
A Framework for Generating Operational

Characteristic Curves for Semiconductor

Manufacturing Systems using Flexible and

Reusable Discrete Event Simulations

Néill M. Byrne B.E., M.Sc.

This report is submitted in accordance with the requirements of Dublin City University for

the degree of Doctorate of Philosophy in Engineering.

Supervisors: Dr. John Geraghty and Dr. Paul Young

Submitted to the School of Mechanical and Manufacturing Engineering, Dublin City

University, November 2011.

I hereby certify that this material, which I now submit for assessment on the pro-

gramme of study leading to the award of Ph.D. is entirely my own work, that I have

exercised reasonable care to ensure that the work is original, and does not to the best

of my knowledge breach any law of copyright, and has not been taken from the work of

others save and to the extent that such work has been cited and acknowledged within

the text of my work.

Néill M. Byrne

ID: 98463730

April 2, 2012

For the Nana

Acknowledgements

To my supervisors, Dr. Paul Young and Dr. John Geraghty, thank you for all the guidance,

support, advice, kindness and encouragement that you provided me.

I also wish to thank my industrial contacts, Mr. Steve Sievwright and Mr. Ken Daly, your

expertise in the area was invaluable to the completion of this thesis.

To my family, friends and colleagues, I am indebted to you for keeping me on the straight

and narrow throughout this journey.

And finally to Ann, many thanks for your patience, and foregoing many a Sunday activity.

i

Contents

Acknowledgements . i

Table of Contents . ii

List of Figures . viii

List of Tables . xii

Glossary . xv

Nomenclature . xvii

Kendall Notation . xvii

Acronyms . xviii

Abstract . xx

1 Introduction 1

1.1 Statement . 1

1.2 Motivation . 1

1.3 Thesis Outline . 2

2 Literature Review 4

2.1 Semiconductor Manufacturing . 4

2.1.1 Semiconductor industry economics 4

2.1.2 Fabrication plants . 9

2.1.3 Operational complexities in a wafer fab 11

2.2 Operating Curves . 14

2.2.1 Queueing systems . 15

2.2.2 The advantages of using operating curves 19

ii

2.2.3 Factors that impact fab performance 20

2.2.4 Fab utilisation and bottlenecks 21

2.3 Modelling the Fab and its Operating Curve 24

2.4 Generating Operating Curves using Analytical Modelling Methods 27

2.4.1 Modelling semiconductor fabs using analytical models 27

2.4.2 Benchmarking fabs using operating curves 31

2.4.3 Implications of the fundamental assumptions associated with queue-

ing theory . 34

2.4.4 Queueing networks . 37

2.4.5 Advanced queuing approximations 38

2.5 Discrete Event Simulation Modelling . 39

2.5.1 Steps in a simulation study . 39

2.5.2 Components of a DES model . 45

2.5.3 Justification for using DES modelling 47

2.5.4 Flexible reusable DES modelling 51

2.6 Summary . 57

3 An Automated Framework for Designing Discrete Event Simulation Ex-

periments 59

3.1 Simulation Effort . 60

3.1.1 Selection and location of design points on an operating curve . . . 60

3.1.2 Allocating simulation effort . 62

3.2 Method of Independent Replications . 68

3.3 Whitt Simulation Run Length . 69

3.4 Methods for Identifying the Initial Bias and Warm Up Period 71

3.4.1 SPC method . 73

3.5 Operational Characteristic Surfaces . 77

3.6 Summary . 78

4 Case Study: A Flexible Toolset Modelling Application 80

4.1 Testbed Background . 81

4.2 Front-End for the FTM Application . 82

4.3 Data Mining and Collection . 84

4.3.1 Determining arrival patterns . 86

4.3.2 Determining lot processing patterns 88

4.3.3 Downtime event distributions . 90

4.3.4 Lot selection and prioritisation of operations 92

4.3.5 Exporting information to ExtendSim 93

iii

4.4 ExtendSim DES Model . 95

4.4.1 Lot Generator block . 97

4.4.2 Tool Generator block . 98

4.4.3 Unscheduled downtime generator block 99

4.4.4 PM Generator block . 99

4.4.5 Pairing block . 100

4.4.6 Activity delay paths . 103

4.5 Recording Simulation Data from ExtendSim 103

4.6 Generating the Operating Curve . 105

4.6.1 Estimating the theoretical operating curve 106

4.7 Model Verification & Validation . 108

4.8 IDEF0 Model Interpretation . 110

4.9 Summary . 115

5 Semiconductor Fab Model A 117

5.1 Semiconductor Wafer Manufacturing Data Format Specification 118

5.2 Project Objectives . 119

5.3 Modelling Strategy . 120

5.4 Model Input and GUI . 123

5.5 Communicating with ExtendSim from VB 124

5.6 Model Description . 124

5.6.1 Lots and batching . 124

5.6.2 Lot processing . 127

5.6.3 Tool downtime . 129

5.6.4 Operators and breaks . 132

5.6.5 Rework and scrap . 133

5.6.6 Capturing the model output . 134

5.6.7 Checking model stability . 136

5.7 Analysis of Sematech Dataset 1 . 138

5.7.1 Batch size policies . 139

5.7.2 System bottleneck analysis . 142

5.7.3 Comparison with the CXFC approximation 146

5.7.4 Downtime . 147

5.7.5 Operators . 148

5.8 Model Verification & Validation . 150

5.9 IDEF Model Diagrams . 153

5.10 Summary . 159

iv

6 Semiconductor Fab Model B 161

6.1 Justification for the use of Python and SimPy 161

6.2 Model Input and GUI . 162

6.3 Modelling Entities and Processes using SimPy 162

6.3.1 Lot and operation PEM’s . 164

6.3.2 Tool PEM’s . 165

6.3.3 Downtime PEM’s . 166

6.3.4 Operator and break PEM’s . 166

6.4 Capturing Model Output and Displaying Operating Curves 167

6.5 Analysis of the Minifab Dataset . 169

6.5.1 Operating curve results for minifab dataset without operators or

downtime . 170

6.5.2 Operating curve results for minifab dataset with operators and

downtime . 173

6.6 ExtendSim and SimPy Comparison . 175

6.7 Model Verification & Validation . 177

6.8 Summary . 179

7 Discussion 181

7.1 Overview . 181

7.2 Optimum Location of Simulated Design Points on Operating Curves . . . 183

7.3 Operating Points, Curves and Surfaces 184

7.4 Reflections on the FTM application . 186

7.5 Craft-based versus Generic Modelling . 187

7.6 Industrial Implications . 189

8 Conclusion 192

8.1 Technical Contributions . 193

8.2 Recommendations for Future Work . 193

References 195

Appendices

A Coded Algorithms for Designing DES Experiments A-1

A.1 Required number of simulation replications A-1

A.2 Whitt approximation for simulation run length A-2

A.3 Batch size approximation . A-2

A.3.1 Von Neumann algorithm . A-3

v

A.3.2 Anderson-Darling test for normality A-4

A.4 SPC Algorithm . A-4

A.5 Miscellaneous Functions . A-7

A.5.1 Inverse normal distribution function A-7

A.5.2 Batch means method . A-7

A.5.3 Batch variance . A-8

A.5.4 Queue operating point . A-9

B Flexible Toolset Modelling Application Code B-1

B.1 Front-End . B-1

B.2 Data Collection and Sorting . B-3

B.2.1 Data pull and cross-referencing B-3

B.2.2 Calculating arrival rates . B-5

B.2.3 Calculating process time . B-6

B.2.4 Estimate downtime parameters B-8

B.2.5 Lot selection parameters . B-12

B.3 VBA Wrapper for ExtendSim . B-18

B.4 ExtendSim Custom Blocks . B-23

B.4.1 Lot generator code . B-23

B.4.2 Tool generator code . B-28

B.4.3 Unscheduled downtime generator code B-32

B.4.4 Preventative maintenance generator code B-36

B.4.5 Pairing block code . B-41

B.5 Post Processing Scripts . B-50

C Semiconductor Wafer Manufacturing Data Format Specification C-1

C.1 File Description Overview . C-2

C.2 File Descriptions . C-2

C.3 Additional Information . C-7

D Code for Fab Model A D-1

D.1 Simulation Model Inputs . D-1

E Code for Fab Model B E-1

F Johnson Distribution F-1

F.1 Algorithm . F-2

F.2 Software Interpretation of Johnson Distribution F-4

F.3 Python Implementation . F-4

vi

F.4 VB Implementation . F-7

G Verification and Validation Techniques G-1

G.1 Verification Techniques . G-1

G.2 Validation Techniques . G-4

H Publications H-1

vii

List of Figures

2.1 Increase in global semiconductor sales from 1993 to 2010, data taken from

Worldwide Sales of Semiconductors in Billion USD (2010). 5

2.2 Transistor counts for integrated circuits and their dates of introduction

(Simon, 2008) . 6

2.3 Operating curve for an M/M/1 queueing system showing the relationship

between x-factor and utilisation. 18

2.4 Typical inflection region on an M/M/1 queue operating curve. 20

2.5 System modelling methods, based on (Gordon, 1977; Law and Kelton, 1997). 26

2.6 Locating the current operating point on an operating curve generated by

an analytical queueing model. 28

2.7 Steps in a simulation study. 41

2.8 Phases of a simulation study. 42

2.9 Components of a semiconductor fab categorised using simulation model

components suggested by Jeong et al. (2009). 47

2.10 Modelling effort and model reusability. 53

3.1 Operating curve indicating the simulation output variance. 61

3.2 M/M/1 operating curve showing the ‘vertical’ and ‘horizontal’ asymptotes

and the curved area of interest. 63

3.3 The curvature level k(u) for an M/M/1 queueing approximation according

to Eq.(3.4). 64

viii

3.4 Operating curve and equivalent u/CT curve for M/M/1 queue, showing

the u/CT region and an optimum operating point at u = 0.5. 66

3.5 Design points for an M/M/3 queuing system at 100%, 95%, 80% and 40%

of u/CT . 67

3.6 Recommended run length for G/G/1 queue with moderate variability. . . 70

3.7 Batched time series transient and statistical process control (SPC) control

parameters for an M/M/1 queue, showing failure of Test 1 at ¯̄Y36. 76

3.8 Operating Surface for a G/G/1 queueing system according to Eq.(2.4). . 77

3.9 u/CT Surface for a G/G/1 queueing system. 78

3.10 Summary flow chart for the automated framework for designing discrete

event simulation (DES) experiments. 79

4.1 Tool/toolset selection for the Flexible Toolset Modelling (FTM) application. 83

4.2 Selection of experimental parameters for simulation model. 84

4.3 Combined database time stamps for a single process tool. 85

4.4 Arrival histogram and exponential fit for lots requiring operation A on ‘H’

toolset. 86

4.5 Arrival histogram and exponential fit for lots requiring operation B on ‘H’

toolset. 87

4.6 Arrival histogram and exponential fit for lots requiring operation C on ‘H’

toolset. 87

4.7 Unbounded Johnson distribution fit for lots requiring operation A on tool

T2. 88

4.8 User prompt to distinguish between scheduled and unscheduled downtime

events recorded in the tool history database. 91

4.9 Creation of preventative maintenance (PM) schedules through a graphical

user interface (GUI) wizard. 91

4.10 Visual Basic (VB) Userform used to select lot prioritisation options for

each tool. 92

4.11 VB Userform used to rank processing priority for operations. 93

4.12 Traditional job-driven graphical modelling approach. 95

4.13 Screenshot of ExtendSim model used by the FTM application. 96

4.14 Dialog of the custom Lot Generator block used for the FTM application. 97

4.15 Dialog of the custom Tool Generator block used in the FTM application. 99

4.16 Dialog of the custom unscheduled downtime generator block used in Ex-

tendSim. 100

4.17 Dialog of the custom PM Generator block used in ExtendSim. 100

4.18 Logic code execution for Pairing block used in the FTM application. . . . 101

ix

4.19 Details of lots residing in the Pairing block during runtime. 102

4.20 Flow system for flexible simulation model used in the FTM application. . 104

4.21 The operating curves generated by the simulation and the equivalent M/G/m

queueing approximation for the system. 105

4.22 Tool operating points from historical records plotted alongside the queue-

ing approximation and simulated operating curves. 110

4.23 IDEF0 standard adapted to the viewpoint of the modeller. 111

4.24 Overview IDEF0 diagram (A-0) for FTM ExtendSim model. 111

4.25 ‘Run Simulation’ (A0) IDEF0 diagram for FTM ExtendSim model. . . . 112

4.26 ‘Generate Lots’ (A1) IDEF0 diagram for FTM ExtendSim model. 112

4.27 ‘Generate Tools and Downtime’ (A2) IDEF0 for FTM ExtendSim model. 113

4.28 ‘Pair Items’ (A3) IDEF0 diagram for FTM ExtendSim model. 113

4.29 ‘Service’ (A4) IDEF0 diagram for FTM ExtendSim model. 114

4.30 ‘Repair’ (A5) IDEF0 diagram for FTM ExtendSim model. 114

4.31 IDEF1x diagram showing the objects and attributes used to describe the

entities in the FTM ExtendSim model. 115

5.1 Modelled entities and their attributes described using IDEF1x. 122

5.2 Dialog option available for user to select a dataset. 123

5.3 Additional release pattern options for selection. 123

5.4 Portion of time the operator is occupied during the process step. 127

5.5 Cycle time trace of both products in Sematech dataset 1. 137

5.6 Operating curves for dataset 1 using a minimum and maximum batch

sizing policy. 141

5.7 Comparison of M/D/m approximation for bottleneck toolset TS67 and fab

operating curve predicted by simulation model. 144

5.8 Comparison of results for flexible reusable model, x-factor and complete

x-factor contribution (CXFC) produced by Delp et al. (2006). 146

5.9 Comparison of operating curves for dataset 1 with unreliable machines

according to Table 5.11 and Table 5.17. 149

5.10 Operating curve for dataset 1 using operators under a minimum and max-

imum batching policy, according to Table 5.18. 150

5.11 Overview IDEF0 diagram (A-0) for ExtendSim model. 154

5.12 ‘Run simulation’ (A0) IDEF0 diagram for ExtendSim model. 155

5.13 ‘Generate lots’ (A1) IDEF0 diagram for ExtendSim model. 155

5.14 ‘Generate tools’ (A2) IDEF0 diagram for ExtendSim model. 156

5.15 ‘Generate operators’ (A3) IDEF0 diagram for ExtendSim model. 156

5.16 ‘Pair items’ (A4) IDEF0 diagram for ExtendSim model. 157

x

5.17 ‘Service’ (A5) IDEF0 diagram for ExtendSim model. 157

5.18 ‘Operator queue’ (A6) IDEF0 diagram for ExtendSim model. 158

5.19 ‘Testing’ (A7) IDEF0 diagram for ExtendSim model. 158

5.20 ‘Repair’ (A8) IDEF0 diagram for ExtendSim model. 159

6.1 Visual interpretation of Semiconductor Wafer Format Specification in MySQL

database. 163

6.2 GUI for the Python/SimPy application. 164

6.3 Visualisation of output data from simulation model stored in MySQL

database. 168

6.4 Output GUI for SimPy model. 168

6.5 Process step-centric representation of minifab dataset. 170

6.6 Standard operating curve and u/CT curve for minifab dataset without

operators or downtime. 171

6.7 Comparison between x-factor results for simulation, M/M/1 and M/D/1

approximation. 172

6.8 Operating curves for minifab dataset with operators and downtime. . . . 173

6.9 Comparison of simulated operating curves for ExtendSim and SimPy mod-

els using the minifab dataset. 176

7.1 Operating surface for G/G/10 queue with lot dedication restriction. . . . 186

B.1 User prompt to distinguish between scheduled and unscheduled downtime

events recorded in the tool history. B-12

B.2 VB Userform used to select lot prioritisation options for each tool. B-13

B.3 VB Userform used to rank processing priority for operations. B-16

B.4 Dialog of custom Lot Generator block for FTM Application. B-23

B.5 Dialog of custom Tool Generator block for FTM Application. B-28

B.6 Dialog of custom unscheduled downtime generator block for FTM Appli-

cation. B-33

B.7 Dialog of custom preventative maintenance generator block for FTM Ap-

plication. B-37

F.1 An example of the empirical data and the fitted Johnson unbounded fre-

quency distribution using the algorithm described in this chapter. F-5

xi

List of Tables

2.1 Justification for using simulation modelling to generate operating curves

in semiconductor manufacturing, based on the recommendations offered

by Banks and Gibson (1996, 1997a). 50

3.1 Simulation run length approximation for G/G/1 queueing system accord-

ing to the Whitt estimator (Whitt, 1989b). 70

3.2 SPC test results for M/M/1 queueing system. 76

4.1 Time-stamp sources. 85

4.2 Johnson distribution parameters for each operation on each tool in toolset

‘H’. 89

4.3 Average post-processing waiting time of all lots on each tool. 90

4.4 Information required by ExtendSim simulation model. 94

4.5 Attributes used by ExtendSim model items. 98

4.6 Model time stamps recorded during runtime. 104

4.7 Utilisation and cycle time predicted by the simulation model.. 106

4.8 Techniques used to verify the FTM application. 108

4.9 Techniques used to validate the FTM application. 109

5.1 Data files used for wafer data format specification. 118

5.2 Comparison of the traditional use of basic simulation objects and an entity-

centric approach to model a semiconductor fab. 120

5.3 Entity-centric approach to modelling semiconductor fabs. 121

xii

5.4 VB wrapper functions for ExtendSim. 125

5.5 Degree of re-entrancy for Semiconductor Wafer Manufacturing Data For-

mat Specification sample datasets. 126

5.6 Description of LotTrace database for collecting model output. 135

5.7 Description of ToolTrace database for collecting model output from the

tools. 136

5.8 Description of OperatorTrace database for collecting model output from

the operators. 136

5.9 Description of Sematech dataset 1 from MASM Lab Factory Datasets (1996).138

5.10 Sample run of Sematech dataset 1 using Factory Explorer. 139

5.11 Simulation model results for Sematech dataset 1 with a maximum batch

size policy and no operators, downtime or rework. 140

5.12 Simulation model results for Sematech dataset 1 with a minimum batch

size policy and no operators, downtime or rework. 140

5.13 The approximate average arrival rate permissible for the system and for

the bottleneck toolset TS67, given that m = 7. 143

5.14 Operation details for TS67. 144

5.15 Comparison of results for flexible reusable model, simulation model pro-

duced by Delp et al. (2006), and the CXFC approximation. 147

5.16 Unreliable toolsets in dataset 1 ranked by least availability. 148

5.17 Simulation model results for dataset 1 with unreliable machines. 148

5.19 Techniques used to verify the ExtendSim model. 150

5.18 Simulation model results for dataset 1 using operators with a minimum

and maximum batch sizing policy. 151

5.20 Comparison of reported, calculated and simulated raw process times for

Products 1 and 2 for dataset 1. 152

5.21 Techniques used to validate the ExtendSim model and application. 153

6.1 Description of Sematech minifab dataset from MASM Lab Factory Datasets

(1996). 169

6.2 Comparison of reported, calculated and simulated raw process times for

minifab dataset. 170

6.3 Cycle time and x-factor results for Sematech minifab dataset with no op-

erators or downtime. 171

6.4 Cycle time and x-factor results for Sematech minifab dataset with no op-

erators or downtime. 174

6.5 Average availability for minifab toolsets. 175

6.6 Comparison of simulation model results for ExtendSim and SimPy models. 176

xiii

6.7 Techniques used to verify the SimPy model. 177

6.8 Techniques used to validate the SimPy model. 179

C.1 Data files used for wafer data format specification. C-2

C.2 Structure of Process Route (pr) file. C-3

C.3 Structure of Rework Sequence (rw) file. C-4

C.4 Structure of Tool Set (ts) file. C-5

C.5 Structure of Operator Set (os) file. C-6

C.6 Structure of Volume Release (vr) file. C-6

C.7 Comparison of Sematech datasets. C-9

D.1 Input data subroutines and functions for the Sematech model. D-2

F.1 Parameters for estimation of Johnson bounded and unbounded distribution.F-3

F.2 Parameters for estimation of Johnson lognormal distribution. F-4

F.3 Different interpretation of Johnson distribution parameters. F-5

G.1 Verification techniques for simulation modelling (Whitner and Balci, 1989). G-2

G.2 Validation techniques for simulation models (Sargent, 1998). G-4

xiv

Glossary

Many of the descriptions given are based on definitions from Hopp and Spearman (2001),

with minor adjustments to some of the terminology with regards to semiconductor man-

ufacturing.

availability the fraction of uptime at a station, tool or toolset.

batch a grouping of lots.

cycle time the average time from when a lot or job is released into a system to when it

exits (hrs).

fab a shortened industry term for a semiconductor wafer fabrication facility.

inter-arrival times average time between arrivals to a system (hrs).

lot a grouping of wafers that travel as a single unit.

mean effective process time average time required to do a job, including all produc-

tion detractors (such as setups and downtime) but not including time that a system

is starved for lack of work or blocked by busy downstream systems (hrs).

mean time before failure the mean uptime between successive failures (measured from

the end of the last failure to the beginning of the next failure) of a machine or tool

(hrs).

mean time to repair the mean downtime measured as the mean amount of time taken

to repair a machine or tool (hrs).

xv

operating curves short for operational characteristic curves, a curve defining the cycle

time and utilisation relationship of a system.

process time the amount of time taken to complete a job or task at a station or tool

(hrs).

raw process time the sum of the process times of a routing or system (hrs).

throughput the average output of a system (lots per hour).

tool a semiconductor industry term for a piece of machinery or equipment.

utilisation the fraction of time a system is not idle for lack of WIP.

variability the non-uniformity of a class of entities.

work in process the number of units of inventory between the start and end points of

a system (number of lots).

General subscript conventions:

- subscript a indicates a parameter that describes the arrival pattern to a system.

- subscript e indicates a parameter that describes “effective” process times of a system

which includes production detractors.

- subscript f indicates a parameter that describes the average time between successive

failures at a station or tool.

- subscript r indicates a parameter that describes the average repair or maintenance

time at a station or tool.

- subscript 0 indicates a parameter that describes the natural time of a process with-

out any production detractors.

xvi

Kendall Notation

Kendall notation is a method for describing single stage queueing systems using the
syntax,

(a/b/c) : (d/e/f)

where the placeholders a-f refer to,

a: arrival distribution,

b: service (or process) distribution,

c: number of parallel servers,

d: queue discipline (default is FIFO),

e: number of customers allowed in the system (default is unlimited),

f : maximum number of customers that can be called from (default is unlimited).

The arrival and service distribution patterns use further notation to designate the distri-
bution type,

D: deterministic uniform distribution,

M: exponential distribution, also known as a Markovian distribution,

G: a general distribution including; lognormal, normal, beta, etc.,

E: specific cases of the Erlang distribution,

xvii

Acronyms

AMHS automated material handling system

CMSD Core Manufacturing Simulation Data

CXFC complete x-factor contribution

DES discrete event simulation

DOE design of experiments

DoR degree of re-entrancy

EPT effective process time

FIFO first in first out

FOUP front opening unified pod

FTM Flexible Toolset Modelling

GUI graphical user interface

IC integrated circuit

IDE integrated development environment

KPI key performance indicator

LACTE load-adjusted cycle time efficiency

MIMAC Measurement and Improvement of Manufacturing Capacity

MTBF mean time before failure

MTTR mean time to repair

MWBF mean wafers before failure

OEE overall equipment effectiveness

xviii

PEM process execution method

PM preventative maintenance

RPT raw process time

SME subject matter expert

SPC statistical process control

SQL Structured Query Language

TOC theory of constraints

UML unified modelling language

VB Visual Basic

VBA Visual Basic for Applications

WIP work in process

XML extensible markup language

xix

A Framework for Generating Operational Characteristic Curves

for Semiconductor Manufacturing Systems using Flexible and

Reusable Discrete Event Simulations

Néill M. Byrne

This thesis proposes a framework for generating operating curves for semiconductor man-
ufacturing facilities using a modular flexible discrete event simulation (DES) model em-
bedded in an application that automates the design of experiments for the simulations.
Typically, operating curves are generated using analytical queueing models that are diffi-
cult to implement and hence, can only be used for benchmarking purposes. Alternatively,
DES models are more capable of capturing the complexities of a semiconductor manufac-
turing facility such as re-entrancy, rework and non-identical toolsets. However, traditional
craft-based simulations require much time and resources. The proposed methodology
aims to reduce this time by automatically calculating the parameters for experimentation
and generating the simulation model. It proposes a novel method to more appropriately
allocate simulation effort by selecting design points more relevant to the operating curve.

The methodology was initially applied to a single toolset model and tested as a pilot
case study using actual factory data. Overall, the resulting operating curves matched that
of the actual data. Subsequently, the methodology was applied to a full semiconductor
manufacturing facility, using datasets from the Semiconductor Wafer Manufacturing Data
Format Specification. The automated framework was shown to generate the curves rapidly
and comparisons against a number of queueing model equivalents showed that the DES
curves were more accurate. The implications of this work mean that on deployment of
the application, semiconductor manufacturers can quickly obtain an accurate operating
curve of their factory that could be used to aid in capacity planning and enable better
decision-making regarding allocation of resources.

xx

CHAPTER 1

Introduction

1.1 Statement

This thesis examines the methods for generating fast, accurate and reliable operational

characteristic curves for semiconductor manufacturing facilities. A framework for gen-

erating these curves is proposed, which consists of a computer application that utilises

analytical approximations and statistical methods to generate automated discrete event

simulation models.

1.2 Motivation

Understanding and monitoring the efficiency of a semiconductor manufacturing facility

in a holistic manner is a difficult activity when one considers the plethora of performance

indicators that can be examined. Often, implementing improvements at the facility based

1

Chapter 1. Introduction

on a single or incorrect performance indicator can lead to a dis-improvement in another

performance indicator. Therefore, it is necessary to establish a ‘catch all’ performance

indicator that is representative of true factory performance and relevant to the conflicting

goals of the factory; a reduction in production lead time and a maximisation of equipment

utilisation. An operational characteristic curve (known simply as an operating curve)

is capable of capturing these conflicting goals and enabling management and engineers

understand how the factory will react to different loading levels, and to aid them in better

decision making with regard to capacity planning and resource allocation. However,

operating curves are only as accurate as the methods and techniques used to create

them. The modelling technique used, has a large impact on the resultant curve and hence,

can have significant implications on the decisions based around the curves. Therefore,

this thesis examines and evaluates the best possible methods for generating the curve,

and ultimately proposes a framework for automating discrete event simulations that can

generate fast and reliable curves.

1.3 Thesis Outline

The literature review chapter begins by describing the semiconductor industry and how

this commodity-based industry and its driving forces are pushing semiconductor fab-

rication facilities (known simply as fabs) to increase efficiencies and throughput at an

increasingly fast rate while reducing lead times. A brief description is given of the in-

hospitable environment of a semiconductor fab and its complexities, with a particular

emphasis on the operational complexities that make managing and controlling a fab a

very difficult task, and hence, make modelling and describing the fab an equally complex

task. The chapter then goes on to describe how operating curves can be useful for making

informed decisions and how they are indicative of the behaviour of such a system. The

discussion then moves to focus on the best possible methods for deriving these curves

with an emphasis on the two most common methods; analytical approximations and dis-

2

Chapter 1. Introduction

crete event simulation models. The pros and cons of each method are evaluated and a

conclusion is drawn that analytical models are insufficient for a number of reasons and

that simulation modelling is the best possible method for capturing fab complexities and

the most likely technique of generating reliable operating curves. A case is then made to

overcome the difficulties encountered when performing simulation modelling project, by

proposing a framework that attempts to automate the process and use analytical rough-

cut models to prime a generic discrete event model. Some literature pertaining to the

creation and automation of simulation models is then included.

The first development chapter (Chapter 3) introduces the reader to the proposed

framework by using best practice methods for designing simulation experiments. These

include; establishing the required number of simulation replications, the simulation run

length, estimations of steady state and initial bias for deletion. Also included is a novel

method for establishing the most appropriate and pertinent location of design points on

the operating curve for experimentation in the simulation model.

Chapter 4 details the first flexible, reusable, automated model used for deriving oper-

ating curves for single semiconductor toolsets, known as the Flexible Toolset Modelling

(FTM) application. A case study of its deployment and implementation at a real semi-

conductor fab is given.

Chapters 5 and 6 describe a full factory model that utilises a proposed modelling

strategy implemented using two different platforms; an ExtendSim simulation model

encapsulated in a Visual Basic (VB) application and a SimPy simulation model inte-

grated in a Python based application. The chapters show a comparison between the two

implementations and compare the resulting operating curves to a number of analytical

approximations discussed in the literature review chapter.

Finally, the discussion (Chapter 7) and conclusions (Chapter 8) summarise the find-

ings and outline the contributions of the thesis.

3

CHAPTER 2

Literature Review

2.1 Semiconductor Manufacturing

Much of the discussion in this thesis involves the modelling of semiconductor manufac-

turing systems, and all experimentation and resulting observations were carried out using

semiconductor factory datasets. Therefore, this section delivers a general introduction

to semiconductors and the related global industry. There is also a discussion on some

of the main complexities and components associated with semiconductor manufactur-

ing (Section 2.1.3), as well as a general overview of the economic factors that drive the

industry.

2.1.1 Semiconductor industry economics

For many years the largest industry in the world was the automobile industry. This

changed at the beginning of the 21st century when the electronics industry surpassed

4

Chapter 2. Literature Review

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

 1994 1996 1998 2000 2002 2004 2006 2008 2010

w
or

ld
w

id
e

se
m

ic
on

du
ct

or
 s

al
es

 (
$b

n)

year

Figure 2.1: Increase in global semiconductor sales from 1993 to 2010, data taken
from Worldwide Sales of Semiconductors in Billion USD (2010).

it in terms of global sales (May and Sze, 2004). Much of the electronics industry is

based on semiconductor sales, which itself has seen significant growth over the past 15

years (Fig. 2.1), mainly as a result of the growing demand for the integrated circuit (IC)

chips built using semiconductors. In fact, most other industries including the aerospace,

communications, consumer electronics and automobile industry, rely heavily on IC chips,

and in many ways the semiconductor is a fundamental cornerstone of global technological

advancement.

More recently, the industry reported global sales in 2009 of $226 billion and provided

over 207,000 jobs in the U.S. (Semiconductor Industry Association Factsheet, 2010). Even

against the backdrop of the economic downturn in 2008, and a dip in semiconductor sales,

the industry rebounded in 2010 with an almost 37% increase in sales over similar figures

for 2009. Most of this was due to increased demand for emerging consumer goods such

as hand-held devices, tablet PCs, netbooks, smartphones, solid-state hard drives and

5

Chapter 2. Literature Review

high-definition televisions (Ford, 2010).

Despite such positive growth figures, the increase in global sales has also been a source

of great economic pressure on chip manufacturers. The constant demand for faster and

cheaper chips is driving very competitive chip costing. The rate of advancement of elec-

tronics is reducing product life cycles, which in turn, is putting semiconductor manufac-

turers under increasing competitive pressures. A trend that currently shows little signs of

abating according to Abadir (2007). In order to remain competitive, chip manufacturers

must bring new advanced products to market in a consistent cyclical manner to offset

the rapid devaluation of older products (Hutcheson, 2000).

Date of introduction

T
ra

ns
is

to
r

co
un

t

2,300

10,000

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

2,000,000,000

1971 1980 1990 2000 2008

Figure 2.2: Transistor counts for integrated circuits and their dates of introduc-
tion. Edited and reproduced from (Simon, 2008) under the GNU Free
Documentation License.

6

http://www.gnu.org/licenses/fdl.html
http://www.gnu.org/licenses/fdl.html

Chapter 2. Literature Review

Moore’s law

Technological advancements in the process of creating microprocessors means that it is

now possible to fit billions of transistors onto semiconductor chips. The more transistors

that can be placed onto a chip, the more powerful the microprocessor.

This rate of evolution of microprocessor was first predicted by Moore in 1965 and is

commonly known as Moore’s law (Moore, 2000). As can be seen from Fig. 2.2, Moore’s law

observes that the transistor density that can be inexpensively placed on a semiconductor

chip doubles approximately every two years. Such rapid progress has led to an explosion in

computing power over the last three decades. Commercial chips have gone from thousands

of transistors to tens of billions of transistors per chip with no immediate signs of a slow-

down in the rate of advancement.

In fact, the rate at which semiconductor chips are advancing is considered to be a self

fulfilling prophecy. Semiconductor manufacturer’s targets and efficiencies are now being

driven by predictions from Moore’s law. The result is that manufacturers are applying

innovative solutions and improving their products and manufacturing equipment at a

rate that is unmatched by any other industry (Schaller, 1997).

The term law, when used to refer to Moore’s law can be a bit misleading; it is more

a rule of thumb or observation about the phenomenal rate of advancement of semicon-

ductors and the technology required to manufacture them. Some subject matter experts

(SMEs), including Moore himself, believe that the advancements which have given rise to

the ‘exponential-like’ increase in processing power also have some inherent limiting fac-

tors that will prohibit the future rate of advancement (Moore, 1995). For example, Kwon

(2007) and Rupp and Selberherr (2010) believe that it may be economic factors that will

halt industry expansion, whereby building and equipping semiconductor manufacturing

plants will no longer be feasible due to the increasing cost of equipment and facilities.

Similarly, Christensen et al. (2008) painted a picture of semiconductor manufacturing

plants as ‘unwieldy’ factories that required about $3 million US dollars of product output

every day to amortise an initial $5 billion capital investment over five years. They stated

7

Chapter 2. Literature Review

that covering such a level of investment was almost impossible due to the “incessant

cycles of investment and obsolescence that keeps Moore’s law on the march”.

Aside from these economic limits, Moore himself, believes that the trend may be

limited due to the physics and dimensions of an electron. A physical limiting barrier may

be reached (circa 2020); whereby electrons are simply too large, relative to the channel

widths of the transistor (Dubash, 2005). This would result in a physical barrier and

prohibit further advancement of chip size minimisation.

It is worth noting that these commentators only considered how physical and economic

limits may be reached if current trends are left alone to continue. Moore’s Law has been

facilitated by various paradigm shifts and new modes of thinking over the history of the

semiconductor and it is likely that further new paradigms will materialise. Other ideas,

besides chip shrinkage have already been mooted; including integration of computing

systems, thus moving towards a ‘single chip’ system (Bai, 2009), or more exotic solutions

such as 3D chips (Vucurevich, 2008). Already, the first generation of these 3D chips is

due for production and release to the market in early 2012 (Poeter and Hachman, 2011).

Some other SMEs feel that the next step in the advancement of Moore’s law will

come with a complete reconfiguration of the semiconductor industry to a more flexible

concurrent design and manufacturing system (Bhavnagarwala et al., 2010). The current

eco-system of semiconductor development and production consists of a number of some-

what specialised groups (e.g. software, equipment manufacturing, foundry and design)

that tend to operate as individual entities. One possible solution is to integrate these

services and operations so that an encompassing group is responsible for all aspects of

bringing a successful semiconductor product to market. With such a system, semiconduc-

tor products could be brought to market faster and have a longer lifecycle. In summary,

it appears that while the main facilitator of Moore’s Law, chip minimisation, might be

reaching its limit, there are many more avenues awaiting exploitation.

8

Chapter 2. Literature Review

2.1.2 Fabrication plants

Processing of integrated circuits is carried out in a factory that typically consists of three

levels; the subfab which is the bottom level, the cleanroom which is the middle level and

the air-handling level on the top. The cleanroom is where the wafers are processed. The

bottom level; the subfab, allows maintenance access to all the electrical, chemical and

fluid conduits that service the cleanroom. The top level controls the airflow into and

from the cleanroom.

Fab layout

Generally there are two main categories of manufacturing; product-based (flow type) and

process-based (job-shop type) (Kumar, 1994). Product-based is usually used to describe

a manufacturing system where the product takes some single line route through the

factory and is operated on by workstations along the line. A good example of this style

of manufacturing is the automobile industry, where large volumes of low mix or single

products tend to move along dedicated product lines and only visit each workstation

once.

Alternatively, a job-shop manufacturing system is one where each job has a predefined

list of required operations and the parts or widgets must travel along a network of inter-

connections between machine groups. This type of system is suited best to factories that

produce low volumes with a high product mix. Extremes of this type include prototype

manufacturers and traditional tool makers.

Wafer fabs do not appear to fall perfectly into either category of job shop or flow

type. They are similar to job shop types in that lots/jobs have a list of operations that

must be performed by various machine groups around the plant; however, the operations

manifest is far more precise and structured than that of a typical job shop.

Similarly, they are not exactly flow type systems either. The flow of any particular job

is defined by the recipe/operations manifest, meaning that there are many crossing flow

lines formed by the various product types travelling around the fab. The system becomes

9

Chapter 2. Literature Review

like a network of destinations with overlapping routes. Furthermore, there are many

situations where lots revisit some machine groups several times, for follow-up operations.

On a structural level, the most common fab design is a bay and chase configuration,

which are separated by a wall that contains the tools (an industry term for machines)

and fab equipment. Tools are loaded from the bay side, and the chase side is used for

maintenance access. The chase area is less prone to contaminants than the bay area, so

is generally less regulated and subject to less strict cleanroom standards.

The bays typically contain a collective of similar tools. The machines or tools are

grouped by similarity of process, and this approach allows operators and equipment to

specialise in the manufacturing processes or operations they perform. It also increases

the available level of technical support and takes full advantage of the benefits of tool

standardisation, an important aspect of manufacturing systems with equipment that is

subject to strict operational parameters.

Lot and wafer travel

The silicon wafers that circulate the fab are usually grouped into lots and housed in some

form of transportation container. In 200mm wafer fabs, the wafers are placed in cassettes

that are housed within a lot box. In the more advanced 300mm fabs, the wafers are held

in front opening unified pods (FOUPs). The advantage of a FOUP over a lot box, is that

they are sealed environments and only opened within the tools. This helps to keep the

wafers protected from contamination and unnecessary handling.

Moving the lots around the fab is a complex task. Most fabs rely on some sort of

automated material handling system (AMHS) to move the lots between bays. These

AMHSs consist of a moving robot vehicle that operates on a network of tracks, and can

both pick and drop FOUPs or lot boxes. There are two main networks of AMHS; intrabay

and interbay. The interbay network moves lots between the main stockers. These stockers

or buffers hold the lots until they can be processed on the tools in that stocker’s bay.

They also hold the post-processed lots until the interbay AMHS robot returns to collect

10

Chapter 2. Literature Review

the lot and move it on for the next operation. Within each bay, an intrabay network

operates by moving lots from the stocker to the tools and returning them once processing

is complete.

2.1.3 Operational complexities in a wafer fab

A wafer fab is an environment with many different aspects that need to be controlled.

