell Inspiron
6000 Laptop with a single core centrino processor.

Theoretical Results

This section presents theoretical analysis of the computational complexities of both the
Gaussian Quadrature approach and the Analytic approach presented in the chapter.
Unless otherwise stated, where plots are shown for varying numbers of control points,
the degree is fixed for the cubic case, and where the degree varies, the number of
control points is fixed at 100. The figures shown are the computations required for the
generation of all four Gramian matrices in each case.

Figure 5.31 shows the number of samples of each basis function that must be com-
puted per span as the degree of basis function is increased. As can be seen from the
graph, using the Analytic approach, only one sample point is required per span, regard-
less of the degree of the curve employed. As the product of two p degree curves is under
consideration in each case, Gaussian Quadrature requires d(p + p + 1)/2e samples per
span. This saving comes directly from the mathematical approach adopted.

Figures 5.32 and 5.33 show the total number of basis function evaluations required
for both Gaussian Quadrature and the Analytic approach varying over an increasing
number of points and increasing degree, respectively. As could be expected from Figure
5.31, the Analytic approach requires significantly fewer basis function evaluations. The
relationship between the number of basis function calculations and the number of
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Figure 5.31: Number of Basis Function Samples Required per Span

points is O(n) or linear for both approaches, as could be expected. The relationship
between the number of basis function evaluations and the degree is O(p2) or quadratic
for Gaussian Quadrature whereas it is O(p) or linear for the Analytic approach. This
is because the calculation is based on the number of samples required per span, the
number of spans per basis function and the total number of basis functions. For the
Gaussian Quadrature approach, this equates to [ 2p+1

2 ][n + 1][p + 1] where n is the
number of control points and p is the degree of the curve. Similarly, for the Analytic
approach, this equates to [1][n + 1][p + 1]. In the Gaussian Quadrature case the first
two of the terms are proportional to p, while for the Analytic case only the second term
is proportional to p. This computational complexity refers directly to the mathematical
approaches adopted. This process must be conducted for each Gramian matrix. Using
the Gaussian Quadrature approach, terms of the basis function itself, the first derivative,
and the second derivative (curves of degree p, p− 1, and p− 2, respectively) must be
sampled. Using the Analytic approach, one derivative evaluation and four integral
evaluations must be calculated.

Figures 5.34 and 5.35 show the number of basis function evaluations required for
both approaches when the triangular structures presented in Figures 5.8 and 5.26 are
used to iteratively calculate the required basis functions and derivatives for all four
Gramian matrices in an ‘all-in-one’ fashion. As can be seen, this approach drastically
reduces the number of computations required. This saving stems from the algorithmic
efficiencies identified in the preceding sections and as can be seen from the figures,
apply to both the Gaussian Quadrature algorithm and the Analytic Algorithm.

The heretofore evaluation of the computational complexity does not complete the
analysis however, as the comparisons do not take into account that for the Analytic
approach, higher order basis functions must be calculated at greater computational
expense than the lower order basis functions required to satisfy the Gaussian Quadrat-
ure approach. The preceding figures showed the number of basis function evaluations
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Figure 5.32: Number of Basis Function Evaluations Required vs Number of Points
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Figure 5.33: Number of Basis Function Evaluations Required vs Degree
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Figure 5.34: Number of Basis Function Evaluations Required vs Number of Points with E�icient
Re-use of Values
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Figure 5.35: Number of Basis Function Evaluations Required vs Degree with E�icient Re-use of Values
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needed. Figures 5.36 and 5.37 indicate the relative number of operations involved in
these evaluations. The plots take into account the computational complexity of the
basis function evaluations themselves by considering the number of iterations of the
relevant recursions necessary for both approaches. As can be seen from the graphs, in
spite of the additional overhead incurred by the Analytic approach in evaluating the
higher order basis functions, it still offers a much less computationally intensive solu-
tion. In both cases, the relationship between the total number of operations required
per individual evaluation and the degree is O(p2).

For clarity, Figure 5.38 shows the same results presented in Figure 5.37 over a more
practical range of degrees, [0, 5]. It will be noted that the savings increase with higher
degree and significant savings are achieved over the most commonly used lower degree
curves.

Figures 5.39 and 5.40 show total mathematical operation counts, i.e., subtractions,
additions, multiplications and divisions, for both approaches in computing all four
Gramian matrices. For the Gaussian approach, the calculations include operation
counts for shifting of limits, weight calculations, basis function evaluations, derivative
evaluations, and finally the products and summations required for the assembly of
the Gramian matrices. For the Analytic approach, the total operation count includes
the weighted sums and products of the higher order basis functions, the derivative
evaluations and differences, and finally the products and summations required for the
assembly of the Gramian matrices. The actual mathematical operation counts were
based on the preceding analysis of the number of basis function calculations and the
number of branches required to create the relevant triangular structures as illustrated
in Figure 5.8 and Figure 5.26. For the Gaussian approach, the forward traversal of the
triangular structure equates to ([p + 1][p + 1])/2 branching iterations, while for the
higher order basis functions required by the Analytic approach, this equates to ([(2p +

1+ 1)][(2p + 1P + 2])/2 branching iterations. Similarly for the relevant derivatives, the
backward traversal of the triangular structures equate to ([2+ 1][2+ 1])/2 iterations to
calculate the second derivative for Gaussian Quadrature and ([p][p+])/2 to calculate
the pth derivative for the Analytic approach. The number of operations per iterationwas
counted according to the algorithms presented in Piegl and Tiller (1997). The products
of the resulting terms are counted and their additions to the Gramian matrices, while
taking into account that there are (p+1

2 ) + p + 1 unique values for each of the sampling
grids for each of the four Gramian matrices.

Finally, Figure 5.41 shows a theoretical 3D plot depicting the relative computational
complexity of the Gaussian Quadrature and Analytic approaches over both varying
points and degree.
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Figure 5.36: Relative Computations Required for Basis Function Evaluation Considering Degree vs
Points
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Figure 5.37: Relative Computations Required for Basis Function Evaluation Considering Degree vs
Degree
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Figure 5.38: Zoomed Relative Computations Required for Basis Function Evaluation Considering
Degree
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Figure 5.39: Total Mathematical Operation Count vs Points
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Figure 5.40: Total Mathematical Operation Count vs Degree
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Figure 5.41: Total Mathematical Operation Count vs Points and Degree
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Practical Results

This section presents real computation times obtained from the implementation of the
algorithms presented in Sections 5.3 and 5.4.

Figures 5.42 – 5.44, inclusive, show the average total computation time required to
compute all four Gramian matrices using both the Gaussian Quadrature and Analytic
approaches.

The computation times reflect the theoretical results deduced in the previous section.
There is an improvement in the expected performance with respect to an increasing
number of points and this is mainly down to the nature of the computations for each
case. The Gaussian Quadrature approach suffers from a significant increase in the
number of multiplication operations with increasing number of points which impacts
on its performance.

Figure 5.45 shows the overall improvement in computation times with varying
degree and varying number of points. The percentage improvement is effectively
constant for increasing number of points. The slight variation that can be observed at
the lower range of points is due to the special case conditions at the last p + 1 knots
at either end of the knot vector. Where there are very small numbers of points, these
special conditions dominate the overall calculations and thus impact on the overall
percentage improvement. The impact of these special cases becomes negligible for
increasing numbers of points.

The percentage improvement/reduction in time can be seen to increase with in-
creasing degree. The overall improvements range from 63% to 77% over the range
of degrees presented. This means that the Analytic solution ranges from being 2.7
times to 4.3 times faster than Gaussian Quadrature. The practical relevance of these
improvements is further discussed in Section 5.9.3
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Figure 5.42: Computation Time for Full Computation of Gramian Matrices in Nanoseconds vs Points
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Figure 5.43: Computation Time for Full Computation of Gramian Matrices in Nanoseconds vs Degree

149



5.9. Results

0
2

4
6

8
10

x 10
4

0
2

4
6

8
10

0

0.5

1

1.5

2

x 10
10

Gaussian Quadrature vs Analytic Approach

PointsDegree

C
om

pu
ta

tio
n 

T
im

e 
(n

s)

 

 

Gaussian
Analytic

Figure 5.44: Computation Time for Full Computation of Gramian Matrices in Nanoseconds vs Points
and Degree
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5.9.2 Accuracy and Stability

In this section, the accuracy and stability of the Gaussian Quadrature and Analytic
approaches are compared and analysed. Respective performances are discussed in
detail and deviations in the results are investigated and explained. Suggestions for
mitigating deviations are made and investigated. Finally, a sample set of complete
Gramian matrices computed using both the Gaussian Quadrature and the Analytic
approach developed in this thesis are shown.

Comparison

In this section, the accuracy and stability of the Gaussian Quadrature and Analytic
approaches are compared and analysed. Exact results obtained symbolically are also
presented for comparison. Schumaker (2007) tests the numerical accuracy of Gaussian
Quadrature against Divided Differences for the computation of the integral of a product
of two B-Spline curves by testing the algorithms over an increasingly small knot span.
Their experiment is adapted and extended here for examining the robustness of the
approach in computing all four Gramian matrices associated with the various terms
that contribute to the Stiffness matrix of an Active B-Spline Surface. In each experiment
a knot vector is chosen that includes p + 1 repeated knots at either end of an otherwise
even knot spacing but for a single span that is iteratively reduced from 1 to 0.1 to 10−r.
Results for an element of each Gramian matrix that includes a basis function supported
by the span are presented for comparison.

The results are organised as follows:

• Table 5.3 shows results for
∫

N8,3N8,3 on knot vectorU = {0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 6+
10−r, 7, 8, 9, 10, 11, 12, 13, 13, 13, 13}. Similarly, Tables 5.4–5.6, inclusive, show
results for the same product for the remaining Gramian Matrices.

• Tables 5.7–5.10, inclusive, show results for a degree 4 curve.

• Tables 5.11–5.14, inclusive, show results for the degree 5 curve.

