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Vinh Pham-Xuan Accelerated iterative solver for the solution of electromagnetic scattering and wave propagation problems

Abstract

The aim of this work is to contribute to the development of accelerated iterative methods
for the solution of electromagnetic scattering and wave propagation problems. In spite of
recent advances in computer science, there are great demands for efficient and accurate
techniques for the analysis of electromagnetic problems. This is due to the increase of the
electrical size of electromagnetic problems and a large amount of design and analytical
work dependent on simulation tools. This dissertation concentrates on the use of iterative
techniques, which are expedited by appropriate acceleration methods, to accurately solve
electromagnetic problems. There are four main contributions attributed to this disserta-
tion. The first two contributions focus on the development of stationary iterative methods
while the other two focus on the use of Krylov iterative methods. The contributions are

summarised as follows:

e The modified multilevel fast multipole method is proposed to accelerate the perfor-
mance of stationary iterative solvers. The proposed method is combined with the
buffered block forward backward method and the overlapping domain decomposi-
tion method for the solution of perfectly conducting three dimensional scattering
problems. The proposed method is more efficient than the standard multilevel fast

multipole method when applied to stationary iterative solvers.

e The modified improvement step is proposed to improve the convergence rate of sta-
tionary iterative solvers. The proposed method is applied for the solution of random
rough surface scattering problems. Simulation results suggest that the proposed
algorithm requires significantly fewer iterations to achieve a desired accuracy as

compared to the conventional improvement step.

e The comparison between the volume integral equation and the surface integral equa-
tion is presented for the solution of two dimensional indoor wave propagation prob-
lems. The linear systems resulting from the discretisation of the integral equations
are solved using Krylov iterative solvers. Both approaches are expedited by appropri-
ate acceleration techniques, the fast Fourier transform for the volumetric approach
and the fast far field approximation for the surface approach. The volumetric ap-

proach demonstrates a better convergence rate than the surface approach.

e A novel algorithm is proposed to compute wideband results of three dimensional
forward scattering problems. The proposed algorithm is a combination of Krylov
iterative solvers, the fast Fourier transform and the asymptotic waveform evaluation
technique. The proposed method is more efficient to compute the wideband results
than the conventional method which separately computes the results at individual

frequency points.

xiii



1 Introduction

The development of Maxwell’s equations in the 19*" century, which are named after the
Scottish physicist James Clerk Maxwell, marked a crucial turning point in modern sci-
ence and technology as Albert Einstein once acclaimed that “The work of James Clerk
Mazwell changed the world forever.” The equations describe the relation of magnetism
and electricity, leading to the discovery of many theorical innovations such as the theory of
relativity and the field equations of quantum mechanics. They are essential for advances in
diverse areas such as communications (radio, television, radar, microwave, etc.) or medical
imaging in biomedical systems, which greatly impact human life. Therefore, much effort
has been devoted to the development of powerful electromagnetic (EM) simulation tools
which efficiently approximate the equations and are essential for electrical engineers in the

design of electrical and electronic equipments.

The EM modelling tools simulate the interaction of EM fields with physical objects and
support engineers in the prediction of EM behaviour during the design process such as the
design of antennas or the optimisation of base-station location in mobile communication
planning. The important role of computational electromagnetic (CEM) applications is
also acknowledged in particular research areas. For example, the computation of radar
cross section (RCS) is applied to estimate the effects of large bodies on communication
systems [2], to detect unknown objects at a long distance [3] or to aid the design of stealth
aircraft [4] which can avoid the detection by radar systems by the reduction of reflection
of radio-frequency spectrum. The reconstruction of an image of the human body [5, 6, 7]
based on the measurement of scattered fields is central to MRI and X-ray tomography in
the biomedical area and allow the detection of imminent diseases. As much work relies on
the simulation tools, the demand for efficient and accurate electromagnetic analysis tools
has increased dramatically, resulting in much research work concentrating on improving

and developing CEM tools.