Controlling all of these aspects often involves finding a trade-off between the competing

forces within the fab. The number of aspects that cause a fab to deviate from optimum

control are so plentiful that there requires an n-order equivalent number of control policies

and operational protocols that must be set in place. The following section discusses some

of the most common complexities in the fab.

Tool diversity

Semiconductor fabrication requires a broad range of complex machinery and tools. Clas-

sification of tools can be done based on their operation, e.g., photolithography, diffusion,

ion implantation, etching, etc. However, with respect to the content of this thesis the

actual chemical/physical operation is of little significance, whereas the movement of lots

and wafers through the equipment is far more important.

An example of complex machinery in semiconductor manufacturing is that of cluster

tools. Cluster tools are typically comprised of several wafer processing modules, managed

by a centralised control system that moves the wafers between the modules. Other

complex tools have multiple exterior lot-loading ports that can feed individual wafers

into the tool.

Re-entrancy

Re-entrancy is a result of the complexity of product flow in the fab. Transistor layers

are created on the wafer by performing operations that build up subsequent layers of

microscopic conduits and interconnections. These layers are referred to as mask layers

11

Chapter 2. Literature Review

and consist of a defined sequence of operations or processes that are often carried out

by different tool groups in the fab. Once a mask layer is complete, the next mask layer

may repeat a similar sequence of operations; thus, requiring the wafer to return to the

same tool groups again. This process is known as re-entrancy and causes many workflows

within the fab to overlap.

Lot and tool dedication

Re-entrancy refers to lots returning to toolsets visited at a previous step, for a follow

up operation. The inference here is that any tool within the toolgroup can perform the

subsequent operation. In reality, this is not always possible and often the lot can only

be processed by the same tool that carried out the prior operation. This is known as

lot-to-tool dedication and is normally only at photolithography steps.

This dedication is required to increase the wafer yield. During photolithography it

is necessary to have precise alignment between critical layers on the wafer. Therefore,

to ensure the best possible alignment, the wafer is returned to the tool that performed

its previous critical layer. Then any wafer imperfections caused by the tool are carried

through to the next layer in the same spot on the wafer. This means that the imperfection

or error is contained in the one vertical plane of the wafer, which in effect, increases its

yield probability.

Time-critical processes

Time-critical processes are jobs or operations that must be carried out within a specified

time window otherwise a yield loss may occur. The time window is usually defined by

the current time and the time of the previous operation. If the critical operation does

not occur before a designated time then the previous processing step may need to be

repeated.

12

Chapter 2. Literature Review

Scheduling

Where there is competition for resources, the optimal scheduling and use of those re-

sources is critical. In a wafer fab there is competition for many resources including

AMHSs, machines, tools, operators and technicians. This competition for resources makes

proper and efficient scheduling of those resources an important attribute of a well managed

wafer fab. Send-aheads, time-critical processes, priority lots (hot lots), setup-avoidance

measures and batching rules mean that there is a constant need for dynamic scheduling

in the fab.

Downtime and maintenance

The downtime strategy in the fab has a large impact on the efficiency of the overall

system. Preventative maintenance (PM) schedules are employed in an effort to avoid any

unscheduled downtime or machine failure. A trade-off is usually required to control the

level of unscheduled downtime. To do this, the frequency of PMs are regulated carefully;

too many may result in unnecessary PM downtime, and too little could result in frequent

unscheduled downtimes (Yao et al., 2004).

Scheduling of maintenance periods is also critical to maintain consistent availability of

toolsets. Maintenance can also be scheduled based on monitoring tool performance values.

For example, some semiconductor manufacturing equipment have very precise operational

limits and are continually monitored to ensure they do not fall outside specified control

boundaries. If a tool parameter is seen to be deviating out of control a PM task may

be brought forward and performed on the tool in the hope that it prevents a possible

forthcoming outage.

Rework

After certain process stages or operations, the wafer may be tested. If the test fails it may

be necessary to rework the wafer. This might involve an operation to remove a substrate

of the wafer, and return the still viable wafer back to a previous step. This means that

13

Chapter 2. Literature Review

a certain percentage of lots will be recirculated back through their workflow or process

path.

Some individual wafers that failed inspection tests may even be separated from their

lot to be reworked before merging back with the parent lot at a later stage. This is

necessary to avoid expensive wafer waste but has the downside of increasing the workflow

traffic.

Variability

Variability is described as “the quality of non-uniformity of a class of entities” (Hopp

and Spearman, 2001) and refers to the extent of the deviation from the mean. All of the

aforementioned sources of complexity such as dedication, rework, setup avoidance and

preventative maintenance can all be viewed as sources of flow variability.

2.2 Operating Curves

An observation made by Ahmad and Dhafr (2002) is that performance metrics “ought

to be made in light of the company’s strategic intentions which will have been formed to

suit the competitive environment in which it operates and the nature of the business”.

To summarise, performance metrics should reflect the key objectives of the company

and relate to the driving forces that control the industry. Assessing this statement in

the context of the semiconductor industry, the most influential driving force is the rapid

advancement of semiconductor technology (see Section 2.1.1 on Moore’s Law). A fab’s

‘strategic intentions’ are to manufacture low cost, high performance chips while minimis-

ing production lead time and cost of manufacture (Abadir, 2007; Kwon, 2007; McIntosh,

1997).

Based on these factors, it appears that a good fab metric is one that shows cycle time

(lead time) and fab cost. Semiconductor fabs typically cost in the billions of dollars.

Much of this capital cost is attributed to the specialised equipment and tooling required

14

Chapter 2. Literature Review

to process the semiconductors. Since actual equipment cost is a fixed capital expenditure

(generally a one-off purchase), and cannot be recovered, a substitute is to use the equip-

ment amortisation cost instead. This amortisation cost can be offset by running tools

and equipment at a very high level of utilisation. This means that minimising fab costs

can be done by maximising the utilisation of factory equipment. Unfortunately though,

queue time, inventory and work in process (WIP) levels are negatively impacted by this

policy, and cycle time increases. This means that the average time that material spends

queueing (as a ratio of the time spent processing) increases rapidly, and the material

workflow lines become more congested. This is a very unfavourable situation and can

cause important capital to be tied up in inventory, resulting in longer lead times and

reduced cash flow for the parent company.

These two related factors are described by operational characteristic curves (or operat-

ing curves for short). Sematech, an organisation representing a consortia of semiconductor

manufacturers, produced the Measurement and Improvement of Manufacturing Capacity

(MIMAC) technical report in 1995 which discussed the key performance indicators (KPIs)

of a semiconductor fab. Of all the consortium members consulted in the report, most

stated that the key performance analysis should be based on operating curves (Fowler

and Robinson, 1995). Similarly Ignizio (2009) stated that the operating curve is the

single most important metric for a factory manager. In light of this, this thesis focuses

on this particular metric, which can be related back to the economic drivers of the semi-

conductor industry. The following sections explain the fundamentals of operating curves

and the advantages of using them as a factory metric. There is also a discussion on the

factors that influence the shape of the curves, and hence, have an impact on overall fab

performance.

2.2.1 Queueing systems

In manufacturing systems, the entities that reside in the system compete for finite re-

sources. For example, lots in a wafer fab must compete and wait (queue) for tools,

15

Chapter 2. Literature Review

operators and AMHSs. It is this competition that forms a series of queueing systems

around the fab. In queueing theory, the items that need the resource are known as cus-

tomers and the resources that provide a service to the customers are known as servers.

Queueing systems are often described using Kendall notation (see pg. xv).

General queueing approximations

One of the benefits of analysing systems using queuing theory is that much work has

been done to derive the estimators of the long run performance measures for many of the

less complex idealised systems. For example, the cycle time (the average time from when

a lot or job is released into a system to when it exits) for an M/M/m queue, that is,

a queue with exponentially distributed arrival and service patterns is given by Eq.(2.1)

(see Hopp and Spearman (2001) for derivation) as follows,

CTM/M/m = te

(
1 +

u
√

2(m+1)−1

m (1− u)

)
, (2.1)

where m is the number of tools in the toolset, u is the utilisation of the toolset (the

fraction of time the toolset is not idle for lack of WIP) and te, the mean effective process

time, refers to the times ‘seen’ by the lots, which incorporates time spent in repair, setup

changes, loading times and any other production detractors. Utilisation can also be

defined as,

u =
te
tam

, (2.2)

where ta is the mean inter-arrival times of lots to the toolset. For a single server system

(m = 1), Eq.(2.1) reduces to,

CTM/M/1 = te

(
1 +

u

1− u

)
=

te
1− u

(2.3)

The M/M/m queue is a uniquely special case due to the memoryless property of the

exponential distribution. The memoryless property means that the time of the next event

16

Chapter 2. Literature Review

is independent of the time already spent waiting for the event.

In a semiconductor manufacturing environment, the exponential distribution can be

a good approximation for the arrival pattern to a tool if there are multiple independent

upstream lot sources feeding the tool. Again, this stems back to the memoryless property

of the exponential distribution. Unfortunately however, the exponential distribution is

not a good model for tool processing, given that its lower bound is zero and it is likely

that very small process times can be sampled from the distribution. Tool processing

is somewhat better served by using a ‘time to perform a task’ distribution such as the

lognormal distribution (Hopp et al., 2002; Law, 2008). A benefit of using the lognormal

distribution is that its shape is more accommodating to a process with a stochastic pattern

that has a left sided hard floor, below which, samples are highly unlikely or impossible.

In order to use the lognormal or any other general queueing distribution, a G/G/m

queue is employed, whereby the arrival and process pattern are represented by general

distributions. Equation (2.4), derived by Kingman (1966) and explored further by many

queueing theorists, in particular Whitt (1983, 1993), is often used to estimate the cycle

time performance of a queueing system with arrival and service patterns from a general

distribution.

CTG/G/m = te

(
1 +

(
c2
a + c2

e

2

)
u
√

2(m+1)−1

m (1− u)

)
(2.4)

The difference between Eq.(2.4) and Eq.(2.1) is the addition of the squared coefficient

of variability terms for the mean inter-arrival times and mean effective process times,

namely c2
a and c2

e.

Variability is traditionally measured using the standard deviation divided by the mean,

known as the coefficient of variation c. If t is the mean (t is used because the random

variable of interest here is time) and σ is the standard deviation then c = σ
t
. It is

sometimes more convenient to use the relative measure, the squared coefficient of variation

c2, where c2 = σ2

t2
.

17

Chapter 2. Literature Review

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

x-
fa

ct
or

utilisation

M/M/1 operating curve
RPT

Figure 2.3: Operating curve for an M/M/1 queueing system showing the rela-
tionship between x-factor and utilisation.

It can also be useful, to show cycle time as a proportion of the raw process time

(RPT) (t0), where RPT refers to the average time for a single job or part to traverse

an empty system. This ratio of cycle time to raw process time is known as the x-factor

(or normalised cycle time) and gives an indication of the ratio of the queueing time to

process times, as in Eq.(2.5). Plotting the relationship between x-factor and utilisation

gives an operating curve, an example of which is shown in Fig. 2.3 for an M/M/1 queue.

xbasic =
CT

RPT
(2.5)

It can also be seen from Fig. 2.3, that as utilisation increases, the corresponding cycle

time increases exponentially. As utilisation approaches 100%, cycle time goes to infinity.

Hopp and Spearman (2001) classified Law 8 in Factory Physics ; “If a system increases

utilisation without making any other changes, average cycle times will increase in a highly

18

Chapter 2. Literature Review

non-linear fashion”. The highly non-linear fashion referred to in Law 8 causes cycle times

and WIP to “blow up”. Meaning, not only does cycle time increase as utilisation increases,

but it does so at a very fast rate which causes the system to become highly unstable.

2.2.2 The advantages of using operating curves

If a factory’s operating curve can be successfully mapped, then management can gain a

better understanding of how their factory behaves. Olhager and Persson (2008) pointed

out that fundamental relationships between variables displayed on an operating curve can

aid in increasing the knowledge about a system and can be used as a decision support tool.

Many other authors including Aurand and Miller (1997); Fayed and Dunnigan (2007);

Fowler et al. (1997); Li et al. (2005); Potti and Whitaker (2003); Sattler (1996); Veeger

et al. (2008) discuss the simplicity and intrinsic benefits of using operating curves as a

key factory metric.

One of the most useful characteristics of operating curves is that they can be used

to monitor systems and sub-systems from factory level down to single process level.

Meaning, it is possible to have an operating curve for the full fab, a functional area, a

machine group, a single machine or even a process through a single machine.

The shape of the curve defines the efficiency of the system. The contours on the curve

are a snapshot of the system’s response across a full loading profile and an indication of the

performance of the system across its bounds of operation. Any particularly steep inclines

or pronounced inflection regions on the curve can help to identify economic thresholds.

For example, Fig. 2.4 shows the typical region where one would find the curve inflec-

tion for an M/M/1 queueing system according to Eq.(2.1). An optimum level of operation

exists just before this inflection region, where the system can be loaded without a signif-

icantly disproportionate negative impact to cycle time. However, after this region, any

increase in loading results in a steep exponential rise in cycle time.

19

Chapter 2. Literature Review

0

1

2

3

4

5

6

7

8

9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

x
-f

ac
to

r

utilisation

M/M/1 operating curve

inflection region

Figure 2.4: Typical inflection region on an M/M/1 queue operating curve.

2.2.3 Factors that impact fab performance

Operating curves are key descriptors for a factory. Any significant changes on the factory

floor are likely to cause some shift in the factory curve. Based on interviews with leading

experts, Fayed and Dunnigan (2007) listed 19 key factors that have a significant impact

on operating curves. They categorised them under four main headings; fab configuration,

fab loading, flexibility & variability, and operations. Controlling these factors is key to a

‘healthy’ factory with an operational characteristic that is low with a right-shifted more

defined inflection region. The following is a list of Fayed and Dunnigan’s 19 factors.

A. Fab configuration

1. Fab size

2. Fab layout

3. Equipment standardisation

B. Fab loading

20

Chapter 2. Literature Review

4. Capacity utilisation

5. Product mix

6. Product type

7. Starts configuration and steady loading

8. Product control and holding

9. Number of constraints

C. Flexibility and variability

10. Recipe flexibility

11. Equipment breakdown variability

12. WIP and inter-arrival variance

D. Operations

13. Hold lots

14. Hot lots

15. Operator availability/level of automation

16. Scheduling and dispatching

17. Defect inspection sampling

18. Operations

19. Overall equipment effectiveness (OEE) management

One of the benefits of having an accurate operating curve is that it allows management

to adjust capacity based on a target cycle time. For example, market forces generally

dictate a minimum lead time for products. In order for a fab to remain competitive it must

keep its cycle time within range of the industry lead times. Using an operating curve,

management can estimate the likely utilisation required to maintain this cycle time. If

such a cycle time is impossible to achieve without high utilisation then additional capacity

can be added to the system.

2.2.4 Fab utilisation and bottlenecks

At any given time a fab should be operating at some point along its operating curve. As

long as the system is relatively stable then increasing or decreasing loading should move

this point to the left or right in a pattern described by the factory’s curve. In order to

21

Chapter 2. Literature Review

generate an operating curve it is necessary to map this line and determine the current

operating point. Two metrics are required to locate the current operating point, the

factory cycle time and utilisation level. The cycle time metric is usually easy to find as

most fabs will have some system in place for recording this. However, estimation of the

factory utilisation is more complex and is not always a deterministic value (Butler and

Matthews, 2001).

Bottlenecks

A local indicator such as the utilisation of a toolset may be more convenient to use as

a value for overall fab utilisation (Aurand and Miller, 1997; Martin, 1996). The toolset

that most represents the factory is generally the bottleneck toolset.

The theory that a factory’s capacity is effectively equal to the capacity of its bot-

tleneck toolset is one that is used by the theory of constraints (TOC) (Goldratt, 1990,

1992). TOC attempts to focus on the control of WIP through the bottleneck or ‘con-

straint’ toolset by ensuring that it is never starved of WIP and its downstream toolsets

have sufficient capacity, not to cause a blockage to the constraint. This manufactur-

ing technique attempts to match the factory flow speed and throughput to that of the

constraint toolset throughput.

Identifying the bottleneck is a non-trivial task, particularly in a complex semiconduc-

tor fab. Some fabs experience floating bottlenecks, whereby a number of near constraint

tools can be considered the bottleneck at any given time (Koo et al., 2005). This is par-

ticularly prevalent in fabs that experience high WIP fluctuation and WIP clusters. The

more regulated the flow of product through the factory the more consistent the location

of the constraint toolset.

There are different methods of identifying the bottleneck; the most common one is

generally to point to the toolset with the highest utilisation or the toolset with the least

capacity (Hopp and Spearman, 2001).

Another issue with bottleneck identification is the assumption that a toolset or a

22

Chapter 2. Literature Review

tool is always the bottleneck. This is not always true, sometimes the bottleneck can

be some other fab entity such as an AMHS. In light of this, Li et al. (2009) proposed a

system of identifying bottleneck areas based on the probability of starvation and blockage.

Their analytical metric identified the line sections that had the largest impact on total

throughput. Overall however, it is a rarity that this occurs, and in the main, bottlenecks

are generally toolsets or workstations (Koo et al., 2005).

Assuming that the factory is represented by a bottleneck toolset, the assumption then

is that the operating curve of the bottleneck toolset has similar characteristics as that of

the whole fab. These assumptions may be more acceptable when the bottleneck is clearly

identifiable and the near constraint toolsets have significantly lesser impact on the fab.

However, if there are a number of toolsets that are tied for selection as the bottleneck

and there is no clear ‘winner’, or the bottleneck toolset is not much ‘worse’ than the other

toolsets in the fab, then it is generally not a valid assumption to use one singular toolset

as the bottleneck.

Tool utilisation

If an appropriate bottleneck can be found, further complications arise in the calculation

of utilisation, of which there are two different approaches; loading based and output based

Lopez et al. (2005). The loading based metric is calculated from the equipment runtime

percentage as in Eq.(2.6).

uload based =
Equipment Running Time

Total Equipment Uptime
(2.6)

The advantage of using a load based metric is that both the equipment running time

and uptime information are usually easy to retrieve, and the calculations are relatively

simple. However, the disadvantage of this method is that the metric can be unrealistic

when dealing with more complex tools. “Many equipment utilisation systems are set up to

monitor and track utilisation relative to a machine’s expected available capacity. In other

words, utilisation of available capacity is often tracked, while utilisation of a machine’s

23

Chapter 2. Literature Review

theoretical maximum capacity is usually not tracked” (Aurand and Miller, 1997). Load

based utilisation calculations do not recognise the difference between a tool running and

a tool running optimally. For example, a batch tool running one lot as opposed to its

maximum capacity of a batch of five is reported as 100% utilised for that period, even

though the actual output was only a fifth of what was theoretically possible.

uoutput based =
Actual Output

Theoretical Output
(2.7)

Alternatively, output based utilisation is a ratio of the actual output to the theoretical

output (Eq.(2.7)). This addresses the issue of a tool running sub-optimally. However, the

difficulty when using an output based metric is in obtaining an accurate estimation of

theoretical output. For example, if a tool is only capable of processing lots in a particular

sequence, then its maximum theoretical output is largely dependent on having sufficient

WIP and correct product mix to achieve that maximum output. If the optimal mix is

unavailable then the theoretical maximum output value needs to be re-evaluated for such

a scenario.

2.3 Modelling the Fab and its Operating Curve

As shown, operating curves can be used to provide a snapshot of fab performance and

how it reacts to changes in loading levels. Operating curves are essentially a model of the

factory, and like all models, they should be constructed using a correct methodological

approach. The following sections describe the process of modelling complex systems with

a focus on the two most appropriate techniques for generating operating curves; analytical

approximation and discrete event simulations.

No substantial part of the universe is so simple that it can be grasped and

controlled without abstraction. Abstraction consists in replacing the part of

the universe under consideration by a model of similar but simpler structure.

Models . . . are thus a central necessity of scientific procedure.

24

Chapter 2. Literature Review

Rosenblueth and Wiener (1945)

Before one even contemplates analysing a system, the mind immediately attempts

to offer some interpretation of the system. Indeed, immediately one can probably get a

grasp of the most dominant mechanisms that control the variables of the system. On

further inspection it may be possible to gain a very good insight into the system but it

will never be possible to capture 100% of the system (Law, 2008).

For engineers, scientists, factory managers and most system owners there is a need

to bring order to chaos. The role of the engineer and scientist is to attempt to classify

a system and control it, to make it more efficient. To do this, it is necessary to be able

to experiment with the configuration of the system and investigate how the system will

operate under alternative policies and configurations. Experimenting with the configura-

tion can take place it two forms, experiments with the actual live system or experiments

with a model of the system. Experiments with the actual system deliver a great deal

of insight, however, these tests are not always feasible. It may not be possible to do

actual tests because the system may not even exist, or the proposed changes may not be

economically or logistically possible without some confirmation of their probable success.

Modelling the system is the cheaper alternative. The key disadvantage of modelling

the system is that no model can ever be 100% accurate. As a result, some form of trade-

off must exist between the cost of providing a modelling solution and the precision of the

model. The choice of the type of model is as important as the scale and scope of the

model. System modelling falls into two categories, physical models and mathematical

models, displayed in Fig. 2.5. Physical or scale models are far less popular than building

some mathematical interpretation of the system.

The type of mathematical model is then further defined by the type of solution used

to solve the model. An analytical model is generally considered as one where the vari-

ables have distinct quantities and the model is solved by deductive reasoning to find an

exact solution. Analytical models may be simple equations with only a small number of

parameters, such as Little’s Law. More complex analytical solutions can involve a series

25

Chapter 2. Literature Review

System

Experiment

with actual

system

Experiment

with model of

the system

Physical (scale)

model

Mathmatical

model

Simulation

Static Dynamic

Numerical

solution

Numerical

solution

Analytical

solution

Figure 2.5: System modelling methods, based on (Gordon, 1977; Law and Kelton,
1997).

of mathematical solutions that must be solved to acquire unique values.

Alternatively, the system may be of such complexity that it becomes easier to use

simulation. A simulation model is one whereby the mathematical model is tested with

a series of inputs and solved using numerical methods. Some authors such as Banks

and Gibson (1997a); Banks et al. (2004); Law and Kelton (1997); Pidd (1992) state that

simulation should only be used as a last resort and should never be used when a simpler,

more tractable, analytical model is available. However, Rubinstein and Melamed (1998)

argued that the advances in modern simulation methodologies and user friendly software

have made it much more accessible and feasible.

26

Chapter 2. Literature Review

The focus of this thesis is on generating operating curves using both static analytical

solutions and dynamic, statistical, discrete event simulations. The following sections

examine both of these methods and offer a critical evaluation of their ability to model a

semiconductor fab and ultimately generate an accurate operating curve.

2.4 Generating Operating Curves using Analytical

Modelling Methods

Analytical modelling involves the deployment of a mathematical formula with a closed

form solution. The term analytical methods is used to mark a distinct difference between

closed form solutions and numerical methods (simulation modelling being a very common

numerical method). More specifically, when using the term ‘analytical models’ to describe

manufacturing systems that can be expressed as queueing networks, the focus changes to

queueing modelling.

2.4.1 Modelling semiconductor fabs using analytical models

The most accurate method of generating an operating curve is to run actual experiments

on the factory floor and test the cycle time response over a range of loading levels. This

would be extremely time consuming, expensive and is generally an unrealistic proposition.

Instead, an alternative is to test the fab at the current operating point and infer the cycle

time at other loading levels using analytical approximations. There are several techniques

for generating curves that use analytical methods, but the steps are typically the same:

1. Plot the zero utilisation RPT line at an x-factor of 1 (as in Fig. 2.6),

2. Using actual cycle time data and the RPT construct the current x-factor horizontal

line,

3. Select an analytical approximation and construct the curve,

4. The intersection of the x-factor line and the operating curve give an approximation

of the current factory operating point.

27

Chapter 2. Literature Review

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

x-
fa

ct
or

utilisation

current operating point

analytical queueing model (e.g. M/M/1)
RPT

current x-factor

Figure 2.6: Locating the current operating point on an operating curve generated
by an analytical queueing model.

Step 3 is the most important step. Selection of the model is critical to the accuracy

of the operating curve. The process is typically based on some theoretical premise of how

the fab operates. It is possible to use the M/M/m and G/G/m queuing approximations

given by Eqs.(2.1)-(2.4), however, it is more often the case that these queueing systems

are expanded or amended to suit the system under observation.

Complete x-factor contribution measure

Common practice involves manipulation of the common queueing approximation for the

system under observation. One such version, given by Delp et al. (2006), is the complete

x-factor contribution (CXFC). The CXFC is derived from Martin (1996) and was further

developed by introducing an unavailability coefficient for each machine group to account

28

Chapter 2. Literature Review

for downtime by Delp et al. (2003); Delp (2004); Delp et al. (2005). It attempts to get a

measure of the cycle time ‘contribution’ from each tool group as a proportion of the total

x-factor of the system. The x-factor contribution κ for a toolset j is a function of the

normal x-factor of the G/G/m queueing component, the raw process time for the toolset

t0j , the system raw process time t0 and the downtime unavailability coefficient V . V can

be thought of as the probability that an incoming lot will find all tools within the toolset

offline at the same time as a result of their individual downtime instances coinciding.

κj = (1 + Vj)
t0j
t0

1 +

(
c2
aj

+ c2
ej

2

)
u

√
2(mj+1)−1

j

mj (1− uj)

 , (2.8)

where the unavailability coefficient Vj is given by,

Vj =
(1− Aj)mj

mj + 1
·
trj
t0j
, (2.9)

and the availability A is a function of the mean time to repair (MTTR) tr and the mean

time before failure (MTBF) tf for the toolset, as in Eq.(2.10), assuming they are both

exponentially distributed.

A =
tf

tf + tr
(2.10)

Although there is no evidence presented by Delp et al. that the CXFC is better than

using the x-factor alone, the inclusion of the unavailability coefficient suggests that it

should be better, and at the very least more inclusive. Also, the fact that it provides an

alternative method to identify ‘constraints’ is more comprehensive.

The V component used by Delp et al. is based on a downtime factor used by Martin

(1996), which assumes that the MTBF and the MTTR of any machine in the toolset are

both exponentially distributed. For the MTBF this is a ‘safe’ assumption, particularly for

advanced machinery, like that in the semiconductor industry, where the sources of failure

are numerous. Such plentiful failure sources benefit from the exponential distribution’s

29

Chapter 2. Literature Review

memoryless property, similar to how arrival patterns are well described by the memory-

less arrival events simulated by multiple upstream sources. MTTR is better served by

a time to perform a task distribution such as the lognormal or the Johnson family of

distributions (see Appendix F for discussion of the benefits of using the Johnson distri-

bution). However, the elegance of the solution and the simplicity of the derivation of

the Vj factor is based on the simplicity of implementation of the exponential distribution

and therefore, any attempt to incorporate a general distribution would make the CXFC

measure a less tractable solution.

Queue approximation for idle with WIP problem

Simple closed form queueing approximations, such as those given by Eqs.(2.1)-(2.4), as-

sume that once a server becomes idle and there is WIP available, then a lot gets loaded

onto the server or tool instantaneously. However, in a semiconductor manufacturing en-

vironment, there are some situations when this is not the case. An example of this is

when an operator is not available or some other piece of equipment that is required by

the tool (e.g., a reticule at a photolithography tool) is not available.

Such occurrences require an additional delay factor to be incorporated into the queue-

ing approximation. Morrison and Martin (2007) proposed a solution based on the as-

sumption that a lot experiences a preproduction random delay (when the tool is idle) that

follows a general distribution pattern described by its mean tI and standard deviation

σI . The mean effective process time te is then given as follows,

te =
t0 + tI
A

, (2.11)

where A is the general tool availability, (e.g., A = 1 for a tool that is always online).

Based on a G/G/m queue with a mean tr and squared coefficient of variability c2
r of

repair time, substituting Eq.(2.11) into Eq.(2.4) yields,

30

Chapter 2. Literature Review

CTG/G/m,I =
t0 + tI
A

(
1 +

(
c2
a + c2

e,I

2

)
u
√

2(m+1)−1

m (1− u)

)
, (2.12)

where,

c2
e,I =

σ2
e + σ2

I

(t0 + tI)
2 +

(
1 + c2

r

)
A (1− A)

tr
t0 + tI

(2.13)

Equation (2.12) can then be used to estimate the cycle time for the queue with a random

preproduction delay. However, the approximation assumes a single preproduction delay

pattern is in existence, multiple independent delay patterns may require further expansion

of the approximation.

2.4.2 Benchmarking fabs using operating curves

The dependence on the accuracy of an operating curve can be minimised by using oper-

ating curves to benchmark fabs. Instead of using operating curves to predict performance

under varying loads, they are used to monitor the fab and to benchmark against past

performance. Therefore, as long as a consistent methodology is applied, an operating

curve monitored over time can be used to at least examine if any gains or losses have

been made in the efficiency of the fab.

Benchmarking using the P-K formula.

One such practical implementation of generating operating curves based on a queueing

approximation was performed by Aurand and Miller (1997). They used an M/G/1 queue-

ing system (sometimes referred to as the Pollaczek and Khinchin (P-K) formula) with

exponentially distributed arrivals, generally distributed process times and a single server

to represent a black box model of an IBM fab. Letting c2
a = 1 and m = 1 and using the

raw process time t0 instead of mean effective process time te, Eq.(2.4) reduces to,

CTM/G/1 = t0

(
1 +

(
1 + c2

e

2

)
u

(1− u)

)
, (2.14)

31

Chapter 2. Literature Review

The u value was based on the capacity utilisation of the bottleneck tool with the assump-

tion that it was representative of overall fab capacity (see Section 2.2.4 for discussion

on the merits of this assumption). The bottleneck tool was selected as the tool with the

smallest maximum theoretical output if there were no production detractors affecting that

tool (as in Eq.(2.7)). The raw process time t0 was measured using the weighted average

of the sum of the process times for each product type. Non value added operations, such

as transport and inspection were not included. The cycle time was found from historical

fab data averages.

The remaining unknown variability factor c2
e, was then calculated from Eq.(2.14)

using the known values for u, CT and t0. Using this c2
e value allowed them to plot an

operating curve and repeating this process every few months allowed them to benchmark

the factory.

Key to this method was the strict methodology employed. As long as the method

was repeated, the curves were useful for benchmarking. However, it was not possible to

benchmark against other factories, a disadvantage stressed by Aurand and Miller, due to

the broad assumptions made.

Another issue with this method is fixing of the unknown process variability factor c2
e.

The method assumes that this does not change over the period of analysis and all future

curves take this fixed value. Furthermore, one would question the assumption of c2
a = 1.

If the model is a ‘black box’ of the whole fab, then it is likely that arrivals to the fab (the

starts rules) are not exponentially distributed, but perhaps, more constant as is usual in

a real fab. Nevertheless, as a benchmarking exercise, the resulting operating curves at

least indicated to management whether or not improvement gains had been made in the

fab.

The O-L graph method

Li et al. (2007) used a similar approach to construct their operating curve (or O-L graph)

for a toolset based on Little’s Law. Again, they stated that capturing the system vari-

32

Chapter 2. Literature Review

ability was too complex and they attempted to isolate the variability factor like Aurand

and Miller (1997), but instead used a G/G/m queuing model for the system as opposed

to using the M/G/1 model. Their operating curve was based on the assumption that

over a relatively short period of time the variability in the system was constant. This

meant that it was possible to capture operating points at different load levels at different

times and assume that they were all on the single operating curve. The formula they

used is given in Eq.(2.15), which is a rearrangement of Eq.(2.4), where c2 = c2a+c2e
2

.

c2 =
m (1− u)

u
√

2(m+1)−1

CT − te
te

(2.15)

They also went a step further than Aurand and Miller by including setups and down-

time in their calculation of te. Again, however, the applicability of their method for

anything other than benchmarking is unclear and the validity of assuming a fixed vari-

ability factor may be unrealistic if conditions at the toolset change rapidly.

Fab performance function based on the G/G/1 queueing model

Primarily tasked with benchmarking a semiconductor fab by capturing the trade-off in

cycle time and utilisation, de Ron and Rooda (2005) used a G/G/1 queueing approxima-

tion. They assumed that their fab performance metric P could be expressed as a quotient

of throughput-cycle time ratio for the actual system and that of a reference system. If the

reference system is the theoretical best performance of the manufacturing system, then

the best possible throughput is that of the maximum theoretical bottleneck throughput

TH0 and the best possible cycle time is the raw process time t0. Using the G/G/1 queue

as a model for the current configuration, P was given as,

P =

(
TH
CT

)(
THref

CTref

) =
TH

TH0

.
t0

CTG/G/1

, (2.16)

All of these examples of fab benchmarking using operating curves are based on the

assumption that the fab or a fab toolset can be captured as a ‘black box’ by a queueing

33

Chapter 2. Literature Review

model. However, none appear to question the validity of using queueing theory in a

semiconductor fab, which has some inherent fundamental shortcomings.

2.4.3 Implications of the fundamental assumptions associated

with queueing theory

These analytical models offer a good base for understanding the nature and behaviour of a

fab and as seen, can be useful as a benchmarking tool, but there are other more fundamen-

tal issues with the application of analytical queueing models to complex semiconductor

manufacturing that question the validity of their applicability in such an environment.

Non-identical toolsets and variable toolset number

One of the key issues is the existence of non-identical toolsets which some authors also

refer to as the ‘non-parallelism’ of toolsets (Shanthikumar et al., 2007). This thesis

shall refer to it only as non-identical toolsets to distinguish it from the term ‘processing

parallelism’ of tools which refers to certain complex tools that can process more than one

item simultaneously.

Queueing models assume that all tools within a toolset have an identical service pat-

tern, and that a lot can select any of the tools if they are idle. However, in semiconductor

manufacturing, tool dedication and equipment standardisation affect the choice of tools

within a toolset that a lot can select from. This dedication system was brought in to

increase the yield of good wafers, but generally has a negative impact on queueing and

cycle time, given that the effective capacity that a lot sees at a toolset is reduced, (see

Section 2.1.3 for a more detailed discussion). For example, assuming that a lot enters

a toolset and its choice is unrestricted, then the capacity of the toolset is equal to the

number of available tools. If however, a lot is dedicated to a particular tool, the incoming

lot only sees one tool, meaning that the capacity is effectively reduced to one tool.

A similar situation occurs because of setups and equipment standardisation. Some-

34

Chapter 2. Literature Review

times tools within a group are only qualified to process certain layers, or have model dif-

ferences with other tools. This causes complications when trying to estimate the parallel

capacity during the application of queueing models. Miltenburg et al. (2002) encountered

this when they applied queueing network models to a number of semiconductor facilities.

In one particular facility, four out of 20 stations within the fab could not be classified

in the queueing models because the tools within their respective toolgroups differed so

much.

Similarly, Juang and Huang (2000) stated that the nominal tool number m of a

toolgroup could not be used in queueing formulas because of “heavy overlapping” of

toolset boundaries. Instead, they suggested using a modified variable known as the

effective tool number. If Wq,g is the mean waiting (queueing) time for a lot at toolset g,

and f(c2
a, c

2
e, t0, λ, c) is a function of the toolset, where λ is the lot arrival rate and b is

the toolset vector b = (b1, b2, . . . , bG). Then the effective tool number m∗ was given by,

m∗ = min
b

∑
g

∣∣∣∣∣∣∣∣f(c2
a, c

2
e, t0, λ, b)−

n∑
i=0

wq,g,i

n

∣∣∣∣∣∣∣∣
 , (2.17)

with n observed waiting times wq,i for each tool group. The f(c2
a, c

2
e, t0, λ, c) function

is derived by finding the values c2
a, c

2
e, t0 and λ from real system data and substituting

them into a closed form queueing approximation such as that of Eqs.(2.1) to (2.4). The

waiting time approximation is solved for m∗ against actual waiting times. While this

method is quite practical it requires sample data from the system and sufficient number

of observations n.

Juang and Huang also noted that an important insight could be gained from using

this method for ranking toolgroups by the ratio of their effective tool number against

the actual nominal tool number. This could help identify lowly ranked toolsets where

more standardisation might be required. Also, if the ranking was very low (a very large

difference between nominal and effective tool number) it could be easier to reclassify the

35

Chapter 2. Literature Review

toolset into individual tools and assume a number of single dedicated tool configurations.

As mentioned above it is not always possible to classify a toolset by a single integer

number of tools m as required for most closed form queueing approximations. It is more

likely that the number of tools in a toolset is a dynamic real value that changes depending

on the type of WIP and the conditions of rework and dedication.

In light of this, Sattler (1996) proposed placing m on a range m∗ ∈ [1,m], where

m∗ = 1 implies that there is 100% dedication and that the lot can only select one

particular tool from the toolset. If m∗ = m then there is no dedication and lots are ‘free’

to choose any tool within the toolset. Their method involved use of a heavy traffic cycle

time approximation for a G/G/m queue given by Gross and Harris (2003) as follows,

CTG/G/m (heavy traffic) = te

(
1 +

(
u

1− u

)
m∗2σ2

a + σ2
e

2m∗t2e

)
, (2.18)

Letting k = m∗2σ2
a+σ2

e

2m∗t2e
and solving Eq.(2.18) for k, meant that they could fix this variable

and use it for future operating curves.

Similar to Aurand and Miller (1997) and Li et al. (2007), they assumed that the vari-

ability (or standard deviation of variability in this case) measured at a base or reference

point does not change when measured at another point in the future.

Besides the difficulty in estimating the number of tools within a toolset, there is also

an issue if different process patterns are observed by tools within the same toolgroup.

However, all of the queueing approximations discussed in this chapter have assumed that

there is one single stochastic mechanism driving the processing time component of the

approximations.

Jacobs et al. (2001, 2003) addressed the issue of machines that had different processing

patterns (calling them ‘unequal’ tools) by implementing an effective process time (EPT)

algorithm that could generate a value for te and ce for individual non-identical tools within

a toolgroup based on a list of arrival and departure events of lots to each tool. However,

it did not estimate a value for m that could be used in a queueing approximation.

36

Chapter 2. Literature Review

Arrival-service-WIP independence assumption

Other complications when implementing queueing formulae to semiconductor manufac-

turing arise because of the fundamental assumption of independence of arrival and service

patterns (Jacobs, 1980; Shanthikumar et al., 2007). means that regardless of the arrival

distribution, the process distribution does not change. However, in a real fab situation,

arrival and service patterns are inherently linked and cannot be assumed to be inde-

pendent, particularly in a fab where management implement a range of WIP control

strategies.