Note: The numbers underlined in Tables 5.3–5.14, inclusive, represent the decimal place
where the results deviate from the exact solution.
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Table 5.3: Gaussian �adrature vs Analytic

∫
N8,3N8,3

a

r Exact Gaussian Analytic
0 0.479365079365079 0.479365079365079 0.479365079365079
1 0.464742598397771 0.464742598397771 0.464742598397770
2 0.461726816414083 0.461726816414083 0.461726816414082
3 0.461410918985698 0.461410918985698 0.461410918985697
4 0.461379188554965 0.461379188554965 0.461379188554959
5 0.461376014107772 0.461376014107772 0.461376014107772
6 0.461375696649014 0.461375696649015 0.461375696649668
7 0.461375664902998 0.461375664902998 0.461375664908268
8 0.461375661728395 0.461375661728395 0.461375661718229
9 0.461375661410935 0.461375661410935 0.461375661363573
10 0.461375661379189 0.461375661379189 0.461375663214036

Table 5.4: Gaussian �adrature vs Analytic
∫

N1
8,3N1

8,3

r Exact Gaussian Analytic
0 0.666666666666667 0.666666666666667 0.666666666666667
1 0.632810867293626 0.632810867293626 0.632810867293626
2 0.623393710608519 0.623393710608519 0.623393710608518
3 0.622340602600689 0.622340602600689 0.622340602600721
4 0.622234072691490 0.622234072691490 0.622234072691725
5 0.622223407393580 0.622223407393580 0.622223407393615
6 0.622222340740603 0.622222340740602 0.622222340720259
7 0.622222234074073 0.622222234074072 0.622222233945981
8 0.622222223407407 0.622222223407407 0.622222225476104
9 0.622222222340741 0.622222222340741 0.622222219530126
10 0.622222222234074 0.622222222234074 0.622222092461922

Table 5.5: Gaussian �adrature vs Analytic
∫

N2
8,3N2

8,3

r Exact Gaussian Analytic
0 2.66666666666667 2.66666666666667 2.66666666666667
1 3.34378265412748 3.34378265412748 3.34378265412748
2 3.53212578782962 3.53212578782962 3.53212578782962
3 3.55318794798621 3.55318794798621 3.55318794798578
4 3.55531854617021 3.55531854617021 3.55531854616891
5 3.55553185212839 3.55553185212839 3.55553185213185
6 3.55555318518795 3.55555318518795 3.55555318546162
7 3.55555531851855 3.55555531851854 3.55555531931451
8 3.55555553185185 3.55555553185184 3.55555552224570
9 3.55555555318519 3.55555555318519 3.55555568782514
10 3.55555555531852 3.55555555531852 3.55555640324754

Table 5.6: Gaussian �adrature vs Analytic
∫

N1
8,3N0

8,3

r Exact Gaussian Analytic
0 0 −5.87348196621648e−18 0
1 0 −2.33298964604716e−16 6.66133814775094e−16

2 0 3.12780746233492e−17 4.44089209850063e−16

3 0 9.25131006265147e−17 0.03551744741647e−16

4 0 −3.27582547725088e−18 3.88578058618805e−14

5 0 −2.72567266455637e−16 5.15143483426073e−14

6 0 −3.70841000106120e−16 3.87245790989255e−13

7 0 −4.67825049993792e−16 5.89062132405616e−12

8 0 −2.08983821753874e−16 3.59985374842609e−11

9 0 2.22925876532200e−16 −3.84451359636273e−10

10 0 1.11811161451650e−16 −6.06099770372737e−9

aThe underlined number in each case represents the decimal place where the results deviate from the
exact solution.
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Table 5.7: Gaussian �adrature vs Analytic
∫

N8,4N8,4

r Exact Gaussian Analytic
0 0.430417768959436 0.430417768959436 0.430417768959436
1 0.408862460283437 0.408862460283437 0.408862460283438
2 0.406114699442957 0.406114699442957 0.406114699442958
3 0.405835553494608 0.405835553494608 0.405835553494609
4 0.405807596778624 0.405807596778624 0.405807596778624
5 0.405804800687391 0.405804800687391 0.405804800687391
6 0.405804521074072 0.405804521074072 0.405804521074073
7 0.405804493112699 0.405804493112699 0.405804493112598
8 0.405804490316561 0.405804490316561 0.405804490317407
9 0.405804490036947 0.405804490036947 0.405804490036211
10 0.405804490008986 0.405804490008986 0.405804489942062

Table 5.8: Gaussian �adrature vs Analytic
∫

N1
8,4N1

8,4

r Exact Gaussian Analytic
0 0.486111111111111 0.486111111111111 0.486111111111110
1 0.410697731387387 0.410697731387387 0.410697731387384
2 0.402087934772304 0.402087934772304 0.402087934772303
3 0.401220755397126 0.401220755397127 0.401220755397126
4 0.401133980867521 0.401133980867521 0.401133980867518
5 0.401125302854310 0.401125302854310 0.401125302854331
6 0.401124435047392 0.401124435047392 0.401124435047404
7 0.401124348266645 0.401124348266645 0.401124348271150
8 0.401124339588569 0.401124339588569 0.401124339574327
9 0.401124338720762 0.401124338720762 0.401124338861805
10 0.401124338633981 0.401124338633981 0.401124337172381

Table 5.9: Gaussian �adrature vs Analytic
∫

N2
8,4N2

8,4

r Exact Gaussian Analytic
0 1.58333333333333 1.58333333333333 1.58333333333333
1 1.19684912788361 1.19684912788361 1.19684912788361
2 1.15726914557827 1.15726914557827 1.15726914557828
3 1.15322789822692 1.15322789822692 1.15322789822695
4 1.15282279981403 1.15282279981403 1.15282279981421
5 1.15278228008147 1.15278228008147 1.15278228008053
6 1.15277822800915 1.15277822800915 1.15277822801313
7 1.15277782280093 1.15277782280092 1.15277782266884
8 1.15277778228009 1.15277778228009 1.15277778183615
9 1.15277777822801 1.15277777822801 1.15277778535480
10 1.15277777782280 1.15277777782280 1.15277784410059

Table 5.10: Gaussian �adrature vs Analytic
∫

N1
8,4N8,4

r Exact Gaussian Quadrature Analytic
0 0 −5.18001067771968e−19 0
1 0 9.65518154811523e−17 −2.22044604925031e−15

2 0 −2.48796884034310e−17 −1.33226762955019e−15

3 0 −1.43423987543144e−16 −4.44089209850063e−16

4 0 2.07125912169394e−16 −4.44089209850063e−16

5 0 5.58278747727824e−17 2.66453525910038e−15

6 0 −1.99383351011882e−16 −3.15303338993545e−14

7 0 −1.77034855159170e−17 8.86402062860725e−13

8 0 −7.15922774645037e−17 −6.18527451479167e−12

9 0 1.13657654970488e−16 1.33759670006839e−12

10 0 1.07236852276289e−16 2.68026489891327e−10
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Table 5.11: Gaussian �adrature vs Analytic
∫

N8,5N8,5

r Exact Gaussian Analytic
0 0.393925565175565 0.393925565175565 0.393925565175565
1 0.374681473025774 0.374681473025774 0.374681473025774
2 0.372488474275695 0.372488474275695 0.372488474275694
3 0.372267326710112 0.372267326710112 0.372267326710112
4 0.372245194248786 0.372245194248786 0.372245194248785
5 0.372242980826370 0.372242980826370 0.372242980826369
6 0.372242759482366 0.372242759482367 0.372242759482365
7 0.372242737347948 0.372242737347948 0.372242737347948
8 0.372242735134506 0.372242735134507 0.372242735134508
9 0.372242734913162 0.372242734913162 0.372242734913034
10 0.372242734891028 0.372242734891028 0.372242734891082

Table 5.12: Gaussian �adrature vs Analytic
∫

N1
8,5N1

8,5

r Exact Gaussian Analytic
0 0.374537037037037 0.374537037037037 0.374537037037037
1 0.316973261575654 0.316973261575654 0.316973261575654
2 0.311093777296306 0.311093777296306 0.311093777296311
3 0.310507179378248 0.310507179378248 0.310507179378248
4 0.310448535237918 0.310448535237918 0.310448535237917
5 0.310442670982505 0.310442670982505 0.310442670982507
6 0.310442084558552 0.310442084558552 0.310442084558552
7 0.310442025916173 0.310442025916173 0.310442025916004
8 0.310442020051935 0.310442020051935 0.310442020051955
9 0.310442019465511 0.310442019465511 0.310442019467501
10 0.310442019406869 0.310442019406869 0.310442019400694

Table 5.13: Gaussian �adrature vs Analytic
∫

N2
8,5N2

8,5

r Exact Gaussian Analytic
0 1.03333333333333 1.03333333333333 1.03333333333333
1 0.761096281152580 0.761096281152580 0.761096281152579
2 0.736578488484438 0.736578488484439 0.736578488484437
3 0.734157533734545 0.734157533734546 0.734157533734544
4 0.733915750218338 0.733915750218339 0.733915750218326
5 0.733891574990279 0.733891574990279 0.733891574990252
6 0.733889157498712 0.733889157498712 0.733889157499523
7 0.733888915749868 0.733888915749869 0.733888915761653
8 0.733888891574987 0.733888891574988 0.733888891627649
9 0.733888889157499 0.733888889157499 0.733888889388507
10 0.733888888915750 0.733888888915750 0.733888890113376

Table 5.14: Gaussian �adrature vs Analytic
∫

N1
8,5N8,5

r Exact Gaussian Quadrature Analytic
0 0 7.90589424200270e−17 1.77635683940025e−15

1 0 −2.48561945657092e−17 8.88178419700125e−16

2 0 −3.84438854050127e−17 8.88178419700125e−16

3 0 2.04158899892434e−17 0
4 0 1.59314856120033e−17 0
5 0 6.65712593676185e−17 1.77635683940025e−15

6 0 1.02374053415046e−16 0
7 0 5.39669002320583e−17 −6.21724893790088e−15

8 0 −5.19608105634518e−17 −6.48370246381091e−14

9 0 7.44523263378936e−17 7.27418125734403e−13

10 0 6.15236799062335e−17 −5.75184344597801e−12
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Figure 5.46: Percentage Error vs Knot Spacing for varying Degree for G00 term

Figure 5.46 depicts the percentage error introduced by the Analytic approach for
the G00 term. Note that as the scale is logarithmic, 0 values cannot be represented.
Therefore the plot shows only the non-zero error. As can be seen for the cubic case the
percentage error incurred ranges from 0% to 10−4% over the range of knot spacing from
regular to extreme, respectively. The magnitude of the error reduces with increasing
degree. The figure also demonstrates the stability of the approach.

Figure 5.47 depicts the percentage error introduced by the Analytic approach for the
G00, G11, and G22 terms. As can be seen from the figure, the error incurred increases
slightly for the terms involving the derivatives of the basis functions. The figure also
shows that for the cubic case the percentage error incurred by all terms is captured by the
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Figure 5.47: Percentage Error vs Knot Spacing for varying Degree for G00, G11, and G22 terms
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range 0% to 10−4% over the range of knot spacing from regular to extreme respectively
and in each case the magnitude of the error reduces with increasing degree.

