
Resource State Monitoring of Service Transactions
in Cloud Systems

Lei Xu∗, Li Zhang†, Ewnetu Bayuh Lakew‡, Claus Pahl∗
∗Irish Centre for Cloud Computing and Commerce (IC4), School of Computing, Dublin City University, Ireland

{lxu,cpahl}@computing.dcu.ie
†Northeastern University, Shenyang, China

{zhangl}@swc.neu.edu.cn
‡Department of Computing Science, Umeå University, Sweden

{ewnetu}@cs.umu.se

Abstract—In cloud systems, services constituting a transaction
may spread over a large number of servers or clusters. Theoret-
ically, these services could consume cloud resources unlimitedly.
To avoid financial loss due to resource overuse, clouds have
to monitor the state of resources consumed by the services
– collect values of consumption, and evaluate whether the
combined usage of resources has excessed a pre-defined upper
bound or not. The distributed nature of the services introduces
a challenge to the monitoring system on how to summarise
distributed state information with low cost. We present our
resource state monitoring solution to capture the challenge
introduced by services hosted in clouds. Our solution tracks the
resource consumed by each service constituting a transaction
individually whilst ensures the whole transaction does not overuse
the allocated resource. It improves availability by avoiding single
points of failure, and achieves scalability by minimising message
exchanges. We performed experimental analyses that indicate this
work can provide an inexpensive resource monitoring solution for
transactions in clouds.

I. INTRODUCTION

A transaction is a unit of work involving one or more ser-
vices [1]. These services can be offered by multiple partners.
Traditionally, transactions have the ACID properties: Atomic-
ity, Consistency, Isolation and Durability. Either all services
constituting these transactions are completed successfully to
accomplish an agreed upon business goal or none of them
have effect. Traditional transactions can be short lived and
involve partners who are willing to cooperate under a single
transaction manager. Contrarily, in large distributed systems
such as clouds, services constituting transactions may be
widely distributed and hosted in different clusters/zones. These
transactions can be long lived – running for hours, days, or
more, and may employ multiple coordinators due to various
reasons such as high overhead on the communication between
clusters/zones, or lack of trust. The ACID properties are not
mandatory for long lived transactions in clouds.

In many cases, resources consumed by services constituting
transactions are monitored, and a state alert will be triggered
whenever a predefined threshold is violated. For example, a
credit budget is set to control the cost of a transaction. This
budget should be monitored in real-time over all services
of the transaction to avoid cost overrun. Such resource state
monitoring is essential for the observation, analysis and control

of transactions. It can be achieved in the transactions that are
short lived and only have one single coordinator by deploying
a monitor component on the coordinator. This centralised
solution simplifies the implementation and guarantees optimal
utilization of resource.

Transactions in clouds may consist of services offered by
multiple providers or one provider’s different data centres.
These services can be long lived and widely distributed. The-
oretically, they are able to consume geographically dispersed
resources unlimitedly. This could be risky since the cost of
vast amounts of resources consumed unintentionally could be
tremendous and may even exceed the estimated profit of the
services [2]. To manage the services and limit global resource
consumption, the providers may need to deploy multiple
coordinators, and monitor the state of resource consumption.

For example, Dropbox is a storage cloud that keeps cus-
tomers’ data on Amazon Simple Storage Service (S3). Files
of a customer may be stored in different clusters of Amazon’s
multiple data centres located across the United States. Based
on the price plan, there is an upper bound on the storage space
that can be consumed by a customer. However, this resource
limit can not be allowed to each cluster of those data centres
since demands at every cluster can not be known in advance.
It should be supervised globally by multiple coordinators
hosted in the clusters offering storage space to prevent resource
overuse and revenue loss.

To manage resource consumed by transactions in clouds, the
centralised monitoring approach is not applicable due to the
distributed nature of the services constituting the transactions,
and the involvement of multiple coordinators. The centralised
management approach on long lived services can introduce
high overheads in clouds due to the large amount of message
exchanges [3], [4]. Meanwhile, when a lot of state information
is received from services, the central component can become
a bottleneck, and even worse, it is liable to single point of
failure. Furthermore, the monitor component deployed on one
coordinator may not be able to track resources controlled by
another coordinator efficiently due to network delay.

One potential solution to tackle the issue presented above
is to deploy a light-weight monitoring component on each
service/coordinator of a transaction in a cloud to supervise

resource consumption and trigger state alerts. In such a case,
how to allocate the resource budget to services/coordinators
has to be investigated. Each service/coordinator may receive
the overall budget. However, the services constituting a trans-
action can be invoked in parallel that may lead to resource
overuse; resource budget may be allocated statically to each
service/coordinator, i.e. every service/coordinator receives a
fixed share. However, resources consumed by services can vary
and may not be known in advance.