For example, if engineers believe that a particular section of the fab or toolset will

be impacted by a WIP cluster then it is sometimes possible to smooth out this cluster

by employing certain techniques and strategies. Examples of such strategies include;

delaying PM schedules, altering the batch sizes, or minimising setups by processing as

much as possible of a particular product type before having to perform a changeover. In

such situations, the processing pattern is being influenced by arrivals and it cannot be

said that the service and arrival patterns are independent.

One potential solution, proposed by Akhavan-Tabatabaei et al. (2009), is to apply Lit-

tle’s law to bucket intervals of historical data to determine the cycle time during various

WIP scenarios. However, this method seems to be somewhat divorced from queuing the-

ory approximation, and seems more in the category of numerical approximation. Progress

in this area is questionable and (Shanthikumar et al., 2007) stated that there appears to

be no research that has successfully addressed the issue of dependency between arrival

and service pattern in semiconductor manufacturing.

2.4.4 Queueing networks

The aforementioned issues show the fundamental shortcomings of queueing theory when

being applied to semiconductor toolsets. An even more difficult proposition is to model

the factory as a queueing network. In a queueing network, the output from one queueing

37

Chapter 2. Literature Review

node supplies the input for another. Although there is much literature (e.g., Connors

et al. (1996); Hopp et al. (2002); Juang and Huang (2000); Whitt (1983)) on the subject

of queueing network models, according to Kotcher and Lumileds (2011) they were unaware

of any fab that was using a queueing network model on a day-to-day basis.

2.4.5 Advanced queuing approximations

In an effort to deal with the complexities of semiconductor manufacturing it may be

necessary to lose some tractability and use more advanced queueing theory analysis that

cannot be approximated by the convenient closed form solutions of Eqs.(2.1)-(2.4). For

example, Lee and Kim (2005) described a fab as a multi-product production system in a

varying environment and suggested a queueing model for a system with;

- multiple types of products,

- multiple machine conditions,

- decisions on the acceptance of orders based on machine conditions,

- process times that are dependent on machine conditions.

Combining this type of system along with some of the practical extensions to account

for fab phenomena such as rework, re-entrancy, batching, cascading, non-identical tools

and independence between arrival and service patterns, would offer more accurate ap-

proximations of performance measures and deliver more accurate operating curves. The

problem is that many of the approximations for dealing with semiconductor fab phe-

nomena are designed for particular instances or scenarios and few offer an overall generic

model. This is because the more aspects that are included in the model, the more complex

the analytical models must become, the more complicated solving them is and the less

tractable and difficult they are to implement. Furthermore, any attempts to characterise

a fab using complex queueing models requires experienced queuing theory practitioners.

Using such complex analytical models may begin to move away from their fundamental

use; that engineers and management can gain a better understanding of how their fab

38

Chapter 2. Literature Review

operates.

In general, analytical methods are best applied to a simple more idealised system and

their advantages lie in the tractable solutions offered. However, if examining the true

underlying operational characteristic of a complex system, such as a semiconductor fab,

their deployment is cumbersome and difficult. Many of the methods previously discussed

involve idealising and fitting the factory to a curve and fixing some variables to track

any changes in the fab. Such methods are flawed because they attempt to idealise the

fab for the purposes of fitting a model, as opposed to testing and measuring responses,

and allowing the fab to dictate the shape of the operating curve. They may be sufficient

for internal benchmarking exercises and productivity improvement measures, but ideally

an accurate operating curve should be a snapshot of the actual behaviour of the fab so

that engineers can get a true picture of the cycle time/utilisation relationship. Another

possible alternative when modelling the fab and attempting to generate operating curves

is to use discrete event simulation (DES) modelling.

2.5 Discrete Event Simulation Modelling

DES models are models that evolve over time (dynamic), have statistical random (stochas-

tic) inputs and outputs, and are concerned only with discrete instantaneous events. For

the purposes of this thesis, the terms ‘simulation’ and ‘simulation models’ will henceforth

refer to discrete event simulations and models.

A discrete event simulation model is usually analysed numerically with the aid of a

computer. Quite often the set of experiments may require a statistical framework and

almost always it is necessary to analyse the output using statistical methods.

2.5.1 Steps in a simulation study

Fig. 2.7 gives a more comprehensive description, (but still very brief in context of the

discipline), of the steps in a successful simulation study, based on the work of Banks et al.

39

Chapter 2. Literature Review

(2004); Carson (2005); Law and Kelton (1997); Law (2008); Nordgren (1995); Robinson

and Bhatia (1995); Robinson (2003); Sadowski and Grabau (2004). It is worth noting,

despite the distinct nature of the steps, they are not independent of one another and not

necessarily carried out in the order given. There may be some overlapping or concurrent

steps, particularly in the planning and conceptualising phases.

Problem Formulation: Once a decision has been made to use simulation, the first

step is to outline the goal of the study. The goal is the single most important

objective that must be accomplished for the study to be deemed a success. The

goal may be a hypothesis-like question or ‘what-if’ scenario pertaining to the real

system, or it may be something less defined, like increasing the knowledge about

the system under investigation. More often than not though, it is better to have a

clearly defined goal for the project.

Set objectives and overall project plan: The objective of a simulation study is

usually to investigate some ‘what if’ scenario such as, ‘what is the resulting aver-

age cycle time gain if an extra machine is added to a particular machine group?’.

Objectives such as these tend to define the boundaries and the scope of the simu-

lation model. For example, if one wanted to examine ‘the cycle time impact on a

machine group’ then the most essential components that need to be modelled are

the machines in that machine group and lots that pass through the machine group.

Aside from these essential components, other peripheral components may need to

be incorporated such as operators, downtimes or setups. The necessity of these

peripheral components is very much dependent on the objectives of the model and

their relevancy to the main components. If operators are generally always available

at the machine group and don’t have a large impact on the cycle time of lots in that

area, it may not be necessary to model them. This assumption, provided a case

can be made for it, is perfectly valid in terms of the objective of the simulation.

Model conceptualisation: It is generally recognized that conceptual modelling is

40

Chapter 2. Literature Review

Problem

formulation

Set objectives

and overall

project plan

Model

conceptualisation

Data collection

and preparation

Model

translation

Verified?

Validated?

Experimental

design

Production runs

and analysis

Further runs?

Documentation

and reporting

Implementation

40%

20%

40%

Yes

No

NoNo

Yes

Yes Yes

No

Figure 2.7: Steps in a simulation study (Banks et al., 2004; Carson, 2005; Law
and Kelton, 1997; Law, 2008; Nordgren, 1995; Robinson and Bhatia,
1995; Sadowski and Grabau, 2004).

41

Chapter 2. Literature Review

Real system

Conceptual

model

Simulation

program

C
R

E
D

IB
L
E V

A
L
ID

VERIFIED

via book of

assumptions

via computer code

Figure 2.8: Phases of a simulation study.

one of the most vital parts of a simulation study (Robinson, 2006; Robinson and

Brooks, 2010). DES modelling has the ability to capture and model a system to any

realistic level of detail. This makes it a very powerful tool for engineers and system

designers. However, the power and capability of simulation models is often made

redundant by the lack of meaningful and correct implementation of proper modelling

techniques. Unfortunately, a common misinterpretation is that simulation is an

exercise in computer programming or computer model building. This is not the

case; the most important aspect should be the construction of the conceptual model.

The conceptual model is an abstraction of the real system. It is created by making a

number of assumptions about the real system that are generally driven by the goals

or objectives of the simulation study. In the conceptualisation phase, the model’s

scope, scale and depth are defined. These parameters are based on the project

objectives, performance measures, data availability, credibility concerns, computer

constraints, opinions of SMEs and time and money constraints (Law and Kelton,

1997). How the model will interpret the inputs and the logic of the conceptual

model are all declared in this step. Since there is no model that can represent a

substantial piece of reality 100% then it must be that there is some translation

between these two systems or entities. The translation is done via the ‘book of

assumptions’ (see Fig. 2.8). As the modeller analyses the real system they make

42

Chapter 2. Literature Review

certain assumptions about how it operates in order to place some rules around the

system. These rules form the model logic.

Data collection and preparation: The old adage of ‘garbage in, garbage out’ applies

to the data collection steps. If the input to the simulation is inaccurate or insuf-

ficient, the results will also be inaccurate, regardless of how ‘good’ the model is.

Data collection, availability and credibility is usually one of the biggest detractors

from carrying out a successful simulation project (Law and McComas, 1991).

Model translation: In almost all cases the model will be coded in a computer program.

Entry level to building simulation programs has eased over the years with the advent

of graphical simulation packages that are user friendly and do not require any

knowledge of programming or computer code.

Verification: “Verification is concerned with determining whether a conceptual sim-

ulation model has been correctly translated into a computer program” (Law and

Kelton, 1997). In other words, the modeller ensures that the actual program logic

and coding is representative of the conceptual model and operates in a manner that

is similar to that intended by the model. Whitner and Balci (1989) gave a compre-

hensive list of verification techniques that are outlined in Table G.1 on pg. G-1.

Validation: Validating a model “refers to the processes and techniques that the model

developer, model customer and decision makers jointly use to assure that the model

represents the real system (or proposed real system) to a sufficient level of accu-

racy”(Carson, 2002). Law and Kelton (1997) define validation as the “process

of determining whether a simulation model. . . is an accurate representation of the

system, for the particular objectives of the study”. The added phrase “for the

particular objectives of the study” implies that the model need only represent the

parts of the real system of interest or the portions that have an impact on the parts

of interest. A common technique known as a structured walk-through, whereby the

43

Chapter 2. Literature Review

key parties get together and discuss the list of modelling assumptions, is often used

to validate models. Other validation techniques are listed in Table G.2 on pg. G-4.

Experimental design: The experimental design is a key aspect of a successful simula-

tion study. It may be necessary to make some pilot runs or preliminary calculations

to determine the simulation run length, warm-up period, number of runs and repli-

cations, for each of the experimental scenarios. If the project involves comparison

between alternative scenarios or configurations it may be necessary to implement a

statistical comparison method such as a paired t-test or an all-pairwise comparison

to help select the ‘best’ configuration.

Production runs and analysis: This step involves running the program and analysing

the output data to ensure it is statistically sound. Typically, performance measures

such as cycle time, throughput time or WIP levels are used as a trace metrics for

the performance of the system.

Further runs or replications: Further statistical methods are used to investigate

whether the output is sufficient. If not, subsequent replications and/or runs may

be required.

Documentation and reporting: The majority of documentation and reporting, be it

in-house, to clients, management, or to an academic audience via papers, journals

and conferences, will most likely take place at the conclusion of the study. However,

it is important to start any documentation from the beginning of the study. Gass

(1984) recommends creating four main documents; the analyst’s, the end-user’s,

the programmer’s and manager’s manuals. Banks et al. (2004) categorised docu-

mentation into two types; program and process. The program documentation keeps

an account of how the model was coded so that subsequent users can understand

how the model works. Process documentation involves a journal-like recording of

chronological events that happened throughout the history of the simulation study

44

Chapter 2. Literature Review

including the work done and all the decisions taken. This is similar to the ‘assump-

tions’ document discussed previously.

Implementation: At this point the project’s outcomes and goals should have been

assessed and the hypotheses delivered from the results should be recommended for

implementation. If on completion of the project, there are still some key parties in

management or clients that do not favour the outcome or are reluctant to implement

the recommended changes, then it may be necessary to return to the documentation

and reporting step to drum up support and increase the credibility of the model

(Law, 2008).

Fig. 2.7 also shows the relative ‘simulation effort’ that should be applied to the phases

of the study. Law and Kelton (1997) recommend that the ‘40-20-40 rule’ should be used;

where the first 40% applies to the planning, conceptualising and data gathering phases;

the middle 20% applies to the actual model coding or programming; and the final 40%

refers to the analysis of output. According to Law and Kelton, this is typically not the

case, and often a highly disproportionate amount of effort is placed on coding or building

the model. This is usually the result of a lack planning during the conceptualisation

phases, or an insufficient understanding of the system by the model builders. In such a

case, the modeller will often have to take too many breaks from coding to return to data

gathering activities which can inhibit the success of the overall project.

2.5.2 Components of a DES model

The term ‘system’ has come to mean so many things that it is difficult to put a strict

definition on the term. However, it should suffice to use the definition promoted by

Gordon (1977), which states that a system is “an aggregation or assemblage of objects

joined in some regular interaction of inter-dependence”. This thesis will refer to the ‘real

system’, as some aggregation or assemblage in the real world that we are attempting

to model or capture in a model. The term modelling unfortunately refers to both the

45

Chapter 2. Literature Review

process of building the computer simulation and also constructing the conceptual model

and as a result there can be some confusion. For the remainder of this section though,

the term modelling will refer to creation of the conceptual model.

In a system there are distinct objects that form part of the system and these objects

interact with each other to change the state of the system. These objects are usually

referred to as entities and a piece of information attached to an entity is known as an

attribute. An activity is a process that changes the state of the system and takes a period

of time. An event is an occurrence in the system that happens instantaneously and also

changes that state of the system (Banks et al., 2004; Carson, 2005; Gordon, 1977; Law

and Kelton, 1997; Pidd, 1992; Schriber and Brunner, 2010). For example, if the system

being analysed is a manufacturing system, then an entity could be a part or widget,

an attribute of that part could be its due date, and an activity could be some welding

operation that the part requires. An event could be the shipping of parts or the arrival of

raw materials. There is some overlap between the terms event and activity and requires

further clarification - an event is the result of an activity and can only happen if an

activity occurs.

Once the components of interest in the real system have been categorised, it is nec-

essary to encode them in a computer program. Graphical general purpose simulation

packages are becoming increasingly popular and offer an accessible way to build simu-

lations without the need for any programming expertise. These packages offer a range

of blocks that can be placed into a canvass window, (examples of such software include

ExtendSim, Simul8, PlantSim and Witness). The blocks can then be used to represent

common real system elements.

Jeong et al. (2009) further discriminates between entities by using the term resources

and locations. Resources refer to objects that provide a service, whereas, entities are the

objects that circulate the system and receive the service by requesting a resource. If the

resource is unavailable, then it joins a queue and waits for one to become available. A

location component is typically used to refer to a resource that is ‘static’. For example,

46

Chapter 2. Literature Review

Lot/Batch

Operator/

technician/

AMHS vehicle

Fab components

Tool or toolset

Entity

Resource

Queue
Stocker/buffer/

tool track

Location

Destroyer

Generator

Simulation

model

Figure 2.9: Components of a semiconductor fab categorised using simulation
model components suggested by Jeong et al. (2009).

Fig. 2.9 shows how the components of a semiconductor manufacturing system might be

categorised in a DES model. A machine or toolset might be represented as a location,

due to its fixed positioning, whereas an AMHS vehicle or a maintenance technician might

be referred to as a resource as they are not in a fixed location. Also, the wafer lots

and batches are shown as entities as they circulate the system and require the service.

Entities enter and exit the system using generators and destroyers respectively, which

generally signal the bounds of the model outside of which, the modeller is not interested.

2.5.3 Justification for using DES modelling

Simulation modelling of semiconductor manufacturing plants is a topic of great interest

and is much commented on in the associated literature. Banks and Norman (1995) stated

47

Chapter 2. Literature Review

that “many companies are discovering that the value of simulation software goes beyond

its ability to offer a peek into the future. It has numerous other benefits, including its

ability to help managers make better decisions, explore possibilities, understand why

certain phenomena occur, identify constraints and diagnose problems”. The feeling in

the industry according to Atherton and Atherton (1995); Miller (1990); Rubinstein and

Melamed (1998) is that simulation is the best approach for modelling semiconductor fabs.

This is also true for generating operating curves, Fowler et al. (2001) stated that “as the

system increases in complexity, simulation analysis becomes the most viable approach for

generating the curve”.

Carson (2005) suggested several situations when simulation is most useful. These sce-

narios, are listed below and a case is made for each point, regarding the use of simulation

to generate operating curves in this thesis.

1. There is no simple analytical solution available or such a solution does not offer the

required accuracy. The reasons for not using analytical models when attempting to

generate operating curves for semiconductor fabs is outlined in detail in Section 2.4.

2. The real system under investigation can be captured, i.e., it is possible to build a

logical interpretation (conceptual model) of the system that describes the real system

to a required degree of accuracy. This is possible, but a non-trivial task, as was

shown by Boning et al. (1992) and Sprenger and Rose (2010), who enabled their

models by capturing the dominant structures and phenomena of a semiconductor

manufacturing system and conceptualised them into modelling components. The

development chapters in this thesis discuss the building of a conceptual modelling

framework for semiconductor wafer fabs.

3. If the system is new or not yet built, or requires major configuration changes that

will have a significant impact on the system. The assumption here is that the

overall system remains relatively fixed but can change within the boundaries of the

specification, e.g., the addition or removal of a tool from a toolset or changing the

number of maintenance technicians.

4. The changes to the real system being considered require significant investment and

demand a high probability of success. The purpose of this thesis is proof of concept

rather than an actual investment analysis.

48

Chapter 2. Literature Review

5. Some forum is in place (or can be created) where the simulation team and all other

parties including management, clients and people in the real system being modelled,

can communicate easily and discuss and agree on the assumptions documents. The

stakeholders in the models built to generate operating curves partook in regular

meetings to discuss the project, though no official forum was put in place. It is worth

noting however, that such a collaborative environment may be conducive to system

learnings outside of the scope of the modelling project. This was shown by Potti

and Whitaker (2003), who used their model as the focal point for all communication

between fab departments regarding productivity improvement projects.

6. There is some type of animation available. Animation increases the chances of a

more credible simulation model that is understood and trusted by those who have

invested in it and also the end-users. Implementations of the DES models in this

thesis were created using ExtendSim, a graphical simulation modelling tool capable

of both 2-D and 3-D animation as well as basic ‘proof animation’. Some of the

models were built in SimPy, a library for Python. These models do not support

animation but Python has a number of libraries including Pyglet and Pygame that

could be used to animate the SimPy simulation models.

Many of these recommendations were also discussed by Banks and Gibson (1996,

1997a) and listed below. Again, a justification for using simulation modelling in the

context of this thesis is offered in Table 2.1.

Banks and Gibson further stressed that simulations do not provide an optimal solu-

tion, that is, they cannot recommend a system configuration that the analyst does not

specifically investigate. This is a valid statement but does not interfere with the aims

of the methodology in this thesis, which uses graphical comparisons between resultant

operating curves to analyse various configurations. The assumption is that the user of the

modelling applications will be knowledgeable about the system, and can offer alternate

configurations, test them, and assess them based on their impact on the operating curve

output from the model.

When using simulation, the advantages tend to lie in the areas of general applicability

and capability. Typically, most complexities can be modelled, the only limiting factor

is the cost and time-frame of the project. Another benefit to using simulation is that

it is possible to model transient behaviour. Klein and Kalir (2006) discussed this type

49

Chapter 2. Literature Review

Table 2.1: Justification for using simulation modelling to generate operating
curves in semiconductor manufacturing, based on the recommenda-
tions offered by Banks and Gibson (1996, 1997a).

Circumstances Justification

A common sense analysis is available. Capturing semiconductor manufacturing systems in
detail is a non-trivial task and it is highly unlikely
that a common sense analysis is available that can
capture the complexities sufficiently to generate an
operating curve.

An analytical solution is more appro-
priate.

Section 2.4 details the reasons why an analytical
modelling approach to generating operating curve for
semiconductor fabs is alone insufficient.

Direct experimentation with the real
system is easier.

This could be very costly in a fab, and have a nega-
tive impact on production targets.

The simulation costs exceed the re-
wards.

The models generated in this thesis are proof of con-
cept. However, the modelling strategy implemented
was designed to minimise the labour involved in gen-
erating an operating curve via simulation models.
Hence a relatively low cost would be required to gen-
erate a curve which may be highly valuable to the
fab.

Simulation resources and expertise is
not available.

The models and applications developed in this thesis
are tailored to use by non-simulationists.

There is insufficient time to perform the
simulation analysis.

The models and applications arising from this the-
sis are fully automated requiring very little analysis
time.

There is no data available. It is assumed that the programs and applications
have access to factory data which is electronically
stored. This is generally a reasonable assumption in
highly automated semiconductor manufacturing sys-
tems where an abundance of data is recorded.

The model can’t be verified or vali-
dated.

A full validation and verification of all models is per-
formed.

The systems behaviour is too complex
to be captured.

The highly complex nature of semiconductor manu-
facturing will be modelled by modularising its most
common aspects into repeatable and reusable DES
models.

50

Chapter 2. Literature Review

of modelling and the benefits of using it to monitor a fab undergoing ramping-up to a

new product. For these reasons simulation is currently leading the line for modelling

semiconductor manufacturing.

In fact, some simulation models may become such an important tool for factory man-

agement that it can drive most, if not all of the decisions made. An example of this

was shown by Potti and Whitaker (2003), who used their simulation model as the focal

point for all communication between fab departments regarding productivity improve-

ment projects.

2.5.4 Flexible reusable DES modelling

As outlined previously, simulation modelling is regarded as an appropriate tool for mod-

elling complex systems such as a semiconductor manufacturing system. However, the

disadvantages of using simulation lie in the amount of time, effort and resources required

to bring a simulation project to fulfilment. Some of the research into simulation modelling

of semiconductor manufacturing (e.g.,Ehm et al. (2009); El-Kilany (2003); Mackulak et al.

(1998); Paul and Taylor (2002); Pidd (2002)) has focused on flexible and reusable simu-

lation development and deployment, as well as standardisation of simulation frameworks

and modelling inputs. Such efforts aim to create a full framework for a simulation project

and allow end users to jump straight to the experimentation stage of a project without

undergoing the time-consuming stages of data extraction, model building and coding.

This type of modelling strategy appears to be ideal for generating fast and accurate

operating curves.

Furthermore, the selection of simulation modelling over analytical modelling does not

mean that analytical models do not play a part in the framework proposed in this thesis.

Tractable analytical models will be used to recommend simulation run lengths, optimum

design points and to predict the optimum number simulation runs or replications based

on the work of Hoad et al. (2008, 2009). Combining these two facets; flexible-reusable

modelling and automation of the design of experiments using statistical techniques and

51

Chapter 2. Literature Review

analytical models, means that generating accurate operating curves can be fast, reliable

and efficient.

When creating a flexible reusable model it can be more difficult to assess the bound-

aries, scope and scale of the model. A important opportunity can often be missed that

could potentially make the simulation model far more useful. To return to previous ex-

ample given in Section 2.5.1. What if sometime after the initial project, management

return to the simulationist with the task of optimising the number of operators that tend

to the machine in question? At the time of the initial simulation project, the subject of

operators was deemed irrelevant and outside the scope of the investigation. The ques-

tion then becomes whether it is easy to incorporate operators into the model structure

without requiring a complete rebuild.

Another possible scenario; it is noticed that the machine group under investigation

is very similar to another machine group at different location within the factory. Is it

possible to adapt the model, or is it restricted by the original coding or build? Also,

what if management want to see the effects of adding or removing multiple machines

from either machine group, is this also easily managed? All these questions define the

reusability of the model. Reusability and flexibility are interchangeable terms, in that, a

model is designed to be flexible for the purposes of making it reusable, and the targeted

level of reusability dictates the level of flexibility of the model. These potential issues

should be addressed when scoping the initial project and some foresight may be required

on the part of the project planner.

For example, in order to encompass many of the complexities of semiconductor man-

ufacturing, most simulation models in the industry are large and complex. This level of

complexity is usually a consequence of the demands of management. Often there is a

desire to model too many aspects of the fab, and as a result, modellers draw the bounds

of the simulation scope too wide (Chwif et al., 2000; Law and Kelton, 1997; Sadowski

and Grabau, 2004). This is typically one of the biggest pitfalls of a simulation project,

because the modeller spends too much time trying to capture every detail about the

52

Chapter 2. Literature Review

system and the project becomes an endless exercise in computer programming.

An inexperienced simulation practitioner building a reusable model may try to incor-

porate too much or expand the scope of the model too wide. This problem of poor scoping

of the model is generally as a result of the fear of ‘leaving something out’ that may be

needed at some point in the future. The result being a slow, inefficient and cumbersome

model with excessive detail, which also requires a very high level of cost and effort to

create and maintain. This can have serious implications to the overall project and may

put it beyond its budgeted timeframe and cost.

modelling effort

model

reusability

single purpose

models

optimum flexible

reusable models

poorly scoped

reusable models

Figure 2.10: Modelling effort and model reusability.

An optimally scoped reusable model, such as that shown in Fig. 2.10, need not capture

every component or constituent of the real system. It should have sufficient level of detail

to capture the relevant phenomena that concern the current objectives and sufficient

breath of design and flexibility that it can successfully incorporate future components

without a complete rebuild. This means that a reusable model should have sufficient

scalability and flexibility to achieve the stated objectives of the project. Both of these

goals can be achieved if a carefully planned and mindful approach to reusable modelling

is used during the initial stages of planning.

Hence it may be necessary to expand upon the objectives of the simulation study.

The more immediate hypothesis-like objectives such as ‘what is the resulting average

53

Chapter 2. Literature Review

cycle time gain if an extra machine is added to a particular machine group?’ may need

to be expanded to include more open objectives such as ‘what is the cycle time impact to

lots subject to competition for resources?’, (where the resources might include operators,

machines or transportation systems). More open statements or objectives encourage

more open-minded decision-making during the initial planning phases. An example of

this can be seen in the work of (Johansson and Grunberg, 2001). They noted that a

flexible reusable modelling strategy should be the focus throughout the fulfilment of the

modelling project, meaning that making the model reusable was not restricted solely to

the model build phase, it should be incorporated across each phase of the simulation

study.

This reusable modelling strategy can also aid modellers in selecting the software tools

or packages that they use. A common pitfall is selection of software with insufficient

functionality. Banks (1999) calls this the 90% syndrome, whereby you find that the

software has sufficient rudimentary capability to achieve 90% of the original objective,

and an extra 2-5% can be achieved or eked out by using the software’s functions in unusual

and unorthodox ways. Finally, it becomes apparent that a 100% complete solution is

outside of the capabilities of the software and a complete change of simulation tools is

necessary. This can be avoided if the original objectives include some foresight about

possible future functionality of a reusable model, and if proper research is conducted into

the capabilities of the modelling packages available.

The commercial software packages used by simulation modellers has seen a similar shift

in the flexible and reusable trend, with the more popular software providing modularised

‘off the shelf’ sub-models (modelling blocks) that can be positioned to model real system

entities (Valentin and Verbraeck, 2002; Verbraeck and Valentin, 2008). This reduces the

time spent coding the program and allows the user to focus more on the decision-making

aspect and getting the conceptual model correct.

Such techniques can have significant benefits when deployed to semiconductor manu-

facturing. The basic entities that constitute a fab are similar and/or repetitive and hence,

54

Chapter 2. Literature Review

the same modelling blocks can be used or reused, as was shown by Boning et al. (1992);

El-Kilany (2003); Sprenger and Rose (2010). For example, custom sub-models or mod-

elling blocks can be used to represent the workstations in a fab, thereby creating a set of

nodes within the model through which the material flows. Creating a full factory model,

(if sufficiently capable sub-models are available), should then be a matter of structuring

sub-models in an appropriate fashion. Such rapid modelling methods appear to be the

most efficient route of generating simulation based operating curves for a semiconductor

fab.

Automated generation of simulation models

If the real system consists of common components that can be identified and compart-

mentalised, then it is possible to completely remove a simulationist from the process of

building models and create programs to generate simulation models. For this, it is nec-

essary to build generic models consisting of components that are robust enough to make

the model applicable to a large range of inputs and systems. Steele et al. (2002) outlines

some of the basic requirements of a generic reusable model,

- Ensure that the important factors or components of the system are included. This

helps to define the scope of the models and reduce the system complexity,

- Simplify the input. The input data should be easily interpreted and well defined.

This emphasises the use of system descriptors such as the Sematech Semiconductor

Wafer Manufacturing Data Format Specification (Feigin et al., 1994) or information

models such as the Core Manufacturing Simulation Data (CMSD) (Riddick and Lee,

2008),

- User-friendly output with graphs and charts. This further promotes the use of

operating curves to analyse the results from the model.

Building a generic simulation model requires more time and effort in the initial phases,

however, it can have a significant pay-off in the long run. Linking the model to the in-

put data generally requires some program or framework to assemble the data, populate

the generic flexible model and control its execution and output. Mueller et al. (2007)

55

Chapter 2. Literature Review

presented a framework for generation of models based on the Semiconductor Wafer Man-

ufacturing Data Format Specification using an object-orientated Petri-net interpretation

of the specification. Mueller et al. listed the advantages of the method as:

- The end-user did not have to do any coding,

- The simulation generation is a rapid process,

- The model generation is fixed, thereby removing any chance of coding or program-

ming errors,

- Theoretically, there is no limitation to the size and the scale of the model.

Automatically generated models, however, are not without some disadvantages. Bergmann

and Strassburger (2010) discussed the challenges of such a modelling strategy and out-

lined them as follows:

1. Incomplete data in external systems: The core input data that drives the model may

not always be reliable or it may not be possible to automatically capture the required

information from the real system, that is, where operations are not monitored.

Additionally, summary statistics and distributional information for activities may

not exist.

2. Generation of dynamic/complex behaviour: The complexity of some systems may

inhibit algorithmic translation and some dynamic behaviour may be lost.

3. Support of cyclic approaches involving multiple model generation cycles: Bergmann

and Strassburger estimates that an automated model can only ever capture about

80% of that required, the rest needs to be manually added. These manual additions

also need to be monitored and documented.

4. Support of multiple life cycle phases of the production system: Most real world sys-

tems evolve over time, capturing this evolution of the real system in an automated

model can be a challenge.

These comments are valid and noteworthy, however, most of these challenges are not

restricted to that of automatically generated models, and they are also issues that occur

when performing one-off simulation models also. For example, the first challenge, data

issues, exist regardless of the long-term aims of the simulation project. In other words,

56

Chapter 2. Literature Review

if the data does not exist or requires treatment, then this issue affects both modelling

strategies. One might argue that manually inputting the data for one-off models might

be easier, however, if the data is in bulk, then it is usually necessary to create a script or

program than can prepare the data, which promotes the case for reuse of this script in a

reusable generic modelling project.

On the second point, system complexity will affect both one-off and reusable auto-

generated models. Understanding a system and translating it to algorithmic form (con-

ceptual modelling) may be a more difficult task in a generic model, that must encompass

more ‘behaviour’, however, the learnings gained could have a pay-off in terms of greater

understanding of the system. For example, the one-off model may incorrectly disregard

system behaviour that is deemed less relevant, whereas, the larger scope of a flexible

reusable model is less likely to disregard import behaviour.

The third challenge, according to Bergmann and Strassburger, refers to the impos-

sibility of completely automating a simulation model. While this is a fair observation,

it should not mean that it should not be attempted. Finally, the last point expresses

concerns over capturing the evolution of a system in an automatically generated model.

However, here it is likely that having an automated model that captures a previous it-

eration of the real system is a good starting point for modelling its current state. With

these challenges in mind, the benefits of having an automatically generated simulation

model far outweigh its disadvantages.

2.6 Summary

The following summarises the findings in the literature review;

- Operating curves are a very important, if not the most important, metric for a

semiconductor fab.

- Analytical methods for generating the operating curve for a semiconductor fab are

flawed by the fundamental assumptions which they are based on; the independence

of arrival & service pattern and the assumption of identical toolsets.

57

Chapter 2. Literature Review

- Analytical or queueing models are also difficult to implement because they assume

a fixed number of tools in a system and require single values for system variability,

which can be hard to retrieve from a real fab. As a consequence, the queueing

models themselves have been used to predict system variability, which is then fixed

for all subsequent calculations. Due to this broad assumption, operating curves

based on analytical models can only be used for benchmarking purposes, and there is

no guarantee that they are a good approximation of the actual underlying operating

curve.

- DES models offer an alternative method to generate the operating curve, and are not

restricted by the same assumptions. However, the lead time to building a simulation

model is long for such a complex system. This can be reduced by implementing a

flexible modelling framework to auto-generate models of the real system. The design

of simulation experiments can also be aided by using basic queueing approximations

of the system to estimate the experimental parameters for the simulation models,

as discussed in the following chapter.

58

CHAPTER 3

An Automated Framework for

Designing Discrete Event Simulation

Experiments

All too often, much consideration is given to the creation of a simulation model with an

emphasis on the idea that if the computer model is ‘right’ then the simulation study will

be successful (Law and McComas, 1991). This over-emphasis on the model building phase

usually results in the sacrificing of a proper framework for the simulation experiments

and a lack of application of the correct statistical and scientific procedures. This chapter

describes a framework for automated design of simulation experiments that hopes to

streamline this process and enforce due diligence in simulation projects. The framework

relies heavily on estimations and approximations from queueing theory.

It is worth emphasising that the queueing models and approximations are being used

59

Chapter 3. Framework for DES Experiments

merely as guides for the simulation models as opposed to accurate estimators for the

system under study. This means that special dispensation is given to the use of queue-

ing models, when they are not guaranteed to be applicable for the system under study.

However, considering that some common sense scientific methodology is required to con-

struct an automated framework, it is best to use potentially inaccurate general queueing

approximations rather than nothing.

Throughout the chapter there is a description of the techniques and algorithms used

to automate the framework. All of the accompanying source code can be found in Ap-

pendix A.

3.1 Simulation Effort

The concept of a minimum required effort for a simulation study is an inescapable aspect

of simulation. A simulation is a series of logical controls that are tested by inputting a

range of random inputs, and interpreting the random outputs. Therefore, it is necessary

to use a large enough range of inputs so that the output range is similarly large, and

some sort of statistical or stochastic pattern can be found. This stochastic pattern then

allows ‘proper’ inferences or conclusions to be made about the logical controls (which

collectively constitute the model).

3.1.1 Selection and location of design points on an operating

curve

In order to construct an accurate operating curve with the minimum amount of simula-

tion effort, a sufficient minimum number of design points on the curve are required. One

solution is to select a large amount of design points and run the necessary simulations.

However, in reality simulation effort is not ‘free’ and there is some cost involved. Whether

that be the analyst’s time or more likely, the computer processor time required to run

the simulation program, it is generally not feasible to plot a very large number of design

60

Chapter 3. Framework for DES Experiments

points. Hence, some trade-off between accuracy and simulation effort is required. John-

son, Leach, Fowler and Mackulak (2004) described this problem by assuming that there

is a fixed budget of simulation effort available and the choice of location and quantity

of design points could be represented as some function of the variance of the operating

curve.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

x-
fa

ct
or

utilisation

simulation output variance
operating curve

Figure 3.1: Operating curve indicating the simulation output variance.

They stated that the level of simulation effort exhausted could be directly proportional

to the curve variance, meaning that the greater the variance from a more heavily utilised

system, the more simulation effort that is required. To calculate the required simulation

effort Johnson, Leach, Fowler and Mackulak (2004) used weighted ratios based on the

variance at each point such that the corresponding absolute confidence widths were equal.

While this technique, (also discussed by Fowler et al. (2001, 2008)), provides a log-

61

Chapter 3. Framework for DES Experiments

ically sound methodology for the allocation of simulation effort to design points, it is

somewhat insufficient on two accounts. Primarily, there is no guide for location of the

design points, the assumption is that the analyst selects the design points. This appears

to be a very arbitrary element of an otherwise scientific technique. Secondly, as can be

seen from Fig. 3.1 the variance increases at a very fast rate as utilisation increases. This

means that design points on the high side of the curve require a very large amount of

simulation effort. The level of effort required to capture a system with a higher loading

than it rarely operates at, may be very time consuming with very little reward. John-

son, Feng, Ankenman and Nelson (2004) echoed this statement by saying “the highest

throughput level tends to consume nearly all of the simulation effort”. They also stated

that “. . . often, the lower design points receive virtually no simulation effort, requiring the

analyst carrying out the simulation to give the design points a minimum default value.

. . . (For example,) at the following throughput levels: 60, 70, 80, and 90 percent, the 90

percent design point claims approximately 99% of the budget available for the simulation

effort”.

Clearly there is too much emphasis placed on the high and volatile portion of the

operating curve. Much effort is required to capture the operating curve in this area

sufficiently, but real systems rarely venture into this region, at least not for long periods

of time, and it may be more beneficial to allocate effort to the more likely areas of

operation. With this in mind, a technique is proposed of locating design points based

on their proximity to the location of an optimum operating point on the system curve,

where the greatest change in the curve takes place.

3.1.2 Allocating simulation effort

As can be seen from Fig. 3.2, there appears to be a very asymptotic nature to the shape

of operating curves that becomes more apparent in systems that are configured better

to handle increased traffic flows. For example, systems with a high number of parallel

servers, or with low to moderate variability, can cope better with increased demand.

62

Chapter 3. Framework for DES Experiments

0

1

2

3

4

5

6

7

8

9

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

x
-f

ac
to

r

utilisation

horizontal asymptote

vertical asymptote

operating curve for M/M/1 queue

curved area of interest

Figure 3.2: M/M/1 operating curve showing the ‘vertical’ and ‘horizontal’ asymp-
totes and the curved area of interest.

Therefore, they have a curve that exhibits two asymptotes; a horizontal one that encom-

passes the normal operational bounds when traffic intensity is so low it has little or no

effect on the cycle time, and a vertical one that shows the critical level of traffic that

the system can handle. Any level of traffic on the vertical asymptote will be generally

unmanageable and would result in very high queueing and cycle times.

These two asymptotes become less pronounced as the system becomes less efficient,

however, they provide the basis for estimating design points based on the areas of interest

in the operating curve. Assuming that the asymptotes are approximately horizontal and

vertical, it is not wholly necessary to allocate many design points to these ‘straight line’

areas, and it may be more beneficial to allocate the bulk of design points around the

curvature. In order to investigate the curved areas, some definition of the level or rate of

63

Chapter 3. Framework for DES Experiments

curvature was required.

Allocating simulation effort using the level of curvature function

From calculus, the level of curvature k(x) of a function y = f(x) is given by Eq.(3.1)

(Stroud, 1995).

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

x-
fa

ct
or

le
ve

l o
f

cu
rv

at
ur

e

utilisation

M/M/1 operating curve
k(u) for M/M/1 queue

Figure 3.3: The curvature level k(u) for an M/M/1 queueing approximation ac-
cording to Eq.(3.4).

k(x) =
|f ′′(x)|[

1 + [f ′(x)]2
]3/2 (3.1)

∂
(
CTM/M/1

)
∂u

=
1

(1− u)2 (3.2)

∂2
(
CTM/M/1

)
∂u2

=
2

(1− u)3 (3.3)

64

Chapter 3. Framework for DES Experiments

Calculating the derivative (Eq.(3.2)) and the double derivative (Eq.(3.3)) with respect

to u of the queueing approximation for the M/M/1 queue (with te = 1) from Eq.(2.3) on

pg. 16, and substituting these values into Eq.(3.1), gives the rate of curvature as,

k(u)M/M/1 =

2
(1−u)3[

1 + 1
(1−u)4

]3/2
(3.4)

This method was found to be not directly applicable in these circumstances due to the

very large differences in scale between cycle time and utilisation. Given that utilisation

is on the range (0, 1) and cycle time is on the range (0,∞), it requires some normalising

of cycle time, before it can be used in these circumstances. A cursory examination of dif-

ferent normalising factors showed that the position of the highest level of curvature shifts

depending on the normalising factor used. Any further examination of this phenomena

was deemed to be beyond the scope of this thesis.