While the Gaussian Quadrature approach exhibits some rounding errors in the
least significant digit, the approach does not accumulate error as the ratios of knot
spacings become more extreme. For this reason error plots are of little value and have
been omitted.

Error Analysis

The results show that the Gaussian Quadrature approach presented is slightly more
accurate than the Analytic Approach. The mathematical approach adopted is exact,
in a sense that a perfect mathematical description of the result is available at all times.
Therefore, the error is a result of rounding error, introduced during computation as
a result of the floating-point arithmetic operations. The practical implications of this
error will be discussed in Section 5.10. This section investigates the root cause of the
error introduced.

It is well documented that the Cox-deBoor recursion (see Equation 4.2) used to cal-
culate the basis functions for both the Gaussian Quadrature approach and the Analytic
Approach is numerically stable and highly accurate (Deboor, 1978, Piegl and Tiller,
1997, Farin, 2002). The basis function and derivative algorithms employed in this thesis
are largely based on the algorithms presented in (Piegl and Tiller, 1997) that are directly
derived from the Cox-deBoor recursion. Piegl and Tiller (1997) do not comment on the
stability or accuracy of their algorithms. As part of the research described in this thesis,
the algorithms were tested and proved (with the exception of rounding error in the
least significant digit) to match symbolic results to machine precision for each of the
basis function and derivative evaluations performed for the cases presented in Tables
5.3–5.14, inclusive.

In this chapter, formulae and algorithms for the computation of the integral and
repeated integrals are derived and developed directly from the Cox-deBoor recursion.
These algorithmswere tested andproven tomatch symbolic results tomachine precision
for each of the integrals required for the tests presented in Tables 5.3–5.14, inclusive.
Table 5.15 exemplifies the results and shows the fourth integral of the cubic curve, as
required by the Analytic approach, at the two extremes of the knot spacing tested,
namely r = 0 and r = 10. As can be seen, the results shown match those obtained
symbolically to machine precision.

While the derivative and integral algorithms aremore prone to round off errors than
the basis function algorithm, due to the higher ratios of orders of magnitudes involved
in the calculations, in the experiments performed in this thesis the error incurred did
not propagate beyond the least significant digit. As each of the component algorithms
employed in the computation of the Gramian matrices individually produce results
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Table 5.15:
∫ ∫ ∫ ∫

N8,3 over knots {5, 6, 6+ 10−r, 8, 9}

Knot Exact Analytic Algorithm
r = 0 6 1.98412698412698e−4 1.98412698412698e−4

6+ 10−r 2.46031746031746e−2 2.46031746031746e−2

8 3.33531746031746e−1 3.33531746031746e−1

9 1.66666666666667 1.66666666666667
r = 10 6 3.96825396785714e−4 3.96825396785714e−4

6+ 10−r 3.96825397063492e−4 3.96825397063492e−4

8 4.95370370349899e−1 4.95370370349899e−1

9 2.16190476184762 2.16190476184762

accurate to machine precision, it is concluded that the assembly of the terms into the
Gramian matrices is what results in some loss of accuracy as the knot spacing ratios
become extreme.

The key component in assembling the Gramian matrices, using the Analytic ap-
proach, is the summation of integral values sampled at the knots, and scaled by the
corresponding Dirac Delta weight. Adopting the same testing approach as the preced-
ing section, a knot vector of type U = {. . . 5, 6, 6+ 10−r, 8, 9, . . . } is considered. Figure
5.48 illustrates the effect of varying ratios of knot spacing on the affected values.

Firstly, the values of the Dirac Delta weights are considered. Increasing the value
of r results in an anomalous knot span, whereby the ratio of its size in relation to its
neighbours becomes extreme. As a result, the derivative values over the affected span
become very large relative to those of neighbouring spans.

The calculation of the weight associated with the Dirac delta function relies on the
differencing of the pth derivatives of the affected spanwith those of its two neighbouring
spans. The large derivative introduced by the anomalous knot dominates the difference
in both cases as r increases in value. This results in the Dirac Delta Weights at either
side of the span being very large and very similar in magnitude.

Figure 5.48(a) shows the absolute value of the Dirac Delta Weights at the knots
left and right of the affected span for curves of degrees 3, 6, and 10. The figure shows
the increase in magnitude of the Dirac weight with decreasing knot spacing. More
importantly, the figure also shows that the magnitudes, as dominated by the same
anomalous knot span, are all but indistinguishable. Note that the direction and thus
the sign of the Dirac delta alternates from one side to the other. However, the absolute
value is shown here to illustrate the similarity in magnitudes. As can be seen in the
figure, the plots for themagnitude of the Dirac Delta weight at either side of the affected
span are overlayed.

The magnitudes of the integral values, as shown in Figure 5.48(b), decrease rapidly
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as the knot spacing decreases, as could be expected. As the knot span decreases in size,
so too does the area under the curve segment supported by the span. This is especially
the case for the higher order curves whose area is spread out over an increased number
of knot spans. Another result of this, is that as the knot span decreases in size, the
integral values at the knots on either side of the anomalous span become more and
more similar.

Finally, the products of the Dirac Delta weight and integral values at the knots are
presented in Figure 5.48(c). As it is the case for both the integrals and Dirac Delta
weights that their magnitudes are similar at either side of the anomalous knot, so too
are their products. More importantly, the Dirac Delta weights at either side are opposite
in sign. To compute the overall term for the Gramian matrices, the values must be
summed. Because the magnitudes of the product values on either side of the affected
knot span are so similar, the resulting difference between them leads to a cancellation
of significant digits. This gives consequence to the otherwise insignificant roundoff
errors stored in the least significant digits of the product.

To exacerbate the problem, as the magnitude of the Dirac Delta weights is so large
relative to those at the neighbouring knots, the least significant digits of the products
at either side of the affected span can be of similar order to the most significant digits
of the products at the neighbouring knots. This means that the overall contribution of
these error-prone digits to the overall answer grows in size with decreasing knot span.

Fortunately, the integral values are so small over the affected span, that they act
to offset the significance of the error incurred. Figure 5.48(b) shows how the integral
values decrease with decreasing knot spacing. It is also evident from the graph that
the integral values decrease rapidly with increasing order of curve, further offsetting
the impact of the inaccuracy.

158



5.9. Results

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
0

10
2

10
4

10
6

10
8

10
10

10
12

Absolute Value Dirac Weight

Knot Spacing

P
ro

du
ct

 

 

Degree 3 Left
Degree 3 Right
Degree 6 Left
Degree 6 Right
Degree 10 Left
Degree 10 Right

(a) Absolute Value of Dirac Delta Weights at either side of the modified knot span

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
−20

10
−15

10
−10

10
−5

10
0

Integrals

Knot Spacing

In
te

gr
al

 

 

Degree 3 Left
Degree 3 Right
Degree 6 Left
Degree 6 Right
Degree 10 Left
Degree 10 Right

(b) Integral Trend at either side of the modified knot span

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
−20

10
−15

10
−10

10
−5

10
0

10
5

10
10

Absolute Value Products

Knot Spacing

P
ro

du
ct

 

 

Degree 3 Left
Degree 3 Right
Degree 6 Left
Degree 6 Right
Degree 10 Left
Degree 10 Right

(c) Absolute Value of the Product at either side of the modified knot span

Figure 5.48: Graphic illustration of error introduced in Analytic Approach
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To further illustrate the effect of the integralmitigation, Table 5.16 shows the relevant
numerical values. The problematic values are highlighted. It is clear from the table
that for the degree 10 curve, the integral is so small that it offsets the values of the
derivatives to such an extent that the erroneous values produced by the differencing of
similar terms are reduced to insignificance in the final answer.

While the Gaussian Quadrature approach suffers from the same numerical round-
ing and precision errors associated with floating-point arithmetic, the error is not as
prevalent. This is because the approach does not incur the differencing effect described
above as a result of the anomalous knot. For the Gaussian Quadrature approach, the
summations include several values over a span that are of the same sign and similar
orders of magnitude, and as such they do not give consequence to erroneous data
present in digits of lower significance.

Further information on the difficulties that can be incurred when dealing with
floating-point arithmetic can be found in (Goldberg, 1991).

Error Mitigation

There are numerical techniques for handling summations and differences that can mit-
igate the impact of numerical error (Press et al., 2007, Goldberg, 1991). Such techniques
usually impose a trade-off between computational expense and accuracy, e.g., there
are various number formats available in the different programming languages that can
accommodate higher precision. However, use of such techniques may impact on the
speed of the computations. There are also several algorithms that act to actively com-
pensate for numerical error as it is introduced, e.g., the Kahan Summation Algorithm
(Goldberg, 2001).

A common practice in industry to alleviate the impact of floating point arithmetic
errors on numerical accuracy is to normalise the knot vector to the range [0, 1]. Because
of the higher density of floating point numbers on this interval, greater accuracy can
often be achieved. Tables 5.17–5.20, inclusive, show results for the cubic case presented
over a normalised knot vector.
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Table 5.17: Gaussian �adrature vs Analytic Normalised
∫

N8,3N8,3

r Exact Gaussian Analytic
0 0.0368742368742369 0.0368742368742369 0.0368742368742369
1 0.0357494306459824 0.0357494306459824 0.0357494306459824
2 0.0355174474164679 0.0355174474164679 0.0355174474164679
3 0.0354931476142845 0.0354931476142845 0.0354931476142844
4 0.0354907068119204 0.0354907068119204 0.0354907068119201
5 0.0354904626236748 0.0354904626236748 0.0354904626236755
6 0.0354904382037703 0.0354904382037703 0.0354904382038676
7 0.0354904357617691 0.0354904357617691 0.0354904357621220
8 0.0354904355175689 0.0354904355175689 0.0354904355153877
9 0.0354904354931488 0.0354904354931488 0.0354904355096545
10 0.0354904354907068 0.0354904354907068 0.0354904358288595

Table 5.18: Gaussian �adrature vs Analytic Normalised
∫

N1
8,3N1

8,3

r Exact Gaussian Analytic
0 8.66666666666667 8.66666666666667 8.66666666666667
1 8.22654127481714 8.22654127481713 8.22654127481713
2 8.10411823791075 8.10411823791075 8.10411823791077
3 8.09042783380896 8.09042783380897 8.09042783380919
4 8.08904294498937 8.08904294498937 8.08904294499017
5 8.08890429611655 8.08890429611655 8.08890429612064
6 8.08889042962783 8.08889042962783 8.08889042899957
7 8.08888904296295 8.08888904296294 8.08888904292756
8 8.08888890429630 8.08888890429630 8.08888891442555
9 8.08888889042963 8.08888889042963 8.08888863782479
10 8.08888888904296 8.08888888904297 8.08888541386564