Our previous work [5] manages cloud resources between
clusters, which is a single-layer resource management solution.
To tackle the challenge faced by monitoring, we extend it
to adapt to transactions in clouds, in which resource budget
is allocated between services constituting transactions and/or
subtransactions. Initially, resource budget is distributed to
services of a transaction and managed by their monitoring
components coined as "probe" in this paper based on the
execution mode1. When the resource balance of a service is
very close to or lower than its threshold, it will apply for
resource re-allocation. The remaining resource budget is re-
assigned to each service based its rate of consumption to avoid
immediate global re-allocation and reduce communication
overhead. We deploy such a re-allocation policy since the
behaviours of consumers have inertia [6], i.e. the current
resource consumption by one service depends on the past
and influences future consumption. Once the overall resource
budget is depleted, a state alert will be triggered.

This paper is structured as follows. Section II gives an
overview of our solution including the transaction model, and
our approach to initialise resource budget allocation and to
re-allocate resource units. Section III specifies our allocation
algorithms and the algorithm to reduce the overhead of re-
allocation. Section IV describes the results of a simulation
study undertaken to compare our solution with the one deploy-
ing a centralised coordinator for resource management. Section
V provides a brief review of related work. Finally, Section VI
summaries the contribution of the paper and outlines some
future work.

II. SOLUTION OVERVIEW

We investigate a solution to manage resources (e.g. storage,
memory or network) consumed by services constituting a
transaction. This solution is based on the transaction model
in which services can be executed in parallel or sequentially.
We assume that each service or coordinator hosts a probe to
manage resources. The resource budget is allocated to services
based on the manner to invoke them whilst it will be re-
allocated once the balance of one service is lower than or
close to its threshold. The budget will not be allocated to
coordinators since they do not consume the resource directly
by themselves. The probes of coordinators are only responsible
for the coordination of resource budget re-allocation. The
transaction model, the threshold to trigger re-allocation, and

1Services constituting a transaction can be executed in parallel or sequen-
tially in our work, which will be explained in Section II-A.

Figure 1: Nested Transaction.

the way to calculate the number of resource units allocated to
each service in re-allocations are presented as follows.

A. Transaction Model

Transactions in clouds can invoke services of several differ-
ent servers hosted in multiple clusters/zones. These transac-
tions can be structured as flat or nested. In a flat transaction,
a single coordinator is deployed to coordinate the execution
of the services constituting the transaction, and these services
are invoked sequentially or in parallel. In a nested transaction,
as illustrated graphically in Figure 1, the top-level transaction
opens subtransactions whilst these subtransactions can open
further subtransactions down to any depth of nesting [7].
Similar to flat transaction, the services involved in nested
transactions can be executed in parallel or sequentially. In
practice, the services at the same level of a hierarchy may
be deployed on different servers of one cluster or different
clusters of one cloud zone.

In this paper, we only focus on nested transactions since flat
transactions can be viewed as their subtransactions. Further-
more, we assume services/coordinators in nested transactions
have levels of different priority, and ancestors always have
higher priority than descendants.

B. Problem Statement

We formally state how the resource budget is initially
allocated between multiple services, how the remaining budget
is re-allocated when the balance of a service is very close to
or lower than its threshold, and how a state alert is triggered
whenever no enough resources can be further consumed. We
let nk denote an arbitrary node2 of a transaction on which our
probe is hosted. Let nk ·child and nk ·parent denote the child
and parent of nk respectively. Let nroot denote the outermost
node of the transaction that is the root of the tree structure,
where nroot ·parent =ø. Meanwhile, if nk ·child =ø, then nk
is a leaf of the tree. Let yb denote a set of nodes whose parent
is nb, where ∀na ∈ yb, na · parent = nb, and |yb| denote the
number of nodes constituting the set yb.

We let Rb and rk denote the allocated resource units
allocated to children of nb and to nk respectively. Let nb ·
child ·mode denote the execution mode of the children of nb,
whose value can be sequential or parallel, where |yb| > 1.

