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Abstract 

 
Considerable conflict remains in the literature as to the position of the root of placental 

mammals, and the placement of several intra-ordinal groups. Debate continues over the 

use of DNA or amino acids datasets and over the use of Supertree or Supermatrix 

approaches. Known phenomena exist within mammal data that complicate the 

reconstruction of phylogeny. These include (but are not limited to), variation in 

longevity, body size, metabolic rates, and germ-line generation time that result in 

variation in mutation rates and composition biases. Previous attempts to resolve the 

placental mammal phylogeny have used homogeneous evolutionary models that cannot 

capture and adequately describe these features across the species sampled. In this thesis 

I explore the properties of different datasets and data types and their suitability to the 

resolution of the mammal phylogeny at different depths: (i) the position of the root of 

the placental mammals, and (ii), the intraordinal placements within the Laurasiatheria. 

The datasets tested were (i) mitochondrial and nuclear data types, (ii) previously 

published datasets for mammals, and (iii), datasets I assembled specifically for analyses 

at different phylogenetic depths. I propose and apply the use of heterogeneous models 

to resolve the position of the root of the placental mammal phylogeny to these datasets.  

 

Reconstruction of a robust mammal phylogeny provides us with an essential framework 

for understanding the molecular underpinnings of adaptation to environment. The 

placental mammals display a huge variations in life traits such longevity, body size and 

DNA repair efficiency, since they emerged ~100 million years ago. With this robust 

phylogeny, I set out to determine the level of adaptive and non-adaptive processes 

acting on a set of mammal genes that are linked with longevity and cancer. 

 

The results of these analyses yield important insights into data and model suitability, 

and provide strong evidence for a single hypothesis for the rooting of placental 

mammals. These results also show that Laurasiatheria intra-ordinal placements are not 

fully resolved and additional sampling from this diverse clade is required. Using this 

resolved phylogeny, specific molecular adaptations and non-adaptive mechanisms were 

identified in the mammalia for a set of telomere-associated genes. 
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Success 

 

“Success is not final, failure is not fatal: it is the courage to continue that counts.”  

Winston S. Churchill 
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1  Introduction 
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1.1 Natural Selection and Molecular Evolution 

1.1.1 Evolutionary Theory 

Charles Darwin laid the foundation for the study of evolutionary biology in his book 

“On the origin of species by means of natural selection, or the preservation of favoured 

races in the struggle for life” (Darwin 1859). He proposed a theory that could explain 

evolutionary change based on two major observations: (i) species change over time, and 

(ii), the process of natural selection dictates which variations are retained (Darwin 

1859). This theory, coupled with the understanding of genetic inheritance that followed, 

revolutionized a modern way of thinking. The modern synthesis for evolutionary theory 

was based on the interaction between Natural Selection and Genetic Drift. The Hardy-

Weinberg equation (Eqn. 1) describes an idealized state where allele frequencies do not 

change across generations. The frequencies of alleles are denoted by p and q, where p2 

or q2 refer to the homozygous alleles and 2pq are the heterozygous alleles. If the 

population is in equilibrium then the sum of the frequencies of alleles should equal 1. 

 

Eqn. 1 The Hardy-Weinberg equation 

 
          

For a population to be at Hardy-Weinberg equilibrium the population must have: (i) 

random mating, (ii) an infinite population size, (iii) no gene flow between populations, 

(iv) no mutations, and (v), natural selection should not confer a survival advantage. 

Deviations from this equation provide evidence for natural selection or genetic drift. 

Natural populations do not adhere to the Hardy-Weinberg equation, as random genetic 

drift and directional natural selection alter allele frequencies.  

 

1.1.2 Random Genetic Drift 

According to the neutral theory of evolution, the majority of molecular evolutionary 

changes are caused by random genetic drift (Kimura 1968). This theory was expanded 

to “the nearly neutral theory of molecular evolution” which accounts for slightly 

advantageous or deleterious mutations that can become fixed in a population through 

random genetic drift (Ohta 1973, Ohta and Gillespie 1996).  In a haploid population 
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with an effective population of size Ne, the probability that a neutral mutation will 

become fixed is Px. If a new neutral mutation arises within a diploid population then the 

initial probability of the neutral mutation fixing within a population becomes halved 

(Equ. 2). 

 

Eqn. 2 The probability of fixation of a neutral mutation within a population 

 
 

The number of new mutations per generation is 2Neµ, therefore the fixation rate of a 

novel neutral mutation is multiplied by the probability of fixation giving an overall 

fixation rate of: 

 

Eqn. 3 The overall fixation rate of novel neutral mutations 

 
 

Therefore, the probability of a neutral mutation fixing in a population is higher if N is 

small (Kimura 1968). The retention time for a neutral allele within a population is 

related to the mutation rate (µ), where high µ decreases the probability of retention. If a 

new mutation occurs and it is destined to be fixed within a population, then Kimura 

calculated that the average time for fixation to occur is 4Ne generations (Kimura 1980a).  

If a new mutation is either beneficial or deleterious to the population then both Ne and 

the strength of selection (s) have been shown to impact the probability of fixation of 

that allele (Kimura 1957), see Figure 1.1. Ne is an important factor impacting allele 

frequency.  For example, in the case of population bottlenecks, where Ne has gone 

through a period of substantial reduction, genetic variance is decreased (Lynch 1986) 

and the adaptive potential of the species is limited (Willi 2006). In a scenario where Ne 

is finite, recombination is absent, slightly deleterious mutation rates are high, and 

purifying selection is too weak to remove all new deleterious mutations, extinction can 

result through “Muller’s ratchet effect” (Muller 1963). When a new population arises 

from an initial population with low Ne, it is called the founder effect (Mayr 1942), and 

this also results in the fixation of deleterious mutations, such situations are exemplified 
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by the frequency occurrence of Tay–Sachs and Gaucher disease in the Ashkenazic 

Jewish populations (Slatkin 2004). 
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Figure 1.1 Fixation of deleterious mutations based on population size 

The probability of fixation of deleterious alleles (Uf) is affected by the strength of 

selection against Uf (s) and the effective population size (Ne). The allele is initially 

present at frequency 1/(2Ne). Deleterious mutations will fix more readily in smaller 

populations (Ne = 10) compared to larger populations (Ne = 1000). Taken with 

permission from (Whitlock and Bürger 2004) 
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1.1.3 Natural Selection 

Natural selection acts on phenotypes (observable traits) and the underlying genetic 

mutations. If the phenotypic trait is beneficial, and gives reproductive advantage to a 

species, then over time the mutation causing this phenotype will increase in frequency 

and improve the “fitness” of a population. In a similar fashion, natural selection works 

by ridding a population of deleterious mutations, this is also known as purifying 

selection. Natural selection has several levels at which it acts: individual, sexual and kin 

selection (Stearns 2008). Reproductive success is determined by the individual’s ability 

to survive and produce fertile offspring, and it is dependent on success in finding a 

mate. Sexual selection acts on individuals to increase the likelihood of finding a mate 

even if it decreases the overall fitness of a species (Darwin 1871). For example, the 

ornate tail of the male peacock is attractive to the peahen, and while it increases the 

reproductive success of the bearer, it is also costly to generate and burdensome to carry 

leaving it more vulnerable to predators (Darwin 1871). Finally, kin selection a concept 

popularised by Hamilton (Hamilton 1964) has been used to describe the altruism and 

co-operative behaviour observed in communities of relatives. Kin selection is 

hypothesised to have been a major contributing factor in increased longevity in humans 

(Hawkes 2003). The “grand mother hypothesis” posses that increased longevity evolved 

in humans to assist in rearing the second-generation offspring ensuring that the 

grandparent genes will be successfully passed on through future generations (O'Connell 

et al. 1999). The concept of longevity will be revisited in section 1.1.6. 

 

In a controversial publication entitled “Cancer and Evolution: Synthesis” Graham poses 

that cancer was a major selective pressure in the evolution of complex animals (Graham 

1983). Graham describes this process as a cascade, whereby a mutagen initiates a 

mutation that triggers an oncogene resulting in transformation to a cancerous state. If 

this process occurs in a lineage before reproduction takes place the genes from that 

lineage are not passed on. Cancer selection is the process of natural selection selecting 

for individuals that have a defence system against cancer or a mechanism of postponing 

cancer until post-reproductive age (Graham 1992). He suggests that the constant 

pressure of cancer selection has lead to more precise mitosis that in turn lead to more 

accurate development (Graham 1992).  In addition to the selective pressures mentioned 

in this section, there are many selective pressures acting upon a particular lineage at any 



 7 

given time that ultimately are working on the underlying genetic material, e.g infection 

with new pathogen and diet regime (Fumagalli et al. 2011, Yang 1998). 

 

1.1.4 The relationship between orthologs, paralogs and function 

Homologs are defined as genes inherited from a common ancestor and are generally 

classified as (i) the product of a speciation event, i.e., ortholog, or (ii) the result of a 

gene duplication event, i.e., paralog (Fitch 1970), see Figure 1.2. More recently, 

paralogs have been further classified into “in-paralogs” based on a recent gene 

duplication within a species and “out-paralogs” that duplicated before a speciation event 

and can be in multiple species (Sonnhammer and Koonin 2002). Identification of 

orthologs and paralogs between the annotated genome from one species and an un-

annotated genome of another can allow for inference of function as explored in Chapter 

4 (Chen and Jeong 2000). Identification of homologous sequences is central to 

comparative genomic analyses and has been carried out using both sequence similarity 

and synteny analyses (Gabaldon et al. 2009, Wolf et al. 2001). Correct ortholog 

identification allows for reconstruction of a species phylogeny (Delsuc et al. 2005) and 

this will be explored in detail in Chapter 2. 

 

The interpretation of the terms “ortholog” and “paralog” is continually refined and 

debated in the literature (Petsko 2001, Jensen 2001, Koonin 2001, Theissen 2002). The 

assumption that orthologs are more conserved in sequence and function than paralogs is 

a recent dispute (Dessimoz et al. 2012). The most recent debate that has ensued has 

hinged on the precise definition of an ortholog (Gabaldon et al. 2009) and whether 

orthologs should be defined based on: (i) sequence similarity (Gabaldon et al. 2009), (ii) 

conserved domain architecture (Forslund et al. 2011), (iii) position of introns 

(Henricson et al. 2010), (iv) function (Samsonova et al. 2002), or (v) protein structure 

(Peterson et al. 2009). An initial study by Nehrt et al. (2011) appeared to show how 

functional annotations are less similar among orthologs than they are among paralogs, 

thereby calling to question the relationship between orthology and function that is often 

assumed in molecular evolutionary studies (Nehrt et al. 2011). Subsequent studies 

showed how this analysis used computational and experimentally annotated Gene 

Ontology (GO) terms (du Plessis et al. 2011), and so contained biases resulting from 

algorithmic functional annotation that had impacted on the results and conclusions of 

the initial study (Altenhoff et al. 2012). The Nehrt et al. (2011) study also did not take 
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into account that the frequency of GO terms varies across species. On correcting for the 

frequencies of the GO terms by estimating them separately for each species, and on 

removal of computationally annotated GO terms, it was found that orthologs were more 

similar in function than paralogs (Altenhoff et al. 2012). The quest for harmonised 

definitions of orthologs is ongoing and a consortia of experts are presently working to 

standardise conventions (Dessimoz et al. 2012).   
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Figure 1.2 Gene phylogeny depicting the relationships amongst homologs.  

Genes resulting from a speciation event are orthologs (blue), while genes resulting from a gene duplication event are paralogs. In-paralogs (green) are 

where species-specific gene duplication occurs and resulting orthologs cluster as co-orthologous (red). Out paralogs (purple) are not co-orthologs and 

are the results of a gene duplication event before speciation and are not necessarily in the same species. 
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Gene duplication is the mechanism by which paralogs arise and is believed to be the 

main engine for deriving new gene function. The mechanism of neofunctionalisation 

(duplication followed by the evolution of new function) is simply outlined as the 

duplication of a gene, the subsequent accumulation of mutations in the duplicate (while 

the other copy retains the original function) and the eventual evolution of a new 

function (Ohno 1970). Empirical studies have shown that most gene duplicates do not 

obtain novel functions and tend to either become subfunctionalised or pseudogenised 

(see review by Lynch and Force (2000)). Subfunctionalisation can result from 

conflicting selective pressure acting on the duplicates, with each duplicate performing 

part of the original function, therefore both duplicates are preserved (Force et al. 1999, 

Lynch and Force 2000). It has been shown that long term preservation of gene 

duplicates is only possible if sufficient levels of purifying selection are acting on these 

duplicated genes (Lynch and Katju 2004). Dosage effects can impact the fate of 

duplicates in two opposing ways: (i) dosage selection, when higher expression levels of 

a pair of duplicate genes are beneficial to the organism and result in the selection and 

fixation of both copies (Kondrashov and Koonin 2004), or (ii), dosage compensation, 

two copies of the gene are deleterious to the organism and one is subsequently 

pseudogenised (Heard and Disteche 2006). Finally, gene duplicates can undergo 

pseudogenisation and loose function (non-functionalisation) (Conant and Wolfe 2008). 

Estimates show that gene duplication and subsequent retention occurs in eukaryotic 

populations at rate of 1 gene per 100 million years (Lynch and Conery 2000), therefore 

birth and death of gene duplicates are common (Hughes and Nei 1989, Nei et al. 2000).   

 

Gene duplication is not the only mechanism by which new functional genes emerge. For 

instance, recombination has been shown to be important in the evolution of new β-

galactosidase (ebg) enzymatic function in E. coli K-12 genes (Hall and Zuzel 1980). 

Gene fusion events have also resulted in the evolution of novel chimeric genes such as 

human Ubiquitin-conjugating enzyme E2 variant 1 (KUA-UEV) (Thomson et al. 2000).  

In prokaryotic species such as bacteria it has been shown that pathogenic strains can 

emerge through the process of horizontal gene transfer (HGT) (Ochman 2001). 

Although HGT has been observed in plants (Bergthorsson et al. 2003) its prevalence in 

eukaryotes in general is not known. Other forms of introgression have been shown to be 

important in the evolution of new proteins (Bapteste et al. 2012) such as tissue-specific 

glue proteins in Drosophila (Aruna and Ranganath 2006). The process of rearranging 

portions of protein coding DNA by exon shuffling, as in the evolution of the 
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fucosyltransferase gene family (Javaud et al. 2003), has proven to be an important 

mechanism of new protein evolution (Patthy 1996, Long and Langley 1993). In human 

protein-coding genes, transposable elements are estimated to have generated 4% of new 

exons through transposition of sequences within the host genes (Nekrutenko and Li 

2001). Retrotransposition produces new gene function through generation of gene 

duplicates in new genomic positions by reverse transcription, as evidenced by the 

sphinx gene in Drosophila (Wang et al. 2002) and the phosphoglycerate mutase gene in 

human and chimpanzee (Betran et al. 2002). Finally, de novo gene genesis from non-

coding DNA sequences has been found in Drosophila melanogaster testis expressed 

genes (Levine et al. 2006), along with examples within the human lineage (Guerzoni 

and McLysaght 2011). There are other mechanisms by which genes acquire new 

functions and new genes originate and this is not an absolute list.  

 

The mechanism of emergence of new gene function focused on specifically in Chapter 

4 of this thesis is positive selection, described in more detail in section 1.1.5. Positive 

selection is the process by which advantageous mutations are retained and spread 

throughout a population - this has become synonymous with protein functional shift 

(Beall et al. 2010, Huang et al. 2012, Loughran et al. 2012). 

 

1.1.5 Positive Selection and Functional Shift 

There are three main types of Natural selection: (i) purifying selection, where a 

mutation is deemed deleterious and natural selection acts to decrease its frequency, (ii) 

positive selection (also referred to as adaptive evolution), where a mutation arises that 

results in a beneficial trait and natural selection acts to increase its frequency within the 

population, and finally (iii) neutral evolution where the mutation is neither deleterious 

nor beneficial and is carried through a population by random genetic drift at a frequency 

proportional to Ne.  It is possible to detect the selective pressures acting on a species or a 

gene by calculating the frequency of alleles across the population; alternatively, the 

selective pressure on a particular protein coding sequence can be estimated by 

calculating the ratio of non-synonymous substitutions per non-synonymous site (Dn) to 

synonymous substitutions per synonymous site (DS). This ratio (Dn/Ds) is denoted as ω 

throughout this thesis. The ω ratio can be interpreted as follows: (i) if ω > 1, this is 

indicative of positive selection, (ii) if ω < 1, this is indicative of purifying selection, and 

(iii), if ω = 1, the protein is evolving under a neutral process, see Figure 1.3. 
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Figure 1.3 Diagramatic representation of the difference between ω ratios and 

protein functional shift on coding sequences 

The nucleotides AGA code for arginine. Ds: a synonymous substitution at a 

synonymous site (AGA to AGG) does not alter protein, this is represented in the protein 

cartoon as no “kink” produced. Dn: a nonsynonymous substitution at a nonsynonymous 

site (AGA to AAA) results in a change from the amino acid serine to lysine, this is 

represented in the cartoon as a “kink” produced that may subsequently alter the proteins 

function. 
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At the nucleotide level, a non-synonymous substitutions (Dn) at a non-synonymous 

sites causes an amino acid substitution, and this biochemical change can alter the way in 

which the protein sequence is folded causing a structural change and subsequently a 

shift in the protein function. Synonymous substitutions at synonymous sites (Ds) in 

nucleotide sequences do not cause biochemical change at the amino acid level and 

therefore do not have a downstream effect on protein structure. Therefore when ω > 1 is 

estimated from an aligned set of homologous sequences, it is indicative of positive 

selective pressure.  

 

Despite high levels of positive selection reported in the literature, e.g. 45% of coding 

genes in Drosophila (Smith and Eyre-Walker 2002) and between 38% and 62% in 

mammals (Kosiol et al. 2008), it is generally held that the majority of codon positions in 

protein coding genes are evolving under purifying selection (Hughes 1999). The 

evolutionary constraint placed on proteins by their structure-function relationship means 

that much of sequence space is not viable for exploration (Peterson et al. 2009). Positive 

selection occurs at sites that confer an advantage to the population, and therefore only 

happen at specific points along a gene and not ubiquitously (Nielsen et al. 2005).  

 

Although the link between positive selection and protein functional shift had been 

argued from a theoretical standpoint (Hughes 2007, Yang 1998), the empirical evidence 

was much slower to emerge. Initial studies of vision proteins showed that there was no 

clear connection between functional shift and positive selection (Yokoyama et al. 2008, 

Hughes and Piontkivska 2008). Austin Hughes has argued that elevated ω indicating 

positive selection does not necessarily correlate to protein functional shift and adaptive 

phenotypes are more likely to be caused by single amino-acid changes as opposed to 

repeated amino acid changes, deletion or silencing of genes or changes in gene 

expression (Hughes 2007). Empirical evidence by Yokoyama et al. (2008) 

demonstrated that upon reconstruction of  ancestral vertebrate rhodopsin genes, repeated 

site mutagenesis  on sites identified as positively selected did not correlate with protein 

functional shift (Yokoyama et al. 2008). More recent publications have shown a robust 

and biochemically validated link through the rational mutagenesis of various fungal, 

plant and mammal enzymes (Levasseur et al. 2006, Loughran et al. 2012, Moury and 

Simon 2011, Tennessen 2008). Following in vitro site-directed mutagenesis of sites 

identified as positively selected in the fungal lipase/feruloyl esterase A family, the 

results clearly demonstrated that certain amino acids under positive selection were 
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involved in a functional change in the enzyme (Levasseur et al. 2006). Site-directed 

mutagenesis experiments generating all possible combinations of positively selected 

sites in human myeloperoxidase, followed by detailed biochemical and biosynthetic 

pathway analyses confirmed the link between positive selection and functional shift to 

novel chlorination activity (Loughran et al. 2012). The empirical studies described here 

all employed codon-based maximum likelihood models of evolution, that are reliant on 

accurate phylogenetic reconstruction, to detect positive selection (this codon based 

approach is detailed in section 1.1.6.2). Yokoyama employed a neighbour joining 

method to reconstruct to phylogeny of the vertebrate rhodopsin genes (Yokoyama et al. 

2008), while the two studies demonstrating links between positive selection and protein 

functional shift have employed more accurate maximum likelihood methods of 

phylogenetic reconstruction (Levasseur et al. 2006, Loughran et al. 2012). The success 

of maximum likelihood phylogenetic reconstruction methods compared to neighbour 

joining reconstruction methods have been detailed in section 1.2.1.  

 

1.1.6 Methods for Detecting Positive Selection 

The first methods employed to detect positive selection were distance based and 

assessed the rate of change among protein coding genes through a pairwise comparison 

of ω (Nei and Gojobori 1986, Ina 1995, Li et al. 1985). Improvements were made to this 

method by incorporating a phylogenetic tree - this allowed ancestral reconstruction at 

internal nodes, and the application of the distance-based method to calculate the ω 

between all sequences (Messier and Stewart 1997, Creevey and McInerney 2002, Yang 

1998, Yang et al. 2000). 

 

1.1.6.1 Distance Based Methods for Detecting Positive Selection 

One of the first methods for estimating ω in protein coding sequences involved the 

classification of codons based on how often a nucleotide substitution would result in an 

amino acid replacement (Li et al. 1985). There are four separate classifications; non-

degenerate sites are classed as non-synonymous sites, fourfold degenerate sites are 

classed as synonymous sites, twofold degenerate sites are classed as synonymous sites 

in the case of transitions, and non-synonymous sites in the case of transversions. The 

classification of sites is averaged across two sequences in a pairwise manner and ω is 

calculated. This earlier method is biased as it counts each twofold degenerate site as 1/3 
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synonymous and 2/3 non-synonymous, and this overestimates the synonymous counts 

due to transition mutations occurring more often than transversions and in addition most 

transitional mutations at twofold degenerate sites are synonymous (Li 1993). Therefore 

the Kimura two-parameter (Kimura 1980b) method was applied to correct for this bias 

(Li 1993). Even with the addition of this correction to the Li method (Li 1993) it was 

observed that ω estimations were less accurate when there was a high mutation rate, this 

produces underestimations of the non-synonymous substitution rate (Nei and Gojobori 

1986). There are two major problems with pairwise detection methods, while it is 

possible to detect adaptive evolution, it was difficult to pinpoint the exact position 

within a sequence and it was not possible to assess lineage-specific positive selection, as 

there is no phylogeny implemented. In summary, pairwise methods of estimating 

adaptive evolutionary events lack precision and are not as effective as phylogeny-based 

approaches detailed in the next section. Sliding windows methods are not described as 

they have been shown to generate artifactual trends of synonymous and 

nonsynonymous rate variation, even if these values are completely constant and codons 

are evolving independently (Schmid and Yang 2008). A comparison of sliding windows 

based methods and the likelihood ratio test (LRT), showed that LRT’s are far more 

rigorous in detecting positive selection and LRT methods have been detailed in the 

following section (Schmid and Yang 2008). 

 

1.1.6.2 Phylogeny-Based Methods for Measuring Selective Pressure 

Variation 

The first of the phylogeny based approaches for measuring selective pressure described 

here is the McDonald and Kreitman test which divides a phylogeny into two parts, 

“between-species” (inter-specific) and “within-species” (intra-specific). If a mutation 

occurs on a “between-species” branch, and is present in species that diverge from that 

branch, the mutation is considered fixed between those species. A mutation on a 

“within-species” branch is considered polymorphic within species (McDonald and 

Kreitman 1991). If positive selection is acting on polymorphic sites, then a mutation 

will fix quicker than if genetic drift is the sole driving force on the mutated site 

(McDonald and Kreitman 1991, Gillespie 1998). Therefore if adaptive evolution has 

occurred there will be more fixed mutations than polymorphic mutations observed 

between species (McDonald and Kreitman 1991). In this way it is possible to test if 
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signatures of adaptive evolution are present through rejection of the neutral mutation 

hypothesis (Kimura 1979).  

 

The Creevey-McInerney method (Creevey and McInerney 2002) is an extension of the 

McDonald and Kreitman test and assumes sequences are neutrally evolving when the 

ratio of replacement polymorphic/variable to replacement fixed/invariable mutations 

and silent polymorphic/variable to silent fixed/invariable are the same. In the Creevey-

McInerney method (Creevey and McInerney 2002) a rooted phylogenetic tree is 

employed and the hypothetical ancestral sequences are reconstructed at each internal 

node using maximum parsimony (Hennig 1966) (see section 1.2.2 for description). All 

substitutions that occur across the phylogeny are then identified. Deviation from 

equality between these two ratios (replacement polymorphic/variable to replacement 

fixed/invariable) means deviation from the neutral expectation. If high rates of 

replacement invariable sites are observed, this indicates directional selection, or if high 

rates of replacement variable sites are observed it indicates non-directional selection 

(Creevey and McInerney 2002). While the Creevey-McInerney method has been shown 

to be effective in detecting adaptive evolutionary events within lineages it is not capable 

of identifying lineage-site specific evolution (Creevey and McInerney 2002), and 

therefore these methods have not been employed in this thesis. 

 

A more explicit approach to identifying adaptive evolution involves the incorporation of 

evolutionary models in a maximum likelihood (ML) and Bayesian framework 

(Goldman and Yang 1994, Nielsen and Yang 1998, Yang and Nielsen 2002). These 

methods employ a model of evolution that can assess the probability of observing the 

data given the model of evolution. One approach to detecting positive selection in a ML 

framework is through the sitewise likelihood-ratio (SLR) method (Massingham and 

Goldman 2005).  The SLR method was developed to detect non-neutral evolution and 

while it can give the estimates for the strength of evidence for each site under selection, 

it is not effective as the following method in estimating the strength of selection acting 

on each site (Massingham and Goldman 2005). 
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Codon substitution models have been developed to account for physiochemical property 

differences or distances between amino acids. These models also allow for variation in 

selective pressure across different sites in an alignment and across different branches in 

a phylogeny (Goldman and Yang 1994, Nielsen and Yang 1998, Yang and Nielsen 

2002). These models were further developed to allow for calculation of ω values across 

all species for each amino acid in the MSA  and calculation of ω values for one or a 

subset of species, termed “foreground lineages”, as compared to all other taxa in the 

dataset and are described in detail below (Yang et al. 2000).  

 

The codon models used to calculate ω values are nested likelihood models, with each 

model differing in complexity from the previous by the addition of parameters, the 

models have been described graphically in Figure 1.4. The standard nomenclature from 

the literature for these models has been retained in this thesis (Yang et al. 2000, Z. Yang 

et al. 2005, Wong et al. 2004). The simplest model, M0, calculates a value for ω over 

the entire alignment. The M0 model assumes all sites and all lineages are evolving at 

the same rate. Model M3 is an extension of M0 and allows the ω values to vary freely. 

There are two variations of the M3 model, m3(k = 2) discrete which allows two variable 

site classes, and m3(k = 3) which allows three variable site classes. M1a is a neutral 

model that allows two site classes for proportion of sites where ω0 = 0 and ω1 = 1. M2a 

is a selection model, and allows three ω site classes where ω0 = 0, ω1 = 1 and ω2 is 

estimated and may be greater than 1. M7 is the beta model, which allows for a beta 

distribution β(p,q), and the beta distribution can take many different shapes depending 

on the values of p and q, but the ω estimation is bound between 0 and 1. The number of 

categories used to approximate the beta distribution is user defined and has been set to 

10, for the work described in Chapter 4. Therefore the M7 beta model allows for 10 

different ω site classes and is compared against the more parameter rich M8 (beta & 

omega > 1). M8 allows 10 different ω site classes and contains an additional 11th 

parameter for ω that is free to vary between 0 and > 1. M8a (beta & omega = 1) is the 

null hypothesis of M8 where the 11th category must be neutral (ω = 1). All site-specific 

models are represented graphically in Figure 1.4(A).  

 

Codon-substitution models were developed for detecting positive selection at individual 

sites along specified lineages (Yang and Nielsen 2002). Two lineage-site models were 

developed, model A and model B and each work on a phylogeny that has been 

separated into “foreground” and “background” lineages. Model A assumes two site 
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classes are the same in both foreground and background lineages with ω0 = 0 (class 0) 

and ω1 = 1 (class 1), while an additional site class ω2 (class 2) allows for calculation of 

ω2  > 1. Model B is similar to model A except that it allows estimation of site classes ω0 

and ω1 from the data instead of being set a priori. In simulation studies, model B had a 

false detection rate for estimating positive selection of 33-66% when there was 

relaxation of purifying selection in foreground branches, while model A did marginally 

better with 19-54% false positives under the same conditions (Zhang 2004). 

Modifications were later made to model A allowing for additional site class estimation, 

there were two site classes belonging to the null model M1a distribution, i.e.  0 < ω0 < 1 

and ω1 = 1 for both foreground and background, and two additional classes that allowed 

for positive selection, i.e., ω2a  > 1 and ω2b  > 1, as shown in Figure 1.4(B) (Zhang et al. 

2005). The null hypothesis of model A is referred to as “modelA-null” has fixed ω2 = 1 

and allows for sites evolving under purifying selection, or neutrally evolving, in the 

background lineages. These improved models, i.e. modelA and modelA-null, were 

shown to perform well when used in conjunction with one another and out-performed 

the previous versions of modelA and modelB (Zhang et al. 2005). 
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Figure 1.4 Codon models of Substitution implemented in CodeML from the PAML 

package (Yang 1997, Yang 1998). 

The codon models of substitution employed from the CodeML software are illustrated. 

Codon models for site-specific analysis are shown in (A) and those for lineage-site are 

shown in (B). ω is as described in the main text. M0 is the simplest model, models 

differ from the previous by the addition of parameters in the order they appear in the 

figure (left to right) until M8, which is the most complex model site model. Foreground 

species (d) is shown in red and background species (a, b and c) are shown in black.  
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The codon models above are implemented in an ML framework and therefore could 

report results from a local minimum on the likelihood plane, for this reason all CodeML 

analyses performed in this thesis employ a variety of starting omega values (i.e., 0, 1, 2, 

10) as in previous publications (Yang et al. 1998, Yang 1997, Loughran et al. 2008, 

Morgan et al. 2010). To assess the significance of more parameter rich models 

compared to their less parameter rich counterparts, a likelihood ratio test (LRT) was 

proposed (Nielsen and Yang 1998, Yang et al. 2000). The LRT follows a chi-squared 

distribution and the difference in lnL values (Δl) between two models is multiplied by 2 

in most comparisons. The M3 Discrete (K=3) cannot be tested against any of the other 

models using LRT, but through comparisons with M3 Discrete (K=2), it can provide 

interesting results if the more parameter rich M3 Discrete (K=3) model has a better 

likelihood score. The degrees of freedom between the two models are then used to 

determine if the more parameter rich model is a statistically better fit than the less 

complex nested model. The degrees of freedom for each of the CodeML modes are as 

follows: M0 (df=1) , M1a (df=2), M2a (df=4), M3Dk2 (df=3), M3Dk3 (df=5),  M7 

(df=19), M8 (df=21), M8a (df=20), ModelA (df=10), Model A null (df=9). The 

comparison of M8 to M8a model follows a 50:50 mix of a χ2 distribution with df=1 and 

therefore is significant at the 5% level if twice the Δl is ≥ 2.71. The models compared in 

the CodeML selective pressure analyses and summaries of the statistics are described in 

Table 1.1.  
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Table 1.1 Likelihood Ratio Test (LRT) Calculations 

Comparison df Δ l Critical χ2 values 

M0 v M3k2 2 X2 ≥ 5.99 

M3Dk2 v M3Dk3 - X1 ≥ 1.00 

M1a v M2a 2 X2 ≥ 5.99 

M7 v M8 2 X2 ≥ 5.99 

M8 v M8a 1 X2 
≥ 2.71 (@5%) 

≥ 5.41 (@1%) 

M1a v Model A 2 X2 ≥ 5.99 

Model A v Model A null 1 X2 ≥ 3.84 (@5%) 

 

The comparison of nested models permitted in the analysis, degrees of freedom (df), the 

amount the difference in the lnL scores between models (Δl) is multiplied by the value 

in the third column, the χ2 critical values are shown in the last column. Table adapted 

from (Morgan et al. 2010). 

 

The posterior probability (PP) of a specific amino acid site belonging to the positively 

selected category is calculated by applying Empirical Bayes estimates (EB) to the ω 

ratio on a per site basis. There are two EB methods employed: (i) Naïve empirical 

Bayes (NEB) (Yang et al. 1998), and (ii), Bayes empirical Bayes (BEB) (Yang et al. 

2005). The NEB method is sensitive to error in small datasets where ML estimates may 

have large sampling error and thus can result in false positive inference of sites under 

positive selection (Anisimova et al. 2002). The BEB is more robust as it assigns a prior 

to the model parameters and integrates over uncertainties which reduces the rate of false 

positive detection when analysing small sample sizes (Yang et al. 2005). 

 

Analysis by Friedman and Hughes (2007) seemed to illustrate that signatures of positive 

selection detected using CodeML were influenced entirely by GC3 content and the 

underlying Ds rate, rather than accurately reflecting the ω ratio. This study was later 

disputed and it was determined that it was in fact a misunderstanding of how the codon 

models work - the false positive rate of LRTs in CodeML is in fact now estimated to be  

< 5% (Zhai et al. 2012). 
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1.1.7 Factors affecting mutational rate variation in mammals  

The rate of mutation is not consistent in all lineages across evolution, this is true for 

mammals also. Species-specific rates of evolution can be affected by life traits such as 

longevity and body size (Peto et al. 1975), metabolic rate (Martin and Palumbi 1993), 

germ-line generation time (Wilson et al. 1977), and variations in species-specific DNA 

repair mechanisms (Britten 1986, Hart and Setlow 1974). Each of these factors is dealt 

with individually below but they are all tied together in a specific lineage and therefore 

an observed increase in mutation rate in a given species could be due to a number of 

these factors in combination.  

 

The cells of larger mammals with long life spans undergo more rounds of cell division 

and are exposed to more mutagens over their life time, however they are not more prone 

to cancer – this is known as Peto’s paradox (Peto et al. 1975). It is proposed that larger 

mammals have adapted their DNA repair networks to be more efficient in coping with 

the cancer risk associated with their increased longevity and higher number of cell 

divisions (Peto et al. 1975). Recent improvements in phylogenetic models that assess 

the relationship between life-trait variations and substitution rates, have shown a 

negative correlation between the rate of substitution and mass and longevity (Lartillot 

and Poujol 2011). Empirical evidence is still relatively sparse for cancer protecting 

mutations/mechanism but there is some support from the literature for lineage specific 

adaptation. Different anti-cancer mechanisms that control cell proliferation have 

evolved across rodents in correlating to their body size (Seluanov et al. 2007). 

Mechanisms such as replicative senescence controls cell proliferation by successively 

shortening telomeres after each round of cell division  (expanded on in Chapter 4), and  

“cell-to-cell contact inhibition” which control cell proliferation through initiation of 

apoptosis when cells are in contact with one another (Seluanov et al. 2009). A recent 

selective pressure analyses of the BRCA/FANC DNA damage response pathway 

displays lineage-specific adaptations acting on mouse and human lineages (O'Connell 

2010).  

 

The metabolic rate hypothesis (Martin and Palumbi 1993) states that smaller-vertebrates 

generate higher levels of mutagenic oxygen radicals due to their higher mass-specific 

metabolic rates compared to larger vertebrates (Glazier 2005). Oxygen radicals are a by-

product of metabolism (Barja 1999) and can cause mutations in DNA (Cooke et al. 
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2003). This suggests that mammals with high metabolic rates will produce more free 

radicals and would experience higher mutational rates than mammals with low 

metabolic rates (Martin and Palumbi 1993, Bleiweiss 1998).  There has been empirical 

evidence for this through estimation of silent substitution rate from nuclear DNA and 

metabolic rates in primates (Martin and Palumbi 1993). 

 

The germ-line generation time hypothesis, proposed by Wilson et al. (1977), states that 

mammals with short germ-line generation times will produce more offspring and will 

therefore undergo more rounds of meiosis per unit of time as compared to mammals 

with longer germ-line generation times (Wilson et al. 1977). Mammals with short germ-

line generation times therefore will accumulate more DNA changes which has been 

observed by Martin and Palumbi (1993) in the analysis of rates of change occurring 

within the cytochrome b gene and globin data (Martin and Palumbi 1993). Studies show 

higher rates of nucleotide substitution in rodents compared to humans is strongly linked 

to the germ-line generation time (Wu and Li 1985, Li et al. 1987). 

 

Species that have increased mutation rates due to any of these traits listed above are also 

observed to have a higher GC content due to GC-biased gene conversion (gBGC) in the 

DNA repair machinery (Galtier 2003, Escobar et al. 2011). The efficiency of DNA 

repair mechanism is reported to vary across species (Britten 1986, Hart and Setlow 

1974) and therefore an increase in fixation of GC has been shown to increase in 

frequency in eukaryotes (Pessia et al. 2012) and also specifically in mammals (Lartillot 

2012).  

 

Factors such as diet (Yang 1998), intense sexual selection (Dorus et al. 2004) and 

pathogen load (Usanga and Luzzatto 1985, Fumagalli et al. 2011) can also influence 

lineage-specific variation in mutation rate. Different selective pressures acting on 

different species across the phylogeny cause lineage-specific heterogeneity in mutation 

rate that in turn influences base composition.  These phenomena have a massive impact 

on phylogeny reconstruction (Foster 2004, Foster et al. 2009), as discussed in more 

detail in section 1.2.2, and in turn this impacts on accurate identification of positive 

selection using phylogeny-based methods.  
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1.1.8 Non-adaptive evolutionary signals mistaken as positive selection 

Recombination is the exchange of genetic information between a pair of nucleotide 

sequences and has been shown to introduce variability to populations (Posada and 

Crandall 2001, Anderson and Kohn 1998, Feil et al. 2001) and influence the process of 

natural selection (Marais et al. 2001). The rate at which nucleotide substitutions occur 

and fix is impacted by the rate at which recombination occurs, and this can impair 

accurate phylogeny reconstruction (Posada and Crandall 2002) which in turn forms the 

foundation for LRT analyses of selective pressure variation (Anisimova et al. 2003). 

Nucleotide mismatches can occur at recombination breakpoints that are repaired by the 

DNA machinery, and if gBGC is prevalent, this results in large proportions of GC 

mutational fixations (Dreszer et al. 2007, Katzman et al. 2011). This increase in GC 

fixation can impact the calculation of substitution types and cause inflation of the ω 

ratio (Berglund et al. 2009, Galtier et al. 2009, Ratnakumar et al. 2010). It is therefore 

unsurprising that gBGC and the rate at which recombination occurs are correlated 

(Duret and Arndt 2008) and that both are critical in the assessment of selective pressure 

heterogeneity. 

 

Both gBGC and recombination are correlated with Ne, as species with large Ne tend to 

be more affected by gBGC (Webster et al. 2006, Duret and Arndt 2008). A small Ne can 

cause a higher rate of fixation of weakly deleterious mutations (Eyre-Walker 2002, 

Woolfit and Bromham 2003). All of these scenarios can be misinterpreted as positive 

selection. The Ne varies significantly between species and within populations. Previous 

studies have shown that ω estimations tend to be higher in larger mammals, which may 

be a result of a smaller overall Ne (Popadin et al. 2007). The accuracy of Ne calculations 

is debatable or unknown for many mammal species, e.g. human Ne has been estimated 

to be between 3100 and 7500 (Tenesa et al. 2007).  Analysis of mitochondrial and 

nuclear coding genes show that the ω estimation is inversely proportional to the Ne 

therefore a higher proportion of false positives would be expected from species with 

small Ne (Lartillot 2012).  

 

The interactions between adaptive and non-adaptive events are complex and further 

development of methods are required to adequately tease apart the effects of these 

evolutionary processes (Lartillot 2012). 
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1.2 Approaches to phylogeny reconstruction using molecular 

data 

Evolutionary relationships resemble a tree like structure, therefore terminology such as 

root, branch, node and leaf are used to describe the different parts of a phylogenetic 

tree, see Figure 1.5(A) (Salemi and Vandamme 2003). Extant taxa are referred to as 

leaves on a phylogenetic tree while internal nodes represent hypothetical ancestors of 

the extant taxa. In Figure 1.5(A), the taxa “a”, “b” and “c” form a cluster and share a 

common ancestor (i). The ((a,b),c) cluster can be referred to as a monophyletic group 

and node “i” is their most recent common ancestor (MRCA). The order in which the 

nodes occur (what taxa are clustered and in what order) is referred to as the tree 

topology. A tree is rooted if a taxon or set of taxa is the most distantly related to the rest 

of the taxa on the tree, e.g. in Figure 1.5(A) taxon “g” is the most distantly related and 

the remaining taxa form the ingroup. A rooted tree has directionality; whereas, for an 

unrooted tree the directionality is unknown, see Figure 1.5(B). It is worth noting that for 

prokaryotes “tree-thinking” is not explaining the observed data, the high levels of 

horizontal gene transfer are so disruptive to the pattern of vertical descent that 

alternative frameworks for describing the evolution of these entities is now necessary 

(McInerney et al. 2011). The mammalia are the major focus of this thesis, and these can 

be represented by a traditional phylogeny of vertical descent. 
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Figure 1.5 Comparison of rooted and unrooted tree structures.  

A rooted phylogenetic tree (A) and an unrooted phylogenetic tree (B) are displayed. 

Both (a) and (b) display the same topological information, the only difference between 

the trees is the presence of a root. Adapted from (Salemi and Vandamme 2003). 
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1.2.1 Modelling Evolution 

Several phylogenetic reconstruction methods employ an evolutionary model, which can 

clarify the features of how sequences have changed over time. Methods that are not 

model based also have assumptions on how the sequences are related but they are not 

explicit (traditionally Parsimony has been used as one such example although this may 

now be considered controversial (Steel 2011)).  An evolutionary model is composed of 

two parts - the tree and the process. The process is subdivided into the exchange rate of 

characters and the composition vector. The first evolutionary model was the Jukes-

Cantor (JC) model (Jukes 1969) which assumes that the exchange rate between 

characters (A, C, G and T) are equally likely, as are the base frequencies in the 

composition vector. Kimura expanded on the Jukes-Cantor (JC) model (Jukes 1969) by 

allowing the exchange rate of characters to have two different substitution types, 

transitions and transversions, giving the Kimura 2 parameter model (K2P) (Kimura 

1980b). Felsenstein expanded on the Jukes-Cantor (JC) model by allowing unequal base 

frequencies, giving the Felsenstein (F81) model (Felsenstein 1981). Therefore, nested 

within both F81(Felsenstein 1981) and K2P(Kimura 1980b) models is the original 

Jukes-Cantor (JC) model (Jukes 1969). In this way the process of model development 

has proceeded through incremental parameterisation of base frequencies and/or 

exchange rates among characters and has lead to several models of increased 

complexity (Kimura 1981, Zharkikh 1994, Hasegawa et al. 1985, Tamura and Nei 

1993), up to and including the general time reversible (GTR) model that allows for 

estimated base frequencies and all possible substitutions to differ (Tavaré 1996).   

 

Not all characters in a sequence evolve at the same rate, and models that account for 

associated site rate variation (ASRV) using a gamma distributed rate variation among 

sites (+Γ) are a better fit to biological data than their simpler alternatives (Yang 1996).  

It is also known that not all sites in an alignment will vary and so the +I parameter was 

developed to account for these unchanging or invariable sites (Reeves 1992). The use of 

the +I and +Γ parameter together is not recommended (Yang 2006) as it has been shown 

that the gamma distribution already accounts for the invariance and when both 

parameters are used simultaneously it is difficult to accurately estimate each parameter 

as +I leads to a change in the estimation of +Γ and visa versa (Mayrose et al. 2005). 

 

In addition to developing models for nucleotide data, a separate set of evolutionary 

models were developed for amino acid data that account for the 20 character states in 
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this data type. The simplest amino acid model is the Poisson model (Bishop and Friday 

1985), which is sampled from the JC model but extended to 20 characters instead of 4. 

The Poisson model assumes that all changes between amino acids are equal as well as 

the probability of change between states being equally likely. The Poisson model 

(Bishop and Friday 1985) does not take into account the different chemical properties of 

amino acids. Dayhoff (1978) developed an amino acid model that could account for the 

probability of change among amino acids (Dayhoff 1978). This model was used as a 

stepping-stone to create standardized amino acid models for phylogeny reconstruction. 

The amino acid models frequently employed are empirical and are based on 

experimental data. One such example is the Jones Taylor Thornton (JTT) model which 

is an extension of the Dayhoff model but is based on a mutation data matrix estimated 

from transmembrane proteins (Jones et al. 1992). The mtRev model is based on the 

observed mutations in complete mitochondrial sequences of 20 vertebrate sequences 

(Adachi and Hasegawa 1996). The WAG model is based on mutation data matrix 

estimated from globular proteins (Whelan and Goldman 2001). The Blosum62 rate 

matrix differs from the other empirical amino acid rate matrices as it was estimated 

using blocks of sequence data from groups of proteins rather than being estimated from 

the entire multiple sequence alignment (Henikoff and Henikoff 1992). Blosum62 is 

therefore quite a general model that is good at identifying distantly related proteins and 

is used in the sequence similarity search program BLAST (Altschul et al. 1990).  

Frequently employed empirical amino acid models and the datasets from which they 

were derived are listed in Table 1.2. 
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Table 1.2 Empirical Amino Acid Models of Evolution 

Model Dataset Used Reference 

Poisson None (Bishop and Friday 1985) 

WAG Globular proteins (Whelan and Goldman 2001) 

Blosum62 Blocks from related proteins (Henikoff and Henikoff 1992) 

CPREV Plastid genomes (Adachi et al. 2000) 

Dayhoff Protein sequences > 85% identical (Dayhoff 1978) 

JTT Transmembrane proteins (Jones et al. 1992) 

mtRev mtDNA vertebrate species (Adachi and Hasegawa 1996) 

mtMam mtDNA mammal species (Yang et al. 1998) 

rtRev Retroviral Pol proteins (Dimmic et al. 2002) 

LG Protein families (Le and Gascuel 2008) 

VT Protein families (Muller and Vingron 2000) 

 

 

The gamma distribution of rates across sites parameter (Yang 1996) can also be applied 

to empirical protein models, however, they still assume homogeneity of composition 

and exchange rates across sites and across lineages, and have previously been shown to 

cause systematic errors (Foster 2004). In Chapter 2 these models are explored using 

previously published data and specifically assembled datasets.   

 

Dataset partitioning has been employed to accommodate heterogeneity in nucleotide 

datasets by allowing different substitution rates at different codon positions (Nylander 

et al. 2004). In amino acid data it has been implemented to subdivide a gene or a set of 

genes into different partitions allowing for different rates of change, or different 

evolutionary models, to account for heterogeneity within the data (Nylander et al. 

2004). Choosing the correct partition for the dataset requires a priori knowledge about 

the data and/or assumptions about the data and in this way can be problematic 

(Brandley et al. 2005, Shapiro et al. 2006). Mixture models have an advantage over data 

partitioning methods as they are able to determine the parameter and model distribution 

directly from the data (Pagel and Meade 2004). 
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The development of methods that account for compositional heterogeneity and 

exchange rate heterogeneity across the phylogeny and the dataset were a major 

improvement to available models (Foster 2004, Lartillot and Philippe 2004). These 

models are defined as node-discrete composition heterogeneity (NDCH) and node-

discrete rate matrix heterogeneity (NDRH) (Foster et al. 2009). Lartillot and Philippe 

(2004) developed a mixture model that allows each site class to have a specific 

biochemical profile that is a probability vector over the 20 amino acids (CAT) (Lartillot 

and Philippe 2004). Each profile defines a simple amino-acid replacement process 

where each time a substitution event occurs, a new amino acid is chosen at random 

according to the probabilities defined by the profile, this is referred to as an amino acid 

replacement process. The likelihood at each site of the alignment is then averaged over 

all available processes defined by the mixture. It has been shown that mixture models 

such as CAT and the combination of CAT with the previously described GTR model, 

known as CAT-GTR, perform far better than one matrix or empirical models on 

datasets where saturation or long branch attraction is a problem (Lartillot et al. 2007). 

While these models have many important and significant improvements on previous 

models they do have specific requirements. To accommodate the more parameter rich 

models it is necessary to have a dataset of sufficient size, for CAT and CAT-GTR 

(Lartillot and Philippe 2004) it has been demonstrated that an alignment of longer than 

1,000 and 10,000 amino acids respectively are necessary. While CAT works well at 

incorporating mixture models at the amino acid substitution level it does not allow for 

compositional heterogeneity among lineages (Lartillot and Philippe 2004). A extension 

of the CAT model called CAT-BP (Blanquart and Lartillot 2008) was developed to 

accommodate composition bias between lineages by introducing “break points” along 

the branches of the topology. Application of the CAT-BP model is extremely 

computationally demanding and convergence of parameters under this process has been 

shown to be difficult to achieve (Nesnidal et al. 2010). Therefore when data requires the 

use of heterogeneous models it is important to explore methods that can account for 

heterogeneity of exchange rates and composition over the phylogeny (Foster 2004), and 

over the data (Lartillot and Philippe 2004). These heterogeneous models have been 

applied to mammal datasets in Chapter 2. 
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1.2.2 Problems affecting phylogeny reconstruction 

Phylogeny reconstruction given a set of homologous characters should be relatively 

straight forward assuming the characters are reliable. The addition of more characters 

should result in convergence towards the correct answer (Felsenstein 1988). However, 

when discordance among gene trees is present, species tree reconciliation is not 

improved by the addition of more taxa (Degnan and Rosenberg 2009). The contributing 

factors to gene trees not reconciling with the species tree have been discussed in section 

1.2.1.1. When methods are inconsistent (i.e. are unable to recover the same tree through 

repeat experiments), and when data contains systematic biases, there can be increase in 

the support for wrong phylogeny with the addition of more data (Felsenstein 1978, 

Hendy and Penny 1989, Huelsenbeck 1995, Huelsenbeck and Hillis 1993). These biases 

include homoplasy, compositional biases, long-branch attraction (LBA) and heterotachy 

and are each detailed in turn in the following sections.  

 

1.2.1.1 Gene Tree Species Tree Discordance 

Discordance across gene trees has frequently been observed, and examples include; 

plant species such as pines (Syring et al. 2007), hominoids (Chen and Li 2001) and 

Australian grass finches (Jennings and Edwards 2005). One of the major contributing 

factors is incomplete lineage sorting (ILS) which is the failure of two or more gene 

lineages in a population to coalesce. ILS occurs when the expected time for gene 

lineages to coalesce, based on the effective population size, occurs prior to the 

speciation event itself (Degnan and Rosenberg 2009). Therefore, ILS occurs more 

frequently on shallow parts of a species tree (short branches) and coalescence can occur 

between lineages that are not closely related causing incongruence between gene trees, 

and between gene and species trees (Degnan and Rosenberg 2009).  ILS has been 

hypothesised to be the primary cause of discordance on the intra-order placement within 

the Laurasiatheria Superorder in placental mammals (Hallstrom and Janke 2010) this is 

discussed in Chapter 2. Concatenated datasets, also known as Supermatrices (see 

section 1.3.3.1), are particularly susceptible to ILS as a single phylogeny is generated to 

represent all the data (Philippe et al. 2004).  

 

Horizontal gene transfer (HGT) is a major cause of gene tree discordance in prokaryotic 

species (Philippe and Douady 2003), also mentioned in section 1.1.4. HGT is extremely 

rare in eukaryotic species, but introgression of gene flow due to hybridization does 
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occur and can disrupt gene tree species tree reconciliation (see section 1.4.1) (Rieseberg 

et al. 2000). Recombination events, which are discussed in detail in section 1.1.8, can 

cause different segments of a gene to have a different coalescence time and this has 

been shown to cause discordance between gene trees and low node support (Posada and 

Crandall 2002). The concept of differential retention and loss of duplicates is an 

important complicating factor in phylogeny reconstruction as it can lead to the incorrect 

identification of 1:1 orthologous relationships across species and can result in 

discordance among gene trees and between gene and species trees (Philippe et al. 2011). 

Finally the process of natural selection, as described in section 1.2, as a driving force of 

speciation also plays a role in gene tree distributions differing from the multispecies 

coalescence (Degnan and Rosenberg 2009).  

 

1.2.1.2 Lack of a molecular clock and phylogeny reconstruction 

A molecular clock refers to the regular accumulation of mutations over time. This 

concept came from the neutral theory of evolution (Kimura 1968) where mutations 

accumulated at a relatively constant rate across lineages through the process of genetic 

drift. If the molecular clock held, then the number of mutations that have occurred in a 

lineage could be used as a proxy to calculate the divergence date of a particular species 

or conversely having the date from the fossil record would allow us to estimate the 

number of mutations expected. The molecular clock hypothesis was proposed following 

the observation of the α-globin gene accumulates mutations at a rate proportional with 

time (Zuckerkandl 1962), depicted in Figure 1.4(A). This is one of the few cases where 

a protein evolves in this clock-like way. Since its initial proposal the molecular clock 

has been disproven in its purest form and the current literature illustrate how mutations 

do not occur in a clock-like fashion: examples are seen from invertebrates (Thomas et 

al. 2006), mammals (Li et al. 1996, Gu and Li 1992, Yang and Nielsen 1998), 

arthropods (Ayala 1997, Rocha-Olivares et al. 2001) and plants (Bousquet et al. 1992). 

The significance of the abandonment of the molecular clock for phylogeny 

reconstruction was illustrated by Yang in 1996 when he showed that if the rate of 

change of characters is assumed to be constant, then the incorrect topology will be 

found (Yang 1996). 
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1.2.1.3 Compositional bias and phylogeny reconstruction 

Compositional bias occurs when species incorrectly cluster together on a phylogeny due 

to shared similarity of composition. A phylogenetic analysis of the relationships 

between Thermus and Deinococcus for example showed that high GC composition in 

Aquifex (73%) and Thermus (72%), erroneously grouped these two species together 

with the exclusion of Deinococcus (52%) and Bacillus (50%) (Embley et al. 1993), see 

Figure 1.6(B). There is a large amount of evidence from the literature (mostly from the 

early 1990’s) for the impact of compositional heterogeneity on incorrect phylogeny 

reconstruction (Loomis and Smith 1990, Penny et al. 1990, Hasegawa and Hashimoto 

1993, Embley et al. 1993, Sidow and Wilson 1990, Lockhart et al. 1992a, Lockhart et 

al. 1992b). Since then compositional heterogeneity has been observed across the 

Metazoa (Nesnidal et al. 2010), Drosophila (Carulli et al. 1993) and Mammalia 

(Romiguier et al. 2010). Translating nucleotide sequences into amino acids can 

ameliorate the problems of compositional bias (Loomis and Smith 1990, Hasegawa and 

Hashimoto 1993, Hashimoto et al. 1995). Bias at the DNA level can affect amino acid 

content as has been shown for mitochondrial encoded genes (Foster et al. 1997), and 

compositional bias from both DNA and amino acid characters have been reported 

(Foster and Hickey 1999). This is of particular interest in the study of mammals where, 

as seen in section 1.1.7 and 1.1.8, biased gene conversion is known to occur.  

 

1.2.1.4 Long Branch Attraction and phylogeny reconstruction 

Long branch attraction (LBA) occurs when sequences with higher mutational rates, that 

do not share a MRCA, are clustered together erroneously; see Figure 1.6(C). This 

systematic error was originally described by Felsenstein and is also referred to as the 

“Felsenstein Zone” (Felsenstein 1978). LBA can equally be thought of as short branch 

attraction, as the slower evolving taxa can also be incorrectly drawn together by their 

shared ancestral traits (symplesiomorphy) (Philippe et al. 2005b). LBA significantly 

impacts phylogeny reconstruction (Philippe 2000, Bergsten 2005) and has been 

frequently observed in mammalian datasets (Reyes et al. 2000, Loughran et al. 2008). 

 

1.2.1.5 Homoplasy and phylogeny reconstruction 

Homoplasy is the similarity between sequences or species which is not the result of 

descent from a common ancestor, and can be further described as either (i) reversal, (ii) 
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parallelism, or (iii), convergence of character states, see Figure 1.6(D) (Sanderson and 

Hufford 1996). Reversal occurs when a character or feature present in an extant taxon 

was also present in a distant lineage but not in the recent ancestor of that taxon. This has 

been observed in angiosperms where characteristics similar to the ancestral state 

(brightly coloured, long petals) have reoccurred, i.e. a switch in pollination strategy 

from the derived state of insect pollinated (scented short white petals) to the ancestral 

state of humming bird pollinated (Thomson 2008). Parallelism is the independent 

evolution of similar traits or characters from an ancestral condition. Parallel evolution 

has been observed between marsupial and placental mammals where species such as 

marsupial and placental moles, tasmanian wolf and the European wolf, the European 

sabre-tooth tiger (Smilodon) and the South American sabre-tooth tiger (Thylacosmilus), 

have independently evolved similar morphological features from their Therian ancestor. 

Rokas (2008) observed extremely high levels of parallel evolution in eukaryotic 

proteins, and estimated the frequency of homoplastic characters to be 2-fold higher than 

expected under the neutral model of protein evolution (Rokas and Carroll 2008). 

Convergent evolution occurs when independent species evolve the same character or 

trait from different ancestral states. The first example of this was recognised in the 

adaptation of lysozymes in foregut fermenters (Kornegay et al. 1994, Stewart and 

Wilson 1987, Stewart et al. 1987), phylogenetic reconstruction using this character 

placed cows within the primate clade, in direct conflict with multiple studies and a 

variety of methods that place Cow it within the Cetartiodactyla Order of the 

Laurasiatheria. At the molecular phylogenetic level, homoplastic characters and 

particularly convergent evolution has been shown to give radical inconsistencies 

between phylogenies inferred from mitochondrial genomes (Castoe et al. 2009). 

  

1.2.1.6 Heterotachy and phylogeny reconstruction 

Heterotachy is the heterogeneous rate at which a site in a sequence evolves over time 

(Philippe and Lopez 2001). As functional constraints and positive selection can act on 

different parts of a gene sequence, the rate of substitution along a sequence is not 

uniform, as shown in Figure 1.6(E). This is a common occurrence in sequence 

alignments (Lopez et al. 2002, Ane et al. 2005, Philippe et al. 2005b, Taylor et al. 2006) 

and when it is not modelled correctly, heterotachy can cause inconsistencies in 

phylogeny inference (Kolaczkowski and Thornton 2004). Concatenated datasets are 

particularly prone to having incongruence’s in branch lengths which can result in 
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overall incorrect topological reconstruction (Matsen and Steel 2007). The mixture of 

branch lengths (MBL) approach was developed by Kolaczkowski and Thornton (2004) 

and attempted to account for heterotachy. Increased parameter requirements to 

adequately model independent rates of site substitution across all taxa is however, 

computationally demanding (Kolaczkowski and Thornton 2004). Covarian models were 

developed to accommodate heterotachy by allowing sites switch from variable to 

invariable states (Tuffley and Steel 1998), but this model is limited as it assumes the 

rate at which sites shift are site-independent (Zhou et al. 2007). 

 

 



 36 

 
Figure 1.6 Systematic Errors that affect Phylogeny reconstruction 
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Figure 1.6 legend: Factors that affect phylogeny reconstruction (A to E) are shown. 