Table 5.19: Gaussian �adrature vs Analytic Normalised
∫

N2
8,3N2

8,3

r Exact Gaussian Analytic
0 5858.66666666667 5858.66666666667 5858.66666666667
1 7346.29049111808 7346.29049111808 7346.29049111808
2 7760.08035586167 7760.08035586168 7760.08035586168
3 7806.35392172571 7806.35392172572 7806.35392172479
4 7811.03484593594 7811.03484593595 7811.03484593884
5 7811.50347912608 7811.50347912609 7811.50347917864
6 7811.55034785793 7811.55034785793 7811.55034923149
7 7811.55503478525 7811.55503478525 7811.55503506622
8 7811.55550347852 7811.55550347853 7811.55542263504
9 7811.55555034785 7811.55555034785 7811.55609768343
10 7811.55555503479 7811.55555503480 7811.55512148709

Table 5.20: Gaussian �adrature vs Analytic Normalised
∫

N1
8,3N8,3

r Exact Gaussian Quadrature Analytic
0 0 −1.39314000302920e−16 1.33226762955019e−15

1 0 −4.09373053309227e−16 2.22044604925031e−16

2 0 −3.83620229194738e−18 −4.44089209850063e−16

3 0 3.65276076360721e−17 3.77475828372553e−15

4 0 4.31740290042263e−16 5.39568389967826e−14

5 0 −1.12755548593918e−16 5.12923037376822e−14

6 0 3.43878953741364e−16 −7.66320340517268e−12

7 0 −1.45355896241852e−16 −8.66040572589100e−12

8 0 −5.16442909788313e−16 2.68828959093526e−10

9 0 −2.24605355923787e−16 −2.24709606477802e−9

10 0 7.88449567818682e−17 −5.07644815073149e−8
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The results show an improvement in the performance of the Analytic approach,
which for the first term

∫
N8,3N8,3 now matches Gaussian Quadrature in precision up

to 15 significant digits for the first four powers.
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Figure 5.49: Normalised Error

Figure 5.49 shows the improvement in the percentage error introduced when the
knot vector is normalised. The normalised curve begins to accumulate error only for
knot spacings in the region of 10−5 and above. The percentage error also shows a
reduction from a maximum error of 10−4% to 10−6%.

Further information on mitigating the difficulties that can be incurred when dealing
with floating-point arithmetic can be found in (Goldberg, 1991).

Gramian Matrices

The results discussed so far have been primarily to stress test the Analytic approach
by pushing it to extreme conditions unlikely to occur in practice. Figures 5.50–5.57,
inclusive, show screen grabs of each of the Gramian matrices generated by the Java
implementation of the algorithms discussed for the more usual scenario of cubic curves
with even knot spacing 6. As the results show, with the exception of occasional vari-
ances in the least significant digits (a numerical effect that affects both the Gaussian
Quadrature and the Analytic approaches presented), the results match in each case.

6For each figure “gram” stands for Gramian Matrix, labeled according to their respective derivative
components as follows G00, G11, G22, and G10
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0 1 2 3
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

1.42857142857142e-01 8.75000000000000e-02 1.84523809523809e-02 1.19047619047619e-03
2.21428571428571e-01 1.56249999999999e-01 3.45238095238095e-02 2.97619047619047e-04
3.26785714285714e-01 2.24603174603174e-01 2.37103174603174e-02 1.98412698412698e-04
4.79365079365079e-01 2.36309523809523e-01 2.38095238095238e-02 1.98412698412698e-04
4.79365079365079e-01 2.36309523809523e-01 2.38095238095238e-02 1.98412698412698e-04
4.79365079365079e-01 2.36309523809523e-01 2.38095238095238e-02 1.98412698412698e-04
4.79365079365079e-01 2.36309523809523e-01 2.38095238095238e-02 1.98412698412698e-04
4.79365079365079e-01 2.36309523809523e-01 2.38095238095238e-02 1.98412698412698e-04
4.79365079365079e-01 2.36309523809523e-01 2.38095238095238e-02 1.98412698412698e-04
4.79365079365079e-01 2.36309523809523e-01 2.38095238095238e-02 1.98412698412698e-04
4.79365079365079e-01 2.36309523809523e-01 2.38095238095238e-02 1.98412698412698e-04
4.79365079365079e-01 2.36309523809523e-01 2.37103174603174e-02 2.97619047619047e-04
4.79365079365079e-01 2.24603174603174e-01 3.45238095238095e-02 1.19047619047619e-03
3.26785714285714e-01 1.56250000000000e-01 1.84523809523809e-02 0.00000000000000e+00
2.21428571428571e-01 8.75000000000000e-02 0.00000000000000e+00 0.00000000000000e+00
1.42857142857142e-01 0.00000000000000e+00 0.00000000000000e+00 0.00000000000000e+00

Figure 5.50: Analytic G00
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1.42857142857142e-01 8.75000000000000e-02 1.84523809523809e-02 1.19047619047619e-03
2.21428571428571e-01 1.56250000000000e-01 3.45238095238095e-02 2.97619047619047e-04
3.26785714285714e-01 2.24603174603174e-01 2.37103174603174e-02 1.98412698412698e-04
4.79365079365079e-01 2.36309523809523e-01 2.38095238095238e-02 1.98412698412698e-04
4.79365079365079e-01 2.36309523809523e-01 2.38095238095238e-02 1.98412698412698e-04
4.79365079365079e-01 2.36309523809523e-01 2.38095238095238e-02 1.98412698412698e-04
4.79365079365079e-01 2.36309523809523e-01 2.38095238095238e-02 1.98412698412698e-04
4.79365079365079e-01 2.36309523809523e-01 2.38095238095238e-02 1.98412698412698e-04
4.79365079365079e-01 2.36309523809523e-01 2.38095238095238e-02 1.98412698412698e-04
4.79365079365079e-01 2.36309523809523e-01 2.38095238095238e-02 1.98412698412698e-04
4.79365079365079e-01 2.36309523809523e-01 2.38095238095238e-02 1.98412698412698e-04
4.79365079365079e-01 2.36309523809523e-01 2.37103174603174e-02 2.97619047619047e-04
4.79365079365079e-01 2.24603174603174e-01 3.45238095238095e-02 1.19047619047619e-03
3.26785714285714e-01 1.56250000000000e-01 1.84523809523809e-02 0.00000000000000e+00
2.21428571428571e-01 8.75000000000000e-02 0.00000000000000e+00 0.00000000000000e+00
1.42857142857142e-01 0.00000000000000e+00 0.00000000000000e+00 0.00000000000000e+00

Figure 5.51: Gaussian G00

164



5.9. Results

0 1 2 3
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

1.80000000000000e+00 -1.27500000000000e+00 -4.75000000000000e-01 -5.00000000000000e-02
1.50000000000000e+00 .50000000000000e-01 -1.25000000000000e-02
6.75000000000000e-01 -3.3333333333333 e-02 -1.95833333333333e-01 -8.33333333333333e-03
6.66666666666667e-01 -1.25000000000000e-01 -2.00000000000000e-01 -8.33333333333333e-03
6.66666666666667e-01 -1.25000000000000e-01 -2.00000000000000e-01 -8.33333333333333e-03
6.66666666666667e-01 -1.25000000000000e-01 -2.00000000000000e-01 -8.33333333333333e-03
6.66666666666667e-01 -1.25000000000000e-01 -2.00000000000000e-01 -8.33333333333333e-03
6.66666666666667e-01 -1.25000000000000e-01 -2.00000000000000e-01 -8.33333333333333e-03
6.66666666666667e-01 -1.25000000000000e-01 -2.00000000000000e-01 -8.33333333333333e-03
6.66666666666667e-01 -1.25000000000000e-01 -2.00000000000000e-01 -8.33333333333333e-03
6.66666666666667e-01 -1.25000000000000e-01 -2.00000000000000e-01 -8.33333333333334e-03
6.66666666666667e-01 -1.25000000000000e-01 -1.95833333333333e-01 -1.25000000000000e-02
6.66666666666667e-01 -3.33333333333334e-02 -2.50000000000000e-01 -5.00000000000000e-02
6.75000000000001e-01 3.75000000000003e-02 -4.75000000000000e-013 0.00000000000000e+00
1.50000000000000e+00 -1.27500000000000e+00 0.00000000000000e+00 0.00000000000000e+00
1.80000000000000e+00 0.00000000000000e+00 0.00000000000000e+00 0.00000000000000e+00

3.75000000000000e-02
4

Figure 5.52: Analytic G11

0 1 2 3
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

1.80000000000000e+00 -1.27500000000000e+00 -4.75000000000000e-01 -5.00000000000000e-02
1.50000000000000e+00 3.75000000000000e-02 -2.50000000000000e-01 -1.25000000000000e-02
6.75000000000000e-01 -3.33333333333334e-02 -1.95833333333333e-01 -8.33333333333333e-03
6.66666666666667e-01 -1.25000000000000e-01 -2.00000000000000e-01 -8.33333333333333e-03
6.66666666666667e-01 -1.25000000000000e-01 -2.00000000000000e-01 -8.33333333333334e-03
6.66666666666667e-01 -1.25000000000000e-01 -2.00000000000000e-01 -8.33333333333334e-03
6.66666666666667e-01 -1.25000000000000e-01 -2.00000000000000e-01 -8.33333333333334e-03
6.66666666666667e-01 -1.25000000000000e-01 -2.00000000000000e-01 -8.33333333333334e-03
6.66666666666667e-01 -1.25000000000000e-01 -2.00000000000000e-01 -8.33333333333334e-03
6.66666666666667e-01 -1.25000000000000e-01 -2.00000000000000e-01 -8.33333333333334e-03
6.66666666666667e-01 -1.25000000000000e-01 -2.00000000000000e-01 -8.33333333333334e-03
6.66666666666667e-01 -1.25000000000000e-01 -1.95833333333333e-01 -1.25000000000000e-02
6.66666666666667e-01 -3.33333333333334e-02 -2.50000000000000e-01 -5.00000000000000e-02
6.75000000000000e-01 3.75000000000003e-02 -4.75000000000000e-01 0.00000000000000e+00
1.50000000000000e+00 -1.27500000000000e+00 0.00000000000000e+00 0.00000000000000e+00
1.80000000000000e+00 0.00000000000000e+00 0.00000000000000e+00 0.00000000000000e+00