When nk · child =ø, we let ∆tc(k) and ∆td(k) denote
the time interval spent to calculate and distribute remaining

2A node can be a service or coordinator in our work.

resource units, and the time interval consumed to send alloca-
tion requests and receive replies respectively. In addition, let
∆th(k) denote the time interval that the probe on nk spent
on tracking resource consumption. In this work, we assume
∆tc(k), ∆td(k), and ∆th(k) are known in advance. When
the resource balance of nk is lower than or very close to its
threshold βk that is calculated based on a time interval denoted
as θk, it will trigger resource budget re-allocation. The θk can
be calculated as:

θk = ∆tc (k) + ∆td (k) + ∆th (k) (1)

Let ts and te denote the start and end of a time interval
within which the resource on service node nk is consumed
continuously, where te = ts+θk. Moreover, let f(nk, t) denote
the consumption rate of the resource hosted in nk, which may
vary with consumption time denoted as t. Based on the above,
βk can be stated as:

βk =

te∫
ts

f (nk, t) dt (2)

If nh is a coordinator node and receives an allocation re-
quest, it will collect allocable resource units from its children.
Otherwise, if nh is a service node, when nh receives a request
from nk

3, and decides to respond to it, its probe reserves
a number of resource units that will be consumed within
a given time interval ∆t

′

h. This reservation is intended to
avoid the suspension of service deliver due to low balance of
the resource during re-allocation. Afterwards, nh reports the
number of resource units that can be re-allocated, the resource
consumed since the last allocation to nk.

We let ∆t
′

h = θh + (θk − ∆td (k, h)), where ∆td (k, h)
denotes the time interval spent to forward the request from
nk to nh. This reservation is intended to avoid the submission
of a re-allocation request from nh before nk completes the
allocation. We define the threshold for resource reservation on
nh as β

′

h, which can be calculated by applying Equation 2 once
∆t

′

h has been identified. When nh receives the re-allocation
request from nk, if its resource balance denoted as r

′

h is less
than what will be consumed within ∆t

′

h, then it has to keep
all the resources and will trigger re-allocation before nk sends
extra resource units to it. We will discuss how to tackle the
issue that a probe requests resource budget re-allocation whilst
another probe has not completed its allocation in section III-B.
If there are enough resource units remaining, then nh will
forward r(h) = r

′

h−β
′

h to nk, where r(h) denotes the number
resource units that will be sent to the requester.

If the probe of nk is qualified to coordinate the re-
allocation, it will calculate the total number of allocable
resource units remaining in children of nb denoted as R

′

b,

3The nk can be a sibling of nh, where nh, nk ∈ yb and nb·child·mode =
parallel. Otherwise, nk is a service node triggering the re-allocation in the
node hierarchy. In this case, the request from nk will be forwarded by the
parent of nh to nh whilst the reply of nh will be sent to nk via the parent
of nh.

where nk · parent = nb. Given the above, if |yb| > 1, then
R

′

b can be calculated as:

R
′

b =

|yb|∑
j=1

r(h), where r(h) =

{
0 r

′

h − β
′

h ≤ 0

r
′

h − β
′

h r
′

h − β
′

h > 0
(3)

If enough no resource units remain in the children of nb
and nb 6= nroot, then nk forwards the allocation request to its
parent. Otherwise, R

′

b will be distributed to the nodes based on
the resource consumption4. Let na denote an arbitrary child of
nb, where na · parent = nb, and let ∆ra denote the resource
units consumed on na since last distribution. Based on the
above, the resource units na will receive after the re-allocation,
which are denoted as r

′′

a , can be stated as:

r
′′

a = R
′

b ×
∆ra
|yb|∑
j=1

∆rj

(4)

If na · child 6=ø, then na will allocate r
′′

a to its children
once nk completes its re-allocation.

III. RESOURCE MANAGEMENT ALGORITHM

The resource budget is initially allocated to leaf nodes of
the tree structure and the remaining resource units will be re-
allocated between these nodes when necessary. The approach
to initialise the resource unit allocation, the algorithm to apply
for re-allocation and to response to the requester are presented
in this section.

A. Initialisation

The allocation starts with the root node and deploys the
breadth-first strategy to assign resource units. In case a node
owns multiple children, if these children are executed in
parallel, then the resource units of the parent is allocated to its
children equally; if the children are invoked sequentially, then
all resource units of the parent are given to the child that will
be the first one to consume the resource5. In case a node only
has one child, all its resource unit will be assign to the child.
It is a recursive process and it will continue until all resource
units have been allocated to leafs (services of the hierarchy).

To investigate how the branching factor and depth of the
hierarchy affect the initialisation of resource units, the scala-
bility of the approach is analysed as follows. Let M denote
the maximum branching factor of the hierarchy whilst let N
denote the height of the hierarchy. If the execution mode of all
nodes in the hierarchy is parallel, then the resource units are
allocated to up to

∑N
i=1M

i nodes; if all nodes of the hierarchy
are executed sequentially, then the resource units are allocated
to N nodes. Given the above, the computational complexity of
the initialisation approach varies between O(N) and O(MN).