The molecular clock for α-globin (A) shows the time to the common ancestor in 

millions of years on the x-axis. The number of amino acid substitutions in the α-globin 

gene sequence is recorded for species with respect to human and these values are on the 

Y-axis. This image has been adapted from the original publication (Zuckerkandl 1962). 

Panel (B) illustrates the effects of compositional bias causing the resolved tree to 

incorrectly group Aquifex with Deinococcus. Panel (C) shows an example of LBA 

causing the reconstructed phylogeny to erroneously cluster “Long1” with “Long2” to 

the exclusion of “Short1” and “Short2”. Panel (D) displays the three types of 

homoplasies at the amino acid level: (i) reversal, (ii) parallelism, and (iii), convergent 

evolution. The ancestral character state and the derived character state along with the 

impact on the phylogeny reconstruction are depicted. Panel (E) depicts Heterotachy 

acting on character “a” and “b”. On the right is a diagram depicting the evolutionary 

history of these genes over millions of years. The thin horizontal lines represent periods 

of conservation, while the diamonds represent periods of rapid evolution followed by 

selective sweeps. These evolutionary changes occur at different times and at different 

rates for both character “a” and  “b”. 
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1.2.2 Methods of Molecular Phylogenetic Analysis 

Resolution of phylogenetic relationships involves reconstructing the evolutionary 

history of species based on homologous characters.  The earliest methods were distance 

matrix methods and involved the percent sequence distance calculated for all pairwise 

combinations of sequences. Taxa were subsequently arranged on a tree based on their 

sequence distance from one another (Baldauf 2003). Algorithms such as neighbor-

joining (NJ) (Saitou and Nei 1987), minimum evolution (ME) (Kumar 1996), Fitch-

Margoliash (Fitch and Margoliash 1967) and UPGMA all work under variations on this 

theme. These methods are consistent if sequences are very similar, however they are 

less efficient than maximum likelihood (ML) and Bayesian inference (BI) based 

methods (Kuhner and Felsenstein 1994).  

 

Discrete data methods include parsimony, maximum likelihood (ML) and Bayesian 

inference (BI), and these approaches allow for tree searching under a model of 

evolution.  Parsimony works by determining the minimum number of steps that are 

needed to fit alternative character states onto a tree or set of competing topologies 

(Figure 1.7). Parsimony methods exclude invariable sites and sites that are unique to 

individual taxa. There are two forms of parsimony, (1) Fitch parsimony, or (2), 

weighted parsimony. Fitch parsimony involves an equal weighted matrix where every 

character change is equally possible - this method is susceptible to signal issues from 

homoplastic characters leading to biases in the phylogenetic analysis. Weighted 

parsimony attempts to overcome this bias by incorporating matrices that account for 

physiochemical changes of amino acids or weighted changes of transitions (purine-

purine) versus transversions (purine to pyrimidine, and, vice versa) at the nucleotide 

level.  Felsenstein showed that parsimonious methods are extremely inconsistent in the 

presence of LBA (Felsenstein 1978). Both distance based methods and parsimony 

methods have become outdated. Improvements in computational power and models of 

evolution have lead to frequent use of likelihood (including Bayesian) based methods 

that have been shown to correct for inconsistencies such as LBA when the correct 

model is employed (Huelsenbeck et al. 2001).  Likelihood based methods also have the 

desirable feature of using all the available data in their analyses (unlike parsimony, 

where large portions of data are removed). The assumptions of likelihood are explicit, 

not implicit, and ancestral states are estimated using a probabilistic framework 

(Huelsenbeck et al. 2001). Bayesian and maximum likelihood are the two likelihood-
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based methods employed throughout this thesis, both have been expanded on further in 

sections 1.2.2.1 and 1.2.2.2. 
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Figure 1.7 Parsimony Reconstruction Methods. 

The 3 possible unrooted topologies for 4 taxa: chimp, human, dog and lizard are shown 

in (A). The weighted matrix applied in this case is shown in (B) and scores nucleotides 

staying the same as 0, a transition as 1 and a transversion as 2. The multiple sequence 

alignment for the 4 taxa is shown in C. Using these alternative hypotheses for the 

relationships between the 4 taxa and using weighted parsimony, values for all 

hypotheses in (D) are shown and the most parsimonious tree is the one with the fewest 

number of changes required, i.e. hypothesis number 2 is the favoured tree. 
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1.2.2.1 Maximum Likelihood  

Maximum Likelihood (ML) for phylogenetics was first introduced for gene data in 1964 

(Huber 1964), but it was through the work of Felsenstein and the application of his 

“pruning algorithm” that allowed ML to be applied to sequence data (Felsenstein 1981). 

The maximum likelihood approach for phylogeny resolution is based on an aligned 

sequence dataset (X) that is fixed, and, a topology (τ) that is free to vary. The likelihood 

of the observation is based on the probability of observing the aligned sequence data 

(X) given the model of evolution, which is composed of a tree (τ) including branch 

lengths (υ), and a model of evolution with a set of parameters (θ), as shown in Eqn. 4. 

 

Eqn. 4 Maximum Likelihood Equation 

 
 

To illustrate the mechanisms of likelihood estimation the following example has been 

adapted from (Foster 2001), and follows the illustration in Figure 1.8. If a pairwise 

alignment of two sequences Seq1 and Seq2, as shown in Figure 1.8(A), and a model 

that is composed of an exchange rate matrix (R) and a composition vector (π) is 

considered, as shown in Figure 1.8(B), then the likelihood of the observed process from 

Seq1 to Seq 2 would be: 

 

L= πA.R(AA).πT.R(TT). πT.R(TC).πC.R(CC) 

L=(0.1)(0.976)x(0.3)(0.979)x(0.3)(0.01)x(0.4)(0.983) 

L=0.000033813375552 

 

Branch lengths are accounted for by altering the character exchange rate matrix. In this 

example the branch length is short and therefore there is a high chance of a character 

remaining the same. If branch lengths were longer, i.e. evolving faster or separated by 

greater evolutionary distance, then the probability of the character remaining the same 

would be lower, this is illustrated in Figure 1.8(C). The Certain Evolutionary Distance 

(CED) of this model is 1. If the CED were increased to 2, then it would raise the power 

of the rate matrix to 2, see Figure 1.8(C). To compute the ML of the data the number of 

CED units is increased until the ML is reached, this tipping point effect is shown in 

Figure 1.8(D). After this point the likelihood begins to decrease again further increase 
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in CED units overestimate the branch lengths. The maximum likelihood model in this 

example is the number of CED units needed to reach the highest possible score for the 

likelihood, in this case 0.00018 at a CED unit of ~18.  

 

ML methods have been shown to outperform neighbor-joining methods (Huelsenbeck 

1995). ML is also more effective at resolving the phylogeny than parsimony based 

methods for datasets with LBA (Kuhner and Felsenstein 1994) and heterogeneous rates 

(Gadagkar and Kumar 2005), assuming the correct model is employed. Maximum 

likelihood is however a frequentist based approach and as such does not account for 

uncertainties within phylogeny (Huelsenbeck et al. 2002). 
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Figure 1.8 Cartoon describing a Maximum Likelihood approach for determining 
the optimum CED of a dataset.  

The process of calculating the maximum likelihood of MSA (A) under the model of 

evolution (B) where the order of the nucleotides is A, C, G and T is shown. The affect 

of raising the power of the rate matrix to 2 to increase to 2CED is shown in (C), and 

panel (D) shows the likelihood for a set of CED values computed, the likelihood is 

plotted versus the CED to illustrate the maximum likelihood value which lies at the 

tipping point of the plateau.  
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1.2.4.5 Bayesian Inference  

The application of Bayesian inference (BI) in phylogeny reconstruction is relatively 

recent and was proposed by three separate groups concurrently (Mau 1996, Li 1996, 

Rannala and Yang 1996). BI is based on the likelihood function, however, instead of 

calculating the most probable tree as is the case in ML, a Bayesian analysis searches for 

a set of credible trees (Huelsenbeck et al. 2002). BI has a clear advantage over 

maximum likelihood as it incorporates a prior hypothesis on how the data has evolved.  

The Bayes theorem, as applied to estimate the phylogeny of a dataset, calculates the 

posterior probability distribution (Pr) of the hypothesis (Hi) against the probability of 

observing all alternative hypotheses (Hj). 

 

Eqn. 5 Bayes Theorem 

 
 

Bayesian inference requires all possible hypotheses to be tested and as such is 

extremely computationally intensive. By incorporating a Markov Chain Monte Carlo 

(MCMC) approach the approximation of the joint posterior probability density based on 

constructing a Markov chain is allowed and a more efficient exploration of parameter 

space is possible (Metropolis et al. 1953, Hastings 179), such as better exploration of 

tree-space (Huelsenbeck et al. 2001).  The distribution of tree space is often described 

as a hill, and the MCMC approach works sampling a hypothesis by walking around this 

hill (Metropolis et al. 1953, Hastings 179).  The MCMC starts with a hypothesis 

(random tree + model) and calculates the likelihood of that hypothesis. An alternative 

hypothesis is proposed; this can be generated through a change in parameter or change 

to the tree, and is compared against the previous hypothesis. If the new hypothesis 

“moves uphill” i.e. improves in likelihood units/fit of the model to the data, the step will 

automatically be taken, otherwise the new hypothesis moves down the hill and that the 

step is rejected and another hypothesis is proposed. Sometimes downward steps only 

make a small decline in fit and they are also accepted; this is an important feature of the 

approach as it helps to minimise the possibility of entering zones of local minima during 

the MCMC run.  
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At the start of any analysis with Bayes theorem, almost all newly suggested hypothesis 

are accepted, and this is referred to as the “burnin”. After numerous iterations, the 

acceptances stabilize to a “plateau” and this region of acceptable hypotheses are used to 

create a consensus tree (Hall 2007), see Figure 1.9 for demonstration of “burnin”.  It is 

recommended that two or more analyses are run simultaneously so that convergence 

upon a topology can be assessed (Felsenstein 2004). For the first few generations the 

topologies sampled from each run will differ, but after a number of generations, when 

convergence is reached (i.e. when a good sample from the posterior probability 

distribution is achieved), the tree samples should be very similar. If the runs are 

dissimilar to one another convergence has not been achieved and this is suggestive of a 

local minimum issue or the chains needing to run for longer (Felsenstein 2004). 

 

Metropolis coupling (MC) was introduced to improve mixing in the MCMC run and 

improve sampling of the distribution (Geyer 1992). It involves splitting each run into a 

number of chains, which run in parallel using MCMC. Throughout the run these chains 

propose to swap information exchanging some or all of their parameters. The decision 

to accept or reject new parameters is made by the Metropolis-Hastings algorithm. 

Typically, n-1 chains are heated and the remaining chain is cold, and it is from the cold 

chain that parameters and trees are sampled. Heating chains flattens out the posterior 

probability, as the heated chains will more easily find isolated peaks in the posterior 

distribution and can help the cold chain move more rapidly between isolated peaks 

(Geyer 1992). A consensus tree summarizes the information contained in the set of trees 

sampled from the cold chain post burnin. The methods by which a consensus tree is 

made are traditionally majority rule, where clades with less than 50% support are 

collapsed, but they can also be made using strict consensus or reduced majority rule 

consensus (Felsenstein 2004). The posterior probability (PP) is the measure of support 

given for a node on a tree based on the model, the priors and the data (Huelsenbeck and 

Rannala 2004). It has been reported that PP can be over inflated (Erixon et al. 2003) and 

this is especially true when using complex models (Huelsenbeck and Rannala 2004).  

Both ML and BI have been employed in this thesis for phylogeny reconstruction in 

Chapters 2 and 3, and for selective pressure heterogeneity analyses and estimation of 

codon positions under positive selection in Chapter 4. While BI can incorporate more 

complex models of evolution (Lartillot and Philippe 2004), it is much slower than ML 

and therefore experimental design and method choice is often governed by the size of 

the data. 
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Figure 1.9 Plot of the number of generations versus the lnL values in the MCMC 

chain demonstrating “burn-in”.  

The graph demonstrates a standard MCMC chain, where the first 7,500 alternative 

hypotheses are discarded; these are termed “burnin”. From the remaining runs and 

samples of the plateau - a majority rule consensus tree is built. In a standard Bayesian, 

analysis two separate MCMC chains are used. This ensures that local minima are not 

represented on the final stable state. Convergence is achieved when both MCMC chains 

agree across topology and parameter estimators. 
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1.3 Desiderata for Dataset and Method Choice 

Congruence between multiple data types and phylogenetic approaches is preferential 

when resolving the history of a set of species and, in theory convergence should be 

achieved when more characters are considered (Felsenstein 1978, Felsenstein 1988). 

Clashes between the application of morphological characters and molecular characters 

(Jenner 2004) along with incongruence between Supertree and Supermatrix methods  

(Bininda-Emonds 2004, Song et al. 2012) are frequently observed. Not all data types are 

suitable for the phylogenetic question at hand and it is necessary to customise each 

approach based on dataset availability along with the most suitable method. In this 

section, the power and pitfalls of a variety of popular datasets and methods are detailed. 

1.3.1 Determining the best characters for phylogeny reconstruction 

Regardless of whether molecular or morphological characters are employed for 

phylogeny reconstruction there are a number of desirable features a character should 

have, these include: (i) discontinuous variation between characters states and (ii) non-

reversed character states (Poe and Wiens 2000). Historically morphological characters 

have been applied in phylogeny reconstruction. Since Zuckerkandl and Paulings 

seminal paper on the use of molecular data for evolutionary analyses (Zuckerkandl and 

Pauling 1965), the volume of data available has increased substantially and is 

increasingly popular in phylogeny reconstruction (Pagel 1999). Morphological data are 

more prone to homoplasy than molecular data (Hedges and Maxson 1996, Wiens et al. 

2003) and therefore is more likely to support the incorrect phylogeny. Even though 

morphological characters are more easily observed and sequencing molecular data was 

once expensive to generate (Hillis 1987), however, now it is very cheap with Next 

Generation Sequencing (NGS) technology, even for non-model organisms. Molecular 

datasets yield a far greater number of characters overall and therefore have more 

statistical power to resolve phylogenies (Hillis 1987, Donoghue and Sanderson 1992). 

Molecular sequence  data has been used in different formats for mammal phylogeny 

reconstruction; nuclear data, mitochondrial data, coding sequences and non-coding 

sequence data have been used separately and in combination (Murphy et al. 2001a, 

Prasad et al. 2008).  

 

The phylogenetic goal, i.e. resolution of shallow relationships versus deep divergences, 

should inform the choice of data type. It is known that mitochondrial genes and non-

coding DNA sequences accumulate synonymous mutations at a faster rate than nuclear 
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genes and coding DNA (Brown et al. 1982, Burger et al. 2003). DNA sequence data are 

more prone to saturation than amino acid data (Kosiol et al. 2007). Therefore, 

comparative genomic analyses tend to use nuclear coding sequences (Hallstrom et al. 

2007), and population studies tend to use mtDNA control regions (Rosenbaum et al. 

2009).  

 

The age of phylogenomics has arisen as a result of increased genome availability, and 

now features of whole genomes are being applied to phylogeny reconstruction such as 

gene order (Korbel et al. 2002, Sankoff et al. 1992), intron positions (Roy and Gilbert 

2005), protein domain structure (Lin and Gerstein 2000, S. Yang et al. 2005) and gene 

content (Snel et al. 1999). Gene content and gene order methods require homology 

assessment and assignment but do not require multiple sequence alignment (Delsuc et 

al. 2005). Gene-content methods reconstruct phylogenetic trees using a distance matrix 

which is estimated from the proportion of shared orthologous genes between genomes 

(Snel et al. 1999). Gene-order methods reconstruct phylogenetic trees by minimizing 

the number of breakpoints between genomes or by analyzing the presence and absence 

of orthologous genes across genomes (Korbel et al. 2002, Blanchette et al. 1999). Rare 

genomic events (RGEs) such as insertions and deletions or retrotransposed elements 

have held much promise for phylogenomics as theory suggests they are less likely to 

contain homoplastic signal (Cantrell et al. 2001, van de Lagemaat et al. 2005).  

However, so far it seems that RGEs are too rare and stochastic error resulting from 

small sample sizes makes it difficult to resolve short branches (Nishihara et al. 2005), 

this approach also requires high quality genomic sequence data that is not always 

available (Philippe et al. 2005a). The use of presence or absence of microRNA data has 

gained popularity in recent phylogenetic studies (Dolgin 2012, Campbell et al. 2011, 

Rota-Stabelli et al. 2011, Lyson et al. 2012). Congruence between microRNA generated 

phylogenies and other data types are rare (Campbell et al. 2011, Rota-Stabelli et al. 

2011), and therefore its benefit of using miroRNA in phylogeny reconstruction needs 

further exploration. 

 

1.3.2 Increased taxon sampling versus increased sequence length 

There are ongoing debates concerning whether an increase in taxa number or an 

increase in sequence data is better for phylogeny inference (Rosenberg and Kumar 

2001, Hedtke et al. 2006, Zwickl and Hillis 2002, Pollock et al. 2002). A greater 
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sampling of taxa improves estimates of model parameters, which improves lineage 

sorting among clades (Hillis 1996, Hedtke et al. 2006). By increasing taxon sampling 

the chance of distantly related species being drawn together on a phylogeny (LBA) is 

reduced (Hillis 1996). The support for a phylogeny has also shown to be increased with 

denser taxon sampling, leading to a more robust phylogeny (Hedtke et al. 2006). The 

greater the number of taxa sampled, the more complex the phylogenetic analysis 

becomes but this is not a linear increase. The number of possible tree topologies 

increases with the addition of taxa by 2n-5 (where n is the number of taxa). For 

example, there are 3 possible unrooted topologies for a 4-taxon tree, but 2,027,025 

possible unrooted topologies for a 10 taxon tree. As the number of taxa increases so too 

does the likelihood of encountering homoplasy (Sanderson 1989).  

 

Rosenberg and Kumar (2001) argue the benefits of increased sequence length over 

taxon sampling (Rosenberg and Kumar 2001), but others have opposing views with 

simulation studies determining that extensive taxon sampling lead to more accurate 

phylogenetic inference (Zwickl and Hillis 2002, Pollock et al. 2002). In response to 

these simulation results, Rosenberg and Kumar conducted further simulation studies 

and concluded that when data is limited it is more beneficial to have more character data 

than more taxon data (Rosenberg and Kumar 2003). Theoretically, if enough genes are 

used and sequence length is substantial, phylogenetic conflict present should be 

overcome and the true species phylogeny should be recovered (Rokas et al. 2003). 

When inconsistent methods such as maximum parsimony, or models that do not 

adequately describe the data, are applied - an incorrect phylogeny with high bootstrap 

support can be found despite extensive sequence length (Delsuc et al. 2005, Felsenstein 

1978, Phillips et al. 2004). Low taxon sampling is associated with a decrease in 

bootstrap support for the correct topology and in some cases bootstrap values can drop 

as the gene number increases, this is the result of taxon sampling being insufficient 

(Hedtke et al. 2006). In general increased taxon sampling has been shown to have a 

more positive effect on phylogeny reconstruction compared with increased sequence 

data (Hedtke et al. 2006), see Figure 1.10.  

 

Taxa choice is also important, particularly when choosing outgroups. An outgroup that 

is too distantly related to the ingroups can cause rapidly evolving ingroup species to be 

more sensitive to the effects of LBA (Hillis 1998). To overcome this it is necessary to 

sample an outgroup that is closely related to the ingroup species, and also to increase 
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the number of outgroup species (Heath et al. 2008). In summary, phylogenetic inference 

from molecular data is dependant on evolutionary models that fit the data, appropriate 

character selection, sufficient taxon sampling and enough sequence data to obtain a 

robust and repeatable analyses (Hedtke et al. 2006). There were 39 taxa analysed in 

Chapter 2 with an alignment length of 27,220 aa and 455 taxa analysed in Chapter 3 

with an alignment of 3,906 aa, making it appropriate to discuss increased taxon 

sampling versus increased sequence length. 
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Figure 1.10 The relationship between the number of genes and taxa and the 

Bootstrap support obtained. 

Results of the effect on bootstrap support values from randomly sampling across 1 to 25 

genes (x-axis) for between 4 and 40 taxa. Figure is taken from (Hedtke et al. 2006) with 

permission. 
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1.3.3 Data assembly and methods for phylogenomics 

A limiting factor of phylogenomics is the availability of sequence data, which means 

that taxon sampling is unavoidably limited for some studies. Large scale genomics 

projects have caused a shift from single gene phylogenetic studies to phylogenomic 

studies which encompass multiple genes helping reduce the effects of stochastic error 

(Heath et al. 2008). Projects such as the Genome 10K project 

(http://www.genome10k.org/) mean that availability of whole genome data for taxa is 

steadily improving. Individual gene trees can vary in both topology and branch lengths, 

and Supermatrix and Supertree (Sanderson et al. 1998) methods have been developed to 

overcome the topological variations between gene trees so that the true species 

phylogeny can be recovered. 

1.3.3.1 The Supermatrix Approach to phylogeny reconstruction 

A Supermatrix (SM) is the concatenation of alignments from several genes and can also 

be called the “Total Evidence” approach (Delsuc et al. 2005, Kluge 1989). Supermatrix 

datasets can encompass missing data from taxa, and there have been reports that this 

can lead to incorrect branching and low resolution between nodes (Wiens 2006, 

Kearney 2002). Recent studies have shown that this does not significantly affect the 

reconstruction of the phylogeny (Philippe et al. 2004) and as long as there is sufficient 

phylogenetic signal for the available characters then phylogenetic resolution is not a 

problem (Delsuc et al. 2005). In certain cases species specific sequence data contains 

large proportions of systematic error, removing these sequence regions from taxa can 

improve node support in phylogeny reconstruction (Grant and Kluge 2003).  

 

A standard Supermatrix approach assumes that all characters share the same branching 

history, it does not take into account hybridization, incomplete lineage sorting and 

horizontal gene transfer, all of which can be observed at the individual gene level (de 

Queiroz and Gatesy 2007). Heterotachy and LBA can be accounted for with more 

sequence data (Philippe et al. 2004). The longer alignment length afforded by a 

Supermatrix allows for application of parameter rich models that accommodate lineage 

and dataset heterogeneity (Lartillot and Philippe 2004, Foster 2004, Foster et al. 2009). 

1.3.3.2 The Supertree approach to phylogeny reconstruction 

Analysing data using a Supertree approach involves generating a single phylogeny from 

each individual gene set and summarizing these trees (which contain partially 
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overlapping leaves/OTUs) into one consensus tree (Delsuc et al. 2005, Cotton and 

Wilkinson 2007). One of the main advantages of Supertree methods is that its 

reconstruction is a step removed from the sequence or morphological data and it is 

therefore possible to summarise results obtained from different characters (Delsuc et al. 

2005). Supertree methods while taking into account individual gene histories can ignore 

dataset inconsistencies supported by low bootstrap values (Ren et al. 2009). Supertree 

methods have also been shown to report relationships for taxon groupings that are not 

observed in any of the fundamental gene trees. A variety of Supertree methods have 

been developed; matrix representation by parsimony (MRP) (Baum 2002, Ragan 1992), 

MinCut (Semple and Steel 2000), semi-strict Supertree (Goloboff and Pol 2002), and 

the most similar Supertree method (Creevey and McInerney 2005). These methods vary 

widely in performance and lack the ability to account for uncertainties in the 

fundamental tree data (Creevey and McInerney 2005, Eulenstein et al. 2004, Ren et al. 

2009). In summary, the decision to use a Supertree or Supermatrix method should be 

based on data availability.  

 

1.3.4 Applications of Phylogeny in Evolutionary Medicine. 

The practical application of phylogeny and evolutionary theory in medicine is evident 

(Nesse et al. 2006).  Genetic drift and natural selection have left mosaic patterns of 

nucleotide substitution within genomes, and these single nucleotide variations (SNPs) 

have been identified in thousands of disease-associated genes (Li and Agarwal 2009, 

Hindorff et al. 2009, Roberts et al. 2010). Understanding the association between these 

genetic variants and disease is the underpinning of genetic medicine, but given there are 

between 6000-10,000 non-synonymous SNP in a given individual (Li and Agarwal 

2009, Hindorff et al. 2009, Roberts et al. 2010) making medicine personalised will be a 

time consuming and costly venture (Kumar et al. 2011). By taking an evolutionary 

medicine approach, and applying phylogeny and selective pressure variation detection 

methods (described in section 1.1 and 1.2), it is possible to determine functionally 

important disease causing SNPs in a more cost effective manner (Kumar et al. 2011). 

Phylogenetic methods have been employed to compare clonal subtypes of tumours and 

determine driver mutations that cause resistance to treatment and cause metastasis 

(Egan et al. 2012, Watters and McLeod 2003, Greaves and Maley 2012). In the field of 

infectious disease; it is possible to trace the origins of infectious strains as was carried 

out for the H1N1 influenza epidemic, more famously known as the “Swine Flu” 
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epidemic (Smith et al. 2009). Phylogeny was used to determine the source of the SARS 

epidemic (H5N1 influenza) and identified it as a corona virus similar to one endemic in 

bats (Li et al. 2004). The application of phylogeny also determined that sooty 

mangabeys were the source of HIV-2 in human populations (Gao et al. 1992, Gao et al. 

1994) and chimpanzees were the source of HIV-1 (Gao et al. 1999). The use of 

phylogeny in cancer pathways has allowed identification of lineage-specific adaptations 

in tumour suppressor and oncogenes (O'Connell 2010, Morgan et al. 2012). 

Evolutionary approaches like these have been hypothesised to uncover key adaptations 

that cause aging and cancer (Antolin et al. 2012). The practical uses of phylogenetics in 

the field of evolutionary medicine, are extensive and with the advancement of de novo 

sequencing the practical applications continue to grow.  

 

1.4 Speciation and the Diversification of Mammals 

Ancient mammals arose on the Synapsid branch of the Amniote tree (Figure 1.11) after 

the divergence of Synapsid and Sauropsid lineages during the Paleozoic age, ~325 

Million Years Ago (MYA) (Lefevre et al. 2010). Both the Cretaceous Terrestrial 

Revolution (KTR) ~93 MYA, and the Cretaceous-Paleogene (KPg) mass extinction 

event (~65 MYA), influenced mammal diversification by opening up ecospace and 

promoting inter-ordinal and intra-ordinal diversification (Lloyd et al. 2008, Meredith et 

al. 2011).  This thesis examines mammals in the context of their phylogenetic 

relationships and their molecular adaptation. In the following section, I have briefly 

discussed the various modes of speciation, emergence of placental mammal Superorders 

and various life traits pertaining to extant placental mammals. 
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Figure 1.11 Divergence of Synapsid and Sauropsid lineages and the emergence of 
mammals 

The dates in time from Paleozoic Era (360 MYA to 250 MYA) to the Cenozoic Era (65 

MYA to present) are shown bottom to top along with the approximate diverge times of 

lineages leading to extant mammal groups (Monotremes, Marsupials and Eutherians). 

This image was taken from Lefevre et al (2010) with permission. 
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1.4.1 Modes of Speciation  

Ernst Mayr was the first to define a species as a population, or a group of populations, 

whose members have the potential to interbreed with one another in nature and to 

produce viable fertile offspring but cannot produce viable fertile offspring with 

members of another species (Mayr 1970). Mayr proposed the concept of Allopatric 

speciation resulting from a physical barrier separating populations, such as sea level 

change, glacier formation or a new mountain range. This physical barrier to gene flow 

along with enough time for genetic drift and adaption to occur in each population 

independently resulted in the populations not being able to interbreed (Butlin et al. 

2008, Mayr 1970). There are other modes by which speciation can arise: Peripatric, 

Parapatric, and Sympatric speciation (Butlin et al. 2008). Peripatric speciation is similar 

to allopatric speciation as it involves geographic barriers that prevent gene flow 

between populations, but differs as it is initiated by small population separating from 

the main population. This population bottleneck causes a higher rate of mutational 

fixations resulting in a shorter period for new species to arise. Peripatric speciation has 

been observed in reef hermit crabs that have been geographically isolated (Malay and 

Paulay 2010). Parapatric speciation, originally described by Fisher (1958), takes place 

when partial geographic barriers arise and sexual selection assures that no gene flow 

occurs between populations (Fisher 1958). Tennessee cave salamanders are an example 

of parapatric speciation where gene flow is impeded between surface dwelling species 

and cave dwelling species whose ancestors descended to cave habitats as a result of 

climate change (Niemiller et al. 2008). Sympatric speciation occurs in a population 

sharing the same habitat and is the result of strong sexual selection. The sympatric 

speciation as a theory is still debated as there is very little empirical support to date 

(Mallet et al. 2009). One of the few examples of sympatric speciation has been observed 

in the three-spinned sticklebacks a freshwater fish (Gow et al. 2008) where there are 

two populations of three-spinned sticklebacks interbreeding in the same location: (i) a 

large species that feeds on large prey such as snails, flat worms and tiny crustaceans, 

and (ii), smaller species that feed on small plankton. Evidence suggests that these 

species have experienced disruptive selection caused by natural selection favouring fish 

that were very big or very small, along with preferential mating with similar size 

species (Gow et al. 2008).  
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If reproductive isolation is not maintained between populations, the two populations can 

interbreed and develop hybrids (Sadava 2006).  Postzygotic barriers can operate after 

fertilization,  (i) to prevent the hybrid zygote from fully maturing, (ii) to make it less fit 

than the non-hybrid offspring, or (iii) in the case of a physically healthy or viable 

outcome - to ensure that resultant hybrid organism is infertile (Sadava 2006). Hybrid 

zones may form if reproductive isolation is incomplete where previously separated 

populations come into contact (Rieseberg et al. 2000) and can introduce genetic novelty 

and diversity into a gene pool (Noor et al. 2000) through a process called “genetic 

introgression” (Anderson 1949). Despite publications on these type of hybridization 

events receiving some criticism in the past (Yamamichi et al. 2012, Presgraves and Yi 

2009, Currat and Excoffier 2004), scientific evidence suggests that hybrids of human 

ancestors occurred with literature supporting a human-chimp hybrid isolation event 

after the initial speciation of humans and chimps (Patterson et al. 2006) and humans and 

Neanderthals (Green et al. 2010).  

 

1.4.2 Divergence time estimates and life traits of mammals 

Mammals are subdivided into placental (eutherian) and non-placental (non-eutherian) 

clades. Non-placental mammals include Monotremes and Marsupials, whereas placental 

mammals consist of Xenarthra, Afrotheria, Laurasiatheria and Euarchontoglires (Asher 

and Helgen 2010). Dating the divergence of mammals with molecular data involves a 

phylogeny of known relationship, calibration of nodes using dates obtained from the 

fossil record, and a model of evolution (Benton et al. 2009). There are conflicts 

surrounding the date estimation pertaining to the emergence of mammals (Benton et al. 

2009, Meredith et al. 2011, Bininda-Emonds et al. 2007, Hedges et al. 1996) and the 

dates given here are from the most recent publication on dating mammal nodes 

(Meredith et al. 2011). 

 

The Monotremes are the least diverse of all the extant mammal orders with only two 

species in this group, the platypus and the echidna.  Previous studies have estimated the 

emergence of mammals to be ~217.8 MYA (Meredith et al. 2011). Monotremes are the 

deepest diverging group on the mammal tree (van Rheede et al. 2006) and are 

exclusively found in Australia (Augee 2007). Monotremes possess the majority of 

mammalian features: lactation, hair, single bone in the lower jaw and endothermic 

temperature regulation, however their reproductive mechanisms differ substantially. 
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Monotremes are egg-laying mammals and secrete a high fat substance through sweat as 

they do not have mammary glands.  

 

At birth Marsupials are not fully developed and they must be protected and suckled in 

their mothers pouch until they reach maturity. They are estimated to have split from the 

monotreme ancestor ~190 MYA (Meredith et al. 2011). The majority of marsupials are 

Australian and include kangaroos, koalas, wombats, the tasmanian devil and bandicoots. 

The only non-Australian mammals are opossums, that are native to America (Augee 

2007).  

 

Placental mammals are estimated to have emerged ~101.3 MYA (Meredith et al. 2011) 

which corresponds with the hypothesis that the KTR and KPg events contributed to the 

placental mammal diversification (Lloyd et al. 2008). Compressed cladogenesis, shown 

to have a major negative impact on the resolution of the metazoan phylogeny for 

example (Rokas et al. 2005), is so severe in mammals that the phylogenetic signature 

has proven very difficult to decipher. There is much confusion concerning the order in 

which the Superorders arose (Murphy et al. 2001b, Murphy et al. 2007, Prasad et al. 

2008, Kriegs et al. 2006, Amrine-Madsen et al. 2003, Springer et al. 2007, Reyes et al. 

2004, Nishihara et al. 2007, Tobe et al. 2010, Song et al. 2012). It is now accepted that 

when the supercontinents split, Laurasia (northern hemisphere) was where the 

Boreoutheria arose, this group subsequently split to the Euarchontoglires (including for 

example primates and rodents) and the Laurasiatheria (including for example cows, 

whales, bats).  Gondwana (southern hemisphere) is understood to be where the ancestor 

of the Afrotheria and the Xenarthra arose but the ordering of the divergence of these 

major clades is still uncertain (Wildman et al. 2007). The Afrotheria Orders are; 

Afrosoricida (tenrecs and golden moles), Macroscelidea (elephant shrews), 

Tubulidentata (aardvark), Hyracoidea (hyraxes), Proboscidea (elephants) and Sirenia 

(dugongs and manatees). The extant members of the xenarthran superorder can only be 

found in the Americas. The Xenarthra are divided into (i) the Cingulata Order, which 

has shelled mammals such as the armadillo, and (ii), the Pilosa Order (sloths and 

anteaters). The Laurasiatheria are comprised of Insectivora (hedgehogs and shrews), 

Perissodactyla (horse and rhinoceroses), Cetartiodactyla (whales, cow, pig), Carnivora 

(dogs, bears, cats and seals), Chiroptera (bats) and the Pholidota (pangolin and scaly 

anteaters). The Euarchontoglires contain the Glires (rodents and rabbits), Primates 

(humans, macaques), Dermoptera (cologus or flying lemurs), Scandentia (tree shrews) 
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and Strepsirrhini (lemurs and tarsiers). The approximate placement of the Superorders, 

orders and intra orders is summarised in Figure 1.12. 

 

Today there are ~5400 extant mammals displaying a huge range in life traits that 

directly impact on variation in mutational rates and nucleotide composition (Romiguier 

et al. 2010, Li et al. 1987). The observed heterogeneity in evolutionary rates in mammal 

genomes can be influenced by many factors including diet (Yang 1998), disease 

(Usanga and Luzzatto 1985) and intense sexual selection (Dorus et al. 2004). Variations 

are observed in body size, longevity, metabolic rate and germ-line generation time 

across mammals, and as detailed in section 1.1.6 these impact upon the rate of mutation 

(Leroi et al. 2003, Peto et al. 1975, Martin and Palumbi 1993, de Magalhaes and Costa 

2009, Bleiweiss 1998, Caulin and Maley 2011). The variation in life traits such as body 

weight, longevity, metabolism and age at which sexual maturity is reached are detailed 

in Figure 1.13 for the mammals analysed in this thesis. 
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Figure 1.12 Approximate placement of all major groups in the Eutherian 
Phylogeny according to the Exafroplacentaila hypothesis 

The nomenclature, approximate placement of orders and intra-orders is based on a study 

by Nishihara et al (2006). The Cetartiodactyla and the Perissodactyla clades have been 

expanded upon showing more detailed previously published analysis (Murphy et al. 

2001a). The Primate clade has been expanded upon using a primate specific dataset 

(Perelman et al. 2011).  
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Figure 1.13 Life trait variations observed across mammals. 

Variations in (A) Body weight, (B) Longevity, (C) Metabolism and (D) Sexual Maturity are shown for mammal species listed on the x-axis. Data 

obtained from AnAge Database (de Magalhaes and Costa 2009).  
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1.5 Aim of Thesis 

The application of a robust mammal phylogeny to molecular evolutionary studies has 

prominence in the field of evolutionary medicine. In this thesis I address the 

fundamental issues that have prevented the reconstruction of a well-resolved mammal 

phylogeny and will show how this robust phylogeny is crucial for the accurate detection 

of adaptive evolutionary events. 

 

The objective of Chapter 2 is to assess whether heterogeneous models were better at 

describing mammal data compared to homogeneous models, and most importantly, 

were the models generated adequate to describe both the compositional and rate 

exchange heterogeneity in the data. Parameter rich models require data that is suitable 

in size and phylogenetic informativeness to accurately estimate parameters, therefore it 

was necessary to assess dataset suitability and determine whether the data tested was 

capable of accommodating parameter rich models and if these data had enough 

phylogenetic information to distinguish between alternative branching hypotheses. The 

position of the root of the placental mammal phylogeny and the intra-order placements 

within the Laurasiatheria are explored in Chapter 2 using nuclear data. 

 

To overcome the taxon deficit imposed by the use of nuclear data in Chapter 2, 

mitochondrial sequence data was employed in Chapter 3. Mitochondrial data has been 

shown to saturate faster than nuclear data and produce phylogenies that differ to those 

inferred with nuclear data. Previous phylogeny reconstruction efforts using 

mitochondrial data did not attempt to tease apart the usable phylogenetic signal from 

phylogenetic conflict. Therefore, in Chapter 3 I set out to test the effects of removing 

phylogenetic conflict from the mitochondrial data along with different partitioning of 

the data to improve overall phylogenetic signal and assess whether these data can be 

applied to the questions pertaining to the resolution of mammal phylogeny. 

 

Finally, following these studies it was evident that model adequacy and data suitability 

were fundamental in phylogeny inference, but how critical is that phylogeny for  

selective pressure analyses using CodeML? The consequence of using a star or random 

phylogeny for selective pressure analyses has been explored, but what are the effects of 

employing a gene tree generated from data that contained phylogenetic conflict and 

whose composition was not adequately modelled? In Chapter 4 the implications of 
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applying improper phylogeny on selective pressure analyses are briefly assessed along 

with an analysis of the adaptive and non-adaptive evolutionary pressures acting on 

critical telomere interacting genes. 

 

The overall goal of this thesis is to demonstrate the impact of data suitability and model 

choice in the resolution of mammal phylogeny and to apply the resolved phylogeny to 

the assessment of selective pressure variation in a small set of genes. 
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Chapter 2 

2 Comparison of Heterogeneous and Homogeneous Models 

in the Resolution of the Placental Mammal Phylogeny 
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2.1 Introduction 

2.1.1 Conflict in the Mammalian Phylogeny 

Following a large number of studies to date using different datasets, datatypes and 

approaches there are now numerous competing hypotheses concerning the position of 

the root of the placental Superorders (Murphy et al. 2001b, Murphy et al. 2001a, 

Murphy et al. 2007, Prasad et al. 2008, Kriegs et al. 2006, Amrine-Madsen et al. 2003, 

Springer et al. 2007, Reyes et al. 2004, Nishihara et al. 2007, Tobe et al. 2010), the 

branching of extant placental orders (Stanhope et al. 1998, Waddell et al. 1999, Song et 

al. 2012) and the precise placement of many individual placental species (Janecka et al. 

2007). The four major competing hypotheses for the position of the root of the placental 

phylogeny are illustrated in Fig. 2.1 and detailed in Table 2.1.  In summary these 

alternative hypothesis place the following as the earliest diverging placental mammal 

group: (A) the Afrotheria, e.g. elephants and manatees (Afrotheria hypothesis), (B) the 

Xenarthra, e.g. armadillos and sloths (Epitherian hypothesis), (C) the common ancestor 

of Afrotheria and Xenarthra (Atlantogenata hypothesis), or (D) the Rodents, e.g. rat and 

mouse (Rodentia hypothesis).  

 

It is not just the early diverging branches that are difficult to resolve; the placement of 

branching order in the Laurasiatheria is also contentious (Nishihara et al. 2006, 

Hallstrom and Janke 2008, Nikolaev et al. 2007). Within the Laurasiatheria the 

Chiroptera have been placed: (i) the second earliest diverging group after the 

Insectivora (Amrine-Madsen et al. 2003, Roca et al. 2004, Arnason et al. 2008), (ii) as a 

sister group beside the Perisodactyla-Cetartiodactyla clade (Asher 2007, Prasad et al. 

2008), (iii) as a sister group to the Perissodactyla alone (Murphy et al. 2007, Waddell 

and Shelley 2003), and (iv), in the Pegasoferae position, placing them closer to the 

Ferae than the Cetartiodactyla (Nishihara et al. 2006). Laurasiatheria intra-order 

divergence dates have been estimated to be between 1 and 4 million years, which limits 

the time in which independent substitution’s could have occurred in the respective 

Laurasiatherian genomes (Hallstrom and Janke 2008). These short divergence dates 

could make it difficult to tease apart the order in which the Laurasiatheria Orders arose. 

Species hybridization and incomplete lineage sorting has been suggested as a possible 

cause for the strong support shown in previous studies for conflicting phylogenetic 

hypotheses (Hallstrom and Janke 2008).  Species hybridization leads to introgression 
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(the incorporation of genes from one species into the gene pool of another species), 

whereas incomplete lineage sorting produces a pattern of allele fixations from ancestral 

polymorphisms that does not reflect the species history. Both processes generate mixed 

phylogenetic signal at different loci that results in strong support for discordant 

mammalian relationships (Hallstrom and Janke 2008, Churakov et al. 2009). There have 

been numerous attempts to resolve the Laurasiatheria and competing hypotheses from 

previous publications have been outlined in Figure 2.2 and Table 2.1. 

 

To date there have been many datasets applied to the resolution of the position of the 

placental root (Hallstrom and Janke 2010). These data have included nuclear and 

mitochondrial genes (with protein coding genes treated either as nucleotide or amino 

acid sequences), non-coding DNA, morphological data and rare genomic events 

(Murphy et al. 2001a, Murphy et al. 2007, Kriegs et al. 2006, Asher 2007, Hallstrom 

and Janke 2010). It is now clear, however, that not all datasets are equally suitable for 

all phylogenetic questions at all phylogenetic depths as shown most recently by Song et 

al (2012) in a reanalysis of the mammal dataset reported by Meredith et al (2011). For 

example the work of Brown and co-workers have shown that mitochondrial genes and 

non-coding DNA sequences accumulate mutations at a faster rate than nuclear genes 

(Brown et al. 1982), making them less useful for deep phylogenetics. In addition DNA 

sequences are more prone to mutational saturation than amino acid datasets (Kosiol et 

al. 2007), and might be more strongly affected by biases related to lineage-specific 

codon usage preferences (Rota-Stabelli et al. 2012).  
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Figure 2.1 Conflict in Placental Rooting Hypotheses.  

(A) Exafroplacentalia hypothesis, (B) Epitherian hypothesis, (C) Atlantogenata 

hypothesis, and (D) Rodentia hypothesis.  
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Figure 2.2 Alternative Hypotheses for Laurasiatheria Intra-order Placements 

The 10 different current hypotheses describing the placement of orders within the 

Laurasiatheria are represented graphically in A-J. 
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Table 2.1 Previous Publications on the placement of the placental root and the Laurasiatheria Phylogeny 

Author, Year 
Placental 
Mammals 

Data Type Data Size 
Placental 

Root 
Laurasiatheria 

Intra-order 
(Waddell et al. 1999) 24 mtDNA 1,240 aa D --- 

(Murphy et al. 2001a) 64 Nuclear, mtDNA 9,979 bp A F 

(Madsen et al. 2001) 28/51 Nuclear, mtDNA 5,708 bp/2947 bp A,C B 

(Murphy et al. 2001b) 42 Nuclear, mtDNA 16,397 bp A A 

(Scally 2001) 47 Nuclear 2,947 bp C B,A 

(Delsuc et al. 2002) 47 Nuclear 5,130 bp A G 

(Springer et al. 2003) 42 Nuclear, mtDNA 16,397 bp A A 

(Amrine-Madsen et al. 2003) 59 Nuclear 1,342 bp A A 

(Hudelot et al. 2003) 62 mtDNA 3,571 bp C F 

(Waddell and Shelley 2003) 81 Nuclear, mtDNA ---- A,B,C H 

(Reyes et al. 2004) 63 Nuclear, mtDNA 6, 025 bp --- A 

(Gibson et al. 2005) 62 mtDNA 2,506 bp A I 

(Kriegs et al. 2006) 32 RGC ----- B --- 

(van Rheede et al. 2006) 9 Nuclear,RGC 10773 bp C --- 

(Nishihara et al. 2006) 26 RGC ----- A,B,C C 

(Springer et al. 2007) 40 
Nuclear, mtDNA, 

Morphology 
14,326 bp A F 

(Murphy et al. 2007) 43 RGC ---- --- --- 
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Author, Year 
Placental 

Mammals 
Data Type Data Size 

Placental 

Root 

Laurasiatheria 

Intra-order 
(Nikolaev et al. 2007) 16 Nuclear 429,675 bp A --- 

(Hallstrom et al. 2007) 11 Nuclear 2,168,859 bp C --- 

(Wildman et al. 2007) 11 Nuclear 1,443,825 bp C --- 

(Kjer and Honeycutt 2007) 78 mtDNA 14,740 bp C A 

(Nishihara et al. 2007) 9 Nuclear 1,011,870 bp C --- 

(Asher 2007) 49 Morphology, DNA, RGC 15,389 bp A,B,C B, J, D,G 

(Hallstrom and Janke 2008) 19 Nuclear 2,844,615 bp C --- 

(Prasad et al. 2008) 37 Nuclear 2,154,624 bp C B, I 

(Arnason et al. 2008) 98 mtDNA 3617 aa C A 

(Churakov et al. 2009) 6 RGC ---- A,B,C --- 

(Tobe et al. 2010) 204 mtDNA (cyt b/ COI) 1,149bp/1,557 bp ----- F 

(Hallstrom and Janke 2010) 31 Nuclear 2,863,797 bp A,C E 

(Meredith et al. 2011) 139 Nuclear 35,603 bp C B 

(Song et al. 2012) 33 Nuclear 1,385,220 bp C A 

Competing hypotheses are Labelled A-D for the placental rooting and A-J for the intra-order placements of Laurasiatheria as per Figures 2.1 and 2.2.  
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In this Chapter, heterogeneous models are defined as those that allow for compositional 

heterogeneity and exchange rate heterogeneity across the topology, defined by Foster 

(2009) as node-discrete composition heterogeneity (NDCH) and node-discrete rate 

matrix heterogeneity (NDRH) (Foster et al. 2009), and those that allow for 

heterogeneity across the dataset (Lartillot and Philippe 2004).  All previous attempts to 

reconstruct the mammal phylogeny have used homogeneous models that do not account 

for variation in composition or exchange rates across the tree or dataset (Murphy et al. 

2001b, Hallstrom and Janke 2008, Prasad et al. 2008). Given the known heterogeneities 

in the mammal data (discussed in section 1.3.7), it is essential to use sophisticated 

models that can adequately describe both exchange rate heterogeneity and 

compositional heterogeneity across the tree and the data.  

 

The application of more sophisticated models places a greater emphasis on the size of 

the dataset, e.g. alignment lengths of greater than 1000 positions (i.e. concatenated 

datasets) have been shown to be necessary for the profile mixture models to reliably 

calculate the shapes of the profiles of these data (Quang et al. 2008). Therefore, the size 

of the dataset applied to the problem is critical, as is the quality of the data, if 

heterogeneous models are to be employed. 

 

In this Chapter I approached the problem of the resolution of the mammal phylogeny at 

two phylogenetic depths, (i) the position of the placental root and (ii) the order of the 

major groups within the Laurasiatheria. I have applied and tested the fit of models that 

accommodate compositional heterogeneity and exchange rate heterogeneity over the 

phylogeny and over the data. I have compared how these heterogeneous models fit as 

compared to previously employed homogeneous models. With the increase in 

parameterization resulting from heterogeneous models, I was also interested in testing 

the suitability of datasets to the phylogenetic problem.  
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2.2 Materials and Methods 

Three separate datasets were employed in the study of the position of the mammal root 

(66TaxonSet and 39TaxonSet) and the placement of orders within the Laurasiatheria 

(14TaxonSet). The assembly of these datasets is described below. 

2.2.1 Assembly of Previously Published Datasets 

A description of the data used in major publications to date to infer the placental 

mammal phylogeny is given in Table 2.1. Six of these publications were chosen based 

on size and scientific impact to test whether the datasets were compositionally 

heterogeneous and if the models originally employed adequately describe the 

composition of the data. The Nikolaev et al (2007) data was downloaded directly from 

online supplementary material and no further editing was required (Nikolaev et al. 

2007).  Access was granted to four of the datasets through personal communication with 

the authors (Hallstrom and Janke 2010, Murphy et al. 2001a, Meredith et al. 2011, 

Prasad et al. 2008). Finally, the dataset used in the first major publication on placental 

mammal phylogeny by (Murphy et al. 2001a) was obtained from online supplementary 

material. The dataset was not immediately applicable, therefore it was copied from a 

word document to UNIX readable format and the sequence information was extracted 

using a program called “MurphyPhy2Fasta.py” (Appendix A.1.1). This program was 

designed to read in information from the supplementary data and export it in FASTA 

and was called as follows: 

 

python MurphyPhy2Fasta.py ZFX.txt ZFX.fasta 

 

Editing of the alignment was carried out as per online supplementary material and 

methods (Murphy et al. 2001a). Based on the alignment length and taxon depth of these 

previously published datasets the Murphy et al (2001a) dataset was selected for further 

phylogenetic exploration under heterogeneous models. This dataset contains 66 taxa 

and has an alignment length of 9789bp - it is referred to as “66TaxonSet” for the 

remainder of this Chapter. The 66TaxonSet was analysed in three tiers, first as a 

nucleotide dataset containing 15 loci composed of 11 coding, 1 mtDNA and 3 3’UTR 

sequences totalling an alignment of 9,789 bp in length (66TaxonSet_nuc). Secondly as 

an amino acid dataset (66TaxonSet_aa), which contains 11 protein-coding genes and 

2190 aa and finally with the amino acid characters recoded to their 6 Dayhoff categories 
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(66TaxonSet_day), all alignments have been made available in Appendix A.1.2. The 

following were the commands used in P4 to generate the three tiers of data for 

66TaxonSet: 

 

p4>var.doCheckForAllGapColumns=0 

p4>read('66TaxonSet_nuc.nex') 

p4>a=var.alignments[0] 

p4>a.recodeDayhoff() 

p4>a.writeNexus('39TaxonSet_day.nex') 

p4>quit() 

2.2.2 Assembly of Taxon Rich-Sequence poor Dataset 

The Ensembl server (version 60) was mined through BioMart and coding sequences of 

canonical transcripts were downloaded for all available placental mammals, see Table 

2.2 for list of taxa. The Polar Bear (Ursus maritimus) genome, kindly supplied by the 

Beijing Genomics Institute (BGI), China (B. Li et al. 2011) was obtained through FTP 

web server using the following access commands: 

 

Host= 

ftp://polar_bear_project:ft5poukue4ce@ftp.genomics.org.cn/2

0101216/annotation20101216/genepolar_bear.20101216.cds.gz 

user = polar_bear_project   

password= ft5poukue4ce  

 

As 39 species were identified under the criteria of this dataset, it is referred to as 

“39TaxonSet” from this point on. The sequences of each species were quality checked 

to ensure that they were protein coding by establishing that the length of a sequence was 

a multiple of 3 and no internal STOP codons were present. This quality check was 

carried out using in house program called “QualityCheckCodingSequenceFASTA.pl” 

designed by Thomas Walsh (Appendix A.2.1.1) and is called as follows: 

 

perl QualityCheckCodingSequenceFASTA.pl human.fasta 

qc_failed_human.fasta qc_passed_human.fasta 
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Only sequences that passed were used in further analyses. The coding DNA sequence 

was translated to amino acids using, “TranslateFASTA.pl” designed by Thomas Walsh 

(Appendix A.1.1.2) and is called as follows: 

 

perl qc_passed_human.fasta human.prot 

2.2.2.1 39TaxonSet – Ortholog Identification 

An all versus all reciprocal mpiBLAST (Darling 2003) analysis with an e-value cut-off 

set to e-6  was performed on 39 genomes. The program “BlastParser.py” (Appendix 

A.2.2) was written to parse the BLAST output file, take the first 39 unique hits for each 

query and write them to individual FASTA formatted files. The program was called as 

follows: 

 

python BlastParser.py  

 

Only files that contained 39 unique species representatives were retained, any file with 

>1 species indicated the presence of paralogs that would bias results. The number of 

instances a species occurred was counted by first generating a list of all 

“BlastParser.py” output files using the following UNIX commands: 

 

for i in *.fasta;  

do 

echo “$i” | cut –d ‘.’ –f1 >> List 

done 

 

Using the “List” of genes generated, the number of times each taxon was represented 

was counted using the following UNIX commands: 

 

for i in `cat List`;  

do; 

grep ">alp" $i.fasta | wc -l >> alp.count; 

grep ">cat" $i.fasta | wc -l >> cat.count; 

grep ">chi" $i.fasta | wc -l >> chi.count; 

done 
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The above commands are a sample of commands used for 3 species, however during the 

analysis these commands were issued over the 39 individual species. Counts of species 

were placed together along with their corresponding file names using the paste 

command in UNIX as follows: 

 

paste List alp.count cat.count chi.count > AllCounts.txt 

 

The file “AllCounts.txt” was then opened in EXCEL, columns were sorted and only 

rows where each species of the 39 had a “1” were retained.  For each of the 39 species, 

only 27 genes were identified as having one-to-one orthology. 

2.2.2.2 Alignment Generation and Editing of 39TaxonSet 

The 27 SGO’s were aligned using MUSCLE v3.3 (Edgar 2004).  The unique Ensembl 

identifiers for each species were changed into 3 letter codes, listed in Table 2.2. An 

example of how the UNIX commands were performed to alter the names of 2 of the 20 

species names is shown:  

 

for i in *.aln;  

do; 

sed -e 's />ENSGALG0/>Chk/g' $i | sed -e 's 

/>ENSPTRG0/>Chi/g'  >> $i.rename 

done; 

 

The program “MSAmaker.py”  (Appendix A.2.3) was developed to concatenate SGO’s 

into a Supermatrix. It works by issuing the following command in a directory 

containing datasets with “.fasta” file extension and is called as follows: 

 

python MSAmaker.py 

 

Alignments were manually inspected using Se-Al (Rambaut 2001) and misaligned 

sequences or spurious sequences as a result of sequencing errors were removed by eye. 

This gave a final alignment of 27,220 aa (Appendix A.2.4.1). Invariable sites were 

removed, leaving an alignment of 11,039 aa. The alignment was then recoded to 

dayhoff categories using same method described in section 2.2.1 (Appendix A.2.4.2). 
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Table 2.2  39TaxonSet list of species present in the dataset  

Common Name Species Names Genome 
Coverage Species code Genome Version (Ensembl 60) 

Alpaca Vicugna pacos 2.51X Alp vicPac1 
Armadillo Dasypus novemcinctus 2X Arm dasNov2 
Bushbaby Otolemur garnettii 1.5X Bus otoGar1 

Cat Felis catus 1.87X Fca CAT 
Chicken Gallus gallus 7.1X Chk WASHUC2 

Chimpanzee Pan troglodytes 8X Chi CHIMP2.1 
Cow Bos taurus 7X Cow Btau_4.0 
Dog Canis familiaris 7X Cfa CanFam 2.0 

Dolphin Tursiops truncatus 2.59X Ttr turTru1 
Elephant Loxodonta africana 7X Laf Loxafr3.0 

Giant Panda Ailuropoda melanoleuca 6.8X Gip ailMel1 
Gorilla Gorilla gorilla 35X Gor gorGor3 

Guineapig Cavia porcellus 6.79X Cts cavPor3 
Hedgehog Erinaceus europaeus 1.86X Hed eriEur1 

Horse Equus caballus 6.79X Eca Equ Cab 2 
Human Homo sapiens Deep Hsa GRCh37.p2 
Hyrax Procavia capensis 2.19X Pca proCap1 

Kangaroo Rat Dipodomys ordii 1.85 X Kan dipOrd1 
Macaque Macaca mulatta 6.1X Mma MMUL 1.0 
Marmoset Callithrix jacchus 6X Mar C_jacchus3.2.1 
Megabat Pteropus vampyrus 2.63X Meg pteVam1 
Microbat Myotis lucifugus 1.7X Mic myoLuc1 

Mouse Lemur Microcebus murinus 1.93X Mol micMur1 
Mouse Mus musculus 7X Mmu NCBI m37 

Opossum Monodelphis domestica 7.33X Dvi monDom5 
Orangutan Pongo pygmaeus 6X Orb PPYG2 
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Common Name Species Names Genome 
Coverage Species code Genome Version (Ensembl 60) 

Pig Sus scrofa 4X Ssr Sscrofa9 
Pika Ochotona princeps 1.93X Pik OchPri2.0 

Platypus Ornithorhynchus anatinus 6X Ply Ornithorhynchus_anatinus-5.0 
Polar Bear Ursus maritimus Not Known Pob Version1 

Rabbit Oryctolagus cuniculus 7X Ohy oryCun2 
Rat Rattus norvegicus 7X Rno RGSC 3.4 

Shrew Sorex araneus 1.9X Sar sorAra1 
Sloth Choloepus hoffmanni 2.05X Cho choHof1 

Squirrel Spermophilus tridecemlineatus 1.9X Squ speTri1 
Tarsier Tarsius syrichta 1.82X Tsp tarSyr1 
Tenrec Echinops telfairi 2X Ete TENREC 

Treeshrew Tupaia belangeri 2X Tre tupBel1 
Wallaby Macropus eugenii 2X Meu Meug_1.0 
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2.2.3 Assembly of Laurasiatheria Dataset 

Placental mammals were downloaded from the Ensembl server (version 67) and mined 

through BioMart. Improvements were made to several genome assemblies and updated 

genome versions are listed in Table 2.3. As this dataset is composed of 14 taxa, it is 

referred to for the remainder of the Chapter as 14TaxonSet. The Orders represented in 

this study were; the Cetartiodactyla (alpaca, dolphin, cow and pig), the Carnivora 

(panda, dog and cat), the Perisddodactyla (horse), the Insectivora (hedgehog and shrew), 

the Chiroptera (megabat and microbat) and the Primates (chimpanzee and human) 

which were the outgroup species used in this study. 