The CEM solvers can be categorised into asymptotic techniques, full-wave techniques and
hybrid techniques which are a combination of the two former. In asymptotic techniques,
Maxwell equations are approximated by simpler forms, enabling the efficient computation
of the electromagnetic characteristics of the problem which is the main advantage of these
methods. However, the validation of asymptotic techniques depends on the operating fre-
quency range of the problem where the accuracy of the techniques increases with respect
to the frequency. The high-frequency asymptotic techniques can be classified into two fam-
ilies. The first family begins with geometrical optics [8] which considers the propagation
of electromagnetic waves as optical rays at a high frequency. Thus, the electromagnetic
problem can be analysed using ray tracing techniques which determine the amplitude of
the EM fields by the shape of the illuminated surface. The lack of evaluation of fields
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diffracted by wedges and edges results in non-physical continuities of the total field at the
incident shadow boundary (ISB) and reflection shadow boundary (RSB) in geometrical
optics. The accuracy of geometrical optics is improved by including the effects of diffracted
fields in the geometrical theory of diffraction (GTD) [9, 10] and later in the uniform theory
of diffraction (UTD) [11, 12, 13]. Another family of asymptotic techniques begins with
physical optics (PO) which focuses on the primary characteristics of a wave to approximate
the induced current density on the surfaces instead of concentrating on the shape of the
wavefront surface in geometrical optics. Using the relations of free-space field-source, the
radiated fields can be obtained by taking an integral over the induced currents. However,
the lack of evaluation of geometrical effects such as edges on the induced currents results
in a discontinuity of the induced currents at the boundary between the illuminated and
shadow surfaces. The accuracy of PO is improved in the physical theory of diffraction
(PTD) [14, 15] by the addition of non-uniform fringe currents to evaluate the geomet-
rical effects. The application of asymptotic techniques to appropriate problems such as
large and smooth problems is highly beneficial because their complexity is considerably
smaller than that of the full-wave techniques to generate an acceptably accurate solution.
However, when the complexity of the electromagnetic problems increases or the desired
accuracy is beyond the capability of asymptotic techniques, full-wave techniques are the

only choice for the solution of Maxwell equations.

The operation of full-wave techniques is fundamentally based on the idea of discretisation
of some unknown electromagnetic quantities such as the electric or magnetic field by the
finite element method (FEM) [16, 17] and the finite difference time domain (FDTD) [18,
19], and the surface current by the method of moments (MoM) [20, 21, 22]. The full-wave
techniques are further classified in terms of the operating domain (time or frequency) and
the form of Maxwell equations (integral or partial differential). The operation of the FDTD
method originates from the differential form of Maxwell equations. The approximation
of these differential operators is obtained by applying Maxwell’s curl equations to time-
space grid in the Yee’s FDTD scheme [23]. The value of the fields at the next-time step are
completely given in terms of the field at the present and the previous time-step. Therefore,
the implementation of the FDTD is considerably more straightforward than that of the
FEM and MoM which require an evaluation of a matrix equation for the value of the fields.
The FDTD method is extensively used for the analysis of wideband problems because
the method operates in the time domain. As a consequence, the wideband response
is obtained within one FDTD run while the problem has to be recomputed at discrete
frequencies for the MoM and the FEM. In addition, the treatment of inhomogeneous
problems in the FDTD is straightforward because it is not affected by the composition of
the structure. Similar to the FDTD, the FEM starts from the partial differential form of
Maxwell equations which is then applied in the frequency domain. The FEM is suitable
for the analysis of complicated geometries and inhomogeneous material whose properties
might be frequency-dependent, and has a better scaling with frequency as compared to
the MoM. However, the meshing for large three dimensional structures in the FEM is
more complicated than that in the FDTD. The MoM is derived from the integral form of
Maxwell equations and is mainly applied in the frequency domain. Instead of using the
direct computation of fields as in the FEM and the FDTD, the MoM initially replaces the



Introduction

scattering problem by equivalent currents and derives a relationship between these currents
in the form of a dense matrix equation which is later solved for the unknown equivalent
currents. Then, the fields external to the structure can be computed from these currents.
The MoM is more advantegous than the FDTD and the FEM for the analysis of highly
conducting problems and homogeneous problems because only the discretisation of the
surface of the problems is required instead of the entire space containing the problem as
in the FDTD and the FEM. In contrast, for electromagnetically penetrable materials, the
complexity of the MoM becomes prohibitively expensive due to the meshing of the entire
volumetric structure resulting in a large number of unknowns. A comparison of the three
most popular full-wave techniques (FDTD, FEM and MoM) for the application to open

region problems is presented in Table1.1.