4If a node is a service, then the re-allocation is calculated based on resource
units consumed by itself. Otherwise, the re-allocation takes into account all
the resource units consumed by its children.

5Once the service has been delivery, the remaining resource units will be
forwards to other services in the sub-tree or to other sub-trees.

B. Requester Side Allocation

When the resource balance of a node nk is very close to or
lower than its threshold βk, where nk ·child = ø, the resource
re-allocation can be triggered. This is depicted in lines 2-4 of
Algorithm 1.

If a node requests extra resource units and it is the root of
the tree structure, then a state alert is triggered. Otherwise, the
algorithm tries to re-allocate resource units as follows. When
a node requests an allocation and it is the only child of its
parent or the children of its parent are invoked sequentially,
then the parent of the node may need to activate a re-
allocation process. This is depicted in line 8-9 of Algorithm 1.
Otherwise, the node has to check whether another allocation
is being processed to avoid inconsistencies due to multiple
nodes re-allocating resources in parallel before it starts to
collect resource units from others. If there are no other nodes
requesting resource re-allocation, the node will multicast its
requests to all its siblings.

As we discussed above, a node can start its own re-
allocation when there are no re-allocations requested by other
nodes are being processed based on its knowledge. However,
in practice, this consistency can be tricky to achieve due to
network delay, i.e. a re-allocation request has been submitted
by another node whereas the node does not receive the request
when it applies for re-allocation. To tackle this issue, we
assume the priority levels of nodes in the hierarchy are
different6. A lower priority requester has to terminate its
allocation request if an allocation triggered by a higher priority
node is processing. This will be further discussed in Section
III-C.

Upon receipt of allocation requests, a node only relies to the
requester with higher priority. The requester then calculates the
total number of allocable resource units by applying Equation
3. If there are enough units remained, where R

′

p > βk and
nk · parent = np, the node nk calculates the resource units
that should be assigned to its siblings by applying Equation 4,
and then forwards them to the nodes based on the calculation
results. Otherwise, the parent of the requester needs to trigger
a re-allocation process. The re-allocation for the node with
multiple siblings that are executed in parallel is depicted in
lines 11-23 of Algorithm 1.

Once the resource units have been re-allocated, all probes
hosted in services will continue supervising resource con-
sumption. This is a recursive process until the transaction is
terminated or a state alert is triggered.

1) Complexity Analysis: As discussed in Section III-A, we
let M denote the maximum branching factor of the node
hierarchy whilst let N denote the height of the hierarchy. The
most expensive case to process an allocation request is that an
allocation is triggered by a leaf node whereas only children of
the root have enough resource units remained. In that case, if
no other allocation is processing, a requester needs to forward

6We assume that descendants always have lower priority than ancestors.
Based on that, the priority level of nodes can be set by various criteria that
is outside the scope of this work.

Algorithm 1 Resource Allocation (Requester Side).

1: loop
2: if |rk − βk| < ε, nk · child = ø then
3: ALLOCATION(nk, nk · parent)
4: end if
5: end loop

6: function ALLOCATION(nk, np)
7: if np 6=ø then
8: if np · child ·mode = sequential or |yp| = 1 then
9: ALLOCATION(np, np · parent)

10: else
11: if no allocation has higher priority then
12: multicast request to all nodes in yp
13: calculate R

′

p

14: collect information on consumed resource
15: if R

′

p > βk then
16: allocate and distribute R

′

p

17: else
18: ALLOCATION(np, np · parent)
19: end if
20: else
21: terminate the allocation
22: reply to the node has higher priority
23: end if
24: end if
25: else
26: trigger state alert
27: end if
28: end function

its request and receive replies from up to M − 1 nodes at
each level of the hierarchy. In full node hierarchy, requests
and replies are sent 2N(M − 1) times whilst the allocable
resource units are allocated to up to (M − 1) +

∑N
i=2M

i

nodes. Based on above, the computational complexity of the
algorithm is O(MN).

2) Improvement: The theoretical analysis indicates the
computational complexity of the requester-side allocation al-
gorithm is O(MN), which means the overhead of the algo-
rithm can grow quickly with an increase of N 7. To reduce the
runtime complexity of the allocation solution, we could map
the multiple level transactions into "flat" ones whose height is
1, and then apply the processed transactions as the input of
our requester-side allocation algorithm. The mapping can be
achieved by applying Algorithm 2. This algorithm is intended
to divide all service nodes constituting the hierarchy into sub-
groups in which services are executed in parallel, and then
apply these sub-groups to Algorithm 1 sequentially. As a result
of the mapping, the complexity of the requester-side allocation
algorithm is reduced to O(M).