 

 

Table 2.3 14TaxonSet list of species present in the dataset  

Common 

Name 
Species Names 

Species 

code 

Genome 

Coverage 

Genome Version 

(Ensembl 66) 

Alpaca Vicugna pacos Alp 2.51X vicPac1 

Dolphin Tursiops truncatus Dol 2.59X turTru1 

Cow Bos taurus Cow 7X UMD3.1 

Pig Sus scrofa Pig 4X Sscrofa9 

Cat Felis catus Cat 1.87X CAT 

Dog Canis familiaris Dog 7X CanFam_2.0 

Panda Ailuropoda melanoleuca Pan 6.8X ailMel1 

Horse Equus caballus Hor 6.79X EquCab2 

Hedgehog Erinaceus europaeus Hed 1.86X eriEur1 

Shrew Sorex araneus Shr 1.9X sorAra1 

Megabat Pteropus vampyrus Meg 2.63X pteVam1 

Microbat Myotis lucifugus Mic 7X myoLuc2 

Human Homo sapien Hum Deep GRCh37.p6 

Chimpanzee Pan troglodytes Chi 8x CHIMP2.1.4 
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2.2.3.1 14TaxonSet - Ortholog Identification  

The clustering method orthoMCL (Li et al. 2003)  was applied to 14TaxonSet data to 

identify orthologous families, the process that the software progresses through is 

summarised in Figure 2.3. The program “orthomclAdjustFasta” was used to apply 3 

letter species codes to each of the 14 genome files listed in Table 2.3. Poor quality 

proteins were removed as per default quality settings. A concatenated file containing all 

14 taxa called “goodProteins.fasta” was generated from the remaining data and 

contained 234,628 coding sequences. Reciprocal mpiBLAST (Darling 2003) was 

conducted on “goodProteins.fasta” where sequence similarity cut-off values were set at 

e-6. The results were parsed using “orthomclBlastParser” and “OrthomclLoadBlast” and 

the ouput file “similarSequence.txt” was loaded into MySQL database. The pairwise 

relationships were then computed using “orthomclPairs”.  

 

Potential relationships were defined through orthoMCL (Li et al. 2003) using (i) 

reciprocal best similarity pairs to define preliminary orthologs, (ii) using pairwise 

similarity scores that were higher within a genome compared to between genomes as a 

way to define preliminary paralogs and, (iii),  defining co-orthologous relationships if a 

protein identified across two species was connected through orthology and inparology. 

An expectation value of e-5 and a percent match of 60 were applied as cut off criteria for 

relationship identification. Initial relationship weights were computed as the average 

expectation value (e-5) from BLASTp (Altschul et al. 1990) for each pair of sequences 

and were then normalised to correct for systematic differences of orthologous and 

paralogous relationships so that MCL (Enright et al. 2002) clustering was unbiased (Li 

et al. 2003).  The MCL (Enright et al. 2002) program then considers all relationships 

simultaneously, and separates diverged paralogs and distant orthologs that were 

mistakenly assigned based on (weak) reciprocal best hits and sequences with different 

domain structures. The inflation value for MCL (Enright et al. 2002),  ranges from 1.1 

(most conservative) to 10.0 (most relaxed) (Enright et al. 2002). In this analysis the 

inflation value was set at 1.5 as it was determined as the optimal value from clustering 

of eukaryotic homologs (Li et al. 2003) and 18,555 gene families were identified. The 

program “FASTools_v41.py” written by Andrew Webb (see Appendix A.3.1) took the 

gene family information from MCL output file and generated FASTA formatted files. 
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Figure 2.3 OrthoMCL pipeline for the identification of orthologous protein 

families 

The blue boxes display dataset information and the yellow boxes show programs that 

were applied to the data. Adapted from Li et al (2003). 
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There were 18,555 homologous families identified using orthoMCL, and 11,942 of 

these families were SGOs that had both outgroups (human and chimpanzee) present. Of 

these only 2417 genes had sequences represented across all 14 taxa and these were 

brought forward for further testing. 

2.2.3.2 14TaxonSet - Testing alternative alignment based approaches. 

Previous studies have observed phylogenetic discordance as a result of mis-aligned 

sequence data (Morrison and Ellis 1997, Hall 2005). It was not feasible to manually 

check each of the 2417 genes for alignment quality; therefore a computational approach 

was employed. Alignments were generated using both “sequence based” and 

“evolutionary aware” methods.  “Sequence based” methods were applied using AQUA 

(Muller et al. 2010), which encompasses MUSCLE (Edgar 2004) and MAFFT (Katoh 

and Toh 2008) alignment packages, and a refinement program called RASCAL 

(Thompson et al. 2003). The phylogenetically aware method, PRANK was employed 

with the ‘+F’ option to account for insertion deletion events (Loytynoja and Goldman 

2008). An alignment quality assessment method REFINER (Chakrabarti et al. 2006) 

was used to assess  the quality of the resulting alignment using a norMD score 

(Thompson et al. 2001). The alignment with the highest norMD score was used. Where 

more than one alignment had an equal top score the following priority was given to 

alignment methods: MAFFT, MAFFT+RASCAL, MUSCE, MUSCLE+RASCAL and 

PRANK.  The maximum norMD scores were placed into a single file using the 

following UNIX commands, where ‘GeneList’ is a list of all unique file names: 

 

for i in `cat GeneList`; do 

cat $i.MAFFT.norMD>> MAFFT.results 

cat $i.MAFFT_RASCAL.norMD>> MAFFT_RASCAL.results 

cat $i.MUSCLE.norMD>> MUSCLE.results  

cat $i.MUSCLE_RASCAL.norMD>> MUSCLE_RASCAL.results 

cat $i.PRANK.norMD>> PRANK.results 

paste MAFFT.results MAFFT_RASCAL.results MUSCLE.results 

MUSCLE_RASCAL.results PRANK.results > NorMD_alignments.txt 
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The program “Best_align.py” (Appendix A.3.2.1) was written to identify the maximum 

norMD scores in the “norMD_alignments.txt” file and is called as follows: 

 

python Best_align.py norMD_alignments.txt > 

MaxnorMD_values.txt 

 

The results of the maximum norMD (MAX norMD) scores for each alignment method 

are shown in Figure 2.9. Out of 2417 SGOs 1165 alignment methods had equal norMD 

scores. MAFFT had the highest norMD score for 145 SGOs, combined 

MAFFT+RASCAL for 107 SGOs, MUSCLE for 153 SGOs, combined 

MUSCLE+RASCAL for 120 SGOs and PRANK for 251 SGOs.  

 

A program called “MapGapsFASTA.pl” (Appendix A.3.2.2 ) written by Thomas Walsh 

was used to align nucleotide FASTA files based on their corresponding protein 

alignments. This was carried out on the 2417 genes as follows: 

 

for i in `cat GeneList`;  

do; 

perl MapGapsFASTA.pl $i.nuc $i.protal $i.nucal 

done; 
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Figure 2.4 Different Alignment Methods Give Different Results 

Alignment programs tested are shown on the x-axis and the number of alignments with 

the maximum norMDscore on the y-axis. The height of each bar represents the number 

of times a method had a high norMDscore. The cells are colour coded as follows: green 

= alignments where 2-4 program packages gave the max norMDscore; red = 1 

alignment program gave the best norMDscore, blue = all 5 alignment packages resulted 

in the same norMDscore.  The individual counts are given in each of the cells. 
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2.2.3.3 14TaxonSet - Alignment editing 

The distribution of the mean percentage identity (Mean %ID) was calculated for each 

alignment using trimAl (Capella-Gutierrez et al. 2009), see Figure 2.5.  Sequences that 

were incomplete or had high levels of mis sequenced regions were removed from the 

data by applying the following critera: All sequences must have at least 60% overlap 

with the entire MSA as well as a 0.6 minimum overlap of a position in the column to be 

considered a “good position”. These cut offs were based on the Mean %ID, shown in 

Figure 2.6 and applied using trimAL (Capella-Gutierrez et al. 2009). All datasets were 

re-aligned using methods described in section 2.2.3.2. Only sequences that had 14 taxa 

were retained and following this filtering step the number of SGOs was reduced from 

2417 to 1284.  
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Figure 2.5 Distribution of Mean % ID of MSA's 

The x-axis shows the mean % ID for each MSA and the y-axis the frequency for each 

mean % identity. The Blue distribution is the mean % ID score for each MSA before 

spurious sequences are removed and the red distribution is the mean % ID score for 

each MSA after spurious sequences are removed. 
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2.2.4 Selecting the Phylogenetic Model of Evolution. 

2.2.4.1 66TaxonSet -Model of Evolution 

There are currently two main approaches for modelling heterogeneity: one is to model 

heterogeneity across the phylogeny and the second is to model heterogeneity across the 

dataset. The compositional heterogeneity and exchange rate heterogeneity have been 

described by Foster (2009) as the NDRH and NDCH models. The NDRH model allows 

for exchange rates of sites to vary over the topology and the NDCH model allows for 

the composition to vary over the topology (Foster et al. 2009). The only model that can 

account for heterogeneity over the data, CAT, was developed by Lartillot and Philippe 

(2004) and is a probabilistic model that allows infinite mixture of site heterogeneity 

across the dataset (Lartillot and Philippe 2004).  In this thesis, homogeneous models are 

defined as those that do not allow for compositional variation or exchange rate variation 

across the tree or dataset, for instance 1GTR+1C+I+4Γ and 1JTT+I+4Γ. The 

composition vector is not included in the empirical homogeneous amino acid model as 

it is a Q matrix. Substitution models were originally selected following model testing 

using ModelGenerator v85 (Keane et al. 2006) which tests the fit of 12 empirical amino 

acid instantaneous Q rate matrices  and 14 nucleotide models to the dataset as well as 

the fit of gamma (+Γ), invariance (+I) and amino acid frequency parameters (+F) 

(Keane et al. 2006). Resultant models from this test were used as a starting point to 

generate models that incrementally increased in parameters and accommodated 

compositional heterogeneity and exchange rate heterogeneity across the phylogeny. 

 

The logarithm of the marginal likelihood was calculated using the Newton Raftery 

equation 16 (Newton et al. 1994) in P4 (Foster 2004). Through comparison of Bayes 

factors (BF), the model that fits the data best is identified while simultaneously not 

overfitting the model to the data. Twice the difference in logarithms was calculated and 

then compared to the Kass and Raftery table, see Table 2.4 (Kass and Raftery 1995). If 

2[lnL(Model2) – lnL(Model1)] is < 0 then Model 1 is a better fit to the data, but if 

2[lnL(Model2) – lnL(Model1)] is > 2 then Model 2 is favored, see Table 2.4. The 

parameters used to build the composition and exchange rate heterogeneous models are 

shown in Table 2.5. 

 

The CAT and CAT-GTR models (Lartillot and Philippe 2004) were compared to 

homogeneous models using Bayesian Cross Validation (Stone 1974) which is 
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implemented in PhyloBayes v3.2 (Lartillot et al. 2009). Cross Validation was calculated 

by splitting the dataset into two unequal parts, the learning set and the test set. The 

parameters of the model were estimated on the learning set, given the tree obtained 

from the MCMC run. The parameters were then used to calculate the likelihood of the 

test set. This was repeated 10 times for each model and the average of the overall lnL 

score was taken.  The scores from each model were then compared and the top scoring 

model was chosen. 

 

Table 2.4 Kass and Raftery table for Bayes Factor Comparisons. 

2[lnL(Model2) – lnL(Model1)] Evidence in favour of Model 2 

<0 Negative 
0-2.2 Not worth more than a bare mention 
2.2-6 Positive 
6-10 Strong 

>10 Very Strong 
 

Adapted from Kass and Raftery (Kass and Raftery 1995). 
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Table 2.5 Composition and exchange rate heterogeneous models applied to 
66TaxonSet and 39TaxonSet 

MODEL RATES COMP +I +Γ PARAMETERS 

66TaxonSet_nuc 

1GTR+1C+I+4Γ 1GTR(v) 1Estimate(v) 0.3(v) 0.7(v) 12 

2GTR+1C+I+4Γ 2GTR(v) 1Estimate(v) 0.3(v) 0.7(v) 18 

3GTR+1C+I+4Γ 3GTR(v) 1Estimate(v) 0.3(v) 0.7(v) 24 

4GTR+1C+I+4Γ 4GTR(v) 1Estimate(v) 0.3(v) 0.7(v) 30 

5GTR+1C+I+4Γ 5GTR(v) 1Estimate(v) 0.3(v) 0.7(v) 36 

6GTR+1C+I+4Γ 6GTR(v) 1Estimate(v) 0.3(v) 0.7(v) 42 

1GTR+2C+I+4Γ 1GTR(v) 2Estimate(v) 0.3(v) 0.7(v) 16 

1GTR+3C+I+4Γ 1GTR(v) 3Estimate(v) 0.3(v) 0.7(v) 20 

1GTR+4C+I+4Γ 1GTR(v) 4Estimate(v) 0.3(v) 0.7(v) 24 

1GTR+5C+I+4Γ 1GTR(v) 5Estimate(v) 0.3(v) 0.7(v) 28 

1GTR+6C+I+4Γ 1GTR(v) 6Estimate(v) 0.3(v) 0.7(v) 32 

1GTR+7C+I+4Γ 1GTR(v) 7Estimate(v) 0.3(v) 0.7(v) 36 

2GTR+5C+I+4Γ 2GTR(v) 5Estimate(v) 0.3(v) 0.7(v) 34 

3GTR+5C+I+4Γ 3GTR(v) 5Estimate(v) 0.3(v) 0.7(v) 40 

4GTR+5C+I+4Γ 4GTR(v) 5Estimate(v) 0.3(v) 0.7(v) 46 

66TaxonSet_aa 

1JTT+I+4Γ 1JTT(f) 1JTT(f) 0.3(v) 0.7(v) 2 

1JTT+1C+I+4Γ 1JTT(f) 1Estimate(v) 0.3(v) 0.7(v) 22 

1JTT+2C+I+4Γ 1JTT(f) 2Estimate(v) 0.3(v) 0.7(v) 42 

1JTT+3C+I+4Γ 1JTT(f) 3Estimate(v) 0.3(v) 0.7(v) 62 

1JTT+4C+I+4Γ 1JTT(f) 4Estimate(v) 0.3(v) 0.7(v) 82 

1JTT+5C+I+4Γ 1JTT(f) 5Estimate(v) 0.3(v) 0.7(v) 102 

1JTT+6C+I+4Γ 1JTT(f) 6Estimate(v) 0.3(v) 0.7(v) 122 

1JTT+7C+I+4Γ 1JTT(f) 7Estimate(v) 0.3(v) 0.7(v) 142 

66TaxonSet_day 

1GTR+1C+I+4Γ 1GTR(v) 1Estimate(v) 0.3(v) 0.7(v) 23 

2GTR+1C+I+4Γ 2GTR(v) 1Estimate(v) 0.3(v) 0.7(v) 38 

3GTR+1C+I+4Γ 3GTR(v) 1Estimate(v) 0.3(v) 0.7(v) 53 

4GTR+1C+I+4Γ 4GTR(v) 1Estimate(v) 0.3(v) 0.7(v) 68 

5GTR+1C+I+4Γ 5GTR(v) 1Estimate(v) 0.3(v) 0.7(v) 83 

6GTR+1C+I+4Γ 6GTR(v) 1Estimate(v) 0.3(v) 0.7(v) 98 

1GTR+2C+I+4Γ 1GTR(v) 2Estimate(v) 0.3(v) 0.7(v) 29 

1GTR+3C+I+4Γ 1GTR(v) 3Estimate(v) 0.3(v) 0.7(v) 35 

1GTR+4C+I+4Γ 1GTR(v) 4Estimate(v) 0.3(v) 0.7(v) 41 
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MODEL RATES COMP +I +Γ PARAMETERS 

1GTR+5C+I+4Γ 1GTR(v) 5Estimate(v) 0.3(v) 0.7(v) 47 

1GTR+6C+I+4Γ 1GTR(v) 6Estimate(v) 0.3(v) 0.7(v) 53 

1GTR+7C+I+4Γ 1GTR(v) 7Estimate(v) 0.3(v) 0.7(v) 59 

5GTR+2C+I+4Γ 5GTR(v) 2Estimate(v) 0.3(v) 0.7(v) 89 

5GTR+3C+I+4Γ 5GTR(v) 3Estimate(v) 0.3(v) 0.7(v) 95 

5GTR+4C+I+4Γ 5GTR(v) 4Estimate(v) 0.3(v) 0.7(v) 101 

39TaxonSet_aa 

1JTT+4Γ 1JTT(f) 1Estimate(f) 0.0(f) 0.62(f) 0 

1JTT+1C+4Γ 1JTT(f) 1Estimate(v) 0.0(f) 0.62(f) 20 

1JTT+2C+4Γ 1JTT(f) 2Estimate(v) 0.0(f) 0.62(f) 40 

1JTT+3C+4Γ 1JTT(f) 3Estimate(v) 0.0(f) 0.62(f) 60 

1JTT+4C+4Γ 1JTT(f) 4Estimate(v) 0.0(f) 0.62(f) 80 

1JTT+5C+4Γ 1JTT(f) 5Estimate(v) 0.0(f) 0.62(f) 100 

1JTT+6C+4Γ 1JTT(f) 6Estimate(v) 0.0(f) 0.62(f) 120 

1JTT+7C+4Γ 1JTT(f) 7Estimate(v) 0.0(f) 0.62(f) 140 

1JTT+8C+4Γ 1JTT(f) 8Estimate(v) 0.0(f) 0.62(f) 160 

39TaxonSet_day 

1GTR+1C+4Γ 1GTR(v) 1Estimate(v) 0.0(f) 0.62(f) 21 

2GTR+1C+4Γ 2GTR(v) 1Estimate(v) 0.0(f) 0.62(f) 36 

3GTR+1C+4Γ 3GTR(v) 1Estimate(v) 0.0(f) 0.62(f) 51 

4GTR+1C+4Γ 4GTR(v) 1Estimate(v) 0.0(f) 0.62(f) 66 

5GTR+1C+4Γ 5GTR(v) 1Estimate(v) 0.0(f) 0.62(f) 81 

1GTR+2C+4Γ 1GTR(v) 2Estimate(v) 0.0(f) 0.62(f) 27 

1GTR+3C+4Γ 1GTR(v) 3Estimate(v) 0.0(f) 0.62(f) 33 

1GTR+4C+4Γ 1GTR(v) 4Estimate(v) 0.0(f) 0.62(f) 39 

1GTR+5C+4Γ 1GTR(v) 5Estimate(v) 0.0(f) 0.62(f) 45 

2GTR+4C+4Γ 2GTR(v) 4Estimate(v) 0.0(f) 0.62(f) 53 

3GTR+4C+4Γ 3GTR(v) 4Estimate(v) 0.0(f) 0.62(f) 69 

4GTR+4C+4Γ 4GTR(v) 4Estimate(v) 0.0(f) 0.62(f) 84 

5GTR+4C+4Γ 5GTR(v) 4Estimate(v) 0.0(f) 0.62(f) 99 

The model codes used in this study; the number of GTR rate matrices applied to the 

data; the number of composition vectors estimated; the proportion of invariable sites 

(+I); the gamma distributed associated rate variation (+Γ), and the number of free 

parameters estimated for each model are given. V:  parameter is free to vary, F: 

parameter is fixed. 
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2.2.4.2 39TaxonSet -Model of Evolution 

Models of evolution were calculated as described in section 2.2.4.1. Invariant sites were 

removed and the estimate for +Γ value was optimized in P4 (Foster 2004) and was 

subsequently fixed for the remainder of the analyses. This reduced the computational 

requirement by removing the optimization of unnecessary parameters and also 

improved the speed of the analyses. Names and parameters of the compositional and 

exchange rate heterogeneous models applied to dataset are listed in Table 2.5. 

2.2.4.3 14TaxonSet -Model of Evolution 

Nucleotide and amino acid evolutionary models were calculated using ModelGenerator 

v85 (Keane et al. 2006), as described in section 2.2.4.1. 

2.2.5 Testing for Compositional Homogeneity 

2.2.5.1 Chi-squared (χ 2) test  

All datasets were tested for compositional homogeneity using the χ2 test. The χ2 test 

calculated the distribution of expected base frequencies (Exp) from these data and tested 

whether the observed base frequencies (Obs) fell within the data (Eqn. 6). This test does 

not take phylogenetic relationships into account and therefore was unable to 

accommodate lineages that deviated from the average compositional distribution 

(Rzhetsky and Nei 1995). 

 

Eqn. 6 Chi-Squared Equation 

 
 

2.2.5.2 Model fit test  

Tree- and model-based composition fit tests were applied to all datasets with the 

exclusion of the individual gene sets in 14TaxonSet. This test is known as the model fit 

test and was devised by Foster et al. (Foster 2004). The model fit test is similar to the χ2 

test except that the Exp comes from the model, not the data.  One hundred datasets were 

simulated on the tested model and phylogenetic tree and χ2
m was sampled  (where m is 

the expected value from the model). The goodness-of-fit measure, or χ2
-value, from the 

actual data was then compared to the simulated data (χ2
m). The model parameters and 
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branch lengths were optimized in a ML framework, and the data was considered 

homogeneous if the calculated value is greater than 95% of the null distribution (Foster 

2004).  

 

2.2.5.3 Chi-squared test specific to Tree Puzzle 

The χ2 test implemented in Tree-Puzzle (Schmidt et al. 2002) compared the composition 

of each sequence to the frequency distribution that was assumed in the ML model and 

labelled the compositionally heterogeneous species that did not fall within the 95% null 

distribution.  This test was less computationally demanding than the model fit test in P4 

(Foster 2004) therefore it was better able to accommodate the 1284 nucleotide and 1284 

amino acid alignments from the 14TaxonSet. 

 

2.2.6 Phylogeny reconstruction Methods 

2.2.6.1 Phylogenetic Analysis using MrBayes 

Phylogeny reconstruction of the 14TaxonSet was carried out using hybrid MrBayes 

v.3.1.2h (Huelsenbeck and Ronquist 2001). Two independent MCMC chains were run 

for 1.5 million generations sampling every 40 generations. The first 375,000 trees  

(25%) were discarded as “burnin” and the remaining 75% was used to construct a 

majority rule (MR) consensus tree. Convergence was determined by analysing the 

average standard deviation of split frequencies. If the average standard deviation of split 

frequencies between MCMC runs remained below 0.01, then it was an indication of 

convergence being reached. The nexus blocks used for the 14TaxonSet are available in 

Appendix A.4.1. The trees from 14TaxonSet are available in appendix A.4.2. 
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2.2.6.2 Phylogenetic Analysis using P4 

Phylogenetic searches using models that accommodate heterogeneity over the 

phylogeny were performed in P4 (Foster 2004) on 66TaxonSet and 39TaxonSet. For 

each of the heterogeneous models tested, 10 independent MCMC runs were used and 

these were permitted to run long after the likelihood values of the chain converged.  An 

example of the sMcmc.py file for the 3GTR+5C+I+4Γ model is shown in appendix 

A.4.3. Only runs that had converged were used in further analyses, see Figure 2.6 for 

example of run. Convergence was determined by finding agreement between topologies 

generated from the independent MCMC runs that were in agreement with one another. 
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Figure 2.6 Two independent MCMC chains for the 3GTR+5C+I+4Γ  model on 

66TaxonSet_nuc 

The plot of lnL values (y-axis) shown for two independent MCMC chains that were run 

for 2,000,000 generations (x-axis) for the 3GTR+5C+I+4Γ model on the 

66TaxonSet_nuc dataset.  

 

 

 

 

 

 

 

 

 

 

 

 



 94 

 

2.2.6.3 Phylogenetic Analysis using PhyloBayes 

Phylogenetic searches for 66TaxonSet and 39TaxonSet were performed using 

heterogeneous models CAT and CAT-GTR (Lartillot and Philippe 2004) along with 

homogeneous JTT+4Γ and GTR+1C+4Γ (+I parameter added for 66TaxonSet) in 

PhyloBayes v3.2 (Lartillot et al. 2009). Two separate MCMC runs were performed each 

with four MCMC chains (1 cold, 3 hot) and sampling from the cold chain every 100 

trees until convergence was reached. Convergence was assessed by observing the 

maximum difference (maxdiff) of splits between chains as per the literature; if the 

maxdiff < 0.1 it was a good run, if the maxdiff < 0.3 it was an acceptable run and if the 

maxdiff was between 0.3-1 then the sample was not long enough and the MCMC chain 

needed to keeping running. If the maxdiff was > 1 then this indicated that at least one of 

the runs was stuck at a local maximum. Phylogenies obtained from dataset 

heterogeneous models are provided in appendix A.4.4. 

 

2.2.7 Posterior Predicative Simulations 

Each model was tested for goodness-of-fit using posterior predictive simulations (Foster 

2004). These tests were applied to the models that accommodate compositional 

heterogeneity across the phylogeny in P4 (Foster 2004) and models that accommodate 

heterogeneity across the data in PhyloBayes v3.2 (Lartillot et al. 2009). Using the given 

model for a dataset and the parameters estimated from the MCMC run for that dataset, 

simulated datasets were created. The fit of the model was estimated by the tail-area 

probability (Gelman et al. 1995). If the real data fell within the distribution of the 

simulated dataset then the composition of the data was well described by the given 

model. Using posterior predictive simulations in PhyloBayes v3.2 (Lartillot et al. 2009) 

an assessment was made of the compositional deviation for each taxon and the overall 

fit of the model to the composition. The output for posterior predictive simulations in 

PhyloBayes v3.2 (Lartillot et al. 2009) were computed and given in the form of Z-

scores. A Z-score > 2 indicated that the model has failed to fit the data. 

 

2.2.8  Likelihood Mapping 

To determine if there was adequate phylogenetic signal within each dataset, likelihood 

mapping (LM) was performed using TreePuzzle v5.2 (Schmidt et al. 2002). The 
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following is a brief description on how LM works: Each tree is broken into quartets and 

support for each quartet was assessed. If a strong signal was present in these data then 

all three possible relationships for the quartets were equally likely. For ease of 

interpretation this is generally displayed visually on a triangle by placing the signal at 

the vertices; see Figure 2.7(B). If there was conflict in the signal among the quartets 

then the quartet will either be in the centre, which means there was a star phylogeny, or 

at the edges resulting in a network, see Figure 2.7(A). If 10% or more of the quartets 

were placed in the regions numbered 4-7 of Figure 2.7(C), the dataset is discarded 

because of having inadequate phylogenetic signal. 
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Figure 2.7 Example of Likelihood Mapping Results 

Likelihood-mapping results for two biological datasets, (A) shows poor phylogenetic 

signal, and (B) shows good phylogenetic signal. The upper triangles correspond to the 

triangles A and B and show the same information but in two possible ways, the top 

triangle shows the distribution pattern of the individual quartets represented by dots and 

the lower triangles show the percentage of quartets that belong in each of the 7 sections 

of the triangle. Figure C shows the numbering of the individual quartets. This image 

was adapted from (Strimmer and von Haeseler 1997), with permission. 
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2.3 Results 

Three main datasets have been used in this study; 66TaxonSet, 39TaxonSet and 

14TaxonSet, all of which are detailed in Table 2.6. Datasets 39TaxonSet and 

14TaxonSet were designed and assembled to address specific phylogenetic questions 

relating to the position of the root of placental mammals and the ordering of the groups 

within the Laurasiatheria respectively. 66TaxonSet was assembled to test the quality 

and suitability of data previously applied to the resolution of the mammal phylogeny. 

The results for each dataset are detailed in sections 2.2.1 to 2.2.3. 

 

Table 2.6 Summary of Data Sets Analysed. 

Datasets Dataset Type MSA Type Alignment Length 

66TaxonSet_nuc Nucleotide Supermatrix 9,789 bp 

66TaxonSet_aa Amino Acid Supermatrix 2,190 aa 

66TaxonSet_day Dayhoff Recoded 6 Supermatrix 2,190 characters 

39TaxonSet_aa Amino Acid Supermatrix 23,900 aa 

39TaxonSet_day Dayhoff Recoded 6 Supermatrix 23,900 characters 

14TaxonSet_nuc Nucleotide 1284 individual genes 

14TaxonSet_aa Amino Acid 1284 individual genes 
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2.3.1 Phylogeny reconstruction using homogeneous models  

2.3.1.1 Test for Compositional Homogeneity on Previously Published 

Datasets 

All previous studies on the placental mammal phylogeny have used homogeneous 

models of evolution that have not accounted for compositional and exchange rate 

heterogeneity across the tree and the data, see Table 2.1. Six of these previous 

publications were analysed in a likelihood framework to test if the composition of their 

datasets were homogeneous under the χ2 test of homogeneity. The model fit test (Foster 

2004) was performed to see if the models employed in the original publications 

described the composition of the data. The results of these tests are shown in Table 2.7  

 

It was not possible to model all the data using the model fit test (Foster 2004). The 

Hallstrom and Janke (2010) dataset is the largest phylogenomic dataset for placental 

mammals published to date emcompassing 2,863,797 bp and 31 taxa. This dataset could 

not be tested under the model fit test (Foster 2004) as P4 was unable to accommodate 

the large alignment length. The recently published Meredith et al., 2011 dataset 

contained 169 taxa and had topologies inferred using amino acid (11,010 aa) and 

nucleotide datasets (35,603 bp) (Meredith et al. 2011). A model fit test (Foster 2004) 

was attempted on Meredith’s data, however simulation of the homogeneous models 

(JTT+4Γ & GTR+1C+4Γ) over both amino acid and nucleotide dataset resulted in a 

decrease in log likelihood scores during optimisation of branch lengths so the model fit 

test (Foster 2004) could not be completed. As a result it was consequently not possible 

to test for compositionally deviating taxa in the Meridith’s amino acid or nucleotide 

datasets. Previously published data were either not well described by the homogeneous 

model of evolution according to the χ2 test of homogeneity or individual taxa were not 

described well by the composition of the model, according to the model fit test. 

Therefore, it was evident that more sophisticated models that account for heterogeneity 

in rate exchange and in composition over these data and the phylogeny were needed.
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Table 2.7 Testing for Compositional Heterogeneity in 20TaxonSet and Previously Published Datasets 

Model Fit Test Dataset Sequence Data  
Evolutionary Model 

 
Data size 

 
Taxa # 

 
Chi-Squared Overall Taxa P < 0.05 

66TaxonSet 
(Murphy et al. 2001a) 

 

Coding and Non Coding 
DNA GTR+4Γ  9,979 bp 66 P=0.000000 P=1.000 13 

(Murphy et al. 2001b) Coding and Non Coding 
DNA 

GTR+I+4Γ  16,397 bp 42 P=0.000000 P=1.000 2 

Coding DNA GTR +I+4Γ  204,786 bp 18 P=0.000000 P=1.000 8 
(Nikolaev et al. 2007) 

Non Coding DNA GTR+I+4Γ  429,675 bp 18 P=0.000000 P=1.000 7 

Coding DNA GTR+I+4Γ  21,510 bp 37 P=0.000000 P=1.000 29 
(Prasad et al. 2008) 

Non Coding DNA GTR+I+4Γ  132,423 bp 37 P=0.000000 P=1.000 0 

(Hallstrom and Janke 2010) Coding DNA GTR+I+4Γ  2,863,797 bp 31 P=0.000000 NA NA 

Amino Acids JTT+4Γ  11,010 aa 169 P=1.000000 NA NA 
(Meredith et al. 2011) 

Coding DNA GTR+4Γ  35,603 bp 169 P=0.000000 NA NA 

NA is where chi-squared calculations were not possible. 
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2.3.2  66TaxonSet – A re-analysis of a previously published dataset 

The purpose of this analysis was to determine if heterogeneous models that allow for 

compositional heterogeneity and exchange rate heterogeneity across the phylogeny and 

the data were a better fit to data than homogeneous models. The Murphy et al (2001a) 

dataset, which was renamed to “66TaxonSet” was chosen for indepth study above all 

other previously published datasets as it was one of the most highly cited mammal 

phylogeny studies and was a suitable size for analysis using P4 (Foster 2004).  The 

66TaxonSet was also tested to see if heterogeneous models were adequate in describing 

the composition of the dataset, and if the 66TaxonSet had enough information to 

conclude upon one topology and reject competing hypotheses. The dataset was analysed 

at three levels, first at the nucleotide level (66TaxonSet_nuc), then at the amino acids 

(66TaxonSet_aa) level. It was not possible to test NDRH models on amino acid data as 

each additional rate matrix had 189 free parameters and therefore made the analysis 

computationally prohibitive. Instead, the dataset was recoded into 6 Dayhoff categories 

(66TaxonSet_day), thereby allowing testing of NDRH models, see Table 2.6. The 

66TaxonSet_nuc and 66TaxonSet_aa showed compositional heterogeneity where 13/66 

and 47/66 taxa respectively did not fit the homogenous model (P values < 0.05, not 

corrected for multiple comparisons), while the 66TaxonSet_day was compositionally 

homogeneous. These results support the need for models that are able to accommodate 

compositional heterogeneity over the tree and the data for 66TaxonSet.  

 

2.3.2.1 Testing the fit of Heterogeneous Models to 66TaxonSet 

The next step was to investigate if models that account for heterogeneity over the 

phylogeny and data were a better fit to mammal datasets than previously employed 

homogeneous models. First models that account for compositional heterogeneity and 

exchange rate heterogeneity across the phylogeny were applied to 66TaxonSet. The best 

fitting homogeneous model was determined and was compared against heterogeneous 

models with increasing numbers of rate matrices and compositional vectors (i.e. NDRH 

and NDCH models). The best fitting homogeneous model was identified using 

ModelGenerator v85 (Keane et al. 2006), and for 66TaxonSet_nuc it was 

GTR+1C+I+4Γ, and for 66TaxonSet_aa it was JTT+I+4Γ (Jones et al. 1992). Tree 

heterogeneous models were evaluated by progressively increasing the number of rate 

exchange matrices and composition vectors (or both) until there was no further 
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improvement from increased parameterisation. This was determined through Bayes 

Factor (BF) comparison, where the criterion was that the difference between the fit of 

the two models to the dataset must have 2ln(BF) > 6 (see Table 2.4 for the list of 

models used to analyse 66TaxonSet). 

 

BF analysis indicated that there was strong evidence in favouring the heterogeneous 

model that contained 3 GTR matrices, 5 composition vectors, an invariable sites 

category, and 4 categories of gamma distributed associated rate variation, i.e. 

3GTR+5C+I+4Γ over the homogeneous model (1GTR+1C+I+4Γ), 2ln(BF) = 1097.1. 

The largest change in BF scores was observed in the shift between the compositionally 

homogeneous model (1GTR+1C+I+4Γ) and the model that allows for compositional 

heterogeneity across the tree (1GTR+2C+I+4Γ) with 2ln(BF) = 727.7. All BF 

comparisons are detailed in Table 2.8. Posterior predictive simulations on 

66TaxonSet_nuc showed that homogeneous models did not fit the data, see Figure. 

2.8(A), while the best fitting model that accounted for heterogeneity across the 

phylogeny (3GTR+5C+I+4Γ) did fit the data, see Figure 2.8(B). This was significant as 

it demonstrated that the model employed in the original publication of the 66TaxonSet 

did not adequately describe the data (Murphy et al. 2001a). 
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Table 2.8 Comparing the fit of tree heterogeneous models applied to 66TaxonSet. 

66TaxonSet_nuc 
  
  
  

                      
 1GTR+1C+I+4Γ             
2GTR+1C+I+4Γ 113.77 2GTR+1C+I+4Γ            
3GTR+1C+I+4Γ 176.77 57.35 3GTR+1C+I+4Γ           
4GTR+1C+I+4Γ 201.56 82.15 14.53 4GTR +1C+I+4Γ          
5GTR+1C+I+4Γ 216.36 96.95 29.33 0.95 5GTR +1C+I+4Γ         
6GTR+1C+I+4Γ 232.85 113.44 45.82 17.44 -7.61 6GTR +1C+I+4Γ        
1GTR+2C+I+4Γ 727.73 608.32 540.7 512.32 487.27 481.43 1GTTR+2C+I+4Γ       
1GTR+3C+I+4Γ 879.13 759.71 692.09 663.72 638.66 632.82 140.91 1GTR +3C+I+4Γ      
1GTR+4C+I+4Γ 904.72 785.31 717.69 689.31 664.26 658.42 166.51 17.74 1GTR+4C+I+4Γ     
1GTR+5C+I+4Γ 937.86 818.45 750.82 722.45 697.4 691.55 199.64 50.87 18.26 1GTR+5C+I+4Γ    
1GTR+6C+I+4Γ 950.55 831.14 717.69 735.15 710.09 704.25 212.34 63.57 30.95 5.08 1GTR+6C+I+4Γ   
1GTR+7C+I+4Γ 956.41 837 769.38 741 715.95 710.1 212.34 69.43 36.81 10.94 -17.98 1GTR+7C+I+4Γ  
2GTR+5C+I+4Γ 1068.96 949.55 881.93 853.55 828.5 822.65 218.19 181.98 149.36 123.49 94.57 79.7 2GTR+5C+I+4Γ 
3GTR+5C+I+4Γ 1097.11 977.69 910.07 881.7 856.64 850.8 358.89 210.12 177.51 151.63 122.72 107.84 11.53 3GTR+5C+I+4Γ 
4GTR+5C+I+4Γ 1118.31 998.89 931.27 902.9 877.84 872 380.09 231.32 198.7 172.83 129.04 129.04 32.73 3.17 
               
               
               
               
66TaxonSet_aa 
  

                          
 1JTT+I+4Γ            
1JTT+1C+I+4Γ 217.3 1JTT+1C+I+4Γ           
1JTT+2C+I+4Γ 283.3 63.1 1JTT+2C+I+4Γ          
1JTT+3C+I+4Γ 326.6 106.5 31.6 1JTT+3C+I+4Γ          
1JTT+4C+I+4Γ 369.4 149.3 74.4 39.8           
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66TaxonSet_day 
  

                          
 1GTR+1C+I+4Γ             
2GTR+1C+I+4Γ 67 2GTR+1C+I+4Γ            
3GTR+1C+I+4Γ 102.7 29.4 3GTR+1C+I+4Γ           
4GTR+1C+I+4Γ 121.9 48.6 8.4 4GTR+1C+I+4Γ          
5GTR+1C+I+4Γ 152.3 79 38.7 16.7 5GTR+1C+I+4Γ         
6GTR+1C+I+4Γ 171 97.6 57.4 35.4 7.1 6GTR+1C+I+4Γ        
1GTR+2C+I+4Γ 16.4 -56.9 -97.1 -119.2 -147.5 -165.3 1GTR+2C+I+4Γ       
1GTR+3C+I+4Γ 28.9 -44.5 -84.7 -106.7 -135 -152.8 9 1GTR+3C+I+4Γ      
1GTR+4C+I+4Γ 44.8 -28.6 -68.8 -90.8 -119.1 -136.9 25 8.9 1GTR+4C+I+4Γ    
1GTR+5C+I+4Γ 55.7 -17.6 -57.8 -79.9 -108.2 -126 35.9 19.8 6.3 1GTR+5C+I+4Γ   
1GTR+6C+I+4Γ 64.2 -9.1 -49.4 -71.4 -99.7 -117.5 44.4 28.3 14.8 1 1GTR+6C+I+4Γ   
1GTR+7C+I+4Γ 71.5 -1.9 -42.1 -64.1 -92.4 -110.2 51.7 35.6 22.1 8.3 -1.6 1GTR+7C+I+4Γ  
5GTR+2C+I+4Γ 169.3 96 55.8 33.7 5.4 -12.4 149.5 133.4 119.9 106.1 96.2 88.3 5GTR+2C+I+4Γ 
5GTR+3C+I+4Γ 184.5 111.1 70.9 48.9 20.6 2.8 164.7 148.6 135.1 121.3 111.4 103.5 1.6 5GTR+3C+I+4Γ 
5GTR+4C+I+4Γ 199.8 126.5 86.3 64.2 35.9 18.1 180 163.9 150.4 136.6 126.7 118.9 17 -7.8 
               

 

Model 1 is given on the top row and Model 2 is on the left column. The results of 2[lnL(Model2) – lnL(Model1)] are shown in the intersecting cell 

between the 2 models. The calculation of 2ln(BF) was carried out using the Kass and Raftery table (shown in inset) as a guide. 2ln(BF)>6 strongly 

supports Model2.  
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Figure 2.8 Fit of alternative models applied to 66TaxonSet_nuc, and posterior 

predictive simulations for the (A) homogeneous model and (B) heterogeneous 
model of best fit following BF analysis for 66TaxonSet_nuc.   

Models used in the analysis are shown on x-axis. Inside each grey bar is the 

composition of the individual model, i.e. the number of rate matrices and composition 

vectors. The Y-axis shows the lnL score, the higher the grey bar the worse the fit of the 

model. Inset (A) shows posterior predictive simulations for the homogeneous model 

(1GTR+1C+I+4Γ). Inset (B) shows posterior predictive simulation for the best-fit 

heterogeneous model (3GTR+5C+I+4Γ). The black bar graph in inset (A) and (B) 

represents the posterior predictive simulations of these models on 66TaxonSet, and the 

arrows represent the χ2 position in the simulation for the real data.  
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The number of composition vectors were increased incrementally on the 

66TaxonSet_aa to evaluate the improvement of fit of the application of compositionally 

heterogeneous models over the phylogeny. Convergence was assessed by ensuring the 

at least 6 of the 10 independent MCMC runs were in agreement on parameters and 

topology following generations of majority rule consensus tree (described in section 

2.2.6.2). It was found that models 1JTT+5C+I+4Γ, 1JTT+6C+I+4Γ and 1JTT+7C+I+4Γ 

did not reach convergence during the MCMC run, which was not surprising given each 

of these models contained over 100 free parameters. BF comparisons indicated that the 

1JTT+4C+I+4Γ model provided best fit to the data, and is better than the 

compositionally homogeneous model 1JTT+1C+I+4Γ by 2ln(BF) = 369.4. Posterior 

predictive simulations showed that both homogeneous (1JTT+1C+I+4Γ), and the best 

fit model allowing for compositional heterogeneity over the phylogeny 

(1JTT+4C+I+4Γ), fitted the data with tail area probabilities of 0.79 and 0.97 

respectively, see Figure 2.9 (A) and (B).  In summary, the posterior predictive 

simulation study showed that the compositionally homogeneous model were 

satisfactory in describing the 66TaxonSet_aa, however BF comparisons show that the 

model that accounted for compositional heterogeneity across the phylogeny described 

the data better.  

 

To determine the effect of multiple rate matrices on the amino acid dataset and remove 

a layer of compositional heterogeneity, the 66TaxonSet_aa was recoded to 6 Dayhoff 

categories (66TaxonSet_day). It was found that increasing the number of rate matrices 

had a greater effect on improvement of model fit, as shown in comparison of model 

1GTR+1C+I+4Γ to model 2GTR+1C+I+4Γ where 2ln(BF) = 67.0. This was compared 

to the impact of increasing composition vectors, where model 1GTR+1C+I+4Γ 

compared to model 1GTR+2C+I+4Γ gave 2ln(BF) = 16.4. BF comparisons identified 

model 5GTR+2C+I+4Γ as the best fitting model, and when it was compared against the 

homogeneous model (1GTR+1C+I+4Γ) it resulted in a large improvement in fit, i.e. 

2ln(BF) = 169.3. Posterior predictive simulations showed that both the homogeneous 

model 1GTR+1C+I+4Γ and the combined NDCH and NDRH model of best fit, i.e. 

5GTR+2C+I+4Γ, were both adequate in describing the composition of the data, see 

Figure 2.9 (C) and (D).  
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Figure 2.9 Posterior predictive simulations in P4 for 66TaxonSet 

Bar graphs (A) and (C), represent the posterior predictive simulations of homogeneous 

models (JTT+I+4Γ and 1GTR+1C+14Γ) for 66TaxonSet. Bar graphs (B) and (D) 

represent the posterior predictive simulations of the heterogeneous models of best fit. 

The arrows in all cases represent the χ2-position for the real data. 
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After testing the impact of models that accommodate heterogeneity over the phylogeny, 

the next step was to explore the impact of models that accommodate heterogeneity 

across the dataset by applying profile mixture model CAT (Lartillot and Philippe 2004). 

It was not possible to test the fit of the CAT (Lartillot and Philippe 2004) model to the 

dataset using BF comparisons, instead 10-fold Bayesian cross validation was employed. 

The fit of dataset heterogeneous models CAT and CAT-GTR (Lartillot and Philippe 

2004) were compared against the fit of homogeneous models GTR+1C+I+4Γ and 

JTT+I+4Γ. The results indicated that for both 66TaxonSet_nuc and 66TaxonSet_day a 

GTR+I+4Γ model fitted the data best (see Table 2.9). For 66TaxonSet_aa CAT 

(Lartillot and Philippe 2004) is the best fitting model. The results of cross validation 

combined with the BF analyses showed that the model with the GTR rate matrix and 

compositional heterogeneity described 66TaxonSet_nuc and 66TaxonSet_day better 

than compositionally homogeneous models. Therefore, these heterogeneous models 

were used to derive optimal phylogenies for 66TaxonSet_nuc and 66TaxonSet_day, 

whilst the CAT (Lartillot and Philippe 2004) model was used to find the optimal tree for 

66TaxonSet_aa. 

 

Table 2.9 Cross Validation (CV) of models in PhyloBayes for 66TaxonSet 

 GTR+1C+4Γ  CAT CAT-GTR JTT+4Γ  
66TaxonSet_nuc 
GTR+1C+4Γ  ------ -100.29 ± 526.11 -34.44 ± 490.49 ------ 

CAT 100.29 ± 526.11 ------ 65.85 ± 420.09 ------ 
CAT-GTR 34.44 ± 490.50 -65.85 ± 420.09 ------ ------ 

66TaxonSet_aa 
GTR+1C+4Γ  ------ 4.03 ± 282.58 3.28 ± 231.91 -96.41 ± 428.08 

CAT -4.027 ± 282.575 ------ -0.75 ± 270.18 -100.44± 301.98 
CAT-GTR -3.278 ± 231.908 0.75 ± 270.18 ------ -99.69 ± 400.85 

JTT+4Γ  100.44 +/- 301.984 96.41 ± 428.08 99.69 ± 400.85 ------ 
66TaxonSet_day 
GTR+1C+4Γ  ------ -242.63 +/- 333.54 -101.26 ± 386.99 ------ 

CAT 242.63 ± 333.54 ------ 141.38 ± 288.15 ------ 
CAT-GTR 101.26 ± 386.99 

 

-141.38 ± 288.15 ------ ------ 

The average of the CV log-likelihood scores compared across all models in PhyloBayes 

v3.2 (Lartillot et al. 2009). The standard deviation between the CV scores is shown after 

the “±”. The reference model is shown on the horizontal and the test model is shown on 

the vertical. A positive score indicates that the tested model is better than the reference 
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model.  

 

2.3.2.2 Phylogenetic Results of Best Fitting Models on 66TaxonSet 

In contrast to the previously published topology for 66TaxonSet data, there were 

significant topological changes observed between the original published phylogeny 

(Murphy et al. 2001a) and the phylogenies obtained from the application of models 

accounting for heterogeneity over the phylogeny and the data. The posterior probability 

support values for placement of the placental root using the best fitting models and 

66TaxonSet remained low: 66TaxonSet_nuc and 66TaxonSet_aa support the 

Atlantogenata hypothesis with a posterior probability of 0.46 (3GTR+5C+I+4Γ) and 

0.51 (CAT) respectively. The 66TaxonSet_day supported the Epitherian hypothesis 

with a high posterior probability score of 0.98 (5GTR+2C+I+4Γ). Comparison of BF 

scores showed that 66TaxonSet_day was unable to reject the Atlantogenata hypothesis, 

2ln(BF) = 1.96, the Exafroplacentalia hypothesis, 2ln(BF) = 5.24 or the Rodent 

hypothesis, 2ln(BF) = 0.34. See Table 2.10 for all BF comparison scores. The results 

indicated that while models that accommodate heterogeneity across the phylogeny and 

the data describe all treatments of 66TaxonSet better (66TaxonSet_nuc, _aa and _day), 

this dataset did not have sufficient phylogenetic information to support a single 

topology and reject all other competing phylogenetic hypotheses for the placement of 

the placental mammal root. 

 

Further evidence for phylogenetic conflict in the 66TaxonSet dataset is found through 

LM analysis. There were 4.4% and 12.8% phylogenetic conflict identified in 

66TaxonSet_nuc and 66TaxonSet_aa respectively using homogeneous models of 

evolution (GTR+I+4Γ and JTT+I+4Γ). While the nucleotide dataset passed the cut-off 

value of 10%, the amino acid dataset is nested within this dataset and failed the LM cut-

off points. BF comparisons showed that the 66TaxonSet dataset was unable to support 

one topology over competing hypotheses and LM analysis shows that high levels of 

phylogenetic conflict are present in 66TaxonSet_aa. Combined these results suggests 

the dataset was not informative enough to resolve the placental mammal phylogeny, 

particularly with regards to the root. A summary of theses analyses is shown in Table 

2.11. 
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Table 2.10 Testing alternative rooting hypotheses. 

 

DataSet 
Model of Best Fit (Model 1) Alternative Rooting Hypotheses (Model 2) 

66TaxonSet_nuc Atlantogenata (3GTR+5C+I+4Γ) Epitherian Exafroplacentalia Rodent 66TaxonSet Original 

2(lnLBF) ------------- 6.20 6.98 0.44 3.48 

66TaxonSet_aa Epitherian (1JTT+4C+I+4Γ) Atlantogenata Exafroplacentalia Rodent 66TaxonSet Original 

2(lnLBF) ------------- 8.44 7.64 4.40 23.24 

66TaxonSet_day Epitherian (5GTR+2C+I+4Γ) Atlantogenata Exafroplacentalia Rodent 66TaxonSet Original 

2(lnLBF) ------------- 1.96 5.24 0.34 0.24 

 

The 2ln(BF) are shown for the topologies generated under heterogeneous models of best fit compared with the competing rooting hypotheses and 

against the topology published in the original publication of the 66TaxonSet. 2ln(BF) are not calculated for 39TaxonSet_aa against competing 

hypotheses, as it failed the posterior predictive sampling test. 
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Table 2.11 Summary of data quality and phylogenetic tests applied to 66TaxonSet 

Datasets 
Compositional 
Heterogeneity 

Detected 

Tree 
Heterogeneous 

Dataset 
Heterogeneous 

Likelihood Mapping 
Root Position 
(Tree/Dataset) 

Competing 
Hypothesis 

2ln(BF) > 6 

66TaxonSet_nuc Yes 3GTR+5C+I+4Γ GTR+I+4Γ Pass C<0.5 /C A,B 

66TaxonSet_aa Yes 1JTT+4C+I+4Γ CAT Fail B<0.5 /C A,C 

66TaxonSet_day No 5GTR+2C+I+4Γ GTR+I+4Γ NA B /B<0.5 None 

 

The results of the χ2 test of compositional homogeneity are shown. “Yes” indicates there is compositional heterogeneity, “No” indicates that there is 

compositional homogeneity. The model of best fit from P4 and PhyloBayes analyses are shown. Pass/Fail is indicated with regards to LM tests. The 

placental root supported by each dataset is given: (A) Exafroplacentalia hypothesis, (B) Epitherian hypothesis, (C) Atlantogenata hypothesis and (D) 

Rodent  hypothesis. The ability of each dataset to reject alternative rooting hypotheses is given, 2ln(BF) > 6 indicate alternative-rooting hypotheses can 

be strongly rejected. Superscript < 0.5 denotes posterior probability < 0.50. 



 111 

2.3.3 Heterogeneous Modelling of the 39TaxonSet 

Results from 66TaxonSet indicated that it was necessary to construct a novel dataset 

that (i) was large enough to accommodate the parameter rich heterogeneous models 

while being small enough to have parameters tested using P4, and (ii), had enough 

phylogenetic information to conclude on one topology and reject competing hypotheses.  

 

The 39TaxonSet consisted of SGO families and contained 23,900 aligned amino acids 

(aa) across 39 taxa (35 placental mammals). Amino acid data were used as they are 

known to ameliorate problems with compositional biases and possible codon usage 

biases and also because amino acid sequences saturate more slowly (Philippe et al. 

2011). The dataset was assembled using a strict best reciprocal blast hit approach (see 

materials and methods section 2.2.2.1). This dataset was recoded into 6 Dayhoff 

categories (39TaxonSet_day) for the same reasons applied to 66TaxonSet, see section 

2.3.1.  

2.3.3.1 Testing the fit of Heterogeneous Models to 39TaxonSet 

There were 22 different models applied to the 39TaxonSet and these ranged from the 

homogeneous model with one composition vector and one exchange rate matrix up to 

phylogenetically heterogeneous models 1 JTT matrix and 7 composition vectors for 

39TaxonSet_aa (amino acids). For 39TaxonSet_day up to 5 GTR matrices and 4 

estimated composition vectors were applied to the data (see Table 2.5). χ2 tests 

indicated overall compositional homogeneity, however the model fit test (Foster 2004) 

showed that 35/39 taxa fail to fit the expectation of the JTT+4Γ model in 

39TaxonSet_aa and 21/39 taxa fail to fit the GTR+1C+4Γ model in 39TaxonSet_day.  

 

BF analyses were employed to determine if there was strong evidence for the 

application of more parameter rich models over less parameter rich models for 

39TaxonSet_aa.  BF analyses determined that the models improved in fit as the number 

of composition vectors were increased over the dataset. The homogeneous model 

1JTT+4Γ had lnL = -225184.25 while the heterogeneous model of best fit 1JTT+5C+4Γ 

scored lnL = -223954.76. Overall this BF analysis shows very strong support for the use 

of the heterogeneous model with 2ln(BF) = 2459.0, (see Table 2.12). It was observed 

that models allowing for compositional heterogeneity over the phylogeny did not 

adequately describe the data (P = 0.000), see Figure 2.10 (A) and (B).  
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Using more parameter rich models with the JTT rate matrix was not possible as the rate 

exchange matrix is a fixed. It was therefore necessary to test the effect of NDRH based 

models on the Dayhoff recoded dataset, 39TaxonSet_day. BF comparisons between 

models accounting for compositional and exchange rate heterogeneity across the 

phylogeny 2GTR+4C+4Γ (lnL = -103791.31) and the homogeneous model 

1GTR+1C+4Γ (lnL = -103967.31) showed strong support for the heterogeneous model 

with 2ln(BF) = 352.0, see Table 2.12. The fit of the model 2GTR+4C+4Γ to the data 

was supported by posterior predictive simulations with a tail-area probability of 0.004, 

see Figure 2.10(D). While this model did not fit the data within the 95% confidence 

interval, it was a better description of the data than homogeneous model 1GTR+1C+4Γ 

that has a tail-area probability of 0.000, see Figure 2.10(C). The distribution of the 

parameters over the phylogeny for the 2GTR+4C+4Γ model are shown in Figure 2.11. 
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Table 2.12 Comparing the fit of tree heterogeneous models applied to 39TaxonSet. 

39TaxaSet_aa 
    1JTT+4Γ 

  
  
  
  
  
  
  
  
  
  
  

1JTT+1C+4Γ 973.6 1JTT+1C+4Γ 
  
  
  
  
  
  
  
  
  
  

1JTT+2C+4Γ 2078.7 1101.0 1JTT+2C+4Γ 
  
  
  
  
  
  
  
  
  

1JTT+3C+4Γ 2347.6 1370.0 262.8 1JTT+3C+4Γ 
  
  
  
  
  
  
  
  

1JTT+4C+4Γ 2408.5 1430.9 323.7 51.8 1JTT+4C+4Γ 
  
  
  
  
  
  
  

1JTT+5C+4Γ 2459.0 1481.4 374.2 102.3 25.4 1JTT+5C+4Γ 
  
  
  
  
  
  

1JTT+6C+4Γ 2443.9 1466.3 359.1 87.2 10.2 -29.3 1JTT+6C+4Γ 
  
  
  
  
  

1JTT+7C+4Γ 2486.2 1508.6 401.4 129.5 52.6 13.1 -23.3 1JTT+7C+4Γ 
  
  
  
  

1JTT+8C+4Γ 2432.3 1454.7 347.5 75.6 -1.3 -40.9 -77.2 -78.5         
                          
39TaxaSet_day                         
  1GTR+1C+4Γ 

  
  
  
  
  
  
  
  
  
  
  

2GTR+1C+4Γ 53.2 2GTR+1C+4Γ 
  
  
  
  
  
  
  
  
  
  

3GTR+1C+4Γ 92.9 39.2 3GTR+1C+4Γ 
  
  
  
  
  
  
  
  
  

4GTR+1C+4Γ 109.0 55.3 8.9 4GTR+1C+4Γ 
  
  
  
  
  
  
  
  

5GTR+1C+4Γ 115.1 61.4 15.0 2.0 5GTR+1C+4Γ 
  
  
  
  
  
  
  

1GTR+2C+4Γ 195.3 141.6 95.2 82.2 72.4 1GTR+2C+4Γ 
  
  
  
  
  
  

1GTR+3C+4Γ 268.4 214.6 168.2 155.3 145.5 70.3 1GTR+3C+4Γ 
  
  
  
  
  

1GTR+4C+4Γ 293.1 239.3 192.9 180.0 170.2 95.0 21.3 1GTR+4C+4Γ 
  
  
  
  

1GTR+5C+4Γ 324.1 270.4 224.0 211.1 201.3 126.0 52.4 1.0 1GTR+5C+4Γ 
  
  
  

2GTR+4C+4Γ 352.0 298.3 251.9 267.2 229.1 153.9 80.3 28.9 5.6 2GTR+4C+4Γ 
  
  

3GTR+4C+4Γ 380.3 326.6 280.2 267.2 257.4 182.2 108.6 57.2 33.9 3.5 3GTR+14C+4Γ 
  4GTR+1C+4Γ 399.9 346.2 299.8 286.8 277.0 201.8 128.2 76.8 53.5 23.1 -6.2 4GTR+4C+4Γ 

5GTR+1C+4Γ 405.4 351.7 305.3 292.4 282.6 207.4 133.7 82.3 59.0 28.6 -0.7 -9.2 
Model 1 is given on the top row and Model 2 is on the left most column. The results of 2[lnL(Model2) – lnL(Model1)] are shown in the intersect. 

2(lnLBF) were carried out using the Kass and Raftery table (shown in inset) as a guide. 2ln(BF) > 6 strongly support Model2.  
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Figure 2.10 Posterior predictive simulations in P4 for 39TaxonSet 

Bar graphs (A) and (C), represent the posterior predictive simulations of homogeneous 

models (JTT+I+4Γ and 1GTR+1C+4Γ) for 39TaxonSet. Bar graphs (B) and (D) 

represent the posterior predictive simulations of the tree heterogeneous models of best 

fit. The arrows in all cases represent the χ2-position for the actual dataset. 
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Figure 2.11 Parameter optimisation on 2GTR+4C+4Γ  model generated topology. 