Allocation of simulation effort using the u/CT curve

An alternative method of approximating the area of most interest is to characterise how

utilisation changes as cycle time changes, that is, map the u/CT curve. The u/CT

curve, is derived by plotting u/CT against u, and is similar to what Ignizio (2009) calls

the load-adjusted cycle time efficiency (LACTE) curve.

The u/CT curve is effectively a measure of the quotient impact of utilisation and cycle

time across a full loading profile. Therefore, it allows one to analyse the utilisation level

at which any increase in loading will result in a significantly disproportionate increase in

cycle time or x-factor. In other words, it is effectively a ratio of the measure of the gains

achievable by increasing utilisation before incurring a heavy cycle time penalty.

Figure 3.4 shows a u/CT curve for an M/M/1 queue along with its operating curve

and the ‘envelope’ of operation for the u/CT curve. The envelope forms a triangular

region, which is bounded by the linear function CT = t0 (raw process time (RPT)) in

the range u = (0, 1) and u/CT = 0 at u = 1, meaning that the best possible curve is one

65

Chapter 3. Framework for DES Experiments

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

x-
fa

ct
or

u/
C

T

utilisation

u/CT region
operating curve

u/CT curve

Figure 3.4: Operating curve and equivalent u/CT curve for M/M/1 queue, show-
ing the u/CT region and an optimum operating point at u = 0.5.

that fits this region, that is, a system where u is strictly less than 1 and the cycle time is

equal to the raw process time.

If the operating curve is monotonically increasing for u, then the u/CT curve will

observe a single peak. This peak can be found by solving Eq.(3.5) for unique root u.

∂ (u/CT)

∂u
= 0 (3.5)

∂
(
u/CTM/M/1

)
∂u

= 1− 2u = 0, (3.6)

From Eq.(2.3) which approximates the cycle time for an M/M/1 queue, assuming that

the process time te is 1.0, (meaning that the x-factor is equal to the cycle time), then the

peak of the u/CT curve is given by Eq.(3.6) where u = 0.5.

The location of the peak of these u/CT curves is of most interest to the user, and can

66

Chapter 3. Framework for DES Experiments

be used to identify the inflection region of the standard operating curve. By examining

the operating curve, it can be seen that where the u/CT value is low, utilisation is either

low or high. On the low side, the operating curve is generally quite flat, meaning that

there is not much of a proportionate increase to cycle time as utilisation is increased.

Therefore, it is not necessary to select many design points in this region, as the system is

under-utilised and cycle time results are generally close to the RPT. It can also be shown

that the variability of independent experimental replications of a performance measure

in this region is also quite low (Johnson, Feng, Ankenman and Nelson, 2004). The other

region where the u/CT value is also low is at very high levels of utilisation, where the

impact to cycle time is very significant. The variance from this region is high and can

require many replications.

0

5

10

15

20

25

30

35

40

D1 D2 D3 D4 D5 D6 D7

40%

80%

95%

optimum

x
-f

ac
to

r

u
/C

T
 R

at
io

utilisation

operating curve
u/CT curve

Figure 3.5: Design points for an M/M/3 queuing system at 100%, 95%, 80% and
40% of u/CT .

67

Chapter 3. Framework for DES Experiments

Hence, using the u/CT curve as a guide, will allocate a higher number of design points

to the area of greatest curve change, while the areas of low curve change, such as the very

high and very low utilisation areas, are not allocated as many design points.

Figure 3.5 illustrates this method for an M/M/3 queuing system. Assuming a fixed

number of design points of 7, where one design point is the peak of the u/CT curve

(where the operating curve has its inflection point) and the other 6 points form pairs on

the u/CT curve. So, assuming that the values are selected at (0.4, 0.80, 0.95, 1.0), that

is, 3 pairs and 1 at the peak, then the equivalent utilisation values are given by the set

{0.185, 0.404, 0.524, 0.632, 0.729, 0.815, 0.923}.

This method is capable of determining more appropriate design points, however, there

still requires some guess work and intuition about the values to choose on the u/CT curve.

An alternative method is to use some form of probability selection. Given a fixed number

of required design points, one could sample on the range (0,1) with a higher probability

given to larger numbers. An algorithmic version of this selection policy could involve

sampling values on u with a small interval of say 0.01, and its probability weighting

factor could be its actual u/CT value. The main issue here is that with a very low

number of design points being sampled, the probability of attaining many ‘unwanted’

values, or values that are grouped together is somewhat high.

Furthermore, this still does not solve the problem of selecting points that are too close

together. Such weighted sampling methods are untested and for these reasons this thesis

will rely on approximating values on the u/CT curve to construct the design points using

the same method used in the G/G/3 queueing example from Fig. 3.5.

3.2 Method of Independent Replications

The output of a simulation is usually some performance measure of interest. Some of

the performance measures most commonly collected for a simulation of a manufacturing

system are cycle time, throughput or the number of items in a queue. These serve as good

68

Chapter 3. Framework for DES Experiments

performance metrics for the system because not only is the data of interest to engineers,

but the trends formed by these values indicate whether a simulation run has ‘matured’

enough such that inferences can be made about the real system from the model.

The technique of performing a number of independent simulation replications requires

assurances that a sufficient number of these runs has been conducted. A test for this,

described by Law and Kelton (1997), requires a minimum number of replications n until,

tn−1,1−α/2
√
σ2/n

µ
≤ γ

1− γ
, (3.7)

is satisfied, where tn−1,1−α/2 is the student t-distribution with n−1 degrees of freedom for a

precision α, µ and σ are the mean and standard deviation of the replications respectively,

and γ is the acceptable relative error. The accompanying code for this algorithm is given

in Appendix A.1.

3.3 Whitt Simulation Run Length

From Whitt (1989b), for a G/G/m model, the required simulation run length is a function

of the utilisation u, the squared coefficients of variability for process time c2
e and arrival

rate c2
a, the number of parallel serversm and the mean process time te. Control parameters

are given by a specified relative confidence width ε and level of precision β. Then the

required run length l (in terms of observed customers) is given by Eq.(3.8),

l(ε, β) ≈
8te(c

2
e + c2

a)z
2
β/2

mε2(1− u)2 , (3.8)

where zβ/2 is the normal distribution percentile. Figure 3.6 shows a plot of the minimum

required amount of customers to satisfy a G/G/1 queue approximation with a confidence

of 95% and relative width ε = 0.05, assuming that the system has moderate variability

(c2
e = 1 and c2

a = 1) and a mean effective process time te of 1.

Examining the accompanying values in Table 3.1 for Fig. 3.6, it can be seen that l is

69

Chapter 3. Framework for DES Experiments

2 x 106

4 x 106

6 x 106

8 x 106

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ru
n

le
ng

th
 (

ob
se

rv
ed

 c
us

to
m

er
s)

utilisation

Whitt approximation

Figure 3.6: Recommended run length for G/G/1 queue with moderate variability.

Table 3.1: Simulation run length approximation for G/G/1 queueing system ac-
cording to the Whitt estimator (Whitt, 1989b).

u l(0.05, 0.95)
no. of customers

0.01 2.5× 108

0.1 3.0× 106

0.2 960364
0.3 557490
0.4 426828
0.5 393365
0.6 426828
0.7 557490
0.8 960364
0.9 3.0× 106

0.99 2.5× 108

70

Chapter 3. Framework for DES Experiments

not strictly increasing for u→ 1.0. Therefore, this equation should only be used in areas

of high utilisation. It is not accurate for low or even moderate utilisation levels. This

is because it is derived from estimations of variance from fundamental queueing steady

state approximations.

Nevertheless, it is incorporated into this framework, as there is value in choosing this

method over arbitrarily declaring or guessing an initial run length. It is assumed that

any u value less than 0.5 takes on the run length value at u = 0.5. Furthermore, any

underestimation of run length is nullified by the analysis of the warm up period (see the

next section) which ensures that the simulation run length is adequate.

The programmed algorithm of this method is described in Appendix A.2. A relative

width of 0.1 was selected as the default. Whitt remarked that if the relative width ε is

increased tenfold from 0.05 to 0.005 then the run lengths increase almost a hundredfold.

Considering that a failsafe of warm up period estimation is employed in the framework, it

appears that using relative width of 0.1 as the default value should suffice, given that it is

better to have a potentially shorter than required run length and compensate later, rather

than to have a very long run that would unnecessarily increase the level of simulation

effort.

3.4 Methods for Identifying the Initial Bias and Warm

Up Period

The nature of any discrete event simulation (DES) is that it is impossible to start from

steady state. Steady state describes the portion of the simulation run that is independent

from initial starting conditions or initial bias. Similarly, it can be difficult to configure a

simulation or ‘load’ it, such that the system is immediately deemed to be in steady state

upon starting. Therefore, if using a number of replications there must be some portion

of each run, the initial bias period, that must be removed.

71

Chapter 3. Framework for DES Experiments

Hoad et al. (2008) found 42 methods in total of identifying the initial bias of a

simulation run and categorised them under the main headings of graphical, statistical

and heuristic procedures. Listing and investigating these methods is somewhat outside

the scope of this thesis, however, some authors, including Alexopoulos (2006); Condron

(2010); Gafarian et al. (1978); Mahajan and Ingalls (2004); Robinson (2002, 2005, 2007),

have summarised and compared many of the available methods. Many of these authors

stated that no one method could be chosen over another in all circumstances.

However, to construct the framework described in this chapter, it is necessary to select

one method. Statistical methods were selected as the most appropriate for the analyses

in this thesis for the following key reasons:

1. Graphical methods, although perhaps the easiest to implement, are extremely sub-

jective to the viewer and cannot be automated without some form of user interac-

tion,

2. Heuristic methods are tractable, simple to comprehend, and easy to implement

into programming algorithms. However, many of them are still very much ‘rules of

thumb’ which practitioners have devised based on experience. It also appears that

there are many caveats and special considerations such as simulation traffic intensity

and performance metric selection that affect the usability of these heuristics in

broader circumstances (Condron, 2010),

3. Statistical methods are less efficient in terms of computational time and effort re-

quired to conduct the analysis. However, the techniques are based on reliable sta-

tistical control methods that are both logical, and have clearly defined algorithms

which make them easy to implement and automate. This advantage was seen to

outweigh the extra computational effort required.

One particular method, the statistical process control (SPC) method was identified as

being particularly appropriate based on its generally applicability.

72

Chapter 3. Framework for DES Experiments

3.4.1 SPC method

The SPC method described by Robinson (2002, 2007), and implemented by Hoad et al.

(2009), uses common process control methods to identify if a time series is in steady state

based on the assumption that the warm up period section of the output data is considered

to be ‘out of control’ due to variation. The following section describes how this method

was implemented. It is based on an algorithm described by Robinson (2002, 2007), with

key changes made to how the data is analysed for serial correlation and normality. An

outline summary of the method is given as follows:

1. Perform replications and collect data.

2. Determine the appropriate batch means using:

- the Von Neumann test for serial correlation,

- the Anderson Darling test for normality.

3. Construct control parameters and identify steady state.

Perform replications and collect data

The length of the simulation run is first calculated using the Whitt approximation, as

discussed in Section 3.3, using a black-box fit of an appropriate queueing model for

the system. Then five initial replications are performed and the data is collected. To

ensure that a sufficient number of replications are performed, the algorithm discussed

in Section 3.2 is used to identify the recommended number of runs. If there are i =

1, 2, 3, . . . ,m observations collected from each replication. The data is then averaged

across the replications, which gives the time series of the average sample means for all

replications performed as ȳ = (Ȳ1, Ȳ2, Ȳ3, . . . , Ȳm)

Determining the appropriate batch means

The next step involves creating a batch means of the data series to reduce or remove

the autocorrelation of the time series. Autocorrelation (also known as serial correlation)

73

Chapter 3. Framework for DES Experiments

happens as a consequence of monitoring observations in a time series data from simulation

output. Any observation collected is somewhat affected by the previous observation.

The aim is to reduce this correlation as much as possible. The process of averaging

across replications, as in Section 3.4.1, helps to remove some of the serial correlation, and

grouping observations into batches aids in further reducing it. This method is known

as the batch means method and was popularised by Law and Carson (1979); Law and

Kelton (1997).

This method divides the (possibly correlated) time series ȳ = (Ȳ1, Ȳ2, Ȳ3, . . . , Ȳm) into

a number of batches h, where the batch size is k = bm/hc. Then, each batch mean is,

¯̄Yi =

hk∑
i=(h−1)k+1

Ȳi

k
, (3.9)

for h = 1, 2, . . . , bm/kc, giving the vector ¯̄y = (¯̄Y1,
¯̄Y2,

¯̄Y3, . . . ,
¯̄Yh). A coded implementa-

tion of this method can be found in Appendix A.5.2.

A technique proposed by Fishman (1978) and used subsequently by Hoad et al. (2009)

and Robinson (2002, 2005) is used to locate the appropriate batch size. The initial

batch size k is set to 2, the batch means are formed and tested for autocorrelation and

normality using the Von Neumann and Anderson-Darling test, respectively. If the data

‘fail’ either test, i.e., data is correlated or not normal, tests that are required to satisfy the

assumptions of the SPC method, then the batch size is increased twofold. These tests are

carried out repeatedly and any doubling of the batch size is performed until both tests

pass, meaning that the data is not correlated and is normal, or the number of batches

has reached a critical lower limit (h > 20). The next step is then to test the midway

point between the ‘failed’ batch size and the ‘passed’ batch size. This process is repeated

until the lowest batch size is found that passes both test. A coded implementation of this

algorithm is included in Appendix A.3.

74

Chapter 3. Framework for DES Experiments

Identifying steady state

A time series trend or transient can be considered as ‘in control’ as long as a number

of control parameters are not violated. Three sets of control parameters can then be

constructed UL3,UL2,UL1,LL1,LL2,LL3.

Beginning at the end of the time series and working backwards towards the start, the

series is assumed to fail at the first point where any of the following four control limits

fail;

Test 1: A point plots below LL3 or above UL3,

Test 2: Two out of three consecutive points plot below LL2 or above UL2,

Test 3: Four out of five consecutive points plot below LL1 or above UL1,

Test 4: Eight consecutive points plot on the same side of the mean µ.

The simulation run length must be at least twice the length of the warm up period,

a recommendation given by Kelton (1980). Iterating through each batch mean, if any of

the batch means fail in the last half of the series, then it is assumed that steady state

was reached in the latter half of the simulation runs and the run length was insufficient.

If the test fails in the first half of the series, then the first point where it failed (working

backwards) is considered as the point where steady state is assumed to have begun, and

any data before this is disregarded.

Another scenario occurs if the time series is ‘in control’ from start to finish, this often

happens when the batch sizes are high and much of the initial transient is captured in

the first batch. In this case, steady state is assumed to have begun when the time series

first crosses the mean line.

An example is shown in Fig. 3.7 for an M/M/1 queue with te = 1 hour. At a particular

design point, the time batched transient ¯̄Yi of the performance indicator (cycle time) with

mean µ is plotted with the control limits. Working backwards at ¯̄Y53 the test results are

given by Table 3.2. Test 1 fails at ¯̄Y36 because this batch mean plots above UL3. However,

it does not fail at any other batch mean. Similarly none of the other 3 tests fail at any

75

Chapter 3. Framework for DES Experiments

 0

 0.5

 1

 1.5

 2

 2.5

 0 5 10 15 20 25 30 35 40 45 50

cy
cl

e
tim

e
(h

rs
)

batched series

failed test 1 (outside UL3)

warm up period

steady state

transient
mean (µ)

UL3
UL2
UL1
LL1
LL2
LL3

Figure 3.7: Batched time series transient and SPC control parameters for an
M/M/1 queue, showing failure of Test 1 at ¯̄Y36.

point along the transient. Therefore, it is assumed that the series is in control after ¯̄Y36,

which is in the latter half of the time series (i.e., ¯̄Y36 >
⌊

¯̄Y53
2

⌋
= ¯̄Y26) meaning that the

run length is deemed insufficient and the experiment should be rerun with twice the run

length.

Table 3.2: SPC test results for M/M/1 queueing system.

SPC Tests Result

Test 1 Fails at ¯̄Y36

Test 2 Pass

Test 3 Pass

Test 4 Pass

Had Test 1 passed, then all tests would have passed and steady state would be assumed

76

Chapter 3. Framework for DES Experiments

to be the point where the transient crosses the mean line the first time. In this example,

that point would be at ¯̄Y7. The code for this algorithm is included in Appendix A.4

3.5 Operational Characteristic Surfaces

All of the operating curves discussed have used 2-D axis plots of either cycle time/x-

factor and utilisation/throughput. However, it is also possible to plot a surface of the key

relationship between cycle time, utilisation and variability. Operational characteristic

surfaces or operating surfaces for short are introduced, to examine these interrelated

factors. An operating surface shows the relationship between all three key factors. For

example, Fig. 3.8 plots variability on the y-axis for a G/G/1 queue and shows how the

resulting x-factor surface ‘peels’ upwards as variability increases.

 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

 1

 0

 1

 2

 3

 4

 0

 5

 10

 15

 20

x-factor

utilisation

variability

x-factor

Figure 3.8: Operating Surface for a G/G/1 queueing system according to
Eq.(2.4).

This type of surface could also be plotted by fixing the variability and examining an

increase in capacity. A similar concept can be applied the u/CT curve, as in Fig. 3.9,

which shows that as variability decreases, the u/CT ratio increases towards its maximum

77

Chapter 3. Framework for DES Experiments

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

 0.5

 1

 1.5
 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

u/CT ratio

utilisation

variability

u/CT ratio

Figure 3.9: u/CT Surface for a G/G/1 queueing system.

allowable envelope and shows the system with the highest efficiency. Whenever possible,

these surfaces are used to show how the three components; utilisation, variability, and

cycle time interact.

3.6 Summary

This section describes the framework for designing simulation experiments that was auto-

mated to speed up the time taken to perform a simulation project. The steps are shown

in Fig. 3.10 and the procedure includes:

1. Location of design points on operating curves using equivalent u/CT curves based

on queueing theory approximations,

2. Estimation of ‘dry’ run length, i.e., obtaining an estimate of the required simulation

run length in the absence of any exploratory data, using an approximation described

by Whitt (1989a),

3. An iterative algorithm used to locate the minimum appropriate number of replica-

tions given a specified level of precision,

4. Identifying the appropriate minimum batch size for the output data such that the

batch means are both normally distributed (according to the Anderson Darling

test for normality) and not correlated (according to the Von Neumann test for

autocorrelation),

78

Chapter 3. Framework for DES Experiments

Estimation of design
points using the u/CT
curve (Section 3.1.2).

Calculate the pilot test
run length (Section 3.3).

Determine required
number of replica-
tions (Section 3.2).

Identify the appropri-
ate minimum batch
size (Section 3.4.1).

Locate the warm up
period using the SPC

method (Section 3.4.1).

Figure 3.10: Summary flow chart for the automated framework for designing DES
experiments.

5. Use of the SPC method for identifying steady state and estimating final required

simulation run length.

Key to this framework is the ability to integrate all of the procedural steps, and

automate them into a single package into which DES models can be embedded (see

Appendix A). It is the aim of the package to speed up the process of obtaining operating

curves, and place a focus on analysis and interpretation of the results rather than in the

design of experiments.

79

CHAPTER 4

Case Study: A Flexible Toolset

Modelling Application

This chapter describes the complete methodology and creation of a flexible reusable

modelling application, known as the Flexible Toolset Modelling (FTM) application, for

semiconductor manufacturing toolsets. The aim of the application is to provide the user

with an operating curve for any toolset or functional area within the fab in a rapid

manner. The application carries out the following procedures:

- User input through a graphical user interface (GUI) style wizard,

- Communicating with local factory databases for identifying, mining and collecting

the relevant raw historical data,

- Data filtration, clean-up and outlier screening, in order to correctly interpret the

collected data,

- Algorithms for fitting distributions to stochastic patterns,

80

Chapter 4. Case Study: FTM Application

- Design of experiments (DOE) for simulation using projected theoretical pilot values

for a complete simulation analysis,

- Generation of a flexible reusable simulation model in ExtendSim that runs as a

background process,

- Direct control and management of simulation variables in ExtendSim,

- Collection of output values from the model,

- Visualisation of simulated operating curves.

ExtendSim was selected as the backbone simulator for the application. ExtendSim

is a windows style object-orientated general purpose simulation package that can model

a wide range of systems. It has extensive libraries of ‘off the shelf’ blocks that can be

dropped into a modelling canvass to represent the entities, events and activities that

constitute the real system under investigation. Furthermore, it uses a custom computer

language known as ModL, through which, users can build their own custom blocks.

4.1 Testbed Background

The case study was conducted in a typical 200mm fabrication facility that produces flash

memory and logic, and has a very diverse product and process range, with over 65 individ-

ual products. Modelling this environment was a challenge due to this high level of product

diversity, however, such a rigorous testbed environment meant that the application had

a higher probability of successful deployment at a low product-mix facility.

The aim of the FTM application is to generically model the toolsets in the fab. As

a first step, it was necessary to capture and group similar types of tools and processes

into discernible categories. While criteria for dividing and grouping the tools could be

based on the process make-up or the wafer’s chemical or physical transformation, discrete

event simulation (DES) modelling is only concerned with the timing of an event and its

order. Therefore, it was decided that the key grouping criteria should be based on the

81

Chapter 4. Case Study: FTM Application

mechanisms and processes that pass the lots through the tools, meaning, the lot sequence

and overlapping of operations is the key criteria. Toolsets are described as;

single process can only process/hold one lot at a time. Therefore, the lot already in

process must be unloaded before a subsequent lot can be loaded,

batch allows lots requiring the same specific operation to be batched and processed

simultaneously,

cascade lots are overlapped (cascaded) through the tool with no specific operation

changeover rules,

batched cascade batched cascade tools are similar to cascade tools, the only difference

being that run rules are applied,

cascaded batch batches are formed up to a maximum allowable batch size and then

cascaded through the tool.

This type of grouping system facilitated the creation of a generic multifunction flexible

model that can isolate the common elements and create a robust model of the toolset or

functional area under investigation. The application is not designed to capture the very

specifics of a toolset. Rather, it was designed with a ‘point and shoot’ philosophy that

offers speed and convenience of use. The hope is that it will be the first application that

is used during the decision-making process and before any long term investment of time

or resources are committed.

The case study toolset is known here as the ‘H’ toolgroup. It consists of seven tools

that fall into the category of ‘single process’, and there are three operations that pass

through the toolset. The names of the tools and operations have been changed and all

data has been anonymised.

4.2 Front-End for the FTM Application

The front-end of the FTM application has a GUI built using Visual Basic (VB). The

accompanying code can be found in Appendix B.1. The Select Tools tab shown in

Fig. 4.1, invites the user to select the tools/toolsets of interest from those available in the

82

Chapter 4. Case Study: FTM Application

fab using a VB tree structure. Tool selection can be any combination of tools, although,

intended usage would involve selection of a particular group of tools in a functional area

or toolset. The tools available to the user can be either collected from running a scanning

program on the database, or a quicker solution is to upload a list of selectable tools to the

FTM program and edit it if tools are made available or redundant on the factory floor.

Figure 4.1: Tool/toolset selection for the FTM application.

The user-configurable experimental options are included in the second tab of the GUI

as in Fig. 4.2. Here, it is possible to select a historical time window that will be searched

back to capture the primary data that drives the simulation model. The user can also

select the warm-up period precision in the Experimental Parameters tab, as in

Fig. 4.2.

The unscheduled downtime processes, mean time before failure (MTBF) and mean

time to repair (MTTR), in the simulation model are constructed from real data, whereas,

the preventative maintenance (PM) cycles can either be created by the addition of a

number of custom cycles for the tools, or by allowing the program to automatically

83

Chapter 4. Case Study: FTM Application

Figure 4.2: Selection of experimental parameters for simulation model.

interpret a PM cycle from the data. The former method is useful for inputting repetitive

PM cycles, while the latter method was more useful if there was a lack of knowledge

about the tools’ PMs.

Many of the tools and equipment within the fab operate PM schedules based on a

daily, weekly and monthly period. This method of implementing PM schedules to the

model was found to be more stable and more accurate than allowing the program to

formulate PM schedules. Addition of the PM cycles is done through an application

wizard which consists of a number of steps. The accompany VB code for the GUIs are

included in Appendix B.2.

4.3 Data Mining and Collection

There is an extensive amount of data collected in the fab and much of it is stored in

an on-site database. This system can be accessed through standard Structured Query

Language (SQL) queries. Two tables within this database are of interest to the model;

the history of the lots that pass through the selected tools and the history of the tools.

These database tables are populated with recordings of events and their corresponding

84

Chapter 4. Case Study: FTM Application

timestamps. Supplementing this information with another database, known as ‘Tlogs’,

gave more detailed information about the actual processing operation on the tools. A

cross-reference of events using the captured lot history and tool history in Fig. 4.3, shows

the timestamped events and their information sources (Table 4.1). This information was

used to reconstruct the process cycle of a tool for the FTM application.

Table 4.1: Time-stamp sources.

Tlogs Lot History Tool History

Intro PREV OUTDATE BEGIN RUN
ExecA IN DATE END PROCESS
Done OUT DATE END RUN
MoveOut

P
R
E
V
_
O
U
T
D
A
T
E

I
n
t
r
o

E
N
D

R
U
N

I
N
_
D
A
T
E

B
E
G
I
N

R
U
N

M
o
v
e
O
u
t

D
o
n
e

E
x
e
c
A

E
N
D

P
R
O
C
E
S
S

O
U
T
_
D
A
T
E

Queueing Processing Waiting

Figure 4.3: Combined database time stamps for a single process tool.

The ‘lot history’ database records the movement of lots through a tool as well as

the lot ID and the operation ID. A single line entry corresponds with the time that

a lot completes its previous operation and departs from the previous toolset. At that

point ‘ownership’ of the lot is transferred to next operation and toolset (denoted by

the timestamp PREVOUT DATE), meaning that technically the lot is considered to be

queueing for the destination tool even though it may still be travelling towards that

tool. The timestamp IN DATE is considered the point where the lot has been assigned

to processing on the current tool, and the lot history timestamp OUT DATE is the point

where ownership is transferred to the downstream tool and the lot is considered to have

left the area.

85

Chapter 4. Case Study: FTM Application

The ‘tool history’ records events from a tool perspective. A single event recording in-

cludes the time of the event, the tool ID, the current availability status indicator (whether

it is up or down), the new availability status indicator, and the actual status of the tool.

The status of the tool indicates whether it is loading, processing, in PM, or in repair, etc.

There is no lot identification recorded in the tool history table so the data needs to be

cross-referenced with the lot history to match up the lots that passed through the tool.

The tool history table is also the primary source of all downtime information regarding

the tool.

4.3.1 Determining arrival patterns

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0 1 2 3 4 5 6 7 8 9

fr
eq

ue
nc

y

inter-arrival time (hrs)

data
exponential fit

Figure 4.4: Arrival histogram and exponential fit for lots requiring operation A
on ‘H’ toolset.

A number of operations are performed on the data. One of these is the determination

of the arrival pattern distribution of the lots to the toolset. The inter-arrival rate was

measured as the time between successive arrivals denoted by the PREV OUTDATE in

the lot’s timestamp history. A coded implementation of this algorithm can be found

in Appendix B.2.2. It was found that by categorising the arriving lots by their required

86

Chapter 4. Case Study: FTM Application

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0 1 2 3 4 5 6 7 8 9

fr
eq

ue
nc

y

inter-arrival time (hrs)

data
exponential fit

Figure 4.5: Arrival histogram and exponential fit for lots requiring operation B
on ‘H’ toolset.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 1 2 3 4 5 6 7

fr
eq

ue
nc

y

inter-arrival time (hrs)

data
exponential fit

Figure 4.6: Arrival histogram and exponential fit for lots requiring operation C
on ‘H’ toolset.

87

Chapter 4. Case Study: FTM Application

operation type, a stochastic pattern could be found for each of the lot operation types and

that typically this stochastic mechanism could be closely approximated by an exponential

distribution, as shown in Figs. 4.4-4.6.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

%
 f

re
qu

en
cy

process time (hrs)

raw data
johnson unbounded fit

Figure 4.7: Unbounded Johnson distribution fit for lots requiring operation A on
tool T2.

4.3.2 Determining lot processing patterns

The lot process duration for the model is found by assuming that the tool begins process-

ing a lot at the Intro timestamp recorded in the ‘Tlogs’ and finishes at the END PROCESS

timestamp in the tool history database. The distribution for each operation type that

passes through the toolset is then fitted to a Johnson distribution using an algorithm

described in Appendix F. Appendix F also includes a discussion on the justifications for

88

Chapter 4. Case Study: FTM Application

using the Johnson distribution for uni-modal processing time data. A coded implementa-

tion of the Johnson distribution fitting program (Appendix F.4) returns four parameters

that can be used by the simulation model to reconstruct the processing pattern on the

tool. The four parameters are; the starting location ε, the range λ, the skewness γ and

a shape factor η. Also returned, is the Johnson distribution type; bounded (SB) or un-

bounded (SU). Table 4.2 show the Johnson parameters derived from this method for each

operation type on each tool.

Table 4.2: Johnson distribution parameters for each operation on each tool in
toolset ‘H’.

operation tool type ε λ γ η no.

A

T1 SB 1.23 0.27 -0.82 1.71 244
T2 SU 1.86 0.07 0.84 1.39 250
T3 SB 1.27 0.26 0.35 0.84 170
T4 SU 1.12 0 1.54 0.86 148
T5 SU 1.18 0.01 2.29 1.7 135
T6 SU 1.17 0 1.46 0.71 106
T7 SU 1.21 0.01 2.37 1.9 127

B

T1 SU 1.45 0.01 0 0.76 304
T2 SU 1.46 0.02 1.93 1.12 90
T3 n/a n/a n/a n/a n/a 0
T4 SU 1.31 0 1.45 0.78 258
T5 SU 1.37 0 -0.27 0.68 226
T6 SB 0.99 0.36 -5 1.69 156
T7 SU 1.39 0 -0.37 0.84 81

C

T1 SU 1.58 0.01 1.44 1.87 63
T2 SU 1.6 0.01 2.09 2.01 266
T3 SU 1.66 0 2.04 1.04 164
T4 SU 1.61 0 3.56 0.98 228
T5 SU 1.49 0 -0.1 0.53 61
T6 SU 1.47 0.01 0.99 1.16 134
T7 SU 1.6 0.09 -0.06 1.53 224

Once the lots have finished processing they are removed from the tool, scanned out,

and placed back into the stocker. This is not always done immediately, and therefore,

there is an additional time delay where the lot is still ‘owned’ by the tool. Samples of

this delay were recorded by comparing the END PROCESS time in the tool history to

the OUT DATE timestamp in the lot history. Samples of these delays were collected for

each tool and an exponential distribution was fitted to the data for use by the simulation

89

Chapter 4. Case Study: FTM Application

model. Therefore, the only parameter required for the post-processing waiting time was

the mean. The mean values found are shown in Table 4.3.

Table 4.3: Average post-processing waiting time of all lots on each tool.

tool ave. move out time
(hrs)

T1 0.0663
T2 0.0848
T3 0.1133
T4 0.0757
T5 0.1645
T6 0.0277
T7 0.1449

4.3.3 Downtime event distributions

Most tools in the fab suffer from unexpected outages or unscheduled down events. They

are also subject to a number of PM procedures loosely based around daily, weekly and

monthly schedules. Capturing this information from the database required investigation

of the tool history database.

The tool is assumed to be down, i.e., unable to process lots, when the availability

status indicator in the database is checked with a ‘D’. The tool is considered to be back

online when the ‘D’ check mark is gone. The program records the corresponding tag for all

of these ‘down events’ and presents the user with an option of selecting which tags refer

to an unscheduled event and which refer to a scheduled PM event, similar to Fig. 4.8.

Distinguishing between a regular PM and unscheduled can be further complicated by

the flexibility of PM schedules. Quite often a PM can be brought forward if the tool begins

to show signs of falling outside of normal operational control parameters. The question

then becomes, whether the resulting downtime event should be considered scheduled or

unscheduled. In this situation it was assumed that if a PM was performed after there

were any OUT OF CONTROL error messages then the down event was considered to be

an unscheduled downtime, and not a PM.

90

Chapter 4. Case Study: FTM Application

Figure 4.8: User prompt to distinguish between scheduled and unscheduled down-
time events recorded in the tool history database.

Another problem when classifying the true downtime nature of the tools, is the in-

termittent downtime and offline reporting when a tool is in repair. Quite often, the tool

can report temporarily that it is back online only to be taken offline again due to some

other offline event. To overcome this, it was decided that a minimum time should exist

between down events for them to be individual and unique events. Any downtime events

within this minimum time horizon were considered to be a result of the same ‘failure’.

Recommendations from process engineers in the fab recommended that this minimum

timeframe should be approximately 1 hour.

Figure 4.9: Creation of PM schedules through a GUI wizard.

Once the scheduled and unscheduled downtime has been separated and collected, the

91

Chapter 4. Case Study: FTM Application

program attempts to classify the unscheduled downtime using an exponential distribution,

and the scheduled downtime using a Johnson distribution. Due to the flexibility of the PM

schedules the program allows the addition of custom PM schedules rather than collecting

them from the data. The custom PM entry method allows the users to apply their local

knowledge of the tools’ PM cycles and add a number of parameters for each tool, as can

be seen from Fig. 4.9. The accompanying code for this process is given in Appendix B.2.4.

4.3.4 Lot selection and prioritisation of operations

Most of the lot selection and lot-processing priority decisions in the fab are controlled by

a custom computer program. The program is quite complex and therefore, its logic is

not used or implemented in the case study. For the purposes of general applicability of

the FTM application, it was decided the priority and scheduling of the model should be

based on the following four ranking options:

Figure 4.10: VB Userform used to select lot prioritisation options for each tool.

1. No ranking of operations,

2. Rank operations by last run process,

3. Rank operations by historical data,

92

Chapter 4. Case Study: FTM Application

4. Manually input operation ranks.

The first option means that tools are free to choose any lot and will default to a first

in first out (FIFO) system. The second option ranks higher the lots that have been

processed last by the tool. This is a typical prioritisation method used when attempting

to minimise setups. The tool adopts a FIFO strategy for any tie-breaking situations.

Figure 4.11: VB Userform used to rank processing priority for operations.

The third option provided to the user is to rank the operation types by using the in-

formation stored in the database. This means that if a tool processed more of a particular

operation type during the period of investigation, then that operation type will have a

higher priority on that tool. The final option is to allow the user to custom rank the oper-

ations, as in Fig. 4.11. A user can give any permutation of ranking, including equal ranks

to two or more operation types. The accompanying code for these operation-ranking

wizards is given in Appendix B.2.5.

4.3.5 Exporting information to ExtendSim

The FTM program loads the distributional information and other simulation parameters

to ExtendSim. ExtendSim works efficiently with its own internal global arrays and pass-

ing the model parameters into these global arrays proved to be an effective solution to

communicate between ExtendSim and the VB program. Table 4.4 shows the information

93

Chapter 4. Case Study: FTM Application

passed to ExtendSim’s global arrays. It can be seen that a minimal amount of informa-

tion is required by the simulation model to reconstruct the stochastic distributions used

to model the real system.

Table 4.4: Information required by ExtendSim simulation model.

Name Dimensions Type Description

gaArrivalInfo (r,3) real Lot inter-arrival distribution.

1. Operation ID
2. Mean inter-arrival time
3. Percentage operation mix

gaTool (r,10) real Process time distribution info.

1. Tool ID
2. Tool type
3. Operation ID
4. Process time distribution type:-

1: bounded
2: unbounded

5. Johnson η parameter
6. Johnson γ parameter
7. Johnson λ parameter
8. Johnson ε parameter
9. Mean move-out time

10. Percentage of all unique operation and tool
combinations

gaPM (r,3) real Preventative maintenance distribution parameters.

1. Tool ID
2. Mean uptime
3. Mean downtime

gaDT (r,3) real Unscheduled downtime distribution parameters.

1. Tool ID
2. Mean uptime
3. Mean downtime

gaOpRank xxx (r,3) real The suffix no. xxx refers to the tool ID.

1. Operation ID
2. Ranking

(a) -1: (priority to last processed)

(b) 0: (no priorities)

(c) 1,2,3,. . . (lowest no. is highest priority)

94

Chapter 4. Case Study: FTM Application

Create lot

entities

(Generator)

Queue Lot

entities

(Queue)

Tool with

downtime

(Location)

Tool with

downtime

(Location)

Tool with

downtime

(Location)

Exit lots

(Destroyer)

Figure 4.12: Traditional job-driven graphical modelling approach.

4.4 ExtendSim DES Model

As discussed in Section 2.5.4, it can be difficult to implement a flexible reusable simulation

model using a graphical simulation package, like ExtendSim. For example, objects like

machines are treated as static blocks, while entities such as lots and batches pass through

these static objects (as in Fig. 4.12). This traditional modelling strategy is mainly due

to the job-driven paradigm that so many general purpose graphical simulators support.

In these simulators, a ‘map’ of the system is laid out using static modelling blocks to

represent fixed machinery, while the job (a moveable entity) passes through these static

resource blocks (Fowler and Rose, 2004).

This poses a problem when the number of tools and entities in the system are many,

or the number of tools is variable. Hence any change to the system specification would

require physically adding and/or removing blocks to or from the model. In order to

circumvent this, it was decided to treat tools and downtimes as entities that circulate

a system of processes (modelled using static blocks). This way, it was easier to control

aspects of the system such as the number of tools, the tool attributes and the tool

downtime or PM events. This also meant that only the minimum amount of blocks

were required to model the system (approximately 30), as can be seen from Fig. 4.13,

95

Chapter 4. Case Study: FTM Application

F
ig

u
re

4.
13

:
S

cr
ee

n
sh

ot
of

E
x
te

n
d

S
im

m
o
d

el
u

se
d

b
y

th
e

F
T

M
ap

p
li

ca
ti

on
.

96

Chapter 4. Case Study: FTM Application

which drastically reduced the amount of code ExtendSim had to process, and significantly

reduced the model execution run time.