In this algorithm, we let s denote a service node set that

7However, we would expect that in most cases the hierarchy of service
transactions are flat, i.e. a single transaction constructed using transactions.

Algorithm 2 Pre-Process.

1: while |S| > 0 do
2: for all nk ∈ S do
3: if nk · next 6=ø then
4: add nk to s, remove nk from S
5: if nk and nk · next are siblings then
6: np = nk · parent
7: else
8: find out np, which is the parent of both nk

or its ancestor(s), and nk · next or its ancestor(s),
9: end if

10: if np · child ·mode = sequential then
11: break
12: end if
13: else
14: add nk to s, remove nk from S
15: end if
16: end for

17: apply s as the input of the requester-side algorithm
18: remove all nodes from s

19: if state alert triggered then
20: terminate
21: end if
22: end while

will used as the input of our request-side allocation algorithm,
and the parent of nodes included in s will be set as the root
of the hierarchy. Let S denote another node set including all
service nodes of a transaction, and let |S| denote the number of
service nodes constituting S. In addition, let nk · next denote
the node next to nk in S.

In Algorithm 2, we assume service nodes in S are well
sorted – a service node following another one in S is always
on the right of that node in the hierarchy. Meanwhile, service
nodes in S are associated with the information on the node
hierarchy, including their siblings, ancestors and the execution
modes.

The nodes of S are checked sequentially: when a node nk
is not the last one of the set S, it will be inserted into s.
The checking process will continue in the following cases:
when nk and nk · next are sibling, and their execution mode
is not "sequential"; when the execution mode of the children
of np is not "sequential", which is the parent of both nk or
its ancestor(s), and nk · next or its ancestor(s). In addition,
if a node is the last node of S, it will simply be inserted in
s. This is depicted in lines 2-16 of Algorithm 2. The set s is
then used as the input of the allocation algorithm. This will
continue until all the services in S have been processed or a
state alert is triggered.

The computational complexity of this mapping algorithm
depends on the number of trees/sub-trees containing service
nodes. Based on the notation given in Section III-A, the

Algorithm 3 Resource Allocation (Responder Side).

1: if nrec =ø then
2: calculate and forward resource units to nreq
3: send information on consumed resource units to nreq
4: nrec = nreq
5: else
6: if P (nreq) > P (nrec) then
7: retrieve rrec from nrec
8: calculate and forward resource units to nreq
9: send information on consumed resource units to
nreq

10: nrec = nreq
11: else
12: no response
13: end if
14: end if

complexity is O(MN−1). We believe this is acceptable since
the algorithm will be typically be run off-line. Meanwhile, the
number of services making up a transaction will be in the tens
at the very most, and the number of trees/sub-trees containing
the services will be less than that.

C. Responder Side Allocation

We assume each node in the hierarchy keeps a record of the
node to which it responded, and on the number of resource
units sent to the recorded node until the re-allocation is
completed. Let nrec denote the recorded node and rrec denote
number of allocable resource units reported to the requester.
Upon an allocation request, the node calculates its allocable
resource units and sends the information to the requester if no
other allocation is processing. This is depicted in lines 1-4 of
Algorithm 3.

Let P (nreq) denote the priority level of the requester. When
a node receives a request whilst it has replied to another node
nrec, it checks the priority level of the nodes. If nreq has
higher priority, the node re-calculates its allocable resource
units and forwards the information to nreq . In this case, when
nrec receives the request from nreq, it terminates its allocation
and ignores all replies, and then responds to nreq . If nrec has
higher priority, the node will not respond to nreq whilst nreq
has to reply to nrec. This is depicted in lines 6-13 of Algorithm
3.

IV. EXPERIMENTAL EVALUATION

In our experiments, we assume a transaction consists of
multiple services. To maintain quality of service in the form
of fast response time, we assume each of the services will
consume of a unit of storage space for caching when they are
serving a request on them. Although such storage space can
vary when invoking different services in practice, we assume it
is constant for all the services in our experiments for simplicity
sake. Moreover, the consumed storage space can be released
when services have delivered, but we only observe the amount

Figure 2: Communication cost with varying number of
services.

of space been used for caching, not the space being occupied
in real-time.