The optimisation of (A) the 4 composition vectors and (B) the 2 rate exchange matrixes 

are shown over the topology obtained using the 2GTR+4C+4Γ model in P4.
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Similarly to the analysis of the 66TaxonSet, the 39TaxonSet_aa was examined using 

heterogeneous profile mixture models across the data. The CAT and CAT-GTR 

(Lartillot and Philippe 2004) models were applied to the 39TaxonSet_aa to determine if 

profile mixture models fitted the data better than homogeneous GTR+1C+4Γ and 

JTT+4Γ based models. The fit was assessed using 10-fold Bayesian cross validation 

which identified CAT-GTR (Lartillot and Philippe 2004) as a better fit to the 

39TaxonSet_aa. Posterior predicative simulations showed that this dataset was 

compositionally heterogeneous, both globally and more specifically for 9/39 taxa. The 

nine taxa that were compositionally heterogeneous (Z score > 2) from the compositional 

homogeneity test are highlighted in Figure 2.11. To determine the effect of the observed 

compositional heterogeneity on the phylogeny (i) the offending taxa were removed and 

repeated phylogenetic analysis was repeated, and (ii), the dataset was analysed at the 

dayhoff category level (39TaxonSet_day).  When the compositionally heterogeneous 

taxa were removed the CAT-GTR (Lartillot and Philippe 2004) model on the reduced 

39TaxonSet_aa (amino acids) dataset passed the global test of compositional 

homogeneity. Therefore analysis of the 39TaxonSet_day determined that CAT-GTR 

(Lartillot and Philippe 2004) was the best-fit to the 39TaxonSet_day as compared to 

CAT (Lartillot and Philippe 2004) and GTR+1C+4Γ models. Posterior predictive 

simulations of 39TaxaSet_day showed that while the CAT-GTR (Lartillot and Philippe 

2004) model globally fits the data (Z score = 1.88555), 10 taxa were compositionally 

heterogeneous (Z score > 2). As recoding the 39TaxaSet_day data into Dayhoff 

categories did not ameliorate compositional heterogeneity under the CAT-GTR 

(Lartillot and Philippe 2004) model, it was determined that the NDCH and NDRH 

heterogeneous model 2GTR+4C+4Γ was a better description of the 39TaxonSet_day 

dataset and the CAT-GTR (Lartillot and Philippe 2004) model was a better choice for 

the 39TaxonSet_aa dataset. 

2.3.3.2 Phylogenetic Results of Best Fitting Models on 39TaxonSet 

Support was found for the Atlantogenata position of the root using a model that 

accounted for compositional and exchange rate heterogeneity across the tree 

(2GTR+4C+4Γ) and a model that accounted for heterogeneity across the dataset (CAT-

GTR) for datasets 39Taxonset_day and 39Taxonset_aa respectively. The root of 

placental mammals was most strongly supported when placed on the branch leading to 

the common ancestor of Xenarthra and Afrotheria, see Figure 2.12. The removal of 
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compositionally heterogeneous taxa (identified in 39TaxonSet_aa through Posterior 

Predictive simulations and highlighted in Figure 2.12) did not alter the topology and the 

Atlantogenata root remained the preferred position compared to the three alternative 

positions considered. While the CAT-GTR (Lartillot and Philippe 2004) model was the 

best fitting model overall, it was not possible to compare alternative topologies under 

CAT (Lartillot and Philippe 2004) based models employed in PhyloBayes v3.2 

(Lartillot et al. 2009). Therefore the best-fitting P4 (Foster 2004) heterogeneous model 

2GTR+4C+4Γ was used (supports the Atlantogenata hypothesis with a posterior 

probability value of 0.96). Using the 2GTR+4C+4Γ model, the BF analyses indicated 

that 39TaxonSet_day was able to discriminate between alternative phylogenetic 

hypotheses with BF scores as follows: Exafroplacentalia 2ln(BF) = 16.08, Epitherian 

2ln(BF) = 6.54 and Rodent 2ln(BF) = 298.46. While an improvement in fit of the model 

to the dataset was observed with the addition of compositional vectors and rate 

matrices, support for Atlantogenata as the sister group of all the other mammals was not 

eroded with more complex models.  

 

The phylogeny produced using the CAT-GTR (Lartillot and Philippe 2004) model on 

the 39TaxonSet_aa was almost completely congruent with that obtained through the 

analysis of the 39TaxonSet_day using the 2GTR+4C+4Γ, see Figure 2.12. The only 

disagreement between these two topologies lay within the Laurasiatheria and relates to 

the placement of the 5 orders within this clade. The focus of this section of the analysis 

was the resolution of the root of the placental mammal phylogeny, to address the intra-

order placement of the Laurasiatheria denser taxon sampling and ideally the complete 

genome sequencing of poorly represented Orders was necessary.  This incongruence 

regarding the placement of Orders within the Laurasiatheria is explored in more detail 

in section 2.3.4.  A summary of the results using the heterogeneous models described in 

this Chapter are given in Table 2.13. 
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Figure 2.12 Phylogeny Reconstruction of 39TaxonSet 
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Figure 2.12 Legend : Phylogeny reconstruction carried out using CAT-GTR model on 

the 39TaxonSet_aa in PhlyoBayes v3.2 and on 39TaxonSet_day using the 

heterogeneous model 2GTR+4C+4Γ in P4. The support values for both methods are 

given at each node: the numerator is the Bayesian support value for nodes based on 

CAT-GTR in PhyloBayes, the denominator is the support value based on the 

2GTR+4C+4Γ model in P4. Support values for the 2GTR+4C+4Γ model are shown 

where they are in agreement with the CAT-GTR model topology. The colour scheme 

represents the major groups of mammals: red = Euarchontoglires; blue = 

Laurasiatheria; green = Afrotheria; purple = Xenarthra; black = Monotremes, 

Marsupials and outgroup taxa. (*represents compositionally heterogeneous taxa). 
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Table 2.13 Summary of data quality and phylogenetic tests applied to 39TaxonSet 

Datasets 

Compositional 

Heterogeneity 

Detected 

Tree 

Heterogeneous 

Dataset 

Heterogeneous 

Likelihood 

Mapping 

Root Position 

(tree/dataset) 

Competing 

Hypothesis 

2ln(BF)=6-10 

39TaxonSet_aa Yes 1JTT+5C+4Γ+ CAT-GTR Pass C/C ----- 

39TaxonSet_day Yes 2GTR+4C+4Γ CAT-GTR NA C/C A, B, D 

 

The results of the χ2 test of compositional homogeneity are shown. “Yes” indicates there is compositional heterogeneity, “No” indicates that there is 

compositional homogeneity. The model of best fit from P4 and PhyloBayes analyses are shown. Pass/Fail is indicated with regards to LM tests. The 

placental root supported by each dataset is given: (A) Exafroplacentalia hypothesis, (B) Epitherian hypothesis, (C) Atlantogenata hypothesis and (D) 

Rodent hypothesis. The ability of each dataset to reject alternative rooting hypotheses is given, 2ln(BF) > 6 indicate alternative-rooting hypotheses can 

be strongly rejected. Superscript + denotes that this model did not fit the data, Superscript < 0.5 denotes posterior probability < 0.50. 
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2.3.4 Assessing the suitability of data for the resolution of intra-order 

placement in the Laurasiatheria 

There are potentially 2 contributing factors to the incongruence in the placement of 

Laurasiatherian Orders. The first is short divergence times for Orders within the 

Laurasiatheria (~1-4 MYA) - these dates may be too close for sufficient phylogenetic 

signal to fix (Hallstrom and Janke 2008). As nucleotide data saturates faster than amino 

acid data (Kosiol et al. 2007), there maybe more phylogenetic signal to determine the 

branching order between the Laurasiatheria Orders at the nucleotide level. Therefore 

both nucleotide and amino acid datasets have been employed in this study to assess 

whether one data type performs better than the other for this phylogenetic problem. 

Hallstrom and Janke discuss the possibility of species hybridization and incomplete 

lineage sorting as a possible cause to the disagreement on the placement of Orders 

within the Laurasiatheria (Hallstrom and Janke 2010). Therefore to assess whether 

individual genes give strong support for conflicting phylogenies, each gene was 

analysed individually instead of concatenating them into a Supermatrix. The limiting 

factor of phylogeny reconstruction on single genes (as opposed to in a Supermatrix 

framework) is that the smaller datasets are not able to accommodate parameter rich 

heterogeneous models described in section 2.3.2 and 2.3.3. RAxML (Stamatakis 2006) 

has the potential to perform heterogeneous analysis of individual gene sets using the 

CAT approximation model, however > 50 taxa are necessary to ensure that there is 

enough data per column to reliably estimate the per-site rate parameters (Stamatakis 

2006).Therefore in this study individual genes were analysed and only datasets where 

the composition was adequately described by homogeneous models were employed. 

 

The model of evolution was calculated for the 1284 SGO alignments at both nucleotide 

and amino acid levels. The amino acid model of evolution for the majority of SGOs 

(1202/1284) was JTT. The nucleotide model of best-fit were more varied with HKY 

achieving the best fit in 325/1284 cases followed closely by the K80 model in 238/1284 

cases. The count of the models of best-fit for nucleotide and amino acid data are shown 

in Table 2.14.  
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Table 2.14 Evolutionary Models (Substitution Matrices) 

Nucleotides Amino Acids 
Substitution 

Model Counts Substitution 
Model Counts 

GTR 73 BLOSUM62 15 
HKY 325 CPREV 5 
K80 238 Dayhoff 6 
K81 32 JTT 1202 

K81uf 92 LG 36 
SYM 20 MTREV24 1 
TIM 60 MtArt 1 

TIMef 10 MtMam 9 
TVM 91 RtREV 1 

TVMef 95 VT 3 
TrN 200 WAG 5 

TrNef 48   
    

 

 

Each dataset was tested for the percentage of phylogenetic conflict using LM as well as 

as compositional homogeneity using the model of best-fit. If a dataset contained more 

than 10% phylogenetic conflict it was deemed unsuitable for further phylogenetic 

studies.  Overall there were extremely high levels of phylogenetic conflict in the 

Laurasiatheria datasets, with 1138/1284 nucleotide datasets and 1251/1284 amino acid 

datasets containing >10% phylogenetic conflict, see Figure 2.13(A).  The nucleotide 

dataset had much less phylogenetic conflict than the amino acid datasets, with over 113 

additional genes having < 10% phylogenetic conflict in the dataset, see Figure 2.13(A). 

The χ2 test of compositional homogeneity in Tree-Puzzle v5.2 (Schmidt et al. 2002) was 

performed on both the nucleotide and amino acid datasets to compare the composition 

of each sequence to the frequency distribution assumed by the model of best fit . It was 

found that the amino acid models were more effective in modelling the composition of 

the datasets compared to the nucleotide models. In total it was found that 1223/1284 of 

the SGO datasets had P > 0.05 for all 14 taxa, while only 487/1284 of the nucleotide 

SGO datasets had P > 0.50 for all 14 taxa. The frequency distribution of taxa passing 

the χ2 test for compositional homogeneity (P > 0.05) is shown in Figure 2.13(B). 
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Figure 2.13 Phylogenetic Conflict and Composition Bias in amino acid and 
nucleotide Datasets 

The frequency of (A) phylogenetic conflict (y-axis) is plotted against the sum of LM 

values for quartets 4 to 7 (x-axis) and (B) species specific compositional heterogeneity 

with P < 0.05 (y-axis) is plotted against the number of species that fail the χ2 test for 

compositional homogeneity (x-axis) for nucleotide (red) and amino acid (blue) datasets. 
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2.3.4.1 Phylogenetic Results of 14TaxonSet 

To ensure only high quality datasets were used to generate topologies; datasets with < 

10% phylogenetic conflict and datasets whose model of best-fit do not adequately 

describe the composition of these data were discarded.  These quality control cut-off 

criteria lead to 22 amino acid datasets and 8 nucleotide datasets, only one of which 

intersects both data types. Phylogenies were inferred using the associated models of 

best-fit in hybrid MrBayes v.3.1.2h (Huelsenbeck and Ronquist 2001). In cases where 

the model of best-fit was not available the next best fitting model was chosen (as 

indicated through BIC analysis in ModelGenerator v85 (Keane et al. 2006)). All 

resulting phylogenies have been made available in Appendix A.5. 

 

Phylogenetic analysis of 14TaxonSet_nuc dataset resulted in 2/8 of the trees being fully 

bifurcating while 18/22 of 14TaxonSet_aa datasets were fully bifurcating. SH tests were 

applied to see if the data had the phylogenetic information necessary to reject any of the 

10 Laurasiatherian hypotheses using the model of best-fit.  The results of the SH tests 

are detailed in Table 2.15.  High levels of support were observed for 14TaxonSet_nuc, 

where all competing hypotheses; 2/8 datasets were able to reject hypotheses A, C, D, E, 

and I, while only 1/8 datasets could reject hypotheses B, F, G, H and J. The 

14TaxonSet_aa datasets performed marginally better, with  8/22 datasets able to reject 

hypothesis H and J, 3/22 can reject D and I, 2/22 can reject hypotheses A, C, E and G 

while only one dataset can reject hypothesis B and F. 

 

In summary using these data and methods, there was not enough support for one 

hypothesis that describes the intra-order placement of the Laurasiatheria. No dataset 

was capable of supporting one hypothesis and fully rejecting all other competing 

hypotheses under its model of evolution. Finally, nucleotide datasets, which were 

shown to have stronger phylogenetic signal did not perform better than amino acid 

datasets when attempting to resolve this phylogenetic problem. 
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Table 2.15 Phylogenetic Results from 14TaxonSet 

Competing Laurasiatheria Hypotheses Ensembl Human ID's Dataset Length Model Internal Nodes Gene Tree 
A B C D E F G H I J 

14TaxonSet_nuc 
ENSG00000115414 7578 bp GTR+I+4Γ 26 1 0.57 0.59 0.89 0.81 0.52 0.36 0.72 0.16 0.31 0.11 
ENSG00000134222 1146 bp K81uf+4Γ 24 1 0.03 0.15 0.02 0.03 0.02 0.1 0.05 0.06 0.04 0.13 
ENSG00000120709 1179 bp HKY+4Γ 25 1 0.56 0.14 0.17 0.17 0.17 0.54 0.14 0.15 0.55 0.37 
ENSG00000106331 1104 bp HKY+4Γ 23 1 0 0 0 0 0 0 0 0 0 0 
ENSG00000001626 4539 bp TVM+I+4Γ 26 0.84 0.84 0.25 0.45 0.3 0.44 0.7 0.25 0.19 1 0.28 
ENSG00000139330 1068 bp HKY+4Γ 25 1 0.89 0.8 0.79 0.69 0.73 0.92 0.58 0.18 0.81 0.8 
ENSG00000188001 840 bp K80+4Γ 22 0.52 1 0.51 0.85 0.51 0.85 0.6 0.54 0.32 0.69 0.27 
ENSG00000205835 1011 bp K80+4Γ 23 0.65 0.17 0.68 0.44 0.79 0.18 0.31 1 0.69 0.17 0.29 

Total Statistical Deviation (P < 0.05) 0 2 1 2 2 2 1 1 1 2 1 
14TaxonSet_aa               

ENSG00000115414 2526 aa JTT+4Γ 26 1 0.16 0.08 0.16 0.13 0.09 0.15 0.09 0.04 0.14 0.11 
ENSG00000155890 730 aa JTT+4Γ 25 1 0.16 0.06 0.06 0.06 0.04 0.26 0.05 0.07 0.2 0.11 
ENSG00000132464 1178 aa JTT+4Γ 25 0.71 0.23 0.68 0.17 0.54 0.5 0.2 1 0.5 0.32 0.14 
ENSG00000134061 661 aa JTT+4Γ 26 1 0.15 0.12 0.12 0.42 0.08 0.17 0.46 0.48 0.54 0.04 
ENSG00000182348 1361 aa JTT+4Γ 24 0.19 1 0.62 0.75 0.42 0.86 0.71 0.59 0.06 0.67 0.08 
ENSG00000110427 1945 aa JTT+4Γ 26 1 0.41 0.13 0.11 0.52 0.16 0.42 0.54 0.56 0.67 0.13 
ENSG00000132591 440 aa JTT+4Γ 25 1 0.11 0.08 0.09 0.78 0.09 0.11 0.78 0.33 0.26 0.03 
ENSG00000039537 938 aa JTT+4Γ 26 1 0.23 0.49 0.26 0.38 0.39 0.25 0.61 0.15 0.25 0.21 
ENSG00000165282 1157 aa JTT+4Γ 26 1 0.15 0.15 0.15 0.15 0.15 0.16 0.14 0.07 0.15 0.05 
ENSG00000148429 864 aa JTT+4Γ 26 1 0.21 0.07 0.39 0.34 0.08 0.2 0.09 0.06 0.2 0.04 
ENSG00000010818 2753 aa JTT+4Γ 26 1 0.09 0.38 0.09 0.04 0.1 0.21 0.08 0.05 0.04 0.1 
ENSG00000164691 745 aa JTT+4Γ 26 1 0.43 0.41 0.54 0.5 0.46 0.41 0.41 0.02 0.37 0.05 
ENSG00000171456 1555 aa JTT+4Γ 26 1 0.96 0.47 0.5 0.42 0.59 0.9 0.42 0.08 0.86 0.07 
ENSG00000182326 739 aa JTT+4Γ 26 1 0.16 0.17 0.18 0.38 0.08 0.22 0.15 0.08 0.21 0.03 
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Competing Laurasiatheria Hypotheses Ensembl Human ID's Dataset Length Model Internal Nodes Gene Tree 
A B C D E F G H I J 

ENSG00000112818 767 aa JTT+4Γ 26 1 0.04 0.05 0.03 0.02 0.02 0.08 0.02 0.01 0.03 0.14 
ENSG00000152582 1898 aa JTT+4Γ 26 1 0.35 0.41 0.62 0.45 0.5 0.3 0.35 0.02 0.19 0.03 
ENSG00000072121 2571 aa JTT+4Γ 26 1 0.07 0.17 0.08 0.08 0.21 0.17 0.11 0.02 0.08 0.11 
ENSG00000104067 1796 aa JTT+4Γ 26 1 0.03 0.03 0.03 0.04 0.39 0.03 0.04 0.04 0.03 0.02 
ENSG00000110723 2023 aa JTT+4Γ 26 1 0.4 0.69 0.26 0.28 0.4 0.39 0.76 0.01 0.44 0.01 
ENSG00000173230 3289 aa JTT+4Γ 26 0.96 0.92 0.85 0.81 0.85 0.81 1 0.86 0.07 0.73 0.13 
ENSG00000169031 1779 aa JTT+4Γ 26 1 0.05 0.2 0.11 0.2 0.05 0.1 0.23 0.15 0.05 0.55 
ENSG00000164309 4234 aa JTT+4Γ 26 0.8 0.65 0.18 1 0.67 0.8 0.32 0.11 0 0.22 0.03 

Total Statistical Deviation (P < 0.05) 0 2 1 2 3 2 1 2 8 3 8 
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2.4 Discussion 

The aim of this Chapter was to determine the importance of dataset suitability and 

model adequacy to address the phylogenetic question at hand. Three datasets were 

employed and each dataset was analysed with the objective of improving knowledge of 

the best available approach to undertake when (i) resolving the root of the placental 

mammal phylogeny and (ii) intra-order placements in the Laurasiatheria. 

 

Re analysis of the 66TaxonSet Murphy et al (2001a) showed that heterogeneous models 

fitted the data better than homogeneous models. It was also shown that the 

homogeneous models employed in the original publication of 66TaxonSet_nuc 

(Murphy et al. 2001a) did not fit the data, while the more sophisticated models did fit 

the 66TaxonSet. Model adequacy is critical to ensure a robust phylogenetic analysis and 

several studies have shown that models that fit the data poorly consistently find the 

wrong phylogeny (Foster et al. 2009). The 66TaxonSet was found to be compositionally 

heterogeneous through the χ2 test of compositional homogeneity and the model fit test 

(Foster 2004). Previous work by Foster (2009) showed that when compositionally 

heterogeneous data is not modelled adequately an incorrect topology is recovered 

(Foster et al. 2009). Whether the 66TaxonSet was analysed at the nucleotide, amino 

acid or the dayhoff recoded level it was found that models that accommodate exchange 

rate and compositional heterogeneity over the phylogeny or the data out performed 

models that did not. One of the primary issues with the 66TaxonSet was that it lacked 

the in formativeness to definitely resolve the root of the placental mammals and LM 

tests showed that there were high levels of phylogenetic conflict. These conflicts could 

be attributed to the use of mitochondrial and non coding data which is known to saturate 

faster than nuclear data (Brown et al. 1982, Burger et al. 2003) and has been known to 

cause homoplasy resulting from saturation (Sanderson 1989, Sanderson and Hufford 

1996). Therefore the dataset employed by (Murphy et al. 2001a) did not contain enough 

phylogenetically informative characters  to accommodate the parameter rich models and 

infer the phylogeny of mammals. 
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The 39TaxonSet overcomes the identified issues with the 66TaxonSet. The 39TaxonSet 

is superior to the 66TaxonSet in that it is sufficiently large to accommodate parameter 

rich models and has the phylogenetic informativness to reject alternative hypotheses for 

the root of the placental mammals. Phylogenetic results from models that allow for 

heterogeneity over the phylogeny and the dataset on both 39TaxonSet_aa and 

39TaxonSet_day are congruent with one another; the only region where there is 

disagreement is in the placement of Orders within the Laurasiatheria. Previous studies 

have used network analyses; single gene and Supermatrix analyses to try resolving the 

intra-ordinal placement of the Laurasiatheria, however the focus has predominantly 

been on sequence length and taxon sampling (Hallstrom and Janke 2010, Hou et al. 

2009). The 39TaxonSet did not contain sufficient signal to resolve the intra order 

placements of the Laurasiatheria and therefore a Laurasiatheria focused 14TaxonSet 

was created. 

 

Both nucleotide and amino acid data were used to generate datasets for the 

Laurasiatheria as divergence estimates between Orders are short  (between 1 and  4 

Million Years) (Hallstrom and Janke 2008).  It was computationally prohibitive to apply 

sophisticated heterogeneous models to all 2568 datasets (combined nucleotide and 

amino acid count). Instead only datasets that had low levels of phylogenetic conflict (< 

10%) and whose model adequately described the composition of these data were used. 

This drastically decreased the usable datasets from 1284 to 8 nucleotide datasets and 

1284 to 22 amino acid datasets. Regardless of criteria employed, no dataset contained 

enough phylogenetic signal to support one hypothesis over another or over all others. It 

is possible that neither nucleotide nor amino acid based datasets are suitable to place the 

Orders within the Laurasiatheria and that other data types such as rare genomic events 

should be explored. Hallstrom and Janke (2010) also employed nucleotide and amino 

acid data to infer the intra-order placements within the Laurastheria and attributed the 

lack of resolution on intra-ordinal placements to introgression of gene flow between 

Orders (Hallstrom and Janke 2010). There are 6 known Orders within the Laurasiatheria, 

but only 5 have had representative genomes sequenced. Until a representative from the 

Pholidota is sequenced and until there is more sampling and sequencing performed on 

taxa from other poorly sequenced Orders, resolving the intra order placements within 

the Laurasiatheira will be imperfect.  In addition, it is clear that no single data type can 

be considered in isolation when attempting to resolve difficult phylogenetic problems, 

and that inferences based on the interpretation of patterns of congruence/incongruence 
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among alternative data types would be most desirable (Rota-Stabelli et al. 2011, 

Campbell et al. 2011, Branger et al. 2011). 

 

The results of this Chapter show that having more sequence data does not eradicate all 

phylogenetic conflict.  It is difficult to expand taxon sampling due to the limited number 

of fully sequenced nuclear genomes. Coding genes from mitochondrial genomes have 

been sequenced in over 2000 mammal species and the impact of taxon rich sampling 

using mitochondrial data has been explored in Chapter 3. 

 

Heterogeneous models out perform homogeneous models, however only when the 

dataset is of high enough quality and large enough to accommodate the parameter rich 

models. The importance of incorporating compositional homogeneity tests to ensure 

that the model of choice is adequate in modelling the composition of the data is evident 

following these analyses. There is no suitable method to test the fit of the rate exchange 

matrix to these data and therefore there is no way of knowing whether this is causing 

ambiguity in the data. 

 

To conclude, this Chapter indicates the importance of having data suitable to address 

the phylogenetic problem at hand and a model that is able to adequately describe the 

evolution of such data.  
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Chapter 3    

3 An assessment of the suitability of Mitochondrial Data for 

Inferring the Placental Mammal Phylogeny. 
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3.1 Introduction 

3.1.1 Previous applications of mitochondrial data to resolving the 

Mammal Phylogeny 

Mitochondrial genes (mtGenes) have been used to resolve the phylogenetic 

relationships of deep divergences such as the placement of the Superorders in the 

mammal phylogeny (Gibson et al. 2005, Tobe et al. 2010, Milinkovitch et al. 1993), and 

also for the analysis of more shallow relationships, such as those amongst the Cetacea 

(Milinkovitch et al. 1993), the Caniforma (Arnason et al. 2007) and the Rodentia (Frye 

and Hedges 1995). The mitochondrial gene CYTB was once the primary locus involved 

in phylogenetic studies (Irwin et al. 1991), but recently the Bar code of Life Consortium 

has adopted the mitochondrial gene CO1 (Hebert et al. 2003) for the resolution of the 

relationships amongst eukaryotes and the more rapidly evolving plastid loci matK and 

rbcL are being used for phylogenetic studies of plants (Li et al. 2011). The concept of 

using bar codes as a method of identifying species was first proposed by (Hebert et al. 

2003) and was used to construct a public reference library containing species identifiers 

which has enabled identification of unknown species. This project has since expanded 

into the international Bar code of Life (iBOL) project whose goals are to collect over 

half a million bar coded sequences and to use phylogeny in species conservation 

(Vernooy et al. 2010).   

 

The most taxon rich study to date has used both CYTB and CO1 to reconstruct the 

phylogeny of mammals across 204 taxa (Tobe et al. 2010). This study revealed that 

while CYTB was a stronger candidate than CO1 for phylogeny reconstruction, neither 

gene was able to resolve the branching of the Superorders (Tobe et al. 2010). An 

analysis that used the entire mitochondrial genome of 78 Eutherian taxa found strong 

support for the four Superorders of placental mammals (Kjer and Honeycutt 2007). This 

study had a number of inconsistencies in terms of placement of the Scandentia at the 

basal position in the Euarchontoglires where previous nuclear based studies have placed 

it as a sister group to the Primates or Dermoptera (Murphy et al. 2001a, Murphy et al. 

2001b, Novacek 1992, Springer et al. 2004). Traditionally, Primate Orders have been a 

monophyletic group in studies based on nuclear genes (Murphy et al. 2001a, Murphy et 

al. 2001b). When Kjer and Honeycutt (2007) reconstructed their phylogeny based on 

the entire mitochondrial genome, the primates were found to be paraphyletic with the 
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Dermoptera grouping with anthropoid Primates to the exclusion of lineages such as 

tarsiers and prosimians (Kjer and Honeycutt 2007). This indicates that there may be 

some problems with the application of mitochondrial data to the mammal phylogeny. In 

this chapter I apply a variety of data assessment tests to determine which genes and at 

what depth mitochondrial data can be applied to mammal phylogenetics. 

 

3.1.2 Comparison of nuclear and mitochondrial genes as phylogenetic 

loci. 

There are several differences between the nuclear and mitochondrial genome including 

but not restricted to: size of genome, mode of inheritance, levels and extent of 

recombination, number of introns and DNA repair mechanisms (Ballard and Whitlock 

2004). Mitochondrial genes (mtGenes) undergo more mutations compared to nuclear 

genes (nucGenes) and are therefore more susceptible to saturation of base changes - a 

major challenge in phylogeny reconstruction (Brown et al. 1982). In contrast, the 

benefits of using mtGenes in phylogenetic studies are that mtGenes have very low rates 

of recombination (Lunt and Hyman 1997, Ladoukakis and Zouros 2001, Awadalla et al. 

1999, Hoarau et al. 2002), mtGene order is relatively well conserved across vertebrates 

(Pereira 2000)  and mtGene sequence data is available for over 1,000 mammals 

(UniProt 2012). The number of fully sequenced mammal nuclear genomes remains 

relatively low with only 40 mammal genomes available in the Ensembl database 

(Hubbard et al. 2007) out of 5,488 classified mammal species (ICUN 2012).  This has 

placed restrictions on extensive taxon sampling within the Superorders. As 

mitochondrial sequences are readily available for so many taxa, the use of 

mitochondrial sequences could serve to counterbalance the taxon-sampling deficiency 

in nuclear sequences. Over the past number of years, studies have used both mtGenes 

and nucGenes to attempt to resolve the mammal phylogeny (Nishihara et al. 2006, 

Hallstrom and Janke 2008, Nikolaev et al. 2007, Tobe et al. 2010).   

 

The preference for nucGenes over mtGenes has been explained in a different context in 

the past (e.g. spiny lizard phylogenies (Leache 2010)) while overall there were 

disagreements between phylogenies inferred using mtDNA and nucDNA, phylogenies 

inferred using 3 mtDNA loci were in more disagreement with one another compared to 

phylogenies inferred from 4 nucDNA loci. A study of Plethodon salamanders showed 

that while incongruence between inferred mtDNA phylogenies was higher than inferred 
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nucDNA phylogenies, the combined nuclear and mitochondrial data provided enough 

reliable phylogenetic signal that phylogenetic inconsistencies such as homoplasy and 

LBA present in the mitochondrial data were overcome (Fisher-Reid and Wiens 2011).  

An analysis of 66 Eutherian mammals using combined nuclear and mitochondrial data 

showed strong support for both Superorders and Orders (Murphy et al. 2001a) (see 

Chapter 2 for detailed re-analysis of these data). In summary, the debate on whether 

mitochondrial data is suitable for phylogeny reconstruction when combined with 

nuclear data remains unresolved (Wiens et al. 2010, Leache 2010, Fisher-Reid and 

Wiens 2011). Furthermore, many studies have published taxonomic relationships based 

solely on mitochondrial data (Hillis and Wilcox 2005, Hyman et al. 2007) even though 

publications have warned against this approach (Shaw 2002, Rubinoff and Holland 

2005). 

 

Springer (2001) carried out an investigation of the informativeness of mitochondrial 

versus nuclear gene sequences in deep-level mammal phylogeny reconstruction.  He 

used the available data at the time, i.e. 32 taxa across 12 mitochondrial protein coding 

genes, together with a parsimony and minimum evolution approach (Springer et al. 

2001). The conclusions were that concatenated nuclear genes were more effective at 

recovering benchmark clades compared with concatenated mitochondrial genes 

(Springer et al. 2001). Since this study, there has been a surge in sequencing and there 

are mitochondrial sequence data for over 1,000 placental mammals.  In addition, there 

have been major improvements to ML methods and this can facilitate phylogenetic 

reconstruction of large datasets (Stamatakis 2006). 

 

This chapter assesses the suitability of mitochondrial data as a phylogenetic marker in 

resolving the placental mammal phylogeny. I sought to test the phylogenetic in 

formativeness of each gene for the inference of phylogenetic relationships and 

ultimately sought to identify mtGenes that provide the greatest phylogenetic 

information. I assessed the phylogenetic congruence between individual mitochondrial 

gene phylogenies and compared these to a phylogeny resolved from a dataset of 

concatenated mitochondrial genes. Phylogenetic conflict can arise as a result of taxon 

sampling (Hedtke et al. 2006), lack of sufficient phylogenetic characters (Rosenberg 

and Kumar 2003) and saturation, resulting in homoplasy at deeper phylogenetic nodes 

(Caterino et al. 2001, Reed and Sperling 1999). Therefore I have addressed these 

phylogenetic conflicts within mitochondrial data by  (i) sampling fewer taxa, (ii) 
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assessing the phylogenetic informativeness of gene coverage versus taxon sampling, 

(iii) removing rapidly evolving sites, (iv) removing taxa, and finally (v), sampling 

sequence data at different depths on the known phylogenetic tree to assess where the 

phylogenetic signal starts to break down. 

3.2 Materials and Methods 

3.2.1 Gene and Taxon Sampling 

Mitochondrion-encoded protein coding genes were downloaded for taxa that spanned 

the four mammal Superorders (Euarchontoglires, Laurasiatheria, Xenarthra and 

Afrotheria) as well as non-placental mammal outgroup species (Monodelphis domestica 

and Ornithorhynchus anatinus) and Aves (Gallus gallus) from the UniProtKB database 

(UniProt 2012) resulting in a total of 1,556 taxa. Only taxa that were represented in at 

least 2 out of 13 mitochondrial genes (mtGenes) were used in this analysis, which 

resulted in 455 taxa. For details of data used in this analysis see Table 3.1 and for 

extended details on individual taxon coverage see Appendix B.1.  

3.2.2 Multiple Sequence Alignment  

Datasets were aligned using Muscle v3.7 (Edgar 2004) using the default parameters. 

3.2.3 Model Choice and Phylogeny reconstruction 

Model testing was performed using ModelGenerator v85 (Keane et al. 2006), which has 

been previously described in the materials and methods section of chapter 2 (section 

2.2.4.1).  Bayesian based phylogeny reconstruction algorithms were computationally 

prohibitive, therefore the ML program RAxML (Stamatakis 2006) was employed for 

phylogeny reconstruction of the 446 individual datasets. Using the rapid bootstrapping 

algorithm (Stamatakis et al. 2007), 1,000 bootstrap replicates were performed on each 

dataset using the best-fit model. A list of models used and lnL scores for un-treated 

mitochondrial data is given in Table 3.1 and all models, lnL scores and phylogenetic 

trees are available in Appendix B.2 
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Table 3.1 Details of untreated mitochondrial data and model choice. 

Protein Name mtGene Name Taxa # MSA 
Length (aa) Model of Evolution -lnL 

 
ATP synthase subunit a ATP6 253 228 MtMam+I+4Γ -13653.63 

ATP synthase protein 8 ATP8 281 71 MtMam+I+4Γ -9145.23 

Cytochrome c oxidase subunit 1 CO1 187 518 MtMam+I+4Γ -7530.62 

Cytochrome c oxidase subunit 2 CO2 217 237 MtMam+4Γ -6430.97 

Cytochrome c oxidase subunit 3 CO3 189 269 MtMam+I+4Γ -7175.67 

Cytochrome b CYTB 267 383 MtMam+I+4Γ -23093.23 

NADH-ubiquinone oxidoreductase chain 1 ND1 129 326 MtMam+4Γ -12503.65 

NADH-ubiquinone oxidoreductase chain 2 ND2 152 350 MtMam+4Γ -27716.40 

NADH-ubiquinone oxidoreductase chain 3 ND3 141 119 MtMam+4Γ -5619.87 

NADH-ubiquinone oxidoreductase chain 4 ND4 163 486 MtMam+4Γ -25191.86 

NADH-ubiquinone oxidoreductase chain 4L ND4L 246 98 MtMam+4Γ -7264.63 

NADH-ubiquinone oxidoreductase chain 5 ND5 149 626 MtMam+I+4Γ+F -41499.46 

NADH-ubiquinone oxidoreductase chain 6 ND6 94 200 JTT+4Γ+F -10035.93 

Supermatrix(concatenated alignment) SM 455 3906 MTMam+G+F -204073.11 
The total number of taxa, sequence lenght are given for each dataset along with their associated models of evolution and lnL values for phylogeny 

generated through RAxML (Stamatakis 2006). 



 136 

3.2.4 Likelihood mapping tests 

Likelihood mapping (LM) was performed on all datasets using TreePuzzle v5.2 

(Schmidt et al. 2002) and is described in materials and methods section 2.2.9. The 

mtMAM+4Γ  model was not available in TreePuzzle v5.2 (Schmidt et al. 2002) so the 

next available model of best-fit defined through BIC analysis was chosen (usually 

mtREV+4Γ). LM analysis can only be performed on an MSA that contains between 4 

and 257 taxa. This was a built-in limit in TreePuzzle v5.2 (Schmidt et al. 2002), that  

exists to avoid overflow of internal integer variables. Therefore, LM analysis was 

performed on 413 datasets (33 datasets had >257 taxa). The LM scores for the untreated 

mitochondrial data is given in Table 2.3 and a fully comprehensive list of LM scores are 

given in Appendix B.3. 

3.2.5 Removal of Saturated Sites 

The rates of change of characters were categorized using TIGER (Cummins 2010), a 

phylogeny independent method for classification of rates across sites. Twenty bin 

categories were generated; where bin 1 represents characters associated with slowly 

evolving sites and bin 20 represents characters that are rapidly evolving. The sites that 

were associated with bin 20, 19 or 18 were removed sequentially using PAUP* 

(Swofford 2002) and the MSA was realigned and tested for phylogenetic signal using 

LM (Schmidt et al. 2002). An example of removal of saturated sites is shown in Figure 

3.1, for illustrative purposes only 5 categories (bins) are used. 
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Figure 3.1 Pipeline showing the process of removal of “bins” of sites classified 

using TIGER.  

The alignment in (A) has had the individual characters characterised based on their rate 

of evolution using TIGER and the output is shown in (B).  The fastest evolving sites are 

removed (C), the alignment is re-generated as denoted by the presence of the Muscle 

v3.7 box, the phylogenetic signal is tested using LM and phylogenetic trees are 

estimated (these steps are denoted by the triangle for LM and the cartoon tree 

respectively).  The process of removing sites and testing of remaining alignment is 

repeated until there is no longer sufficient phylogenetic signal.  
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3.2.6 Removal of “Rogue” Taxa 

The mean pairwise percent identity (Mean %ID) was calculated for all sequences in a 

given alignment reciprocally (described as “FamID” in (Muller et al. 2005)) using the 

program “calc_meanid” (Muller et al. 2005). The program was run on FASTA 

formatted alignment files as follows: 

 

calc_meanid Infile.fa > Outfile.results  

 

There was a mean pairwise identify score for every pair of species in the 

“Outfile.results” file.  The following is an example of UNIX command used to obtain 

the mean percent identity score for human: 

 

gawk 'NR==FNR{ a[$1] += $3; b[$1]++} NR!=FNR{ for(key in a) 

{if($1==key)print key,a[key]/b[key]}}' Outfile.results 

human 

 

This command was used to calculate the mean pairwise identities for every species.  A 

list of all the percentage identity scores for the mtGene data is given in Appendix B.4. If 

the percentage identity score of a placental mammal sequence was less than that of the 

outgroups (chicken, platypus and opossum), then the taxon was identified as “rogue” 

and removed from the alignment. The adjusted datasets were realigned and tested for 

phylogenetic signal using LM.  

3.2.7 Calculate distance between topologies 

To assess congruence between topologies, a majority rule (MR) consensus tree was 

generated using RAxML (Stamatakis 2006) and the Robinson-Foulds (RF) distance was 

calculated between two phylogenetic trees using the “rfdists” command in Clann 

(Creevey and McInerney 2005). This RF distance metric in Clann (Creevey and 

McInerney 2005) estimates the number of shared splits between the shared taxon set of 

two unrooted trees. The numbers are reported as the ratio of the number of shared splits 

across the two trees, therefore a value of 0 indicates that both trees share all splits while 

a number of 1 is given when the pair of trees share no splits. Individual RF scores for all 

comparisons have not been detailed in the text, as they are so extensive. Instead, a 

comprehensive list of all RF scores between topologies is detailed in Appendix B.5. 
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3.2.8 Generation of a legible phylogeny for ease of interpretation 

In this study, the number of taxa within each dataset ranged from 91 to 455, which was 

difficult to display on a single page and maintain a readable font size. To overcome this 

issue the following treatments were performed on the MR consensus phylogenies. The 

topological information was extracted from the MR consensus phylogenies using 

Newick Utilities (Junier and Zdobnov 2010) to apply the following command: 

 

nw_topology RAxML_MajorityRuleConsensusTree.MR > 

MR_tree.tre 

 

The program “NameChange.py” (Appendix B.6.1) was written to change the individual 

taxon names into their associated mammal Order names using the list 

“Orders_Names.txt” (Appendix B.6.2). The name change was performed on the MR 

consensus topology as follows: 

 

python NameChange.py Orders_Names.txt MR_tree.tre  

MR_Orders.tre 

 

Monophyletic groups that contained species from the same order were condensed into a 

single leaf and the trees were rooted at the chosen outgroup.  In the following example 

the Aves clade is the outgroup and the Newick Utilities (Junier and Zdobnov 2010) 

command is: 

 

nw_condense MR_Orders.tre | nw_reroot - Aves >  

Figure_ready.tre 

 

The trees generated using this command were used to display in a more legible form the 

topological information obtained from the dataset. 
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3.3 Results 

3.3.1 Are mitochondrial data suitable for the resolution of the 

mammal phylogeny ?  

Thirteen mitochondrial protein-coding genes were downloaded from the UniProtKB 

database (UniProt 2012).  A total of 455 taxa had at least 2 sequences out of 13 

mtGenes in the dataset (full list of genes and taxa are available in Appendix B.1). Taxa 

were sampled across 19 Placental Orders, and their allocation is shown in Figure 

3.2(A). The 13 genes ranged in length from 71 aa to 626 aa and in coverage from 94 to 

281 taxa. The phylogenetic conflict in these datasets was assessed using Likelihood 

Mapping (LM) (Strimmer and von Haeseler 1997), which gives a prior indication of 

tree-likeness. Alignments with a low percentage of phylogenetic conflict (<10%) were 

expected to give reasonably well supported bifurcating trees while datasets with a high 

proportion of phylogenetic conflict (>10%) were expected to produce less well-resolved 

nodes.  

 

The results for the LM analysis are detailed in Table 3.2. In total, there are 11/13 

mtGenes with greater than 10% phylogenetic conflict. The 2 genes that had less than 

10% conflict were ND4 (9.7% conflict) and ND5 (8.1% conflict). Genes were 

concatenated to form a Supermatrix (SM) consisting of 3,906 aa and 455 taxa. The SM 

had too many taxa to be tested with the LM approach (as mentioned in the materials and 

methods section 2.2.9). Phylogeny reconstruction was carried out across all 13 mtGenes 

and the SM dataset in a ML framework using RAxML (Stamatakis 2006). The 

mtMAM+4Γ  model of evolution was applied to 12/13 mtGene datasets and the SM 

dataset. The additional parameter (+F) which refers to amino acid frequencies was used 

for the alignment of the ND5 gene and for the SM dataset (see section 2.2.4.1 for 

parameters in ModelGenerator v85 (Keane et al. 2006)). The JTT+4Γ+F model was 

used for the analysis of the ND6 alignment.  LnL scores are listed in Table 3.1 and 

associated topologies are given in Appendix B.2. 
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Table 3.2 Levels of phylogenetic conflict in mitochondrial data. 

Quartets   
 Data Names 1 2 3 4 5 6 7 

  
Conflict [4-7] 

ATP6 27.80 26.70 27.70 2.20 2.00 2.00 11.60 17.80 
ATP8 20.80 21.60 21.20 3.20 3.10 3.40 26.90 36.60 
CO1 27.30 27.10 27.20 1.90 1.80 2.00 12.80 18.50 
CO2 27.90 26.60 26.10 1.90 1.80 1.70 14.10 19.50 
CO3 28.80 28.30 28.60 2.10 2.00 2.00 8.20 14.30 

CYTB 29.80 29.00 29.00 2.00 2.30 2.20 5.70 12.20 
ND1 28.80 28.60 28.80 1.60 1.80 1.60 9.00 14.00 
ND2 28.90 29.70 29.10 1.60 1.50 1.70 7.60 12.40 
ND3 24.80 25.20 24.60 1.90 2.00 1.90 19.70 25.50 
ND4 29.90 30.10 30.10 1.40 1.50 1.20 5.60 9.70 

ND4L 24.90 25.40 24.60 2.00 2.00 2.00 19.20 25.20 
ND5 30.20 31.10 30.60 1.30 1.30 1.30 4.20 8.10 
ND6 27.10 26.60 28.00 1.80 2.00 1.90 12.70 18.40 
SM NA NA NA NA NA NA NA NA 

Each of the 13 mtGenes is listed in the left column and their LM scores for each of the 7 

quartets. The column on the left is the sum of quartets 4 to 7. This numbering scheme is 

as per Figure 2.7 of materials and methods section 2.2.8. 

 

 

The resultant phylogenies from both the individual gene analyses and SM dataset 

contained large numbers of weak and un-supported nodes. Congruence between 

majority rule consensus topologies was assessed using Robinson-Foulds (RF) distances 

as implemented in the Clann software (Creevey and McInerney 2005). All scores are 

detailed in Table 3.3. These results show that the topology obtained from the ND5 gene 

was the closest to the topology obtained using the SM dataset, with a RF distance of 

0.1301. The two genes used in the Barcode of Life project (Hebert et al. 2003, 

Borisenko et al. 2008), CYTB and CO1, manifested RF distances to the SM dataset of 

0.2140 and 0.2609 respectively and had an RF distance of 0.2021 to one another. In 

Chapter 2 and in previous independent studies, placental mammals have been placed 
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into four Superorders (Hallstrom and Janke 2010, Murphy et al. 2001a, Prasad et al. 

2008), as shown in Figure 3.2(A). In this analysis it was observed that none of the 

datasets generated from mitochondrial data, including the SM dataset (see Figure 

3.2(B), were able to resolve these four Superorders. 
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Table 3.3 Robinson-Foulds distances between Phylogenies generated using untreated mtGene data 

mtGene and 
SM 

Topologies 
ATP6 ATP8 CO1 CO2 CO3 CYTB ND1 ND2 ND3 ND4 ND4L ND5 ND6 

ATP8 0.1978             
CO1 0.2191 0.1867            
CO2 0.1879 0.1568 0.1977           
CO3 0.2246 0.1953 0.2414 0.2254          

CYTB 0.2000 0.2219 0.2021 0.1942 0.2368         
ND1 0.1918 0.2000 0.1923 0.1792 0.1667 0.2438        
ND2 0.2658 0.3034 0.2845 0.2672 0.2679 0.2449 0.2161       
ND3 0.1594 0.1375 0.1522 0.1354 0.1333 0.1951 0.1651 0.2642      
ND4 0.2308 0.2644 0.2414 0.2750 0.2321 0.2241 0.2107 0.2047 0.2192     

ND4L 0.1711 0.1855 0.1591 0.1720 0.2045 0.1824 0.1694 0.2500 0.1360 0.2196    
ND5 0.2808 0.3101 0.2800 0.2843 0.2449 0.2593 0.2542 0.2094 0.2756 0.1884 0.2711   
ND6 0.1628 0.1765 0.1750 0.0897 0.1923 0.1518 0.1778 0.2647 0.1772 0.2191 0.1500 0.2472  
SM 0.2040 0.2392 0.2609 0.2570 0.2930 0.2140 0.2460 0.1611 0.2609 0.1750 0.2778 0.1301 0.2692 

The RF distance were calculated as described in section 3.2.7 and are shown for all comparisons of mtGene and SM topologies.  
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Figure 3.2 Phylogeny inferred from nuclear and mitochondrial data. 

The phylogeny obtained using (A) nuclear data and (B) mitochondrial data is shown. 

The Superorders of the placental mammals are colour coded according to the following 

scheme: The Euarchontoglires are in red, the Laurasiatheria in blue, the Afrotheria in 

green and the Xenarthra in purple.  
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3.3.2 Treatment of the data to reduce phylogenetic conflict 

MtDNA accumulates mutations more rapidly than nuclear data, and therefore is more 

likely to have both saturation and homoplasy (Brown et al. 1982, Rubinoff and Holland 

2005), both of which contribute to phylogenetic conflict and have resulted in 

inconsistencies in phylogenies generated in the literature between different datasets 

(nuclear and mitochondrial) (Caterino et al. 2001, Reed and Sperling 1999, Rokas and 

Carroll 2008).  In an effort to reduce phylogenetic conflict, improve node support and 

improve upon congruence between mtGene topologies a number of issues were 

addressed. First, the phylogenetic conflict was assessed to see if it decreased with a 

reduction in taxon numbers. Then tests were performed to assess whether phylogenetic 

signal is stronger when gene coverage across taxa is highee.  The impact of the removal 

removal of saturated sites and whether the removal of rogue taxa reduced the 

phylogenetic conflict in the dataset was explored. Finally, and assessment of whether 

phylogenetic signal improves if shallower nodes are analysed was addressed. To answer 

each of these questions the original datasets listed in Table 3.2 were subjected to a 

series of treatments, which have been detailed in sections 3.3.2.1 to 3.3.2.5. 

3.3.2.1  Does the phylogenetic conflict decrease with a reduction in the 

number of taxa? 

It has been debated whether more sequence data or more thorough sampling improves 

phylogeny reconstruction (Hedtke et al. 2006, Rosenberg and Kumar 2003, Hillis et al. 

2003, Pollock et al. 2002, Rosenberg and Kumar 2001). To test the impact that reduced 

taxon sampling has on phylogenetic signal, a subset of taxa were sampled (between 9 

and 13 species) for each of the mtGenes. In each case a representative from each 

placental mammal Superorder was retained in the dataset. The reduced taxon datasets 

were re-aligned and re-tested for phylogenetic conflict using LM (Schmidt et al. 2002). 

From this analysis, it was observed that no individual gene dataset showed a significant 

reduction in phylogenetic conflict. More specifically, conflict increased in 12 out of 13 

mtGenes, the exception was CO1 that manifested a small reduction from 18.5% to 

17.3% conflict, the complete set of conflict scores are given in Appendix B.3. The SM 

dataset showed extremely low phylogenetic conflict at 3.4%, which was the lowest of 

all datasets tested.  Phylogenetic reconstruction of the SM dataset was expected to result 

in four placental Superorders being resolved (as was found using nuclear data in 

Chapter 2) and that platypus would be positioned at the base of the mammal tree (van 
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Rheede et al. 2006).  However, there were only low levels of support for the four 

placental Superorders and there was 97% bootstrap support for a relationship joining 

Opossum and Platypus as sister taxa to the exclusion of all other mammals. While LM 

statistics indicated low proportions of conflict, the test is strongly influenced by 

sequence length (Strimmer and von Haeseler 1997).  Longer sequences (e.g. 

concatenated alignments) increase the number of usable characters and that has been 

shown to overcome the phylogenetic inconsistencies of individual gene data (Gadagkar 

et al. 2005). The RF distance between individual gene trees and the topology of the SM 

tree increased in 10/13 mtGenes, but decreased slightly in ND1, ND4 and ND6 to 

0.1500, 0.1500 and 0.2143 respectively. The shared taxa between COX and CYTB were 

topologically identical as were the shared taxa between ND3 and ATP6, with RF 

distances of 0. Regardless of restricted sampling from the Superorders, the data were 

still unable to provide support for the placement of four placental mammal Superorders.  

Therefore, it was concluded that reduction in taxon sampling from the mtGene data did 

not remove phylogenetic conflict or improve phylogenetic resolution and the 

phylogenetic inconsistencies may have been a result of missing data that is discussed in 

the following section. 

3.3.2.2 Is phylogenetic signal stronger when gene coverage across taxa is 

higher?  

MtGenes have been sequenced to varying extents across placental mammals, and only 

25 taxa have been sequenced for all 13 mtGenes. Congruence between phylogenies is 

an indication of how much error is contained in each phylogeny (Pisani et al. 2007). It is 

desirable to have a higher number of overlapping taxa between mtGenes to assess 

congruence between the phylogenies.  Missing sequence data has been shown to cause 

problems in phylogeny reconstruction (Lemmon et al. 2009, Kearney 2002), however if 

enough phylogenetically informative characters are available then missing sequence 

data does not impact accurate phylogeny reconstruction (Wiens 2003, Philippe et al. 

2004). Consequently, the next step in this analysis was to determine the impact of 

increasing gene coverage across the data by reducing the poorly represented taxa across 

the 13 mtGenes. In total there were 455 taxa with at least 2 out of the 13 mtGenes 

sequenced. The approach was to increase the gene coverage by increasing gradually 

from 2 to 13 genes, and generating datasets at each step of the process (consequently the 

taxon number will decrease at each step). The SM dataset and the individual mtGene 
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datasets were generated from each of these steps. Please refer to Figure 3.3 for an 

example of how this treatment was applied to the ATP6 mtGene. 
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Figure 3.3 Relationship between gene coverage and number of taxa, illustrated here for the ATP6 mtGene. 

Dataset treatments for stepwise decrease of gene coverage and increase of taxon number are shown (A to L). The gene coverage is given on the x- axis 

and the number taxa in each dataset on the y-axis. The green boxes represent the proportion of taxa number to gene coverage in each dataset. 
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LM (Schmidt et al. 2002) was employed to test the change in phylogenetic signal as 

gene coverage was increased, the results are shown in Figure 3.4. Phylogenetic conflict 

remained extremely high in ATP6, ATP8, CO1, CO2, CO3, ND3, ND4L and ND6 

across all datasets regardless of gene coverage. ND1 showed variable phylogenetic 

conflict (12.2-14.9%) across the different levels of gene coverage but failed to reach our 

pre-defined cut-off value of <10% conflict. CYTB, ND2, and ND5 showed <10% 

phylogenetic conflict under the highest gene coverage and lowest taxon coverage 

conditions (see Figure 3.3). ND5 maintained reasonably low phylogenetic conflict 

across all gene coverage situations (5.8-8.6% conflict). The RF distance was calculated 

between ND5 gene topologies and topologies from other mtGene and the SM dataset to 

assess if congruence between gene trees improved at any coverage point (see Table 3.4). 

It was expected that if the datasets had more taxa in common (e.g. at higher gene 

coverage levels), then the topological distance between gene topologies would be 

smaller. The RF distances showed that when gene coverage was at its lowest (2 

mtGenes) then the ND5 gene had the closest RF distance between 7 other mtGenes 

(CO1, CO2, CO3, ND1, ND4, ND6 and SM topologies). Therefore maximising the 

gene coverage across genes to improve congruence in these data does not have the 

expected effect. Only the Glires, Carnivora and Cetartiodactlya are represented in the 13 

gene set, and so resolution for other clades is not possible. The RF distances were 

calculated between all pairs of resulting topologies at each coverage point and are 

available in Appendix B.5. 
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Figure 3.4 The impact of Gene Coverage versus Taxon Sampling on phylogenetic 

Signal 

The rows represent datasets generated from the individual mtGenes and the SM dataset. 

The columns represent gene coverage across taxa from 13 to 2 genes for each dataset 

and the numbers in each cell represent the number of taxa in a given dataset. The 

percentage of phylogenetic conflict is colour coded as shown in (B) from acceptable 

levels (<10% conflict) represented by pale yellow and green, to unacceptable levels 

(≥10% conflict) represented by orange and red. 
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Table 3.4 Robinson-Foulds distances between ND5 phylogeny and  all mtGene and SM phylogenys generated at each gene coverage point. 

Gene 
Coverage ATP6 ATP8 CO1 CO2 CO3 CYTB ND1 ND2 ND3 ND4 ND4L ND6 SM 

2 0.2808 0.3101 0.2800 0.2843 0.2449 0.2593 0.2542 0.2094 0.2756 0.1884 0.2711 0.2472 0.1301 
3 0.2808 0.2975 0.3000 0.3039 0.2551 0.2658 0.2625 0.2198 0.2874 0.1957 0.2887 0.3167 0.1585 
4 0.2740 0.3038 0.3000 0.2941 0.2551 0.2532 0.2708 0.2198 0.2817 0.1957 0.2872 0.2841 0.1809 
5 0.2778 0.2911 0.3000 0.2941 0.2653 0.2436 0.2667 0.2284 0.2752 0.2025 0.2846 0.2727 0.1707 
6 0.2847 0.2975 0.3000 0.2941 0.2755 0.2500 0.2647 0.2241 0.2752 0.2167 0.2869 0.2759 0.1885 
7 0.2708 0.2975 0.2800 0.3235 0.2755 0.2564 0.3009 0.2143 0.2944 0.2544 0.3233 0.3086 0.1897 
8 0.3143 0.3267 0.3100 0.3529 0.3367 0.3224 0.3402 0.1907 0.3011 0.2323 0.3150 0.2826 0.1750 
9 0.3060 0.3451 0.3200 0.3333 0.3469 0.3393 0.3421 0.1867 0.3239 0.2403 0.3205 0.3725 0.1795 

10 0.3333 0.3400 0.3667 0.3478 0.3182 0.2692 0.3269 0.2059 0.3200 0.2788 0.2830 0.2976 0.1698 
11 0.3590 0.3875 0.3333 0.3750 0.3250 0.3167 0.3659 0.2125 0.3077 0.2317 0.3049 0.3382 0.2317 
12 0.3333 0.3594 0.3226 0.3750 0.3065 0.3214 0.3594 0.2500 0.2813 0.2813 0.2500 0.2833 0.2500 
13 0.3636 0.3636 0.3636 0.3636 0.3409 0.2955 0.3409 0.2500 0.3182 0.3409 0.2727 0.3182 0.1364 

The gene coverage that gave the closest distance between the ND5 topologies and the mtGene or SM topologies are highlighted in red.  
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Upon examination of the SM dataset, there was a notable trend towards a decrease in 

phylogenetic conflict, from 7.2% to 1.1%, as gene coverage increased and taxa number 

decreased, see Figure 3.5. This suggests that there was more phylogenetic signal 

available when analysing all 13 mitochondrial genes together, rather than examining 

them individually (this point will be raised again in the discussion of this Chapter). 

 

To test the quality of the phylogenetic signal, ML trees were drawn from the SM dataset 

across all gene coverage levels; detailed results are shown in Figure 3.5. The topologies 

do not reflect trends in LM tests, as improvement in node support is not observed with 

decrease in percentage of phylogenetic conflict. When gene coverage is between 2-4 

genes, shown in Figure 3.5(A-C), there are multiple collapsed nodes with branch 

support of <50%, which is indicative of large proportions of phylogenetic conflict. Four 

clearly defined Superorders were observed when gene coverage was 4 and was between 

6-9, with a range of 109 to 284 taxa, see Figure 3.5(C) and Figure 3.5(E-G). 

 

The topology obtained from coverage across 10 genes and 59 taxa, Figure 3.5(I), has 

monophyletic groups for the Euarchontoglires and the Laurasiatheria, however the other 

placental orders are not resolved and Proboscidea node is also collapsed, showing clear 

incongruence with previous phylogenies (Meredith et al. 2011, Murphy et al. 2007). 

Topologies derived from coverage of 11 to 12 genes have placed the primates as a sister 

group to the Laurasiatheria with the exclusion of Glires a position that is incongruent 

with the majority of previous publications, see Figure 3.5(J-K).  The topological 

distance between phylogenies for each mitochondrial gene and the SM dataset were 

calculated using RF distances at each level of gene coverage. It was found that there 

was no agreement between topologies (RF = 0.000) from individual mtGene or the SM 

datasets for the same gene coverage.  While increase in gene coverage and decrease in 

missing data provided sufficient signal to resolve the 4 Superorders it was  not possible 

to estimate phylogenetic trees with strong node support for intra-ordinal nodes using 

these data.  
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Figure 3.5 Phylogenetic Changes Observed in the analysis of mtGenes when gene 

coverage is increased and taxon coverage is decreased. 

Topologies generated using RAxML and the SM dataset where gene coverage is 

increased incrementally from 2 genes in panel (A), to 13 genes in panel (L), while taxa 

number decreases from 455 taxa in panel (A), to 25 taxa in panel (L). Bootstrap values 

are shown for nodes with ≥ 50% support and nodes with bootstrap values <50% are 

collapsed. 



 155 

3.3.2.3 Does the removal of saturated sites reduce the amount of conflict in 

the dataset?  

Mitochondrial datasets tend to have more saturation compared to nuclear datasets 

(Brown et al. 1982), and so an assessment of whether their removal reduced the amount 

of phylogenetic conflict and improved overall phylogenetic resolution was carried out. 

In an effort to identify and remove rapidly evolving or saturated sites from the data, the 

sites in the data were categorised based on their rates of evolution (Cummins and 

McInerney 2011) as outlined in materials and methods section 3.2.5. LM was 

performed at each stepwise reduction in alignment length, and the change in levels of 

phylogenetic conflict at each step are shown in Figure 3.6. 