4.4.1 Lot Generator block

The stock Create block in ExtendSim is useful for modelling lot arrivals with a singular

stochastic pattern or from a single distribution type, however, for the model required

here it is insufficient when there are a number of different lot types (distinguished by the

operation type). As an alternative, a multi-lot generator block was custom built using

the ModL language in ExtendSim.

Figure 4.14: Dialog of the custom Lot Generator block used for the FTM appli-
cation.

This block reads all the lot inter-arrival distribution information that was passed in

from the VB application. The block then reconstructs the distributions, samples from

them, and creates a lot entity as required during runtime. Using this method, any number

of inter-arrival patterns can be modelled, and thus, only one block is needed instead of

using an individual block for each arrival pattern. The Lot Generator block also attaches

the necessary attribute information to the outgoing lots including; the wafer quantity

97

Chapter 4. Case Study: FTM Application

of the lot, the operation type and item type. The code for this block can be found in

Appendix B.4.1.

4.4.2 Tool Generator block

The Tool Generator block (Fig. 4.15) reads the gaTool global array that was populated

by the VB program. At the start of the simulation, the block creates a tool item for

each tool in the array and attaches attribute information such as tool name, tool type,

allowable operations, processing distribution information for each operation and the mean

move-out time for that tool (see Table 4.5). The tool items are then released into the

model. This method ensures that any number of tools or any tool configuration type

can be loaded into the model extremely quickly and easily without having to directly or

physically alter anything in the graphical model. The ModL code for this block can be

found in Appendix B.4.2.

Table 4.5: Attributes used by ExtendSim model items.

Attribute Name Description

opID The name of the operation
itemType The item type:

1. Lot

2. Tool

3. Downtime

4. Preventative Maintenance

toolID The tool type:

1. Single process

2. batch

3. Cascade

4. Batched cascade

5. Cascaded batch

MTBF Stores the mean time before failure
MTTR Stores the mean repair time
entryTime Timestamp of when the item entered

the model

98

Chapter 4. Case Study: FTM Application

Figure 4.15: Dialog of the custom Tool Generator block used in the FTM appli-
cation.

4.4.3 Unscheduled downtime generator block

Traditionally most graphical simulation software packages allow the user to input down-

time and repair characteristics to machines or processes that are modelled using a single

block. However, for the flexible model described here, with tools modelled as items circu-

lating the system, a workaround was required to accurately model downtime and repair

patterns. Therefore, it was decided that downtime events should be modelled as items

similar to how tools were modelled. The unscheduled downtime items are created by a

custom block (Fig. 4.16) which assigns attribute information and releases the items into

the model. Once a tool is due to go into an unscheduled downtime event the downtime

item searches for its matching tool, prevents it from joining with a lot and restricts it

from any other activity. The ModL code for this block can be found in Appendix B.4.3.

4.4.4 PM Generator block

The PM Generator block (Fig. 4.17) is similar to the unscheduled downtime generator

block, both in terms of its function and design. The main difference is that it creates

99

Chapter 4. Case Study: FTM Application

Figure 4.16: Dialog of the custom unscheduled downtime generator block used in
ExtendSim.

multiple PM items for each tool to represent the various maintenance cycles experienced

by the tools. The ModL code for this block can be found in Appendix B.4.4.

Figure 4.17: Dialog of the custom PM Generator block used in ExtendSim.

4.4.5 Pairing block

The Pairing block is responsible for storing any of the necessary tool, lot, PM or downtime

items to be paired, and releasing them to signify the occurrence of some event. For

example, the pairing of a lot and a tool would signify a lot being processed on a tool.

The pairing of a tool and a downtime item signifies the tool going offline for unscheduled

100

Chapter 4. Case Study: FTM Application

repair. The Pairing block holds all these items when they are dormant. For example, if

a lot is waiting in the block then it is waiting for a tool and none is available. If a tool

is residing in the block, then it is considered idle and available with nothing to process.

If either a PM or unscheduled downtime item is residing in the Pairing block, then it is

awaiting return of its matching tool to pair with, which signifies that the tool has gone

offline.

Is item a lot? Is item a tool? Is it an offline item?No No

Are there tools

idling?

Are there offline

items waiting?

Are there tools

idling?

Add to lot item

queuing list

Item enters

Pairing block

Add to tool item

queuing list

Add to offline item

queuing list

Yes

No

Yes

Yes

No

Yes

Are there lots

waiting?

No

No

Yes

Run

CheckLots()

procedure

Run

CheckOffline()

procedure

Yes

Yes

Figure 4.18: Logic code execution for Pairing block used in the FTM application.

The concept of a tool waiting to go into an offline state, as a result of an unscheduled

downtime, seems contrary to the definition of unscheduled downtime. Nevertheless, this

is a consequence of modelling tools and downtime as items, as opposed to modelling them

using the traditional method. If a tool is due for an unscheduled downtime event, it must

wait until it has finished what it is doing first, which could be processing a lot or currently

101

Chapter 4. Case Study: FTM Application

in repair. This means that there will typically be a delay between the simulation MTBF

and the actual MTBF. No investigation was conducted into the extent of this difference,

however, the difference should be minimal if the nominal MTBF is far larger than a

typical PM repair time or lot process time. The impact would also be minimal if the

waiting tool had a low utilisation.

There are two main procedures used in the Pairing block; CheckOffline and

CheckLots. The conditions required to run each are shown in Fig. 4.18. The CheckLots

procedure works by searching for allowable operations for each tool in the Pairing block’s

internal tool item list and selecting one (if available) based on the ranking assigned by

the user (see Section 4.3.4). The CheckOffline procedure checks the block’s internal

tool list and its offline item list for any matching tool names. If any are found, the tool

and the offline item are paired and released from the block, signifying that the tool has

gone offline. The ModL code for the custom Pairing block is given in Appendix B.4.5.

Figure 4.19: Details of lots residing in the Pairing block during runtime.

The Pairing block’s dialog has dynamic tables which update a list of the items stored

in the block, which was helpful for debugging. Figure 4.19 shows the Lot Details tab

which holds information about lots that are currently in the block and waiting for a tool

to pair with, and be processed.

102

Chapter 4. Case Study: FTM Application

4.4.6 Activity delay paths

Once items have been paired and released (Fig. 4.20), they are sent to activity delay paths

to represent the required operation or event. A lot and tool pairing needs to be delayed

to represent processing and unloading. This is done by two separate ExtendSim Activity

blocks which hold the items for a specified period of time. The first delay block, used

to represent processing, samples from a Johnson distribution for the Johnson parameters

attached to the lot. The second delay block, the Move Out block, is used to represent the

time taken for an operator or machine to place the lot back into the stocker. It samples

an exponential distribution taken from the mean move-out time parameter attached to

the lot. These Activity blocks are stock from the ExtendSim libraries and can hold any

number of items. During the simulation, all processing lots can be found in either of these

blocks at any given time. After the lot and tool have finished processing and unloading

they are unpaired, the lot leaves the system and the tool re-enters the Pairing block again.

Similarly, a tool/offline item pairing will be sent through a delay path to represent

the repair of the tool or a maintenance task. The repair time is calculated by sampling

from an exponential distribution with a mean based on the MTTR parameter attached

as an attribute to the tool. Any tools in the repair Activity block are considered offline.

Similarly, any offline items waiting in the MTBF Activity block before entering the Pairing

block signifies that its corresponding tool is online. After the repair/maintenance event,

the tool and offline item are unpaired, the tool returns to the Pairing block, while the

offline item returns to the MTBF Activity block where it is held until the next MTBF

time expires

4.5 Recording Simulation Data from ExtendSim

In a traditional modelling setup, it is possible to collect summary information directly

from the stock blocks as they carry statistics for most common metrics. However, because

the flexible modelling strategy implemented here uses standard blocks in an unorthodox

103

Chapter 4. Case Study: FTM Application

Flexible Multi-

Distribution lot

generator

Tool Generator

Downtime item

Generator

Lot Queueing

System

Tool Queueing

System

(Idle Tools)

Pair Lot

to Tool

Processing

Delay Path

Unpair Lot

and Tool

Lot Exit

PM item

Generator

Downtime Wait

(Tools online)

Initiate

Offline

Event

Tool Repair or

PM Delay Path

Unpair tool

and

downtime

item

Tool

Return

Offline

Item

Return

Tool

Return

Figure 4.20: Flow system for flexible simulation model used in the FTM applica-
tion.

way, the statistics collected are invalid. Therefore, to collect statistics, it was decided to

record timestamp information in the model, similar to how it is recorded in the actual

fab. At various points through the model, specific event information is recorded, as in

Table 4.6.

Table 4.6: Model time stamps recorded during runtime.

lot tool offline

start time start time start offline time
start process start process time end offline time
end processing end process time

start offline time
end offline time

This information is recorded in the ExtendSim database. Two tables are used; lotTrace

and toolTrace, that hold the timestamps for the lots and the tools, respectively. Once the

104

Chapter 4. Case Study: FTM Application

model has finished executing, control is returned to the VB program and it imports the

ExtendSim database using functions included in Appendix B.5.

4.6 Generating the Operating Curve

The cycle time and utilisation of the system are calculated for each design point to capture

a full map of the operating curve for the system. Cycle time is calculated by collecting

the average time spent in the simulation model for all the lot items. Utilisation at each

design point is calculated from the tool timestamps and an estimate of the workstation

utilisation is made by averaging each tool’s utilisation. The operating curve is displayed

to the user in an embedded window in VB.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

cy
cl

e
tim

e
(h

rs
)

utilisation

M/G/m queueing approximation
FTM simulated operating curve

Figure 4.21: The operating curves generated by the simulation and the equivalent
M/G/m queueing approximation for the system.

105

Chapter 4. Case Study: FTM Application

Table 4.7: Utilisation and cycle time predicted by the simulation model..

u CT
(hrs)

0.111501 1.472051
0.22566 1.481629
0.341053 1.499786
0.456686 1.530498
0.570868 1.630778
0.683033 1.811551
0.805738 2.486907
0.91656 4.522587
0.998243 71.99577†

† The simulation did
not achieve steady
state.

Fig. 4.21 shows the calculated queueing theory approximation (see subsequent section)

and the equivalent resulting operating curve given by the FTM application, based on

values given in Table 4.7. Above a loading level of u ≈ 0.92, the model became unstable

and could not achieve steady state. Hence, the last design point was excluded from the

analysis. The graph shows that the simulated curve increases faster towards the higher

loading level and appears to take a steeper ascent at around u ≈ 0.75, whereas, the

queueing theory curve maintains its horizontal asymptote at higher loading levels.

4.6.1 Estimating the theoretical operating curve

Given that the lot inter-arrival times are assumed to be exponential and the process times

are modelled using the Johnson family of distributions, the system operating curve can

be estimated using an M/G/m queue. Note that Figs. 4.4-4.6 show that the exponential

distribution is appropriate for this case study and Appendix F promotes the case for

using the Johnson distribution as a good estimator for processing time distributions.

Assuming arrivals according to a weighted average of the arrival rate ra for each

operation i, as in Eq.(4.1), where πi is the proportionate operation mix,

106

Chapter 4. Case Study: FTM Application

ra =

n∑
i=1

πi rai

n
, for i = 1, 2, 3, . . . n, (4.1)

then the average utilisation u of the system can be calculated from the arrival rate ra,

the number of machines m, and the mean effective process time te according to,

u =
rate
m

(4.2)

The mean effective process time te is calculated from the weighted average of all operations

given by,

te =

n∑
i=1

πi tei

n
, for i = 1, 2, 3, . . . n (4.3)

The squared coefficient of variation for process time c2
e is calculated by using an

operation weight factor. It is important to calculate c2
e for each operation using the

operation’s individual mean process time te and standard deviation σe and then averaging

with a weight factor across the operations as in Eq.(4.4). If c2
e is calculated collectively

for all of the operations, then the underlying stochastic mechanisms of the processing

patterns could be lost.

c2
e =

n∑
i=1

πi

(
σ2
ei

t20i

)
n

, for i = 1, 2, 3, . . . n (4.4)

CTM/G/m = te

(
1 +

(
1 + c2

e

2

)
u
√

2(m+1)−1

m(1− u)

)
(4.5)

Using these values and Eq.(4.5), an estimated operating curve can be found that is

used as a guide to specifying the parameters of the simulation study (see Chapter 3). It

is also useful for comparing the difference between the simulation model operating curve

and the analytical curve derived from the queueing approximation.

107

Chapter 4. Case Study: FTM Application

4.7 Model Verification & Validation

Under normal circumstances the model can be verified using methods that mainly involve

some sort of comparison with data from the real system. In the case of a flexible reusable

generic model intended for a range of real systems, verification becomes a more difficult

task. This section discuses how the model was verified for the case study only. Further

verification tests would be required before it could be successfully deployed to other

toolsets. Some of the verification techniques, summarised by Whitner and Balci (1989)

and listed in Appendix G.1, were applied, and the results are briefly discussed in Table 4.8.

Table 4.8: Techniques used to verify the FTM application.

Type Technique Results and Comments

Informal Walk-through The structured walk-through was more heavily used as a valida-
tion tool (see Table 4.9) and used little to verify the program. This
was due to a lack of personnel on-site that had both an intimate
knowledge of the toolset being used in the case study and the
programming languages used for the application (VB and ModL).

Code inspection The source code was reviewed and inspected during model build
and after the final version. Much of the additional code included
was to compensate for the irregularities in the source data.

Static Syntax analysis Modern software compilers ensured that the model syntax was
complete and verified. The application code was compiled using
Visual Basic for Applications (VBA) in Microsoft Excel. The
ModL code was verified using ExtendSim’s internal code compiler.

Structural analysis Structural analysis was performed according to the best practices
of coding. Many comments were included with the code to ensure
a clear and unambiguous intent of the code.

Dynamic Top-down testing Top-down and bottom-up testing was applied using a
black-box style that checked each model hierarchy with
dummy entities to ensure its portion was consistent and did
not produce erroneous outputs.

Bottom-up testing
Black-box testing

Stress testing Lot arrival rates were gradually increased until the model became
overloaded and unable to reach steady state. Also, MTBF and
MTTR values were increased gradually causing very small tool
availability. This resulted in very long queueing times in the model
as expected.

Debugging Debugging was an ongoing process during the model build.
Execution tracing Data flow analysis and model tracing was performed for the sim-

ulation model by introducing only one lot into the system, and
watching its attributes change during runtime. The lot experi-
enced no queueing and minimal process time, proving that the
model data flow was correct.

continued on next page

108

Chapter 4. Case Study: FTM Application

continued from last page

Execution monitor-
ing

Trace animation capabilities in ExtendSim were used to validate
the entity flow during runtime.

Regression testing Regression testing (repeating the above procedures) was per-
formed after each new model version.

The final model was validated using the validation techniques outlined in Table 4.9.

Again, the model was found valid for the toolset under analysis, but further validation

tests would have to be performed before declaring the model valid across a range of

toolsets. Table 4.9 shows a summary of the tests that were performed on the model. An

explanation of each test can be found in Appendix G.2.

Table 4.9: Techniques used to validate the FTM application.

Technique Results and Comments

Animation ExtendSim’s animation allows various animation speeds that facilitated
better understanding of the model. It also allowed entity icons to be
changed depending on their status which was useful during the validation
process.

Comparison to other
models

Queueing model results were compared to ensure that the ExtendSim
model was operating within normal ranges.

Degenerate tests Degenerate tests were performed by gradually increasing the arrival rate
of test lots into the model and forcing utilisation of the toolsets to ca-
pacity, making the model unstable and unable to attain steady state.
This behaviour was expected and helped in part to validate the model
and examine the boundaries of its operation.

Face validity Face validity was one of the most frequently used techniques throughout
the modelling process. Interviews and consultations with fab personnel
was key to the construction of the conceptual model and ultimately the
most effective method of validating the simulation model.

Historical data valida-
tion

Historical data records of cycle time data were compared to the cy-
cle times reported by the simulation model. The results are shown in
Fig. 4.22.

Internal validity Model output data at the lower design points (u ≤ 0.8) showed very little
variation in the output performance metric across replications. This
confirmed that results were consistent across runs and that the model
was stable.

109

Chapter 4. Case Study: FTM Application

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

cy
cl

e
ti

m
e

(h
rs

)

utilisation

queueing theory approximation
FTM operating curve

T1

T3
T2

T4T5T6

T7

toolset average

Figure 4.22: Tool operating points from historical records plotted alongside the
queueing approximation and simulated operating curves.

4.8 IDEF0 Model Interpretation

Figures 4.24-4.30 show a set of IDEF0 diagrams that describe the model in depth. IDEF0

diagrams are usually used to capture the process flow in a system, although they are

flexible enough to be adapted for other purposes. Here, they are used to describe the

model from the viewpoint of the modeller, whereby the resources used by an IDEF

process are the blocks that perform functions in ExtendSim, as in Fig. 4.23. The library

that the block belongs to (denoted by .lix ending) is also given. There are three main

libraries used; item, value and custom. The custom library holds all the blocks that were

built to facilitate the FTM application in the absence of appropriate blocks provided by

ExtendSim. Figure 4.31 also shows an IDEF1x diagram of the objects and attributes

used to describe the entities in the model.

110

Chapter 4. Case Study: FTM Application

Process ID

Process Nameinputs (item flow,

information)

controls (item

attributes and

information)

outputs (item flow,

operation)

mechanisms

(ExtendSim

blocks)

Figure 4.23: IDEF0 standard adapted to the viewpoint of the modeller.

TITLE:NODE: NO.: FTM001A-0 Overview

0

FTM002

Run simulation

Purpose: To describe the basic concepts of the item flows in the FTM ExtendSim model.

Viewpoint: Modeller

Local database

information

Results database

ExtendSim model

User

 configurations

Figure 4.24: Overview IDEF0 diagram (A-0) for FTM ExtendSim model.

111

Chapter 4. Case Study: FTM Application

TITLE:NODE: NO.: FTM002A0 Run simulation

A4

FTM006

Service

A5

FTM007

Repair

A1

FTM003

Generate Lots

A2

FTM004

Generate Tools

and Downtime

A3

FTM005

Pair Items

lot

tool

tool

lot/tool

tool/

downtime

tool

downtime

downtime

Figure 4.25: ‘Run Simulation’ (A0) IDEF0 diagram for FTM ExtendSim model.

TITLE:NODE: NO.: FTM003A1 Generate lots

A7

Generate the lots and set basic lot

attributes

A8

Set additional lot attributes

lot

waferQty opID itemType

lot

lotNo

A9

Add entry time to LotTrace database

lot
simulation time

Lot Generator ES

Block (custom.lib)

 ES Set Block

(item.lib)

 ES Write Block

(value.lib)

 ES Item Block

(item.lib)

 ES Equation

Block (item.lib)

 ES Simulation

Variable Block

(value.lib)

lotNo opID

lotTrace

entry time

Figure 4.26: ‘Generate Lots’ (A1) IDEF0 diagram for FTM ExtendSim model.

112

Chapter 4. Case Study: FTM Application

TITLE:NODE: NO.: FTM004A2 Generate tools and downtime

A21

Generate the tools and set basic

attributes

A22

Set additional tool details

tool

itemType toolID

tool

numRuns

tool

Tool

Generator ES

Block

(custom.lib)
 ES Set Block

(item.lib)

toolType

 ES Information

Block (item.lib) A23

Add entry time to ToolTrace database

simulation

time

 ES Write

Block

(value.lib)

 ES Equation

Block (item.lib)

 ES Simulation

Variable Block

(value.lib)

toolID

A24

Generate the unscheduled

downtimes and set basic attributes

tool return

Downtime

Generator ES

Block (custom.lib)

A25

Generate the PM's and set basic

attributes

PM

Generator ES

Block

(custom.lib)

itemType toolID MTBF

A26

Hold items for MTBF period

unscheduled downtime

PM

 ES Get Block

(item.lib)

 ES Activity

Block (item.lib)

 ES Random

Number Block

(value.lib)

MTTR

itemType toolID MTBF MTTR

downtime

MTBF
random

sample

downtime

toolTrace

entry time

Figure 4.27: ‘Generate Tools and Downtime’ (A2) IDEF0 for FTM ExtendSim
model.

TITLE:NODE: NO.: FTM005A3 Pair items

A31

Place in lot queue

A32

Place in tool queue

A33

Place in

downtime/PM

queue

lot

tool

downtime

A34

Pair lot and tool

A35

Pair tool and

downtime

lot

downtime

tool

lot/tool pair

tool/downtime pair

toolID

toolID

lotID

ES Pairing Block (custom.lib)

Figure 4.28: ‘Pair Items’ (A3) IDEF0 diagram for FTM ExtendSim model.

113

Chapter 4. Case Study: FTM Application

TITLE:NODE: NO.: FTM006A4 Service

A42

Process lot on tool

A43

Move lot

from tool

A45

split lot and tool

and destroy lot

A41

Add start process time to LotTrace

database

simulation

time

 ES Write Block

(value.lib)

 ES Equation

Block (item.lib)

 ES Simulation

Variable Block

(value.lib)

lotNo opID

 ES Equation

Block

(item.lib)

 ES Activity

Block

(item.lib)

processing

parameters

from DB

lotTrace start time

lot/tool

pair

moveOut

parameters

from DB

 ES Equation

Block

(item.lib)

 ES Activity

Block

(item.lib)

lot/tool

pair

lot/tool

pair

A44

Add end process time to

LotTrace database

simulation

time

 ES Write

Block

(value.lib)

 ES Equation

Block

(item.lib)

 ES Simulation

Variable Block

(value.lib)

LotNo opID

lotTrace

start time

lot/tool

pair

lot/

tool

pair

tool
 ES Unbatch

Block

(value.lib)

 ES Exit

(value.lib)

Figure 4.29: ‘Service’ (A4) IDEF0 diagram for FTM ExtendSim model.

TITLE:NODE: NO.: FTM007A5 Repair

A52

Repair tool

A51

Add start repair to ToolTrace

database

simulation

time

 ES Write Block

(value.lib)

 ES Equation

Block (item.lib)

 ES Simulation

Variable Block

(value.lib)

toolID

 ES Equation

Block

(item.lib)

 ES Activity

Block

(item.lib)

MTTR

toolTrace start

repair time

tool/

downtime

tool/

downtime

tool/downtime

A53

Add end repair time to

toolTrace database

simulation

time
toolID

 ES Random

Number Block

(item.lib)

A54

Split tool and

downtime

tool

 ES Unbatch

Block

(value.lib)

 ES Exit

(value.lib)

tool/

downtime

downtime

 ES Write

Block

(value.lib)

 ES Equation

Block

(item.lib)

 ES Simulation

Variable Block

(value.lib)

toolTrace end

repair time

Figure 4.30: ‘Repair’ (A5) IDEF0 diagram for FTM ExtendSim model.

114

Chapter 4. Case Study: FTM Application

Operation

Lot

lotID

itemType

opID

waferQty

lotStartTime

Tool

toolID

itemType

Downtime

toolID

itemType

MTBF

MTTR

PM

toolID

itemType

MTBF

MTTR

UnscheduledRepair ScheduledRepair

Figure 4.31: IDEF1x diagram showing the objects and attributes used to describe
the entities in the FTM ExtendSim model.

4.9 Summary

This case study showed that the FTM application can be successfully used to generate

operating curves for toolsets or functional areas in a semiconductor fab. One of the

largest difficulties during development of the application was processing the raw data

retrieved from factory databases. Despite an abundance of data being available and

the relative ease of extraction, there were many issues over interpretation of the data.

Understanding what actually happened in the fab from the historical data timestamps

was a difficult and a very time consuming process. Any tool errors or breakdowns often

resulted in confusing entries in the historical records that were difficult to legislate for in

the program. Nevertheless, the concept of the application was proved, and it provides

a basis and framework that would allow such an application to be further tested or

ultimately rolled out factory-wide.

In general, the theoretical operating curves based on queueing approximations seemed

to show that the tools are efficient and exhibit a very low variation in process times for

each operation. This is expected given that the tools are highly automated and the

processes they perform are strictly controlled. Some of the model validation methods

115

Chapter 4. Case Study: FTM Application

exposed other local decision-making factors that were not anticipated and could not be

accounted for in the model. For example, it could not account for artificial queueing

at the toolset that was implemented by operators if a downstream toolset went offline.

Instead, the model assumed that outside factors were independent. This is not always

the case, and it was found that operators attempted to share the burden of queueing by

withholding lots in some situations.

Similarly, re-entrancy could not be effectively or realistically modelled by a single

toolset simulation, particularly if the re-entrant loop passes back through the same toolset

soon afterwards. In the real system, the tool availability and departure variability of a

highly re-entrant toolset would have a large impact on the arrival pattern to the toolset

and the model could not account for this behaviour.

Therefore, it was concluded that analysis of a toolset in isolation might be insufficient,

and it was decided to produce a flexible reusable model for generating operating curves

on a factory-wide scale, where re-entrancy and other such factors could be captured more

effectively.

116

CHAPTER 5

Semiconductor Fab Model A

There are many issues involved in implementing a simulation study of a semiconductor

fabrication plant. Primarily, the complexity and the scale of the real system means that

collecting data, building the model and interpreting the results can have a very long

lead time. This chapter describes a discrete event simulation model that attempts to

overcome these issues and reduce the project lead time by being fully flexible, automated

and reusable. The aim of this model is to allow engineers to experiment with a variety

of configurations and production strategies in the fab. The structure of the model is

based on the Semiconductor Wafer Manufacturing Format Specification, created by Fei-

gin et al. (1994), that outlines an information model for creating sample datasets from

semiconductor factories. The discrete event simulation (DES) model was created using

ExtendSim modelling software and is encapsulated in a Visual Basic (VB) application.

The application constructs an experimental framework, generates a simulation model

and displays the factory operating curve. The result is a full simulation framework that

117

Chapter 5. Semiconductor Fab Model A

automates many of the time consuming tasks and allows the user to compare alternate

systems and/or operational policies, rapidly and confidently. Finally, this chapter exam-

ines a dataset provided by the specification and shows how the operating curves from

the flexible modelling application can be used to identify an potential weaknesses in the

fab and offer some suggestions on how to minimise cycle time and maximise the system

efficiency.

5.1 Semiconductor Wafer Manufacturing Data For-

mat Specification

The Semiconductor Wafer Manufacturing Data Format Specification was formed to ad-

dress the lack of factory level representative data available for academics and industrial

engineers to experiment with product flows and compare fab specifications. Currently

there exists eight sample datasets, some of which have been constructed by the authors

of the format and others that have been donated by anonymous fabs. The datasets

are available to download from http://wwwalt.sim.uni-hannover.de/˜svs/

wise0910/pds/masmlab/factory_datasets/. The format consists of six files

per dataset. The purpose of each file is listed in Table 5.1 and further information about

what is contained in the files can be found in Tables C.2-C.6 in Appendix C.

Table 5.1: Data files used for wafer data format specification.

File Suffix ID Description Reference

Process Route pr Process route information for all processes Table C.2
Rework Sequences rw Information on rework sequences Table C.3
Tool Set ts Information on tools Table C.4
Operator Set os Information on operators Table C.5
Volume Release vr Release rate information Table C.6
Comment File cf General comments and sample run results n/a

The volume release file divides product groups into specific recipes known as process

flows, and describes how the product is released into the factory. The process route file

118

http://wwwalt.sim.uni-hannover.de/~svs/wise0910/pds/masmlab/factory_datasets/
http://wwwalt.sim.uni-hannover.de/~svs/wise0910/pds/masmlab/factory_datasets/

Chapter 5. Semiconductor Fab Model A

details the operations list (or steps) that each process flow follows. Each step contains

processing information for a particular operation including batching and setup require-

ments, type of operator, toolset and processing pattern. It also contains post-processing

information such as yield and rework probabilities and transport mechanisms.

The rework sequence file is very similar to the process route file and contains all the

processing and routing information for lots that must undergo a rework path. Once this

rework path is complete, lots rejoin their previous process route.

The operator set file contains information about the quantity of operators and their

break requirements. Similarly, the toolset file contains tool information such as tool

quantity per toolset, wafer-based and time-based downtime patterns (maximum of five)

and the percentage time required by operators for each processing phase on the tool. The

comments file contains summary results from sample simulations and any other general

information about the factory.

5.2 Project Objectives

In the initial scoping phases of the project, some objectives/requirements were laid out

such that the model would be automated, user friendly, flexible and reusable. These

requirements are listed as follows,

1. The input analysis (experimental setup) must be fully automated and statistically
sound,

2. The output analysis should be automated, graphical and compare operating curves,

3. Users should not require any ‘expensive’ software,

4. The model should be completely self-contained and not require any alteration or
interaction from the user,

5. The model should display animation (if required) for model validation and verifi-
cation purposes,

6. The model should be documented using a consistent systems modelling method
(e.g. SysML or IDEF diagrams).

119

Chapter 5. Semiconductor Fab Model A

The model is designed to replicate real phenomena associated with semiconductor

fabs such as tool setups, lot scrapping, downtime, rework, re-entrancy, tool diversity and

varying product routing (as discussed in Section 2.1.3). This model aims to show how

the full specification can be implemented using an efficient reusable simulation modelling

framework that can address any factory configuration posed by the information model.

5.3 Modelling Strategy

Modelling using the traditional job-driven method (described in Section 4.4) creates a

complex and rigid model with multiple routes and connections. Model size in graphical

simulation packages is generally dictated by the number of blocks in the model. These

blocks hold many lines of (often superfluous) code. Therefore, the lesser the number of

blocks, the less code to be executed and ultimately, the faster and more efficient the model

will be. For example, dataset 6 has over 100 toolgroups (see Table C.7 in Appendix C).

If the average number of tools per group is even three, then the number of tools for the

dataset is about 300. Hence, the model would require at least 300 blocks to model the

tools. In fact, this figure is more likely to be about three or four times this when one

considers the periphery blocks usually required to control the tool blocks in ExtendSim.

Table 5.2: Comparison of the traditional use of basic simulation objects and an
entity-centric approach to model a semiconductor fab.

Article/Event Traditional approach Entity-centric approach

Lots Modelled as entities, created us-
ing generators and deleted by de-
stroyers.

Modelled as entities, created using gen-
erators and deleted by destroyers.

Tools Modelled as locations. Modelled as entities, created using gen-
erators and deleted by destroyers.

Operators Modelled as resources. Modelled as entities, created using gen-
erators and deleted by destroyers.

Downtime Events Modelled as resources. Modelled as entities, created using gen-
erators and deleted by destroyers.

Buffers and Stock-
ers

Modelled as queues. Modelled using single queues.

Material Handling
Systems

Modelled as resources. Modelled as entities, created using gen-
erators and deleted by destroyers.

120

Chapter 5. Semiconductor Fab Model A

Therefore, it is not possible to create a flexible and efficient model with this strategy.

An alternative technique, entity-centric modelling, used in the Flexible Toolset Modelling

(FTM) application discussed in Chapter 4 involves using less blocks and modelling as

many objects and events using entities, as shown in Table 5.2. The entities do not

hold any program code, the only information required is attributes that describe the

entity. The model keeps an internal storage list of the location of each of the entities

circulating the model. By removing the notion that entities are widgets that circulate

the real system, and moving towards a conceptual model where entities such as lots,

batches, tools, downtime events and repair events circulate the system and mate with

other entities to perform a task, the model becomes more flexible.

Table 5.3: Entity-centric approach to modelling semiconductor fabs.

Article/Event Simulation modelling structure

Lots and Batches Modelled as entities,created using generators and deleted by de-
stroyers.

Tools Modelled as entities, created using generators.
Processing Lot and tool entities are paired and delayed in an infinite capacity

location.
Operators Modelled as entities, created using generators, delayed at infinite

capacity locations to represent operator jobs or breaks.
Downtime Downtime items modelled as entities, created using generators.
Buffers and Stockers Modelled as common infinite queues.
Material Handling Systems Modelled as entities.

By pairing and splitting these entities, it is possible to reduce the size of the model

down to only a few blocks. These blocks are circulated by entities that represent a host

of events, articles and structures of the real system. Table 5.3 shows how the entities are

joined, delayed and split to represent activities in the fab.

Fig. 5.1 shows an IDEF1x interpretation of the objects and entities in the models.

There are five atomic (indivisible) types of entities that circulate the model; lot, tool,

downtime, operator and break. From these, a number of other superclass entities can

be created. A batch superclass consists of a number of instances of the lot class. A

process superclass consists of a tool instance paired with either a single lot or with a

batch instance. A repair superclass is made up of a single instance of a tool and a single

121

Chapter 5. Semiconductor Fab Model A

Lot

batchIdentifier (FK)

lotID

itemType

processFlowID

productID

stepID

waferQty

lotStartTime

RWWaitID

prRow

rwRow

wafersToScrap

wafersForRework

origWaferQty

RWType

origLotLoopID

RWReturnStepID

Tool

toolID

itemType

toolsetID

uniqueToolID

maintOp1

maintOp2

maintOp3

maintOp4

maintOp5

toolLoopID

numRuns

MRBF1

MRBF2

MRBF3

MRBF4

MRBF5

maintTime1

maintTime2

maintTime3

maintTime4

maintTime5

lastSetupID

lastProcessFlow

maintID

processStage

lastRWFlag

lastRWSeqID

lastSetupID

Operator

uniqueOprtID

operatorSetID

itemType

opLoopID

startTime

Break

uniqueOprtID

operatorSetID

itemType

breakLength

duration

Batch

batchIdentifier

batchID

lotBatchSize

minBatchSize

maxBatchSize

Downtime

toolID

itemType

toolsetID

uniqueToolID

TBF

DTOperator

duration

Process Item

setupSpecTime

setupGroupTime

oprLoadFraction

LoadTime

oprUnloadFraction

UnloadTime

oprProcFraction

ProcessTime

processStage

setupGroupID

Repair Item

durationSample

OperatorBreak Item

durationSample

Figure 5.1: Modelled entities and their attributes described using IDEF1x.

instance of a downtime class, and an operatorbreak instance consists of single instances of

an operator and break class. The instances formed during model runtime, represent the

state of the child classes. For example, an instance of a process superclass means that

its child lot instance is undergoing an operation on the other child member, an instance

of the tool class.

122

Chapter 5. Semiconductor Fab Model A

5.4 Model Input and GUI

The model is controlled from a VB application that invites the user to input their choice

of dataset (Fig. 5.2). Other selections that can be input include the release pattern,

number of warm up increments and the simulation run length (Fig. 5.3).

Figure 5.2: Dialog option available for user to select a dataset.

To increase the anonymity of the Sematech datasets the volume release file has no

release pattern implied or otherwise. To compensate, five options are available for the

user when selecting an appropriate release rate; twice daily, daily, weekly, fortnightly

and exponentially distributed. The first four are based on a constant output after every

defined period of time, the ‘exponentially distributed’ option computes the average wafer

starts per hour based on the volume release per week and uses this average to construct

an exponentially distributed lot inter-arrival process for the model.

Figure 5.3: Additional release pattern options for selection.

123

Chapter 5. Semiconductor Fab Model A

Other non-default options include the warm-up period increment which aids the

smoothing of the output from the simulation performance measure (cycle time). If the

simulation is overloaded, that is, there is a surplus of input over capacity, then a plot of

the cycle time output is usually a ‘smooth’ straight line heading to infinity with very little

‘noise’. Although one could never say for certain, typically, such an output is indicative

of a model that would never attain steady state, irrespective of how long the model is run

for. Therefore, it is necessary to allow the user to visually check that this is not the case,

by evaluating the cycle time output from the model. This issue is discussed in greater

detail in Section 5.6.7.

5.5 Communicating with ExtendSim from VB

The ExtendSim simulations are controlled from the VB program and a number of func-

tions and subroutines were created as a wrapper for ExtendSim which allows the program

to populate the database, run the simulations as a background process and extract the

simulation outputs. The wrapper functions are listed in Table 5.4 and the code is included

in Appendix B.3.

5.6 Model Description

The program begins by pulling the text based datasets from a local source, and formatting

them for ExtendSim’s database. The subroutines and programs required for this process

can be found in Appendix D.1. The following section describes how the system model is

generated.

5.6.1 Lots and batching

Lots are created according to the volume release data file and the release pattern selected

by the user. Lots are assigned a Product ID and a Step ID which makes its next operation

124

Chapter 5. Semiconductor Fab Model A

Table 5.4: VB wrapper functions for ExtendSim.

Function Description

RetrieveModel Opens the ExtendSim model file.
GetExtendAppPath Finds the local ExtendSim installation.
PassAllDataToExtendSim Sends all the data and distribution information from VB to

ExtendSim.
RunExtendSimModel Runs the model.
SaveAndCloseExtendSimModel Saves the model and cleanly exits ExtendSim.
PassArrayToExtendSim Creates an ExtendSim array and populates it with the con-

tents of a VB array.
PassRunInfo Informs ExtendSim of some essential run parameters such

as start time, end time and the number of replication to
perform.

ExtendDBTableWrite Writes an ExtendSim database to a text file in the root
folder of the ExtendSim application.

ReceiveDBfromExtendSim Creates an array in VB and populates it with an ExtendSim
array.

ReceiveArrayfromExtendSim Converts a VB array to string and passes it to a newly
created ExtendSim array.

SimAnimation Turns the simulation animation on or off.

a unique step. Once lots have completed all their operation steps listed in the process

route file they are exited from the system. Note that the model is not pre-populated or

initialised with any pre-existing lots, and that the system starts from empty.

During model execution, the lot entities reference the process route file in the database

to find the resources needed for their current operation. The resources for the lot always

include the toolset necessary to complete the operation, but it may also include transport

operators and/or processing operators. If the lot is to be processed on a toolset that

supports batching, i.e., a batch tool, multi-sequence tool, conveyor tool, cluster tool or

linked-track tool (see Appendix C.3), then the lot will wait for an appropriate batch

size to be formed. Two batching policies were examined; minimum and maximum batch

sizing. Selection of batch sizing has a very large impact on results, and the operating

curve. A lightly loaded fab favours a minimum batch size policy, whereas a heavily loaded

fab favours the maximum or full batch size policy. This is not surprising given that many

of the datasets contain heavily re-entrant process steps through toolsets that have long

process times and large maximum batch sizes.

Equation (5.1) can be used to calculate the degree of re-entrancy (DoR) (Ignizio,

125

Chapter 5. Semiconductor Fab Model A

2009) and Table 5.5 shows the DoR for each of the datasets. The DoR, is used only as

an indication of the complexity of the fab, however, most of the datasets were shown to

have a very high DoR.