Techniques | Equation Type | Domain | WB | PEC | HP | IHP
MoM Integral Frequency | ~ + + ~
FEM Differential Frequency | ~ — + +
FDTD Differential Time + — + +
WB: wideband PEC: perfect electric conductor
HP: homogeneous problem IHP: inhomogeneous problem
+: good —: not optimal ~: satisfactory, but not necessarily the best

Table 1.1: Comparison of FDTD, FEM and MoM for the application to open region
problems.

The application of the MoM for the solution of electromagnetic problems is the focus of
this thesis. In the MoM, the surface of the electromagnetic problems is discretised using
appropriate basis functions such as Rao-Wilton-Glisson (RWG) basis funtions [24] which
represent the discrete current density, leading to the discrete integral form of Maxwell
equations for the fields on the surface. The approximate current density on the surface of
the problem is a linear combination of the basis functions. Applying a testing procedure
[22] to the discrete integral form results in a linear matrix equation Zx = b where x denotes
the unknown amplitudes of the corresponding basis functions. Z is a N x N impedance
matrix containing information about the mutual interactions between the basis functions
where N is the number of basis functions used to discretise the surface of the geometries.
b denotes a vector containing information about the incident field impinging on each basis
function. Different approaches depending on the characteristics of the problems have been

proposed for the solution of the matrix equations.

The first approach is to compute the product of the inverse of the impedance matrix Z and
the incident vector b, requiring a storage and computational cost of O (N?) and O (N?)
for performing a direct matrix inverse, respectively. However, this approach is restricted
for the solution of small problems involving a small number of unknowns. There are several
techniques proposed to alleviate the expensive cost of the direct matrix inverse such as the
multiscale compressed block decomposition (MS-CBD) method [25, 26, 27]. The operation
of the MS-CBD method is based on the use of impedance matrix compression techniques
such as the adaptive cross approximation (ACA) [28, 29, 30, 31] and the matrix decom-
position algorithm (MDA) [32, 33, 34] methods. The block-wise compressed impedance

matrices allow an efficient computation of an inverse operator of the MS-CBD method
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with the cost of O <N2 log? N) and O (N3/2 log N) for the computation and storage re-
quirement, respectively. Another free-iteration method which received much attention
recently is the characteristic basis function method (CBFM) [35, 36, 37]. The CBFM
proceeds by first dividing the electromagnetic problem into blocks which are managable
in terms of size and then defining a set of macro basis functions including primary and
secondary basis functions for each block. These basis functions are then used to generate a
reduced matrix which is significantly smaller than the original impedance matrix, allowing
an efficient gain in terms of computational and storage cost. The main advantage of the
direct inverse approach is that most computations are in the matrix compression process
and the inverse operator decomposition process which are independent of the excitation
vector b. Once these operations have been completed, the solution for each excitation
can be quickly obtained, leading to an efficient computation of mono RCS applications.
However, the storage requirement and the need to invert the resultant matrix becomes

impractical for dense linear systems involving a large number of unknowns.

The second approach using iterative solvers for MoM dense linear systems has been con-
sidered as an appropriate solution to overcome the limitations as it requires little or no
explicit storage and significantly reduce the number of computations when compared to
making a direct inverse of a dense matrix. Approximate solutions are sequentially gen-
erated and improved at the end of each iteration until the convergence criteria is met.
The requirement of matrix-vector products (MVP) in each iteration of iterative methods
results in the cost of O (N 2) for both storage and computational expense. There are two
main classes of iterative solvers: the non-stationary solvers and the stationary solvers. The
non-stationary solvers are typically based on the creation of Krylov subspaces. The con-
jugate gradient (CG) method [38], biconjugated gradient stabilised (BiCGSTAB) method
[39] and the generalised minimal residual (GMRES) method [40, 41] are popular among
Krylov methods for their robust convergence. The Krylov methods are reliable in terms
of convergence because it is evident that they are convergent to an exact solution within
a finite number of iterations in exact arithmetic [42]. In contrast, the stationary methods
are more unpredictable in terms of convergence rate. The advantages of the stationary
methods over the Krylov methods are that they require a smaller number of iterations to
achieve the same accuracy when applied to simple structures and they are more simple
for implementation and derivation. Some popular stationary solvers are the Gauss-Seidel

method, the Jacobi method and the successive-over-relaxation method [38].