 

When the fastest site categories were removed (site category 20), a slight reduction in 

phylogenetic conflict was observed for ATP8 (36.6% to 35.4%) and ND5 (8.1% to 

8.0%), but there was no change in phylogenetic conflict observed in the ATP6 gene 

(17.8%) for the same manipulation. The removal of site category 20 resulted in an 

increase in phylogenetic conflict for the remaining 10 mtGenes, suggesting that removal 

of site category 20 could be removing necessary phylogenetic signal. Subsequent 

removals of site categories, e.g.  site categories [20 and 19] and site categories [20, 19 

and 18], resulted in an increase in the phylogenetic conflict in all 13 mtGenes. Removal 

of site category 20 from the SM dataset reduced the concatenated alignment from 4329 

aa to 882 aa. Unfortunately, this reduction in sequence length left an unsuitable amount 

of overlapping characters per taxa for phylogeny reconstruction to be conducted. 

 

Phylogenies were generated at each step for the individual mtGene datasets. However, 

as the fast evolving site categories were stepwise removed, the number of bifurcating 

nodes reduced and of the number of polytomies increased. For example, the ND5 gene 

(Figure 3.7), contained 149 taxa and had 257 nodes in its consensus tree from untreated 

data, this reduced to 237 nodes with the fastest site category (category [20]) removed, 

213 nodes with site category [20 and 19] removed, and 199 nodes with site categories 

[20, 19 and 18] removed.  The progressive breakdown of resolution, as illustrated in 

Figure 3.7, indicates that removal of fast evolving sites from the mtGene alignments 

does not improve the resolution for these data. For a complete list of all phylogenies, 

please refer to Appendix B.2. 
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Figure 3.6 The impact of removal of fast evolving site categories on phylogenetic 
signal. 

The mtGenes are colour coded as described in the key on the right hand side. The x-axis 

shows the mtGene datasets tested, where no site categories were removed [None], the 

fastest site categories were removed [20], site categories 20 and 19 removed [20,19] and 

site categories 20, 19 and 18 removed [20,19,18]. The y-axis shows the level of 

phylogenetic conflict which a black horizontal bar marking the 10% cut-off value.  
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Figure 3.7 The topological effect of Site Stripping ND5 dataset 

The majority rule consensus trees are shown for ND5 gene from (A) untreated data, (B) 

site categories [20] removed, (C) site categories [20 and 19] removed, and (D) site 

categories [20,19 and 18] removed. The Order names are given on the leaves of the 

phylogeny (A & B) along with colour codes for Superorders that were used in Figure 

3.2. The Order names are not given for C and D as there were too many, therefore 

branches and colour codes serve only as an assessment of phylogenetic resolution. 
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In this part of the study the fast evolving sites in each mtGene have been identified and 

removed sequentially from the MSAs. This was done in an effort to remove saturated 

positions and improve overall phylogenetic signal. It was observed that removing these 

sites had a negative impact on the phylogenetic signal. Previous studies have indicated 

that mitochondrial genes saturate faster than nuclear genes (Brown et al. 1982), and it 

has been suggested that at deep nodes these fast evolving sites can contain large 

amounts of homoplasy (Caterino et al. 2001, Reed and Sperling 1999). Therefore, it is 

likely that these data and methods may not have been suitable to accurately identify the 

saturated sites and improve overall phylogenetic resolution. 

3.3.2.4  Does the removal of “rogue taxa” reduce the phylogenetic conflict in 

the dataset?  

“Rogue taxa” are those whose phylogenetic placement varies from dataset to dataset or 

from gene to gene. This type of conflict can arise due to missing data, high rates of 

mutation or indeed very low rates of mutation (Sanderson 2002). By removing these 

rogue taxa, it is expected that the conflict in a dataset would be reduced. The 

identification of rogue taxa involves removing placental mammal species from the 

alignment whose percentage identity score is less similar to the remainder of the MSA 

than it is to the outgroups. This is an ad hoc approach but with the large number of taxa 

present it is hoped that clades will retain representatives.  

 

The largest number of rogue taxa identified were from the ATP6, ATP8, CO1, CO2, 

CO3 and CYTB datasets reporting between 22 and 61 rogue taxa. When removed from 

the MSA the result was a change in percentage identity score between 0.014 and 0.071, 

see Table 3.5. Far fewer rogue taxa were identified in the NADH genes (between 0 and 

6 taxa), and, the change in percentage identity score for this gene was under 0.008, see 

Table 3.5. 
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Table 3.5 Identification of Rogue Taxa using Mean Identity Scores 

Orders ATP6 ATP8 CO1 CO2 CO3 CYTB ND1 ND2 ND3 ND4 ND4L ND5 ND6 SM 
Carnivora 0 0 0 0 1 0 0 0 0 0 0 0 0 38 

Cetartiodactyla 0 1 0 0 0 0 0 0 1 0 0 0 0 68 
Chiroptera 0 0 0 0 0 1 0 0 0 0 0 0 0 27 

Chrysochloridae 0 0 0 0 0 0 0 0 0 0 0 0 0 2 
Cingulata 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

Dermoptera 0 0 0 0 0 1 0 0 0 0 0 0 0 2 
Glires 1 3 0 2 2 5 3 3 3 0 0 3 2 58 

Hyracoidea 0 0 0 1 0 0 0 0 0 0 0 0 0 2 
Insectivora 0 0 1 1 0 0 0 0 0 0 1 1 0 20 

Macroscelidea 0 0 0 1 0 0 0 0 0 0 0 0 0 2 
Perisodactyla 0 0 0 0 0 0 0 0 0 0 0 0 0 2 

Pholidota 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
Pilosa 0 0 0 0 0 1 0 0 0 0 0 0 0 3 

Primates 19 39 21 52 15 17 3 0 1 1 0 0 0 97 
Proboscidea 4 0 4 4 4 0 0 0 0 0 0 0 0 4 
Scandentia 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

Sirenia 0 0 0 0 0 0 0 0 0 0 0 0 0 2 
Tenrecidae 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

Tubulidentata 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
TOTAL 24/253 43/281 26/187 61/217 22/189 25/267 6/129 3/152 4/141 1/163 1/246 4/149 2/94 326/455 
mean_id 0.797 0.592 0.938 0.845 0.881 0.841 0.824 0.667 0.760 0.777 0.736 0.719 0.657 0.647 

mean_id (-rogue) 0.818 0.637 0.949 0.916 0.897 0.855 0.832 0.673 0.765 0.779 0.737 0.723 0.665 0.869 

Each of the Orders listed in the first column were tested for the presence of rogue taxa across mtGenes and the SM dataset. The entries in each cell 

represent the number of rogue taxa identified, the total for each gene is also shown. The mean identification score for each gene before and after rogue 

taxa are removed is displayed. 
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The number of rogue taxa identified in the SM dataset was 326/455, which exceeds that 

identified on a gene-by-gene basis (221/455). These results show that the concatenation 

of all the genes and the use of a supermatrix approach could in fact introduce more 

conflict in the data.  

 

The Orders where the majority of rogue taxa were identified were the Primates and the 

Proboscidea. There were 104 primates sampled in this study, in the SM dataset 94/104 

primates were identified as rogue. Between 24.6% and 80.8% of the rogue taxa 

identified in ATP6, ATP8, CO1, CO2, CO3 and CYTB were from the Primates. There 

were only 4 species sampled from the Proboscidea Order and in ATP6, CO1, CO2, CO3 

and the SM datasets, all 4 Proboscidea where identified as rogue. All identified rogue 

taxa were removed and the subsequent datasets were re-aligned and re-tested for 

phylogenetic signal using LM (Schmidt et al. 2002). A decrease in phylogenetic conflict 

upon removal of rogue taxa was observed in the following genes: ATP8 (Δ 1.0 %), 

COX2 (Δ 1.4 %), ND1 (Δ 0.2%), ND4L (Δ 0.4%) and ND5 (Δ 0.5%), where delta (Δ) 

indicates the change in phylogenetic conflict. Only ND5 passed the 10% phylogenetic 

conflict cut-off value. The SM dataset had 8.0% phylogenetic conflict. All resultant 

topologies were incongruent with the Superorder placement of mammals, as shown in 

Figure 3.2(A). RF distances showed that there was no agreement between any topology 

when compared. 

 

Although there were several rogue taxa identified, only a marginal decrease in 

phylogenetic conflict was observed and there was no overall improvement in resolution 

of topology. These findings lead to the conclusion that rogue taxa are not the primary 

contributors to mixed phylogenetic signal in mtGenes.  

 

3.3.2.5 Does the phylogenetic signal improve at more shallow phylogenetic 

depths?  

Previous studies have shown that large levels of homoplasy are observed when 

sampling from deep nodes using mitochondrial data (Caterino et al. 2001, Reed and 

Sperling 1999). The aim of this segment of the analysis was to understand where the 

phylogenetic signal starts to degrade when using mtGenes.  Groups of taxa were 

selected at different depths on the known species phylogeny (supported by the results 

from Chapter 2). Sampling taxa from various depths of divergence, the phylogenetic 
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signal was assessed to determine at what depth the phylogenetic signal from the 

mtGenes is lost. The various phylogenetic depths tested are shown in Figure 3.8(A) and 

were as follows: the Boreoeutheria and the Atlantogenata nodes, the four Superorder 

nodes (Euarchontoglires, Laurasiatheria, Afrotheria and Xenarthra), the two major 

subgroups within the Euarchontoglies (Glires and Primates), and the 5 major subgroups 

within the Laurasiatheria (Carnivora; Cetartiodactyla; Perissodactyla; Chiroptera and 

Insectivora). The node leading to the Cetacea and the Ruminata were also tested, as 

were the nodes from three Suborders (Caniforma, Feliformia, Tylopda). The closest 

available species were chosen as outgroups for each dataset. Phylogenetic conflict was 

estimated from each dataset using LM (Schmidt et al. 2002) and all topologies were 

generated using RAxML (Stamatakis 2006). The LM results for phylogenetic conflict 

across the 13 mitochondrial genes varied depending on node depths, for summary of 

datasets which passed the cut-off mark see Figure 3.8 (for detailed LM results see 

Appendix B.3). 
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Figure 3.8 Assessing phylogenetic conflict from datasets sampled from different nodes on the known placental mammal phylogeny. 

Panel (1) shows nodes that were tested in the analysis labelled with a red circle, each phylogenetic tree (B-I) represents the analysis of an mtGene as 

labelled, and (J) represents the Supermatrix (SM) dataset. The representative taxa used in each dataset (A-J) are the identical. The bolded lines 

represent either Superorders or Orders where the phylogenetic conflict was <10%. 1Caniforma and 2Cetacea denotes where these Orders within their 

Superorders also passed cut-off criteria of <10% phylogenetic conflict. 
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At the deepest diverging Boreoeutheria node, the mtGenes with <10% phylogenetic 

conflict were ND4 (8.2% conflict) and ND5 (6.10% conflict). Topologies obtained for 

ND4 and ND5 were more similar to each other (RF distance = 0.2042) than either was 

to the topologies of the remaining mtGenes. Furthermore, the topologies obtained for 

ND4 and ND5 were each more similar to the topology obtained for the SM dataset with 

RF distances of 0.1761 and 0.1445 respectively, than each other. This was an indication 

that ND4, ND5 and the SM dataset were starting to show more similarities than 

dissimilarities, and if this pattern continued it would indicate that at shallower nodes 

these genes may be suitable candidates for phylogeny reconstruction. 

 

Moving to the next node on the tree, the ancestral Euarchontoglires node, there were 4 

genes that had <10% phylogenetic conflict, these genes were ATP6 (8.5% conflict), 

COX3 (9.2% conflict), ND4 (8.9% conflict) and ND5 (3.5% conflict). The topologies 

resulting from these genes were incongruent with one another and the RF distances 

varied from 0.0056 to 0.3947.  

 

There were 8 genes that had <10% phylogenetic conflict when sampled at the Primate 

node, these were as follows: ATP6 (8.3% conflict), COX1 (7.8% conflict), COX2 

(7.4% conflict), CYTB (9.0% conflict), ND1 (9.6% conflict), ND2 (5.2% conflict), 

ND4 (5.8% conflict) and ND5 (1.9% conflict). The COX1 and ND3 topologies were 

completely congruent as were the COX2 and ND6 topologies, although these two sets 

of topologies were incongruent with one another due to a low level of common taxa 

between these two groups (only taxa in common are compared using the RF distance). 

The ND5 gene had the lowest proportion of conflict in its alignment and had the closest 

distance to the SM dataset (RF distance = 0.0882).  

 

LM analysis on the Glires node showed large proportions of phylogenetic conflict 

ranging from 10.1% to 43.9%. There were 3 datasets where topologies produced RF 

distances of 0.0, these were: (i) COX2 and CYTB, (ii) COX2 and ND4L and (iii) ND2 

and ND4L.  It is important to note that in each of these gene trees there were several 

nodes with <50% bootstrap support therefore while there was agreement between 

bifurcating nodes, the overall phylogenetic signal for these genes is weak. 

 

When sampling at the Laurasiatheria node, the four mtGenes that passed phylogenetic 

conflict were: CYTB (9.10% conflict), ND2 (9.5% conflict), ND4 (8.5% conflict) and 
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ND5 (4.3% conflict). There was no absolute agreement between the resultant topologies 

for any of the 4 mtGenes.  Shallower nodes within the Laurasiatheria Superorder were 

also successful in achieving low levels of phylogenetic conflict such as the 

Cetartiodactyla node: CYTB (8.7% conflict), ND2 (9.8% conflict) and ND5 (5.6% 

conflict), the Perissodactyla node: CYTB (5.7% conflict) and the Carnivora node: 

CYTB (9.9% conflict), ND2 (7.9% conflict), and ND5 (4.1% conflict). The CYTB and 

ND2 gene sampled from the Chiroptera node were congruent while the topology for the 

CYTB and the topology for the SM datasets had a very low RF distance of 0.0652. 

When topologies were examined from the Insectivora node, the ATP8 and ND2 

topology were in full topological agreement with that of the SM dataset. The shallow 

Cetacea node was tested for phylogenetic conflict across the mtGenes and it was found 

that ND2 and ND5 mtGenes had 9.10% and 6.3% phylogenetic conflict respectively.  

There were multiple topological similarities found when sampling was carried out 

within the Cetacea node. An RF distance of 0 was obtained when the COX1 topology 

was compared with ND1, ND2 and ND3, and RF distances of 0 was found for the 

cetacea node when ND6 was compared to ATP6 and COX2. MtGenes sampled from the 

Caniforma node showed that phylogenetic conflict was below the cut-off criterion of 

10% specifically the conflict for CYTB = 7.7%, ND2 = 6.0%, ND4 = 9.0%, ND5 = 

4.2% and the SM dataset = 9.7%. On comparison of the topologies for the mtGenes 

sampled from the Caniforma node, there was no agreement and RF distances ranged 

from 0.0870 to 0.4000. 

 

The ND2 mtGene was the only gene that had sufficiently low phylogenetic conflict 

(7.8%) at the Atlantogenata node. This conflict decreased to 3.3% when the more recent 

daughter node for Afrotheria was sampled for the ND2 gene. Also at the Afrotheria 

node the ND1 gene contained 8.9% phylogenetic conflict. At the Atlantogenata node 

topological similarities were observed for the ND2 and COX1 datasets with RF distance 

= 0. This was seen again in the Afrotheria analysis where ND2 had RF distance = 0 

when compared to both ATP6 and CO1. There were no datasets with <10% 

phylogenetic conflict when sampling at the Xenarthran node. 

 

In summary, it was observed that there was less phylogenetic conflict when nodes were 

sampled from shallower depths on the known species tree. Phylogenetic conflict did not 

decrease uniformly from deep to shallow nodes. Taking the ND4 gene as an example, 

the phylogenetic conflict was as follows: Eutherian node (9.7% conflict), Boreoeutheria 
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node (8.2% conflict), Euarchontoglires node (8.9% conflict) and Primates (5.8% 

conflict). When the topology from the ND4 gene was sampled at the Eutherian node 

and compared with topologies generated from data sampled from shallower nodes, the 

distance between the trees varies as follows: Boreoeutheria node (RF distance = 

0.0176), Euarchontoglires node (RF distance = 0.0294) and Primates (RF distance = 

0.0405). Overall there are large amounts of variation in the topological findings and 

there is more discordance between the phylogenies from the mtGenes and the 

SuperMatrix datasets than there are topological agreements.  

 

3.4 Discussion 

Overall, a decrease in phylogenetic conflict is observed in mtGenes when sampling at 

shallower nodes. The reduction in phylogenetic conflict was not reflected in the 

resolution of congruent bifurcating phylogenies with high bootstrap support at nodes. 

Previous phylogenetic studies of mitochondrial data show that homoplasy is not as 

prevalent at shallower nodes (Caterino et al. 2001, Reed and Sperling 1999). Using 

these data and methods there was no conclusive evidence that the phylogenetic signal 

degrades in a clock like fashion towards deeper nodes. When mitochondrial data is 

employed phylogenetic conflict was present at both deep and shallow nodes. According 

to these analyses, none of the mtGenes were determined to be good candidates for 

phylogeny reconstruction. This includes CYTB and CO1 currently used in the bar code 

of life project (Hebert et al. 2003, Borisenko et al. 2008). The levels of homoplasy and 

saturation were too high in mtGenes from mammals to tease apart phylogenetic signal 

from phylogenetic noise. 

 

The root of the placental mammal tree has been contested for the past number of years 

(Kriegs et al. 2006, Murphy et al. 2007, Murphy et al. 2001a) so it is unsurprising to see 

variations in the position of the Xenarthra and the Afrotheria at the base of the placental 

tree. The 4 Superorders of placental mammals are observed by multiple independent 

studies using nuclear data (Meredith et al. 2011, Murphy et al. 2001b, Hallstrom and 

Janke 2008), rare genomic change (Murphy et al. 2007), nuclear and mitochondrial data 

combined (Murphy et al. 2001a) and a study that used the entire mitochondria genome 

on 78 taxa (Kjer and Honeycutt 2007).  
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Initially the SM dataset appeared to have less phylogenetic conflict than the individual 

gene datasets, but the four well-defined Superorders were not supported. While longer 

sequence data has been shown to overcome phylogenetic inconsistencies of smaller 

datasets (Gadagkar et al. 2005, Gee 2003), this is not always the case. Previous large 

scales phylogenomic studies have still found phylogenetic inconsistencies regardless of 

implementation of a large Supermatrix dataset (Dunn et al. 2008, Philippe et al. 2009, 

Schierwater et al. 2009). Phylogenomic studies of mammals have attributed this to 

introgression of gene flow as a result of hybridization (Hallstrom and Janke 2008). The 

observations from Hallstrom and Janke (2008) were based on nuclear data. 

Introgression in mtGenes has been shown within species of mammals such as the Canis 

genus (Hailer and Leonard 2008) and full mitochondrial genome replacement has been 

shown within the Chiroptera Order (Berthier et al. 2006). It is possible that these 

evolutionary phenomena acting on mtGenes are negatively impacting the accurate 

resolution of the genealogical history of mammals. 

 

There are conflicting opinions on the impact of missing data on phylogeny (Lemmon et 

al. 2009, Kearney 2002, Wiens 2003, Philippe et al. 2004). In this study small 

improvements were observed when increasing gene coverage across the SM dataset 

with regards to the placement of the Superorders but conflict was still observed at 

shallower nodes. 

 

In this study, the removal of fast evolving sites from mtGene sequence data did not 

reduce the phylogenetic conflict and improve overall phylogeny resolution. When 

sequence samples were obtained from shallower nodes on the known mammal 

phylogeny, LM indicated that conflict in phylogenetic signal was within the criteria set 

(<10%), however the resulting topologies were incongruent with one another. 

Incongruence between mtGene phylogenies is an indicator of the level of error between 

two trees (Pisani et al. 2007) and as high levels of incongruence have been observed 

throughout this study whether the data as been treated or not, it does not increase our 

confidence in the application of mtGenes as a phylogenetic marker.  

 

While congruence in phylogenies generated from mtGene data is important, so too is 

congruence between different data types such as nuclear sequences, morphological data 

and microRNAs (Pisani et al. 2007, Rota-Stabelli et al. 2011, Campbell et al. 2011, 

Branger et al. 2011). Once again, the mtGene data was unable to generate topologies 
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that agreed with previous studies (Meredith et al. 2011, Murphy et al. 2007, Shoshani et 

al. 1996), and differed in the resolution of the four Superorders and inter-ordinal 

placements. 

 

Mitochondrial encoding genes have unusual properties compared to nuclear coding 

genes as they are predominantly membrane proteins and therefore require models to 

accommodate their unusual physiochemical properties (Lio and Goldman 1999). 

Mitochondrial DNA in vertebrates is tightly packed with no introns (Anderson et al. 

1981), whereas nuclear genes contain large numbers of introns and intergenic regions 

(Lander et al. 2001, Venter et al. 2001) indicating that the mitochondrial genome is very 

highly conserved. These key differences between mitochondrial and nuclear genomes 

illustrate the importance of improved modeling to accommodate the unusual and 

distinct properties of mitochondrial genomes.  

 

In this Chapter, I show that mitochondrial coding data is not suitable for resolving 

phylogenies at either deep or shallow nodes on the placental mammal phylogeny. While 

improvements are observed upon treating the data using various partitioning techniques, 

the resultant topologies are incongruent with the well-known Superorder groupings (see 

Figure 3.2). Using individual genes is not recommended for further topological 

evaluations of the placental mammals; this includes those genes used in the bar code of 

life project (CO1 and CYTB). With the 10,000 vertebrate genomes project underway, it 

is becoming less necessary to rely upon one/two genes to infer the genealogical history 

between species.  Increased taxon sampling was proposed in the discussion of Chapter 2 

to be necessary to resolve certain placental mammal nodes (e.g. Laurasiatheria), 

following the analysis in this Chapter it is evident that the inclusion of the current 

mtGene data available is not the solution. 

 

Even though phylogenies generated using mtGene data were inconsistent, the resulting 

phylogenies do hold some information about the evolutionary history of a species with 

regards to potential recombination and hybridization events in the ancestral placental 

lineages. 
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Chapter 4 

 

4 The landscape of molecular adaptation and non-adaptive 

processes on telomere regulating genes in mammals. 
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4.1 Introduction 

4.1.1 Potential Pitfalls in the Detection of Positive Selection 

A major application of phylogeny in molecular studies of genes and genomes is to 

provide directionality to analyses of multiple sequence alignments (MSAs). One such 

example is assessing selective pressure variation across clades or individual lineages 

and to tracing signatures of molecular adaptation as described in section 1.1.3.2 

(Messier and Stewart 1997, Creevey and McInerney 2002, McDonald and Kreitman 

1991, Goldman and Yang 1994, Nielsen and Yang 1998, Yang and Nielsen 2002). 

These analyses can provide powerful evidence for adaptation at the molecular level that 

can be analysed further at the phenotypic level (Loughran et al. 2012, Levasseur et al. 

2006). In this Chapter I apply the phylogeny I have resolved for the placental mammals 

to the analysis of selective pressure variation across a small group of proteins involved 

in telomere maintenance. 

 

The method of selective pressure analysis employed is the codon based maximum 

likelihood method implemented in CodeML from the PAML package (Yang 1997, 

Yang et al. 1998). The success and validity of selective pressure analyses using 

CodeML (Yang 1997)  has been frequently disputed (Zhai et al. 2012, Hughes 2007). 

There are a number of factors, algorithmic and sequence based, that can result in false 

positives in these selective pressure analyses. It has been shown that different alignment 

methods give different aligned sequences, which can impact phylogenetic 

reconstruction and subsequent detecting of selective pressure analyses (Markova-Raina 

and Petrov 2011, Fletcher and Yang 2009, Schneider et al. 2009). Whelan and 

Blackburne demonstrated that alignment methods that have a higher tendancy to place 

non-homologous characters together are more prone to errors when testing for positive 

selection (Whelan and Blackburne 2012). There are restrictions when using CodeML 

(Yang 1997, Yang et al. 1998) in terms of the size of the dataset and the level of 

sequence similarity. Simulations have shown that prediction of positively selected sites 

is unreliable when less than 6 species are used, when sequences are very similar (tree 

length < 0.11) and if sequence length is low (< 50 codons) (Anisimova et al. 2002, 

Anisimova et al. 2001). 
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The phylogeny used, and specifically whether it is a star phylogeny or a random tree, 

also impacts on these analyses (Anisimova et al. 2003). CodeML (Yang 1997, Yang et 

al. 1998) takes as input a phylogenetic tree to reconstruct ancestral sequences at nodes 

and from that determines when in time selective pressures varied and on what lineage 

(see section 1.1.3.2). Application of a star phylogeny or random tree topologies in a 

CodeML study results in extremely high error rates for the LRTs (Anisimova et al. 

2003). Gene trees do not necessarily agree with the genealogical history of the species, 

therefore in this Chapter I have examined the different selective pressure results 

obtained using the gene and species trees. 

 

There are also a number of evolutionary and population level phenomena that impact 

upon, and directly influence, the rates of mutation and fixation of non-adaptive 

substitutions. Therefore, ω > 1 may not always be indicative of protein functional shift 

(see section 1.1.5) and may reflect variations in effective population size (Ne) (Chen and 

Li 2001), recombination events (Anisimova et al. 2003), biased gene conversion 

(gBGC) (Galtier and Duret 2007, Galtier et al. 2001) or relaxation of functional 

constraint (Hughes and Friedman 2004, Wilkinson et al. 2005). Recombination events 

(Anisimova et al. 2003) and gBGC (Galtier and Duret 2007, Galtier et al. 2001) can 

cause elevated fixation of mutations which can be misinterpreted for signatures of 

positive selection.  

 

There are a number of physical factors that are thought to influence the ω observed for a 

given protein including position in pathway (hub or peripheral), degree of connectivity, 

intracellular location and the complexity of the biological process (Aris-Brosou 2005, 

Fraser et al. 2002, Hahn and Kern 2005, Vitkup et al. 2006, Hudson and Conant 2011).  

Studies have shown that proteins that are highly connected are less likely to be under 

adaptive evolution than proteins that are on the network periphery (Aris-Brosou 2005, 

Fraser et al. 2002, Hahn and Kern 2005, Vitkup et al. 2006, Hudson and Conant 2011). 

This set of telomere related proteins were chosen as the test set as they represent a set of 

genes that are present across all vertebrates, are strongly linked in terms of their 

functions and interactions, and contain a small number of genes previously published as 

being under positive selection.  
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4.1.2 The Importance of Telomere Maintenance in Cancer Evasion 

Telomeres are short tandem “TTAGGG” sequence repeats (~10-15kb long in humans) 

that cap the termini of chromosomes and telomerase is the enzyme that maintains 

telomere length in human germline or stem cells (Figure 4.1). In humans the life span of 

a somatic cell is controlled by the length of the telomere cap, for each round of cell 

division a “TTAGG” repeat is lost and the telomeric sequences are shortened (de Lange 

2002). After a series of cell divisions, the telomeric sequences reach a point where the 

cell reaches “replicate senescence”, this mechanism has evolved in certain placental 

mammal species and protects against cancer (Seluanov et al. 2007). Species that display 

high telomerase activity in somatic cells have evolved other lineage specific 

mechanisms for cancer avoidance such as the naked mole rat where cell proliferation is 

controlled based on cell contact inhibition (Seluanov et al. 2009). In this Chapter I 

sought to investigate the evolutionary pressures acting on genes that interact with 

telomeres (Blasco 2005). These genes have critical functions in DNA repair and 

maintenance of chromosome stability (Blasco 2005). By analysing the site-specific and 

lineage-site specific selective pressure variations, the objective was to determine if there 

were sections of the telomere maintenance network that have been under strong 

selective pressure to change across all placental mammals or indeed in specific lineages. 

 

Errors can be introduced into selective pressure analyses through the use of ill-fitting or 

inappropriate alignment methods.  To combat this, a statistical comparison of alignment 

methods was used to determine the most significant alignment for each gene 

(Thompson et al. 2001). To address the potential impact of phylogeny of the selective 

pressure analysis, a simple approach was taken whereby both the gene and species tree 

for each of the single gene orthologs in the dataset were assessed for their fit to the data 

and were simultaneously used in the CodeML analysis, and the results (parameter 

estimates and likelihood scores) were compared. The impact on the level of false 

positive detection of positive selection of non-adaptive mutations was also assessed, 

specifically gBGC as measured by the percentage GC3 (GC3%) and recombination. 

Identification of (i) higher than expected GC3%, and or (ii) recombination events, 

coinciding with putative positively selected regions is taken as an indication of the 

presence of false positives. With these data and approaches, the results of the selective 

pressure analyses were filtered for true positives (as estimated by my criteria set out 

above). An in-depth analysis is presented on the microbat as it has an extremely high 

metabolic rate along with extreme longevity with respect to its body size. 
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Figure 4.1 Structure of mammal telomeres.  

The telomere end of the chromosome is shown along with three key structures 

necessary for its maintenance and control: (i) TRF1 complex, (ii) TRF2 complex and 

(iii) Telomerase. This image has been adapted from (Blasco 2005) with permission. 
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4.2 Materials and Methods 

4.2.1 Data Assembly and Taxa Sampling 

Coding DNA sequences (CDSs) were obtained for 29 vertebrate genomes through the 

Ensembl web server (Flicek et al. 2012) (http://www.ensembl.org/). Coding DNA for 

the Naked Mole Rat (NMR) genome was downloaded from the NMR database 

(http://mr.genomics.org.cn/page/species/index.jsp) (Kim et al. 2011). The details of all 

30 species genomes used in this Chapter are in Table 4.1. The longest canonical 

transcript for each CDS was identified using the program 

“GetEnsemblCanonicalTranscripts.pl” (Appendix C.1) (Perl provided by Thomas 

Walsh, group-member). This program takes a FASTA formatted file containing all 

available transcripts, identifies the longest canonical transcript and outputs one 

transcript per gene.  It works as follows: 

 
perl GetEnsemblCanonicalTranscripts.pl input_fasta_file 
output_fasta_file 
 

The CDSs were translated to their amino acid counterparts using methods described in 

section 2.2.1.  
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Table 4.1 Taxon Sampling 

Common Name Latin Names Genome 
Version 

Species code 

Alpaca Vicugna pacos vicPac1 Alp 
Cat Felis catus CAT Cat 

Chicken (outgroup) Gallus gallus WASHUC2 Chi 
Chimpanzee Pan troglodytes CHIMP2.1.4 Chk 

Cow Bos taurus UMD3.1 Cow 
Dog Canis lupus familiaris CanFam_2.0 Dog 

Dolphin Tursiops truncatus turTru1 Dol 
Elephant Loxodonta africana loxAfr3 Ele 

Guinea_pig Cavia porcellus cavPor3 Gui 
Hedgehog Erinaceus europaeus eriEur1 Hed 

Horse Equus caballus EquCab2 Hor 
Human Homo sapiens GRCh37.p7 Hum 

Kangaroo_rat Dipodomys ordii dipOrd1 Kag 
Macaque Macaca mulatta MMUL_1.0 Mac 
Marmoset Callithrix jacchus calJac3 Mar 
Megabat Pteropus vampyrus pteCVam1 Meg 
Microbat Myotis Lucifugus myoLuc2 Mic 
Mouse Mus musculus NCBIM37 Mou 

Naked Mole Rat Heterocephalus glaber 1 Nmr 
Opossum (outgroup) Monodelphis domestica momDom5 Opo 

Orangutan Pongo abelii PPYG2 Ora 
Panda Ailuropoda melanoleuca ailMel1 Pan 

Pig Sus scrofa Sscrofa10.2 Pig 
Pika Ochotona princeps OchPri2.0 Pik 

Platypus (outgroup) Ornithorhynchu anatinus OANA5 Pla 
Rabbit Oryctolagus cuniculus oryCun2.0 Rab 

Rat Rattus norvegicus RGSC3.4 Rat 
Shrew Sorex araneus sorAra1 Shr 

Squirrell Spermophilus tridecemlineatus spetri2 Squ 
Zebra_Finch (outgroup) Taeniopygia guttata taeGut3.2.4 Zeb 

Species used in this analysis are listed with Common names, Latin names, Genome 

versions and 3 letter short hand notation that was employed in this study. 
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4.2.2 Ortholog Identification and Telomere Gene Identification 

Ortholog identification was carried out using orthoMCL (Li et al. 2003) see section 

2.2.3.1, the pipeline and individual gene counts for each step of the process and 

identification of gene families are shown in Figure 4.2. The 56 Telomerase genes were 

taken from a review by Blasco (2005) and names are given in Table 4.4. The program 

“FindFile.py”  (Appendix C.2) was written to extract the 56 candidate genes from the 

total number of gene families (23, 818), resulting in a total of 54 gene families. 

4.2.3 Alignment Generation and Editing 

Assembly of protein and nucleotide alignments along with alignment editing was 

performed using the methods described in section 2.2.3.2 and 2.2.3.3. Each MSA was 

manually edited using Se-AL (Rambaut 2001) to remove poorly aligned regions. 

Alignments have been provided in Appendix C.3. It has been recommended that at least 

6 taxa are used in order to accurately identify positive selection using CodeML 

(Anisimova et al. 2002), therefore following editing of the MSA the number of useable 

datasets was reduced from 54 to 52. The impact of the alignment editing or filtering was 

not tested on these data, however, this methodological approach has been previously 

successful in similar peer reviewed work (Morgan et al. 2010, Morgan et al. 2012). 

4.2.4 Phylogeny reconstruction 

The identification of the protein evolutionary model and phylogenetic reconstruction 

were carried out using ModelGenerator v.85 (Keane et al. 2006) and hybrid MrBayes 

v.3.1.2h (Huelsenbeck and Ronquist 2001) respectively, using the processes described 

in section 2.2.4.1 and  2.2.6.1. Phylogenetic trees are available in Appendix C.4. 
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Figure 4.2 Pipeline of Ortholog Identification  

This pipeline describes the process of identifying gene families across 30 species from 

an initial set of 560,141 using orthoMCL (Li et al. 2003).The Blue boxes represent 

datasets and yellow boxes represent methods applied.  
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Table 4.2  Telomere Associated Gene Set 

Gene Name Telomere Regulation Function # of Seqs MSA  (bp) MeanID Phylogenetic Model of 
Evolution Gene Family 

ABL1, ABL2 DNA repair 48 3762 0.668 JTT+4Γ MultiGene 
ANKRD17, ANKHD1, 
ANKHD1-EIF4EBP3 DNA repair  39 8247 0.727 JTT+4Γ MultiGene 

ATM DNA repair  21 9180 0.785 JTT+4Γ SGO 
ATRX DNA repair  15 7485 0.794 JTT+4Γ SGO 
BLM DNA repair 18 4263 0.773 JTT+4Γ SGO 

BRCA1 DNA repair  28 5622 0.575 JTT+4Γ SGO 
BRCA2 DNA repair 24 10425 0.577 JTT+4Γ SGO 
BRIP1 DNA repair  20 3756 0.694 JTT+4Γ SGO 
CBX1 DNA repair 29 555 0.973 JTT+I Paralogs 
CBX3 DNA repair  36 582 0.974 JTT+I Paralogs 
CBX5 DNA repair  23 573 0.973 JTT+4Γ SGO 
DKC1 Telomerase components  28 1545 0.800 JTT+4Γ Paralogs 
ERCC1 DNA repair  24 849 0.691 JTT+4Γ SGO 
ERCC4 DNA repair 26 2754 0.833 JTT+4Γ Paralogs 
EXO1 DNA repair  29 2529 0.665 JTT+4Γ Paralogs 

FANCA DNA repair  23 4368 0.589 JTT+4Γ SGO 
FANCB DNA repair  28 2550 0.590 JTT+4Γ Paralogs 
FANCC DNA repair 24 1680 0.632 JTT+4Γ SGO 

FANCD2 DNA repair 25 4497 0.714 JTT+4Γ SGO 
FANCE DNA repair  24 1617 0.615 JTT+4Γ Paralogs 
FANCF DNA repair  19 1065 0.579 JTT+4Γ SGO 
FANCI DNA repair  20 3972 0.773 JTT+4Γ SGO 
FANCL DNA repair  28 1125 0.776 JTT+4Γ SGO 
MLH1 DNA repair  26 2280 0.813 JTT+4Γ SGO 
MLH3 DNA repair  27 4407 0.703 JTT+4Γ SGO 
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Gene Name Telomere Regulation Function # of Seqs MSA  (bp) MeanID Phylogenetic Model of 
Evolution Gene Family 

MRE11A DNA repair 25 2130 0.815 JTT+4Γ Paralogs 
MSH3 DNA repair 21 3369 0.756 JTT+4Γ SGO 

MUTYH DNA repair  24 1560 0.714 JTT+4Γ SGO 
NBN DNA repair 25 2262 0.638 JTT+4Γ SGO 

PALB2 DNA repair  23 3570 0.605 JTT+4Γ SGO 
PARP2 DNA repair  22 1710 0.837 JTT+4Γ SGO 
PCNA DNA repair  23 786 0.969 JTT+4Γ SGO 
PMS1 DNA repair  26 2799 0.753 JTT+4Γ SGO 
PMS2 DNA repair  24 2610 0.719 JTT+4Γ SGO 

RAD50 DNA repair  27 3936 0.804 JTT+4Γ SGO 
RAD51D DNA repair  24 987 0.736 JTT+4Γ SGO 

RB1 DNA repair  28 2793 0.817 JTT+4Γ SGO 
RBL2, RBL1 Chromatin regulators 44 3573 0.654 JTT+4Γ MultiGene 

SLX4 DNA repair 17 5514 0.582 JTT+4Γ SGO 
SUV39H1 Chromatin regulators 25 1236 0.800 JTT+4Γ Paralogs 
SUV39H2 Chromatin regulators 31 1230 0.826 JTT+4Γ Paralogs 

TDG DNA repair  24 1236 0.794 JTT+4Γ Paralogs 
TERF1 Telomere-binding protein 26 1308 0.657 JTT+4Γ Paralogs 
TERF2 Telomere-binding protein 23 1635 0.750 JTT+4Γ SGO 
TERT Telomerase components 22 3333 0.568 JTT+4Γ SGO 
TINF2 Telomere-binding protein 23 1359 0.707 JTT+4Γ Paralogs 

TNKS2, TNKS Telomere-binding protein 50 4020 0.818 JTT+4Γ MultiGene 
TREX1 DNA repair 14 945 0.740 JTT+4Γ SGO 
WRN DNA repair 26 4224 0.627 JTT+4Γ SGO 

XRCC3 DNA repair  23 1044 0.687 JTT+4Γ SGO 
XRCC5 DNA repair  26 2199 0.749 JTT+4Γ SGO 
XRCC6 DNA repair  28 1827 0.771 JTT+4Γ Paralogs 

Details on Components and Main Roles of Genes were taken from (Blasco 2005) with permission.  
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4.2.5 Phylogenetic Signal Tests 

The level of phylogenetic conflict was assessed for each of the 56 genes using the 

likelihood mapping (LM) function in TreePuzzle v5.2 (Schmidt et al. 2002) (see section 

2.2.8). The χ2 test was also implemented in Tree-Puzzle (Schmidt et al. 2002) to test if 

the model of evolution accurately described the data (see section 2.2.5.3). A Shimodaira 

Hasegawa (SH) (Shimodaira and Hasegawa 2001) test was performed to assess whether 

the gene tree was statistically significantly better in describing the data under the 

evolutionary model than the species tree (P < 0.05).  

 

4.2.6 GC3 Analysis-Evolutionary Analyses 

The GC3 content of each sequence was calculated using codonW (Peden 1999) and 

these scores were assessed to determine if a species GC3 content was outside the 

standard deviation of the mean GC3 and therefore subject to gBGC. Along with this, a 

sliding window analysis of GC3 content was carried out using “GC_estimator” 

(Appendix C.5) to assess the GC3 variation across the gene for a given lineage. To run 

this program, gaps were removed from each MSA, and a non-overlapping sliding 

window of 90 bp moved across the length of each sequence calculating the percentage 

of GC3 (GC3%) frame by frame. It is run as follows: 

 

python GC_estimator.py infile.fasta  > outfile.fasta 

 

4.2.7 Recombination Detection- Evolutionary Analyses 

Recombination breakpoints within sequences were calculated using RDP4 (Martin et al. 

2010). RDP4 employs the following primary exploratory recombination signal detection 

methods: RDP (Martin and Rybicki 2000), GENECONV (Padidam et al. 1999), 

BOOTSCAN/RESCAN (Martin et al. 2005), MaxChi (Smith 1992), Chimaera (Posada 

and Crandall 2001), SiScan (Gibbs et al. 2000), 3Seq (Boni et al. 2007).  A secondary 

method, PhylPro (Weiller 1998) was used to assess the recombination results of these 

primary methods. The recombination detection methods are divided into three groups 

based on their algorithmic approach: (i) substitution, (ii) distance, and (iii), phylogeny 

based. Each of these methods are detailed in Table 4.3. Seven of the methods mentioned 

below use a sliding-windows approach to analyse data, with the exception of 
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GENECONV that splits the alignment into every possible triplet pair. CHIMERA and 

3SEQ require that both parental sequences are present in order to detect the recombinant 

sequences while other programs only require that one parental sequence is present. 

Recombination detection can be influenced by among site rate heterogeneity, sequence 

divergence and levels of recombination. As a result, the 8 methods described in Table 

4.3 vary in their ability to detect recombination events and Posada and Crandall (2001) 

recommend that they are used in conjunction with one another to more accurately detect 

recombination events (Posada and Crandall 2001). CHIMERA and MAXCHI are 

identified as being the most accurate breakpoint detection methods implemented in 

RDP4 (Posada and Crandall 2001). As substitution methods were used to identify 

recombination events, validation of recombinant sequences should be carried out using 

a phylogenetic based method. In this analysis, the recombination detection methods 

have been weighted to increase accuracy of recombination detection. All recombination 

breakpoints detected must have statistical support from two separate programs. One of 

these programs must be from the substitution-based methods CHIMERA or MAXCHI 

and the other must be from the two other well performing phylogenetic based methods 

BOOTSCAN or SISCAN (Posada and Crandall 2001). Recombination detection is 

difficult, therefore detection of recombination events using additional methods increases 

overall confidence in accuracy. The results for recombination analysis are available in 

Appendix C.6. 
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Table 4.3 Recombination Detection Methods 

Method Category Break Point Detection Sliding Windows Requires both parental 
sequences 

Reference 

RDP Phylogenetic + + - (Martin and Rybicki 2000) 

GENECONV Substitution + - - (Padidam et al. 1999) 

BOOTSCAN Phylogenetic + + - (Salminen et al. 1995) 

MAXCHI Substitution + + - (Smith 1992) 

CHIMAERA Substitution + + + (Posada and Crandall 2001) 

SISCAN Phylogenetic + + - (Gibbs et al. 2000) 

3SEQ Substitution + + + (Boni et al. 2007) 
PHYLPRO Distance + + - (Weiller 1998) 

Each of the methods used this study is tabulated along with the category the method belongs to. The “+” symbol signifies if the method is able to carry 

out break point detection, in the fourth column the “+” signifies that the method works using a sliding window approach. A method requiring both 

parently sequences to be present is denoted with a “+” in column five. The “-” symbol is given where a method does not have these features. This table 

is adapted from (Posada and Crandall 2001). 
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4.2.8 Testing for site and lineage site positive selection 

Variation in selective pressures were analysed using site-specific and lineage-site 

specific models in CodeML from the PAML4.3 package (Yang 1997, Yang et al. 1998). 

Discussed in detail in section 1.1.3.2. All extant lineages were tested for signatures of 

adaptive evolution under these lineage specific CodeML models (Yang 1997, Yang et 

al. 1998). All results from CodeML analyses have been made available in Appendix 

C.7. The false discovery rate (FDR) was not calculated to correct for multiple tests. 

4.2.9  Identification of Protein-Protein Interactions 

STRING v0.9 (Jensen et al. 2009) is an online program available at http://string-db.org 

and was employed to show experimental interactions (with a high confidence value of 

0.700) between 52 telomere regulating proteins used in this study. The network of 

telomere regulating gene connectivity was obtained through a list of Ensembl human 

IDs.
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4.3  Results  

In this analysis 56 telomere-associated genes were clustered into 54 gene families.  

MSAs were generated using both distance and evolutionary aware methods ensuring a 

comprehensive exploration of alignment space, as described in section 2.2.3.2. By 

applying methods with different approaches it was possible to minimise the effect of 

mis-aligned sequences on: (i) incorrect tree reconstruction, (ii) incorrect recombinant 

breakpoint detection and, (iii), false positives in selective pressure analyses. The norMD 

score was calculated for MAFFT, MAFFT+RASCAL, MUSCLE, MUSCLE+RASCAL 

and PRANK alignments. The MSA from the method with the highest norMD score was 

brought forward for further testing. In cases where multiple methods scored equally 

well, the MSA that was brought forward for analysis was chosen from the methods of 

choice in an arbitrary way (i.e. alphabetically).  Sequences that had less than 60% 

coverage over the entire length of the MSA or did not have 0.6 minimum overlap of a 

position in the column (as described in section 2.2.3.3) were removed using trimAL 

(Capella-Gutierrez et al. 2009), giving a final number of 52 gene families that were 

suitable for selective pressure analysis. The 52 gene families were composed of 4 

multigene families, 14 families that contained paralogous sequences and 34 SGO’s. 

 

There were 20/52 gene families that had equal norMD scores across the 5 separate 

alignment methods. MAFFT was the best alignment software in 7/52 cases, MAFFT 

and RASCAL in 2/52 cases, MUSCLE in 2/52 cases and PRANK in 10/52 cases. In no 

case did MUSCLE+RASCAL exclusively produce the best alignment. All alignments 

were checked by eye to ensure alignments were of good quality and poorly aligned 

regions were removed using Se-Al (Rambaut 2001).  
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4.3.1 Choosing the Best Phylogeny for Selective Pressure Analyses 

LM was performed to assess the quantity of phylogenetic conflict in each dataset. There 

were high levels of phylogenetic conflict observed, with 33/52 datasets displaying > 

10% phylogenetic conflict and only 19/52 datasets with sufficiently low levels of 

phylogenetic conflict (< 10%), see Table 4.5. Lineage-site specific rate variation has 

been shown to impact accurate phylogeny reconstruction (Yang 1994) and can be 

caused by lineage-specific directional selection (Dorus et al. 2004) (described in section 

1.1.4), therefore the phylogeny employed to detect positive selection in CodeML may 

be incorrect as a result of strong selective pressures, and this could impact the false 

discovery rate (Anisimova et al. 2003). Ideally, to generate the phylogenies for further 

analysis one would apply heterogeneous models that accommodate heterogeneity over 

the phylogeny and the data, however as discussed in section 1.2.1, individual gene 

datasets tend to lack the phylogenetic information to accommodate sophisticated 

models. The fit of each of the sequences in the datasets to the model of evolution 

(JTT+4Γ or JTT+I) was assessed using the χ2 test of ccompositional homogeneity in 

TreePuzzle v5.2 (Schmidt et al. 2002). A total of 40/52 datasets had 100% of sequences 

pass the χ2 test of compositional homogeneity. Only 12/52 genes had between 1 and 4 

sequences that did not fit the composition of the model, see Table 4.4. In summary, 

while high levels of phylogenetic conflict are observed across the data, the 

compositions of the data were modeled adequately by the associated model of 

evolution. Gene trees were applied to all paralogous sequences, however where LM and 

χ2 test of compositional homogeneity showed systematic biases within the data, this 

reduced confidence in the phylogeny and results from these gene trees were treated with 

caution, these trees are highlighted in Table 4.4. 

 

Phylogenetic trees obtained from SGO families were tested against the fit of the 

canonical species tree (Meredith et al. 2011) using an SH test (Shimodaira and 

Hasegawa 2001) under the protein model of evolution (JTT+4Γ). The canonical species 

tree used in this analysis was from Chapter 2. The results of the SH tests are shown in 

Table 4.4. In cases where systematic bias were indicated by LM and the χ2 test of 

compositional homogeneity, and where the SH test indicated that the species tree was 

not statistically different from the gene tree (p-value > 0.05), then the species tree was 

employed in further analyses.  
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Table 4.4 Assessing the Best Phylogeny for Selection Analysis 

Likelihood Mapping χ2 Compositional Homogeneity SH Tests 
Gene Name Gene 

Family Quartets [4-7] Pass/Fail Sequences P < 0.05 Pass/Fail 
Gene Tree 
Confidence Species Tree Gene 

Tree 

Phylogeny for 
Selection Analyses 

ABL1_ABL2 MultiGene 9.2 PASS 0 PASS YES NA NA Gene Tree 
ANKRD17, ANKHD1, 
ANKHD1-EIF4EBP3 MultiGene 5 PASS 0 PASS YES NA NA Gene Tree 

RBL2_RBL1 MultiGene 8.8 PASS 0 PASS YES NA NA Gene Tree 
TNKS2_TNKS MultiGene 20.4 FAIL 0 PASS NO NA NA Gene Tree* 

CBX1 Paralogs 90.3 FAIL 0 PASS NO NA NA Gene Tree* 
CBX3 Paralogs 84.9 FAIL 0 PASS NO NA NA Gene Tree* 
DKC1 Paralogs 29.7 FAIL 0 PASS NO NA NA Gene Tree* 

ERCC4 Paralogs 16.1 FAIL 0 PASS NO NA NA Gene Tree* 
EXO1 Paralogs 20.9 FAIL 1 FAIL NO NA NA Gene Tree* 

FANCB Paralogs 6.5 PASS 0 PASS YES NA NA Gene Tree 
FANCE Paralogs 16.3 FAIL 1 FAIL NO NA NA Gene Tree* 

MRE11A Paralogs 24.2 FAIL 0 PASS NO NA NA Gene Tree* 
SUV39H1 Paralogs 36.7 FAIL 0 PASS NO NA NA Gene Tree* 
SUV39H2 Paralogs 34.2 FAIL 0 PASS NO NA NA Gene Tree* 

TDG Paralogs 36.3 FAIL 0 PASS NO NA NA Gene Tree* 
TERF1 Paralogs 19.3 FAIL 0 PASS NO NA NA Gene Tree* 
TINF2 Paralogs 15.5 FAIL 0 PASS NO NA NA Gene Tree* 
XRCC6 Paralogs 17.1 FAIL 1 FAIL NO NA NA Gene Tree* 

ATM SGO 5.3 PASS 1 FAIL NO 0.085 1 Species Tree 
ATRX SGO 7 PASS 0 PASS YES 0.258 1 Gene Tree 
BLM SGO 6.2 PASS 1 FAIL NO 0.176 1 Species Tree 

BRCA1 SGO 6.9 PASS 4 FAIL NO 0.174 1 Species Tree 
BRCA2 SGO 2.7 PASS 1 FAIL NO 0.08 1 Species Tree 
BRIP1 SGO 10 PASS 0 PASS YES 0.232 1 Gene Tree 
CBX5 SGO 69.5 FAIL 0 PASS NO 1 0.083 Species Tree 

 
 



 186 

Likelihood Mapping χ2 Compositional Homogeneity SH Tests Gene Name 
Gene 

Family 
Family Quartets [4-7] Pass/Fail Sequences P < 0.05 Pass/Fail 

Gene Tree 
Confidence Species Tree Gene 

Tree 

Phylogeny for 
Selection Analyses 

ERCC1 SGO 20.6 FAIL 0 PASS NO 1 0.074 Species Tree 
FANCA SGO 2.9 FAIL 4 FAIL NO 0.346 1 Species Tree 
FANCC SGO 13 FAIL 0 PASS NO 0.022 1 Species Tree 

FANCD2 SGO 5.4 PASS 0 PASS YES 0.029 1 Gene Tree 
FANCF SGO 9.3 PASS 1 PASS YES 0.024 1 Gene Tree 
FANCI SGO 8.2 PASS 0 PASS YES 0.158 1 Gene Tree 
FANCL SGO 25 FAIL 0 PASS NO 1 0.028 Species Tree 
MLH1 SGO 17.3 FAIL 1 FAIL NO 0.323 1 Species Tree 
MLH3 SGO 6.5 PASS 1 FAIL NO 0.069 1 Species Tree 
MSH3 SGO 10 PASS 0 PASS YES 0.051 1 Gene Tree 

MUTYH SGO 15.7 FAIL 0 PASS NO 0.025 1 Species Tree 
NBN SGO 23.3 FAIL 1 FAIL NO 0.104 1 Species Tree 

PALB2 SGO 7.7 PASS 0 PASS YES 0.395 1 Gene Tree 
PARP2 SGO 23.2 FAIL 0 PASS NO 0.185 1 Species Tree 
PCNA SGO 46.3 FAIL 0 PASS NO 0.033 1 Species Tree 
PMS1 SGO 12.4 FAIL 0 PASS NO 0.066 1 Species Tree 
PMS2 SGO 14.4 FAIL 0 PASS NO 0.186 1 Species Tree 

RAD50 SGO 20.5 FAIL 0 PASS NO 1 0.342 Species Tree 
RAD51D SGO 23.6 FAIL 0 PASS NO 0.076 1 Species Tree 

RB1 SGO 23 FAIL 0 PASS NO 1 0.292 Species Tree 
SLX4 SGO 1.5 PASS 2 FAIL YES 1 1 Species Tree 

TERF2 SGO 22.9 FAIL 0 PASS NO 0.069 1 Species Tree 
TERT SGO 3.9 PASS 3 PASS YES 0.154 1 Gene Tree 

TREX1 SGO 13.7 FAIL 0 PASS NO 0.257 1 Species Tree 
WRN SGO 7 PASS 0 PASS YES 0.041 1 Gene Tree 

XRCC3 SGO 18.8 FAIL 0 PASS NO 0.287 1 Species Tree 
XRCC5 SGO 18.1 FAIL 0 PASS NO 0.301 1 Species Tree 

 * is where gene tree fail LM test or data is compositionally heterogeneous. 
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4.3.2 Studying the effect of Species tree versus Gene Tree on CodeML 

parameter estimates for Single Gene Orthologs 

Following LM analyses, χ2 compositional homogeneity tests and SH tests, it was 

determined that a species tree was a better description of the MSAs for 24/34 SGOs. 

Previous studies have compared the LRT results from data analyzed under a star 

phylogeny or random phylogenies against the result from the actual phylogeny and 

demonstrated that the incorrect phylogeny resulted in false positives (Anisimova et al. 

2003). Here, I determine the variations in the LRT results when the species tree and 

gene tree are used in a CodeML analysis. In total 34 SGOs were analysed using both 

gene and species trees and the site-specific and lineage-site specific models outlined in 

Chapter 1 (section 1.1.3.2). The results from the M8 model and modelA were compared 

and are described below, see Table 4.5 for summary. 

 

There were 21/34 SGOs where the difference in lnL values determined that the species 

tree was a better fit to the data than the gene tree using the M8 selection model in 

CodeML (Yang 1997). Five of the cases where the gene tree was deemed a suitable 

choice, the species tree was a better fit to the data under the M8 model of evolution. In 

contrast, there were 13 cases where the gene tree was a better fit to the data when 

compared to the species tree (Table 4.5).  

 

Both gene tree and species tree analyses detected site-specific positive selection using 

M8, however they differed in the proportion of sites and the ω values (although these 

were slight fluctuations and did not shift the result from insignificant to significant or 

vice versa). The maximum difference in the estimation of the proportion of sites using 

the M8 model was 0.016, while the maximum difference of the estimation of ω using 

the M8 model was 0.24. In 17/34 cases both the species tree and gene tree identified an 

identical number of BEB sites with a PP > 0.50 using the M8 model.  In 9 cases the 

species tree identified 1 or 2 more sites than the gene tree using BEB and in 8 cases the 

gene tree identified between 1 and 23 more positively selected sites using BEB 

compared with the species tree.  

 

In 27 SGOs both gene and species tree identified an identical number of species under 

lineage-specific positive selection using modelA. There were 6 cases (ERCC1, FANCI, 

RB1, TERT, WRN and XRCC3) where the gene tree phylogeny identified either 1 or 2 
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more species as evolving under lineage-specific evolution that were not identified when 

the species phylogeny was applied. In each of these cases the lnL values indicated that 

the species phylogeny had a better fit to the data than the gene tree. When the species 

tree phylogeny was applied to the analysis of the BLM gene, an additional lineage was 

detected as being under positive selection. The gene tree phylogeny had an lnL value (-

29678.97), lower than that of the species tree (-29690.61), indicating that it was also a 

better fit to the dataset. 