Figure 5.53: Gaussian G11
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5.9. Results

0 1 2 3
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

1.20000000000000e+01 -1.65000000000000e+01 3.50000000000000e+00 1.00000000000000e+00
2.40000000000000e+01 -6.75000000000000e+00 -1.00000000000000e+00 2.50000000000000e-01
4.50000000000000e+00 -1.33333333333333e+00 -8.33333333333334e-02 1.66666666666667e-01
2.66666666666667e+00 -1.50000000000000e+00 0.00000000000000e+00 1.66666666666667e-01
2.66666666666667e+00 -1.50000000000000e+00 0.00000000000000e+00 1.66666666666667e-01
2.66666666666667e+00 -1.50000000000000e+00 0.00000000000000e+00 1.66666666666667e-01
2.66666666666667e+00 -1.50000000000000e+00 0.00000000000000e+00 1.66666666666667e-01
2.66666666666667e+00 -1.50000000000000e+00 0.00000000000000e+00 1.66666666666667e-01
2.66666666666667e+00 -1.50000000000000e+00 0.00000000000000e+00 1.66666666666667e-01
2.66666666666667e+00 -1.50000000000000e+00 0.00000000000000e+00 1.66666666666667e-01
2.66666666666667e+00 -1.50000000000000e+00 0.00000000000000e+00 1.66666666666667e-01
2.66666666666667e+00 -1.50000000000000e+00 -8.33333333333334e-02 2.50000000000000e-01
2.66666666666667e+00 -1.33333333333333e+00 -1.00000000000000e+00 1.00000000000000e+00
4.50000000000000e+00 -6.75000000000000e+00 3.50000000000000e+00 0.00000000000000e+00
2.40000000000000e+01 -1.65000000000000e+01 0.00000000000000e+00 0.00000000000000e+00
1.20000000000000e+01 0.00000000000000e+00 0.00000000000000e+00 0.00000000000000e+00

Figure 5.54: Analytic G22

0 1 2 3
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

1.20000000000000e+01 -1.65000000000000e+01 3.50000000000000e+00 1.00000000000000e+00
2.40000000000000e+01 -6.75000000000000e+00 -1.00000000000000e+00 2.50000000000000e-01
4.50000000000000e+00 -1.33333333333333e+00 -8.33333333333333e-02 1.66666666666667e-01
2.66666666666667e+00 -1.50000000000000e+00 2.35922392732846e-16 1.66666666666667e-01
2.66666666666667e+00 -1.50000000000000e+00 -1.63064006741820e-16 1.66666666666667e-01
2.66666666666667e+00 -1.50000000000000e+00 -5.51642065360625e-16 1.66666666666667e-01
2.66666666666667e+00 -1.50000000000000e+00 -5.51642065360625e-16 1.66666666666667e-01
2.66666666666667e+00 -1.50000000000000e+00 -5.51642065360625e-16 1.66666666666667e-01
2.66666666666667e+00 -1.50000000000000e+00 -5.51642065360625e-16 1.66666666666667e-01
2.66666666666667e+00 -1.50000000000000e+00 -5.51642065360625e-16 1.66666666666667e-01
2.66666666666667e+00 -1.50000000000000e+00 -5.51642065360625e-16 1.66666666666667e-01
2.66666666666667e+00 -1.50000000000000e+00 -8.33333333333340e-02 2.50000000000000e-01
2.66666666666667e+00 -1.33333333333333e+00 -1.00000000000000e+00 1.00000000000000e+00
4.50000000000000e+00 -6.75000000000000e+00 3.50000000000000e+00 0.00000000000000e+00
2.40000000000000e+01 -1.65000000000000e+01 0.00000000000000e+00 0.00000000000000e+00
1.20000000000000e+01 0.00000000000000e+00 0.00000000000000e+00 0.00000000000000e+00

Figure 5.55: Gaussian G22
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5.9. Results

0 1 2 3
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

-5.00000000000000e-01 -3.87500000000000e-01 -1.04166666666667e-01 -8.33333333333333e-03
2.22044604925031e-16 -2.77083333333333e-01 -1.08333333333333e-01 -2.08333333333333e-03
0.00000000000000e+00 -3.02777777777778e-01 -7.70833333333333e-02 -1.38888888888889e-03
0.00000000000000e+00 -3.40277777777778e-01 -7.77777777777778e-02 -1.38888888888889e-03
0.00000000000000e+00 -3.40277777777778e-01 -7.77777777777778e-02 -1.38888888888889e-03
0.00000000000000e+00 -3.40277777777778e-01 -7.77777777777778e-02 -1.38888888888889e-03
0.00000000000000e+00 -3.40277777777778e-01 -7.77777777777778e-02 -1.38888888888889e-03
0.00000000000000e+00 -3.40277777777778e-01 -7.77777777777778e-02 -1.38888888888889e-03
0.00000000000000e+00 -3.40277777777778e-01 -7.77777777777778e-02 -1.38888888888889e-03
0.00000000000000e+00 -3.40277777777778e-01 -7.77777777777778e-02 -1.38888888888889e-03
0.00000000000000e+00 -3.40277777777778e-01 -7.77777777777778e-02 -1.38888888888889e-03
0.00000000000000e+00 -3.40277777777778e-01 -7.70833333333333e-02 -2.08333333333333e-03
4.44089209850063e-16 -3.02777777777778e-01 -1.08333333333333e-01 -8.33333333333333e-03
0.00000000000000e+00 -2.77083333333333e-01 -1.04166666666667e-01 0.00000000000000e+00
0.00000000000000e+00 -3.87500000000000e-01 0.00000000000000e+00 0.00000000000000e+00
5.00000000000000e-01 0.00000000000000e+00 0.00000000000000e+00 0.00000000000000e+00

Figure 5.56: Analytic G10

0 1 2 3
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

-5.00000000000000e-01 -3.87500000000000e-01 -1.04166666666667e-01 -8.33333333333334e-03
7.00430072930302e-19 -2.77083333333333e-01 -1.08333333333333e-01 -2.08333333333333e-03
3.01603716360553e-17 -3.02777777777778e-01 -7.70833333333334e-02 -1.38888888888889e-03
5.09770533477770e-17 -3.40277777777778e-01 -7.77777777777778e-02 -1.38888888888889e-03
1.62818228220773e-17 -3.40277777777778e-01 -7.77777777777778e-02 -1.38888888888889e-03
-7.73932448806703e-17 -3.40277777777778e-01 -7.77777777777778e-02 -1.38888888888889e-03
5.87348196621648e-18 -3.40277777777778e-01 -7.77777777777778e-02 -1.38888888888889e-03
5.87348196621648e-18 -3.40277777777778e-01 -7.77777777777778e-02 -1.38888888888889e-03
5.87348196621648e-18 -3.40277777777778e-01 -7.77777777777778e-02 -1.38888888888889e-03
5.87348196621648e-18 -3.40277777777778e-01 -7.77777777777778e-02 -1.38888888888889e-03
5.87348196621648e-18 -3.40277777777778e-01 -7.77777777777778e-02 -1.38888888888889e-03
5.87348196621648e-18 -3.40277777777778e-01 -7.70833333333333e-02 -2.08333333333333e-03
5.87348196621648e-18 -3.02777777777778e-01 -1.08333333333333e-01 -8.33333333333334e-03
4.33680868994202e-19 -2.77083333333333e-01 -1.04166666666667e-01 0.00000000000000e+00
-2.49800180540660e-16 -3.87499999999999e-01 0.00000000000000e+00 0.00000000000000e+00
5.00000000000000e-01 0.00000000000000e+00 0.00000000000000e+00 0.00000000000000e+00

Figure 5.57: Gaussian G10
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5.9. Results

5.9.3 Discussion

The Analytic approach presented in this chapter reduces the computational complexity
dramatically such that it is more than 3 times faster than the Gaussian Quadrature
approach for themost practical cases discussed and achieves very high levels of accuracy.
Additionally, both the accuracy, computational complexity, and performance times
improve with increasing degree. This is of great importance for interactive applications
such as prototyping and Virtual Sculpting but also for processing models that consist
of large numbers of patches.

While the Gaussian Quadrature computation is slightly more accurate than the
Analytic computation presented, for equally spaced knots, it can be seen that the
Analytic approach performs to the same degree of precision as Gaussian Quadrature
up to 15 significant digits. For reasonably spaced knots, the approach continues to
perform very well and provides accuracy up to eight decimal places for even the most
extreme case considered. Additionally, the accuracy of the approach improves with
increasing degree and, as demonstrated in the previous section, for a degree 10 curve
the error is all but eliminated.

It is important to note that the numerical differencing problem described above only
becomes an issue where a very small knot spacing occurs between two larger ones such
that the derivative over the anomalous knot span dominates the associated difference
terms on both sides. Practical cases typically involve cubic curves with reasonably
regular knot vectors. Where anomalous knots do occur, they are usually in the form
of repeated knots to manipulate curve continuity, or several knots are drawn closer
together to achieve directional effects in a curve.

Equally, it is important to note that while the error of the Analytic approach is all
but removed for curves of high degree, in practice, cubic curves are the most commonly
used curves. Higher order curves (degree 5 or greater) are used in industry for the
design of highly smooth aesthetic surfaces such as those used for car body design, but
cubic curves are the most prevalent for general design purposes. Autodesk’s Maya
supports curves up to degree 7 (AutoDesk, 2012) but notes that the inclusion of the
higher degrees is predominantly to facilitate data exchange with other CAD packages.

Tolerance levels in industry, for the machine fabrication of products, are typically of
the order of 0.0001mm-1mm and as models are typically composed of multiple patches,
the error incurred using the Analytic approach would typically fall well inside these
tolerances. Where greater accuracy is required for the most extreme cases, there are
several numerical techniques for handling summations and differences that can reduce
the impact of numerical error (Press et al., 2007, Goldberg, 1991). Such techniques range
from ones of relatively small additional computational expense, e.g., normalisation to
those of more significant computational expense, e.g., higher precision data. There are
various number formats available in the different programming languages that can
accommodate higher precision. However, use of such techniques may impact on the
speed of the computations. There are also several algorithms that act to actively com-
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5.10. Conclusions

pensate for numerical error as it is introduced, e.g., the Kahan Summation Algorithm
(Goldberg, 2001).