DoR =
no. of operations

no. of toolsets
(5.1)

Table 5.5: Degree of re-entrancy for Semiconductor Wafer Manufacturing Data
Format Specification sample datasets.

dataset no. of operations no. of toolsets DoR

minifab 18 5 3.6
1 455 83 5.48
2 1606 97 16.56
3 4138 73 56.68
4 111 35 3.17
5 4176 85 49.11
6 2541 104 24.43
7 172 24 7.17

The maximum and minimum batch sizes are dictated by the maximum and minimum

wafers per batch in the datasets. The minimum and maximum lots per batch can then

be calculated given the starting lot size, as in Eqs (5.2) and (5.3). The lots wait until a

batch is complete before requesting a tool from the toolset to perform the required step

or operation. Lots can be batched together if they have the same Batch ID. If the batch

ID is omitted from the dataset, then only lots from the same process step on the same

process flow can be batched together.

BSmin =

⌊
minimum wafer per batch

wafers per lot

⌋
(5.2)

BSmax =

⌈
maximum wafer per batch

wafers per lot

⌉
(5.3)

126

Chapter 5. Semiconductor Fab Model A

5.6.2 Lot processing

Tool ‘occupancy’ commences once a lot or batch has captured a tool. The first step is to

check if the tool requires a setup for the impending operation. The setup requirement of

the tools is based on two mechanisms;

- If the last lot processed on the tool is from the same process flow as the current lot,

then a setup based on the Time per Spec Setup time is required,

- If the last lot processed on the tool was from a different setup group ID, then a

setup based on the Time Per Group Setup is required.

Next, the lots are loaded onto the tool. Loading may involve an operator for a

certain time fraction of the loading process. Once the lot/tool pairing has captured

an appropriate operator, the operator is then occupied for the Operator Loading

Fraction of that particular operation. Once the loading fraction of time has been

reached the operator is released.

Loading Processing Unloading

Operator Loading

Fraction

Operator Process

Fraction

Operator Unload

Fraction

Figure 5.4: Portion of time the operator is occupied during the process step.

The next step, processing, operates in a similar way as loading in that an operator

is required for a fraction of the process time. Unloading the lot from the tool follows

the same pattern again. In this way, an operator may be called up to three times for

one process step as shown in Fig. 5.4. It is also assumed, (because it is otherwise un-

documented), that the fraction of time that the operator is occupied for either loading,

processing or unloading, is at the beginning of the task. An argument could be made

that the unloading fraction of the operators time is towards the end of the unloading

process, however, this would be far more difficult to implement in the model. Further-

more, unloading time was generally very small in comparison to the processing step, and

127

Chapter 5. Semiconductor Fab Model A

the operator unloading fraction was even smaller. Based on this, and due to a lack of

clarification in the dataset documentation, it was decided that it was sufficient to allocate

the proportion of operator unloading time to the beginning of the activity.

Equation (5.4) is used to calculate mean process time per lot pt, which is then used to

calculate the time until tool becomes free tf in Eq.(5.5), and total lot cycle time through

an operation ct in Eq.(5.6):

pt = Time per Batch ∗ No. of batches required for the lot

+ Time per Lot

+ Time per Wafer in Process ∗ No. of wafers in the lot

+ Product Setup (if appropriate)

+ Group Setup (if appropriate) (5.4)

tf = Load Time + pt + Unload Time (5.5)

ct = Load Time + pt + Wafer Travel Time + Unload Time (5.6)

The total time the lot is occupied (ct) differs from the time the tool is occupied (tf)

by the addition of the Wafer Travel Time which is effectively the cascade time on

the tool. A consequence for the model strategy used here, where lot and tool items are

paired together, is that the lot and tool items must be separated for the Wafer Travel

Time period. The only way to account for this difference between tool occupancy and

lot occupancy is to unpair the items and allow the tool to become available for other

lots, while holding the lot for the Wafer Travel Time period. This is one of the

disadvantages of using an entity-centric modelling approach. However, given that only

a small proportion of the tools have a Wafer Travel Time, it was seen to have a

negligible impact on the factory operating curve.

After the operation, the lot or batch is divided and transported to its next step, a task

which may require a transport operator. The following steps summarise the interaction

between lots, batches, tools and operators;

128

Chapter 5. Semiconductor Fab Model A

1. Lot begins a new operation step,

2. If it is a batch operation then lot waits to form a maximum or minimum batch size

depending on the user selection,

3. Lot/batch queues for a tool from the required toolset,

4. If a tool is available then the lot/batch and tool are paired, otherwise the lot/batch

queue for the next available tool,

5. Once a tool is captured, the lot/batch/tool request a loading operator, if one is

available then the lot/tool/batch grouping are paired with the operator, otherwise

the it waits for the next available operator from the operator set to become available,

6. The lot/batch/tool/operator grouping is held for the operator loading fraction,

7. The operator is then released and the lot/batch/tool grouping is held for the re-

maining loading fraction,

8. Steps 5-7 are repeated for the processing step and the operator processing fraction,

9. Steps 5-7 are repeated for the unloading step and the operator unloading fraction,

10. The tool is then released from the lot/batch grouping,

11. The lot/batch is held for the wafer travel time component to simulate the cascading

time on the tool,

12. The batch (if one was formed) is then split into its original lots,

13. Each lot then carries out steps 1-12 for its subsequent operations until all of its

required operations have been fulfilled.

5.6.3 Tool downtime

There are up to five different downtime or maintenance cycles allowed for each toolset

according to the data specification (although adding more if needed would be a relatively

trivial matter). Each tool within the toolset is assumed to have identical failure/mainte-

nance pattern. Each individual downtime contains three pieces of information;

129

Chapter 5. Semiconductor Fab Model A

- Indicator whether the cycle is time-based or wafer-based,

- Mean time before failure (MTBF) if the cycle is time-based or the mean wafers

before failure (MWBF) if the cycle is wafer-based,

- Mean time to repair (MTTR).

There are no specific references to any distribution patterns from the seven sample

datasets, and the specification guide states that “No distributional information is included

in the data sets beyond the first moment (mean) information” (Feigin et al., 1994). For

reasons that are outlined in Section 2.4.1, it was decided that the downtime and repair

patterns should be based on the exponential distribution. An additional benefit in using

the exponential distribution is that the mean is the only required information, and it did

not require speculation on additional parameters such as the standard deviation. This

was a large factor in deciding distribution patterns for the MTBF, MWBF and MTTR.

Time-based failure

For each time-based failure, for each tool, a downtime item is created in the ExtendSim

model. These downtime items are generated by the custom Tool Generator block and

enter the model at time zero. They then wait in a delaying mechanism which holds them

until a sample from their MTBF exponential distribution expires.

At this point, the downtime item attempts to locate and pair with its equivalent

tool item identified by the matching unique tool ID from the same toolset ID. Once the

items have been paired they are sent down another delay path and held for the period of

repair specified by a sample from the MTTR exponential distribution. The repair event

usually requires an operator or technician from a specified operator set, and will wait until

one becomes available if not already available. The operator/technician is required for

the full duration of the maintenance/repair event. Once the maintenance/repair event

has completed, the operator resource is released, and the tool and downtime item are

unpaired. After this, the tool returns to its normal cycle in the model and the downtime

item is reset and returned to the start of the model where it will wait until the next

130

Chapter 5. Semiconductor Fab Model A

MTBF sample time expires. This process is repeated during runtime and proved an

effective method to model multiple time based failure/maintenance cycles for a tool.

One disadvantage of this method occurs when a tool is processing a lot/batch and its

equivalent downtime item’s MTBF expires. In this situation, the tool would fail in a real

world system, whereas in the model presented here, the tool has only really ‘failed’ when

the downtime item has captured and paired with its mating tool item. Consequently, the

downtime item must wait until the tool becomes available after processing a lot/batch.

In the real system, this would be equivalent to pushing a ‘failure’ out until the current

processing cycle has finished. This means that the actual resultant MTBF (as recorded

by the simulation model) may be slightly greater than that of the intended or listed

MTBF in the dataset because the downtime item must wait until its tool has finished

processing. However, this was seen as having minimal impact on the model results, for

the following reasons;

(i) Given that the average MTBF times are, in general, far greater than the average

process time, (often in a ratio of 10:1), the downtime item usually does not have to

wait very long in comparison to how long it has been suspended in MTBF stasis,

(ii) The previous point is even more emphasised if the tools have a low utilisation,

meaning, the probability that the downtime item will find the tool engaged in

processing is less given that the tool is mostly idle. Many of the tools in the datasets

(usually about 70%) were found to be lowly utilised according to the volume release

rate,

(iii) Depending on how one views the failure/maintenance cycle, it may not be unchar-

acteristic of the real system that the repair event must wait until after processing

has been completed. For example, although the datasets make no mention of ex-

actly what type of offline event the cycle is modelling, in some circumstances, it is

likely that these could be preventative maintenance (PM) or maintenance events,

and it is very uncommon for processing to be interrupted by an impending PM

procedure or task.

(iv) Often unscheduled downs are the result of a statistical control issue, i.e., not a

failure, but a request to go down owing to an out of control signal or trend. In such

131

Chapter 5. Semiconductor Fab Model A

cases, the machine/tool would complete processing of the lot and then enter the

down state.

Wafer-based failure

Wafer-based failure refers to a failure pattern based on the number of lots that have

been processed by the tool (also known as wear-based failure). This was modelled by

attaching a wafers-processed counting attribute to each tool that is updated after

every process step. When the MWBF quota is reached (which is evaluated post-processing

of the lot), the tool is sent down a repair path and captures an operator resource (if one

is required). Once repair is complete the operator is released, the tool item returns to

its normal cycle and its wafer-processed counter is reset. Wafer-based offline events

were easier to model than their time-based equivalents and no additional downtime items

were needed. The wafer count check being carried out post-processing is justified as it

is highly unlikely that tools would ever be taken offline mid-process to fulfil a scheduled

wear-based PM.

5.6.4 Operators and breaks

Operators are generated by the custom Operator Generator block at simulation time zero

and are added to an operator delay or queue where they are held in stasis until required.

Periodically, either a tool/lot or tool/downtime pair will enter this queue and search

for an appropriate operator to pair with for the fulfilment of a task (be it, processing

or repair/maintenance). A possible solution, was to actually bind the operator item

with its host for the duration of the task. However, this was infeasible given that in

some circumstances the operator is only required for a portion of the task, as discussed

in Section 5.6.2. A more complicated solution was implemented, whereby the operator

would be released from stasis and sent down a delay path to represent the fraction of time

it was occupied. This meant that the task duration needed to be pre-sampled before the

132

Chapter 5. Semiconductor Fab Model A

host pair engaged with the operator. The sample could then be used by the operator to

work out the amount of time it was partially (or fully) occupied by the task. The steps

are given as follows;

1. If the host item is a tool/downtime pairing then a MTTR sample is taken, if it is

a tool/lot requiring either loading, processing or unloading, then a sample of the

appropriate duration is taken,

2. The tool/lot or tool/downtime pairing that requires an operator joins the operator

loop and requests an operator from the required operator set,

3. If an operator is not available the host pairing waits until one becomes available,

4. If an operator is available then both the host pair and the operator are held sepa-

rately for the sampled duration or a fraction of it in the case of a loading, unloading

or processing task,

5. Once the duration has expired the host group returns to its main loop and the

operator returns to its stasis queue where it can be extracted by another host.

Break items are also generated by the Operator Generator block and are placed in

a delay for a duration according to the time between breaks attribute. It was

assumed that breaks are usually at a constant time and for a constant duration therefore,

a deterministic time between breaks and break duration was used. Once the

time between breaks has expired, the break item will capture the operator from stasis

and proceed to a delay route for the duration of the break. Again, similar to the tool

offline issues mentioned previously, the break item will not be able to engage with the

operator if it is already performing a task, but will wait until it has finished conducting

its current task. This is a consequence of the modelling strategy, but not an unrealistic

scenario assuming that operators must fulfil their current task before taking breaks.

5.6.5 Rework and scrap

Two scrap checks are employed and tested after each operation step. The first check,

samples a probability that the full lot is scrapped. If this test fails, the lot is recorded

133

Chapter 5. Semiconductor Fab Model A

and exited from the simulation model. If the test is passed, the wafers in each lot are then

tested against a sample of the wafer scrap probability. Any failed wafers are removed

from the lot, recorded and exit the simulation. The remaining wafers in the lot continue

onto the next step in the lot’s process route.

The mechanisms that check for rework are very similar. Firstly the lot is checked to

see if it needs to be entirely reworked. If it fails this check, then it departs from the

normal process route and joins a rework route according the rework sequence file. Once

the reworked steps are completed the lot will rejoin its original process route.

On the other hand, if the lot passes the rework check, then the individual wafers that

make up the lot are tested against a wafer rework probability. The wafers that fail this

test are separated and a new rework lot is formed that takes the failed wafers through a

number of rework steps according to the rework sequence file. Once these rework steps

have been complete the rework lot merges back onto its main process route and continues.

Due to a lack of information in the specification, it was unclear whether reworked

wafers, in a newly created rework lot, should merge back with their original lot once

they have executed their rework steps. The simulation results showed that given that the

probability of reworking at least one wafer per operation step was quite high, holding back

lots for their reworked wafers to ‘catch up’ had a very negative impact on the model cycle

time. Therefore, it was assumed that the original lot consisting of wafers that passed the

rework test could continue and with a reduced wafer count.

5.6.6 Capturing the model output

The model uses a number of custom blocks to write timestamps to an output database

stored in ExtendSim. There are three tables where information is written; LotTrace,

ToolTrace, and OperatorTrace. Each time a lot, tool or operator completes a task, a row

is recorded in the appropriate database table given in Tables 5.6-5.8.

134

Chapter 5. Semiconductor Fab Model A

Table 5.6: Description of LotTrace database for collecting model output.

Field Description

useRow Indicates if the row in the database is being used (for faster writing).
LotID The unique lot ID, given when the lot entered the system.
RWFlag Indicates whether the current step is a rework step.
ProductID The lots product ID.
ProcessFlow The lots process flow ID or rework sequence if it is rework.
StepID The lots step ID or rework sequence step if it is rework.
WaferQty The current wafer quantity of the lot at that point.
ToolsetID The toolset required to perform the current step.
OperatorSetID The operator required to perform the current step on the designated

tool.
ArrivalTime The point of arrival of the lot to the current process or step.
Batched The timestamp immediately after the lot has formed a batch (if re-

quired).
Batch Identifier The ID given to lots of the batch, if zero then no batching.
Paired with Tool The timestamp placed after the lot/batch has captured an appropri-

ate tool.
Finished Tool Setup The timestamp recorded after the captured tool has been setup (if

needed) for the current step.
Paired with Loading Op Timestamp recorded after the lot/tool pair has captured an appro-

priate operator for loading.
Tool Loaded Timestamp recorded after the lot has been successfully loaded onto

the tool.
Paired with Process Op Timestamp recorded after the lot/tool pair has captured an appro-

priate operator for processing.
Finished Processing Timestamp recorded after the lot has been successfully processed.
Paired with Unload Op Timestamp recorded after the lot/tool pair has captured an appro-

priate operator for unloading.
Unloaded Timestamp recorded after the lot has been successfully unloaded from

the tool.
Wafer Travel Finished Timestamp recorded after the lot has completed its travel time com-

ponent of processing.
ScrapFlag Was the lot fully or partially scrapped.
Num Wafer Scrapped How many wafers were scrapped from the lot.
CurrentRWFlag Is this step part of a rework return.
RWwaitID The ID so that the reworked child lot can merge with its parent lot.
RWDelayTime The timestamp recorded immediately after the reworked child lot

merged with its waiting parent lot.
Paired with Transport Op Timestamp recorded after the lot has captured an appropriate oper-

ator for transporting.
Lot Finished Transporting Timestamp recorded after the lot has finished transporting and has

arrived at its subsequent step or exited the system if it was on its
final step.

135

Chapter 5. Semiconductor Fab Model A

Table 5.7: Description of ToolTrace database for collecting model output from
the tools.

Field Description

useRow Indicates if the row in the database is being used (for faster writing).
loopTypeFlag Indicates if this row is recording a processing, maintenance or repair

event.
ToolID The tools ID
ToolsetID The toolset ID that it belongs to.
UniqueToolID The unique ID within its toolset.
Start Time When the tool becomes available.
Paired with Lot When a lot captured/reserved the tool.
Finished Lot When the lot releases the tool.
Paired with DT Timestamp to indicate the beginning of a downtime event.
Got DT Operator Timestamp to record the time the repair operator got to the downed

tool.
Finished DT Event Timestamp to indicate when the repair finished.
Got Maintenance Op Timestamp to record the time the repair operator got to the tool

waiting for a maintenance task.
Finished Maintenance timestamp to indicate when the maintenance finished.
Repair OperatorSet ID The operator set used to perform the maintenance/repair.

Table 5.8: Description of OperatorTrace database for collecting model output
from the operators.

Field Description

useRow Indicates if the row in the database is being used (for faster writing).
loopTypeFlag Indicates if this row is recording a loading, processing, unloading,

operator break, maintenance or repair event.
OperatorSetID The operator set ID
UniqueOperatorID The unique operator Id within its set.
StartTime The time when the operator became available.
Got Lot/Tool/DT/Break Time when the operator engaged and paired with a mating item.
Finished Lot/Tool/DT/Break Time when the operator unpaired with the mating item.

5.6.7 Checking model stability

During the initial pilot run the program outputs a cycle time trace of the lots. This

is necessary so that the user can confirm that the simulation is not unbalanced and

will converge to a solution. The statistical process control (SPC) method described in

Section 3.4.1 prevents the program considering any output from an unbalanced model.

However, if the model was overloaded, the SPC algorithm would find that it is not in

steady state and double the model run time. Hence the system of checking the cycle time

trace output from a pilot run confirmed to the user that the loading level is not causing

136

Chapter 5. Semiconductor Fab Model A

the model to become unstable. Figure 5.5 shows a sample output from the application,

running dataset 1 at its prescribed loading level. It can be seen that the model is stable

and cycle time is not increasing in an unstable fashion.

It is worth noting that this safety check is not asking or requiring the user to confirm

that steady state has been achieved, this is tested using the SPC method. This stability

check is merely in place to prevent the waste of computational resources and ensure the

user is aware if the model has become overloaded and the output is unstable.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 5000 10000 15000 20000 25000 30000

cy
cl

e
tim

e
(h

rs
)

simulation time (hrs)

product 1

product 2

Figure 5.5: Cycle time trace of both products in Sematech dataset 1.

Once confirmed, the programme constructs the operating curve by capturing the

performance measure (cycle time) for a number of replications at each design point on

the operating curve.

137

Chapter 5. Semiconductor Fab Model A

5.7 Analysis of Sematech Dataset 1

This section examines the operating curves output from dataset 1 and compares the

curves of various configuration strategies to show how this tool can be used to identify

any potential weaknesses in the system or large contributors to cycle time. Table 5.9

describes the configuration of dataset 1.

Table 5.9: Description of Sematech dataset 1 from MASM Lab Factory Datasets
(1996).

Type of product Non-volatile memory
Number of process flows in dataset 2
Number of different products† 2 (1 per process)
Dataset products make up what % of factory 95% - 98%
Average number of process steps per mask layer 15
Are operators modelled? Yes
Is rework modelled? Yes
Number of equipment groups (toolsets) 83
Approximate wafer starts per month 16,000
Raw process time Product 1 = 313.4 hrs

Product 2 = 358.6 hrs

† Note: more products in real factory.

There are two main product flows within dataset 1, namely Product 1 and Product 2,

of which there is a 2:1 product ratio. Both products make up 95% of the overall factory

products. Operators and rework are included in the dataset, as well as scrap. Operator

breaks are not included but the machines are unreliable with the majority having at

least one downtime stochastic pattern associated with it. The average availability of the

machines in the dataset was calculated as 0.917 using Eq.(2.10) on pg. 29. No operators

are required to repair the machines in dataset 1.

The configuration file accompanying the dataset also gives some brief results attained

from a test run conducted on a simulator known as Factory Explorer. Table 5.10 lists the

results. The average cycle time for Products 1 and 2 were 701.84 and 907.02 hours respec-

tively. Setup avoidance measures were carried out the Implant workstation, however,

there is no mention of operators being modelled.

Defining the system utilisation can be difficult and it is easier to use a measure such as

138

Chapter 5. Semiconductor Fab Model A

Table 5.10: Sample run of Sematech dataset 1 using Factory Explorer.

Input rate 95% of maximum possible input rate
Distribution of process times constant
Distribution of times between random failures exponential
Distribution of time between PM’s n/a
Distribution of PM durations n/a
Distribution of operator breaks n/a
Dispatch rules followed FIFO

setup avoidance at TS10 & TS11 (Implant)
Lot release policy constant time between lot releases
Language/simulator used Factory Explorer
Run length 50,000 hrs
Replications 1
Truncation of initial output (warm-up) 10,000 hours
Average cycle times by product Product 1 = 701.84 hrs

Product 2 = 907.02 hrs
Average number of outs Product 1 = 12,650 lots

Product 2 = 6,198 lots

starts rate. Thus the operating curve output from the application is a plot of the x-factor

against the starts rate of the system. The starts rate is measured in lots per hour and the

x-factor can be determined from the ratio of average cycle time to the weighted average

of the raw process time per product, as in Eq.(5.7), where πi is the proportional product

mix.

t0 (fab) =
n∑
i=1

πit0i , for i = 1, 2, 3, . . . n (5.7)

5.7.1 Batch size policies

Changing the batch size policy had a large effect on the resulting average cycle time of lots

in the system. The time taken for lots to form batches is a direct and heavy contributor

to cycle time for the fab configuration described by dataset 1. Tables 5.11 and 5.12 show

the model cycle time and x-factor results under a maximum and minimum batch sizing

policy respectively. Figure 5.6 plots the two operating curves for each batch size policy.

This result indicates that cycle time is negatively impacted at low loads, even when a

minimum batch size policy is in force.

Increasing the system loading and assuming a minimum batch size policy, the average

139

Chapter 5. Semiconductor Fab Model A

Table 5.11: Simulation model results for Sematech dataset 1 with a maximum
batch size policy and no operators, downtime or rework.

starts rate run length warm-up bottleneck uBN CT x-factor
capacity (lots per day) (hrs) (hrs) (hrs)

0.1 1.19 50,000 10,000 TS67 0.1029 653.88 1.946
0.2 2.38 50,000 15,000 TS67 0.1998 508.77 1.514
0.3 3.57 50,000 15,000 TS67 0.3041 468.17 1.393
0.4 4.76 50,000 10,000 TS67 0.4025 451.25 1.343
0.5 5.95 50,000 10,000 TS67 0.5032 443.97 1.321
0.6 7.14 50,000 10,000 TS67 0.6036 443.45 1.320
0.7 8.33 50,000 20,000 TS67 0.7014 450.14 1.340
0.8 9.52 50,000 25,000 TS67 0.8011 461.91 1.375
0.85 10.12 50,000 12,500 TS67 0.8475 470.75 1.401
0.9 10.71 50,000 12,500 TS67 0.8927 485.34 1.444
0.95 11.31 50,000 20,000 TS67 0.9473 531.31 1.581
1.00∗ 11.90 100,000 n/a TS67 0.9986 1044.92 3.111

∗ The simulation could not achieve steady state at this design point.

Table 5.12: Simulation model results for Sematech dataset 1 with a minimum
batch size policy and no operators, downtime or rework.

Starts rate run length warm-up bottleneck uBN CT x-factor
capacity (lots per day) (hrs) (hrs) (hrs)

0.1 1.19 100,00 30,000 TS30 0.1187 513.66 1.529
0.2 2.38 50,000 15,000 TS30 0.2401 431.09 1.283
0.3 3.57 50,000 20,000 TS30 0.3683 407.92 1.214
0.4 4.76 50,000 10,000 TS30 0.4794 397.87 1.184
0.5 5.95 50,000 10,000 TS30 0.6045 394.42 1.174
0.6 7.14 50,000 12,500 TS30 0.7234 396.23 1.179
0.7 8.33 50,000 20,000 TS30 0.8411 404.89 1.205
0.8 9.52 70,000 30,000 TS30 0.9470 434.60 1.294
0.85† 10.12 70,000 n/a TS30 0.9988 1136.91 3.384

† The simulation could not achieve steady state at this design point.

140

Chapter 5. Semiconductor Fab Model A

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2 4 6 8 10 12

cy
cl

e
tim

e
(h

rs
)

starts rate (lots per day)

maximum batch size policy
minimum batch size policy

RPT

Figure 5.6: Operating curves for dataset 1 using a minimum and maximum batch
sizing policy.

cycle time does not increase significantly until the starts rate is greater than approxi-

mately 9.5 lots per day. The next design point and any loading level above this failed to

achieve steady state on the simulation model. Therefore, the values for cycle time and

x-factor at this level should be noted as unstable, and likely to be higher if the fab is

loaded at these high levels for a long period of time.

Neither batch size policy produced a model that could attain cycle time approaching

the raw process time, even at very low loads, therefore, ‘waiting to batch time’ is a large

contributor to cycle time. It appears that the best batch size policy (given that only

two policies were examined) is to encourage a minimum batch sizing until the starts rate

increases above approximately 9.52 lots per day. At this point the fab becomes more

efficient if it transfers to a maximum batch size policy.

141

Chapter 5. Semiconductor Fab Model A

5.7.2 System bottleneck analysis

There are a number of bottlenecks within the system that switch dominance depending

on the particular configuration. Using the results in Tables 5.11 and 5.12, the bottleneck

was found to be at toolset 30 (known as DRIVE OX) for a minimum batch size policy

and toolset 67, (MATRIX toolset), for a maximum batching size policy.

Toolset 67 consists of seven single wafer processing tools that perform six operations

on Product 1 and eight operations on Product 2. The operations take on average 2.618

minutes per wafer which is approximately 2 hours per lot, assuming that most lots consist

of just under 48 wafers. Using Eq.(5.8) it is possible to calculate the maximum arrival

rate ra (max) that the toolset can accommodate for each utilisation level u.

ra (max) =
um

te
(5.8)

Given that 2
3

of all lots in the system are of Product 1, that make six passes through

toolset 67, and the remaining 1
3

of lots in the system are of Product 2 and make eight

passes through the bottleneck, then the average number of visits to the bottleneck toolset

for any lot is 6.66 during its process route. This can be used to calculate the average

maximum arrival rate for the system, given that the bottleneck toolset is the limiting

factor.

Bottleneck analysis of dataset 1 using a maximum batch size policy

Table 5.13 shows a summary of maximum allowable system arrival rate according to this

calculation and compares it with the actual system arrival rates used for the simulation

model. They show a close correlation with an average difference of about 5%. As expected

the actual arrival rates used are strictly never greater than the maximum possible toolset

arrival rate to maintain the appropriate system utilisation.

This shows that in this particular dataset, (without employing operators or downtime

in the system), that toolset 67 is an appropriate representation of overall system capacity

142

Chapter 5. Semiconductor Fab Model A

Table 5.13: The approximate average arrival rate permissible for the system and
for the bottleneck toolset TS67, given that m = 7.

tha (system)

u ra (bottleneck) calculated actual difference

0.1 0.35 0.053 0.049 7.5%
0.2 0.7 0.105 0.099 5.7 %
0.3 1.05 0.158 0.149 5.7%
0.4 1.4 0.210 0.198 0.9%
0.5 1.75 0.262 0.248 1.5%
0.6 2.1 0.315 0.297 5.7%
0.7 2.45 0.367 0.347 5.5%
0.8 2.8 0.420 0.397 5.5%
0.9 3.15 0.472 0.440 6.7%
1.0 3.5 0.525 0.496 5.5%

when using a maximum batch sizing policy. Using an M/D/m cycle time approximation

of all operations that use this toolset, it is possible to compare the operating curve for

the bottleneck toolset with that of the simulated curve for the fab (assuming a maximum

batching policy). Use of the M/D/m queueing model is justified because there are many

independent arrival sources (> 14) to TS67 (see Section 4.3.1 for discussion). Also, the

process pattern is deterministic, as the model does not put a distribution around process

time. Figure 5.7 plots the M/D/m approximation for TS67 and the simulated operating

curve for the system under a maximum batch size capacity using Eq.(5.9) where m = 7

and the weighted average raw process time (RPT) is calculated using Table 5.14,

CTM/D/m = t0

(
1 +

u
√

2(m+1)−1

m (1− u)

)
(5.9)

Bottleneck analysis of dataset 1 using a minimum batch size policy

Toolset 30 (DRIVE OX), a batching toolset with a capacity of two tools, is the bottleneck

for a minimum batch size policy, particularly as the toolsets’ minimum batch capacity is

two lots with a very large process times of 22.5 hours. TS30 only performs one operation

on one of the two products; Product 2, which makes up only a third of all products in

the fab. This means that any increase of the product ratio in favour of Product 2 could

143

Chapter 5. Semiconductor Fab Model A

Table 5.14: Operation details for TS67.

Product ID Mix Operation ID Operation Name Flow Time
(hrs)

1 2

111 2GATE ETCH 8 2.144
135 N STRIP 1 2.144
145 P STRIP 1 2.144
170 C IMP STRIP 1 2.144
187 METAL ETCH 3 2.144
200 PAD ETCH 4 2.144

2 1

123 SILI ETCH 6 2.144
138 ARAY STRIP 1 2.144
165 N STRIP 1 2.144
175 P STRIP 1 2.144
195 CONT ETCH 3 1.686
205 C IMP STRIP 1 2.144
222 METAL ETCH 3 2.144
235 PAD ETCH 4 2.144

weighted average raw process time 2.1211

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

x-
fa

ct
or

capacity

simulated operating curve
M/D/m approximation for TS67

Figure 5.7: Comparison of M/D/m approximation for bottleneck toolset TS67
and fab operating curve predicted by simulation model.

144

Chapter 5. Semiconductor Fab Model A

have a significant impact on the operating curve.

Analysis of the maximum capacity of TS30 is easier than TS67, given that it only

performs one operation type on one of the products. Given that its loading and unloading

time is 0.5 and 0.13 hours respectively, then the maximum capacity for the toolset with

a capacity of 2 and a batch size of 2 is 4.15 lots per day. Assuming a consistent product

ratio of 2:1 then the maximum theoretical capacity for the system is 12.451 lots per

day. In fact, it falls quite short of this according to Table 5.12, where anything above

approximately 9.5 lots per day produces an unstable model.

However, there is caveat to employing a minimum batch size policy in the model. In

the case of the maximum batch size policy, this is realistic, assuming that fab management

want to maximise the utilisation of expensive or power hungry equipment. While, the

minimum batch size policy employed in the model is less realistic. For example, in the real

system, if three lots arrived to TS30 simultaneously, they would be batched and processed

together. However, in the model, only two would be batched together and the third would

have to await the arrival of a fourth lot before processing. This is a consequence of the

modelling strategy employed; a model that uses an entity-centric modelling strategy,

must give dominance to one or another entity, in a master-slave fashion. So, despite the

fact that all three arrive at the toolset together in a discrete point in time, they actually

arrive one after the other in terms of model code execution. Stepping through the series

of simulation events; when the first lot (in the execution sequence) arrives it searches for

another lot of same type, if it does not find one it waits for zero time-until the next lot in

the sequence arrives. These two lots then form a batch (the master) assuming two lots

is minimum batch size, and then enter the Pairing block to search for the appropriate

tool entity (slave) to pair with. During these events, which have been all been carried

out at the same discrete point in simulated time, the third lot arrives and must wait as

it cannot form a batch.

145

Chapter 5. Semiconductor Fab Model A

5.7.3 Comparison with the CXFC approximation

Comparing the operating curves generated by the simulation model with those of the

complete x-factor contribution (CXFC) approximation shows some key differences. Note

that the CXFC values were not recalculated here but where taken from Delp et al. (2006)

which is based on Eq.(2.8), given in Section 2.4.1. It is also assumed from this point

that a maximum batch size policy is employed. The resulting plot is depicted in Fig. 5.8

and shows that above 10 lots per day, the model shows a steeper increase in the x-

factor. Unfortunately, it was not possible to compare the low loading increase in x-factor

because these results were not reported in the article. However, it is unlikely that the

results produced by Delp et al. would match those of the simulation model, given that the

x-factor does not account for the waiting to batch time which has such a large negative

impact on the x-factor at the low loading level.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 1 2 3 4 5 6 7 8 9 10 11

x-
fa

ct
or

starts rate (lots per day)

simulation model operating curve
simulation model from Delp et al. (2006)

CXFC measure

Figure 5.8: Comparison of results for flexible reusable model, x-factor and CXFC
produced by Delp et al. (2006).

146

Chapter 5. Semiconductor Fab Model A

Table 5.15: Comparison of results for flexible reusable model, simulation model
produced by Delp et al. (2006), and the CXFC approximation.

simulation model Delp et al. (2006)

starts rate x-factor starts rate x-factor CXFC
(lots per day) (lots per day)

1.190 2.0458 7.2 1.58 1.65
2.381 1.6443 9.0 1.68 1.77
3.571 1.5345 10.3 1.84 1.95
4.762 1.4964 11.1 2.08 2.14
5.952 1.5141 11.6 2.37 2.38
7.143 1.5400 11.9 2.64 2.59
8.333 1.6027 12.0 2.93 2.68
8.929 1.6679
9.524 1.7513
10.119 1.8495
10.712 2.1106
11.012 2.4533

5.7.4 Downtime

The toolsets described by dataset 1 are considered unreliable given that all have at least

one maintenance/downtime stochastic mechanism. Figure 5.9 shows that the addition of

unreliable machines causes the operating curve to shift upwards and increase the x-factor

at a lower loading. The location of the bottleneck for the system remains at TS67, which

has one time-based failure mechanism called failure, and has an availability A given

by,

A =
tf

tf + tr
=

8.45

153.766 + 8.45
= 0.948 (5.10)

A list of the top ten toolsets with the lowest availability (most unreliable) is given

in Table 5.16. Toolset 71, known as TEGAL has the lowest availability of 0.69. This

toolset was found to be relatively lowly utilised, however, if its utilisation increased it

may become the dominant bottleneck in the system. This is particularly true given that

the toolset consists of only one machine and has very long MTTR of 66.82 hours. For

such low availability toolset, (and other toolsets for that matter), it is always better

to have shorter more frequent offline periods than less frequent and longer periods of

147

Chapter 5. Semiconductor Fab Model A

Table 5.16: Unreliable toolsets in dataset 1 ranked by least availability.

rank toolset name toolset ID capacity mechanism mf mr A
(hrs) (hrs)

1 TEGAL 71 1 time-based 152.07 66.82 0.69
2 GENUS 17 2 time-based 34.44 12.99 0.73
3 MED CURRENT IMP 10 4 time-based 23.37 8.05 0.74
4 VARIAN 15 2 time-based 30.33 9.41 0.76
5 PROMETRIX 22 1 time-based 48.00 12.00 0.80
6 LAMINATOR 23 1 time-based 48.00 12.00 0.80
7 DELAMINATOR 24 1 time-based 48.00 12.00 0.80
8 STRASBAUGH BACKGRIND 28 3 time-based 48.00 12.00 0.80
9 ANELVA 16 2 time-based 44.91 10.81 0.81
10 HIGH CURRENT IMP 11 4 time-based 29.85 6.93 0.81

- - - - - - - -
18 DRIVE OX† 30 2 time-based 103.34 11.39 0.90
59 MATRIX∗ 67 7 time-based 153.77 8.45 0.95

† bottleneck toolset when min. batch size policy is employed
∗ bottleneck toolset when max. batch size policy is employed

unavailability (Hopp and Spearman, 2001).

Table 5.17: Simulation model results for dataset 1 with unreliable machines.

starts rate run length warm-up bottleneck uBN CT x-factor
capacity (lots per day) (hrs) (hrs) (hrs)

0.1 1.19 50,000 15,000 TS67 0.1069 687.21 2.046
0.2 2.38 50,000 15,000 TS67 0.2165 552.35 1.644
0.3 3.57 50,000 15,000 TS67 0.3109 515.47 1.534
0.4 4.76 50,000 10,000 TS67 0.4222 502.67 1.496
0.5 5.95 50,000 10,000 TS67 0.5228 508.62 1.514
0.6 7.14 50,000 10,000 TS67 0.6268 517.30 1.540
0.7 8.33 50,000 20,000 TS67 0.7344 538.36 1.603
0.75 8.93 50,000 25,000 TS67 0.7906 560.27 1.670
0.8 9.52 60,000 12,500 TS67 0.8457 588.27 1.751
0.85 10.12 60,000 12,500 TS67 0.8935 621.28 1.849
0.9 10.712 70,000 15,000 TS67 0.9412 708.98 2.111

0.925† 11.01 70,000 n/a TS67 0.9721 824.11 2.453

† The simulation did not achieve steady state.

5.7.5 Operators

Examining the operating curve of dataset 1 with operator requirements included in the

simulation model shows that the system efficiency significantly reduces. By introducing

148

Chapter 5. Semiconductor Fab Model A

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 1 2 3 4 5 6 7 8 9 10 11

x-
fa

ct
or

starts rate (lots per day)

100% availability
unreliable machines

RPT

Figure 5.9: Comparison of operating curves for dataset 1 with unreliable machines
according to Table 5.11 and Table 5.17.

operators, the bottleneck for the system moves from TS67 (under max. batch policy)

and TS30 (under min. batch policy) to operator set no. 26 called the Matrix Op. This

operator set has a capacity of just one operator whom is required by TS67, the machine

bottleneck. Unsurprisingly then, the system now becomes restricted by the number of

operators in this system, and the overall capacity of the toolset that the lots ‘see’ is just

one given that an operator needs to both load the lot onto the tool and must process

it. This means that it is likely that TS67 is a very manual process, and the capacity

of the workstation effectively becomes the capacity of the operator set. Furthermore, if

operator set OP26 consists of only one operator then bottleneck workstation is effectively

offline when the operator is on a break.

These statements are verified by examining the operating curves in Fig. 5.10. The

maximum starts rate with either a minimum or maximum batch size policy reduces from

over 11 lots per day to approximately 1.6 lots per day which is about 14% of the rated

149

Chapter 5. Semiconductor Fab Model A

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 1 2 3 4 5 6 7 8 9 10 11

x-
fa

ct
or

starts rate (lots per day)

no operators
with operators (max batch policy)
with operators (min batch policy)

RPT

Figure 5.10: Operating curve for dataset 1 using operators under a minimum and
maximum batching policy, according to Table 5.18.

capacity, according to Feigin et al. (1994). Although the system favours a minimum batch

size policy here, the lack of operators allocated to the bottleneck workstation has a very

large negative impact on the overall system efficiency. The resulting operating curves are

high, shifted to the left, and sharply increasing for very small increases in the system

loading.

5.8 Model Verification & Validation

Some of the verification techniques, summarised by Whitner and Balci (1989) and listed

in Appendix G.1, were applied and the results are discussed in Table 5.19. Many of

the custom blocks used for the FTM application described in Chapter 4 and included

in Appendix B.4 were reused (subject to minor alterations). The verification results for

these blocks can be found in Section 4.7.