Another key research topic is the development of computationally efficient acceleration
techniques to reduce the cost of a MVP performed within each iteration. The operation of
most accelaration techniques depends on the idea of the division of the electromagnetic field
into the near-zone region and the far-zone [43]. The field strength of the far-zone decreases
with distance while that of the near-zone decreases rapidly with distance, resulting in the
domination of the far-zone strength in the far-zone region. This phenomenon is exploited
in acceleration techniques to optimise the cost of computation where the contribution of
the near-zone is exactly computed while that of the far-zone is efficiently approximated by
different methods. The approximation of the far-zone can be achieved by the application
of low-rank approximation or matrix compression techniques [44, 45], which are purely

algebraic, to reduce the size of impedance matrices accounting for far-zone interactions,

4
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leading to a reduction in the cost of a MVP. The approximation can also be achieved by
taking advantage of the physical properties of the EM problems. The adaptive integral
method (AIM) [46, 47, 48, 49] replaces original basis functions by auxiliary basis functions
positioned at the nodes of a Cartesian grid. The auxiliary basis functions are required
to produce the same far-zone as the original basis functions, allowing an application of
the fast Fourier transform (FFT) for the computation of far-zone interaction which is of
O (N 2log N ) and O (N log N) operations for surface and volumetric problems, respec-
tively. The fast-far-field-approximation (FAFFA) [50, 51, 52, 53] efficiently approximates
the far-zone interactions using an interpolation/extrapolation scheme. The main drawback
of the FAFFA is the large size of the near-zone region, causing a considerable computation
of near-zone interaction; otherwise, the accuracy of the FAFFA can significantly worsen
when the size of the near-zone region is reduced. The fast multipole method (FMM)
[54, 55] improves the accuracy of the far-zone computation by a more careful investigation
using the interpolation/extrapolation scheme or expanding the fields using multiple plane
waves. The improvement of the FMM to the multilevel fast multipole method (MLFMA)
[56, 57, 58], which is extensively applied for the solution of EM problems, increases the
efficiency of the MVP by reducing the cost of computation to O (N log N). Besides ac-
celeration techniques, the total cost of computation can be considerably decreased by
improving the convergence rate of iterative solvers. The improvement of the convergence
rate is accomplished by the use of a wide range of preconditioners such as the diagonal
preconditioner [59], the incomplete LU factorization [60] or the sparse approximate inverse
(SPAI) preconditioner [61]. The main idea of the application of preconditioner techniques
is that the original ill-conditioned system is replaced by an equivalent better-conditioned
system. Consequently, a smaller number of iterations is required to achieve a desired

accuracy.

The principal contributions of this work are the proposal of novel algorithms integrating
iterative solvers and appropriate acceleration techniques for efficient solutions of three di-
mensional (3D) scattering and two dimensional (2D) indoor propagation problems. Much
research effort has concentrated on Krylov solvers [62, 63] for the solution of arbitrarily
3D perfectly conducting or homogeneous problems. Recently, some attention has been
focused on some particular stationary solvers which mimic the physical processes of prop-
agation by using current marching techniques. The stationary solver forward backward
method (FBM) [64, 65] was first successfully applied to one dimensional (1D) random
rough surface problems. The capture of the physical phenomenon in the FBM leads to a
high convergence rate, approaching an accurate solution with fewer iterations when com-
pared to the Krylov solvers for the random rough surface problems. The buffered block
forward backward (BBFB) method [66, 67], an extension of the FBM for 3D scattering
problems, introduces buffered regions to eliminate spurious edge effects which worsen the
performance of the FBM for 3D problems. In addition, the convergence rate of the sta-
tionary method can be further improved by an application of a special improvement step
(68, 69] at the end of each iteration. In the case that the electromagnetic responses over a
wide range of frequencies is of interest, it can be efficiently obtained by the integration of
model-order-reduction (MOR) techniques and the MoM. For the indoor propagation prob-
lems, empirical models, for example, the Motley Keenan model [70] and the COST 231
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Multi-Wall model, are popular techniques for the prediction of indoor wave propagation
because of their simplicity and speed. The main drawback of these models is the lack of
accuracy and reliability which can be achieved using the MoM with a suitable combination