 

The results of this study demonstrated that CodeML (Yang 1997, Yang et al. 1998) 

estimates vary depending on whether a gene tree or a species tree is used but that the 

effects of phylogeny are greater on the lineage-specific models. There are still some 

discrepancies within the placement of species within the mammal phylogeny (as 

discussed in Chapter 2), especially within the Laurasiatheria. While the species 

phylogeny appeared to out perform the gene phylogeny in some cases, this was not 

consistent across all genes tested. Therefore, the decision on whether to apply a gene or 

species phylogeny to data for a CodeML analysis (Yang 1997, Yang et al. 1998) was 

made based on confidence in the phylogeny as assessed in section 4.3.1. The option of 

applying a species tree phylogeny was not available when dealing with multigene 

families. Chapter 2 and 3 show how both compositional heterogeneity and phylogenetic 

conflict impact upon phylogenetic reconstruction, here it is shown how these features of 

the sequence data increase the probability of detecting false positives in both site and 

lineage-site selective pressure analyses. 
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Table 4.5 Species Tree versus Gene Tree M8 Selection Model Results4 

lnL Scores (M8) p1 and ω (M8) BEB Sites (M8) 
 

Lineage selection (modelA) Gene Name 
Species Gene Species Gene Species Gene Species Gene 

ATM -68608.92 -68604.2 p1=0.04231 ω=1.08290 p1=0.04078 ω=1.09068 None None 7 7 
ATRX* -42670.52 -42685.99 p1=0.02873 ω=1.84172 p1=0.03166 ω=1.73277 77 76 7 7 

BLM -29690.61 -29678.97 p1=0.01907 ω=2.41815 p1=0.01977 ω=2.37309 43 44 7 6  
BRCA1 -70416.83 -70431.21 p1=0.05203 ω=1.90926 p1=0.05229 ω=1.89899 117 137 14 14 
BRCA2 -113334.77 -113326.97 p1=0.04358 ω=1.96602 p1=0.04375 ω=1.95884 86 86 15 15 

BRIP1* -29718.51 -29730.61 p1=0.05544  ω=1.64715 p1=0.05580 ω=1.63258 45 47 9 9 

CBX5 -2262.99 -2515.49 p1=0.00001 ω=1.00000 p1=0.00001 ω=1.00000 None None 1 1 

ERCC1 -7993.08 -8028.15 p1=0.03055  ω=1.31294 p1=0.02743 ω=1.38325 None None 4 5  

FANCA -54188.44 -54184.42 p1=0.04216 ω=1.54261 p1=0.04073 ω=1.56497 51 50 10 10 
FANCC -17566.35 -17562.43 p1=0.11771 ω=1.26564 p1=0.10204 ω=1.29535 16 16 5 5 

FANCD2* -41964.31 -41963.1 p1=0.05662 ω=1.54966 p1=0.05936 ω=1.51734 52 54 7 7 
FANCF* -10919.71 -10899.64 p1=0.02252 ω=1.1742 p1=0.01684 ω=1.12264 None None 4 4 

FANCI* -28086.14 -28076.61 p1=0.04859  ω=1.00000 p1=0.04439 ω=1.00000 None None 4 5 

FANCL -9971.88 -10119.41 p1=0.06238 ω=1.00000 p1=0.06194 ω=1.00000 None None 7 7 
MLH1 -19978.59 -20020.54 p1=0.08220 ω=1.00000 p1=0.07920 ω=1.00000 None None 4 4 

MLH3 -46075.21 -46059.76 p1=0.07499  ω=1.42864 p1=0.07320 ω=1.42978 32 32 6 6 

MSH3* -26491.45 -26491.51 p1=0.05073 ω=1.37915 p1=0.04883 ω=1.39567 33 32 7 7 

MUTYH -14610.85 -14613.96 p1=0.03673  ω=2.20526 p1=0.04752 ω=1.96084 14 17 6 6 

NBN -24254.25 -24247.86 p1=0.05408 ω=1.73623 p1=0.05459 ω=1.73047 31 32 11 11 
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lnL Scores (M8) p1 and ω (M8) BEB Sites (M8) 
 

Lineage selection (modelA) Gene Name 
Species Gene Species Gene Species Gene Species Gene 

PALB2* -39785.84 -39798.18 p1=0.07360 ω=1.67105 p1=0.07623 ω=1.65863 75 98 10 10 

PARP2 -10888.72 -10891.11 p1=0.09472  ω=1.29553 p1=0.09581 ω=1.28060 24 24 2 2 

PCNA -3975.76 -4109.79 p1=0.00001 ω=1.00000 p1=0.00001 ω=1.00000 None None 0 0 
PMS1 -26409.68 -26410 p1=0.04964 ω=1.37239 p1=0.04753 ω=1.38453 29 28 5 5 

PMS2 -27893.84 -27876.69 p1=0.09490  ω=1.30701 p1=0.09123 ω=1.31912 24 24 2 2 

RAD50 -28681.95 -28804.33 p1=0.00157 ω=2.40006 p1=0.00146 ω=2.44689 7 7 8 8 
RAD51D -9815.27 -9802.6 p1=0.02956 ω=1.73401 p1=0.02285 ω=1.82251 9 8 10 10 

RB1 -19139.18 -19254.2 p1=0.01458  ω=1.68000 p1=0.01289 ω=1.79892 15 14 6 7 

SLX4 -45924.23 -45924.23 p1=0.07380 ω=1.61905 p1=0.07380 ω=1.61905 74 74 9 9 

TERF2 -11150.06 -11185.95 p1=0.04074  ω=1.96320 p1=0.03107 ω=2.05648 20 20 5 5 

TERT* -39181.45 -39183.74 p1=0.06761 ω=1.2743 p1=0.06816 ω=1.26374 42 43 9 10 

TREX1 -5608.02 -5607.81 p1=0.11071  ω=1.62503 p1=0.11028 ω=1.62808 34 34 0 0 

WRN* -43958.42 -43977.16 p1=0.05703 ω=1.69283 p1=0.05831 ω=1.66250 42 41 9 10 

XRCC3 -11769.45 -11795.73 p1=0.00877  ω=2.16549 p1=0.01046 ω=2.10012 8 6 2 4 

XRCC5 -19090.57 -19120.69 p1=0.04717  ω=1.74596 p1=0.04392 ω=1.79767 32 30 4 4 

 

The SGO associated gene name is listed along with species and gene phylogeny results comparisons under the M8 model and modelA.  

* represents cases where there was greater confidence in the gene tree as assessed by LM and compositional fit of models. 
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4.3.3 Analysis of Site-specific Positive Selection results in the context 

of Protein-Protein interacting networks. 

A protein-protein interaction network of human telomere regulating genes is shown in 

Figure 4.3(A). Only protein-protein interactions where strong experimental evidence 

exists were included. LRT calculations determined 36/52 of the telomere regulating 

genes were under directional selection (ω > 1), and model M8 was a statistically better 

fit to the data than model M7 or M8a. The genes where site-specific positive selection 

was identified using model M8 were plotted against the amount of protein-protein 

interactions for each gene, see Figure 4.3(B). The most connected protein in the 

telomere network (RAD50) was identified to be evolving under positive selection (ω = 

2.4). Other proteins such as MUTYH and PALB2 were identified as having interactions 

with only 1 other protein and had similar levels of positive selection with ω values of 

2.21 and 1.66 respectively, see Figure 4.3(B). Furthermore, other highly connected 

proteins (ATM, MLH1, ABL1 and PCNA) were found to be evolving neutrally. Using 

these data, it is observed that there is no correlation between level of connectivity of the 

proteins and selective pressures acting on a gene in this dataset. The results are more 

indicative of similar levels of positive selection acting across the network of protein-

protein interactions. If however this dataset was expanded and in include all possible 

protein-protein interactions then a relationships between protein-protein connectivity 

and strength of positive selection may be observed. 
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Figure 4.3 Degree of the protein in the network (protein-protein connectivity) 
compared to  ω value estimated from model M8. 

The protein-protein interaction network is shown for the telomere regulating proteins in 

the dataset is shown in (A). Where proteins are the nodes on the network, the pink lines 

are connections through experimental evidence and blue lines are where large portions 

of sequence similarity are observed between proteins. (B) The degree of each protein (a 

measurement of the number of interacting partners it has) is plotted against the ω value 

obtained using the M8 selection model. The red horizontal line is ω = 1 (neutral 

evolution). 
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4.3.4 Lineage-Specific Selective pressure analysis of Telomere 

Regulating Proteins 

Lineage-specific positive selection acting on telomere regulating proteins occurred 

across all placental mammals studied regardless of life trait histories, see Figure 4.4. 

Four separate roles of telomere regulating proteins were analysed; (i) proteins involved 

in DNA repair in 43/52 genes, (ii) proteins that form the telomerase enzyme in 2/52 

genes, (iii) proteins that directly bind with telomeres in 5/52 genes, and (iv), proteins 

that regulate the chromatin in 4/52 genes. The results of these four layers of activity are 

summarised here:  

 

(i) DNA repair genes are critical in identification of mutational defects in sequences and 

initiating subsequent repair. The highest proportion of lineage-site specific selection 

was observed within the DNA repair genes and species such as human (3/52), orangutan 

(4/51), kangaroo rat (5/23), pika (2/26), horse (7/46), cat (2/19), shrew (8/26) and 

hedgehog (7/25) only showed lineage-specific evolution within this functional group. 

As the vast majority of genes tested in this chapter (43/52) are involved in DNA repair 

the large number of genes showing signs of positive selection in this functional category 

is more likely due to over representation of this functional category in the original 

sample rather than some significant functional bias. 

(ii) TERC, TERT and DKC1 are components of the Telomerase enzyme that regulates 

telomere length, see Figure 4.1. There are 13 lineages that show evidence of positive 

selection acting on the components of this enzyme, see Figure 4.4. Marmoset, microbat 

and guinea pig species in total account for two thirds of the telomerase components 

under positive selection in this category while all other species have either none or 1 of 

their proteins in this category under positive selection.  

(iii) Telomere binding proteins are directly involved in DNA repair and regulation. 

There were 15 lineages identified as under lineage specific positive selection. 

(iv) Telomeres are bound by nucleosome arrays that, when modified by histone 

methytransferases (HMTases), methylate the histone in heterochromatic regions 

(Tommerup et al. 1994, Garcia-Cao et al. 2004). This epigenetic regulation of telomeric 

chromatin is as crucial step in telomere maintenance. In total 15 species had evidence 

for positive selection in their chromatin regulation proteins. 
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Figure 4.4 Lineage-site specific selective pressure analyses on different telomere functional groups 

The length of each bar represents the number of times a species was represented in each MSA of the 52 telomere regulating genes. The absolute 

number of genes where no positive selection was identified are in grey and where positive selection was identified in DNA repair genes (green), 

telomeres components (red), telomere binding proteins (purple) and chromatin regulators (blue) are shown for each species. The species phylogeny 

used is shown on the left of the diagram. 
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4.3.5 Identification of non-adaptive substitution patterns in the data.  

Recombination events (Anisimova et al. 2003) and gBGC (Galtier and Duret 2007, 

Galtier et al. 2001) are non-adaptive processes that can create signatures which mimic 

positive selection in LRT analyses. These data were tested for species-specific 

recombination events and results are shown alongside lineage-specific positive selection 

results in Figure 4.5. Recombination events were detected in 47/52 of genes in the 

dataset, and in all lineages at high levels. The GC3% was calculated for all sequences, 

and where the GC3 content for a species was above the standard deviation from the 

mean GC3, the species was highlighted (Figure 4.5). The species that showed the 

highest proportion of GC3 bias were the outgroups and the rodents, while the primates 

had no sequences that had elevated GC3 levels. 
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Figure 4.5 Positive selection, Recombination and GC3 deviation across Lineages.  
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Figure 4.5 legend: Telomere associated gene names are listed in left column, species 

are shown at the top. Inside each cell is the number of times a species is represented in a 

dataset. Yellow cells signify positive selection in sites for the second column (M8) and 

in lineages for all other columns. Blue boxes indicate species where recombination 

events have been detected and red boxes represent species who have possible gBGC 

within their alignment.  
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It is difficult to tease apart signatures for positive selection from recombination as 

accurate break point detection is difficult (Posada 2002), and positive selection can 

occur within recombinant regions (Orsi et al. 2007). The proportions of genes that have 

undergone positive selection and also show evidence of recombination are shown in 

Figure 4.6(A). No recombination events were detected in human or kangaroo rat, 

however the general level of recombination was extremely high in genes where positive 

selection was also identified. Over 50% of genes that showed signatures of positive 

selection also displayed signal for recombination: macaque (6/9), marmoset (7/8), rat 

(6/11), naked mole rat (8/11), guinea pig (13/25), squirrel (8/16), pika (2/2), cow (8/9), 

pig (11/14), dog (9/16), cat (2/2), shrew (4/8) and hedgehog (5/7).  

 

The results presented here indicate that high levels of lineage-specific positively 

selected sites may not be under adaptive evolution and could be the product of non-

adaptive processes. Elevated fixation of mutations as a result of gBGC can distrupt the 

underlying ω calculation and generate false positives (Ratnakumar et al. 2010). 

According to these data, none of the genes identified under positive selection in any of 

the 5 primates, kangaroo rat, dog and elephant had increased mutational fixation as a 

result of gBGC. The highest proportion ( > 50% of genes) of elevated GC3 in genes 

identified under lineage-specific positive selection were observed in rat, pika and 

platypus.  
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Figure 4.6 Proportion of lineages with ω > 1, recombination events and high GC3 content. 

The list of species is shown in the centre of (A) and (B) .The proportion of ω > 1 (green), recombination events (blue) and GC3 content deviating 

above the mean (red) is shown. 
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4.3.6 Functional annotation on microbat candidate genes  

Initially there were 19 genes identified as being under lineage-specific positive selection 

in the microbat lineage. In cases where the dataset fails the LM test, or the model of 

evolution does not adequately describe the composition of species, the phylogenetic 

confidence is reduced. Therefore, 5 genes were removed from further functional 

analysis based on low confidence in the phylogeny (EXO1, SUV39H1, TDG, TINF2 

and TNKS2-TNK). There were 2 genes that displayed signatures of positive selection 

that may have been influenced by gBGC (EXO1 and NBN) and these were not 

analysed. High levels of recombination have been shown to impact LRT analysis and 

therefore genes where recombination was detected have been excluded from further 

functional analyses (ANK-Genes, BRIP1, DKC1, NBN, RBL1-RBL2, TERT, TINF2, 

TNKS2-TNK). A summary of the exclusion criteria is shown in Table 4.6.   

 

In total, eight genes involved in telomere maintenance were identified as showing 

strong signs of lineage-site positive selection in the microbat. These are, in so far as is 

possible to detect, free from factors such as incorrect phylogeny, gBGC or 

recombination that could cause false positive results. For a summary of parameter 

estimation and positions of BEB positively selected sites - see Table 4.7. 
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Table 4.6 Identification of  Microbat Candidate Genes 

Positively 
Selected gene 

Phylogeny 
Confidence Possible gBGC Recombination Detected Candidate 

Gene 

ANK-Genes High No Yes No 
BRCA1 High No No Yes 
BRCA2 High No No Yes 
BRIP1 High No Yes No 
DKC1 High No Yes No 
EXO1 Low Yes No No 

FANCB High No No Yes 
MLH3 High No No Yes 
MSH3 High No No Yes 
NBN High Yes Yes No 

PALB2 High No No Yes 
RAD50 High No No Yes 

RBL1-RBL2 High No Yes No 
SLX4 High No No Yes 

SUV39H1 Low No No No 
TDG Low No No No 
TERT High No Yes No 
TINF2 Low No Yes No 

TNKS2-TNK Low No Yes No 
Total Excluded 5/19 2/19 8/19 11/19 
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Table 4.7 Summary of Lineage-site results on Microbat Candidate Genes.  

Gene Name lnL Parameter Estimation BEB Sites Sufficient Functional 
Information 

BRCA1 -70598.50 
p0=0.39612 p1=0.53457 p2=0.02950 
p3=0.03981 ω0=0.21609 ω1=1.00000 

ω2=3.52551 
133, 347, 455, 1243, 1423, 1472 

Yes 

BRCA2 -113666.01 
p0=0.47874 p1=0.51112 p2=0.00491 
p3=0.00524 ω0=0.21191 ω1=1.00000 

ω2=725.60726 

54, 99, 253, 454, 470, 528, 602, 603, 604, 689, 
1032, 1134, 1135, 1539, 1599, 1734, 1807, 1841I 
1929, 1930, 1956, 2088, 2100, 2335, 2366, 2428, 

3345, 3350 

Yes 

FANCB -31847.86 
p0=0.50293 p1=0.49198 p2=0.00257 
p3=0.00252 ω0=0.25478 ω1=1.00000 

ω2=373.09404 

129, 414, 643, 
 781 

No 

MLH3 -46208.31 
p0=0.52735 p1=0.46841 p2=0.00225 
p3=0.00199 ω0=0.11786 ω1=1.00000 

ω2=998.99970 
160, 390 

No 

MSH3 -26594.47 
p0=0.75650 p1=0.23603 p2=0.00570 
p3=0.00178 ω0=0.10346 ω1=1.00000 

ω2=48.48211 
452 

No 

PALB2 -39874.60 
p0=0.50554 p1=0.48795 p2=0.00331 
p3=0.00320 ω0=0.20889 ω1=1.00000 

ω2=73.35118 
690, 1167 

No 

RAD50 -28862.10 
p0=0.88511 p1=0.11318 p2=0.00152 
p3=0.00019 ω0=0.07252 ω1=1.00000 

ω2=84.92669 
1094 

No  

SLX4 -46004.12 
p0=0.49536 p1=0.49827 p2=0.00318 
p3=0.00319 ω0=0.13148 ω1=1.00000 

ω2=249.39697 
817, 1149 

No 
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The positively selected sites in the 8 candidate genes were compared against the human 

sequences in the Swiss-Prot (UniProt 2012) database to assign function through 

homology. There was only sufficient functional information for 2 of the 8 genes 

(BRCA1 and BRCA2) from which to do an in-depth study and these have been detailed 

in section 4.3.6.1. 

 

4.3.6.1 BRCA1 and BRCA2 Microbat Gene Analysis 

Fanconi anemia/BRCA pathway is a major DNA repair pathway (D'Andrea and 

Grompe 2003). FANCB is a subunit of a multi-protein core complex, which activates 

FANCD2 in response to DNA damaged (Soulier et al. 2005). FANCD2 then co-

operates with BRCA1 and BRCA2 to repair damaged DNA (D'Andrea and Grompe 

2003). All three of these genes have been identified, as evolving under positive 

selection within microbat however there is only functional information available for the 

discussion of BRCA1 and BRCA2.  

 

Selective pressure analyses revealed 6.3% of sites in the microbat BRCA1 sequence 

evolving under strong positive selection with ω = 3.54.  The 6 positively selected sites 

identified using BEB were compared to homologous positions in human Swiss-Prot 

entry (P38398). Interaction regions, specific domains and mutagenesis sites are 

displayed on Figure 4.7(A). There were 64 naturally occurring cancer causing variants 

listed on Swiss-Prot (UniProt 2012), these were not included in the Figure 4.9(A) to 

avoid cluttering the results. Positively selected site 1423 is between mutagenesis sites 

1423 and 1457 and has been shown in vitro to reduce phosphorylation by ATM related 

kinase when mutated, thus impacting the DNA repair pathway (Tibbetts et al. 2000). 

The 5 other positively selected sites were distributed throughout the BRCA1 gene but 

no further functional annotation could be gleaned from available data.  

 

There were 28 sites or 1.01% of sites identified as positively selected in the microbat 

BRCA2 sequence, and they were compared to human Swiss-Prot entry (P51587) for 

further functional annotation. Four of these positively selected sites were found 

neighbouring and within BRCA2-NPM1 interacting regions (H. F. Wang et al. 2011). 

Three positively selected sites were located within the region functionally annotated to 

interact with FANCD2 a central protein in the Fanconi aneamia pathway, see Figure 
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4.7(B). Positively selected sites 3345 and 3350 were found in close proximity to human 

mutagenesis site T3387A (Bahassi et al. 2008). This site is critical for phosphorylation 

of interacting proteins CHK1 and CHK2 and subsequent recruitment of RAD51 to sites 

of DNA dammage (Bahassi et al. 2008).  

 

The microbat lineage is undergoing strong positive selection at specific sites in the 

BRCA1 and BRCA2 genes. Functional annotation through homology indicates that 

positive selection is acting on regions involved in protein-protein interaction aswell as 

catalytically important sites. 
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Figure 4.7 Lineage-specific position selection on BRCA1 and BRCA2 with Microbat treated as foreground  

The amino acid position along (A) the BRCA1 protein and (B) the BRCA2 protein are shown on the x-axis. The position of the positively selected sites 

(red dots) and their corresponding posterior probability is given on the Y-axis to the left. The results of a sliding window analysis of the GC3%  along 

the alignment is the blue line jagged line, values of GC3% are given on the right Y-axis. In panel (A) for BRCA1 the blue shaded regions (i), (ii) and 

(iii) correspond to the PALB2 interaction region, BRCT1 and BRCT2 Domains respectively, and the vertical Purple lines represent mutagenesis sites 

that impact BRCA1 function. In panel (B) the corresponding information for the BRCA2 protein is displayed, in this case the blue shaded regions (i), 

(ii) and (iii) are PALB2, NPM1 and FANCD2 interaction regions respectively.  
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4.4 Discussion 

Recently, simulation studies have shown that alignment methods can give very 

dissimilar MSAs depending on the quantity of insertion or deletion events (Blackburne 

and Whelan 2012), which has been shown to impact phylogeny and detection of 

positive selection (Markova-Raina and Petrov 2011, Fletcher and Yang 2009, Schneider 

et al. 2009). Most recently it has been shown that the alignment method can also impact 

upon the level of false positive detection of positive selection using CodeML (Whelan 

and Blackburne 2012). In this Chapter, I have applied both sequence based and 

phylogeny aware alignment methods to the dataset in order to ensure appropriate 

alignment generation, accurate phylogenetic resolution, and to reduce of the detection of 

false positives.   

 

Assessing the impact of phylogeny of the selective pressure analysis the simple 

approach taken in this chapter shows that in the application of the gene tree rather than 

the species tree impacts only subtly upon the estimates of parameters when using model 

M8. A greater impact is seen when applying lineage-specific models (modelA) with 

differences seen in the number of lineages detected as well as sites identified as 

positively selected. This is because the phylogeny gives directionality to detection of 

selective pressure variation and if species are incorrectly clustered together, the 

ancestral sites will be incorrectly reconstructed therefore impeding accurate detection of 

when and where adaptive evolutionary events have occurred. Therefore the assessment 

of phylogenetic conflict or compositional heterogeneity under the empirical protein 

models JTT+I and JTT+4Γ gave an indication of how accurate the phylogeny was 

reconstructed for each gene. Previous studies along with work carried out in this thesis 

address the impact of phylogeny on CodeML analyses (Anisimova et al. 2003), 

therefore in cases where there is reduced confidence in the phylogenetic output this in 

turn leads to reduced confidence in results from CodeML (Yang 1997, Yang et al. 1998)  

as the codon models applied require directionality from a phylogeny. 

 

Previous studies have demonstrated that genes whose protein products are highly 

connected (have a high degree) and are central in a network evolve more slowly than 

genes that are less connected and at the network periphery (Aris-Brosou 2005, Fraser et 

al. 2002, Hahn and Kern 2005, Vitkup et al. 2006, Hudson and Conant 2011). In this 

Chapter I show that this is not the case for these telomere proteins, and that adaptive 
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evolutionary events are occurring across different functional categories of proteins 

involved in regulating the telomeres in vertebrates.  The results suggest that these genes 

are potentially co-evolving, as work together to regulate telomeres, maintain 

chromosomal integrity and ensure that cancer causing mutations are removed, i.e. 

improving anti-cancer mechanisms within mammal species. There were 52 telomere-

regulating genes tested for signatures of adaptive evolution and 43 of those are involved 

directly in the functional category of DNA repair. These DNA repair proteins are part of 

a much larger protein-protein interaction network (Begley and Samson 2004). It is 

possible that if additional protein-protein interacting DNA repair proteins that interact 

with these proteins for different functions were analysed a different pattern of positive 

selection versus connectivity may emerged. 

 

The impact of non-adaptive mutations on the level of false positive detection of positive 

selection was also assessed by quantifying the amount of gBGC (as measured by the 

percentage GC3 – GC3%) and recombination present in these data. Calculating 

recombination breakpoints is not easy, and published methods have mixed levels of 

success in accurately identifying recombinant sequences and exact breakpoints 

positions (Posada and Crandall 2001), therefore it was difficult to interpret whether 

positively selected sites overlapping with recombination events were in fact false 

positives. Using the methods described in section 4.27 recombination was detected in 

47/52 of genes tested and was present in 28/30 of the lineages were positive selection 

was also identified. The GC3% was elevated in 20 out of 30 lineages and possible 

gBGC was present in at least one lineage in 49 of the 52 telomere-associated genes.  

 

To date, there have been no studies that indicate how to successfully separate gBGC 

from positive selection. The approach taken here directly estimates both gBGC and 

positive selection and overlays the results, in this way it is possible to identify where 

high GC3% may result in the fixation of mutations that could be incorrectly identified 

as positively selected. In summary, the level of non-adaptive evolutionary events and 

adaptive evolutionary events acting on these telomere-associated genes are high. Work 

by Lynch (2007) demonstrate that non-adaptive evolutionary forces such as 

recombination, and deleterious mutations are also major contributing factors in shaping 

network complexity (Lynch 2007), therefore both forces could be acting on the 

telomere interacting network of genes. 
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The rate of synonymous (Ds) substitutions within a coding gene, in theory should be 

free of selective pressures however, saturation of substitutions at the synonymous level 

has been previously reported (Gojobori 1983). To assess if the synonymous 

substitutions rates within the telomere associated genes tested are saturated it is possible 

to look at a pair wise comparison of Ds substitutions across all species using the Nei-

Gojobori  (NG) method (Nei and Gojobori 1986) in CodeML (Yang 1997, Yang et al. 

1998). If a Ds pairwise score between species is > 2 it is an indication that saturation at 

the synonymous substitution level has taken place and therefore estimation of ω could 

be susceptible to false positives. However, previous studies have shown that saturation 

of synonymous substitutions does not tend to increase the proportion of false positive 

selection using LRT (Anisimova et al. 2001). 

 

DNA repair mechanisms have been shown to vary across species (Britten 1986, Hart 

and Setlow 1974). Placental mammals have developed lineage specific mechanisms of 

regulating their cell proliferation and thus evading cancer (Seluanov et al. 2007, L. 

Wang et al. 2011). The results of this analysis indicate that adaptive evolutionary 

changes have occurred in all lineages, where species represented in 19 to 52 telomere 

maintenance genes had between 5.76% to 51.02% of the dataset showing signatures of 

positive selection. Non-adaptive evolutionary changes such as gBGC and recombination 

have been shown to occur in 28 out of the 30 species tested to the exclusion of human 

and kangaroo rat, however there are other factors such as effective population size (see 

section 1.1.5) that were not explored due to a lack of Ne information for many mammal 

populations, and that may cause fixation of mutations that are not the result of positive 

selection (Eyre-Walker 2002, Woolfit and Bromham 2003). In summary both adaptive 

and non-adaptive changes have played a role in the evolution of these genes in a 

lineage-specific manner. 

 

A focused study on microbat BRCA1 and BRCA2 genes determined through homology 

that positive selection is acting on functionally important regions. The debate on the 

validity of inference of function through orthology is ongoing (Nehrt et al. 2011, 

Altenhoff et al. 2012, Dessimoz et al. 2012) and is discussed in section 1.1.7. Both 

BRCA1 and BRCA2 have been analysed by previous studies (O'Connell 2010) which 

found that M8 did not fit BRCA1 following LRT analysis, but that BRCA2 had 4.88% 

of sites evolving with ω = 2.33. In the reanalysis of these genes both BRCA1 and 

BRCA2 have been identified under the M8 model of evolution as having 5.2% and 
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4.36% with ω values of 1.91 and 1.97 respectively. The models applied in both studies 

are the same; the difference is the taxa sampled. The O’Connell (2010) study of the 

BRCA1 gene employed 10 species, 9 of which overlapped with the 28 species 

employed in the reanalysis of BRCA1 and all 8 species used in the O’Connell (2010) 

analysis of the BRCA2 gene overlap with the 24 species used in this study.  Denser taxa 

sampling of clades allows more accurate reconstruction of phylogeny (Heath et al. 

2008), which in turn impacts analysis of selective pressure variation using phylogeny 

dependent methods such as CodeML (Yang 1997, Yang et al. 1998).  

 

In conclusion the application of an accurate phylogeny and densely sampled clades is 

fundamental in selective pressure analyses. Both adaptive and non-adaptive 

evolutionary events have played a role in shaping lineage-specific changes in genes 

involved in telomere maintenance, DNA repair, maintenance of chromosomal integrity 

and potentially lineage-specific cancer evasion. 
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Chapter 5 

5 Discussion 
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5.1 Discussion 

 

Since molecular sequence data was recognized to contain information pertaining to the 

genealogical history of species it has become increasing popular as a character choice in 

phylogeny reconstruction. The human genome was completed at the start of the century 

(Lander et al. 2001, Venter et al. 2001) and since then reduction in costs and 

improvements in sequencing techniques have heralded the age of phylogenomics giving 

rise to ambitious ventures such as the 10,000 vertebrate genomes project 

(http://genome10k.soe.ucsc.edu/). Using completed mammal genome data made 

available through Ensembl (http://www.ensembl.org/) and international sequencing 

consortia such as the BGI (B. Li et al. 2011), I sought to use a phylogenomics approach 

to resolve the root of the placental mammal phylogeny and then apply this robust 

phylogeny to determine the selective pressure variation acting on a network of telomere 

maintenance genes that play a dominant role in cancer evasion. 

 

When datasets are of sufficient size (sequence length and taxon coverage), when they 

contain enough phylogenetically informative sites and the model of evolution is 

adequate in describing the composition and exchange rate of characters within the data 

then it is possible to address these complicated phylogenetic problems. Therefore, the 

constant theme of this body of work hinges on the importance of implementing these 

criteria to address the resolution of the placental mammal phylogeny.  

 

In this thesis I have employed posterior predictive simulations to assess the fit of the 

model to the composition of the data, and while the phylogenetic models employed 

successfully model compositional heterogeneity there were other aspects of the model 

that were not assessed for goodness of fit, such as the rate matrix, invariant parameters 

and gamma parameters. Previous studies have employed posterior predictive 

simulations to assess the global fit of the model to the data (Bollback 2002), but this has 

not been performed in this thesis, therefore there maybe aspects of the model that are 

not fully adequate in describing the data. 

 

Recent advances in models that allow for exchange rate heterogeneity across the 

phylogeny (Foster 2004) and the data (Lartillot and Philippe 2004) have made it 

possible to accommodate dataset heterogeneity and for the first time, these sophisticated 
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models have been applied to placental mammal data. In Chapter 2 I was able to show, in 

the re-analysis of a major publication on the placental mammal data (Murphy et al. 

2001a), that not only did the models that accommodated heterogeneity over the 

phylogeny and data fit the data better than previously employed homogeneous models, 

but that these parameter rich models were able to adequately model the composition of 

the data while the homogeneous model of evolution (GTR+I+4Γ) was not.  

 

The reanalysis of the Murphy et al (2001) dataset (66TaxonSet) unearthed the issue of 

having a dataset that was large enough to accommodate the parameter rich models and 

contained enough information to reject competing hypotheses. The requirement of 

dataset of suitable size (Quang et al. 2008) and phylogenetic informativeness  

(Simmons et al. 2004) has been demonstrated in previous studies.  Therefore it was 

necessary to assemble of a novel dataset (39TaxonSet) using all available genomes and 

strict ortholog identification methods to effectively answer the problem of the mammal 

phylogeny. Using the dataset which I generated along with heterogeneous models that 

accommodate for heterogeneity across the phylogeny and the data I found strong 

statistical support for the Atlantogenata hypothesis (common ancestor of Xenarthra plus 

Afrotheria is the sister group to all other placental mammals), and through BF 

comparisons was able to fully rejected all other competing hypothesis for the root of the 

placental mammals. 

 

While the 39TaxonSet dataset was capable in resolving the deep diverging nodal 

positions of the placental Superorders it was unable to address the issue of the intra-

ordinal placements within the Laurasiatheria. Shallow relationships among mammals 

are frequently resolved using nucleotide data (Montgelard et al. 2008, Delsuc et al. 

2002, Perelman et al. 2011), which accumulates mutations faster than amino acid 

sequences (Brown et al. 1982) therefore both nucleotide and amino acid datasets were 

assembled to assess whether one data type out performed the other in resolving the 

Laurasitheria intra-order placements. Hallstrom and Janke (2010) used both character 

types in their analysis of the Laurasiahteria, but focused on extensive sequence 

sampling and the generation of an enormous Supermatrix (2,863,797 bp) (Hallstrom and 

Janke 2010), while I focused removing data where large proportions of phylogenetic 

conflict lay and enforced criteria to ensure adequate fit of the composition of the data to 

the model, as models that do not fit the composition of the data have been shown to 

result in the wrong phylogeny (Felsenstein 1978, Sullivan and Swofford 1997). 
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Regardless of these approaches, the result from both Hallstrom and Jankes (2010) and 

the analysis presented in Chapter 2 of this thesis demonstrate that whether nucleotide or 

amino acid data are employed the problem of the intra-ordinal placement within the 

Laurasiatheria, neither are able to converge on one hypothesis and reject all the others. 

Hallstrom and Janke (2010) suggest that the problem of the Laurasiatheria phylogeny 

results from introgression of gene flow between Orders (Hallstrom and Janke 2010). 

While this is a probable cause, the fact remains that the Insectivora and Chiroptera 

Orders are sparsely sequenced and no species has yet been sequenced from the 

Pholidota order, which means stochastic errors could be a major contributing factor to 

the resolution of the Laurasiatheria intra-orders. 

 

While the age of phylogenomics has helped alleviate the problem of stochastic errors 

from sequence sampling (Delsuc et al. 2005), stochastic errors rising from insufficient 

taxon sampling are still at large (Hedtke et al. 2006). Currently, there is less than 1% of 

extant mammals on our planet that have their nuclear genome fully sequenced. To 

overcome this taxon deficiency, multiple studies have incorporated mitochondrial 

sequence data to resolve phylogenies (Kjer and Honeycutt 2007, Tobe et al. 2010, Hillis 

and Wilcox 2005, Hyman et al. 2007). In Chapter 3 I explored the suitability of 

mitochondrial data as a phylogentic marker for placental mammals and attempted to 

separate the useful phylogenetic signal from phylogenetic conflict by partitioning the 

data in various ways addressing issues such as missing data (Lemmon et al. 2009, 

Kearney 2002), saturation of characters (Cummins and McInerney 2011), removal of 

rogue taxa (Sanderson 2002) and sampling at various phylogenetic depths to account for 

homoplasy at deeper nodes and assess where phylogenetic breakdown occurs. While 

sampling at different phylogenetic depths and analysing genes at higher coverage 

resulted in a decrease in phylogenetic conflict, there were still large numbers of 

unresolved nodes and more importantly incongruence observed between phylogenies 

inferred from different gene sets - indicating that these phylogenies contained large 

proportions of systematic error (Pisani et al. 2007). Therefore while increased taxon 

sampling has been shown to be successful in previous studies (Hedtke et al. 2006) and 

there is still considerable interest in using mitochondrial data for phylogenetic analyses 

such as the International Bar code of Life (iBOL) project (Vernooy et al. 2010) as well 

as many recent publications using mitochondrial data to resolve species phylogeny 

(Ozdil and Ilhan 2012, Waeschenbach et al. 2012, White et al. 2011). The results from 

Chapter 3 indicate that mitochondrial data is an unsuitable phylogenetic marker and 
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treatments of the data are not sufficient to remove the high levels of systematic errors. 

As the number of fully sequenced nuclear genomes becomes available as well as 

advancement of other methods using microRNAs, gene order and gene content, it will 

become less necessary to rely on mitochondrial as a phylogenetic marker.  

 

Adaptation of mammals to a diverse variety of ecological niches, along with their 

observed variations in life traits, has lead to heterogeneous rates of change across genes, 

between genomes (nuclear and mitochondrial) and among lineages. Results from both 

Chapter 2 and 3 demonstrate that if the data being tested for selective pressure variation 

does not contain adequate phylogenetic signal or the model of evolution does not 

account for compositional heterogeneity then incorrect phylogeny reconstruction is 

probable.  The downstream impact of this is assessed in Chapter 4 in the analyses of 

selective pressure variation across the mammal phylogeny. The results showed that 

when the M8 selection model was applied to both species and gene phylogeny, 

differences were observed in the lnL values, proportion of sites estimated under 

selection, ω values and the number of positively selected sites identified under the BEB 

model. When the lineage-site modelA was applied, differences were also observed 

between the numbers of lineages identified as evolving under positive selection along 

with differences in the estimates of proportions of sites and ω values. While the species 

tree performed marginally better than the gene tree in 21/34 of the Single gene 

orthologous families analysed, it is not correct to conclude that a species tree should be 

applied to all future selective pressure analyses of single gene orthologs, as the 

placement of Laurasiatheria Orders has not yet been accomplished (Chapter 2). Instead, 

the fundamental message of Chapter 4 is to ensure every precaution is taken to reduce 

the effect of alignment errors, systematic errors and stochastic errors in phylogenetic 

reconstruction, and to ensure the most accurate assessment of selective pressure 

variation using the ML method implemented in CodeML (Yang 1997, Yang et al. 

1998). 

 

While studies have shown that adaptive evolution has helped shaped gene networks, 

and the strength of selective pressure acting on these genes is correlated with protein-

protein connectivity (Aris-Brosou 2005, Fraser et al. 2002, Hahn and Kern 2005, Vitkup 

et al. 2006, Hudson and Conant 2011), work by Lynch (2007) demonstrates a role for 

non-adaptive evolutionary forces in shaping gene networks. In Chapter 4, both lineage-

site specific adaptive evolution and non-adaptive evolutionary events such as 
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recombination and possible gBGC were identified as possible forces in shaping these 

telomere maintenance genes. Extremely high levels of positive selection were observed 

(47/52 genes) when the M8 model was applied to the telomere maintenance proteins. 

However, the level of selection did not correlate with protein-protein connectivity as 

has been seen before in the analysis of metabolic networks (Vitkup et al. 2006). These 

results indicate that selective pressures are acting on these genes regardless of their 

degree or level of connectivity. It is of course a small sample size and if more genes 

were included in this study or these genes were analysed based on their hierarchical 

position within a wider functional network, it is possible that a different pattern could 

emerge.  

 

Lineage-site specific analysis of selective pressure variation as well as analysis of 

lineage specific non-adaptive evolutionary processes demonstrated that extant lineages 

had varying levels of positive selection, recombination and gBGC across the network of 

telomere maintenance genes. A comparison of the results of a previous analysis of 

BRCA1 and BRCA2 (O'Connell 2010) which used a smaller number of taxa, 

demonstrating the impact of taxon sampling on detection of positive selection using 

phylogeny aware methods. From the results presented here in Chapter 4 it is evident 

that both adaptive and non-adaptive processes have contributed to the evolutionary 

history of telomere regulating proteins in mammals.  

 

From the work presented here, it can be concluded that when addressing any phylogeny 

problem there are issues at every level of the analysis. To ensure accurate resolution to 

the phylogeny there are multiple considerations to take on board. The initial decisions 

regarding dataset assembly should consider sequence availability and whether there are 

sufficient taxa sampled, sequences covered and phylogenetically informative sites to 

address the phylogenetic question at hand.  While it may be possible in certain cases to 

reduce or remove systematic errors by sampling at different nodes or by removing fast 

evolving sites, I have shown that this is not always possible, particularly when dealing 

with mitochondrial protein coding sequence data. This body of work demonstrates that 

heterogeneous models that account for variation in composition and rate exchange of 

characters over the phylogeny and the data perform better than homogeneous models in 

resolving difficult phylogenetic questions. It is important in phylogeny reconstruction to 

have phylogenetically informative data capable of rejecting all alternative hypotheses 

through careful and appropriate modeling. This goal was achieved here in the placement 
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of the placental mammal root. When the phylogeny has not been reconstructed under 

these specifications, it reduces confidence in the hypothesis causing increase likelihood 

of observing errors in selective pressure analyses. In conclusion, whether the question is 

directly related to phylogeny reconstruction or to the downstream analysis of selective 

pressure variation, dataset suitability, model selection and adequacy, along with taxa 

sampling are crucial. 
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Positive selection neighboring functionally
essential sites and disease-implicated regions of
mammalian reproductive proteins
Claire C Morgan, Noeleen B Loughran, Thomas A Walsh, Alan J Harrison, Mary J O’Connell*

Abstract

Background: Reproductive proteins are central to the continuation of all mammalian species. The evolution of
these proteins has been greatly influenced by environmental pressures induced by pathogens, rival sperm, sexual
selection and sexual conflict. Positive selection has been demonstrated in many of these proteins with particular
focus on primate lineages. However, the mammalia are a diverse group in terms of mating habits, population sizes
and germ line generation times. We have examined the selective pressures at work on a number of novel
reproductive proteins across a wide variety of mammalia.

Results: We show that selective pressures on reproductive proteins are highly varied. Of the 10 genes analyzed in
detail, all contain signatures of positive selection either across specific sites or in specific lineages or a combination
of both. Our analysis of SP56 and Col1a1 are entirely novel and the results show positively selected sites present in
each gene. Our findings for the Col1a1 gene are suggestive of a link between positive selection and severe disease
type. We find evidence in our dataset to suggest that interacting proteins are evolving in symphony: most likely to
maintain interacting functionality.

Conclusion: Our in silico analyses show positively selected sites are occurring near catalytically important regions
suggesting selective pressure to maximize efficient fertilization. In those cases where a mechanism of protein
function is not fully understood, the sites presented here represent ideal candidates for mutational study. This work
has highlighted the widespread rate heterogeneity in mutational rates across the mammalia and specifically has
shown that the evolution of reproductive proteins is highly varied depending on the species and interacting
partners. We have shown that positive selection and disease are closely linked in the Col1a1 gene.

Background
Reproductive proteins are essential for success of sexu-
ally reproducing species and indeed for the emergence
of new species. In the past it has been observed that
reproductive proteins tend to be under positive selective
pressure to change, i.e. adaptive evolution, a trend found
in a variety of animal species from abalone to primates
[1,2]. Adaptive evolution or positive selection is a selec-
tive pressure placed on a protein by a change in envir-
onment in order to improve the fitness of the organism
in that environment.
With changes in environment, that can include mating

system, there is a subsequent selective pressure on the

protein sequences related to those functions to adapt
accordingly. This variation can be detected using the
well-known measurements of the rate of non-synon-
ymous substitutions per non-synonymous site (Dn) and
synonymous substitutions per synonymous site (Ds) and
their ratio ω = Dn/Ds. The detection of adaptive evolu-
tion, where the ratio exceeds unity, is referred to as
positive Darwinian selection. Detecting positive Darwi-
nian selection in a region of a protein, or indeed in a
lineage of a phylogeny, indicates that there is a selective
advantage in changing the amino acid sequence in this
region. These signals are essential for our understanding
of functionally important residues in a protein sequence
and protein functional shift.
In general, the rate of mutation that a gene undergoes

is contingent on a number of factors including; protein
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structure, presence of gene duplicates, location in the
genome, effective population size, germ line generation
time, and composition of the sequence (for review see
[3]). It has recently been shown that the number of phy-
sical interactions of a particular protein also influences
the intrinsic rate of evolution [4]. Evidence for the gen-
eration time effect has come from studies on various
proteins and species including analyses of substitution
rates in higher primates and rodents [5], substitution
rates in higher grasses and in palms [6], in mammalian
genomes [7] and in chloroplast and sex mutation rate
ratios [5,6]. With recent advances in sequencing we
have an opportunity to examine these effects using a
wider selection of proteins and species. Documented
selective pressures associated with positive selection in
reproductive proteins include: (i) intense sperm compe-
tition whereby sperm from numerous males, ejaculated
into the female reproductive tract, compete with one
another for the prized fertilization of the egg [8]; (ii)
evasion of the immune system, whereby surface layer
reproductive proteins evolve to evade destruction by the
host’s immune system [8]; and finally (iii) selective pres-
sures enforced by mating system, related of course to
point (i) above. Species that are more promiscuous have
increased levels of selective pressure acting on reproduc-
tive proteins than species that are monogamous. This
later point is illustrated in the study of SEMG2, where
adaptive evolution was found to correlate with mating
system in primates [9].
In order to determine the variation in selective pres-

sure in these proteins, there are a number of criteria
that the data must meet. Firstly, the data must have a
robust phylogenetic signal. Secondly, systematic biases
that may exist in the data must be minimized, these
include but are not limited to: long branch attraction
(LBA), amino acid composition bias, base composition
bias and unqualified ortholog predictions, all of which
may lead to inaccurate estimates of phylogeny. Thirdly,
sensitivity to taxa number is a known limitation of
methods for detecting positive selection, therefore more
than 6 taxa are needed to gain accurate estimations of
selective pressure using the maximum likelihood (ML)
method applied here [10].
In this study we have selected a subset of proteins that

have roles to play in reproduction. Our dataset was
composed of three major datatypes, (i) previously pub-
lished reproductive proteins, (ii) interacting proteins,
here we identified proteins shown to interact with (i),
and finally (iii), genes identified from microarray experi-
ments as being highly expressed in reproductive tissues.
For group (iii) we assume that those proteins highly
expressed in reproductive tissues are important for the
function of that tissue. The previously untested repro-
ductive proteins analysed here are from data types (ii)

and (iii) outlined above. These novel proteins are SP56,
Porimin and Col1a1. SP56 is sperm binding protein
number 56, this protein is a representative of the inter-
acting protein subset of sequences analysed. SP56 has
been shown to interact with ZP3 - a well-studied repro-
ductive protein. Both Porimin and Col1a1 have been
identified from published microarray experiments on
normal human tissue [11], and were selected for analysis
due to their high levels of expression in reproductive tis-
sues in that study. Porimin is a transmembrane protein
that is highly expressed in the uterus, prostate and pla-
centa and Col1a1 is highly expressed in the uterus.
Further evidence for the link between Porimin and
reproduction was not available in the literature and
therefore results from this particular gene are taken
with caution until this protein is further characterized.
Col1a1 plays an important role during spermatogenesis
where it mediates the detachment and migration of
germ cells, thus adding further support for its role in
reproduction [12].
We have analyzed these data with an approach sensi-

tive to all the systematic biases and limitations of meth-
ods given above. A number of genes in our dataset have
been analyzed previously but have not taken these lim-
itations and considerations into account. We have
expanded these datasets to include a greater number of
taxa, we have analyzed all of these genes for evidence of
systematic biases and we have used improved models of
codon evolution. In this paper we have included models
that allow for rate variation across the sequence and
across the phylogeny.

Results and Discussion
We performed phylogenetic analyses on all 11 datasets.
The resultant gene trees were found to conflict with the
canonical phylogeny species ([13], as adapted in Figure
1. The only exception was the Catsper1 mammalian
dataset. We postulate the following causes for this con-
flict: (1) amino acid and/or base composition bias, (2)
lack of phylogenetic signal in the data, and finally (3),
LBA caused by mixtures of long and short germ line
generation times (see Figure 2 for a sample of species
and their germ line generation times from our dataset).
What follows is a summary of the results of the tests of
data quality and bias we performed, see Table 1 for
synopsis. We carried out these tests to determine in
each case whether these conflicting phylogenies are
accurate descriptions of history or whether the data are
subject to these known issues listed 1-3 above. Subse-
quent statistical comparison of the gene trees and spe-
cies phylogeny using the Shimodaira Hasegawa (SH) test
[14] revealed that there is no statistical difference
between the gene and species trees in each case, see
Table 2 for results of SH tests. The only exceptions
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were Prkar2a and ZP3 where the presence of polytomies
in the gene trees caused the preference of the unre-
solved nodes over the resolved nodes.

1. Tests of Data Quality and Bias
(i) Test for amino acid and base composition biases
We tested all multiple sequence alignments (MSAs) for
evidence of significant levels of amino acid composition
bias and base composition bias in each lineage using the
TreePuzzle software [15]. We found that all alignments
passed the significance test with p-values < 0.05, see
Table 1 for summary. For full set of amino acid and
base composition bias test results, see Additional Files 1

and 2 respectively. In summary the discordance between
each of the gene trees and the canonical species phylo-
geny is not a result of amino acid or base composition
biases providing evidence of false relationships.
(ii) Test for phylogenetic signal
We performed the likelihood mapping procedure imple-
mented in the TreePuzzle software [15,16] to determine
the level of phylogenetic signal/conflict present in each
alignment, for more detail see the Methods section. Our
initial dataset consisted of 27 genes, we used this filter-
ing step to reduce our dataset to contain only those
genes with phylogenetic signal. We categorized the
results from the likelihood mapping analysis into 3 main
categories of signal: category 1 had strong phylogenetic
signal (see Figure 3a), category 2 had medium level of
phylogenetic signal (see Figure 3b) and category 3 had
low/no levels of phylogenetic signal (see Figure 3c). The
results of the test for phylogenetic signal are summar-
ized in Table 1 and in total 9 out of the 27 genes had
strong phylogenetic signal (category 1), with an addi-
tional 2 genes with moderate levels of phylogenetic sig-
nal (category 2). The complete set of results for the
likelihood mapping process is given in Additional File 3.
The remaining 17 genes failed the test (category 3). The
category 3 genes (with low or no levels of phylogenetic
signal) were subsequently removed from the analysis,
only 10 genes were retained for further analysis.
(iii) Long Branch Attraction (LBA) analysis
We assessed the data for evidence of LBA which would
manifest itself in the data by drawing species with a
greater number of mutations in the gene of interest
together erroneously on the phylogenetic tree. The
method applied uses the MSA and the corresponding
phylogeny to categorise rates amongst sites, using an

Table 1 Summary of the analysis of quality and bias present in the data

GENE DATA QUALITY PHYLOGENETIC ANALYSIS

LM Category AA Comp Bias Base Comp Bias Substitution
Model

Gene v Species Tree LBA
Artifact

Adam2 1 Pass Pass JTT+G Unresolved No

Catsper1 Exon1 1 Pass Pass JTT+I+G+F Unresolved No

Catsper1 Mammals 1 Pass Pass JTT+G+F Unresolved No

Col1a1 1 Pass Pass JTT+G Unresolved No

Ph20 1 Pass Pass JTT+G+F Resolved Yes

Porimin 1 Pass Pass JTT+G+F Unresolved No

Prkar2a 2 Pass Pass JTT+I+G Unresolved No

Semg2 1 Pass Pass JTT+G+F Unresolved No

Sp56 2 Pass Pass JTT+I+G Unresolved No

Zp2 1 Pass Pass JTT+G Unresolved No

Zp3 1 Pass Pass JTT+G+F Unresolved No

Genes with significant signal are given in the Likelihood mapping, or, L.M. Category column, see text for explanation of the category 1 and 2 in this column.
Results of the amino acid composition and nucleotide base composition bias tests, are shown in the A.A. Comp Bias and Base Comp Bias columns respectively.
The phylogenetic trees for each gene are drawn using the substitution model described where G = gamma distributed rates across sites, I = invariable sites, F =
frequency of amino acids, JTT = Jones Taylor Thornton model. In the case of LBA analysis, No = no evidence of LBA in the gene analysed, Yes = evidence of LBA
in the gene analysed.

Table 2 Summary of SH tests for complete gene datasets

Gene SH - gene SH - ideal Best-fit Tree

Adam2 1.0000 0.1200 NS

Catsper1 Exon1 1.0000 0.1460 NS

Catsper1 mammals 0.5020 1.0000 NS

Col1a1 1.0000 0.2650 NS

Ph20 1.0000 0.3220 NS

Porimin 0.4040 1.0000 NS

Prkar2a 1.0000 0.0490 gene

Semg2 1.0000 0.1010 NS

Sp56 1.0000 0.2380 NS

Zp2 0.1620 1.0000 NS

Zp3 1.0000 0.0050 gene

For each gene, the likelihood of estimated Bayesian phylogeny (gene) and
corresponding ideal species tree (ideal) to fit the dataset were determined
with the SH test at a 5% significance level. Values equal to 1.0000 represent
the tree with the lowest log likelihood, values less than 0.05 refer to those
cases where there is a significant difference between the two topologies, and
the gene tree is a significantly better fit to the data. NS = No Statistical
significance between gene and species tree, in these cases the species tree
was used.
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approach we have previsouly published for mammalian
data [17], as described in detail the Methods section. In
this method of site-stripping we apply the phylogenetic
tree (estimated ab initio in this software) and the MSA
to classify all sites in the alignment into one of eight
categories of mutation rate. These are arbitrary cate-
gories from 1-8; with 1 being the most highly conserved
sites and 8 being the most highly variable. Essentially,
these estimates allow us to select only the most con-
served sites for phylogeny reconstruction. Sites are

sequentially stripped from the alignments based on their
rate of evolution and phylogenies are created based on
slower evolving sites. These site-stripped phylogenies are
then compared to the species tree. Using two indepen-
dent methods of comparison we determined whether
the resultant stripped trees had topologies significantly
similar to the species phylogeny. The “root mean
squared deviation”, or RMSD, method is restricted to
binary trees [18], see Additional File 4 for full set of
results. Therefore we also employed the SH method of

Figure 1 Canonical mammalian species phylogeny. Shown here is a representation of the agreed relationships amongst the mammalia for
the species used in this analysis. The “?” on the lineage leading to horse indicates controversy over the position of this lineage on the
phylogeny.
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comparing phylogenies [14], see Additional File 5 for
full set of results. For a full description of the RMSD
statistic used here [18], see the corresponding section in
the Methods. Using this approach we could identify the
signature of LBA in the Ph20 dataset alone, see Table 1
for summary.

2. Analysis of selective pressures using codon models of
evolution
Following analysis of the phylogenies of these reproduc-
tive genes, we determined the selective forces at work
on these 10 genes (11 datasets). Only those genes pas-
sing the data quality tests were analyzed here (i.e. 10
genes), see Table 1. In the case of Catsper1, we have
analyzed the gene at two different evolutionary distances

because it contains high levels of insertion and deletion
events. The two datasets for Catsper1 are: exon 1 from
the primates only, and, the entire gene from only distant
mammalian groups. Hence the number of datasets is 11,
and the number of genes tested is 10. The alignments in
all cases reached significant levels following randomiza-
tion tests (z-scores > 1000 in all cases, a z-score of
greater than 5 is typically taken as significant).
In those cases where the genes had already been ana-

lyzed in previous studies, we expand upon the data in
these studies and use more sophisticated models of evo-
lution. ML methods are sensitive to sample size with a
minimum of 6 taxa recommended from simulation stu-
dies [10]. For a summary of the site-specific and line-
age-specific results, see Table 3 and Table 4

Figure 2 Selection of mammalia used in the analysis and the time to reproductive age in months. Species are shown on the X-axis in
alphabetical order. On the Y-axis is the number of months it takes for each species to reach reproductive age.

Figure 3 Example of likelihood mapping categories. (a), category 1 genes with strong phylogenetic signal the example given here is the
ZP2 gene, (b) category 2 genes with intermediate levels of phylogenetic signal, the example given here is the Prkar2a gene, and (c), category
3 genes with low/no phylogenetic signal, the example given here is the CD9 gene.
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respectively. For a summary of all likelihood ratio tests
(LRTs) performed in the analyses of these genes see
Table A9. In general the lineages tested in the lineage
specific analysis for each gene were as follows: modern
human; the primate ancestor; modern mouse, and the
rodent ancestor, these are indicated in Figure 4(a-k). For
certain datasets the species tested varied depending on
those species for which high quality sequence data
existed for that gene, these are discussed on a gene-by-
gene basis below. In summary, for each of the 11 data-
sets tested, positive selection was detected. In the site-
specific test between 7 and 94 sites per gene were iden-
tified as positively selected. In the lineage-specific ana-
lyses there were up to 2 lineages per gene identified as
having evidence of positive selection. Below is a brief
description of the results on a gene-by-gene basis, the
complete set of all parameters, likelihood values and
LRTs are given in Additional File 6.

Col1a1
Possibly the most intriguing result from our entire ana-
lysis is that from the Col1a1 protein. According to the
microarray study employed here [11], Col1a1 is highly
expressed in the uterus tissue. It is also found in most
structural tissues including cartilage, bone, tendon, skin
and part of the eye (sclera). It is a member of the group
1 collagen proteins involved in the development of the
uterine fibroids [19]. There are two propeptide regions
to the Col1a1 gene, denoted N- and C-terminal propep-
tides. According to studies on Col1a1 function, a role
has been established for Col1a1 in spermatogenesis [12].
Our site-specific analysis shows 66 sites evolving with

an ω value of 4.09, see Table 3. In summary 35/66 of
our positively selected sites fall in the N-terminal pro-
peptide region (23-161) and 9/66 positively selected sites
fall in the C-terminal propeptide region (1219-1464),
this can be seen clearly in Figure 5a. Position 162 in

Table 3 Summary of the results of the site-specific analysis: in each case the most significant model was M8

Gene n Parameter estimates # Positively selected Sites

Adam2 12 p0 = 0.92632 p = 0.37637
q = 0.60688

p1 = 0.07368 ω = 3.94326

45>0.50
15>0.95
5>0.99

Catsper1_Exon1 (primates only) 16 p0 = 0.82736 p = 0.13661
q = 0.03850

p1 = 0.17264 ω = 3.13071

95>0.50
7>0.95
1>0.99

Catsper1_Mammals
(non-primate mammals only)

8 p0 = 0.83315 p = 0.34233
q = 0.51278

p1 = 0.16685 ω = 3.26879

124>0.50
30>0.95
8>0.99

Col1a1 10 p0 = 0.98023 p = 0.04796
q = 0.32286

p1 = 0.01977 ω = 4.09285

66>0.50
21>0.95
8>0.99

Ph20 11 p0 = 0.87658 p = 0.56141
q = 0.83349

p1 = 0.12342 ω = 2.20500

39>0.50
3>0.95
0>0.99

Porimin 10 p0 = 0.85067 p = 0.41864
q = 0.32952

p1 = 0.14933 ω = 12.21841

30>0.50
13>0.95
5>0.99

Prkar2a 17 p0 = 0.95102 p = 0.16339
q = 0.98823

p1 = 0.04898 ω = 2.60992

19>0.50
4>0.95
0>0.99

Semg2 12 p0 = 0.97236 p = 0.01163
q = 0.00500

p1 = 0.02764 ω = 12.26405

41>0.50
5>0.95
2>0.99

Sp56 14 p0 = 0.98807 p = 0.16114
q = 1.12262

p1 = 0.01193 ω = 3.81710

8>0.50
2>0.95
2>0.99

Zp2 18 p0 = 0.87339 p = 0.63945
q = 0.75356

p1 = 0.12661 ω = 2.04655

52>0.50
9>0.95
6>0.99

Zp3 13 p0 = 0.91489 p = 0.30029
q = 0.77328

p1 = 0.08511 ω = 1.92305

48>0.50
0>0.95
0>0.99

Following LRT analysis M8 was chosen in each case as the most significant model. n refers to the number of taxa in each dataset. The proportion of sites (p),
evolving under each corresponding selective pressures (ω) are shown. For example, p0 refers to the proportion of the protein evolving under the selective
pressure value given by ω0. The parameters p and q describe the beta distribution. The final column gives the number of sites with posterior probability (PP) of
0.50, 0.95 and 0.99 that belong in the positively selected category or sites. The number before the “>“ refers to the number of sites with a specific PP value.
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Col1a1 is cleaved and modified by an endopeptidase,
position 162 is also modified by pyrrolidone carboxcylic
acid (Swiss-Prot PO2452). A positively selected site at
position 163 is neighboring this multifunctional site,
suggesting that there has been an evolutionary effort to
improve cleavage and/or modification in this protein.
Variations in Col1a1 are linked with Osteogenesis

Imperfecta (OI), an autosomal dominant disease, result-
ing in an inability to make the correct collagen protein.
There are a spectrum of OI conditions, the most severe
is OI type 2 (OI-II) leading to death in the perinatal
period. A recent extensive study of the Single Nucleo-
tide Polymorphisms (SNPs) associated with OI has
revealed a number of substitutions of glycine residues
within the triple helical domains of the Col1a1 protein
[20]. The total number of disease implicated sites in the
Swiss-Prot entry P02452 for Col1a1 is 99: 4 of these are
OI non-specific, 4 are OI-I, 59 are OI_II, 14 are OI-IV
and 15 are SNPs (2 are associated with another disease).
One third of the mutations that result in substitutions
for glycine in Col1a1 are lethal whereas those between
the start codon and position 200 are non-lethal. Only 1
of the sites we have identified as positively selected is in
the non-lethal domain from position 1-200, this is site
195. This positively selected site is neighboring the SNP
position 197 that causes a mild OI phenotype. In Table
5 we show a list of 11 positively selected sites that fall
in close proximity to sites associated with disease and

are located between 280 and 1456, spanning the impor-
tant triple helix region. These positions are all within 1
to 5 amino acid residues of known disease variants, 8 of
these disease variants are the severe/lethal OI-II disease
form. Two exclusively lethal regions, helix positions
691-823 and 910-964 aligned with major binding regions
[20] and we find a positively selected site in this region.
Following a randomization test for the positively
selected sites and disease implicated sites (as denoted by
Swiss-Prot entry PO2452), we have found that the pat-
tern we observe, i.e. finding positively selected sites in
close proximity to disease implicated sites is significant
in 3 out of the 11 cases examined here (at P < 0.05).
Lineage-specific analysis shows evidence for positive

selection in this protein in the rodent ancestor. In total,
2.2% of the sites in the rodent ancestor have ω = 72.73,
while the rest of the species are evolving under purifying
selection, ω = 0.013. For a summary of site and lineage
specific results for Col1a1, see Table 3 and 4. For com-
plete set of results see Additional File 6(d).
Prkar2a (interacts with SEMG2)
Prkar2a is a cAMP dependent protein kinase that is
attached to the sperm flagella via regulatory subunit
(RII) [21]. Protein tyrosine phosphorylation has been
linked with successful fertilization due to hyper-acti-
vated sperm motility [22]. This increase in phosphoryla-
tion is part of a cAMP dependent pathway that activates
protein kinase A [22].