150

Chapter 5. Semiconductor Fab Model A

Table 5.18: Simulation model results for dataset 1 using operators with a mini-
mum and maximum batch sizing policy.

batching capacity lot starts uBN OPBN run length steady state cycle time x-factor
(per day) (hrs) (hrs) (hrs)

max

0.1 1.1904 0.69 26 50,000 18,000 809.19 2.4089
0.11 1.3095 0.75 26 50,000 15,000 794.33 2.3647
0.12 1.4285 0.83 26 50,000 25,000 808.63 2.4073
0.13 1.5079 0.89 26 50,000 25,000 841.33 2.5046
0.14 1.6666 0.95 26 70,000 25,000 976.51 2.9070

min

0.1 1.1904 0.68 26 50,000 15,000 602.10 1.7922
0.11 1.3095 0.77 26 50,000 14,000 598.34 1.7812
0.12 1.4285 0.83 26 50,000 20,000 625.10 1.8610
0.13 1.5079 0.88 26 50,000 25,000 666.60 1.9844
0.14 1.666 0.96 26 70,000 25,000 939.26 2.7961

Table 5.19: Techniques used to verify the ExtendSim model.

Type Technique Results and Comments

Informal Walk-through The structured walk-through was more heavily used as a vali-
dation tool but used little to verify the program.

Code inspection The source code was reviewed and inspected during model
build and after the final version. Many of the errors in model
execution occurred as a result of inconsistencies within the
datasets. Therefore, it was necessary to clean up many of the
datasets such that they followed the specification correctly.

Static Syntax analysis Modern software compilers ensured that the model syntax was
complete and verified. The application code was compiled us-
ing Visual Basic for Applications (VBA) in Microsoft Excel.
The ModL code used to create the custom blocks and model
was verified using ExtendSim internal code complier. Both
compilers have an auto-compile feature which ensured that the
syntax was correct during the programming phases.

Structural analysis Structural analysis was performed according to the best prac-
tices of coding. Plenty of comments were included with the
code to ensure a clear and unambiguous meaning.

Dynamic Top-down testing Top-down, Bottom-up testing was applied using a black-box
style that checked each model hierarchy with dummy entities
to ensure each portion was consistent and did not produce
erroneous outputs.

Bottom-up testing
Black-box testing

Stress testing Lot arrival rates were gradually increased until the model be-
came overloaded and unable to reach steady state. MTBF and
MTTR values were increased gradually causing very small tool
availability. This resulted in very long lot queueing times in
the model as expected. Other parameters such as scrap and
rework probabilities were increased to verify that flow became
increasingly restricted in the model.

continued on next page

151

Chapter 5. Semiconductor Fab Model A

continued from last page

Debugging Debugging was an ongoing process during the model build and
each version of the model and application was subjected to
rigorous debugging.

Execution tracing Data flow analysis and model tracing was performed for the
simulation model by introducing only one lot into the system
and monitoring its attributes as they changed during runtime.
The result was that the lot experienced no queueing and min-
imal average process time and that the model data flow was
correct. A zero-batching policy was employed during this pro-
cess.

Execution monitoring Trace animation capabilities in ExtendSim were used to vali-
date the entity flow during runtime. Each entity in the model
was given a different icon depending on its pairing with other
entities or the process it was undergoing. This helped to ensure
that all entities in the model were operating as required.

Regression testing Regression testing (repeating the above procedures) was per-
formed after each new model version.

All of the datasets contain sample run data, although the configuration of the sample

runs is unclear in the documentation. Table 5.20 shows a comparison between the docu-

mented RPT for both products in dataset 1 and the results obtained from the simulation

model described here. The RPT was calculated by summing the individual process times

for each operation step along the process route for each product. The simulated RPT

was greater than both the calculated and the documented RPT as a result of the high

number of setups needed at each toolset due to the model beginning from an unknown

state.

Table 5.20: Comparison of reported, calculated and simulated raw process times
for Products 1 and 2 for dataset 1.

Product Sematech documentation calculated simulated
(hrs) (hrs) (hrs)

Prod 1 313.4 315.93 347.8
Prod 2 358.6 361.52 397.2

Further validation was performed by comparing the cycle time results of the simulation

model with those from the configuration files in the dataset. Given that the factory

usually produced 16,000 wafers per month, and assuming a month is made up of 30 days,

the equivalent number of lot starts per day is 11.11, based on a lot of 48 wafers. If the test

runs reported in the configuration files are based on running the Factory Explorer model

152

Chapter 5. Semiconductor Fab Model A

at 95%, this equates to approximately 10.55 lot starts per day and a cycle time of 701.84

and 907.82 hours for Product 1 and 2 respectively (see Table 5.10). If the ratio of Product

1 to 2 is 2:1, the weighted average cycle time is calculated as 770.5 hrs. This compares

reasonably well (8% difference) to an average cycle time value of 708.98 hours reported

by the simulation model results in Table 5.17. Again however, there is no indication in

the configuration files as to the exact make-up of the simulation, i.e., whether operators

and rework are included, or the type of batching policies that are implemented.

A number of other validation techniques were also applied. Table 5.21 shows the

results of the validation tests that were performed on the model. An explanation of each

test can be found in Appendix G.2.

Table 5.21: Techniques used to validate the ExtendSim model and application.

Technique Results and Comments

Animation ExtendSim’s animation options were used extensively to validate the
model.

Comparison to other mod-
els

A model built using SimPy in Python was used to validate the model.
A detailed description of this model is given in Chapter 6.

Degenerate tests Degenerate tests were performed by overloading the model by gradu-
ally increasing the arrival rate of test lots into the model and forcing
utilisation of the toolsets to capacity, thus making the model unstable
and unable to attain steady state. This behaviour was expected and
helped in part to validate the model and examine the boundaries of
operation.

Event validity Event validity was ensured by monitoring the routing/events of enti-
ties in the model and comparing them against the dataset informa-
tion. A list of the operations performed by each lot that was written
to the ExtendSim database was monitored to ensure that each lot
underwent its prescribed process route.

Internal validity Very few replications according to the calculations described in Sec-
tion 3.2 were required, meaning that the output results variability of
the performance metric (cycle time) was very low.

5.9 IDEF Model Diagrams

Figs 5.11-5.20 include a partial IDEF0 representation of the ExtendSim model taken

from the view of the modeller. The inputs and outputs include the flow of entities; lots,

batches, tools, downtimes, operators and breaks. The controls consist mainly of entity

attributes, and the mechanisms include the ExtendSim blocks used and their library. The

153

Chapter 5. Semiconductor Fab Model A

library custom.lib contains all of the custom blocks (see Appendix B.4) that were written

for the model. Some of the more complicated sections of the model have been excluded

from the IDEF0 interpretation in an effort to show clarity rather than completeness.

TITLE:NODE: NO.: SM001A-0 Simulation model

A0

SM002

Run simulation

Purpose: To describe the basic concepts of the how the Wafer Manufacturing Data Format Specification is modelled

in ExtendSim

Viewpoint: Modeller

Sematech

 database

Results database

ExtendSim Model

User

 configurations

Figure 5.11: Overview IDEF0 diagram (A-0) for ExtendSim model.

154

Chapter 5. Semiconductor Fab Model A

TITLE:NODE: NO.: SM002A0 Run simulation

A5

SM007

Service

A8

SM010

Repair

A1

SM003

Generate lots

A2

SM004

Generate tools and

downtime

A4

SM006

Pair items

lot

tool

A3

SM005

Generate operators

A6

SM008

Operator queue

operator

A7

SM009

Testing

lot

lot

tool

lot/tool

tool/downtime
tool

break

tool/downtime

lot/tool

lot/tool

downtime

tool/downtime

Figure 5.12: ‘Run simulation’ (A0) IDEF0 diagram for ExtendSim model.

TITLE:NODE: NO.: SM003A1 Generate lots

A11

Generate the lots and set basic lot attributes

A12

Set additional lot attributes

lot

waferQty processFlowID itemType productID

lot

stepID lotStartTime RWWaitID

A13

Set lot ID

lot

counter

Lot Generator ES

Block (custom.lib)

 ES Set Block

(item.lib)

 ES Equation

Block (item.lib)

Figure 5.13: ‘Generate lots’ (A1) IDEF0 diagram for ExtendSim model.

155

Chapter 5. Semiconductor Fab Model A

TITLE:NODE: NO.: SM004A2 Generate tools

A21

Generate the tools and downtime and set basic

attributes

A22

Set additional tool details

tool

toolsetID itemType uniqueToolID productID

tool

numRuns lastSetupID lastProcessFlow

A23

Set tool ID

tool

counter

Tool Generator ES

Block (custom.lib)

 ES Set Block

(item.lib)

 ES Equation

Block (item.lib)

Maintenance

Information

downtime

Figure 5.14: ‘Generate tools’ (A2) IDEF0 diagram for ExtendSim model.

TITLE:NODE: NO.: SM005A3 Generate operators

A31

Generate operators and breaks and assign basic attributes

operatorSetID uniqueOprtID itemType breakLength

operator

Operator Generator ES

Block (custom.lib)

duration

break

Figure 5.15: ‘Generate operators’ (A3) IDEF0 diagram for ExtendSim model.

156

Chapter 5. Semiconductor Fab Model A

TITLE:NODE: NO.: SM006A4 Pair items

A43

Batch lots together

according to

BatchID

A41

Setup new line on

lot trace DB

A45

Set up new line on

tool trace DB

A47

Hold downtime

item until MTBF

expires

A42

Write arrival time

to LotTrace DB

A46

Write start time to

tool trace DB

A48

Pair downtime and

tool or lot and tool

lot

lot

downtime

tool

lot

tool

downtime

tool

lot/tool

downtime/tool

A44

Write batch

waiting time to lot

trace DB

lot

lot

tool

downtime

counter

lotLoopID

lot Trace DB

details

lot Trace DB

details
lotLoopID

 ES Equation

Block

(item.lib) ES Equation

Block

(item.lib)

 ES Equation

Block

(item.lib)

 ES Equation

Block

(item.lib)
 ES Equation

Block

(item.lib)

 ES Activity

Block

(item.lib)

tool Trace DB

details

tool Trace

DB details
toolLoopID

 ES Batching

Block

(item.lib)

Figure 5.16: ‘Pair items’ (A4) IDEF0 diagram for ExtendSim model.

TITLE:NODE: NO.: SM007A5 Service

A49

Setup change

A50

Loading

A51

Processing

A52

Unloading

A53

Split lot and tool

A54

Unbatch lots

lot/tool after

getting

operator

lot

lot/tool to get

operator

lot/tool

tool

lot

 ES Activity

Block (item.lib)

 ES Activity

Block (item.lib)

 ES Activity

Block (item.lib)

 ES Activity

Block

(item.lib)

 ES Unbatch

Block (item.lib)

 ES Unbatch

Block

(item.lib)

setupSpec

loadTime

processTime

unloadTime

lot/tool

Figure 5.17: ‘Service’ (A5) IDEF0 diagram for ExtendSim model.

157

Chapter 5. Semiconductor Fab Model A

TITLE:NODE: NO.: SM008A6 Operator queue

A61

Operator wait

A62

Lot/tool/downtime

wait

A63

Operator/break

delay

operators

lot/tool

A64

Hold operator

breaksbreaks

A65

Pair operator and

break

uniqueOprtID &

operatorSetID

opID

break

operator

operator/

break

A66

Hold operator for time

fraction

A67

Split operator and

break

operator/

break

break

operator

lot/tool

breakLength

uniqueOprtID

& operatorSetID

duration

 ES Activity

Block

(item.lib)

 ES Activity

Block

(item.lib)

 Custom PairOperator

ES Block (custom.lib)

tool/

downtime

tool/downtime

operator

delay fraction

operator

mainTime

 ES Batch

Block

(item.lib)

 ES Unbatch

Block

(item.lib)

Figure 5.18: ‘Operator queue’ (A6) IDEF0 diagram for ExtendSim model.

TITLE:NODE: NO.: SM009A7 Testing

A81

Full lot scrap test

A82

Wafer Scrap Test

A83

Full lot rework test

A84

Wafer rework test

lot

lot

lot

lot

scrap exit

rework lots

A85

Create new lot

with rework

wafers

failed wafers

passed

wafer lot

 ES Equation

Block

(item.lib)

 ES Equation

Block (item.lib)

 ES Equation

Block (item.lib)

 ES Equation

Block (item.lib)

 ES Create

Block (item.lib)

fullLotScrapProb

waferScrapProb

fullLotReworkProb

waferReworkProb

waferForRework

Figure 5.19: ‘Testing’ (A7) IDEF0 diagram for ExtendSim model.

158

Chapter 5. Semiconductor Fab Model A

TITLE:NODE: NO.: SM010A8 Repair

A101

Check if an

operator is

required

A102

Hold for repair

A103

Split tool and

downtime

tool/downtime

tool
tool or tool/downtime

tool/downtime after getting operator

tool

tool/downtime

tool

downtime

 ES Unbatch

Block (item.lib)

 ES Activity

Block (item.lib)

operatorSetID

duration

Figure 5.20: ‘Repair’ (A8) IDEF0 diagram for ExtendSim model.

5.10 Summary

Overall it was shown that a simulation model based on a flexible-reusable modelling

strategy performed quite well when generating operating curves for various configurations

of dataset 1. It was shown that the batching policy used had a strong influence on

the efficiency of the system and helped to recommend particular policies in different

loading ranges. It was also possible to examine the impact of unreliable machines on the

factory operating curve which showed how changing the factory configurations caused

a shift in the bottleneck. Comparing the operating curves generated by the model and

those generated by queueing approximations showed that the simulation based curves

outperformed the queueing approximations, which failed to account for the wait to batch

time, setups, rework and re-entrancy in the system.

In the majority of cases, the datasets tested showed many errors and despite the

Semiconductor Wafer Manufacturing Format Specification showing promise as a holistic

descriptor for a semiconductor fab, there were many ambiguities over how the data should

159

Chapter 5. Semiconductor Fab Model A

be interpreted. Most notably, there is no information about variability. Furthermore,

many of the datasets interpreted the specification differently and most required some

pre-screening or adjustments before being used.

The robustness of the model was proved by performing multiple runs of various differ-

ent configurations, and an extensive verification and validation procedure was performed.

It was found that the intercommunication between the VB application and the ExtendSim

model could be somewhat unreliable. Furthermore, the run times of the model were found

to be very long when conducting long simulation run lengths. Hence, it was thought that

deployment of the application, one of the key requirements, could be compromised by

these issues and it was decided to port the model and application to the Python language

as a standalone cross-platform program. The following chapter describes this program

and how this was carried out.

160

CHAPTER 6

Semiconductor Fab Model B

This chapter describes the modelling of a full semiconductor fab based on the Semicon-

ductor Wafer Manufacturing Data Format Specification, produced by Feigin et al. (1994).

It uses the Python scripting language and a third party discrete event simulation (DES)

modelling module called SimPy.

6.1 Justification for the use of Python and SimPy

Python is a platform independent, dynamic programming language that applies an object

orientated structure (Parkin, 2010). SimPy is a third party open source module for

designing DES models in Python. It uses the object orientated nature of the Python

programming language and to perform process-orientated DESs, whereby each simulated

activity is modelled by a process. This makes it a very powerful tool for building a full

fab model with minimal scripting. The power of SimPy comes in taking advantage of

161

Chapter 6. Semiconductor Fab Model B

Python generator threads which were introduced to Python in version 2.4.

Generators are similar to functions with the key difference that functions return a

value and then the instance of the function is destroyed. With generators, the instance

of a generator can return values at multiple points during its execution and its state is

maintained upon return to the generator. This means that an entity can have a lifecycle

controlled by a generator function, that returns control to a central controller when it

wants to perform an activity or interact with other activities in the model. Therefore, all

of the entities described in Chapter 5, i.e., lots, tools, operators, downtimes and breaks

are modelled using Python classes and each instance of these classes has its own lifecycle

or programming thread defined by the classes generator.

6.2 Model Input and GUI

The Semiconductor Wafer Manufacturing Data Format Specification was ported to a

MySQL database, which enforced the semantics of the specification more strongly than

using the downloaded text file structure. This helped to realise any errors in the sam-

ple datasets and enforce the correct data type (string, float and integer) for any future

additional datasets. Figure 6.1 shows a visual representation of the database.

The program interface was built using a third party Python module known as TkInter,

a graphical user interface (GUI) for Python. The interface, as shown in Fig. 6.2 allows

the user to access any of the datasets stored in the MySQL database.

6.3 Modelling Entities and Processes using SimPy

Each entity in the system has its own class description and lifecycle. The term lifecycle

is used to describe the events/activities undertaken by the object during its ‘existence’,

which is sometimes referred to as its process execution method (PEM). A master/slave

relationship is created between the entities in the system, whereby the master finds and

162

Chapter 6. Semiconductor Fab Model B

dataset

ds_id int(10) unsigned

name varchar(45)

os

ds_id int(10) unsigned

operator_set_id varchar(45)

operator_description varchar(45)

quantity int(10) unsigned

break_1_description varchar(45)

time_between_1 float

duration_1 float

break_2_description varchar(45)

time_between_2 float

duration_2 float

break_3_description varchar(45)

time_between_3 float

duration_3 float

pr

ds_id int(10) unsigned

process_flow_id varchar(45)

step_id varchar(45)

operation_description varchar(45)

tool_set_id varchar(45)

operator_set_id varchar(45)

load_time float

unload_time float

time_per_wafer_in_process float

wafer_travel_time float

time_per_lot float

time_per_batch float

min_batch_size int(10) unsigned

max_batch_size int(10) unsigned

batch_id varchar(45)

time_per_spec_setup float

time_per_group_setup float

setup_group_id varchar(45)

lot_scrap_probability float

wafer_scrap_probability float

lot_rework_probability float

wafer_rework_probability float

rework_sequence_id varchar(45)

rework_return_step varchar(45)

travel_time float

travel_time_operator varchar(45)

rw

ds_id int(10) unsigned

rework_sequence_id varchar(45)

step_id varchar(45)

operation_description varchar(45)

tool_set_id varchar(45)

operator_set_id varchar(45)

load_time float

unload_time float

time_per_wafer_in_process float

wafer_travel_time float

time_per_lot float

time_per_batch float

min_batch_size int(10) unsigned

max_batch_size int(10) unsigned

batch_id varchar(45)

time_per_spec_setup float

time_per_group_setup float

setup_group_id varchar(45)

lot_scrap_probability float

wafer_scrap_probability float

lot_rework_probability float

wafer_rework_probability float

rework_sequence_id_after varchar(45)

rework_return_step varchar(45)

travel_time float

travel_time_operator varchar(45)

ts

ds_id int(10) unsigned

tool_set_id varchar(45)

tool_description varchar(45)

quantity int(10) unsigned

operator_load_fraction float

operator_unload_fraction float

operator_process_fraction float

down_time_1_description varchar(45)

downtime_1_type int(10) unsigned

time_or_runs_between_1 float

duration_1 float

down_time_1_operator_set_id varchar(45)

down_time_2_description varchar(45)

downtime_2_type int(10) unsigned

time_or_runs_between_2 float

duration_2 float

down_time_2_operator_set_id varchar(45)

downtime_3_description varchar(45)

downtime_3_type int(10) unsigned

time_or_runs_between_3 float

duration_3 float

down_time_3_operator_set_id varchar(45)

downtime_4_description varchar(45)

downtime_4_type int(10) unsigned

time_or_runs_between_4 float

duration_4 float

down_time_4_operator_set_id varchar(45)

downtime_5_description varchar(45)

downtime_5_type int(10) unsigned

time_or_runs_between_5 float

duration_5 float

down_time_5_operator_set_id varchar(45)

vr

ds_id int(10) unsigned

process_flow varchar(45)

product_id varchar(45)

product_name varchar(45)

start_rate float

lot_size int(10) unsigned

Figure 6.1: Visual interpretation of Semiconductor Wafer Format Specification
in MySQL database.

163

Chapter 6. Semiconductor Fab Model B

Figure 6.2: GUI for the Python/SimPy application.

extracts the slave from a stasis mode for a duration of time to represent some process or

activity and then relinquishes the slave back to its stasis mode. The following sections

describe briefly the actions and activities of the entities using high level pseudocode.

6.3.1 Lot and operation PEM’s

Lots are created using a lotSource class and an instance for each product is created.

The lotSource method executes the following PEM outlined in pseudocode,

WHILE the simulation is running
increment lot counter
create a lot using the class Lot
wait for the inter-arrival period

which creates an instance of the Lot class, whose PEM is given by;

FOR each operation in the lot’s process route or rework route
IF it is a batch operation

WHILE there are insufficient other matching lots to form a batch
wait until another lot arrives

WHILE NOT got a tool
IF an appropriate tool is available

get the tool from the tool queue
ELSE

wait until the tool queue changes
IF setup is required

hold for setup period

164

Chapter 6. Semiconductor Fab Model B

FOR loading, processing and unloading activity
IF activity is required

IF activity requires operator
wait for operator
hold operator for activity fraction
release operator
hold for remaining activity fraction

ELSE
hold for activity duration

IF it is a batch operation
unbatch the individual lots

send signal to tool to continue
IF wafer travel is required

hold for wafer travel duration
IF full lot scrap test fails

scrap the full lot
update scrap counter
EXIT the PEM

FOR each wafer in the lot
IF wafer scrap test fails

scrap the wafer
update scrap counter and the lot’s quantity

IF full lot rework test fails
execute the rework loop for the lot
EXIT the PEM

FOR each wafer in the lot
IF wafer rework test fails

create a new lot from the lot class with the failed wafers
execute the rework loop for the newly created rework lot

IF lot transportation to next step is required
IF transportation requires operator

wait for operator
hold for transportation period
release operator

ELSE
hold for transportation period

IF current step is the last operation on the lot’s process route
EXIT the PEM

IF current step is the last operation on the lot’s rework route
rejoin the process route from the last operation
EXIT the PEM

6.3.2 Tool PEM’s

Tools are created from the toolSource class. An instance is created for each toolset;

FOR each tool in the toolset
create a tool using the Tool class

which in turn creates an instance for each tool in the toolset according to the Tool class.

165

Chapter 6. Semiconductor Fab Model B

The Tool lifecycle is given by;

WHILE simulation is running
put the tool into a tool queue (to make it available)
wait until activated by another entity
IF activated by a lot

increment the tools run counter
IF the tool’s run-based downtime has expired

IF it requires an operator
wait for an appropriate operator
hold for the repair period
release the operator

ELSE
hold for the repair period

6.3.3 Downtime PEM’s

Downtimes are created from the downtimeSource class. An instance is created for

each tool’s downtime mechanism;

FOR each downtime mechanism of the tool
create a downtime instance using the Downtime class

The downtime PEM is given by;

WHILE simulation is running
hold for mean time before failure period

remove corresponding tool from tool queue
IF it requires an operator

wait for an appropriate operator
hold for the mean time to repair period
release the operator

ELSE
hold for the mean time to repair period

send signal to the tool to continue

6.3.4 Operator and break PEM’s

Operators are created from the operatorSource class. An instance of the operatorSource

class is created for each operator set which uses the Operator class to create the required

number of operators.

166

Chapter 6. Semiconductor Fab Model B

FOR each operator in the operator set
create an operator instance using the Operator class

The Operator PEM is given by;

WHILE simulation is running
put the operator into the operator queue
wait until activated by another entity

Break items are created from the breakSource class. An instance is created for each

operator’s break pattern as follows;

FOR each break pattern of the operator
create a break instance using the Break class

The Break PEM pseudocode is given by;

WHILE simulation is running
hold for mean time between break sample
remove corresponding operator from operator queue
hold for the break duration
send signal to the operator to continue

6.4 Capturing Model Output and Displaying Oper-

ating Curves

The model output information is written to a MySQL database. This database is visu-

alised in Fig. 6.3.

An output GUI (Fig. 6.4) can then be used to navigate this database and construct

a number of operating curves pertaining to the model runs. The user can then examine

the operating curves for individual toolsets, operators or examine the full factory curve.

167

Chapter 6. Semiconductor Fab Model B

dataset

ds_id int(10) unsigned

name varchar(45)

all_results

run_no int(10) unsigned

ds_id int(10) unsigned

rundate timestamp

num_runs int(10) unsigned

runtime float

num_design_points int(10) unsigned

downtime tinyint(1)

operators tinyint(1)

breaks tinyint(1)

lot_scrap tinyint(1)

wafer_scrap tinyint(1)

rework tinyint(1)

setup tinyint(1)

batching varchar(45)

operator_results

run int(10) unsigned

design_point float

replication_no int(10) unsigned

operator_set varchar(45)

break float

utilisation float

count int(10) unsigned

capacity int(10) unsigned

toolset_results

run int(10) unsigned

design_point float

replication_no int(10) unsigned

tool_group varchar(45)

down float

utilisation float

count int(10) unsigned

flowtime float

runtime float

capacity int(10) unsigned

FK_ds

FK_run_idFK_run_id_1

Figure 6.3: Visualisation of output data from simulation model stored in MySQL
database.

Figure 6.4: Output GUI for SimPy model.

168

Chapter 6. Semiconductor Fab Model B

6.5 Analysis of the Minifab Dataset

The minifab dataset is the simplest of all the datasets provided by the specification.

Table 6.1 gives a brief description of the dataset according to the configuration file that

accompanies it. There are three products; ‘Pa wafer’, ‘Pb wafer’ and ‘Test wafer’ that

undergo a single process flow. The process flow consists of six individual operations S1-S6

that pass through five workstations; Ma, Mb, Mc, Md and Me, each with a capacity of

2, 2, 2, 2 and 1 tools respectively.

Table 6.1: Description of Sematech minifab dataset from MASM Lab Factory
Datasets (1996).

Type of product wafers
Number of process flows in dataset 1
Number of different products 3
Dataset products make up what % of factory n/a
Average number of process steps per mask layer n/a
Are operators modelled? Yes
Is rework modelled? No
Number of equipment groups (toolsets) 3
Approximate wafer starts per day 300
Raw process time Product 1 = 14.4 hrs

Product 2 = 14.4 hrs
Product 3 = 14.4 hrs

A process step-centric representation (proposed by Ignizio (2009)) is given in Fig. 6.5.

All value-added operations (denoted by light circles) require two resources (triangles); a

machine resource and operator resource. In between each operation, a non-value-added

(dark circle) transport step is required. Toolset Me is required for two operations; S3

and S6, defining a single re-entrant loop for the process flow. The degree of re-entrancy

(DoR) is then given as 6
5

= 1.2 for the system.

Table 6.2 gives the raw process time (RPT) for each of the three products according to

the simulation, the configuration file and the calculated results. The discrepancy between

the calculated results and those given by the configuration file is due to the inclusion of

non-value-added transportation steps. However, there is close agreement, a difference of

2.3%, between the simulated results and the calculated results. This small difference was

169

Chapter 6. Semiconductor Fab Model B

S1 S2 S3 S4 S5 S6T1 T2 T3 T4 T5 T6

Ma

P01

Mc

P01

Me

P02

Md

P01

Mb

P01

Me

P02

M = Machine

P = Operator

T=Transport

S= Operation

Dark Circle - Non-value added step

Light Circle - Value added step

Figure 6.5: Process step-centric representation of minifab dataset.

due to the toolset setup requirements in the simulation model.

Table 6.2: Comparison of reported, calculated and simulated raw process times
for minifab dataset.

product ratio configuration file calculated simulated
(hrs) (hrs) (hrs)

Pa wafer 0.606 14.4 15.43 15.76
Pb wafer 0.357 14.4 15.43 15.76
Test wafer 0.036 14.4 15.43 15.76

6.5.1 Operating curve results for minifab dataset without op-

erators or downtime

Table 6.3 lists the cycle time and x-factor results from the SimPy simulation without

operators or downtime requirements. Fig. 6.6 plots the resulting operating curve based

on lot starts. Due to a number of batching operations the operating curve increases the

lower the loading on the system. The minimum cycle time can be found when the system

is loaded with a starts rate of approximately 6-7.5 lots per day. However, the minimum

cycle time in this range is still almost twice the RPT. Again, this is due to batching

requirements within the system.

At very high loading, approximately 8.75 lots per day (equivalent to a bottleneck

utilisation of 0.94), the simulation became very unstable and failed to attain steady state

even over a very long run length. This is shown by the very sharp increase in the operating

170

Chapter 6. Semiconductor Fab Model B

 0

 25

 50

 75

 100

 125

 150

 175

 200

 225

 0 1 2 3 4 5 6 7 8 9

 0.005

 0.01

 0.015

 0.02

cy
cl

e
tim

e
(h

rs
)

u/
C

T

starts rate (lots per day)

operating curve
u/CT curve

RPT

Figure 6.6: Standard operating curve and u/CT curve for minifab dataset with-
out operators or downtime.

Table 6.3: Cycle time and x-factor results for Sematech minifab dataset with no
operators or downtime.

starts rate run length warm-up bottleneck uBN CT x-factor
(lots per day) (hrs) (hrs) (hrs)

1.250 50000 20000 Me 0.132 78.425 5.082
1.875 50000 10000 Me 0.198 59.808 3.875
2.500 50000 10000 Me 0.267 49.050 3.178
3.750 50000 12000 Me 0.394 39.713 2.573
5.000 50000 7000 Me 0.536 35.069 2.272
6.250 50000 10000 Me 0.663 34.110 2.210
7.499 50000 20000 Me 0.792 35.059 2.272
8.124 50000 20000 Me 0.864 38.912 2.521
8.749† 100000 n/a Me 0.940 54.039 3.501
9.374† 100000 n/a Me 0.993 224.753 14.563

† The simulation could not achieve steady state.

171

Chapter 6. Semiconductor Fab Model B

curve at these loading levels. The u/CT curve verifies that the optimum loading range

should be in the approximate region of 6 to 8.5 lots per day. Any lower, efficiency is lost

due to the batch forming process, any higher, the bottleneck toolset, which is a re-entrant

tool, reaches its maximum capacity and this results in very long queueing times at the

toolset.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

x-
fa

ct
or

bottleneck utilisation

simulation model
M/D/1 approximation
M/M/1 approximation

RPT

Figure 6.7: Comparison between x-factor results for simulation, M/M/1 and
M/D/1 approximation.

Assuming that the bottleneck toolset is representative of the system, it is possible

to compare it with an equivalent analytical approximation. Assuming an M/M/1 or

M/D/1 queueing system, the cycle time approximations are given by Eq.(2.3), which

is compared to the simulation results from Table 6.3 in Fig. 6.7. The plots show, as

expected, that neither of the queueing approximations are capable of modelling the ‘wait

to batch’ impact on the operating curve. Similarly, both overestimate the operating

172

Chapter 6. Semiconductor Fab Model B

curve at higher levels of loading. This shows that it is not possible to place a ‘black box’

queueing model to the fab, similar to the examples shown in the Section 2.4.2, without

losing significant accuracy and leaving out some of the dominant fab phenomena such as

batching and re-entrancy.

6.5.2 Operating curve results for minifab dataset with opera-

tors and downtime

Fig. 6.8 shows the impact on the operating curve with the inclusion of downtime and

operators from the simulation results listed in Table 6.4.

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7 8 9

x-
fa

ct
or

lot starts (per day)

baseline
with downtime

with downtime and operators
RPT

Figure 6.8: Operating curves for minifab dataset with operators and downtime.

All of the toolsets have a downtime mechanism called PM, and toolsets Mc and Md

have an additional downtime mechanism called EM. The total availability for each tool

173

Chapter 6. Semiconductor Fab Model B

is shown in Table 6.5. The inclusion of downtime has very little impact on the baseline

curve, given that the average availability of the tools is 0.945. This is further confirmed

by analysing the unavailability coefficient V which has a toolset average of 0.003188. This

low value, which is a cycle time multiplier for x-factor approximations, shows that the

system is not largely impacted by tool availability.

Table 6.4: Cycle time and x-factor results for Sematech minifab dataset with no
operators or downtime.

starts rate run length warm-up bottleneck uBN CT x-factor
(lots per day) (hrs) (hrs) (hrs)

inc. downtime

1.25 50000 20000 Me 0.134 78.69 5.10
1.87 50000 11000 Me 0.206 59.43 3.85
2.50 50000 12000 Me 0.270 50.24 3.26
3.75 50000 10000 Me 0.417 40.00 2.59
5.00 50000 12000 Me 0.558 35.96 2.33
6.25 50000 6000 Me 0.695 34.28 2.22
7.50 50000 16000 Me 0.814 36.61 2.37
8.12 100000 40000 Me 0.887 40.51 2.62
8.75 100000 45000 Me 0.948 56.60 3.67
9.37† 100000 n/a Me 0.997 169.73 11.00

1.25 50000 24000 Me 0.189 82.43 5.34
1.87 50000 21000 Me 0.276 66.02 4.28
2.50 50000 10000 Me 0.360 55.66 3.61

inc. downtime 3.75 50000 8000 Me 0.552 47.44 3.07
& operators 5.00 50000 12000 Me 0.713 44.98 2.91

6.25 50000 20000 Me 0.863 50.24 3.26
7.50† 100000 n/a Me 0.969 69.19 4.48
8.12† 100000 n/a Me 0.992 93.00 6.03

† The simulation could not achieve steady state.

However, there is a significant change to the operating curve with the inclusion of

operator requirements. There are three operator sets P01, P02 and MT1 consisting each

of one operator each. Operators P01 and P02 are required for loading and processing the

lots on the tools, but the fraction of time they are required to perform these activities

is approximately 4% of the loading and processing time. This means that their average

utilisation is quite low at about 0.01. However, the maintenance operator MT1 is re-

quired to perform all the maintenance and repair tasks and this has a large impact on the

system. Given that the operator set MT1 consists of only one operator, in effect, tools

174

Chapter 6. Semiconductor Fab Model B

cannot be repaired at the same time and are often left waiting for the repair operator

for long periods of time. This impact increases, the more loaded the tools become and

increases the system’s x-factor by 3 at high loading volumes. Given that availability does

not change over the loading profile, it was found that operator MT01 was utilised approx-

imately 83% of the time. This examination leads to the conclusion that the operator set

MT03 may be under-resourced. Given that the two other operators are under-utilised, a

recommendation may be to cross-train the loading and processing operators to perform

maintenance and repair tasks also.

Table 6.5: Average availability for minifab toolsets.

toolset no. of downtime mechanisms A V

Ma 1 0.950 0.000219
Mb 1 0.950 0.000198
Mc 2 0.932 0.004299
Md 2 0.932 0.003224
Me 1 0.960 0.008000

6.6 Comparison between ExtendSim and SimPy Mod-

els

To show that the modelling strategy is independent of the modelling language or applica-

tion used, the operating curves produced by the ExtendSim model described in Chapter 5

and the SimPy model for the minifab dataset are shown in Table 6.6 and Fig. 6.9.

As can be seen, the cycle time results are in close agreement with an average difference

of about 1.54% in the ranges where both simulations achieved steady state. Larger

differences were found in the unstable regions of the models, however, the fact that both

models were unstable in the same regions verified the similarity of the models.

Applying the paired comparison test, (described by Montgomery (1991)), to the

SimPy and ExtendSim operating curves with a high confidence interval of 99%, the

results showed that there was no statistically significant difference between the operating

175

Chapter 6. Semiconductor Fab Model B

Table 6.6: Comparison of simulation model results for ExtendSim and SimPy
models.

starts rate x-factor % difference
(lots per day)

ExtendSim SimPy

1.250 5.202 5.082 2.322
1.875 3.764 3.875 2.965
2.500 3.160 3.178 0.588
3.750 2.546 2.573 1.055
5.000 2.300 2.272 1.216
6.250 2.178 2.210 1.463
7.499 2.252 2.272 0.870
8.124 2.570 2.521 1.884
8.749 2.937 3.501 19.231
9.374† 32.043 14.563 54.552

† The simulation could not achieve steady state.

 0

 5

 10

 15

 20

 25

 30

 0 1 2 3 4 5 6 7 8 9

x-
fa

ct
or

starts (lots per day)

ExtendSim model
SimPy model

Figure 6.9: Comparison of simulated operating curves for ExtendSim and SimPy
models using the minifab dataset.

176

Chapter 6. Semiconductor Fab Model B

curves, despite the fact that a visual difference can be found at very high loading levels.

This verified that the modelling strategy described here and in Chapter 5 could be

deployed using a number of different modelling applications. In terms of performance

though, the SimPy model outperformed the ExtendSim model in terms of execution

speed. The speed performance was generally found to be in the range of 5:1 in favour of

the SimPy model, particularly for the more complex datasets. A further disadvantage of

the ExtendSim model is that attributes must be defined by real or integer values only,

strings are not allowed. This meant that any string values needed to be converted to a

unique value prior to model execution. This was not an issue in the SimPy models which

handled strings and string operations efficiently.

6.7 Model Verification & Validation

Some of the verification techniques, summarised by Whitner and Balci (1989) and listed

in Appendix G.1, were applied and the results are discussed in Table 6.7.

Table 6.7: Techniques used to verify the SimPy model.

Type Technique Results and Comments

Informal Code inspection The source code was reviewed and inspected during model
build and after the final version. Much of the difficulty with
debugging the source code arose as a result of SimPy’s complex
interaction between different entities.

Static Syntax analysis Modern software compilers ensured that the model syntax was
complete and verified. SimPy for Python was debugged using
PyDev debugging tool which is a plugin for the open source
Eclipse integrated development environment (IDE). Debugging
was complicated by the multiple threads of the SimPy gener-
ators, however, the IDE allows monitoring of unique variables
and objects with conditional breakpoints, which facilitated the
debugging process.

continued on next page

177

Chapter 6. Semiconductor Fab Model B

continued from last page

Structural analysis Structural analysis was performed according to the best prac-
tices of coding. The Python logging library allowed cus-
tomised comments or logs to be written to a text file which
was then used to monitor the movement and activities of enti-
ties during model execution. Furthermore, SimPy has a trace
feature which prints to the IDE console, all of the discrete
events that occur during runtime. Each version of the model
was checked using this tracing feature during alpha testing.

Dynamic Top-down testing Top-down, Bottom-up testing was applied using a black-box
style that checked each class and function to ensure each
portion was consistent and did not produce erroneous
outputs.

Bottom-up testing
Black-box testing

Stress testing Lot arrival rates were gradually increased until the model be-
came overloaded and unable to reach steady state. Mean time
before failure (MTBF) and mean time to repair (MTTR) val-
ues were increased gradually causing very small tool availabil-
ity. This resulted in very long lot queueing times in the model
as expected. Other parameters such as scrap and rework prob-
abilities were increased to verify that flow became increasingly
restricted in the model. This showed that the initial inter-
pretation of rework re-merging with parent lots was severely
restricting lot flow in the datasets. Hence, it was decided that
rework should not merge back to its parent lot upon comple-
tion of its rework operations.