of iterative solvers and acceleration methods.

The remainder of this section is for a summary of the material in each of the remaining

chapters.

Chapter 2 begins with a review of Maxwell equations to derive integral equations (IEs)
comprising of the electric field integral equation (EFIE), the magnetic field integral equa-
tion (MFIE) and the combined field integral equation (CFIE) for 2D and 3D electro-
magnetic problems. These integral equations are extensively used for the analysis of EM
problems throughout this dissertation. The application of the MoM to discretise the inte-

gral equations is also discussed in this chapter.

Chapter 3 focuses on iterative approaches for the solution of the MoM. The Krylov solvers
including the CG, the BiICGSTAB and the GMRES are briefly reviewed. The stationary
class of iterative solvers is carefully discussed. The popular stationary solvers such as the
Jacobi, the Gauss-Seidel and the successive-over-relaxation method are first mentioned
before the introduction of the FBM, the BBFB and the overlapping domain decomposition
method (O-DDM) which are the centre of one contribution of this work. The application

of preconditioning techniques to iterative solvers is briefly presented.

Chapter 4 is dedicated to the flexible combination of the MLFMA and the BBFB for 3D
perfectly conducting scattering problems. The modified MLFMA is proposed to efficiently
perform partial MVPs required often within each iteration of the BBFB. The efficiency
and the complexity of the modified MLFMA are analysed. Some numerical examples are

presented to demonstrate the accuracy and the efficiency of the proposed algorithm.

Chapter 5 extends the improvement step at the end of each iteration of the FBM or the
BFBM. Instead of the improvement of the approximate solution using a single correction
vector, the extension of the improvement step exploits the information of multiple correc-
tion vectors to further correct the approximate solution. The application of the extended
improvement step to the computation of scattering from one and two dimensional random

rough surfaces is demonstrated through several numerical results.

Chapter 6 concentrates on the application of the volume integral equation and the surface
integral equation for the solution of the 2D indoor wave propagation. The FFT and the
FAFFA are the accelerators for the discretised volume and surface integral equations,
respectively. The reduced-operator [71] and the block diagonal preconditioner are applied
to enhance the convergence rate of the iterative solvers. Some numerical results are shown

to compare the performance of the approaches.

The use of the wideband technique asymptotic waveform evaluation (AWE) [72, 73, 74]
for the analysis of 3D inhomogeneous scatterers over a wide range of frequency is the focus
of chapter 7. The GMRES-FFT is applied to iteratively solve for AWE moments which
is later used for the generation of discrete frequency responses. A numerical example
for scattering from a homogeneous dielectric sphere with frequency-dependent electrical

parameters is presented to validate the accuracy of the proposed method.



1.1 Contribution

The summary of this thesis and possible future work are discussed in the final chapter 8.

1.1 Contribution

This work comprises the study of efficient numerical methods using iterative solvers and
appropriate acceleration techniques for the analysis of 2D and 3D electromagnetic prob-
lems. The main contributions of the dissertation described in chapter 4, 5, 6 and 7 are

summarised as follows:

e The proposal of the modified MLFMA applicable to the BBFB for the solution of 3D
perfectly conducting scatterers to speed up the partial MVPs performed constantly

within each iteration.

e The proposal of the extended improvement step for the stationary iterative methods,
the FBM and the BFBM methods, leading to a better approximate solution at the

end of each iteration.

e The application and the comparison of the FFT and the FAFFA as accelerators for
the volumetric and the surface integral equations in the 2D indoor wave propagation,

respectively.

e The application of the AWE allowing a fast analysis of 3D inhomogeneous scattering
problems over a wide range of frequencies. Each moment of the AWE is efficiently
computed using the GMRES-FF'T iterative method.