Table 4 Summary of lineage-specific positive selection detected.

Species tested as Foreground Significant LRT Parameter estimates

P Fwd ω Bck ω

Adam2

Macaque ModelA v M1 9.57% 1.71 0.10/1

Catsper1 Mammals

Ferungulata ModelA v M1 4.46% 998.99 0.09/1

Rodents ModelA v M1 5.45% 999.00 0.084/1

ModelB v m3Discrtk2 4.47% 999.00 0.12/1.38

Col1a1

Rodents ModelA v M1 2.17% 72.73 0.013/1

ModelB v m3Discrtk2 1.93% 72.77 0.02/1.35

PH-20

Guinea Pig ModelA v M1 6.3% 11.48 0.13/1

ModelB v m3Discrtk2 6.14% 12.57 0.14/1.10

Prkar2a

Macaque ModelA v M1 2.37% 999.00 0.04/1

ModelB v m3Discrtk2 2.53 999.00 0.04/1.22

Sp56

Human ModelB v m3Discrtk2 100% 62.40015 0.02/0.55

Glires ModelB v m3Discrtk2 2.56% 1.03 0.02/0.55

Summary table of significant results for lineages specific analyses following LRT analyses. Lineages tested as foreground (Fwd) are shown in the first column.
Only those lineages with significant LRT values for Model B or Model A and ω >1 are shown here. Parameter estimates are given for the LRT values highlighted
in bold. P is the proportion of sites under selection the corresponding selective pressure as measured by ω. Fwd ω and Bck ω scores for the foreground species
and background species respectively are given in the final column.
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The PRKA families were previously tested for positive
selection using 3 to 4 taxa and site-specific model M8
with no significant results for positive selection reported.
With our 17 taxa dataset, we were able to detect that
4.7% of sites were evolving at a rate of ω = 2.60, see
Table 3 for summary of details.
Positively selected sites detected in the site-specific

analysis of Prkar2a were compared to the human Swiss-
Prot sequence (P13861). In total 18 sites were predicted
to be positively selected, 17 of these sites occur in the
region of the protein associated with dimerization and
phosphorylation (2-138), see Figure 5(c). In the Swiss-
Prot entry there are a number of residues listed as being
modified by phosphoserine. These are positions 58, 78,
80, 99 and phosphothreonine at position 54. The sites
estimated to be positively selected from our analysis are:
58, 59, 61, 62, 63, 64, 65, 68, 70, 74, 75, these sites are
at or in close proximity to these modified residues.
The regulatory subunit alpha 2 of Prkar2a has been

shown in vitro to interact with Semg2. The phosphory-
lation of Semg2 may lead to its activation into forming
a gel matrix in the female reproductive tract. From our
analysis it is shown that while Semg2 has positively
selected sites dispersed throughout its sequence,
whereas the positively selected sites for Prkar2a are loca-
lized to the N-terminus region, and the remainder of the
gene is under strong purifying selection. Literature has
so far not specified an exact phosphorylation site for
Semg2, which prevents us from commenting further on
its interactions with Prkar2a.
Lineage-specific analysis shows that Prkar2a in the

macaque has undergone a greater selective pressure to
change when compared with other mammalia in the
dataset, with 2.53% of sites evolving at ω = 1.22, see
Table 4 for summary of results. For complete set of
results for Prkar2a, see Additional File 6(g).
Ph20 (interacts with ZP2 and ZP3)
Ph20 is expressed in the testis and found in the acro-
some of the sperm. It is also codes for a receptor that is
involved in the sperm to zona pellucida (ZP) adhesion
[23].
Previous analysis conducted on this protein involved 6

taxa [24]. Here we have increased the number of taxa to
11. We have omitted the carnivores from our analysis of
Ph20 as the sequences were spurious. We found evi-
dence for LBA in the Ph20 dataset. By removing fast
evolving sites a fully resolved gene phylogeny is
obtained. This gene tree now is in agreement with the
ideal species phylogeny ([13].
Lineage-specific analysis shows that guinea pig is

under positive selection, with 6.1% of sites with ω =
12.57 while all other species in the background are evol-
ving at ω = 0.14 or neutrally, see Table 4. The 39 posi-
tively selected sites were then compared to the human

Swiss-Prot sequence (P38567), see Figure 5(b) for
results. Catalytically important resides 146, 148, 211 284
and 287 when mutated result in a reduction in, or loss
of, activity [25]. It has been shown experimentally that
mutations in the region of this active site significantly
reduce or completely block the function of this protein
[25]. Our results show that 3 of the positively selected
sites, 155, 272, 273, are in close proximity to these
regions. Another 5 positively selected sites: 83, 155, 252,
353 and 391 are close to glycosylation sites, see Figure 5
(b). These sites when modified are known to change the
structure and function of the Ph20 protein. For com-
plete set of results for Ph20 see Additional File 6(e).
These results are of significance as the Ph20 protein
changes position in the sperm during the different
stages of the fertilization process. In guinea pig Ph20
protein is known to migrate from the post acrosomal
membrane to the inner acrosomal membrane [26]. Thus
finding these positively selected sites in close proximity
to these glycosylation sites in guinea pig suggests that
these sites have been selected to modify the Ph20 struc-
ture more effectively thus increasing the chance of
capacitation.
SP56 (interacts with ZP2 and ZP3)
The binding of sperm to the zona pellucida (ZP) is cru-
cial for gamete formation to take place. The exact
mechanisms of this process are still to be uncovered
therefore any predictions on important residues will
greatly improve knowledge by directing mutational stu-
dies. SP56 has been shown through photoaffinity cross-
linking experiments to have a specific binding affinity
for ZP3 [27]. Therefore it is believed to play an impor-
tant role in the binding of sperm to the ZP matrix.
Experiments have shown that during capacitation SP56
is released from the acrosomal matrix and becomes situ-
ated in the sperm head membrane, enabling it to act as
a ZP3 binding protein [28].
Here we have found 8 positions in the SP56 protein

that are under positive selection (ω = 3.82) following
site-specific analysis. These sites were compared to the
human SP56 entry in Swiss-Prot (Q13228) to determine
possible links to function. One of these 8 positively
selected sites is position 122, regarded as a SNP number
(rs35396382) in dbSNP database [29]. Although further
experimental work needs to be conducted to decipher
the clinical association of this position, it is extremely
interesting that our most significant positively selected
site also displays variation in the population, especially
given the overall high level of conservation in this gene.
For summary of results see Tables 3 and 4, and for full
set of results for this gene see Additional File 6(i).
ZP2
Zona pellucida (ZP) proteins form the complex glyco-
protein coat that surrounds the oocyte [30]. These ZP
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proteins have been shown to be under strong pressure
to change, and results have been published on both site
and lineage analyses [31]. Here we have expanded the
analysis of ZP2 to include 18 taxa (maximum previously
tested = 8 [31]). We have also applied more complex
models of evolution and have sampled deeper branches
on the phylogeny including a representative of the
Afrotheria - elephant.
In this case, the results of our larger dataset and

more complex models show that the values of ω deter-
mined here vary slightly when compared to previous
analyses [31]. This previous test showed 4.7% of sites to

have ω = 2.5, increasing the size of the dataset in this
study results in 52 sites in ZP2 that have an ω value of
2.05. See Additional File 6(j) for complete results.
Positively selected sites were compared to the human

Swiss-Prot entry for ZP2 (Q05996) to identify possible
function for these sites, see Figure 5(d). ZP2 contains 7
carbohydrate chains situated between sites 87-462, these
are important for the sperm to bind to the ZP of the
egg coat [32]. Of the 46 sites identified to be under
positive selection, 23 fall between positions 66-257, this
region contains 5 of the binding domains of the carbo-
hydrate chains. The clustering can be seen more clearly

Figure 4 Results of lineage specific positive selection analysis on 11 datasets. The phylogeny used for each gene is a reduced version of
the species phylogeny. The lineages labeled as foreground in the analysis are denoted in the diagram with asterix symbols. These are the results
following LRT analysis. Those lineages where positive selection was determined are represented by red pentagons.
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in Figure 5(d). Another cluster of positively selected
sites (10 sites in total) occurs in the propeptide region
(641-745). It has been suggested that upon the cleavage
of the propeptide region, the mature ZP2 protein plays
a role in the prevention of polyspermy [33].
ZP3
Analysis of site-specific evolution in ZP3 identified 48
positively selected sites. Of specific interest are positively
selected positions 329, 330, 332, 336, 338, 339, as these
sites were in close proximity to identified sperm binding
sites (329-334) [34], see Table 3. The furin cleavage site
is identified at position (350-353), and the propeptide
domain at position (351-424). When cleavage takes
place the ZP3 undergoes a conformational change that
inhibits any further sperm binding to the coat thus pre-
venting polyspermy [35]. Of the 48 positively selected
sites identified, 10 fall within the propeptide domain,
with an additional 12 occurring close to the vicinity of
the furin cleavage and sperm binding sites, thus

suggesting that there is a pressure to improve binding
and prevent polyspermy. For complete set of results for
ZP3, see Additional File 6(k).
Adam2 (Fertilin b)
Adam2 is a cell adhesion molecule that plays a funda-
mental role in the final binding of sperm to the oocyte
membrane [36]. Indirect interactions have been shown
with female proteins CD9 [37]. (We have not continued
further analysis on CD9, as it failed the likelihood map-
ping test).
Previous results have been published reporting posi-

tive selection using site-specific analysis on 6 taxa [24].
Here we have included 12 taxa for Adam2 and we have
investigated the possible functional implications of posi-
tively selected sites found. In the site-specific analysis
we find 7.3% of sites with ω = 3.94, this corresponds to
45 sites in total, see Table 3. Comparison of these posi-
tions to human Swiss-Prot Adam2 sequence (Q99965),
we determine that 39/45 positively selected sites are

Figure 5 Results of positive selection analysis for 4 genes. Each of the four graphs represents the CDS of a gene from position 1 to the
stop codon (X-axis). The Y-axis is the posterior probability of each of the sites belonging to the positively selected category. The dark blue data
points are sites estimated to be under positive selection. Alternative pale blue and white regions depict alternative domains in the protein, this
data is taken from Swiss-Prot. The vertical red bars in each case represent functionally important sites, these are specific to each gene as follows:
(a) Col1a1, (i) Cleavage site by procollagen N-endopeptidase, (ii) O-linked Gylcosylation site, (iii) Cell attachment site, (iv) Cell Attachment site,
and (v) O-linked Glycosylation site. (b) PH20, (i) active site, proton donor, (ii) and (iii) are positions when mutated result in loss of activity, and
(iv) N-linked Glycosylation site, (c) Prkar2a, (i) and is a Phosphothreoinine modified residue, (d) ZP2, (i), (iii) and (iv) are N-linked Glycosylation
sites, and (ii) is the cleavage site.
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situated in the C-terminus region. On closer investiga-
tion of these sites we find that 12/45 positively selected
sites occur in the disintegrin domain (position 384-473).
The disintegrin domain has been shown to be involved
in the binding of Adam2 to the oocyte [38]. A cysteine-
rich domain occurs between (477-606), 16/45 positively
selected sites fall in this region. It has been suggested
for Adam12, (another member of the Adam family of
proteins), that the cysteine-rich domain plays a role in
mediating the cellular interactions via syndecans and
integrin [39], a similar role for this domain in Adam2
can be postulated. Overall the results for Adam2 suggest
a selective pressure for increased binding of Adam2 to
the oocyte regardless of species of origin. For a complete
set of results and LRTs for Adam2, see Additional File 6
(a).
Catsper1
Catsper1 is involved in regulating the calcium cation
channel in sperm flagella, the result of which is

movement of sperm [40]. Previous studies on Catsper1
exon 1 have been performed [41]. We intended to
expand our analysis to span all exons and expand the
data set to include a variety of mammalia. However, the
exon 1 of non-primate mammalia is so highly variable
that an accurate alignment cannot be constructed. The
remaining exons were highly conserved across all spe-
cies. We therefore split our catsper1 dataset into two
sections each of which produced a good quality align-
ment for analysis, (1) exon1 of catsper1 for the primates,
and (2) entire catsper1 gene for non-primate mammalia.
(a) Catsper1 Exon 1 primatesSite-specific analysis of
this protein identified 17% of the protein under positive
selection with ω = 3.13. Previous analysis of this exon
showed positive selection on indel substitutions in this
gene [41]. The positively selected sites are situated
throughout exon1, little is known about the functional
significance of these sites. However, it is known that
exon 1 has a significant role to play in altering the rate

Table 5 Summary of the positively selected sites in the col1a1 gene, their clinical relevance, and, the probability of
being located within distance “d” from the nearest disease-implicated site.

Positively
selected sites

Posterior
Probability

Human Variant:
SNP position

Distance
(d)

Probability of
being d
from nearest
disease-
implicated site

Genetic code distances between
observed character states

Clinical
Association

195 0.926 197 2 0.04 A-N = 2 G ®
C

mild
phenotype

280 0.588 275 5 0.26 A-S = 1; S-T = 1; T-A = 1 G ®
D

OI-II

478 0.959 476 2 0.128 A-S = 1; S-T = 1; T-A = 1 G ®
R

OI-II

784 0.968 776 8 0.396 A-S = 1; S-T = 1; T-A = 1 G ®
S

OI-II

1032 0.535 1025 7 0.364 A-P = 1 G ®
R

OI-II

1063 0.826 1061 2 0.128 N-S = 1 G ®
D

OI-II

1061 2 0.032 N-S = 1 G ®
S

OI-IV

1149 0.623 1151 2 0.032 A-S = 1 G ®
S

OI-III

1151 2 0.128 A-S = 1 G ®
V

OI-II

1194 0.675 1195 1 0.076 A-G = 1; G-S = 1; S-A = 1 G ®
C

OI-II mild
form

1196 0.972 A-F = 2; F-Y = 1; Y-A = 2

1316 0.928 1312 4 0.24 K-N = 1; N-P = 2; P-K = 2 W ®
C

OI-II

1456 0.997 1460 4 0.1 C-F = 1; C-L = 2; C-M = 2; F-L = 1; F-M
= 2; L-M = 1

P ®
H

dbSNP:
rs17853657

The sites under positive selection in the col1a1 protein and their associated posterior probabilities (PP) are shown. The third column shows variant positions
(SNPs) as determined using Swiss-Prot human (PO2452) sequence. The fourth and fifth columns show the residue distance “d” of the positively selected site from
its nearest genetic variant, and the probability of being located “d” residues from any disease implicated site by random chance alone. The sixth column uses
single-letter amino acid symbols to show the genetic code distances between all observed character states at each positively selected site. “Clinical Association”
show the replacement substitution at the human variant position and its clinical association with that human variant. OI = Osteolysis imperfecta, OI-I to -IV. The
final entry for dbSNP is database entry number rs17853657 and as yet has not been associated with OI although it is in the same domain as the other disease-
causing SNPs.
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of calcium ion channel inactivation. Different lengths in
the N-terminus result in different rates of channel inac-
tivation, where a long terminus results in a longer time
to activation than the shorter terminus. This is
described most effectively by the ball and chain mechan-
ism described in [41]. See Additional File 6(b) for com-
plete results. These results show the importance of this
protein, and specifically the first exon, for reproductive
success.
(b) Catsper1 entire gene non-primate mammalsOur
site-specific analysis identified 16.7% of the sites under
positive selection with an ω = 3.27, see Table 3. These
sites all cluster in exon 1. While the rodent ancestor
appears to be under positive selection with 4.47% of its
sites evolving at ω = 999, see Additional File 6(c) for
complete set of results. A previous study of 9 rodent
species, including Mus musculus individuals from 4 dif-
ferent populations, has shown that within the rodent
order there has been a continued pressure to evolve,
with positive selection for indel substitutions in exon1
of the Catsper1 gene [43].
Semg2
A member of the family of semenogelin genes, Semg2 is
involved in the formation of a postcopulatory plug [44].
Previously, positive selection has been reported for both
site-specific and lineage-specific analysis for Semg2
[9,45]. We have expanded the data set from previous
analyses to incorporate more species.
In our site-specific analysis, we found that 2.7% of our

sites had an ω value of 12.26, see Table 3.
We have performed a novel functional analysis of

these positively selected sites by comparing them to the
human Semg2 sequence (Q02383) in the Swiss-Prot
database. This is a step not previously taken by other
studies of Semg2. A striking pattern emerged - all
known domains of this protein have several positively
selected sites. There is a probable glycosylation site at
position 272, which is located close to a large stretch of
positively selected sites (positions 262 to 289). It is so
far unknown how significant this glycosylation site is in
Semg2 and whether it plays a role in modifying the pro-
tein to form a copulatory plug. However, the results
indicate that this protein, and in particular the region
around the glycosylation site, has been under significant
pressure to change.
A complete set of results for Semg2 is given in

Additional File 6(h). The lineage-specific results are
not described here in detail as lineage analyses have
been carried out previously on the primate Semg2
gene [9,45]. It has been shown recently that the rate
of evolution for this protein varies depending on the
level of sperm competition [9]. Our results are in
agreement with this finding, thus further verifying our
approach.

Porimin
Two isoforms of this protein have been identified; we
have focused on isoform 1 in the mammalia, as isoform
2 contains an additional human specific region between
residues 34-52. To date the exact mechanisms of this
transmembrane receptor are unknown. This protein is
not well characterized biochemically and its function
cannot be verified as reproduction related, therefore we
only discuss the results briefly below.
On site-specific analysis of this protein we determined

that 30 of the sites are under positive selection (ω =
12.22), see Table 3. From analysis of the sites on the
Swiss-Prot entry for human Porimin (Q8N131), we
could determine that two positively selected sites (146
and 147), were found in a highly conserved region and
fall in close proximity to the N-linked glycosylation site.
For complete set of results for Porimin, see Additional
File 6(f).

Conclusion
Testing for phylogenetic signal and biases, such as
amino acid composition bias and LBA, indicated that
there was adequate phylogenetic signal for 10 of the
genes and in general no evidence of systematic biases.
On testing for LBA, Ph20 was the only protein in this
dataset that displayed the typical signature of this bias
with gene and species tree agreement being maximized
with the removal of the fastest evolving categories. This
would suggest that while germ line generation times
vary greatly in the dataset, the effect of the resultant
LBA does not impact on the sequence data to any great
extent (1/11datasets).
Selective pressures for the reproductive proteins stu-

died here are heterogeneous. All proteins exhibited
regions of strong conservation proving the importance
of maintaining structural stability and overall function
in these proteins. All but 1 protein (Adam2) exhibited
evidence of positive selection in specific lineages, and
all proteins without exception exhibited positive selec-
tion in regions of catalytic/functional importance. For
SP56 and Col1a1 the site-specific results are entirely
novel. The lineage-specific results described here for
Prkar2a and Catsper1 exon 1 in primates, are also
novel. We have shown that, in the case of Catsper1,
there is a fundamental protein functional shift between
new world monkeys and old world monkeys. The Dn/
Ds measurement applied here assumes that neutral
substitution rate is akin to Ds, therefore no selection
on silent sites. There have been many publications of
late to the contrary therefore we are mindful of exam-
ining the rate of silent substitution in all our analyses
[46,47].
For the reproductive genes in our dataset, we show

that lineages evolve at unique rates and at functionally
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crucial sites, specifically those involved in phosphoryla-
tion. We have also shown that a number of these pro-
teins (Col1a1 and Catsper1) show positive selection for
example in the ancestral rodent lineage and evidence of
purifying selection in the subsequent divergent species.
Overall our analyses of these reproductive proteins

show how important it is to carefully examine data for
systematic biases prior to testing for lineage and/or
site specific positive selection. We have also demon-
strated the importance of including large numbers of
taxa/lineages in these analyses. This finding was high-
lighted in our analysis of Prkar2a where previous ana-
lysis of this protein had included only 4 taxa and
therefore reported a negative result. We do not
observe any large-scale effect of germ line generation
time in our dataset, with only 1 protein (Ph20) with
evidence of long branch attraction. The results of
Col1a1 indicate that the positively selected sites may
have been of such importance for this protein that
neighboring mutated sites may have been maintained
in the population despite their propensity for causing
disease. The location of positively selected sites deter-
mined using this approach and in regions of functional
importance in the proteins in this dataset, provides us
with further evidence of the link between functional
shift and positive selection.

Methods
The data analyzed in this study consist of homologous
reproductive genes from a variety of mammalian gen-
omes. Genes were identified as being reproduction
related from literature searches, analysis of protein
interaction networks (iHOP) [48] and expression
(microarray) data [11]. The microarray expression data
used is from normal human tissues. We have also
included a more in-depth analysis of previously identi-
fied cases of positive selection in reproductive proteins.
A list of all data used in this study are available in
Additional File 7, the total number of genes analyzed
was 10. Homologs of all 10 reproduction related genes
were identified in mammalian genomes that span the
entire phylogeny of mammals, see Figure 1. For each
of the reproduction related genes, the alignment of
homologs contained between 10 and 18 species, and
the alignment length varied between 351 and 4374
base pairs.

Sequence Data
Protein coding sequences for the reproductive proteins
were retrieved by the combination of two methods;
Ensembl and Blast searches. Orthologous coding
sequences from all available completed mammalian gen-
omes were retrieved from the Ensembl database [49].
These orthologs had been identified previously by

performing a genome-wide reciprocal WUBlastp
+SmithWaterman search of each gene across all com-
pleted genomes. To include those mammalia that were
not present in Ensembl a BlastP search was conducted
on all the human amino acid sequences from each gene
against the Swiss-Prot database.

Mammalian Species
Primates: Human (Homo sapiens), Chimp (Pan troglo-
dytes), Bonobo (Pan paniscus), Bornean Orangutan
(Pongo pygmaeus), Sumatran Orangutan (Pongo abelii),
Gorilla (Gorilla gorilla), Rhesus Macaque (Macaca
mulatta), Crab eating Macaque (Macaca fascicularis),
Pigtailed Macaque (Macaca nemestrina), Bonnet mon-
key (Macaca radiata), Baboon (Papio hamadryas),
Mantled Guereza (Colobus guereza), Vervet Monkey
(Cercopithecus aethiops), Angolan Talapoin (Miopithe-
cus talapoin), Squirrel Monkey (Saimiri sciureus), Cot-
ton top tamarin (Saguinus oedipus), Common
Marmoset (Callithrix jacchus), Marmoset/Callithrix
(Callithrix-jacchus), Spider Monkey (Ateles geoffroyi),
Bushbaby (Otolemur garnettii), Common woolly mon-
key (Lagothrix lagotricha), Ringtailed lemurs (Lemur
catta), Kloss Gibbon (Hylobates klossii), Common/Lar
Gibbon (Hylobates lar), Night/owl Monkey (Aotus tri-
virgatus boliviensis). Scandentia: Treeshrew (Tupaia
belangeri). Rodents: Mouse (Mus musculus), Rat (Rat-
tus norvegicus), Guinea pig (Cavia porcellus), Ground
Squirrel/Squirrel (Spermophilus tridecemlineatus).
Lagomorpha: Rabbit (Oryctolagus cuniculus), Pika
(Ochotona princes). Eulipotyphila: Hedgehog (Erinaceus
europaeus), Shrew (Sorex araneus). Carnivores: Cat
(Felis catus), Dog (Canis familiaris). Artiodactyla: Cow
(Bos taurus), Pig (Sus scrofa). Perisodactyla: Horse
(Equus caballus). Proboscidea: Elephant (Loxodonta
africana). Monotremata: Platypus (Ornithorhynchus
anatinus). Didelphimorphia: Opossum (Monodelphis
domestica).

Multiple Sequence Alignment (MSA)
All coding sequences were translated into their corre-
sponding amino acid sequences using in-house transla-
tion software. Gene family alignments were generated at
protein level using ClustalX 1.83.1 using default para-
meter settings [50]. The corresponding nucleotide gene
family datasets were aligning based on their protein
alignments using in-house software. Each gene family
alignment was manually edited using Se-Al [51] to
remove any ambiguous regions.

Nucleotide composition bias, amino acid composition
bias and likelihood mapping tests
TreePuzzle 5.2 [15] performs a chi-square test that
compares the amino acid composition of each
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sequence to the frequency distribution assumed in the
General Time Reversible (GTR) and Jones Taylor
Thornton (JTT) models [52]. Ideally no species should
fail this test, however, where two species fail and are
thus drawn together on a tree, these sequences are
excluded. Using the likelihood mapping method, each
tree is disassembled into its constituent quartets and
the support for each possible quartet is assessed. If the
data contains phylogenetic signal then the likelihood of
all three possible relationships for that quartet will be
equally likely, these are represented by the three tips
of the triangle, and the majority of the signal will be in
these tip regions. Otherwise, the vertices and central
region will be most heavily populated by supporting
quartets.

Phylogeny Reconstruction
Phylogenetic trees were constructed using MrBayes
v3.2.1 [53] and the amino acid sequences. Amino acid
sequences were used in order to vitiate the effects of
base and codon compositional biases. The substitution
model was selected following model testing using Mod-
elgenerator version 85 [54]. The selected model was
JTT, the GTR rate model was implemented and the first
20000 trees for each gene were discarded as “burnin”. A
majority rule consensus tree from the remaining trees
sampled was constructed for each gene. The parameter
settings for each gene phylogeny are summarized in
Additional File 8.

Site-stripping for significance
To test for long branch attraction (LBA) we applied the
slow-fast approach of Brinkman and Phillipe [55]. We
implemented the rate categorisation in a maximum like-
lihood framework in TreePuzzle 5.2 [15]. This software
takes the alignment as input and generates ab initio
phylogenetic trees. It then calculates the rate of muta-
tion for each site in the alignment. The software speci-
fies 8 arbitrary categories of site: each one of these
categories contains some portion of the alignment. In
this manuscript 8 is the most rapidly evolving (for
example every lineage has a different character state for
that character), and category 1 is the most slowly evol-
ving (for example each lineage has the same/identical
character state for that character). Sites are then pro-
gressively removed from the protein MSA according to
their evolutionary rate, and at each stage a new phyloge-
netic tree is constructed based on this slightly reduced
dataset. The difference between the new topology cre-
ated on a reduced alignment and the original topology
reconstructed based on the entire alignment are then
compared in a statistical framework to determine which
fits the data best (SH Test 2, see below) or which is
most similar to the species phylogeny (RMSD Test 1,

see below). At each stage we employ MrBayes [56] to
perform the phylogenetic reconstruction using the afore-
mentioned settings.

Tests of the difference between two trees
Test 1: Nodal distance calculation
TOPD/FMTS v 3.3 [18] calculates the distance
between the site-stripped trees and the ‘ideal’ tree. The
‘ideal’ tree used for each gene was a pruned version of
the canonical species tree as seen in Figure 1. A dis-
tance matrix is derived by counting the number of
nodes that separate each of the taxa in a tree. A dis-
tance matrix is calculated for each site-stripped tree as
compared to the ideal species tree. The nodal distance
score is obtained by calculating the RMSD of the
matrices. If both trees are identical the RMSD value
would be 0, indicating no distance between them. This
figure increases the more distance there is between the
two trees.
Test 2: Shimodaira-Hasegawa (SH) statistical test of two
trees
For each gene MSA, complete and site-stripped, a com-
parison of the likelihood of the estimated Bayesian phy-
logeny for that alignment with the likelihood of its
corresponding ‘ideal’ species tree was carried out using
the SH test [14] implemented in TreePuzzle 5.2 [15] to
determine which tree was significantly the best-fit tree
for the alignment.

Selective Pressure Analysis
PAML 4.3 [57,58] uses a ML method of calculating ω
for site-specific and lineage-site specific changes.
Codeml, part of the PAML 4.3 package [57,58], applies
a series of models to our data, with each model differ-
ing from the previous with the addition of more com-
plex parameters. The simplest model is M0, and it
calculates an ω value over the entire alignment. This
model assumes that all sites and all lineages are evol-
ving at the same rate. Model M3 is an extension of
M0 and allows all ω values to vary freely. There are
two variations of the M3 model, m3(k = 2) discrete
which allows two variable classes of sites and m3(k =
3) which allows three classes of site. M1 is a neutral
model that allows two parameter estimates for propor-
tion of sites where ω = 0 or ω = 1. M2 is the selection
model, it allows three parameters where ω = 0 or ω =
1 or ω is estimated and free to be greater than 1. M7,
is the beta model, it allows ten different site classes for
ω between 0 and 1. M7 is compared against the more
parameter rich M8 (beta &omega >1). M8 allows 10
different site classes but contains an additional para-
meter whereby the 11th ω is free to vary between 0
and >1. M8a(beta &omega = 1) is null hypothesis of
model 8. Model A & Model B are models that allow
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testing of ω variation in lineage-site analyses. Model A
is an extension of M1 and Model B is a more para-
meter rich extension of m3(k = 2). We have also
implemented model A null which is denoted as mod-
elA1 elsewhere. Model A null is compared to model A
in an LRT as per Additional File 9. Only statistically
significant models for the data are taken into account.
Statistically significant results were decided by calculat-
ing the difference in log likelihood or, lnL, scores
between models and their more parameter rich exten-
sions in a likelihood ratio test (LRT) as described pre-
viously in [17,58]. If the likelihood score was exceeded
the critical c2 values, then the result was significant.
See Additional File 9 for full set of LRTs performed.

In silico analysis of positively selected sites
Sites under positive selection (ω > 1) were estimated
using the empirical Bayes methods in the site-specific
and lineage specific analysis performed. The methods
used were naúve empirical Bayes (NEB) and Bayes
empirical Bayes (BEB) [58]. Swiss-Prot is a protein
sequence database that provides description of the func-
tion of a protein, the domain structures, post-transla-
tional modifications and variants. Significant sites,
verified through close examination of the MSAs and
codeml output using alignment visualisation software
Se-AL [51], were compared with unaligned human
amino acid sequence taken from Swiss-Prot. These sites
were examined to see whether or not they lay in cataly-
tically important regions of the protein.

Additional file 1: Additional Table 1 - Results of amino acid
composition bias per gene. Results of the amino acid composition bias
test and shown here on a per gene basis. We would expect that if two
species have similarly and significantly (P < 0.05) biased amino acid
composition that they would be drawn together on the phylogeny.
Those with P < 0.05 scores are highlighted but are dispersed throughout
different genes. The frequency distribution assumed in the maximum
likelihood model calculated by Tree-Puzzle (5% chi-square p-values) was
used. N/A = species not represented in the gene dataset.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2148-10-
39-S1.DOC ]

Additional file 2: Additional Table 2 - Results of base composition
bias per gene. Results of the base composition bias test and shown
here on a per gene basis. We would expect that if two species have
similarly and significantly (P < 0.05) biased base composition that they
would be drawn together on the phylogeny. Those with P < 0.05 scores
are highlighted but are dispersed throughout different genes. The
frequency distribution assumed in the maximum likelihood model
calculated by Tree-Puzzle (5% chi-square p-values) was used. N/A =
species not represented in the gene dataset.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2148-10-
39-S2.DOC ]

Additional file 3: Additional Table 3 - Results of likelihood mapping
test for phylogenetic support and conflict estimated for each gene.
Results of Likelihood mapping test are shown here on a gene-by-gene
basis. This table summarizes the amount of phylogenetic signal and
conflict in each alignment. The three possible topologies for each
quartet of species are represented by the corners of the triangle, these
corners represent strong support for phylogenetic signal. Quartets
present on the vertices represent incongruence in the phylogenetic
signal. Quartets at the centre of the triangle represents those quartets
where all three topologies are equally likely, i.e. phylogenetic signal
completely lacking. Each gene is subsequently given a category based
on the quality of the data, only categories 1 and 2 were used.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2148-10-
39-S3.DOC ]

Additional file 4: Additional Table 4 - Results of root mean squared
deviation (RMSD) analysis for comparing binary trees. This table
summarizes the results of comparing the site stripped phylogenies with
the ideal species phylogeny. In the first column is the gene name. Each
of the subsequent columns represents a category of site variation that is
removed (1 is the slowest evolving, 8 the most rapid). The values given
for each category removed is the RMSD statistic and represents how
similar the resultant site stripped topology is to the canonical species
phylogeny. NB - non-binary tree, N/A - not applicable (site category not
estimated for alignment).
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2148-10-
39-S4.DOC ]

Additional file 5: Additional Table 5 - Results of the SH test for site-
stripped gene versus ideal species phylogeny. This table summarizes
the results of comparing the site stripped phylogenies with the ideal
species phylogeny using the SH test, this is a more statistically robust
approach and more suited to multi-furcating topologies such as those in
the dataset. Each of the rows represents a category of site variation that
is removed. For each site stripped site dataset the resultant gene tree is
compared to the species phylogeny. The values given for each category
removed denotes whether there is a significant difference between the
site stripped tree and the species phylogeny, values of less than 0.05
represent those cases where there is a significant difference between the
phylogenies. NS = No Statistical significance between gene and species
tree, the species tree was taken in these cases.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2148-10-
39-S5.DOC ]

Additional file 6: Additional Table 6(a-k) - Complete results of
Maximum likelihood analysis for selective pressure variation per
gene. For each gene analyzed (a-k) the results are shown in full on a
gene-by-gene basis (in alphabetical order). The layout of each table is
identical for each gene. The corresponding LRTs performed and all
scores and values computed are shown below. The models used are
given in the left-most column (Model), followed by the number of
parameters associated with that model (P). The Log Likelihood or each
model is given in the column (L), and the estimates of the parameters
for the proportion of sites (p) and the ratio of Dn/Ds (ω) are given. Sites
identified by each model as being positively selected are shown in the
final column.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2148-10-
39-S6.DOC ]

Additional file 7: Additional Table 7 - Summary of data used in the
analysis. Species names, unique identifiers and sequence lengths
are given for all data. Summary of data used in the analysis. Species
names, unique identifiers for Ensembl (ENS) or Swiss-Prot and database
versions are given. The sequence length per species are given for all
genes.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2148-10-
39-S7.DOC ]
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Additional file 8: Additional Table 8 - Parameters for Phylogeny
Reconstruction per gene. The parameters used to reconstruct each
gene tree in MrBayes are shown. The model of rate heterogeneity for
each gene is shown, along with the number of generations required,
and the number of markov chains (these values vary based on the size
of the dataset).
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2148-10-
39-S8.DOC ]

Additional file 9: Additional Table 9 - Likelihood ratio tests (LRTs)
performed using all evolutionary models used in selection analysis.
Details on all likelihood ratio tests performed in the analysis. The models
are denoted by their abbreviated names, Model A1 is denoted as Model
A null throughout the manuscript. The number of degrees of freedom
(df) are shown, this is relevant for the chi-squared test for significance,
the critical values in each instance are given in the final column.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2148-10-
39-S9.DOC ]
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A.A.: Amino Acid; Bck: Background lineage/s; BEB: Bayes Empirical Bayes; CDS:
Coding DNA sequence; Dn: Non-synonymous substitution per non-
synonymous site; Ds: Synonymous substitution per synonymous site; F:
Frequency of amino acids; Fwd: Foreground lineage/s; G: gamma distributed
sites rates across sites; GTR: General Time Reversible; I: invariable; JTT: Jones,
Taylor and Thornton; LBA: Long Branch Attraction; LM: Likelihood mapping;
LRT: Likelihood Ratio Test; ML: Maximum Likelihood; MSA: Multiple Sequence
Alignment; N/A: data not available; NB: Non-binary tree; NEB: Naïve Empirical
Bayes; NS: No statistical difference; OI: Osteogenesis imperfecta; OI-II/-III/-IV:
Osteogenesis imperfecta type -2/-3/-4; P: probability; PP: Posterior Probability;
RMSD: Root Mean Squared Deviation; SH: Shimodaira Hasegawa; SNP: Single
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Abstract 

Background 

Cancer, much like most human disease, is routinely studied by utilizing model organisms. Of 

these model organisms, mice are often dominant. However, our assumptions of functional 

equivalence fail to consider the opportunity for divergence conferred by ~180 Million Years 

(MY) of independent evolution between these species. For a given set of human disease 

related genes, it is therefore important to determine if functional equivalency has been 

retained between species. In this study we test the hypothesis that cancer associated genes 

have different patterns of substitution akin to adaptive evolution in different mammal 

lineages. 

Results 

Our analysis of the current literature and colon cancer databases identified 22 genes 

exhibiting colon cancer associated germline mutations. We identified orthologs for these 22 

genes across a set of high coverage (>6X) vertebrate genomes. Analysis of these orthologous 

datasets revealed significant levels of positive selection. Evidence of lineage-specific positive 

selection was identified in 14 genes in both ancestral and extant lineages. Lineage-specific 

positive selection was detected in the ancestral Euarchontoglires and Hominidae lineages for 

STK11, in the ancestral primate lineage for CDH1, in the ancestral Murinae lineage for both 

SDHC and MSH6 genes and the ancestral Muridae lineage for TSC1. 

Conclusion 

Identifying positive selection in the primate, Hominidae, Muridae and Murinae lineages 

suggest an ancestral functional shift in these genes between the rodent and primate lineages. 

Analyses such as this, combining evolutionary theory and predictions - along with medically 

relevant data, can thus provide us with important clues for modeling human diseases. 

Keywords 

Positive selection, Colon cancer, Adaptive evolution, Protein functional shift, Selective 

pressure, Evolutionary medicine 

Background 

Mouse models are currently used to research many human cancers including colon cancer. 

On a genome wide scale, mouse protein sequences share 78.5% sequence identity with 

human counterparts [1]. With such high levels of sequence identity it may seem reasonable to 

expect that many orthologs between mouse and human would have conserved functions. 

However, in the ~180 Million Years (MY) of independent evolution [2], it is possible that 

certain proteins have functionally diverged. One example of ortholog divergence between 

human and mouse is the TDP1 gene, required in Topo1-DNA complex repair, protein 

sequence similarity of 81%. A point mutation from an adenine to a guanine at position 1478 

in human TDP1 is linked with a disorder known as SCAN1 that results in cerebellar atrophy 

and peripheral neuropathy. However, this mutation in mouse does not result in the same 



condition/phenotype [3]. Specific mutations in any of the following genes in human result in 

disease: BCL10, PKLR and SGCA, but the same mutations in the mouse homologs do not 

result in phenotypic change to a disease state [4]. BRCA1 is heavily implicated in breast 

cancer in humans, with BRCA1
+/−

 women having a 50% risk of developing breast cancer, 

while BRCA
+/−

 mice do not exhibit increased susceptibility to cancer [5]. These observed 

differences in phenotype could potentially be the result of protein functional shifts in cancer-

associated genes between human and mouse. While the analysis of the mouse lineage versus 

human is important from an evolutionary medicine perspective to determine/predict those 

specific cases where mouse may not effectively model the human disease phenotype, the 

analysis of all other lineages frames these results in the context of all mammals. Therefore, in 

this study we have not only examined the human and mouse lineages but all lineages leading 

to extant species in our dataset. This allows us to gain a greater understanding of the level of 

lineage-specific functional shift that has occurred in colon cancer associated genes. 

Positive selection is the retention and spread of advantageous mutations throughout a 

population and has long been considered synonymous with protein functional shift. There are 

a number of driving forces for positive selection including external mechanisms such as 

adaptation to different ecological niches and response to disease and internal mechanisms 

such as co-evolution and compensatory mutations [6], all of which are relevant to the data 

and species we are analyzing. At the molecular level, the ratio of nonsynonymous 

substitutions per nonsynonymous site (dN) to synonymous substitutions per synonymous site 

(dS) is known as ω, and indicates the selective pressure at work in that sequence. If ω > 1 it 

signifies positive selective pressure, ω = 1 signifies neutral evolution, while ω < 1 indicates 

purifying selective pressure. Previous work assessed the level of positive selection present in 

mammal genomes and estimated 5%-9% of genes in mammals are under positive selection 

under a Bayesian framework, and thus provides us with a reference or expected level of 

positive selection for our analysis [7,8]. 

Here we have applied a Maximum Likelihood method based on codon models of evolution to 

assess the selective pressures across our dataset [9]. These methods are far more robust than 

alternatives such as the sliding window approach [10], nonetheless they do suffer from 

limitations and have strict criteria in terms of dataset size for statistical robustness [11,12]. 

Another feature of sequence evolution that can negatively impact on a selective pressure 

analysis is recombination [13]. To evaluate the robustness of the Likelihood Ratio Tests 

(LRTs), simulations have been performed that show that type 1 error rates can be up to 90% 

with relatively high rates of recombination in protein coding sequences resulting in the 

misinterpretation of recombination as positive selection ( [13] We have incorporated a test for 

recombination for all genes in the dataset prior to the ML selective pressure analysis. Recent 

studies using these codon models of evoluton in an ML framework have combined 

evolutionary predictions of positive selection with biochemical verification of functional 

affects of these substitutions [14-16], and thus support the link between positive selection and 

protein functional shift. 

We have taken colon cancer as an example for our study given the large amount of mutation 

and epigenetic data available for this form of cancer [17]. Lineage-specific positive selection 

in genes associated with colon cancer is strongly suggestive of functional shift and could 

have serious implications in the use of certain lineages for modeling colon cancer. 

Colorectal cancer (CRC) is the third most commonly diagnosed cancer in males and second 

in females and we have focused on this in our study [18]. CRC arises through the 



accumulation of multiple genetic and epigenetic changes. Genetic changes consist of both 

somatic and germline (i.e. heritable) mutations, the genes in which there are germline 

mutations that are highly associated with the development of colon cancer are analyzed here 

(22 genes in total) and are referred to throughout this manuscript as “colon cancer associated 

genes”. Colon cancer associated genes work in conjunction with other proteins and pathways 

and can be thought of as contributing to, rather than being the single cause of colon cancer 

(note: these genes also have other functions outside of their association that may contribute to 

selective pressure variation in different lineages). Epigenetic changes such as 

hypermethylation of certain genes, loss of imprinting and 

acetylation/phosphorylation/methylation of particular histones are also implicated in cancer. 

Detailed information on colon cancer epigenetics have been made available to the community 

through the StatEpigen biomedical resource [17]. Other events such as loss of heterozygosity, 

microsatellite instability and CpG island methylator phenotype can also play an important 

role. 

Hereditary Non-Polyposis Colorectal Cancer (HNPCC) is a hereditary predisposition for the 

development of colorectal cancer, and accounts for 3% of all colon cancer cases [19]. The 22 

genes we have analyzed were selected based on the presence of known germline mutations 

associated with colon cancer. What follows is a brief description of each gene in the study. 

The genes linked with HNPCC are: MLH1, PMS2, MSH2, MSH6, and PMS1, all of which 

are members of the MMR DNA repair pathway [19]. 

MLH1 (mutL homologue 1) is a mismatch repair gene and is commonly associated with 

HNPCC. Missense mutations in MLH1 occur in the C-terminal domain, which is responsible 

for constitutive dimerization with the mismatch repair endonuclease PMS2 [20]. Studies have 

also shown that microsatellite instability (MSI) is the molecular fingerprint of a deficient 

mismatch repair system. It is estimated that some 15% of colorectal cancers display MSI 

owing to the epigenetic silencing of MLH1, and/or germline mutation in any one of the 

following mismatch repair genes: PMS2, MLH1, MSH2, and MSH6 [21]. The mismatch 

repair endonuclease PMS2 is known to interact with MLH1 and is a component of the post-

replicative DNA mismatch repair system (MMR). PMS2 is recruited to cleave damaged DNA 

this recruitment is triggered by the binding of MSH2 and MSH6 proteins to dsDNA 

mismatches followed by the recruitment of MLH1 (Figure 1). PMS1 is also involved in the 

repair of DNA mismatches, and it can form heterodimers with MLH1. Additional genes in 

our study include the tumor suppressor gene TP53, CDH1, MUTYH, and APC. TP53 is a hub 

protein in the cellular DNA damage response pathway known as the P53 signaling pathway 

[22], it is linked with colorectal cancer and many other cancers. The genes CDH1, MUTYH, 

and APC also interact with one another in addition to their involvement in the MMR pathway 

described above. For example, CDH1 and APC interact together as an ubiquitin ligase, which 

is involved in glycolysis regulation during the cell cycle [23]. In fact, most of the colon 

cancer associated genes in this study can be grouped into critical pathways, such as apoptosis, 

DNA damage control, and cell cycle signaling [24]. 

Figure 1 Phylogeny of animal species used in this study. The ancestral lineages tested in 

the analysis are labeled with their corresponding names as used throughout the text. Those 

lineages where positive selection was detected are labeled with filled circles, no evidence of 

positive selection is denoted with an empty circle 



To assess if there is evidence for protein functional shift from the patterns of substitution in 

colon cancer associated genes we have carried out a selective pressure analysis using codon 

models of lineage-specific rate heterogeneity. 

Methods 

Sequence data assembled 

The colon cancer gene dataset used in this study consists of 22 genes taken from the Cancer 

Gene Census at the Sanger Institute [25]. All 22 genes have reported cases of germline 

mutations that are associated with colon cancer (See Table 1 for summary of data, detail on 

the complete dataset is available in Additional file 1). Using the Compara data from Ensembl 

[26,27], single gene orthologs were identified for each gene across the vertebrate genomes 

chosen. The 21 species were selected based on the genome coverage. These included 

representatives from 3 of the 4 main lineages of Eutheria, namely Afrotheria, 

Euarchontoglires, and Laurasiatheria, as well as outgroup species such as platypus, zebrafish, 

and zebra finch (see Additional file 1). 



Table 1 Colon Cancer Gene Set analyzed in this study 

Gene 

(HGNC code) 
Ensembl Identifier 

Taxa 

Number
2
 

Alignment 

Length
3
 

Syndrome Tumor Types Observed Pathway(s) References
4
 

APC ENSG00000134982 20 9177 Familial adenomatous 

polyposis (FAP) 

Colon, thyroid, stomach, 

intestine 

APC [19,24] 

ATM ENSG00000149311 18 9189 Ataxia telangiectasia (A-T) Leukemia, lymphoma, 

colorectal 

CIN [[24], 

http://statepigen.sci-

sym.dcu.ie/] 

BHD ENSG00000154803 20 1737 Birt-Hogg-Dube syndrome Renal, colon AMPK, mTOR, 

STAT 

[24] 

BMPR1A ENSG00000107779 19 1596 Juvenile polyposis Gastrointestinal SMAD [24] 

CDH1 ENSG00000039068 15 2649 Familial gastric carcinoma Stomach AP [[24,28] (E-cadherin)] 

MADH4 ENSG00000141646 16 1656 Juvenile polyposis Gastrointestinal SMAD [[24] (SMAD4)] 

MET ENSG00000105976 21 4146 Hereditary papillary renal 

cell carcinoma (HPRCC) 

Kidney, colorectal RAS, PI3K, STAT, 

Beta-catenin, Notch 

[24] 

MLH1 ENSG00000076242 19 2274 Hereditary non-polyposis 

colon cancer (HNPCC) 

Colon, uterus MMR [24] 

MSH2 ENSG00000095002 18 2802 Hereditary non-polyposis 

colon cancer (HNPCC) 

Colon, uterus MMR [24] 

MSH6 ENSG00000116062 19 4101 Hereditary non-polyposis 

colon cancer (HNPCC) 

Colon, uterus MMR [24] 

MUTYH ENSG00000132781 21 1569 Attenuated Polyposis Colon BER [24] 

NF1 ENSG00000196712 17 8523 Neurofibromatosis type I Neurofibroma, colon RTK [24] 

PMS1 ENSG00000064933 20 2799 Hereditary non-polyposis 

colon cancer (HNPCC) 

Colon, uterus MMR  

PMS2 ENSG00000122512 21 2592 Hereditary non-polyposis 

colon cancer (HNPCC) 

Colon, uterus MMR [24] 



PTEN ENSG00000171862 18 1209 Cowden syndrome Hamartoma, glioma, 

colorectum 

PI3K [[24], 

http://statepigen.sci-

sym.dcu.ie/] 

SDHB ENSG00000117118 18 840 Hereditary paraganglioma, 

Carney–Stratakis 

Paragangliomas, 

pheochromocytomas, 

gastrointestinal 

HIF1 [24] 

SDHC ENSG00000143252 16 507 Hereditary paraganglioma, 

Carney–Stratakis 

Paragangliomas, 

pheochromocytomas, 

gastrointestinal 

HIF1 [24] 

STK11 ENSG00000118046 18 1320 Peutz-Jeghers syndrome Intestinal, ovarian, 

pancreatic, colorectal 

PI3K [24,29] 

TP53 ENSG00000141510 16 1185 Li-Fraumeni 

syndrome/sarcoma 

Breast, sarcoma, adrenal, 

brain, colorectal 

p53 [24,29] 

TSC1 ENSG00000165699 18 3495 Tuberous sclerosis Hamartoma, kidney, 

colorectal 

PI3K [24,29] 

TSC2 ENSG00000103197 19 5436 Tuberous sclerosis Hamartoma, kidney, 

colorectal 

PI3K [24,29] 

VHL ENSG00000134086 18 639 Von Hippel-Lindau 

syndrom 

Kidney, colorectal HIF1 [24] 

Each of the 22 genes analyzed in this study are detailed, including their HGNC approved gene symbols, and Ensembl gene IDs. The total 

number of species analyzed for each gene and the overall length of alignment in base pairs are also given. The syndrome, tumor type observed 

and pathway involved are detailed. References citing alternative gene names are identified using brackets



Multiple sequence alignment 

The coding DNA sequences of the single gene orthologs were translated and the resulting 

amino acid sequences were aligned using the default parameters in ClustalW 2.0.12 [30,31]. 

Using in-house software, we mapped gaps from the amino acid multiple sequence alignment 

(MSA) to the corresponding nucleotide sequences to produce a nucleotide alignment. All 

alignments were reviewed for quality and any poorly aligned regions were manually edited 

using Se-Al [32]. All alignments are available in Additional file 2. 

Alignment criteria for selective pressure analysis 

It has been shown through computer simulations that sequence length has an impact on the 

power to infer positive selection [33]. Power was also found to increase with greater 

taxonomic representation and greater divergence, although extreme levels of divergence were 

found to cause a reduction in power. Simulations have shown that the presence of longer 

foreground branches also increased the power of the test statistic, but extremely long 

foreground branches reduce the power [34]. To increase the statistical power of the analysis 

performed here we have therefore only considered single gene families containing 6 or more 

taxa and lengths of greater than 500 amino acids. 

Recombination analysis 

Recombination events can result in the incorrect detection of positive selection. To reduce 

potential false positives in our analysis, we have implemented GENECONV (version 1.81a) 

[35] using default parameters. GENECONV detects gene conversion events between 

ancestors of sequences in the multiple sequence alignment. Default parameters where 

employed, 10,000 randomly permuted datasets were generated for each Single Gene 

Orthologous family and global inner fragments were listed if P-value was 0.05 or smaller. 

Selective pressure analysis using codon models of evolution 

Selective pressure analyses were performed using Codeml from PAML version 4.4 [36,37]. 

Because each gene family analyzed was composed of single gene orthologs, pruned species 

phylogenies were used as per previous publications [2,38]. Codeml implements a number of 

codon-based models in a Maximum Likelihood framework that can be used to test alternative 

and nested evolutionary hypotheses. Three different types of codon model were used in this 

study: (i) a homogeneous model (Model 0) - a single ω-value is estimated for the entire 

alignment; (ii) site-heterogeneous models - the sites of the gene sequence are grouped into 

two or more site classes, each with its own ω-value estimate; and (iii) lineage-specific 

heterogeneous models - a different ω parameter is estimated for different site classes in 

combination with different lineages [9,36,39]. 

Seven site-heterogeneous models were used, we have retained conventional annotations for 

these models: Model 1 (Neutral), Model 2 (Selection), Model 3 Discrete (k = 2), Model 3 

Discrete (k = 3), Model 7, Model 8 and Model 8a. Two lineage-specific heterogeneous 

models were used: Model A and Model A Null. These models have been applied similarly 

elsewhere [40]. 



The goodness-of-fit of the different models was assessed statistically using a likelihood ratio 

test (LRT). The LRT compares the log-likelihoods of a null model with the alternative model. 

For hierarchically nested models, the test statistic of an LRT approximates the χ
2
 distribution 

with degrees of freedom equal to the number of additional free parameters in the alternative 

model compared to the null model. Because of this, the critical value of the test statistic can 

be determined from standard statistical tables. If the p-value of the test statistic exceeds that 

critical value (i.e. if the alternative model fits the data significantly better than the null 

model), then the null model can be rejected. For example, if the test statistic of an LRT 

comparing Model 1 (Neutral) with Model 2 (Selection) is greater than the critical value 

determined from the χ
2
 distribution, Model 1 can be rejected. If ω1 > 1 under Model 2, 

positive selection may be inferred. Additional file 3 shows the set of LRTs used for selection 

analysis. 

In cases where positive selection is inferred, the posterior probability of a site belonging to 

the positively selected class is estimated using two calculations: Naïve Empirical Bayes 

(NEB) or Bayes Empirical Bayes (BEB). If both BEB and NEB are predicted, we will 

preferentially use the BEB results as have been shown to be more robust [37]. 

In-house software was designed to prepare all files for analysis and to process all output. 

PAML output files were parsed for parameter estimates and log likelihood values and LRTs 

were performed (see Additional file 3 for LRTs performed). Where positively selected sites 

were inferred under a given model, positively selected sites were mapped to the sequence (or 

sequences) of interest and included in the summary file (see Additional file 4). This software 

was used to reduce the scope for human error in PAML analyses and is available from the 

authors on request. Functional annotation of sites under positive selection for each protein 

was obtained from UniProt [41]. 

Human population analysis 

Selective pressures within the present day human population were analyzed for those genes 

with evidence of lineage-specific positive selection in the human ancestral lineages. The 

online tool SNP@Evolution
2
 and HapMap release II source data was used to look at 

variations within the East Asian (A), Northern and Western European (C), and African 

Yoruba (Y) populations. The “integrated haplotype score” or iHS, described first in [42], was 

employed here as a test for directional selection. The iHS is standardized using genome wide 

empirical distributions and has an approximate normal distribution allowing for direct 

comparisons of the score across genes, and it outperforms in comparison to other available 

approaches [42]. A derived allele that has been segregating in the population receives a large 

iHS (> + 2) while a large negative iHS (<−2) indicates that the derived allele has increased in 

frequency. 

Results and discussion 

Starting with a dataset of 22 genes, we identified single gene orthologs across 21 complete 

vertebrate genomes. Ortholog identification resulted in families with between 15 and 21 taxa, 

and alignment lengths of between 507 and 9,189 base pairs thus satisfying the dataset 

requirements described in the materials and methods section. The test for recombination on 

all 22 genes is summarized in Additional file 5. The analysis revealed that only the TP53 

protein showed significant levels of recombination, the regions where recombination was 



present was noted and compared to regions where positive selection was detected. If these 

regions overlapped - the positive selection result was deemed a false positive. 

To assess the selective pressure variation, we performed both site- and lineage-specific 

selective pressure analyses and subsequently assessed the statistical significance of all results 

via LRT analysis to ascertain the codon evolutionary model of best fit. In those cases where 

the ω value vastly exceeds 1, we have simply denoted them as ω > > 1 throughout the 

manuscript, as there is no biological significance for these extremely large ω values (the 

precise numbers are shown in the Tables throughout). The lineage-specific analyses are more 

pertinent to the main focus of the paper - the identification of species-specific patterns of 

substitution in these colon cancer associated genes. Therefore the lineage-specific results 

have been described in detail in the following section. Site-specific results briefly 

summarized on a gene-by-gene basis. All positively selected sites were assessed using the 

functional information from the Uniprot database [41]. The model of best fit along with 

associated parameter estimates are described and a summary table for all estimates for each 

of the 22 genes is given in Additional file 4. 

Lineage-specific selective pressure analyses 

Lineage-specific models of codon evolution were assessed at multiple phylogenetic depths, 

(i) the extant lineages within the Euarchontoglires clade, and (ii), all ancestral lineages 

leading from the Euarchontoglires to modern mouse and human were also tested 

independently as depicted in Figure 1. Analysis of the extant human and mouse lineages did 

not yield evidence of positive selection. Conversely, analysis of the lineages within the 

Euarchontoglires clade resulted in significant evidence of lineage-specific positive selection, 

6 genes in ancestral lineages and 12 in extant lineages, see Figure 1. These lineage-specific 

results include 6 ancestral lineages and 12 extant lineages with evidence of positive selection. 

The STK11 gene showed evidence of positive selection in the Euarchontoglires ancestral 

lineage and again in the Hominidae ancestral lineage. CDH1 showed patterns of substitution 

conducive with positive selection in the ancestral primate lineage. The ancestral Muridae 

lineage had evidence of positive selection acting on the TSC1 gene. The ancestral Murinae 

lineage showed evidence of positive selection for both MSH6 and SDHC, see Table 2 for 

summary. 