In Section 5.3.1, it was noted that recent research by Hughes et al. (2010) has presen-
ted reduced quadrature rules for Gaussian Quadrature that take advantage of a-priori
knowledge of the continuity of a B-Spline/NURBS curve across each knot. The impact
of the approach improves with increasing numbers of control points. In respect of the
cases presented in this chapter, for the best case scenario using the reduced quadrature
rules, as the number of points tends towards infinity the number of sample points
required tends asymptotically towards half those required using the standard Gaussian
Quadrature approach presented in this chapter. It is likely that this approach will
replace existing Gaussian Quadrature rules as the state of the art Gaussian Quadrature
approach in time. However, the Analytic approach presented in this chapter still outper-
forms the approach of Hughes et al. (2010) on computational complexity. Additionally,
no assumptions are made about the continuity of the Active Surface in the proposed
Analytic approach.

5.10 Conclusions
In this chapter a summary of existing techniques for the construction and assembly of
the stiffness matrix associated with an Active B-spline Surface, is presented, identifying
GaussianQuadrature as the state of the art approach. A gap in the literature is identified
with regard to implementation details of the technique for the specific problem of
constructing the stiffness matrix of an Active B-Spline Surface. Efficiencies that arise as
a result of the specific problem domain are identified and an efficient tailored Gaussian
Quadrature algorithm is then developed capitalising on further efficiencies specific to
a Gaussian Quadrature solution of the B-Spline problem.

A more direct Analytic approach is then considered with the aim of achieving
greater efficiency, resulting in a novel approach and efficient algorithm that is shown
both theoretically and experimentally to significantly outperform the Gaussian Quad-
rature approach in terms of efficiency, while preserving high levels of accuracy and
stability. The performance gain is mainly due to the mathematical efficiency introduced
whereby only a single sample per span is required, regardless of the degree of the curve.
Additionally, unlike other existing approaches, no assumptions about the regularity of
the active surface are made in order to achieve the savings. Algorithmic efficiencies
are also employed to optimise the necessary number of calculations. The technique is
shown to be equally applicable to cases where theα and β parameters of the model are
more complex functions of both u and v. An additional benefit of the approach is that
it also facilitates an analytic evaluation of the mass, damping, and forcing functions.

An extension to the important case of NURBS is presented and while a direct
analytic solution is as yet unavailable for NURBS, it is demonstrated how the Analytic
approach for a non-rational B-Spline can be modified to approximate a solution.
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5.10. Conclusions

As part of the development of the proposed Analytic approach, theory relating to
the integral and repeated integral of a B-Spline basis function is derived, and efficient
algorithms for computing such integrals are developed and shown to be highly accurate
and stable. An important special case relating to the repeated differentiation of a B-
Spline basis function, neglected in the literature, is identified and novel algorithms for
dealing with the special case are provided.

While the Analytic algorithm does not perform as accurately as Gaussian Quad-
rature in extreme cases, due to the propagation of floating-point errors, the algorithm
is shown to achieve very high levels of accuracy up to and beyond most practical
cases. Additionally, for interactive CAD prototyping or Virtual Sculpting applications,
compromises on accuracy are often made in practice to achieve acceptable levels of
interaction. An analysis of the small numerical error incurred by the Analytic approach
identifies the root cause of the error and suggestions are offered as to ways of achieving
greater accuracy.

Overall, the experiments show that the reduction in computational complexity
achieved by the proposed Analytic approach presented in this chapter, facilitates signi-
ficant computational savings of between 63% to 77%, making the algorithm up to 4.3
times faster for the cases presented, at a cost of as little as 0% – 10−4% drop in accuracy
from regular to extreme cases of knot spacing respectively.

The solution presented in this chapter not only facilitates interactive intuitive design,
but can also readily replace current numeric solvers for the analysis process, such that
the issues caused by division in representations are fully resolved (See Figure 5.58).
The presented approach not only removes the need for the costly conversion to an FEM
representation that makes up to 80% of the total cost of analysis, but it also reduces
the computational complexity of the Gaussian Quadrature such that the remaining
analysis is up to 4.3 times faster for the cases considered.
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5.10. Conclusions
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6Virtual Sculpting Environment

This chapter presents an overview of a Virtual Sculpting Environment that was de-
veloped over the course of this research as an experimental platform for proof of concept
of the ideas and methodologies recited. A fully fledged Sculpting Environment is bey-
ond the scope of this research. Rather, this chapter serves to illustrate how the ideas
and techniques presented can be integrated into a Virtual Sculpting Environment.

The chapter begins by outlining the high-level structure of the Virtual Sculpting
Environment. The architecture, the backend algorithms and structures, and its front
end structure and presentation, are briefly discussed. Additionally, examples are given
of the energy minimisation of an Active B-Spline Surface under the influence of its
own internal forces; and under the influence of a sculpting tool, subject to constraints.
Figure 6.1 shows a screen grab of the homescreen of the environment.

Figure 6.1: Virtual Sculpting Environment
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6.1. MVC Architecture

6.1 Model-View-Controller (MVC) Architecture
A model view controller architecture was adopted as the framework for managing the
Virtual Sculpting Environment. An MVC model is composed as follows:

• The model stores the data of the system

• The view creates the visual representation of the components from the data in
the model

• The controller deals with user interaction with the system components and mod-
ifies the model and/or the view in response to user actions as necessary.

Figure 6.2 depicts the composition of the architecture.

State 
Change 

Change 
Notification 

State 
Query 

View Selection 

User Gestures 

Method Invocations 

Events 

Controller 
• Defines application behaviour 
• Maps user actions to model updates 
• Selects view for response 

View 
• Renders the models 
• Requests updates from models 
• Sends user gestures to controller 
• Allows controller to select view 

Model 
• Encapsulates application state 
• Responds to state queries 
• Exposes application functionality 
• Notifies views of changes 

Figure 6.2: MVC Architecture

6.2 A note on Implementation
The JAVA3DAPI, a scene graphApplication Programming Interface (API) developed by
Sun Microsystems, provides a collection of high level constructs for creating, rendering
and manipulating a 3D scene graph. This scene graph API was chosen to manage and
organise the 3Dvirtual environment presented. In addition to scene graphmanagement,
the Java and Java3D APIs provide a rich library of tools to aid in complex 3D content
generation and interactive behaviours.
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6.3. Backend

Figure 6.3: Virtual Sculpting System: Backend Visualisation

6.3 Backend
In Chapter 4, a novel ACM-based approach for the Virtual Sculpting of an Active B-
Spline/NURBS Surface Model is proposed and the underlying mathematics developed.
The backend of the Virtual Sculpting Environment includes the development of a
JAVA 3D library implementing Active B-Spline/NURBS surfaces, built on the standard
NURBS algorithms presented in The NURBS Book by Piegl and Tiller (1997). The library
is extended to include the novel algorithms developed during the course of this research.
Chapter 5 presented both an optimised Gaussian Quadrature and a novel Analytic
solver for the set of energy equations derived. The chapter concluded with output from
the Java/Java3D modelling environment. Additional functionality provided by the
backend of the system is plotting of basis functions, derivatives and integrals. Figure 6.3
shows examples of plots and Gramian matrices illustrating the backend of the system.

6.4 Frontend
This section presents the user interface and functionality of the Virtual Environment. A
subset of the Java3DSceneGraph of the system is briefly covered in order to illlustrate the
pertinent frontend functionality. The system usage is then discussed before presenting
some examples of the energy minimisation of an Active B-Spline Surface Model under
the influence of its own internal forces and under the influence of a sculpting tool.
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6.4. Frontend

The Java3D SceneGraph is made up of two key components. The ViewBranchGraph
and the ContentBranchGraph. Figure 6.4 illustrates what is called the ViewBranchGraph
of the Java3D SceneGraph. This is where all of the functionality relating to viewing is
described. Monitoring 3D deformations on a 2D display can be enhanced by adding
additional views of the scene. The threeViews presented are along the the xy, xz, and yz
axes, respectively. These views are updated as the user navigates the 3D environment.

BG 

MultipleViewBranchGroup 

SimpleViewTransformGroup 

Views: Multiple Views 

Locale 

BranchGroup Nodes 

VirtualUniverse 

BG 

TG TransformGroup Nodes 

TG 

View Canvas3D 

Physical Body Physical Environment 

View Platform 

TG 

View Canvas3D 

Physical Body Physical Environment 

View Platform 

TG 

View Canvas3D 

Physical Body Physical Environment 

View Platform 

Content BranchGraph 

Figure 6.4: View BranchGraph: The do�ed blue line depicts the standard SceneGraph View, while
the do�ed red line depicts the multiple view environment

Figure 6.5 illustrates the ContentBranchGraph. The figure shows the key components
that interact with the backend in order to simulate the physics based deformation of
the Active B-Spline Surfaces. Each ‘BG’ symbol represents a distinct branch of the scene
graph known as a BranchGraph. Branches are used to organise related components in the
system such that the related items are governed by the same Transform (TransformGroup
or ‘TG’). The main components of the sytem are the NURBS objects themselves which
are made up by the three leaf node geometries denoted by ‘S’. The three nodes represent
the geometry of the NURBS surface itself, its Control Points and its Control Mesh. The
PickSpheresBranchGroup enables the user to interactively pick and directly move
control points in the system.

6.4.1 User Interface

Figure 6.1 illustrates the user interface of the Virtual Environment. There are a selection
of tools ranging from view settings to tool settings. The user can also specify weight
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Figure 6.5: Content BranchGraph

parameters that govern the stretch and bend in the Active B-Spline/NURBS Surface
Model.

6.4.2 System Usage

Using the system, a user generates a B-Spline/NURBS surface patch. The patch is
activated by choosing suitable values for the material properties. The surface points
can be enlarged to visually aid selection. Figure 6.6 illustrates the surface property
controls, where the material properties can be modified.

External forces are then calculated based on the perpendicular distance between the
Active B-Spline/NURBS Surface and the selected deformation tool. The deformation
tool is represented by a shape primitive and can be moved and resized freely within
the environment, as depicted in Figure 6.7.

The user can specify weight and step size parameters that affect howmuch and how
fast the Active B-Spline Model deforms to the sculpting tool as the energy is minimised.
Points/areas not to be affected by a given deformation can be marked up by the user
prior to sculpting. The model can be evaluated at all times during the sculpting process
from three orthogonal views framed by the xy, xz and yz axes, respectively.

Figure 6.8 (a) shows a frame captured from the environment, illustrating the specific-
ation of the Active B-Spline Surface. Figure 6.8 (b) shows the addition of the sculpting
tool.

Figures 6.9 (a) and (b) each show a cubic Active B-Spline Surface Model deforming
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Figure 6.6: Property Application and Control: Energy Properties

under the influence of the shape of the selected tool. In each of the examples shown,
the deformation tool is placed close to the Active B-Spline Surface Model which is
then permitted to deform under the influence of the tool, while satisfying its internal
constraints, until the user achieves the required amount of deformation.