The main contributions can be classified into three groups including the reduction of the
cost of each iteration, the reduction of the number of iterations and wideband as shown

in Figure1.1.

Contributions
v v v
Reduction of the cost in Reduction of the .
: . . . Wideband
each iteration number of iterations

Figure 1.1: Classification of the main contributions.

1.2 Notation

Matrices, vectors and scalars are denoted by bold capital, bold lower-case and italic lower-
case letters, respectively. The transpose and the conjugate transpose of a matrix A is

denoted by AT and A respectively. |.||, denotes the Euclidean norm.



2 Method of moments for numerical
solution of Maxwell equations

This chapter introduces the fundamental electromagnetic theory required for an under-
standing of the following chapters. We start with a review of the differential form and the
time-harmonic form of Maxwell equations and then derive the auxiliary vector potentials
which aid the solution of electromagnetic scattering problems, described in Section 2.3.
Section 2.4 and Section 2.5 introduce equivalence principles which are used to derive the
volume and surface integral equations, which are extensively used in the following chapters.
Section 2.6 reviews the method of moments (MoM) as a numerical solution for Maxwell

equations.

2.1 Differential form of Maxwell equations

The differential form of Maxwell equations describes the relationship between the charge
densities, current densities and field vectors for any given space-time point. For the dif-
ferential form to be valid, the field vectors are assumed to be single-valued, continuous
functions of space and time, except for being at the interface between different media. The
discontinuity of the field vectors results in sudden changes in current and charge densities
at the interfaces. The discontinuity at such interfaces is expressed by the boundary condi-
tions which are also derived from Maxwell equations. Therefore, Maxwell equations can
completely characterise the field vectors at any given space-time point. Maxwell equations

in differential form are given by

0D (r,t)
Vx’l—l(r,t):j(r,t)—kT (2.1)
0B (r,t)

VxE(r,t)=—-M(r,t) — 5 (2.2)
V- B(r,t) = om (r,t) (2.3)
V- D(r,t) = 0e (r,t). (2.4)

The definitions of the field quantities are

£ is the electric field intensity (volt/meter)



2.2 Time-harmonic form of Maxwell equations

H is the magnetic field intensity (ampere/meter)

D is the electric flux density (coulomb/square meter)

B is the magnetic flux density (weber/square meter)

J is the source electric current density (ampere/square meter)
M is the source magnetic current density (volt/square meter)
Om is the magnetic charge density (weber/cubic meter)

0e is the electric charge density (coulomb/cubic meter).

Equation 2.1 is an extension of Ampeére’s law often called the Maxwell-Ampere equation.
The equation states that the generation of a magnetic field can be caused by an electric
current or by time-varying electric fields. The Maxwell-Faraday equation derived from
Faraday’s law is described by Equation 2.2, stating that a magnetic current and time-
varying magnetic fields generate a spatially-varying, non conservative electric field with
rotation. Although physically non-existent, source magnetic current density is introduced
due to the symmetry of Maxwell equations. The last two equations are the consequences
of the Gauss flux theorem usually called the law of the conservation of charge. Equation
2.3 relates the behaviour of magnetic flux density to magnetic charge density, which is
naturally unphysical but aids the mathematical treatment of electromagnetic scattering
problems and allows for the symmetric form of Maxwell equations. Equation 2.4 defines

the variation of electric flux density due to electric charge density.