Services constituting a transaction can be invoked in dif-
ferent ways: if services are invoked sequentially, consumption
requests will be forwarded to each of the services in sequence;
if services are consumed in parallel, consumption requests will
be forwarded to the services based on a Zipf distribution. We
employ such a distribution since it has been conjectured that
Zipf’s law governs lots of features of the Internet [8]. This
includes the distribution of requests for services.

The consumption requests on services constituting a trans-

Figure 3: Communication cost with varying height.

action are generated by an generator. The request generator
and the services are implemented in Java as RESTful web
services. They are deployed on Tomcat servers hosted on our
servers that are connected by our campus intranet. Different
consumption limits are set in the experiments. Once the
resource consumed by a transaction reaches the pre-defined
limits, a state alert will be triggered.

We have analysed the upper bound of the communication
overhead for a single leaf node to trigger and complete a
re-allocation in Section III-B1. In this section, we try to
investigate how the overall cost of the solution varies with
the increase in height of transaction hierarchy and number of

service nodes constituting transactions. We change the height
from 1 to 4 and the service nodes from 2 to 10 in the
experiments. Meanwhile, we compare the number of message
exchanged in the transactions whose height and number of
service nodes are the same whereas services constituting them
are executed in different manners. The communication cost
we discussed in our experiments is measured in terms of the
number of messages changed. Obviously, the configuration
of our experiments are not able to give the full picture on
the performance of the approach. However, we believe the
results from our experiments indicate how the overhead of the
solution varies with different transactions.

We first vary the number of services. The number of service
nodes is set as 2, 5 and 10, the height of the node hierarchy
is set to 1, and the total allocated resource units vary between
10 and 1000. As the results depicted graphically in Figure
2 (a)-(c), the cost of managing resource units consumed
by services executed sequentially is lower than that of the
services invoked in parallel. Meanwhile, Figure 2 (d) illustrates
that the communication cost increases as more services are
involved in the transactions in which all nodes are executed
in parallel. Furthermore, even when all services are executed
in parallel, we notice that the communication overhead of
our solution is lower than that of the centralised approach
in most circumstances. Note that in the centralised resource
management approach, we assume a service will apply for
resource from the centralised coordinator every time it receive
a request. Upon the request of the service, the coordinator will
grant a resource unit and forward its reply to the service.

Afterwards, we set the number of service nodes to 5, vary
the height of the node hierarchy from 1 to 4, and change the
total allocated resource units between 10 and 1000. As the
results illustrated in Figure 3 (a)-(c), it is more expensive to
manage resource consumed by services executed in parallel
than those used by services invoked sequentially. Meanwhile,
Figure 3 (d) indicates that the communication cost rises
when the height of the node hierarchy increases, and the
cost of our solution is lower than that of the management
solution deploying a single centralised coordinator as more
resource units consumed, even when all services constituting
the transaction are invoked in parallel. We also notice that
when the height of the transaction is 4, the overhead of our
solution is higher than the centralised one in some test cases.
In this case, we can apply Algorithm 2 to reduce the cost.

V. RELATED WORK

Monitoring of services that form transactions is fundamental
as monitoring data are the primary input for business analysts
to track their business goals of transactions. The monitoring
data are collected in an intra-organizational [9] [10] or a cross-
organizational manner [11] [12]. They will be propagated to a
centralised monitoring component in which the collected state
information is evaluated against pre-defined monitoring crite-
ria in near real-time. The monitoring systems are centralised
and most of them are not applicable to clouds in which service
transactions can spread over a large number of clusters/zones.

Compared with service monitoring in business transactions,
resource management in distributed systems has been a more
active research area for many years. One challenge that needs
to be tackled in this area is how to manage and summarise
resource consumption based on collected information from
distributed nodes. A typical solution is to deploy a single
coordinator to correlate the information, and process the data
for various purposes including finding top-k [13], computing
sums and counts [14] [15], and evaluating whether a pre-
defined threshold is violated or not [3], [4], [16]. Again,
resources are managed by a centralised coordinator in these
works, whereas our solution is fully distributed and each probe
can work as the coordinator.

Except for ensuring that a transaction does not overuse
resources, our work presents a solution to re-allocate resource
budget dynamically. Similar to our allocation solution, Ragha-
van et al. [17] present their approach to manage network band-
width consumed by services distributed in a cloud. Services
can continue consuming bandwidth unless the local granted
resource is depleted. In the case, further consumption requests
will be denied even though the granted bandwidth is not
depleted globally. Karmon et al. [18] utilize a tree structure to
distribute and enforce quotas in grids. Consumption requests
will only be served when there is enough quota remaining
in the node locally. Compared with the two solutions on
resource allocation, our work is intended to make full use
of the resource and tries to avoid the deny of consumption
requests when resource units are depleted in a node, whereas
enough resource remains in the cloud.