Figure 6.10 illustrates an Active B-Spline Surface collapsing to a point under the

(a) Tool Sizing (b) Tool Resizing

(c) Tool Property Controls

Figure 6.7: Property Application and Control: Tool Properties
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(a) Active Surface

(b) Sculpting Tool

Figure 6.8: Virtual Sculpting Environment showing planar Active B-Spline Surface and Sculpting Tool
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(a)

(b)

Figure 6.9: Virtual Sculpting Environment showing Active B-Spline planar surface with selected tool
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Figure 6.10: ACM surface deforming under internal forces.

influence of its own internal forces. As can be seen from the figure, the internal forces
act to flatten and shrink the Active B-Spline Surface.

Figure 6.11 illustrates a multi-patch model coming apart at its seams under the
influence of internal forces.
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(a) Active Multi-Patch Model

(b) Patch Tearing

Figure 6.11: Virtual Sculpting Environment showing Active B-Spline patch tearing under influence of
forces
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(a) (b) (c)

Figure 6.12: Virtual Sculpting Environment showing Active B-Spline patch deformation subject to
point contraints

Figure 6.12 illustrates an Active B-Spline batch collapsing under its own internal
forces subject to four point constraints. The points shown in red were fixed such that
they were not free to move under the action of the internal forces. As can be seen from
the figures, the sides of the patch become pinched as the model deforms.

Figure 6.13 shows an example of a proximity-based tool with a concavity. The tool
creates a bump on the surface by pulling the surface towards the concavity.

Figure 6.14 shows an example of a collision-based tool. The tool creates an indent
in the surface.

Finally, Figure 6.15 illustrates the action of gravity on a falling surface patch. This
model incorporates mass and damping properties such that the model animates under
the application of the external force. On contact with the spherical tool, the patch
drapes over the sphere.

(a) (b) (c)

Figure 6.13: Virtual Sculpting Environment showing proximity-based tool with a concavity operating
on the Active B-Spline patch
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(a) (b) (c)

Figure 6.14: Virtual Sculpting Environment showing patch deforming under collision with spherical
tool

6.5 Conclusions
This chapter has presented an overview of the proof of concept Virtual Sculpting
Environment, developed over the course of this research. The outputs of most of the
pertinent algorithms developed in this thesis were tested in Chapter 5. The Virtual
Sculpting Environment was developed as a proof of concept for the feasibility of the
proposed approach for the domain of Virtual Sculpting. The chapter presents examples
of the energy minimisation of an Active B-Spline Surface under the influence of its own
internal forces and under the influence of a sculpting tool, subject to constraints.

The initial implementation based upon this framework requires no more than the
interaction capabilities of a standard personal computer. In addition, the system re-
sponds in real-time to applied deformations, allowing the designer to instantly evaluate
the effect of applied modifications.

(a) (b) (c)

Figure 6.15: Virtual Sculpting Environment showing patch falling on obstacle under influence of
gravity
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An auxiliary contribution of this research is the development of a JAVA 3D library
implementingActive B-Spline/NURBS surfaces, partially based on customised versions
of the algorithms presented in The NURBS Book by Piegl and Tiller (1997), and complete
with the novel algorithms developed during the course of this research.

This chapter demonstrates that the techniques presented in Chapters 4 and 5 can be
fully integrated within a Virtual Sculpting Environment to provide real time, intuitive,
and physically realistic interactions.

By facilitating a Virtual Sculpting paradigm within an interactive B-Spline/NURBS
design environment, with real-time feedback on design decisions, the complexity of
B-SplineNURBS mathematics is hidden behind the more familiar sculpting metaphor.
The overall approach has the potential not only to greatly reduce the time investments
currently made by computer graphics designers, but also facilitates a seamless integra-
tion with existing CAD frameworks (See Figure 6.16).
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7Conclusions and Future Work

This thesis has developed a novel framework for Efficient Analysis of Active B-Spline/
NURBS surface models with application to Virtual Sculpting. The main objective of
the thesis is to address design and analysis challenges in traditional CAD workflows
relating to both divisions in representation resulting in conversion bottlenecks and the
use of computationally expensive numeric techniques. This chapter presents an outline
of the findings and contributions of this thesis. A list of the publications which have
arisen as a result of this work is also included. Some extensions and suggested future
directions of this research are then highlighted. Finally, a brief discussion is included
comparing the stated objectives with the achievements of the research.

7.1 Summary of Contributions
The immediate contribution of this work is the overall method that provides, for the
first time, a seamless Virtual Sculpting design and analysis methodology for freeform
surfaces that is fully compatible with existing CAD frameworks. The innovative Ana-
lytic solver not only facilitates interactive intuitive design, but can also readily replace
current numeric solvers for the analysis process, such that traditional issues caused by
division in representations are fully resolved.

The main findings and contributions resulting from this thesis are identified and
summarised below.

7.1.1 Literature Review

Freeform surface design and analysis has broad applications across the many disparate
domains of computing. Consequently there is a vast body of literature that must be
examined in order to fully appreciate the current state of the art. The extent of the
literature has served to confuse and overwhelm general practitioners. In Chapter 2, a
detailed exposition of the pertinent literature is presented. This exposition serves not
only to illuminate the current state of the art, but also to provide a historical context
such that the motivations of the contrasting techniques and their developments can be
fully appreciated. The various methodologies are compared, contrasted and critiqued.
The presented analysis facilitated an informed design decision for the purpose of this
research, and also provides general practitioners with the necessary background to
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7.1. Summary of Contributions

enable informed design decisions. No other work was found in the literature that
details the full spectrum of methods across the variety of domains that contribute to
state of the art in freeform design.

7.1.2 Unification of Energy-Based Deformable Surface
Modelling Methods

The use of energy-based techniques for the implementation of physically aware deform-
ablemodels is widespread across amultitude of computing domains. As a consequence,
a wide range of disparate approaches to representing and solving the associated energy
minimisations have emerged in the literature. Both terminologies and, more import-
antly, model origins and derivations, vary across the different disciplines to the extent
that their relationships are ambiguous in the literature relating to Computer Graph-
ics, Machine Vision, and Visualisation. In Chapter 3, the ambiguities are addressed
by showing how the most common energy minimisation approaches for deformable
modelling are in fact all derived from the same foundations in continuum mechanics.
Seemingly different models, from the fields of classical continuum mechanics and
differential geometry, are shown to be largely similar in a thorough treatment of their
theoretical derivations. It is also demonstrated that further ambiguities arise where
subtle similarities between seemingly different models are introduced as a consequence
of the solvers employed to perform the energy minimisations. By formalising the the-
oretical relationships between the different classes of energy-based models currently
in use, a unified approach to their representation is developed, thus resolving the
discussed ambiguities.

7.1.3 Novel ACM-Based Approach for the Virtual Sculpting of
an Active B-Spline/NURBS Surface Model

In Chapter 4, a novel ACM-based approach for the Virtual Sculpting of an Active B-
Spline/NURBS Surface Model is proposed. The novelties of this approach stem from
several sources: firstly, the adoption of the ACM philosophy in its design approach via
energy based minimisation under the influence of shaped features/tools, and also in
its user controlled evolution; secondly, in its development as an analytic approach to
energy-basedminimisation; thirdly, in its application to the domain of Virtual Sculpting;
and finally, its customisation for B-Spline/NURBS representations which heretofore
have not had the benefit of the true embodiment of a Virtual Sculpting metaphor. This
facilitates intuitive deformations of an Active B-Spline Surface through the application
of forces derived from shape primitives. A major benefit of the proposed approach is
the fully analytic description of the physics-based design metaphor. Unlike previous
approaches, this allows for seamless integration with existing CADworkflows, without
the need for conversions of representation. An additional contribution of the develop-
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ment of the approach is the thorough treatment of the underlying mathematics of an
Active B-Spline surface which could not be found in the literature.

7.1.4 An E�icient Mathematical Framework for Solving
Energy-Based Deformations of B-Spline/NURBS Surface
Models

A novel Efficient Mathematical Framework for solving Energy-Based Deformations of
B-Spline/NURBS Surface Models was developed in Chapter 5 based on an analytic
solution of the equations developed for the description of the surface and its energy
in Chapter 4. The proposed Analytic approach is shown to significantly reduce the
computational complexity of the energy problem. Algorithmic efficiencies are also iden-
tified and applied equally to both the Analytic and Gaussian Quadrature approaches
such that there is no unnecessary repetition of calculations in either approach. The
resulting algorithm for the Analytic approach is shown to be up to 4.3 times faster
than the state of the art Gaussian Quadrature approach at computing the Stiffness
Matrix of the Active B-Spline Surface, one of the more time consuming operations in
computer-based deformable modelling applications. Previously, a direct analytic solu-
tion was not available for B-Spline/NURBS Surface Models. While initially designed
to facilitate the seamless integration of a Virtual Sculpting paradigm within the CAD
design process, the proposed Analytic solver can also readily replace current numeric
solvers for the analysis process. The combination of the Computationally Efficient
Mathematical Framework and the ACM-based approach for Virtual Sculpting of an
Active B-Spline/NURBS Surface Model thus constitutes a fully integrated, seamless,
and interactive freeform surface design and analysis methodology.

Several distinct contributions led to the design and analysis methodology: the pro-
posed technique is benchmarked against Gaussian Quadrature, the state of the art
numerical method for energy minimisation of a B-Spline/NURBS surface. Gaussian
Quadrature is often treated as a black box numeric solver and standard algorithms for
its implementation exist. However, as a result of thorough treatment of its operation,
and study relating to its application to the energy minimisation problem discussed,
numerous problem-specific and approach-specific efficiencies were identified and incor-
porated into a tailored Gaussian Quadrature algorithm that is presented for application
to B-Spline/NURBS representations. The enhanced algorithm was used to benchmark
the proposed Analytic approach which was shown through rigorous experimentation,
in both simulated and real tests, to bemore than four times faster thanGaussianQuadrat-
ure. Detailed numerical testing and analysis of the resulting algorithms demonstrates
that for practical cases, the Analytic approach provides a very high degree of accuracy.
A detailed analysis of the causes and effects of small roundoff errors in extreme cases
is presented, and methods for minimising their impact are proposed.
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As part of the development of the outlined approaches, properties of the integrals
and derivatives of a B-Spline basis function, neglected by the literature, are exposed
and presented. Physical and graphical interpretations of the underlying mechanics
of the analytic solution are also developed and presented. The approach is shown to
be fully extensible to the case of varying material parameters and forcing functions
and also to the important case of NURBS, by virtue of the approximating powers of
B-Splines.