2.2 Time-harmonic form of Maxwell equations

In many electromagnetic scattering problems, it is practical to express the time-harmonic

fields in the complex form. These are presented by the relation

A(r,t) = e (A (r) &), (2.5)

where w = 27 f is an angular frequency of interest. A is a complex-valued vector which
depends only on position. The application of Equation 2.5 to the instantaneous field
quantities €, H, D, B, J, M, om and g, results in the corresponding complex form of E,
H, D, J, M, py and p.. Consequently, the differential form of Maxwell equations 2.1-2.4

can be written in the time-harmonic form as

VxH(r)=J(r)+ jwD(r) (2.6)
VxE(r)=-M(r)— jwB (r) (2.7)
V- -B(r) = pm (1) (2.8)



2.3 Auxiliary vector potentials

V-D(r) = pe(r). (2.9)

At this point, we note that B can be related to H and D to E as

B(r) = pop, (1) H(r) ,  D(r) = e (1) B(r) (2.10)

in the case of linear and isotropic media. €, and p, denote the relative permittivity and the
relative permeability which characterise the electrical properties of a material, respectively.
For inhomogeneous problems, these quantities are functions of position. The permittivity
and permeability in free-space are represented by €p and pg, respectively. Their values are

given by

€0 = 8.854 x 107 1%(farad /meter) po = 47 x 10~7 (henry/meter). (2.11)

The permittivity and permeability of a specific medium are expressed in relation with

free-space by

() =coe, (1) pu(r) = popr (x). (2.12)

2.3 Auxiliary vector potentials

One approach for the solution of Maxwell equations is to take advantage of the auxiliary
vector potentials including the magnetic vector potential A and the electric vector poten-
tial F [20, 75]. The illustration of the approach for the computation of radiated fields is
shown in Figure 2.1. Although these quantities are physically non-existent, their presence

aids the simplification of the solution.

Sources Integration | Vectorpotentials | Differentiation| Radiated fields

I, M AF E H

Figure 2.1: Block diagram for the computation of radiated fields using the vector poten-
tials.

In the following equations, the r dependence is sometimes dropped for simplicity. Taking
the curl of Equations 2.6 and 2.7 and applying the vector identity VXV x A =VV. A —
V2A leads to

V’E - jwuVxB=VxM+VV-E (2.13)

VPH + jwV xD=-VxJ+VV-H (2.14)

10



2.3 Auxiliary vector potentials

Substituting Equations 2.6 and 2.9 into Equation 2.13, and Equations 2.7 and 2.8 into

Equation 2.14 results in the Helmholtz equations for a homogeneous medium

1
V2E + K*E =V x M + juud + ~Vpe (2.15)

1
VPH 4 k*H = -V x J + jweM + ;me (2.16)

where k = w,/ué€ is the wavenumber of the homogeneous medium.

2.3.1 Magnetic vector potential

In homogeneous space in the absence of source magnetic current and magnetic charge,

Equation 2.7 and 2.8 can be rewritten

V xE=—jwuH, (2.17)

V-B=0. (2.18)

Applying the vector identity V - (V x A) = 0 to Equation 2.18 leads to

By =pHy =V x A (2.19)

where A is a non-unique vector called the magnetic vector potential. Subscript A deter-
mines the fields due to the vector potential A. The substitution of Equation 2.19 into 2.17

results in

V x (Eap + jwA) =0. (2.20)

We define an arbitrary electric scalar potential ¢, which is a function of position and

satisfies the following

V x (=Ve) = 0. (2.21)

The combination of Equation 2.20 and 2.21 allows the definition of E in terms of the

electric scalar and the magnetic vector potential

Ep = —Vée — juA. (2.22)

Applying the vector identity V x V x A = V (V- A) — V2A to the curl of Equation 2.19

leads to

pV x Hy =V (V- A) - VA (2.23)

11
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for a homogeneous medium. Applying the Maxwell-Ampere equation

V x Hy = J + jweEy (2.24)

to Equation 2.23 and then substituting Equation 2.22 into the resultant equation leads to

VZA + KA = —puJ +V (V- A + jwpuede) . (2.25)

To simplify Equation 2.25, the definition of the divergence of A is deliberately determined

using the Lorenz gauge

VA = —juuepe. (2.26)

Equation 2.26 allows the representation of E4 in terms of a single quantity A

1
Ex = —jwA = j oV (V- A) (2.27)

and the simplification of Equation 2.25

VA + KA = —uJ | (2.28)

Therefore, once the magnetic vector potential A is known, the corresponding electric field

EA and magnetic field Hpy can be computed from Equation 2.27 and 2.19, respectively.

2.3.2 Electric vector potential

The absence of source 