J. Behl et al. [2] present a distributed quota enforcement
protocol. In this solution, free quotas are equally distributed
between nodes running applications consumed by a given
customer. Once the local balance of a node is changed, free
quotas will be re-allocated. Compared with our solution, this
work always tries to balance the free quotas of nodes no matter
they consume quotas or not.

VI. SUMMARY AND FUTURE WORK

Service monitoring in business transactions and resource
management in distributed systems have activated a diverse set
of researchers to contribute their solutions to tackle challenges
in the two areas. The proliferation of cloud services has led
to an increasing demand to mange resources consumed by
business transactions in large-scale distributed systems. To
the best of our knowledge, our work can be the first state
monitoring solution to track resources consumed by cloud
services constituting transactions, and evaluate whether a pre-
defined threshold is violated or not.

In our solution, each node – a service or a coordinator
of cloud transactions is equipped with a probe for resource
monitoring and re-allocation. In practice, this can be achieved
by embedding our algorithms into the service level monitoring
information providers, such as the "probe" of the Lattice
monitoring framework [19].

Our re-allocation is processed between the node triggering
the allocation and its siblings, or between the ancestors of

that node. The remaining resource budget is allocated to each
service involved in the allocation based on its consumption
rate to avoid further immediate re-allocations. When all the
resource units allocated to a transaction is depleted, a state
alert will be triggered. This resource state monitoring and
management solution is fully distributed and there is no central
coordinator, i.e. no central failure point involved. Compared
with a centralised solution that deploys a single coordinator
to control and manage resource consumptions, our work could
increase performance, scalability, and fault tolerance.

Furthermore, we analysed the computational complexity of
the our solution. As the height of a transaction hierarchy
increases, the overhead of the solution could grow. To tackle
this issue, we presented an algorithm to map multiple-level
transactions into "flat" ones. It divides transactional services
into different sub-groups. Multiple services included in each of
the sub-groups are executed in parallel whilst the sub-groups
are invoked sequentially. Additionally, we performed an exper-
imental analysis to compare our solution with the centralised
one. Our experimental results show that our solution can
reduce the communication overhead in most circumstances.

We notice that our resource state monitoring solution lacks
practical validation. Future work will initially concentrate
on this. We will deploy our monitoring solution to track
service transactions on Amazon EC2. It will further validate
the solution, and complement the analyses and experiments
presented in this paper.

Secondly, we assume the time consumed on communication
and tracking of resource consumptions is known in advance
in this work. This may not always be the case in practice,
especially the time spent on message transmission. Currently,
the time consumed on communication used in the test is
calculated based on its upper bound and lower bound measured
in the test bed whilst the time spent on tracking is obtained
by estimation. It is common knowledge that there is always
a minimum transmission time, which can be obtained if no
other network traffic exist. However, most distributed systems
are asynchronous in practice, and it can be hard to find out
the upper bound on message transmission delays. We will
investigate how to tackle this issue and relax the assumption
in future.

Thirdly, we will investigate how to set the reservation
threshold dynamically that can tolerate network dynamics and
mitigate their impact on the monitoring system. Currently,
the threshold is calculated based on the estimated time spent
on communication and monitoring. As we know, network
traffic changes constantly. The static threshold value can be
too high or low. High threshold value triggers frequent re-
allocations leading to high communication cost even when not
necessary, whereas low threshold value may starve services
when performing re-allocations.

Finally, it is not uncommon that services or probes fail in
transactions. This has not been covered by this work. We
will enhance our solution to enable nodes that dynamically
replace failure services/coordinators or crashed probes to get
knowledge on consumed resources and available balance. This

will add complexity, however we believe it is required, given
the prevalence of service/server, or network failure in clouds.

REFERENCES

[1] M. Verma and P. Deswal, “Approaching web services transactions,”
IBM developerWorks Technical Library, 2003. [Online]. Available:
http://www.ibm.com/developerworks/webservices/library/ws-tranart/

[2] J. Behl, T. Distler, and R. Kapitza, “DQMP: A decentralized protocol
to enforce global quotas in cloud environments,” in Proceedings of the
14th International Conference on Stabilization, Safety, and Security of
Distributed Systems, ser. SSS’12. Berlin, Heidelberg: Springer-Verlag,
2012, pp. 217–231.