7.1.5 Prototype Virtual Sculpting Environment

A Virtual Sculpting Environment is presented in Chapter 6, implementing the pro-
posed interactive design technique. The outputs of most of the pertinent algorithms
developed in this thesis were tested in Chapter 5. The Virtual Sculpting Environment
was developed as a proof of concept for the feasibility of the proposed approach for
the domain of Virtual Sculpting. The chapter presents examples of the energy min-
imisation of an Active B-Spline Surface under the influence of its own internal forces
and under the influence of a sculpting tool, subject to constraints. An auxiliary contri-
bution of this research is the development of a JAVA 3D library implementing Active
B-Spline/NURBS surfaces, partially based on customised versions of the algorithms
presented in The NURBS Book by Piegl and Tiller (1997), and complete with the novel
algorithms developed during the course of this research.

7.2 Publications Arising
The following peer-reviewed publications stem directly from this research.

Efficient Energy Evaluations for Active B-Spline/NURBS Surfaces, Moore, P. and
Molloy, D., Computer-Aided Design, In Press, Accepted Manuscript 2013 (Moore and
Molloy, 2013).

Active B-Spline Surface Models for Intuitive 3D Virtual Sculpting, Moore, P. and
Molloy, D., In Proceedings of the 28th Spring Conference on Computer Graphics 2012,
Smolenice, Slovakia (Moore and Molloy, 2012).

Active Contour Models for Computer Graphics ShapeModelling and Deformation,
Moore, P. and Molloy, D., In Proceedings of Vision, Graphics, and Visualisation 2008,
Trinity College Dublin, Ireland (Moore and Molloy, 2008a).

Virtual Sculpting: Active ContourModels for ComputerGraphics ShapeModelling
andDeformation, Moore, P. andMolloy, D., In In Proceedings of EuroGraphics Ireland,
2007, University College Dublin, Ireland (Moore and Molloy, 2007b).
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A Survey of Computer-Based Deformable Models, Moore, P. and Molloy, D., In Pro-
ceedings of the International Machine Vision and Image Processing Conference, 2007,
NUI Maynooth, Ireland (Moore and Molloy, 2007a).

Active SurfaceMeshes for Intuitive 3DComputer Graphics ShapeDeformation and
Modelling, Moore, P. and Molloy, D., In Proceedings of the Irish Machine Vision and
Image Processing Conference, 2006, Dublin City University, Ireland (Moore andMolloy,
2006).

Auxiliary publications

Automatic Construction of 3DHumanModels fromOnly TwoOrthographic Projec-
tions, Moore, P., Boyle, E. andMolloy, D., In Proceedings of EuroGraphics Ireland, 2005,
Institute of Technology Blanchardstown, Ireland (Moore et al., 2005).

Seminars

Virtual Sculpting: Active Surface Meshes for Intuitive Computer Graphics Shape
Modelling and Deformation, Moore, P. and Molloy, D., RINCE Research Seminar
Series, Dublin, Ireland, 2008 (Moore and Molloy, 2008b).

7.3 Directions for Future Research
The generality of the Efficient Mathematical Framework presented in this thesis opens
up a wide range of future directions for research. In this section, several extensions
and related topics to this work worthy of further investigation are briefly described.

7.3.1 Enhanced Computational E�iciency

Farin (2002) and Vassilev (1997) note that the vectorisation of the control point matrix,
a standard approach when dealing with B-Spline Surfaces, adds computational com-
plexity to the solution of the problem. Where the Matrix structure of the control points
can be preserved, the system is of type AXB = D which can be solved in two passes,
reducing the computational cost from O(r6), for the traditional case, to O(r4). Further
investigation is merited to ascertain if this is possible within the analytic framework
presented in this thesis.

7.3.2 Exact Extension to NURBS

The extension toNURBS presented in this thesis is an approximating extension, relevant
to NURBS because of the approximation properties of B-splines (Hughes et al., 2010).
An area worthy of further exploration is to ascertain if the analytic approach presented
in this thesis may be used to obtain an exact analytic solution for the NURBS case.
Integrals of rational functions are notoriously difficult to work with. Further work is
needed to determine if the techniques presented in this thesis could be employed to
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group the terms in such a way as to reduce the complex rational term to a summation
of its samples.

7.3.3 Non-Linear Analysis
The Virtual Sculpting approach developed in this thesis is a linearised approximation
of the true mechanics of a physical deformation as developed in Chapter 3. For CAD
applications, linear models are good approximate solvers as the materials used within
CAD environments generally operate within linear specifications. Non-linear systems
are prevalent in areas such as medical visualisation of soft tissues and cloth modelling
(Etzmuß et al., 2003, Nealen et al., 2006), where large deformations can occur and
accuracy can be degraded where linear approximations are made. The significant
savings achieved by the computationally efficient mathematical framework presented
in this thesis may make the approach viable for the interactive simulation of non-linear
systems.

7.3.4 Multi-Patch Models
The generalisation from B-Spline curves to surfaces uses a tensor-product construction,
resulting in a rectangular parameter space and a surface that is topologically equivalent
to a plane. Closing or looping the parameter space makes it possible to create a surface
that is topologically an open cylinder or a torus, but a single patch cannot represent
a surface of higher genus. To overcome this restriction, multiple patches are stitched
together to facilitate more complex designs. For Active B-Spline Surfaces, this presents
a problem of connecting the physics substrate across patches. This is very much an
unsolved problem in the literature. Pungotra et al. (2010) attempt a solution by merging
patches together to create a single larger patch. This is achieved by discretising the
multiple patches to a discrete set of points and fitting a new B-Spline surface to the
discrete points using a global interpolation technique. However, the approach does
not solve the problem. By merging rectangular patches into a single larger rectangular
patch, nothing is gained in terms of topological freedom. It may be more advantageous
to store the individual patches as separate elements and implement the desired effects
in software rather than mathematics. The Object Oriented approach adopted in the
development of the application presented in this thesis may facilitate the stitching of
multiple patches by virtue of what might be called a quirk in Object Oriented Pro-
gramming. By sharing references to the control points governing a desired seam in the
model, there may be scope to facilitate the merging of multiple patches, while ensuring
the propagation of internal forces with no tearing at the seams. This would facilitate
much greater flexibility in topology.

7.3.5 ACM/Snake Applications
The techniques presented in this thesis have broad scope and influence for many tasks
outside of the Virtual Sculpting domain, e.g., within Machine Vision and Visualisa-
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tion. The approach to Virtual Sculpting presented in this thesis drew its inspiration
from the proven machine vision approach of ACMs. An area of future research, that
now somewhat ironically holds much promise, is to explore the many opportunities
for improvements that exist within Machine Vision and Visualisation. ACM curves
and their generalisation to 3D systems have been used for a wide variety of image
processing tasks including edge detection, image segmentation, model fitting, and
motion tracking (Richens et al., 1992, Ferrier et al., 1994, Vieren et al., 1995, Cohen, 1996,
Derraz et al., 2004). This list is by no means exhaustive as ACMs are used for a host of
image processing and visualisation tasks. From the literature, numerical approaches
such as FEM methods are the current state of the art for solving such systems. Where
B-Spline/NURBS form the geometric substrate of the model, which in practice is often
the case (Menet et al., 1990, Meegama and Rajapakse, 2003), the Analytic approach
presented in this thesis, for solving for the energies, can be employed.

7.4 Concluding Remarks
This thesis set out to develop an approach to interactive freeform surface design to
tighten the design/analysis loop in CAD applications by removing the bottlenecks
created by model conversions, and facilitate the seamless integration of a true Virtual
Sculpting paradigmwithin existing CADworkflows. The overall goal was to deliver the
situation depicted by Figure 7.1. The overall ACM-based Virtual Sculpting approach to
freeform surface design that is presented in this thesis achieves this goal by imposing
the Virtual Sculpting metaphor upon a single fully analytic model and solver. The
Analytic approach has the potential to free designers from making decisions based on
analyses of incomplete, discrete descriptions of the geometric data. The model integrity
is preserved right through the often iterative design and analysis processes. The presen-
ted technique has the potential to draw the CAD design and analysis communities
closer together. This stems from the removal of the barriers in representation and
bottlenecks in conversion that exist in traditional workflows. The significant savings in
computation time, resulting from the analytic solution, have the potential to greatly
improve interactivity. Finally, the techniques and algorithms developed in this thesis
are quite general and have broad scope and influence for many tasks outside of the
Virtual Sculpting domain.

192



7.4. Concluding Remarks

Design/ Analysis 

Virtual Sculpting/ 
Analysis  

via Analytic Solver 

Visualise/ 
Simulate 

CAD B-Spline/NURBS  
Model 

CAD B-Spline/NURBS  
Model 

Figure 7.1: Proposed Seamless Virtual Sculpting Approach that preserves the analytic representation
throughout the design and analysis process
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Appendix A - Notation

A Note on Notation
The description of a deformable body requires dealing with vector and tensor fields
such as displacements, strains, and stresses. However, across the different domains,
the terminology and notations vary. While the terminology is difficult to group in
a meaningful way, in general, the notation surrounding vector and tensor fields can
be grouped under four main headings. Throughout the following discussions, the
standard domain specific notation is adopted in each case. For this reason, the various
notations are briefly outlined in this section. To illustrate the differences, the dot product
between two vectors a and b is shown in each notation.

Full Notation

As the title implies, full notation delivers a complete description of the system, without
relying on groupings, simplification, or abbreviations. There is no scope for ambiguity
and thus, this representation is desirable whenmoving between domains and facilitates
ease of understanding and a common frame of reference for meaningful comparisons
between techniques. However, this notation is rarely delivered in practice due to time
and space constraints.

a · b = a1b1 + a2b2 + a3b3 (1)

Direct Notation/Algebraic Notation

With direct notation, vectors and tensors are represented by single symbols, usually
bold letters. They are linked by the mathematical operators for dealing with such
representations, e.g., ∇ for gradient.

a · b (2)

Matrix Notation

Matrix notation is similar to Direct Notation. However, the mathematical operators are
dropped in favour of Matrix representations.

aTb (3)
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A Note on Notation

Indices/Componentwise Notation

Subscripted indices are often used to denote/identify the individual components of a
vector or tensor. It is often favoured for convenience as it is well suited to abbreviations
using Einstein summations. Using this notation, commas can be used to imply partial
derivatives.

aibi (4)
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