Table 2 Summary of parameter estimates and likelihood scores for the model of best fit showing evidence of positive selection 

Gene Model lnL Parameter Estimates Positive Selection BEB Positively Selected Sites 

Lineage-Specific Analyses 

Euarchontoglires Ancestral Branch 

STK11 modelA −8602.921472 p0 = 0.93299, p1 = 0.05633, p2 = 0.01007, p3 = 0.00061 

ω0 = 0.03346, ω1 = 1.00000, ω2 = 197.90897 

Yes 3 > 0.50, 1 > 0.95, 0 > 0.99 

Primate Ancestral Branch 

CDH1 modelA −16658.03484 p0 = 0.75454, p1 = 0.23453, p2 = 0.00834, p3 = 0.00259 

ω0 = 0.05683, ω1 = 1.00000, ω2 = 10.20516 

Yes 9 > 0.50, 1 > 0.95, 0 > 0.99 

Hominidae Ancestral Branch 

STK11 modelA −8601.056009 p0 = 0.93574, p1 = 0.05920, p2 = 0.00476, p3 = 0.00030 

ω0 = 0.03323, ω1 = 1.00000, ω2 = 44.31709 

Yes 3 > 0.50, 2 > 0.95, 1 > 0.99 

VHL modelA −4263.853291 p0 = 0.73748, p1 = 0.25109, p2 = 0.00853, p3 = 0.00290 

ω0 = 0.05985, ω1 = 1.00000, ω2 = 220.34533 

Yes 1 > 0.50, 0 > 0.95, 0 > 0.99 

Chimpanzee Extant Branch 

TSC2 modelA −42659.27711 p0 = 0.90352, p1 = 0.09434, p2 = 0.00194, p3 = 0.00020 

ω0 = 0.04404, ω1 = 1.00000, ω2 = 190.09480 

Yes 6 > 0.50, 2 > 0.95, 2 > 0.99 

VHL modelA −4262.098043 p0 = 0.73571, p1 = 0.25251, p2 = 0.00877, p3 = 0.00301 

ω0 = 0.05976, ω1 = 1.00000, ω2 = 262.72662 

Yes 3 > 0.50, 0 > 0.95, 0 > 0.99 

Gorilla Extant Branch 

MSH2 modelA −19485.4338 p0 = 0.92233, p1 = 0.06298, p2 = 0.01375, p3 = 0.00094 

ω0 = 0.06427, ω1 = 1.00000, ω2 = 999.00000 

Yes 46 > 0.50, 34 > 0.95, 18 > 0.99 

TSC2 modelA −42569.22884 p0 = 0.89862, p1 = 0.08796, p2 = 0.01222, p3 = 0.00120 

ω0 = 0.04339, ω1 = 1.00000, ω2 = 999.00000 

Yes 27 > 0.50, 14 > 0.95, 12 > 0.99 

MSH6 modelA −34009.90221 p0 = 0.78382, p1 = 0.18418, p2 = 0.02591, p3 = 0.00609 

ω0 = 0.06974, ω1 = 1.00000, ω2 = 999.00000 

Yes 46 > 0.50, 34 > 0.95, 18 > 0.99 

ATM modelA −69374.08393 p0 = 0.80673, p1 = 0.17971, p2 = 0.01109, p3 = 0.00247 

ω0 = 0.09745, ω1 = 1.00000, ω2 = 999.00000 

Yes 48 > 0.50, 23 > 0.95, 19 > 0.99 

Orangutan Extant Branch 



TSC1 modelA −24068.71106 p0 = 0.79963, p1 = 0.18828, p2 = 0.00978, p3 = 0.00230 

ω0 = 0.08020, ω1 = 1.00000, ω2 = 999.00000 

Yes 13 > 0.50, 6 > 0.95,5 > 0.99 

TSC2 modelA −42673.92339 p0 = 0.90414, p1 = 0.09295, p2 = 0.00263, p3 = 0.00027 

ω0 = 0.04433, ω1 = 1.00000, ω2 = 40.47366 

Yes 9 > 0.50, 0 > 0.95, 0 > 0.99 

Marmoset Extant Branch 

TSC2 modelA −42616.04524 p0 = 0.89841, p1 = 0.09019, p2 = 0.01035, p3 = 0.00104 

ω0 = 0.04325, ω1 = 1.00000, ω2 = 235.10448 

Yes 38 > 0.50, 9 > 0.95 

MSH6 modelA −34009.90221 p0 = 0.78382, p1 = 0.18418, p2 = 0.02591, p3 = 0.00609 

ω0 = 0.06974, ω1 = 1.00000, ω2 = 999.00000 

Yes 45 > 0.50, 16 > 0.95, 12 > 0.99 

VHL modelA −4262.443441 p0 = 0.72045, p1 = 0.22453, p2 = 0.04195, p3 = 0.01307 

ω0 = 0.05886, ω1 = 1.00000, ω2 = 90.26952 

Yes 10 > 0.50, 0 > 0.95, 0 > 0.99 

ATM modelA −69583.23068 p0 = 0.81640, p1 = 0.18148, p2 = 0.00173, p3 = 0.00038 

ω0 = 0.09939, ω1 = 1.00000, ω2 = 46.82466 

Yes 2 > 0.50, 0 > 0.95, 0 > 0.99 

Muridae Ancestral Branch 

TSC1 modelA −24126.17894 p0 = 0.80995, p1 = 0.18416, p2 = 0.00481, p3 = 0.00109 

ω0 = 0.08293, ω1 = 1.00000, ω2 = 999.00000 

Yes 1 > 0.59, 0 > 0.95, 0 > 0.99 

Murinae Ancestral Branch 

SDHC modelA −3846.690164 p0 = 0.87666, p1 = 0.08131, p2 = 0.03846, p3 = 0.00357 

ω0 = 0.15340, ω1 = 1.00000, ω2 = 253.61375 

Yes 9 > 0.50, 2 > 0.95, 1 > 0.99 

MSH6 modelA −34190.13821 p0 = 0.79911, p1 = 0.19671, p2 = 0.00335, p3 = 0.00082 

ω0 = 0.07057, ω1 = 1.00000, ω2 = 126.22513 

Yes 3 > 0.50, 1 > 0.95, 0 > 0.99 

Rat Extant Branch 

MADH4 modelA −6092.186945 p0 = 0.93360, p1 = 0.01536, p2 = 0.05021, p3 = 0.00083 

ω0 = 0.01379, ω1 = 1.00000, ω2 = 102.33013 

Yes 24 > 0.50, 11 > 0.95, 10 > 0.99 

NF1 modelA −37750.29866 p0 = 0.96609, p1 = 0.02476, p2 = 0.00892, p3 = 0.00023 

ω0 = 0.02265, ω1 = 1.00000, ω2 = 999.00000 

Yes 39 > 0.50, 10 > 0.95, 10 > 0.99 

Guinea pig Extant Branch 

TSC1 modelA −24116.58577 p0 = 0.80206, p1 = 0.18611, p2 = 0.00961, p3 = 0.00223 

ω0 = 0.08093, ω1 = 1.00000, ω2 = 284.22603 

Yes 9 > 0.50, 4 > 0.95, 0 > 0.99 



NF1 modelA −37849.50819 p0 = 0.97375, p1 = 0.02506, p2 = 0.00116, p3 = 0.00003 

ω0 = 0.02414, ω1 = 1.00000, ω2 = 171.64068 

Yes 3 > 0.50, 1 > 0.95, 0 > 0.99 

Rabbit Extant Branch 

MLH1 modelA −19516.63525 p0 = 0.80595, p1 = 0.18541, p2 = 0.00703, p3 = 0.00162 

ω0 = 0.05262, ω1 = 1.00000, ω2 = 7.52747 

Yes 5 > 0.05, 3 > 0.95, 0 > 0.99 

MUTYH modelA −15911.6175 p0 = 0.61027, p1 = 0.37605, p2 = 0.00846, p3 = 0.00522 

ω0 = 0.07703, ω1 = 1.00000, ω2 = 998.99697 

Yes 5 > 0.50, 4 > 0.95, 3 > 0.99 

SDHC modelA −3822.683246 p0 = 0.57771, p1 = 0.06636, p2 = 0.31926, p3 = 0.03667 

ω0 = 0.12047, ω1 = 1.00000, ω2 = 3.59059 

Yes 51 > 0.50, 10 > 0.95, 8 > 0.99 

ATM modelA −69582.95152 p0 = 0.81572, p1 = 0.18045, p2 = 0.00313, p3 = 0.00069 

ω0 = 0.09930, ω1 = 1.00000, ω2 = 7.41594 

Yes 6 > 0.50, 0 > 0.95, 0 > 0.99 

BHD modelA −13523.51719 p0 = 0.90728, p1 = 0.05930, p2 = 0.03137, p3 = 0.00205 

ω0 = 0.02817, ω1 = 1.00000, ω2 = 6.50017 

Yes 10 > 0.50, 7 > 0.95, 1 > 0.99 

Site-specific Analyses 

CDH1 m8 −16589.88768 p = 0.21848, p0 = 0.99291, p1 = 0.00709, q = 0.80842 

ω=4.53766 

Yes 15 > 0.5, 1 > 0.95, 0 > 0.99 

PMS1 m8 −26480.39761 p = 0.61337, p0 = 0.93580, p1 = 0.06420, q = 1.93110 

ω=1.32691 

Yes 25 > 0.50, 1 > 0.95, 0 > 0.99 

PMS2 m8 −27449.3651 p = 0.29104, p0 = 0.91064, p1 = 0.08936, q = 1.31619 

ω=1.28855 

Yes 37 > 0.50, 1 > 0.95, 0 > 0.99 

MUTYH m8 −15797.6226 p = 0.37255, p0 = 0.97242, p1 = 0.02758, q = 1.00900 

ω=2.44412 

Yes 18 > 0.5, 1 > 0.95, 0 > 0.99 

TP53 m8 −8688.19126 p = 0.40362, p0 = 0.94645, p1 = 0.05355, q = 1.77507 

ω=1.97385 

Yes 13 > 0.5, 3 > 0.95, 0 > 0.99 

The model of best fit is summarized below for those genes with evidence of positive selection. The lineage-specific results for each lineage 

tested from the Euarchontoglires ancestor to modern lineages are shown in the top panel and the site-specific results are shown in the bottom 

panel. The model abbreviations are as per main text. P refers to the number of free parameters estimated in that model. BEB = Bayes Empirical 

Bayes estimations. The number of positively selected sites identified can be found the final column, sites are separated by the posterior 

probability cutoffs of 0.50, 0.95, and 0.99



In the following section, we have analyzed the positively selected sites for those genes with 

evidence of lineage-specific positive selection in the context of their potential functional 

relevance for those genes. This was carried out for all genes where functional sites and/or 

domains have been elucidated. All sites described were calculated via Bayes Empirical Bayes 

(BEB) analysis (unless otherwise specified). In all cases we are assessing the potential 

functional importance of residues based on their sequence position. There are instances where 

we identify stretches of protein sequence under positive selection - there is a possibility that 

these regions may have very different functions despite their sequence position. For a total 16 

of the 22 genes there were partial or complete 3D structures available. However, many of the 

positively selected sites identified were located in regions that were not yet fully resolved at 

the structural level, and so only the 3D model for STK11 is given. Corresponding alignments 

are available in Additional file 2. The complete set of model estimates for the entire dataset 

are available in Additional file 4. 

Positive selection in the Euarchontoglires Ancestral branch 

The most ancestral branch tested was the Euarchontoglires ancestral branch, i.e. the ancestor 

of the Primate, Rodent and Glires clade as depicted in Figure 1. The STK11 alignment 

consists of 18 taxa and was the only gene that showed evidence of positive selection in this 

lineage. STK11 (Serine/Threonine-protein kinase 11) plays an essential role in G1 cell cycle 

arrest and acts as a tumor suppressor. It phosphorylates and activates members of the AMPK-

related subfamily of protein kinases (Baas [43],; Boudeau [44],). Mutations in STK11 cause 

Peutz-Jeghers syndrome (PJS), a rare autosomal dominant disorder characterized by multiple 

gastrointestinal hamartomatous polyps and an increased risk of various neoplasms including 

gastrointestinal cancer [45,46]. From the literature we currently know of 17 sites across this 

gene that when mutated are associated with colon-cancer. The Euarchontoglires ancestral 

lineage has 1.1% of sites under positive selection (ω > > 1). The positively selected residues 

were located on the 3D structure of this enzyme (See Figure 1 inset). Position 206 with a 

PP = 0.889 is a hydrophobic Alanine or Valine in Euarchontoglires species or a negatively 

charged Glutamic acid or positively charged Lysine in non-Euarchontoglires species. This 

residue also lies in close proximity to sporadic cancer site A205T and colorectal cancer site 

D208N in Human [47]. Positively selected position 301 in Euarchontoglires (P = 0.885) is 

present in Euarchontoglires species as an Arginine residue and all non-Euarchontoglires as an 

uncharged Glutamine residue. Site 301 is close to R297K and region 303–306 both of which 

have been implicated in PJS [48]. 

Positive selection in the Primate Ancestral branch 

The branch leading from the Euarchontoglires ancestor towards the primates was analyzed, 

we have termed this branch the ancestral Primate branch as depicted in Figure 1. The CDH1 

dataset consists of 15 taxa and following LRT analysis showed evidence of lineage-specific 

analysis identified positive selection in 1.1% of sites in the Primate Ancestor (ω=10.21). 

Positively selected sites were compared to human Swiss-Prot entry (P12830) and it was 

found that position 604, with a Posterior Probability (PP) of 0.549, falls in close proximity to 

gastric cancer variant R598Q [49]. At position 604 Primates have a negatively charged 

Glutamic acid while non-primates have a polar uncharged Glutamine. 



Positive selection in the Hominidae Ancestral branch 

The next branch in the primate clade is that leading to modern great apes, i.e. Hominidae, as 

depicted in Figure 1. This lineage also showed evidence of positive selection again in the 

STK11 gene in 0.51% of sites, or 3 positions, with ω > > 1. See Figure 2(a) and Table 2. 

These positions were then compared to the human Swiss-Prot sequence (Q15831). Position 

347 represents a radical substitution, as the Hominidae code for an Alanine (a small 

hydrophobic residue) whereas the Murinae lineage encode an Arginine at this position (a 

basic, hydrophilic, and positively charged residue). For positively selected site 378, the 

ancestral Hominidae lineage encodes the polar residue Serine, while the closely related 

species studied encode the small amphiphilic Glycine. The functions of these specific sites 

have not been reported thus far in the literature but are likely to be of considerable interest as 

they mark adaptations unique to the ancestral Hominidae. 

Figure 2 Positive selection analysis for 4 genes: (a) STK11, (b) CDH1, (c) MUTYH, and 

(d) TP53. The x-axis depicts the gene from start to end of alignment. The Y-axis is the 

posterior probability. The vertical red bars on each graph represent the known cancer causing 

variants from human populations. The black dots on each graph represent the positively 

selected sites identified in this study 

A second gene showing evidence of positive selection in the Hominidae ancestral branch is 

the VHL dataset consisting of 18 taxa. The VHL gene encodes Von Hippel-Lindaue tumour 

suppressor protein. Mutations occurring in this gene can result in von Hippel-Lindau disease 

(VHDL) - a dominantly inherited familial cancer syndrome [50]. VHL exhibited weak 

evidence of positive selection with 1.1% of sites in the ancestral Hominidae lineage under 

positive selection. There was one amino acid that had low coverage in the alignment (present 

only in 6/18 species), as this is a very weak results we have not expanded upon it any further. 

Positive selection in the Extant Primate branches 

Analysis of modern non-human primates also identified positive selection in a number of 

genes. In VHL positive selection was detected in the Chimpanzee lineage with 1.2% of sites 

with ω > > 1, and also in the Marmoset lineage with 5.5% sites with ω > > 1. Sites under 

positive selection were compared against human Swiss-Prot entry (P40337), however the 

region (1–60) was only represented by 11/18 species in the alignment and therefore we do not 

have sufficient confidence in these positions to explore these sites in more detail. 

The MSH6 gene dataset contained 19 taxa and showed evidence of positive selection in both 

the Gorilla and Marmoset lineages each displaying 3.2% of sites with ω > > 1. Gorilla and 

Marmoset extant lineages were compared against human (P52701) Swiss-Prot entry. No 

relevant functional information could be extracted from positively selected sites in Gorilla, 

however 2/45 positively selected sites in Marmoset fall in close proximity to cancer variants. 

Marmoset positively selected site 803 (PP = 0.551) coincides with colorectal cancer variants 

D803G [51] and V800A [52] in Human. Position 803 in Marmoset is a negatively charged 

Glutamic acid while in all other mammals it is a small negatively charged Aspartic acid. 

Positively selected site 1099 in Marmoset (PP = 0.614) is located between human colorectal 

cancer variants R1095H [53] and T1110C [54]. 

MSH2 alignment consists of 18 taxa. The function of the MSH2 protein is in post-replicative 

DNA mismatch repair system (MMR). Mutations in MSH2 result in hereditary non-polyposis 



colorectal cancer type 1 (HNPCC1) [55]. Lineage-specific positive selection was identified in 

1.5% of sites within the extant Gorilla lineage with ω > > 1. Positively selected sites were 

compared against human Swiss-Prot sequence (P43246). All 15 of the BEB identified sites 

occur between amino acid position 124–142 which overlaps with the region containing 

variants N127S, N139S and I145M associated with HNPCC1 [55]. 

Tuberous sclerosis 2 protein (TSC2) interacts with TSC1 protein and mutations in this gene 

can cause tuberous sclerosis type 2 [56]. The alignment of TSC2 consisted of 19 taxa. 

Lineage-specific positive selection was identified in the following extant lineages, the 

percentage of sites under positive selection in each lineage is shown in brackets, in all cases ω 

> > 1: Chimpanzee lineage (0.2%), Gorilla (1.3%), Orangutan (0.29%), and, Marmoset 

(1.1%). Positively selected sites were compared against human Swiss-Prot sequence 

(P49815) however the functional information was not available to contextualize these results. 

ATM acts as a DNA checkpoint sensor by activating checkpoint signaling upon double strand 

breaks [57]. The alignment of ATM consisted of 18 taxa and positive selection was detected 

in the following lineages (again the percentage of the alignment under positive selection is 

shown in brackets): Gorilla (1.4%, ω > > 1), Marmoset (0.21%, ω > > 1), and Rabbit (0.38%, 

ω = 7.42). BEB significant sites were compared to human (Q13315) and mouse (Q62388) 

Swiss-Prot entries to determine the functional relevance of selected sites. In the Gorilla 

lineage positively selected site 2067 (PP = 0.787), where in humans a substitution of Alanine 

to Aspartate in this same position can result in Ataxia telangiectasia (AT) which is a severe 

disease that causes weakened immune function and higher disposition to cancer [57]. No 

other functionally relevant information was found upon comparison of Swiss-Prot 

information against either Marmoset or Rabbit. 

The extant Orangutan lineage also showed evidence of positive selection in the TSC1 gene 

for 1.2% of its alignment ω > > 1. Positively selected sites were compared against human 

Swiss-Prot sequence (Q92574) and mouse Swiss-Prot sequence (Q9EP53) however there was 

insufficient information to extrapolate potential functional impacts of these sites. 

Human population level analysis using HapMap data 

Genes displaying evidence of positive selection in lineages leading to Homo sapiens, i.e. the 

primate and Hominidae lineages (STK11, CDH1 and VHL), were further analyzed to 

determine if there is evidence for ongoing positive directional selection in modern day human 

populations. The integrated haplotype score, his [42], was calculated for each SNP in STK11, 

CDH1 and VHL genes across African Yorubu (Y), East Asian (A) and European (C) 

populations. One intronic SNP in the SDK11 gene, had an iHS score of +2.0385 in European 

populations. In the CDH1 gene, two intronic SNPs with iHS scores of +2.0433 and +2.5838 

respectively were identified in the East Asian populations. The iHS scores of greater than +2 

indicate that these alleles are segregating at a significant rate within their given populations. 

No population level directional selection was identified in the VHL gene in modern humans. 

Positive selection in the Ancestral Muridae branch 

The ancestral Muridae branch marks the most recent common ancestor of modern mouse, rat 

and guinea pig species and is depicted in Figure 1. Tuberous sclerosis 1 protein (TSC1) 

interacts with TSC2 and acts as a tumour suppressor gene [56]. Defects in TSC1 cause 

tuberous sclerosis type 1 which is an autosomal dominant multi-system disorder. There were 



a total of 18 taxa analysed in for the TSC1 gene and 0.59% of sites in the Muridae ancestral 

lineage were identified with ω > > 1. As before for TSC1: positively selected sites were 

compared against human Swiss-Prot sequence (Q92574) and mouse Swiss-Prot sequence 

(Q9EP53) however there was insufficient information to extrapolate potential functional 

impacts of these sites. 

Positive selection in the Ancestral Murinae branch 

Tha ancestral Murinae branch defines the most recent common ancestor of mouse and rat. In 

total there were two genes identified as being under positive selection in the Murinae lineage. 

The first is the MSH6 gene that acts as a DNA mismatch repair protein and is a component of 

the post–replicative DNA mismatch repair system [58]. MSH6 also heterodimerizes with 

MSH2 to form MutS-alpha, a protein complex that functions by binding to DNA mismatches 

and initiating DNA repair [59]. Mutations in MSH6 have been reported to cause HNPCC 

type 5 [60], atypical HNPCC, and familial colorectal cancers (suspected or incomplete 

HNPCC) [61]. The MSH6 dataset consists of 19 taxa. Lineage-specific analysis of the 

ancestral Murinae lineage revealed 0.42% of the sites (3 residues) in MSH6 under positive 

selection, ω > > 1 (see Table 2). The corresponding Swiss-Prot sequence (P54276) lacked 

functional details for these positions, therefore, potential functional effects remain unknown. 

However, examination of the alignment at this position revealed the subsitution of residues 

with unrelated biochemical properties at these positions. At positively selected site 374 

(numbered as per Swiss-Prot entry), the Murinae lineage has a Proline whereas remaining 

species tested encode either Glutamic acid, Aspartic acid, or Lysine. As Proline produces 

“kinks” in the α-helical regions of proteins, such a substitution could alter the protein 

structure substantially. Positively selected site 759 is a Leucine in the Murinae, all other non-

outgroup species encode aliphatic residues (Isoleucine or Valine). The ancestral Murinae has 

a Cysteine at Swiss-Prot position 1259 while all other species have an Alanine at this 

position. These residues are of specific interest for further in vitro functional assaying given 

their uniqueness to the rodent clade and their retention in all modern rodents tested. 

The second gene with evidence of positive selection on the ancestral Murinae lineage is the 

SDHC (Succinate dehydrogenase cytochrome b 560 subunit, mitochondrial) gene. The SDHC 

function is to act as a membrane-anchoring subunit for the SDH protein. Defects in this 

protein are reported in paragangliomas and gastric stromal sarcomas [62]. The dataset for the 

SDHC consisted of 16 taxa. Lineage-specific positive selection was detected in the ancestral 

Murinae lineage with 4.2% of sites (9 residues) in this protein with ω > > 1 (Table 2). 

Comparison with the human sequence from Swiss-Prot (Q99643) and mouse sequence 

(Q9CZB0) placed 8 of these sites either in transmembrane or topological domains across the 

gene, with the additional positively selected residue (position 128) neighboring a metal 

binding site at position 127. 

Positive selection in the Extant Rabbit branch 

The SDHC gene again showed evidence of positive selection, this time in the extant Rabbit 

lineage with 35.59% of sites under positive selection (ω = 3.59). 15/51 positively selected 

sites were identified as occurring within 10 amino acid positions of metal binding site at 

position 127 that is also mentioned in the ancestral Murinae analysis. While there are 

extremely high levels of positive selection identified in the rabbit lineage, no other relevant 

functional information could be gleaned from the databases at this point. 



The MUTYH alignment consisted of 21 taxa and showed evidence of lineage-specific 

analysis identified positive selection in 1.4% of sites in the extant Rabbit lineage (ω > > 1). 

Positively selected sites were compared to human (Q9UIF7) and mouse (Q99P21) Swiss-Prot 

entries, however no relevant functional information could be extrapolated. Radical 

substitutions occurred in all 5 BEB sites in the extant Rabbit lineage, three of which are at 

positions 485–487 in the Nudix hydrolase domain. 

The MLH1 gene codes for a critical protein involved with the post-replicative DNA 

mismatch repair system. Defects in this gene result in hereditary non-polyposis colorectal 

cancer type 2 (HNPCC2) [63]. The alignment of MLH1 consists of 19 taxa and again positive 

selection was detected in the extant rabbit lineage in 0.87% of sites (ω = 7.53). Positively 

selected sites were compared against human Swiss-Prot sequence (P40692) and mouse 

Swiss-Prot sequence (Q9JK91). At amino acid position 120, Rabbit has a polar uncharged 

Serine residue while all other species tested have a hydrophobic Alanine residue. This 

positively selected site falls in a region dense with HNPCC2 variants at positions A111V, 

T116K, T117M, Y126N, A128P [63-65]. Positively selected residues in Rabbit: 209, 478 and 

514, each fall within 8 amino acid positions of HNPCC2 variants: V213M, R474Q and 

V506A [66]. And position 478 identified as under positive selection also lies in close 

proximity to a colorectal cancer variant R472I (Kim [67],). 

Finally, the BHD gene showed evidence of positive selection in the extant Rabbit lineage. 

The function of the BHD gene is still largely unknown, however it is thought that it may be a 

tumour suppressor and it may be involved in colorectal tumorigenesis [68]. The alignment 

consisted of 20 taxa and positive selection was detected in 3.34% of sites (ω = 6.5), again 

unique to the Rabbit lineage. BEB significant sites were compared to human (Q8NFG4) and 

mouse (Q8QZS3) Swiss-Prot entries to determine their functional relevance. All 10 of the 

positively selected sites in Rabbit occur in a small region from position 61–83 and border a 

known human cancer variant at position 79 that when mutated from Serine to Tryptophan 

results in sporadic colorectal carcinoma. 

Positive selection in the Extant Rodent and Guinea Pig branches 

MADH4 is the co-activator and mediator of signal transduction by TGF-beta. Defects in 

MADH4 result in pancreatic, colorectal, juvenile polyposis syndrome, juvenile intestinal 

polyposis and primary pulmonary hypertension [69,70]. The Rat lineage was identified as 

being under lineage-specific positive selection in the MADH4 gene where 5.1% of sites are 

evolving with ω > > 1 (number of taxa = 16). Positively selected sites were compared to 

human (Q13485) and mouse (P97471) Swiss-Prot entries. The majority of positively selected 

residues in this protein are sequential with 18/24 sites under positive selection in the rat 

lineage within 10 amino acid positions of the natural human variant 493. When position 493 

is mutated from Aspartate to Histidine pancreatic carcinoma is induced [71]. 

NF1 is thought to be a regulator of RAS activity [72]. Defects in NF1 can cause colorectal 

carcinoma and breast cancer [70]. The NF1 dataset consists of 17 taxa. Lineage-specific 

positive selection was identified in 0.92% of sites in Rat with ω > > 1 and 0.12% of sites in 

guinea pig with ω > > 1. BEB significant sites were compared to human (P21359) and mouse 

(Q04690) Swiss-Prot sequences, however there was no functionally relevant information 

available. 



TSC1 also shows evidence of positive selection in the extant guinea pig lineage with 1.2% of 

the sites with ω> > 1. As before, the positively selected sites were compared against human 

Swiss-Prot sequence (Q92574) and mouse Swiss-Prot sequence (Q9EP53) however there was 

insufficient information to extrapolate potential functional impacts of these sites. 

Results of site-specific selective pressure analyses 

The site-specific results may be beneficial to those working on rational mutagenesis and/or 

the identification of functionally important regions in these colon cancer associated genes and 

so these results have been summarized. We have identified five genes that have signatures of 

site-specific positive selection, namely: CDH1, MUTYH, PMS1, PMS2 and TP53, 

representing ~23% of the dataset. For each of these five genes, the model of best fit was the 

site-heterogeneous model “model 8”, see Table 2 for summary. 

Defects in the CDH1 member of the Cadherin family are linked to hereditary diffuse gastric 

cancer [24,28]. The CDH1 alignment contained 15 taxa and site-specific analysis identified 

0.71% sites evolving under strong positive selection, ω = 4.54, see Table 2. We compared 

these sites to the human Swiss-Prot entry (P12830) to obtain relevant functional information, 

see Figure 2(b). The vast majority of positively selected sites (12 sites) in the protein are 

found within the extracellular topological domain (positions 155–709). Many of these 

positively selected are in close proximity to natural cancer variants. For example, position 

421 is under position selection and resides within a region (418–423) known to be missing in 

gastric carcinoma samples [73]. Positions 457, 465, and 467 are under positive selection and 

map in close proximity to natural variant E463Q found in gastric carcinoma samples [49]. 

Position 700 resides within the metalloproteinase cleavage site (700–701) of CDH1. Position 

735 is in close proximity to a gamma-secretase/PS1 cleavage site (731–732) [74], and 

position 553 is in close proximity to a glycosylation site (558), essential for the 

posttranslational modification of proteins [75]. In the CDH1 gene, the majority of species 

tested (8/15) have hydrophobic residues (Isoleucine, Valine, Leucine) at position 553, the 

glires group (mouse, rat, guinea pig and rabbit) have small residues (Alanine, Serine, 

Threonine), but human, gorilla, and dog have large aromatic residues (Phenylalanine) that 

could significantly alter the protein structure and may affect binding at the glycosylation site 

at position 558. 

The MUTYH dataset consisted of 21 taxa and site-specific analysis identified 18 sites under 

positive selection (ω = 2.44), representing 2.8% of the MUTYH protein (Table 2). A total of 

10 unique sites are reported as natural cancer variants in human (Q9UIF7), see Figure 2(c). 

Positively selected sites 406 and 412 are in close proximity to natural cancer variants at 

positions 402 and 411 respectively. Positively selected sites 521, 528 and 538 also map in 

close proximity to natural variants, 526 and 531 respectively. Also of note are the 

replacement substitutions observed at Swiss-Prot positions 406 and 412, these are radical 

with potential effects on protein structure. At position 406 there is a large aromatic Trytophan 

in Primates, and a hydrophobic Leucine and Valine present in the Glires. At position 412 

there is an hydrophobic Leucine in Primates and a positively charged Histidine in the Glires. 

PMS1 (postmeiotic segregation increased 1) encodes a DNA mismatch repair protein and this 

dataset consisted of 20 taxa. Defects in PMS1 are reported to cause hereditary non-polyposis 

colorectal cancer type 3 (HNPCC3) [76]. Analysis of PMS1 identified site-specific model of 

codon evolution model 8 as best fit, estimating 25 positively selected sites (6.4% of the 

alignment) with ω = 1.33 (Table 2). We compared these sites against human Swiss-Prot 



sequence P54277. Positively selected site 387 resides in close proximity to position 394 - a 

natural variant (M394T) reported in incomplete HNPCC and HNPCC3 [77]. Due to limited 

functional data it was unfeasible to study the remaining 24 sites. However, due to PMS1 

function in DNA mismatch repair, these positively selected sites could prove as ideal 

candidates for mutagenesis studies in the future. 

Mismatch repair endonuclease PMS2 (postmeiotic segregation increased 2) is a component of 

the post-replicative DNA mismatch repair system [78]. Defects in PMS2 are reported in 

HNPCC [76]. The PMS2 dataset contained 21 taxa and site-specific analysis identified 8.9% 

of sites under positive selection in this PMS2 protein, ω = 1.29 (Table 2). Functional 

relevance of these sites was determined by comparison to Human Swiss-Prot sequence 

(P54278). The vast majority of sites (32) reside within the 430–645 region of the alignment. 

This region of the alignment is highly variable and could not be not improved manually. 

Functional characterization for this region is also lacking and therefore we could not assess 

functional relevance. Outside this region, two positively selected sites, 402 and 406 

(PP = 0.632 and 0.728 respectively) flank a phosphoserine modification site (403) [79]. Both 

substitutions are radical and could affect the function at position 403. 

TP53 (cellular tumor antigen p53) acts as a tumor suppressor by inducing apoptosis or 

arresting growth depending on the physiological circumstances and cell type [80]. The TP53 

protein (P04637) is 393 residues in length with 343 of these sites reported as natural variants 

that cause/lead to cancer including but not limited to colorectal and gastric cancers 

[41,81,82]. In our analysis of TP53 we have 16 taxa. Mutations in this gene radically affect 

function and therefore we would expect to find evidence of strong purifying selection across 

sites and lineages. However, results indicate that site specific positive selection is at work 

with 13 sites are under positive selection, ω = 1.97. See Figure 2(d) and Table 2 for detailed 

analysis. On inspection of these 14 sites, we determine that 11 are located within the first 

region of the protein (positions 1–83), a region responsible for interaction with the 

methyltransferase HRMT1L2 and the recruiting of promoters to the TP53 gene [83]. We 

identified a cluster of positively selected sites, namely positions 46 and 47, along with an 

additional 7 sites within ten residues 39, 52, 53, 54, 55, 56, and 59 (see Additional file 4). 

Mutation of position 46 can abolish phosphorylation by HIPK2 and acetylation of K-382 by 

CREBBP [84]. Region 66–110 of TP53 is involved in interaction with WWOX protein and 

we have identified two sites (Swiss-Prot positions: 72 and 81), under positive selection within 

this region. Positively selected position 129, is located within a region reported to interact 

with HIPK1 (100–370) and AXIN1 (116–292), and in addition is also located within a region 

(positions 113–236) that is required for interaction with FBX042. Positively selected residue 

355 is located within the CARM1 interaction region (300–393), the HIPK2 interacting region 

(319–360), and the oligomerization region (325–356). 

Conclusion 

The results we have presented are indicative of selective pressures acting in a lineage-specific 

manner. The positively selected sites we have identified in this study frequently reside in 

regions of functional importance, such as glycosylation sites, protease cleavage sites, and 

sites known to interact with proteins involved in DNA damage repair pathways. Also of note, 

positively selected residues are frequently located at-, or in close proximity to-, known cancer 

associated sites although the statistical significance of these coincidences cannot be 

concluded with such a small sample sizes. Larger sample sizes and more complete functional 



information will be hugely beneficial in resolving whether these positively selected residues 

are most likely positioned to or at variants associated with cancer. 

In using the mouse as a model organism for colon cancer, we are making an assumption that 

the orthologs in both species are functioning in precisely the same way despite ~ 180 million 

years of independent evolution. We found no evidence of functional divergence in the extant 

human and mouse lineages for the genes analyzed. However, upon testing the lineages 

leading from the MRCA of mouse and human, i.e. Euarchontoglires, positive selection has 

occurred on certain branches and in specific lineages. In the ancestral lineages from the 

divergence of primates, rodents and glires there is evidence of positive selection in 6 of the 

22 genes tested (this includes the VHL result but as from Table 2 it is clear that this is a weak 

result). In total, considering all lineages analyzed including extant lineages, we have detected 

lineage-specific positive selection in 64% of the genes analyzed (i.e. 14/22 genes). Studies on 

the levels of polymorphism observed in Drosophila species indicate that positive selection is 

pervasive in this species with positive selection present in ~25% of the genes [85]. Previous 

studies on the levels of positive selection in primates compared to rodents and in the 

Hominidae reveal much lower levels of positive selection in the range of 5-9% of genes in the 

genome [7,8]. If these previous analyses were to act as a measurement of expectation then we 

should have identified only 1 gene under positive selection in this dataset that is comprised of 

mammals for the most part (taking the Drosophila data as the upper bound we would expect 

in the region of 6 genes with evidence of positive selection). 

On grouping the cancer associated genes according to their involvement in functional 

pathways we determined that the MMR DNA damage response pathway has evidence of 

positive selection in 3 components of the pathway – 2 of which are site-specific and one of 

which is specific to the ancestral Murinae lineage suggesting a specific selective pressure in 

this clade for this process. The site-specific analyses identified a total of 5 genes that are 

positively selected: CDH1, MUTYH, PMS1, PMS2 and TP53. These results are important for 

contributing to our understanding of fundamental functions of these proteins and have 

provided potential targets for rational mutagenesis. 

Overall, these results indicate that the function of certain proteins associated with colon 

cancer display distinct lineage-specific patterns of substitution indicative of positive selection 

in the ancestral human and mouse lineages. There are a number of selective pressures on any 

given protein that can contribute to patterns of substitution that are “falsely” indicative of 

positive selection. The necessity to continue to interact with protein partners may be a strong 

driving the evolution of the proteins in this study as many form functional complexes with 

one another or other proteins [86]. Compensatory mutations may also contribute to elevated 

levels of ω [87]. The effective population size (Ne) of the species tested vary enormously, 

with estimations for modern human populations in the range of Ne = 7,500 to 3,100 [88], 

while estimations for modern mouse populations range from Ne = 58,000 to 25,000 [89] and 

this large difference in Ne may also contribute to detection of false positives. We have also 

detected weak evidence for ongoing selective pressure in the human genome on the STK11 

and CDH1, but these signals of selection may be artifacts of the very small effective 

population size of modern humans. Smaller Ne values are associated with increased fixation 

of slightly deleterious substitutions and subsequent elevated ω values [90]. Such slightly 

deleterious mutations in turn can lead to additional compensatory substitutions that become 

fixed. Teasing apart substitutions that have become fixed due to positive selection from 

slightly deleterious substitutions fixed due to small Ne [91] will aid in a more complete 

understanding of protein evolution in the future. 



Abbreviations 

BEB, Bayes empirical bayes; dN, Nonsynonymous substitutions per nonsynonymous site; dS, 

Synonymous substitutions per synonymous sites; LRT, Likelihood ratio test; ML, Maximum 

likelihood; MY, Millions of years; Ne, Effective population size; NEB, Naïve empirical 

bayes; PP, Posterior probability 

Competing interests 

The authors declare no conflict of interest. 

Authors’ contributions 

CCM and KS carried out all data assembly. KS, CCM and AEW carried out all homolog 

identification and MSAs. CCM carried out all data quality and phylogeny analyses. CCM, 

KS, AEW, and TAW carried out all selective pressure analyses and designed the necessary 

software. ML carried out all structural analyses. All authors participated in drafting the 

manuscript. MJO'C conceived of the study, its design and coordination and drafted the 

manuscript. All authors read and approved the final manuscript. 

Acknowledgements 

We would like to thank the Irish Research Council for Science, Engineering and Technology 

(Embark Initiative Postgraduate Scholarship CCM) and DCU O’Hare scholarship (KS) for 

financial support. CCM is funded by the Irish Research Council for Science, Engineering and 

Technology (Embark Initiative Postgraduate scholarship RS2000172 to CCM). TAW is 

funded by School of Biotechnology and Pierse Trust Scholarships at DCU. MJO’C and AEW 

are funded by Science Foundation Ireland RFP: EOB2673. We would like to thank the 

SFI/HEA Irish Centre for High-End Computing (ICHEC) for processor time and technical 

support for both phylogeny reconstruction and selective pressure analyses. We would like to 

thank the SCI-SYM centre at DCU for processor time. 

References 

1. Waterston RH, Lindblad-Toh K, et al: Initial sequencing and comparative analysis of 

the mouse genome. Nature 2002, 420(6915):520–562. 

2. Benton MJ, Donoghue PC: Paleontological evidence to date the tree of life. Mol Biol 

Evol 2007, 24(1):26–53. 

3. Hirano R, Interthal H, et al: Spinocerebellar ataxia with axonal neuropathy: 

consequence of a Tdp1 recessive neomorphic mutation? EMBO J 2007, 26(22):4732–

4743. 

4. Gao L, Zhang J: Why are some human disease-associated mutations fixed in mice? 

Trends Genet 2003, 19(12):678–681. 



5. Hakem R, de la Pompa JL, et al: The tumor suppressor gene Brca1 is required for 

embryonic cellular proliferation in the mouse. Cell 1996, 85(7):1009–1023. 

6. MacColl AD: The ecological causes of evolution. Trends Ecol Evol 2011, 26(10):514–

522. 

7. Arbiza L, Dopazo J, et al: Positive selection, relaxation, and acceleration in the 

evolution of the human and chimp genome. PLoS Comput Biol 2006, 2(4):e38. 

8. Kosiol C, Vinar T, et al: Patterns of positive selection in six Mammalian genomes. 

PLoS Genet 2008, 4(8):e1000144. 

9. Yang Z: PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 2007, 

24(8):1586–1591. 

10. Schmid K, Yang Z: The trouble with sliding windows and the selective pressure in 

BRCA1. PLoS One 2008, 3(11):e3746. 

11. Bush RM: Predicting adaptive evolution. Nat Rev Genet 2001, 2(5):387–392. 

12. Wong WS, Yang Z, et al: Accuracy and power of statistical methods for detecting 

adaptive evolution in protein coding sequences and for identifying positively selected 

sites. Genetics 2004, 168(2):1041–1051. 

13. Anisimova M, Nielsen R, et al: Effect of recombination on the accuracy of the 

likelihood method for detecting positive selection at amino acid sites. Genetics 2003, 

164(3):1229–1236. 

14. Levasseur A, Gouret P, et al: Tracking the connection between evolutionary and 

functional shifts using the fungal lipase/feruloyl esterase A family. BMC Evol Biol 2006, 

6:92. 

15. Moury B, Simon V: dN/dS-based methods detect positive selection linked to trade-

offs between different fitness traits in the coat protein of potato virus Y. Mol Biol Evol 

2011, 28(9):2707–2717. (Published advance access March 28th 2012, page numbers not 

currently available): doi:10.1093/molbev/mss073. 

16. Loughran NB, Hinde S, et al: Functional consequence of positive selection revealed 

through rational mutagenesis of human myeloperoxidase. Mol Biol Evol 2012. 

17. Barat A, Ruskin HJ: A manually curated novel knowledge management system for 

genetic and epigenetic molecular determinants of colon cancer. Open Colorectal Cancer J 

2010, 3:36–46. 

18. Ferlay JSH, Bray F, Forman D, Mathers C, Parkin DM: GLOBOCAN 2008 v1.2, Cancer 

Incidence and Mortality Worldwide: IARC CancerBase No. 10 [Internet]; 2008. 

19. Strate LL, Syngal S: Hereditary colorectal cancer syndromes. Cancer Causes Control 

2005, 16(3):201–213. 



20. Kosinski J, Hinrichsen I, et al: Identification of Lynch syndrome mutations in the 

MLH1-PMS2 interface that disturb dimerization and mismatch repair. Hum Mutat 

2010, 31(8):975–982. 

21. Vilar E, Gruber SB: Microsatellite instability in colorectal cancer-the stable evidence. 

Nat Rev Clin Oncol 2010, 7(3):153–162. 

22. Kulesz-Martin M, Liu Y: p53 protein at the hub of cellular DNA damage response 

pathways through sequence-specific and non-sequence-specific DNA binding. Oxford J 

2000, 22(6):9. 

23. Tudzarova S, Colombo SL, et al: Two ubiquitin ligases, APC/C-Cdh1 and SKP1-

CUL1-F (SCF)-beta-TrCP, sequentially regulate glycolysis during the cell cycle. Proc 

Natl Acad Sci U S A 2011, 108(13):5278–5283. 

24. Vogelstein B, Kinzler KW: Cancer genes and the pathways they control. Nature 

Medicine 2004, 10(8):789–799. 

25. Futreal PA, Coin L, et al: A census of human cancer genes. Nat Rev Cancer 2004, 

4(3):177–183. 

26. Hubbard T, Barker D, et al: The Ensembl genome database project. Nucleic Acids Res 

2002, 30(1):38–41. 

27. Hubbard T, Andrews D, et al: Ensembl 2005. Nucleic Acids Res 2005, 33:D447–D453. 

28. Yoon KA, Ku JL, et al: Germline mutations of E-cadherin gene in Korean familial 

gastric cancer patients. J Human Genet 1999, 44(3):177–180. 

29. Lyon, France: International Agency for Research on Cancer; 2010. Available from: 

http://globocan.iarc.fr. 

30. Chenna R, Sugawara H, et al: Multiple sequence alignment with the Clustal series of 

programs. Nucleic Acids Res 2003, 31(13):3497–3500. 

31. Larkin MA, Blackshields G, et al: Clustal W and Clustal X version 2.0. Bioinformatics 

2007, 23(21):2947–2948. 

32. Rambaut A: Se-AL Sequence alignment editor. Oxford: Software package; 1996. 

33. Anisimova M, Bielawski JP, et al: Accuracy and power of the likelihood ratio test in 

detecting adaptive molecular evolution. Mol Biol Evol 2001, 18(8):1585–1592. 

34. Zhang J, Nielsen R, et al: Evaluation of an improved branch-site likelihood method 

for detecting positive selection at the molecular level. Mol Biol Evol 2005, 22(12):2472–

2479. 

35. Sawyer S: Statistical tests for detecting gene conversion. Mol Biol Evol 1989, 

6(5):526–538. 



36. Yang Z: PAML: a program package for phylogenetic analysis by maximum 

likelihood. Comput Appl Biosci 1997, 13(5):555–556. 

37. Yang Z, Wong WS, et al: Bayes empirical bayes inference of amino acid sites under 

positive selection. Mol Biol Evol 2005, 22(4):1107–1118. 

38. Murphy WJ, Eizirik E, et al: Resolution of the early placental mammal radiation 

using Bayesian phylogenetics. Science 2001, 294(5550):2348–2351. 

39. Nielsen R, Yang Z: Likelihood models for detecting positively selected amino acid 

sites and applications to the HIV-1 envelope gene. Genetics 1998, 148(3):929–936. 

40. Loughran NB, O'Connor B, et al: The phylogeny of the mammalian heme peroxidases 

and the evolution of their diverse functions. BMC Evol Biol 2008, 8:101. 

41. UniProt: Ongoing and future developments at the Universal Protein Resource. 

Nucleic Acids Res 2011, 39(Database issue):D214–219. 

42. Voight BF, Kudaravalli S, et al: A map of recent positive selection in the human 

genome. PLoS Biol 2006, 4(3):e72. 

43. Boudeau J, Baas AF, et al: MO25alpha/beta interact with STRADalpha/beta 

enhancing their ability to bind, activate and localize LKB1 in the cytoplasm. EMBO J 

2003, 22(19):5102–5114. 

44. Baas AF, Boudeau J, et al: Activation of the tumour suppressor kinase LKB1 by the 

STE20-like pseudokinase STRAD. EMBO J 2003, 22(12):3062–3072. 

45. Hemminki A, Markie D, et al: A serine/threonine kinase gene defective in Peutz-

Jeghers syndrome. Nature 1998, 391(6663):184–187. 

46. Nakagawa H, Koyama K, et al: Nine novel germline mutations of STK11 in ten 

families with Peutz-Jeghers syndrome. Hum Genet 1998, 103(2):168–172. 

47. Dong SM, Kim KM, et al: Frequent somatic mutations in serine/threonine kinase 

11/Peutz-Jeghers syndrome gene in left-sided colon cancer. Cancer Res 1998, 

58(17):3787–3790. 

48. Westerman AM, Entius MM, et al: Novel mutations in the LKB1/STK11 gene in 

Dutch Peutz-Jeghers families. Hum Mutat 1999, 13(6):476–481. 

49. Berx G, Becker KF, et al: Mutations of the human E-cadherin (CDH1) gene. Hum 

Mutat 1998, 12(4):226–237. 

50. Latif F, Tory K, et al: Identification of the von Hippel-Lindau disease tumor 

suppressor gene. Science 1993, 260(5112):1317–1320. 

51. Kolodner RD, Tytell JD, et al: Germ-line msh6 mutations in colorectal cancer 

families. Cancer Res 1999, 59(20):5068–5074. 



52. Ohmiya N, Matsumoto S, et al: Germline and somatic mutations in hMSH6 and 

hMSH3 in gastrointestinal cancers of the microsatellite mutator phenotype. Gene 2001, 

272(1–2):301–313. 

53. Kariola R, Otway R, et al: Two mismatch repair gene mutations found in a colon 

cancer patient–which one is pathogenic? Hum Genet 2003, 112(2):105–109. 

54. Berends MJ, Wu Y, et al: Molecular and clinical characteristics of MSH6 variants: an 

analysis of 25 index carriers of a germline variant. Am J Human Genet 2002, 70(1):26–37. 

55. Ollila S, Dermadi Bebek D, et al: Mechanisms of pathogenicity in human MSH2 

missense mutants. Hum Mutat 2008, 29(11):1355–1363. 

56. Tee AR, Fingar DC, et al: Tuberous sclerosis complex-1 and −2 gene products 

function together to inhibit mammalian target of rapamycin (mTOR)-mediated 

downstream signaling. Proc Natl Acad Sci U S A 2002, 99(21):13571–13576. 

57. Kishi S, Zhou XZ, et al: Telomeric protein Pin2/TRF1 as an important ATM target in 

response to double strand DNA breaks. J Biol Chem 2001, 276(31):29282–29291. 

58. Blackwell LJ, Bjornson KP, et al: DNA-dependent activation of the hMutSalpha 

ATPase. J Biol Chem 1998, 273(48):32049–32054. 

59. Blackwell LJ, Martik D, et al: Nucleotide-promoted release of hMutSalpha from 

heteroduplex DNA is consistent with an ATP-dependent translocation mechanism. J 

Biol Chem 1998, 273(48):32055–32062. 

60. Wu Y, Berends MJ, et al: A role for MLH3 in hereditary nonpolyposis colorectal 

cancer. Nat Genet 2001, 29(2):137–138. 

61. Plaschke J, Kruger S, et al: Eight novel MSH6 germline mutations in patients with 

familial and nonfamilial colorectal cancer selected by loss of protein expression in 

tumor tissue. Hum Mutat 2004, 23(3):285. 

62. Niemann S, Muller U: Mutations in SDHC cause autosomal dominant 

paraganglioma, type 3. Nat Genet 2000, 26(3):268–270. 

63. Bronner CE, Baker SM, et al: Mutation in the DNA mismatch repair gene homologue 

hMLH1 is associated with hereditary non-polyposis colon cancer. Nature 1994, 

368(6468):258–261. 

64. Pensotti V, Radice P, et al: Mean age of tumor onset in hereditary nonpolyposis 

colorectal cancer (HNPCC) families correlates with the presence of mutations in DNA 

mismatch repair genes. Genes Chromosomes Cancer 1997, 19(3):135–142. 

65. Kurzawski G, Suchy J, et al: Germline MSH2 and MLH1 mutational spectrum 

including large rearrangements in HNPCC families from Poland (update study). Clin 

Genet 2006, 69(1):40–47. 



66. Tournier I, Vezain M, et al: A large fraction of unclassified variants of the mismatch 

repair genes MLH1 and MSH2 is associated with splicing defects. Hum Mutat 2008, 

29(12):1412–1424. 

67. Kim JC, Kim HC, et al: hMLH1 and hMSH2 mutations in families with familial 

clustering of gastric cancer and hereditary non-polyposis colorectal cancer. Cancer 

Detect Prev 2001, 25(6):503–510. 

68. Nickerson ML, Warren MB, et al: Mutations in a novel gene lead to kidney tumors, 

lung wall defects, and benign tumors of the hair follicle in patients with the Birt-Hogg-

Dube syndrome. Cancer Cell 2002, 2(2):157–164. 

69. Sayed MG, Ahmed AF, et al: Germline SMAD4 or BMPR1A mutations and 

phenotype of juvenile polyposis. Ann Surg Oncol 2002, 9(9):901–906. 

70. Sjoblom T, Jones S, et al: The consensus coding sequences of human breast and 

colorectal cancers. Science 2006, 314(5797):268–274. 

71. Hahn SA, Schutte M, et al: DPC4, a candidate tumor suppressor gene at human 

chromosome 18q21.1. Science 1996, 271(5247):350–353. 

72. Ballester R, Marchuk D, et al: The NF1 locus encodes a protein functionally related to 

mammalian GAP and yeast IRA proteins. Cell 1990, 63(4):851–859. 

73. Tamura G, Sakata K, et al: Inactivation of the E-cadherin gene in primary gastric 

carcinomas and gastric carcinoma cell lines. Jpn J Cancer Res 1996, 87(11):1153–1159. 

74. Marambaud P, Shioi J, et al: A presenilin-1/gamma-secretase cleavage releases the E-

cadherin intracellular domain and regulates disassembly of adherens junctions. EMBO J 

2002, 21(8):1948–1956. 

75. Zhou F, Su J, et al: Unglycosylation at Asn-633 made extracellular domain of E-

cadherin folded incorrectly and arrested in endoplasmic reticulum, then sequentially 

degraded by ERAD. Glycoconj J 2008, 25(8):727–740. 

76. Nicolaides NC, Papadopoulos N, et al: Mutations of two PMS homologues in 

hereditary nonpolyposis colon cancer. Nature 1994, 371(6492):75–80. 

77. Wang Q, Lasset C, et al: Prevalence of germline mutations of hMLH1, hMSH2, 

hPMS1, hPMS2, and hMSH6 genes in 75 French kindreds with nonpolyposis colorectal 

cancer. Hum Genet 1999, 105(1–2):79–85. 

78. Sacho EJ, Kadyrov FA, et al: Direct visualization of asymmetric adenine-nucleotide-

induced conformational changes in MutL alpha. Mol Cell 2008, 29(1):112–121. 

79. Beausoleil SA, Villen J, et al: A probability-based approach for high-throughput 

protein phosphorylation analysis and site localization. Nat Biotechnol 2006, 24(10):1285–

1292. 



80. Guo A, Salomoni P, et al: The function of PML in p53-dependent apoptosis. Nat Cell 

Biol 2000, 2(10):730–736. 

81. Varley JM, McGown G, et al: An extended Li-Fraumeni kindred with gastric 

carcinoma and a codon 175 mutation in TP53. J Med Genet 1995, 32(12):942–945. 

82. Guran S, Tunca Y, et al: Hereditary TP53 codon 292 and somatic P16INK4A codon 

94 mutations in a Li-Fraumeni syndrome family. Cancer Genet Cytogenet 1999, 

113(2):145–151. 

83. An W, Kim J, et al: Ordered cooperative functions of PRMT1, p300, and CARM1 in 

transcriptional activation by p53. Cell 2004, 117(6):735–748. 

84. Hofmann TG, Moller A, et al: Regulation of p53 activity by its interaction with 

homeodomain-interacting protein kinase-2. Nat Cell Biol 2002, 4(1):1–10. 

85. Bierne N, Eyre-Walker A: The genomic rate of adaptive amino acid substitution in 

Drosophila. Mol Biol Evol 2004, 21(7):1350–1360. 

86. Fraser HB, Hirsh AE, et al: Evolutionary rate in the protein interaction network. 

Science 2002, 296(5568):750–752. 

87. Lunzer M, Golding GB, et al: Pervasive cryptic epistasis in molecular evolution. PLoS 

Genet 2010, 6(10):e1001162. 

88. Tenesa A, Navarro P, et al: Recent human effective population size estimated from 

linkage disequilibrium. Genome Res 2007, 17(4):520–526. 

89. Salcedo T, Geraldes A, et al: Nucleotide variation in wild and inbred mice. Genetics 

2007, 177(4):2277–2291. 

90. Eyre-Walker A, Keightley PD, et al: Quantifying the slightly deleterious mutation 

model of molecular evolution. Mol Biol Evol 2002, 19(12):2142–2149. 

91. Eyre-Walker A, Keightley PD: Estimating the rate of adaptive molecular evolution in 

the presence of slightly deleterious mutations and population size change. Mol Biol Evol 

2009, 26(9):2097–2108. 



Additional files 

Additional_file_1 as DOC 

Additional file 1 Details of the data used in the analysis, the 21 species and their genome 

coverage. Orthologs that were not found by the Ensembl genome browser are labeled in 

black, orthologs identified are shown in white. 

Additional_file_2 as DOC 

Additional file 2 Complete set of all multiple sequence alignments used in the analysis. 
The data is presented on a gene-by-gene basis in nexus format. 

Additional_file_3 as DOC 

Additional file 3 Likelihood ratio tests performed and their associated significance 

values. (DOC 31 kb) 

Additional_file_4 as DOC 

Additional file 4 Full set of models, associated likelihood scores and parameter estimates 

for all genes in the colon cancer gene dataset. This information is given alphabetically on a 

gene-by-gene basis. All estimated parameters, Likelihood values and BEB or NEB sites are 

listed. 

Additional_file_5 as DOC 

Additional file 5 Full set of recombination test results on a per gene and per species 

basis. The value highlighted in yellow for TP53 represents a region where recombination was 

detected with reasonable confidence that also coincided with a positively selected residue (i.e. 

false positive). 



Figure 1



Figure 2



Additional files provided with this submission:

Additional file 1: Supplementary_File1.doc, 100K
http://www.biomedcentral.com/imedia/1626758213670556/supp1.doc
Additional file 2: Supplementary_File2.doc, 4124K
http://www.biomedcentral.com/imedia/5600110446705566/supp2.doc
Additional file 3: Supplementary_File3.doc, 31K
http://www.biomedcentral.com/imedia/8265080006705566/supp3.doc
Additional file 4: Supplementary_File4.doc, 1417K
http://www.biomedcentral.com/imedia/1531824470721031/supp4.doc
Additional file 5: Supplementary_File5.doc, 162K
http://www.biomedcentral.com/imedia/1247687687721032/supp5.doc

http://www.biomedcentral.com/imedia/1626758213670556/supp1.doc
http://www.biomedcentral.com/imedia/5600110446705566/supp2.doc
http://www.biomedcentral.com/imedia/8265080006705566/supp3.doc
http://www.biomedcentral.com/imedia/1531824470721031/supp4.doc
http://www.biomedcentral.com/imedia/1247687687721032/supp5.doc

	Claire_HardBoundThesis.00
	Claire_HardBoundThesis.02
	Claire_HardBoundThesis.03
	Claire_HardBoundThesis.04
	Claire_HardBoundThesis.05
	Claire_HardBoundThesis.06
	Claire_HardBoundThesis.07
	Claire_HardBoundThesis.08
	Claire_HardBoundThesis.09
	Claire_HardBoundThesis.10
	Claire_HardBoundThesis.11
	Claire_HardBoundThesis.12
	Claire_HardBoundThesis.13
	Claire_HardBoundThesis.14
	Claire_HardBoundThesis.15
	Claire_HardBoundThesis.16
	Claire_HardBoundThesis.17
	Claire_HardBoundThesis.18
	Claire_HardBoundThesis.19
	Claire_HardBoundThesis.20
	Claire_HardBoundThesis.21
	Claire_HardBoundThesis.22
	Claire_HardBoundThesis.23
	Claire_HardBoundThesis.24
	Claire_HardBoundThesis.25
	Claire_HardBoundThesis.26
	Claire_HardBoundThesis.27
	Claire_HardBoundThesis.28
	Claire_HardBoundThesis.29
	Claire_HardBoundThesis.30
	Claire_HardBoundThesis.31
	Claire_HardBoundThesis.32
	Claire_HardBoundThesis.33
	Claire_HardBoundThesis.34
	Claire_HardBoundThesis.35
	Claire_HardBoundThesis.36
	Claire_HardBoundThesis.37
	Claire_HardBoundThesis.38
	Claire_HardBoundThesis.39
	Claire_HardBoundThesis.40
	Claire_HardBoundThesis.41
	Claire_HardBoundThesis.42
	Claire_HardBoundThesis.43
	Claire_HardBoundThesis.44
	Claire_HardBoundThesis.45
	Claire_HardBoundThesis.46
	Claire_HardBoundThesis.47
	Claire_HardBoundThesis.48
	Claire_HardBoundThesis.49
	Claire_HardBoundThesis.50
	Claire_HardBoundThesis.51
	Claire_HardBoundThesis.52
	Claire_HardBoundThesis.53
	Claire_HardBoundThesis.54
	Claire_HardBoundThesis_paper1
	Abstract
	Background
	Results
	Conclusion

	Background
	Results and Discussion
	1. Tests of Data Quality and Bias
	(i) Test for amino acid and base composition biases
	(ii) Test for phylogenetic signal
	(iii) Long Branch Attraction (LBA) analysis

	2. Analysis of selective pressures using codon models of evolution
	Col1a1
	Prkar2a (interacts with SEMG2)
	Ph20 (interacts with ZP2 and ZP3)
	SP56 (interacts with ZP2 and ZP3)
	ZP2
	ZP3
	Adam2 (Fertilin &beta;)
	Catsper1
	Semg2
	Porimin


	Conclusion
	Methods
	Sequence Data
	Mammalian Species
	Multiple Sequence Alignment (MSA)
	Nucleotide composition bias, amino acid composition bias and likelihood mapping tests
	Phylogeny Reconstruction
	Site-stripping for significance
	Tests of the difference between two trees
	Test 1: Nodal distance calculation
	Test 2: Shimodaira-Hasegawa (SH) statistical test of two trees

	Selective Pressure Analysis
	In silico analysis of positively selected sites

	Acknowledgements
	Authors' contributions
	References

	Claire_HardBoundThesis_paper2
	Start of article
	Figure 1
	Figure 2
	Additional files