[3] S. Meng, S. R. Kashyap, C. Venkatramani, and L. Liu, “REMO:
Resource-aware application state monitoring for large-scale distributed
systems,” in Proceedings of the 2009 29th IEEE International Confer-
ence on Distributed Computing Systems, ser. ICDCS ’09. Washington,
DC, USA: IEEE Computer Society, 2009, pp. 248–255.

[4] S. Meng, L. Liu, and T. Wang, “State monitoring in cloud datacenters,”
IEEE Transactions on Knowledge and Data Engineering, vol. 23, no. 9,
pp. 1328–1344, 2011.

[5] E. B. Lakew, F. Hernández-Rodriguez, L. Xu, and E. Elmroth, “Manage-
ment of distributed resource allocations in multi-cluster environments,”
in the IEEE 31st International Performance Computing and Communi-
cations Conference, IPCCC’12, Austin, TX, USA, 2012, pp. 275–284.

[6] M. Solomon, G. Bamossy, S. Askegaard, and M. Hogg, Consumer
Behaviour: A European Perspective (3rd Edition). Prentice Hall, 2006.

[7] G. F. Coulouris and J. Dollimore, Distributed systems: concepts and
design(5th Edition). Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 2011.

[8] L. A. Adamic and B. A. Huberman, “Zipf’s law and the internet,”
Glottometrics, vol. 3, pp. 143–150, 2002.

[9] L. Baresi and S. Guinea, “Towards dynamic monitoring of WS-BPEL
processes,” in ICSOC 2005, Third International Conference of Service-
Oriented Computing, volume 3826 of Lecture Notes in Computer Sci-
ence. Springer, 2005, pp. 269–282.

[10] F. Barbon, P. Traverso, M. Pistore, and M. Trainotti, “Run-time mon-
itoring of instances and classes of web service compositions,” in
Proceedings of the IEEE International Conference on Web Services,
ser. ICWS ’06, Washington, DC, USA, 2006, pp. 63–71.

[11] B. Wetzstein, D. Karastoyanova, O. Kopp, F. Leymann, and D. Zwink,
“Cross-organizational process monitoring based on service choreogra-
phies,” in Proceedings of the 2010 ACM Symposium on Applied Com-
puting, ser. SAC ’10. New York, NY, USA: ACM, 2010, pp. 2485–2490.

[12] S. Wagner, C. Fehling, D. Karastoyanova, and D. Schumm, “State
propagation-based monitoring of business transactions,” 2012 Fifth IEEE
International Conference on Service-Oriented Computing and Applica-
tions, SOCA’12, vol. 0, pp. 1–8, 2012.

[13] B. Babcock and C. Olston, “Distributed top-k monitoring,” in Proceed-
ings of the 2003 ACM SIGMOD international conference on Manage-
ment of data, ser. SIGMOD ’03. ACM, 2003, pp. 28–39.

[14] R. Keralapura, G. Cormode, and J. Ramamirtham, “Communication-
efficient distributed monitoring of thresholded counts,” in Proceedings
of the 2006 ACM SIGMOD international conference on Management of
data, ser. SIGMOD ’06. ACM, 2006, pp. 289–300.

[15] S. Kashyap, J. Ramamirtham, R. Rastogi, and P. Shukla, “Efficient
constraint monitoring using adaptive thresholds,” in Proceedings of the
2008 IEEE 24th International Conference on Data Engineering, ser.
ICDE ’08. IEEE Computer Society, 2008, pp. 526–535.

[16] S. Meng, S. R. Kashyap, C. Venkatramani, and L. Liu, “Resource-
aware application state monitoring,” IEEE Transactions on Parallel and
Distributed Systems, vol. 23, no. 12, pp. 2315–2329, 2012.

[17] B. Raghavan, K. Vishwanath, S. Ramabhadran, K. Yocum, and A. C.
Snoeren, “Cloud control with distributed rate limiting,” in Proceedings
of the 2007 conference on Applications, technologies, architectures, and
protocols for computer communications, ser. SIGCOMM ’07. New
York, NY, USA: ACM, 2007, pp. 337–348.

[18] K. Karmon, L. Liss, and A. Schuster, “GWiQ-P: an efficient decentral-
ized grid-wide quota enforcement protocol,” Operating Systems Review,
vol. 42, no. 1, pp. 111–118, Jan. 2008.

[19] S. Clayman, A. Galis, and L. Mamatas, “Monitoring virtual networks
with lattice,” in Network Operations and Management Symposium
Workshops (NOMS Wksps), 2010 IEEE/IFIP, 2010, pp. 239–246.