Debugging Debugging was an ongoing process during the model build and
each version of the model and application was subjected to
rigorous debugging as outlined above.

Execution tracing Similar to the ExtendSim models, data flow analysis and model
tracing was performed for the simulation model by introducing
only one lot into the system and monitoring its attributes as
they changed during runtime, proving that the lot experienced
no queueing and minimal processing time, the model data flow
was correct. A zero batching policy was employed during this
process.

Execution monitoring As discussed above, trace animation capabilities in SimPy,
(i.e., use of the SimPy SimulationTrace module as opposed
to the Simulation module) were used to validate the object
flow and activities during runtime.

Regression testing Regression testing (repeating the above procedures) was per-
formed during alpha and beta testing and after each new model
version.

Validating the model was performed by comparing the ExtendSim and SimPy model

cycle time and x-factor results for the minifab dataset. As can be seen from Section 6.6,

the results are in close agreement. Other validation measures are included in Table 6.8.

An explanation of each test can be found in Appendix G.2.

178

Chapter 6. Semiconductor Fab Model B

Table 6.8: Techniques used to validate the SimPy model.

Technique Results and Comments

Degenerate tests Degenerate tests were performed by overloading the model by gradu-
ally increasing the arrival rate of test lots into the model and forcing
utilisation of the toolsets and operators to capacity. This forced the
model into an unstable state where the cycle time increased rapidly
and the model was unable to achieve steady state. This process was
used to examine the boundaries of the model inputs.

Event validity Event validity was ensured by monitoring the routing/events of en-
tities in the model and matching against the dataset information.
Each event was assigned a check list of completed operations during
execution that were examined afterwards for consistency.

Internal validity Very few replications (typically about 3) according to the calculations
described in Section 3.2 were required, meaning that the output re-
sults variability of the performance metric (cycle time) was very low.

6.8 Summary

This chapter described a Python and SimPy implementation of an automated, flexible

and reusable modelling application for generating fast and reliable operating curves for

a full semiconductor fab. The modelling strategy involved analysing the system in an

entity-centric manner, whereby, the dominant components of the system are modelled as

objects. The interaction of these entities models the operations and activities that the fab

undergoes. This modelling strategy was shown to be far more effective than a traditional

modelling strategy and allowed a framework to be developed that could auto-generate the

simulation models. Theoretically then, any fab that could be captured and described in

the data specification, could then be modelled and its operating curve could be produced

without any need for rebuilding the model. The concept of this method was proved in

two independent trials, one using an ExtendSim model embedded in a Visual Basic (VB)

application, the other in a SimPy model controlled by a Python application.

The Python application was used to analyse the minifab dataset, and the resulting

operating curves showed that the system had an efficient operating region below which

‘waiting to batch’ times significantly reduced the efficiency of the system, and above

which, the bottleneck toolset became overloaded and long queueing times resulted. It

was also recommended that cross-training or up-skilling of operators would increase the

179

Chapter 6. Semiconductor Fab Model B

efficiency of the system and reduce the utilisation of the maintenance operator set.

Comparisons between the simulated operating curves and analytical approximations

showed that simple black-box style queuing models could not be used to capture some

of the complexities of the fab, (e.g., re-entrancy and operators), and that the simulation

strategy employed here offered the a better method for success.

Comparisons between the ExtendSim and SimPy implementations of the modelling

strategy showed negligible difference between the model results, which was verified both

visually and with a statistical paired comparison test. This showed that the conceptual

modelling strategy used is independent of the modelling and programming tools used,

and is successful at generating consistent and repeatable operating curves.

180

CHAPTER 7

Discussion

7.1 Overview

This thesis showed how operating curves can serve as a good holistic metric for complex

semiconductor wafer fabs, and can aid engineers and management to make better deci-

sions regarding capacity planning and allocation of resources. The strength of operating

curves lies in their fundamental relationship to the economic driving factors that the

semiconductor industry is faced with.

However, the generation of operating curves is a non-trivial matter. Many of the

previous attempts to generate these curves involved using queueing models with broad

assumptions about the system under analysis. These curves were then limited by these

assumptions and the result is that they were only capable of benchmarking and comparing

previously generated curves using the same methodology.

It was shown that simple analytical approximations are incapable of describing multi-

181

Chapter 7. Discussion

faceted systems where the capacity of the system is dictated by a number of factors,

such as operator availability, re-entrancy and more complex dynamic scheduling. In fact,

much of the published literature on queueing approximations applied to a semiconductor

fab, seem to expand simple operating curves to account for just one more additional

complexity, such as downtime (Section 2.4.1) or the ‘idle with work in process (WIP)’

scenario (Section 2.4.1). Including a multitude of additional complexities to the simple

approximation appears to be a difficult task and there is no literature as of writing

that attempts to capture the many complexities of a semiconductor toolset in a holistic

analytical descriptor. The very fact that most of these approximations rely on fixed

deterministic values for toolset capacity fails to reflect the dynamic environment of a

semiconductor toolset where the perceived capacity of the toolset is often in flux and

dictated by factors such as the setup conditions of the tools and the complex run rules

that the tools have with the lots or wafers.

Furthermore, the highly re-entrant nature of fabs means that lot departure patterns

from workstations can have a significant impact to its lot arrival pattern. This is an issue

that has yet to be successfully addressed by queueing theory approximations and which

almost no literature exists according to Shanthikumar et al. (2007). Many of these issues

arise as a result of the fundamental assumptions upon which queueing theory is based.

With these issues in mind (and supported by the literature) it was decided that sim-

ulation modelling, was a more appropriate method for capturing the complex behaviour

of a semiconductor fab. The strength of simulation modelling means that any level of

system complexity can be recreated or modelled provided there is sufficient time and re-

sources to do so. However, as outlined in Section 2.5, simulation modelling is not without

its own problems. Mainly, the lead time and effort required to create a simulation model,

and subsequently maintain it, are the biggest detractors to its use. Most of the time

taken to complete a simulation study is often consumed by data collecting and collating.

This made the case for creating generic models that were driven by a consistent data

specification or ontology. Key to this approach was to create applications that could

182

Chapter 7. Discussion

generate simulation models depending on the data specification. The first attempt, the

Flexible Toolset Modelling (FTM) application, was used to generate operating curves

for standalone toolsets. Despite successfully achieving this objective, there were issues

regarding analysing a toolset in isolation from its upstream and downstream conditions.

Therefore, it was decided to generate operating curves for a full fab using a flexible

model-generating application that could capture the most relevant parts of the system.

The Semiconductor Wafer Manufacturing Data Format Specification was used as an in-

formation model to implement a flexible generic model that negated any interaction with

the model or editing of the model structure.

This modelling framework was implemented in both a Visual Basic (VB) program

that used ExtendSim as its backbone simulator, and a standalone Python application

which used the SimPy modelling package. Both these applications generated fast and

accurate operating curves for dataset 1 and the minifab dataset. Comparisons between

the two models showed close agreement of their resultant operating curves, which helped

to verify the modelling strategy employed.

7.2 Optimum Location of Simulated Design Points

on Operating Curves

Location of design points on the operating curve and selection of loading levels to produce

the most representative operating curve with the minimal amount of simulation effort is a

topic of little interest in the associated literature with just a few publications choosing to

focus on the variability output from the design points. Perhaps this is due to increased

computing resources, meaning that simulation effort and processing power is less of a

premium to the analyst. However, any time-savings that can be made should be examined

and exploited if one is attempting to automate a full simulation project. The tactic used

in this thesis (in Section 3.1.2) involved applying a simple black-box style queueing model

over the system under analysis to get a preview of the likely shape of an operating curve

183

Chapter 7. Discussion

of such a system. It was then possible to estimate the likely ‘important’ sections of the

operating curve that an analyst would be most interested in.

The u/CT curve proved an effective tool for this problem. The ratio of the two per-

formance indicators was shown to approximate better the area where the fastest change

of the curve occurred. Allocating more simulation effort to design points in this area

was shown to capture the inflection region of the operating curve and place minimal

simulation effort on the low utilisation regions where the horizontal asymptotic nature of

the operating curve is predominant. Similarly, little simulation effort is requested in the

higher utilisation area of the curve where the vertical asymptote dominates. It appears

as a contradiction to allocate lesser simulation effort in this later area where typically

the bulk of simulation effort is required due to the instability of the simulation model,

however, on reflection it makes most sense. This area is quickly approaching the upper

bounds of system capacity and if the model is a good representative of the real system

it is unlikely that the real system will be loaded to this level for long periods of time.

Therefore, it is unlikely that the analyst will be as interested in this area of the operating

curve, particularly given the fact that a disproportionate amount of simulation effort is

required to produce any sound simulation estimates. This was evident in most of the

operating curves based on the Sematech datasets. It appeared that in most there was

a well-defined threshold of loading, above which the simulation models became unstable

very quickly and it appeared that regardless of the amount of simulation effort exhausted

(either run length or number of replications), the simulation models could not achieve

steady state, in this region.

7.3 Operating Points, Curves and Surfaces

The assumption throughout this thesis has been that fabs, at any given time, exist

as a point on the operating ‘spectrum’. Changing the loading of the fab then causes

this point to shift in the x-y plane and the line defined by the movement of this point

184

Chapter 7. Discussion

from zero loading to full loading defines the operating curve. Alternatively, changing

the configuration of the system causes a shift in the curve and a new line is defined.

Visualising this, is then usually done in a two-dimensional plane using two different curves

to describe the two alternate configurations. However, it might be a broad assumption

to assume that changes in loading level will not cause a shift in the curve. It is likely

that changing the loading level will indirectly cause a shift (perhaps a minor one) in the

operating curve. For example, increasing the loading level at a toolset by decreasing the

lot arrival rate (per unit time) may promote the use of an alternative dispatching rule

like setup minimisation, thereby changing the system configuration. Hence it might be

more useful to visualise the operating spectrum as a 3-dimensional surface as opposed to

a series of separate and distinct operating curves. The movement of the operating point

would then be a 3-dimensional traversing of a surface as opposed to leaping between

different operating curves. This would also help engineers to understand the multiple

factors that define an operating curve.

The operating surfaces for a queueing system shown in Section 3.5 use variability

as the third dimension, but this could easily be substituted with other operating curve

factors such as the parallel capacity m or WIP profile. For example, assuming that a

toolset consisting of ten tools processes a number of products with an identical service

pattern. Then the number of tools that the incoming lots can select from is equal to

the toolset capacity. However, assuming that a product (product A) is dedicated to

one tool that is qualified to run it, then, as the percentage of product A increases in

the WIP profile, the less efficient the system becomes and the result can be visualised

using an operating surface of the system, as in Fig. 7.1. Such a visualisation would help

engineers to understand better the multiple proponents of operating curves and make

more informed decisions at the operational level based on an impending WIP profile or

product mix.

185

Chapter 7. Discussion

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

100
75

50

25

0

 10

 20

 30

 40

 50

cycle time

utilisation
wip profile (% prod A)

cycle time

Figure 7.1: Operating surface for G/G/10 queue with lot dedication restriction.

7.4 Reflections on the FTM application

One of the most difficult aspects when implementing the FTM application involved mod-

elling the offline times of the tools. Of the case study examined, identification and classi-

fication of unscheduled and scheduled downtime is unclear. The timing of a preventative

maintenance (PM) event is dependent on the status of the tool, the quality output from

the tool, and the level of incoming WIP. It was found that the flexibility of PMs, meant

that there was a high level of overlapping between scheduled and unscheduled outages.

For example, often was the case where a tool that was interrupted during processing,

which should technically be referred to as an unscheduled downtime, would be recorded

as having entered a PM state, and repair of the tool could be achieved by expediting a

planned maintenance task. This caused some confusion over the nature of the offline event

and required some heuristic algorithms in the application that could correctly identify

the likely sequence of events and categorise the type of offline event correctly.

Similar difficulties occurred when interpreting what happened when a tool came back

online and went down again soon afterwards. In such a situation it was impossible to

186

Chapter 7. Discussion

identify whether the follow-up offline event was part of the previous one. Again, some

heuristic algorithms were required to account for this scenario by assuming an upper

threshold mean time before failure (MTBF) interval, under which, successive down events

were considered to be part of the same failure.

Problems such as these showed that despite the existence of logging protocols at the

test facility, the states of the tool could be interpreted differently by different operators.

Many of these issues only came to light during the programming and debugging of the

data collection scripts, and the time taken to address the issues far outweighed the time

taken to build the actual generic model itself. It is likely that had the FTM application

been subsequently applied to a different toolset, a similar phase of debugging might have

been required for other unforeseen issues.

As a proof of concept the FTM application was shown to be a useful tool for generating

the operating curves for the test case. The shape of the curves showed that the tools

under investigation were efficient and there was little variation in actual process times.

This led to the conclusion that much of the variability in the system was due to complex

despatching rules and lost efficiencies in lot transportation to and from the tool. This

concern helped identify the difficulty of examining a toolset in isolation from its upstream

and downstream conditions. Which in turn, promoted the case for analysing a full system

and applying the generic modelling methodology on a fab-wide scale.

7.5 Craft-based versus Generic Modelling

Despite discrete event simulation (DES) modelling being a scientific procedure it is still

subjected to the interpretation of the system by the modeller. In many cases it would

be likely that two independent simulationists would create two very different models

of the same system. This emphasises the fact that simulation modelling is very much

an art, something which is evident in single-use, one-off or craft-based models. Craft-

based models can be very accurate, encompass a great level of system detail and capture a

187

Chapter 7. Discussion

generally uncommon theme or phenomena that the system is subjected to. However, there

is a lost opportunity when applying it to semiconductor manufacturing. The components

of the system lend themselves well to be modularised, given that they have many common

elements and structures. This promotes the case for using generic modelling with a set

of variable inputs and structures.

However, creation and deployment of the models in this thesis have led to the conclu-

sion that there is perhaps a correct way and an incorrect way of doing this. The FTM

application was limited in its reusability because its initial design was far too targeted

towards the unique circumstances of the testbed toolset. Perhaps the correct way is

to define the conceptual model and adapt the real data to fit it. This is where data

specifications, information models and descriptive ontologies can deliver significant time-

savings. Basing the modelling strategy around the Semiconductor Wafer Manufacturing

Data Format Specification meant that the system definition was more robust, less likely

to be misinterpreted and easier to create the programs and scripts that generated the

simulation models.

It is likely that the future of successful large scale deployment of reusable generic

models should be based on this premise. The requirements in understanding large system

complexity and ultimately conceptualising the system place a heavy workload on the

modeller, and often it is an environment that the modeller is unfamiliar with or has just

been introduced to. The modeller then, in a sense, becomes a translator between the real

system and the conceptual model that is contained within the simulation program code.

A common ground between the modeller and system owners could perhaps be found in

a common system descriptive framework such as an ontology or a data specification.

The system owners could be tasked with the collection of system information and be

responsible for populating the information model. The modeller could then focus more

on creating the scripts and programs necessary to generate the models based on the rules

and constructs of the ontology, rather than acquiring a deep understanding of the real

system.

188

Chapter 7. Discussion

Employing this tactic could also have huge cost and time savings when conducting

a modelling project. An information model constructed by those most knowledgeable

about the system may be superior to one populated through the possibly narrower view

of the modeller. Wikipedia is a good example of this phenomena, whereby anyone can

post any information, which is ultimately judged by the public. This effectively roots

out irrelevant or inaccurate content quickly, particularly if the subject matter is one of

interest to many people. Such a scheme could be applied to collection of information for

simulation models, whereby, tacit knowledge could be fed into an ontology by factory floor

personnel that understand the system best. This would make deployment of simulation

models and generation of system metrics such as the operating curve a rapid and efficient

process.

7.6 Industrial Implications

The following section discusses the industrial implications of this work with respect to

the four grand challenges that face simulation modelling in the manufacturing sector

according to Fowler and Rose (2004). The grand challenges are listed as follows;

1. An order-of-magnitude reduction in problem-solving cycles,

2. Development of real-time simulation-based problem-solving capability,

3. True plug-and-play interoperability of simulations and supporting software within

a specific application domain,

4. Greater acceptance of modelling and simulation within industry.

The first of these challenges refers to reducing the time taken to “design, collect in-

formation/data, build, execute, and analyse simulation models to support manufacturing

decision making”. Fowler and Rose state that, while there is opportunity and scope for

increasing the efficiency of all stages of a simulation project, most gain is to be had in

the area of data collection and synthesis for the model. The work in this thesis shows

how it is possible to create a framework for simulation modelling by extracting the most

189

Chapter 7. Discussion

common and repetitive structures of a complex system and reduce the information into

an ontology or information model that can be used to generate automated simulation

models.

In reference to supporting manufacturing decision making, it is important to base

decisions on a holistic view of the system rather than an incomplete picture. For these

purposes, the operating curve has been shown to be a key and concise snapshot of the

status and efficiency of a factory. Therefore, generating the curve in a timely fashion

could be a valuable aid.

Fowler and Rose go on to state that “conventional simulation software packages used

for modelling manufacturing systems take a job-driven world-view. In this approach,

manufacturing jobs are the active system entities while system resources, such as ma-

chines, are passive. The simulation model is created by describing how jobs move through

their processing steps, seizing available resources whenever they are needed. A separate

record for every job in the system is created and maintained for tracking wafers or lots

through the factory. A lot of execution time can be consumed when sorting lists of these

jobs in a given queue or in searching the queue for a given job. Therefore, the speed and

space complexity of these simulations must be at least on the order of some polynomial

of the number of jobs in the factory”. It appears from the work in this thesis that this

job-driven modelling strategy is far more difficult to automate and far less flexible than

the reusable modelling strategy used in Chapters 4-6. This type of strategy made it pos-

sible to interpret any type of semiconductor system that could be realistically captured

in the Semiconductor Wafer Format Specification.

Another area that Fowler and Rose believe has opportunity for improvement, is in the

time taken to perform the experiments. This is tackled in Chapter 3, where a complete

framework for simulation models is automated into a single program that can control

simulation models and remove much of the decision-making and labour required to de-

sign the simulation experiments. The models can then be embedded in this framework

resulting in a significant reduction in the overall lead time of a simulation project.

190

Chapter 7. Discussion

The second of the grand challenges ‘real-time simulation-based problem-solving ca-

pability’, is only possible once the first challenge has been overcome as single-use one-

off models are incapable of repeatedly delivering real-time decision-support. None of

the models in this thesis are capable of delivering real-time solutions, however, refin-

ing the initial ExtendSim/VB model in Chapter 5 and implementing the framework in

a Python/SimPy application in Chapter 6 showed a reduction in time-to-solution by a

magnitude of about 5:1. While not offering real-time solutions, this meant that for the

more complex datasets, it was possible to generate operating curves in about 1 hour

(without performing multiple replications), which is a good starting point. To get to real

time, one might need to consider current actual WIP profiles of the real system, and pre-

populate the model with this information, thereby removing the warm-up period from

the model execution. Such an analysis was not performed here as the Semiconductor

Wafer Format Specification does not include such mechanisms, however, it would not be

that much more difficult to implement this in these models given their modular structure

and flexibility.

The last grand challenge refers to increasing the awareness, acceptance and credibility

of simulation modelling in the manufacturing sector. Management are often not interested

in the inner workings or the theory of simulation, but more interested in how it can help

them to make better decisions. Fowler and Rose point out that simulation should not

be miss-sold to the industry as being a device to solve all manufacturing problems, but

should be advertised as an important tool for management to exploit. Realistically, it

is only when the other first three grand challenges are overcome, will one start to see

broader acceptance of simulation modelling. It is the simulation results that matter to

management, not the mechanisms by which they work. In light of this, it is hoped that

the output operating curves from the models introduced in this thesis will be of use to

management, in that they are based on sound principles for generating operating curves

that can be integrated into a standalone package with a fast time to solution.

191

CHAPTER 8

Conclusion

The main conclusions and contributions of this thesis are summarised as follows:

• A framework was presented for generating operational characteristic curves for semi-

conductor fabrication facilities using automatically generated flexible models that

avail of simple queueing models to estimate the parameters for the simulation ex-

periments.

• Using the test cases, it was shown that the proposed framework better estimated

the underlying operating curve in comparison with queueing theory based models,

which failed to identify the high x-factor in the low loading regions (due to batching)

and overestimated the efficiency of the fab in the high loading regions.

• A novel method of using the u/CT curve was shown to identify the most pertinent

location of design points for defining the experimental parameters of the simulation

models.

• The operating curves produced for both versions of the full fab model were shown

to be consistent with one another, which verified the flexible modelling strategy

used.

192

Chapter 8. Conclusion

8.1 Technical Contributions

In order to facilitate the main contributions and findings, a number of technical objectives

were met;

• A library of functions and subroutines were written in Visual Basic (VB) for com-

municating with and controlling ExtendSim simulation models as a background

process.

• A function for estimating the Johnson distribution parameters (based on an algo-

rithm by Slifker and Shapiro (1980)) of a dataset was programmed in both Python

and VB.

• Operating surfaces were introduced, which show the relationship between the key

factors of an operating curve.

• A program for designing discrete event simulation (DES) model experiments (based

on the work of Johnson, Feng, Ankenman and Nelson (2004)) was created which:

- Allocates experimental design points to minimise simulation effort,

- Estimates the run length,

- Determines the required number of replications,

- Identifies the initial bias for deletion.

• Creation of custom Lot Generator, Tool Generator, Operator Generator and Pairing

modular blocks were created for ExtendSim to facilitate more flexible models using

an entity-centric modelling strategy.

8.2 Recommendations for Future Work

An ontology such as the Semiconductor Wafer Manufacturing Data Format Specification

was shown to be capable of capturing and describing a complex system such as a semi-

conductor wafer manufacturer. It shows that by identifying key components and entities

that reside within the system, a pattern can be found which can then be classified in an

information model. However, some deficiencies of this information model were identified.

193

Chapter 8. Conclusion

Further development of the wafer specification could include more detailed time record-

ings. Currently, the specification only offers average times. This could be expanded to

include distribution information. Other additions might include the complex run rules

and despatching rules that are common in a semiconductor fab and which make it such

a difficult environment to describe.

More recently, the Core Manufacturing Simulation Data (CMSD) specification has

produced a more complete ontology for designing DES models for a generic manufacturing

system. However, according to Ehm et al. (2009), one of the main detractors from

using the CMSD is an interface to create the information model (which is stored in

an extensible markup language (XML) file and a unified modelling language (UML)

interpretation). Currently, work is being undertaken by the author of this thesis to

create such a user interface that would allow factory engineers, operators and technicians

to build a full database profile of their factory. Once completed, the next phase will

involve creation of a program to translate the CMSD information model to a simulation

model in Python/SimPy, based on the methods described in this thesis. This project is

currently being undertaken as part of the BreakCycle Maintainable Modelling Strand for

the Irish Centre for Manufacturing Research.

194

www.icmr.ie

References

Abadir, M. 2007. Meeting the evolving challenges of the semiconductor industry, In-

ternational Conference on Design Technology of Integrated Systems in Nanoscale Era

(DTIS).

Acklam, P. J. 2003. Peter’s Home Page [Online]. Available from: http://tinyurl.

com/6s6l3ww [Accessed 10 September 2009].

Ahmad, M. M. and Dhafr, N. 2002. Establishing and improving manufacturing perfor-

mance measures, Robotics and Computer-Integrated Manufacturing 18(3-4), pp. 171–

176.

Akhavan-Tabatabaei, R., Ding, S. and Shanthikumar, J. 2009. A method for cycle time

estimation of semiconductor manufacturing toolsets with correlations, Proceedings of

the 2009 Winter Simulation Conference, pp. 1719–1729.

Alexopoulos, C. 2006. A comprehensive review of methods for simulation output analysis,

Proceedings of the 2006 Winter Simulation Conference, pp. 168–178.

Altiok, T. 1997. Performance Analysis of Manufacturing Systems, Springer, New York.

Atherton, L. and Atherton, R. 1995. Wafer Fabrication: Factory Performance and Anal-

ysis, The Springer International Series in Engineering and Computer Science, Springer.

Aurand, S. and Miller, P. 1997. The operating curve: a method to measure and bench-

mark manufacturing line productivity, Proceedings of the 1997 IEEE/SEMI Advanced

Semiconductor Manufacturing Conference, pp. 391–397.

195

http://tinyurl.com/6s6l3ww
http://tinyurl.com/6s6l3ww

REFERENCES

Backhouse, R. C. 1986. Program Construction and Verification, Prentice-Hall.

Bai, P. 2009. Advancing Moore’s law: Challenges and opportunities, IEEE 8th Interna-

tional Conference on ASIC 2009, pp. 7–8.

Banks, J. 1999. What does industry need from simulation vendors in Y2K and after?

A panel discussion, Proceedings of the 1999 Winter Simulation Conference, Vol. 2,

pp. 1501–1508.

Banks, J., Carson, J. S. and Nelson, B. L. 2004. Discrete-Event System Simulation, 4th

edn, Prentice Hall.

Banks, J. and Gibson, R. 1997a. 10 Rules for determining when simulation is not appro-

priate, IIE Solutions 29(9), pp. 30–32.

Banks, J. and Gibson, R. 1997b. Simulation modeling: Some programming required, IIE

Solutions 29(2), pp. 26–31.

Banks, J. and Gibson, R. R. 1996. Getting started in simulation modeling, IIE Solutions

28(11), pp. 34–39.

Banks, J. and Norman, V. B. 1995. Justifying simulation in today’s manufacturing

environment, IIE Solutions 27(11), pp. 16–19.

Barendregt, H. P. 1984. The Lambda Calculus - Its Syntax and Semantics, Vol. 103 of

Studies in Logic and the Foundations of Mathematics, North-Holland.

Bergmann, S. and Strassburger, S. 2010. Challenges for the automatic generation of

simulation models for production systems, Proceedings of the 2010 Summer Simulation

Multiconference, Society for Computer Simulation International, pp. 545–549.

Bhavnagarwala, A., Borkar, S., Sakurai, T. and Narendra, S. 2010. EP2: The semicon-

ductor industry in 2025, IEEE International Solid-State Circuits Conference Digest of

Technical Papers (ISSCC2010), pp. 534–535.

Boning, D., McIlrath, M., Penfield, P., J. and Sachs, E. 1992. A general semiconduc-

tor press modeling framework, IEEE Transactions on Semiconductor Manufacturing

5(4), pp. 266–280.

Butler, K. and Matthews, J. 2001. How differentiating between utilization of effective

availability and utilization of effective capacity leads to a better understanding of per-

formance metrics, Proceedings of the 2001 IEEE/SEMI Advanced Semiconductor Man-

ufacturing Conference, pp. 21–24.

196

REFERENCES

Carson, J. 2005. Introduction to modeling and simulation, Proceedings of the 2005 Winter

Simulation Conference, pp. 7–13.

Carson, J. S. 2002. Verification validation: Model verification and validation, Proceedings

of the 2002 Winter Simulation Conference, pp. 52–58.

Christensen, C., King, S., Verlinden, M. and Yang, W. 2008. The new economics of

semiconductor manufacturing, IEEE Spectrum 45(5), pp. 24–29.

Chwif, L., Barretto, M. and Paul, R. 2000. On simulation model complexity, Proceedings

of the 2000 Winter Simulation Conference, pp. 449–455.

Condron, F. 2010. Assessment of approaches for estimating the warm-up period in discrete

event simulation models, Master’s thesis, Dublin City University.

Connors, D., Feigin, G. and Yao, D. 1996. A queueing network model for semiconductor

manufacturing, IEEE Transactions on Semiconductor Manufacturing 9(3), pp. 412–

427.

de Ron, A. and Rooda, J. 2005. Fab performance, IEEE Transactions on Semiconductor

Manufacturing 18(3), pp. 399–405.

DeBrota, D., Roberts, S., Dittus, R., Wilson, J., Swain, J. and Venkatraman, S. 1989.

Modeling input processes with Johnson distributions, Proceedings of the 1989 Winter

Simulation Conference, pp. 308–318.

Delp, D. 2004. A new x-factor contribution measure for identifying machine level capacity

constraints and variability, Proceedings of the 2004 IEEE/SEMI Advanced Semiconduc-

tor Manufacturing Conference, pp. 334–338.

Delp, D., Si, J. and Fowler, J. 2006. The development of the complete x-factor contribu-

tion measurement for improving cycle time and cycle time variability, IEEE Transac-

tions on Semiconductor Manufacturing 19(3), pp. 352–362.

Delp, D., Si, J., Hwang, Y. and Pei, B. 2003. A dynamic system regulation measure for

increasing effective capacity: the x-factor theory, Proceedings of the 2003 IEEE/SEMI

Advanced Semiconductor Manufacturing Conference and Workshop, pp. 81–88.

Delp, D., Si, J., Hwang, Y., Pei, B. and Fowler, J. 2005. Availability-adjusted x-factor,

International Journal of Production Research 43(18), pp. 3933–3953.

Dubash, M. 2005. Moore’s Law is dead, says Gordon Moore [Online].

Available from: http://news.techworld.com/operating-systems/3477/

moores-law-is-dead-says-gordon-moore/ [Accessed 19 February 2010].

197

http://news.techworld.com/operating-systems/3477/moores-law-is-dead-says-gordon-moore/
http://news.techworld.com/operating-systems/3477/moores-law-is-dead-says-gordon-moore/

REFERENCES

Ehm, H., McGinnis, L. and Rose, O. 2009. Are simulation standards in our future?,

Proceedings of the 2009 Winter Simulation Comference, pp. 1695–1702.

El-Kilany, K. 2003. Reusable modelling and simulation of flexible manufacturing for next

generation semiconductor manufacturing facilities, PhD thesis, Dublin City University.

ExtendSim 2009. ExtendSim 8 Developer Reference, Imagine That.

Fayed, A. and Dunnigan, B. 2007. Characterizing the operating curve: How can semi-

conductor fabs grade themselves?, International Symposium on Semiconductor Manu-

facturing, pp. 1–4.

Feigin, G., Fowler, J., Robinson, J. and Leachman, R. 1994. Semiconductor Wafer Manu-

facturing Data Format Specification, Modeling and Analysis for Semiconductor Manu-

facturing Laboratory (MASMLab). Available from: www.eas.asu.edu/˜masmlab/

[Accessed 2 May 2006].

Fishman, G. S. 1978. Grouping observations in digital simulation, Management Science

24(5), pp. 510–521.

Ford, D. 2010. Semiconductor industry set for highest annual growth in 10 years [Online].

Available from: http://tinyurl.com/3aenjzp [Accessed 26 January 2010].

Fowler, J., Brown, S., Gold, H. and Schoeming, A. 1997. Measurable improvements in

cycle-time-constrained capacity, Proceedings of the IEEE International Symposium on

Semiconductor Manufacturing Conference, pp. A21–A24.

Fowler, J. and Robinson, J. 1995. Measurement and improvement of manufacturing capac-

ity (MIMAC) project final report, Technical report, Sematech. Available from: http:

//www.fabtime.com/files/MIMFINL.PDF [Accessed 25 April 1996].

Fowler, J. W., Leach, S. E., Mackulak, G. T. and Nelson, B. L. 2008. Variance-based

sampling for simulating cycle timethroughput curves using simulation-based estimates,

Journal of Simulation 2, pp. 69–80.

Fowler, J. W., Park, S., MacKulak, G. T. and Shunk, D. L. 2001. Efficient cycle time-

throughput curve generation using a fixed sample size procedure, International Journal

of Production Research 39(12), pp. 2595–2613.

Fowler, J. W. and Rose, O. 2004. Grand challenges in modeling and simulation of complex

manufacturing systems, Simulation 80(9), pp. 469–476.

198

www.eas.asu.edu/~masmlab/
http://tinyurl.com/3aenjzp
http://www.fabtime.com/files/MIMFINL.PDF
http://www.fabtime.com/files/MIMFINL.PDF

REFERENCES

Gafarian, A. V., Ancker Jr., C. J. and Morisaku, T. 1978. Evaluation of commonly used

rules for detecting “steady state” in computer simulation, Naval Research Logistics

25(3), pp. 511–529.

Gass, S. I. 1984. Documenting a computer-based model, Interfaces 14(3), pp. 84–93.

Goldratt, E. M. 1990. What is this thing called Theory of Constraints and how should it

be implemented?, North River Press.

Goldratt, E. M. 1992. The Goal: A Process of Ongoing Improvement, North River Press.

Gordon, G. 1977. System Simulation, Prentice Hall PTR, Upper Saddle River, NJ, USA.

Gross, D. and Harris, C. M. 2003. Fundamentals of Queuing Theory, John Wiley and

Sons, Singapore.

Hoad, K., Robinson, S. and Davies, R. 2008. Automating warm up length estimation,

Proceedings of the 2008 Winter Simulation Conference, pp. 532–540.

Hoad, K., Robinson, S. and Davies, R. 2009. Automating discrete event simulation output

analysis, Proceedings of the 2009 INFORMS Simulation Society Research Workshop,

pp. 75–79.

Hopp, W. J. and Spearman, M. L. 2001. Factory Physics: Foundations of Manufacturing

Management, Irwin McGraw-Hill, Boston.

Hopp, W. J., Spearman, M. L., Chayet, S., Donohue, K. L. and Gel, E. S. 2002. Using

an optimized queueing network model to support wafer fab design, IIE Transactions

34(2), pp. 119–130.

Hutcheson, G. D. 2000. Economics of semiconductor manufatcuring, in Y. Nishi and

R. Doering (eds), Handbook of Semiconductor Manufacturing Technology, Dekker,

Chapter 37, pp. 1123–1139.

Ignizio, J. P. 2009. Optimizing Factory Performance: Cost-Effective Ways to Achieve

Significant and Sustainable Improvement, McGraw-Hill.

Jacobs, J. H., Etman, L. F. P., Rooda, J. E. and Van Campen, E. J. J. 2001. Quan-

tifying operational time variability: the missing parameter for cycle time reduction,

Proceedings of the 2001 IEEE/SEMI Advanced Semiconductor Manufacturing Confer-

ence, pp. 1–10.

199

REFERENCES

Jacobs, J. H., Etman, L. F. P., van Campen, E. J. J. and Rooda, J. E. 2003. Characteri-

zation of operational time variability using effective process times, IEEE Transactions

on Semiconductor Manufacturing 16(3), pp. 511–520.

Jacobs, P. A. 1980. Heavy traffic results for single-server queues with depen-

dent (EARMA) service and interarrival times, Advances in Applied Probability

12(2), pp. 517–529.

Jeong, K., Wu, L. and Hong, J. 2009. IDEF method-based simulation model de-

sign and development framework, Journal of Industrial Engineering and Management

2(2), pp. 337–359.

Johansson, B. and Grunberg, T. 2001. An enhanced methodology for reducing time

consumption in discrete event simulation projects, Proceedings of the 13th European

Simulation Symposium.

Johnson, R. T., Feng, Y., Ankenman, B. E. and Nelson, B. L. 2004. Nonlinear regression

fits for simulated cycle time vs. throughput curves for semiconductor manufacturing,

Proceedings of the 2004 Winter Simulation Conference, Vol. 2, pp. 1951–1955.

Johnson, R. T., Leach, S. E., Fowler, J. W. and Mackulak, G. T. 2004. Variance-based

sampling for cycle time-throughput confidence intervals, Proceedings of the 2004 Winter

Simulation Conference, pp. 720–725.

Juang, J. and Huang, H. 2000. Queueing network analysis for an IC foundry, IEEE

Conference on Robotics and Automation, Vol. 4, pp. 3389–3394.

Kelton, W. D. 1980. The startup problem in discrete-event simulation, PhD thesis, Uni-

versity of Wisconsin.

Kingman, J. F. C. 1966. On the algebra of queues, Journal of Applied Probability

3(2), pp. 285–326.

Klein, M. and Kalir, A. 2006. A full factory transient simulation model for the analysis of

expected performance in a transition period, Proceedings of the 2006 Winter Simulation

Conference, pp. 1836–1839.

Koo, P.-H., Jang, J. and Suh, J. 2005. Vehicle dispatching for highly loaded semiconduc-

tor production considering bottleneck machines first, International Journal of Flexible

Manufacturing Systems 17, pp. 23–38.

Kotcher, B. and Lumileds, P. 2011. Queueing models for wafer fabs, FabTime Cycle Time

Management Newsletter 12(3), pp. 5–9.

200

REFERENCES

Kumar, P. 1994. Scheduling semiconductor manufacturing plants, Control systems mag-

azine 14(6), pp. 1–23.

Kwon, O. H. 2007. Perspective of the future semiconductor industry: Challenges and

solutions, Proceedings of the 44th ACM/IEEE Design Automation Conference, p. xii.

Law, A. 2008. How to build valid and credible simulation models, Proceedings of the 2008

Winter Simulation Conference, pp. 39–47.

Law, A. M. and Carson, J. S. 1979. A sequential procedure for determining the length

of a steady-state simulation, Operations Research 27(5), pp. 1011–1025.

Law, A. M. and Kelton, W. D. 1997. Simulation Modeling and Analysis, McGraw-Hill

Higher Education.

Law, A. M. and McComas, M. G. 1991. Secrets of successful simulation studies, Proceed-

ings of the 1991 Winter Simulation Conference, pp. 21–27.

Lee, H. W. and Kim, T. H. 2005. A queueing model for multi-product production system

under varying manufacturing environment, Computational Science and Its Applica-

tions, Vol. 3483 of Lecture Notes in Computer Science, Springer Berlin / Heidelberg,

pp. 509–518.

Li, J., Meerkov, S. and Zhang, L. 2009. Production Systems Engineering: A brief

overview, Stochastic Models of Manufacturing and Service Operations, pp. 63–72.

Li, N., Zhang, L., Zhang, M. and Zheng, L. 2005. Applied factory physics study on

semiconductor assembly and test manufacturing, Proceedings of the 2005 IEEE Inter-

national Symposium on Semiconductor Manufacturing, pp. 307–310.

Li, N., Zhang, M. T., Deng, S., Lee, Z.-H., Zhang, L. and Zheng, L. 2007. Single-

station performance evaluation and improvement in semiconductor manufacturing: A

graphical approach, International Journal of Production Economics 107(2), pp. 397–

403.

Lopez, P., Terry, A., Daniely, D. and Kalir, A. 2005. Effective utilization (Ue) - a

breakthrough performance indicator for machine efficiency improvement, Proceedings

of the 2005 IEEE International Symposium on Semiconductor Manufacturing, pp. 63–

66.

Mackulak, G., Lawrence, F. and Colvin, T. 1998. Effective simulation model reuse: a

case study for AMHS modeling, Proceedings of the 1998 Winter Simulation Conference,

Vol. 2, pp. 979–984.

201

REFERENCES

Mahajan, P. and Ingalls, R. 2004. Evaluation of methods used to detect warm-up period

in steady state simulation, Proceedings of the 2004 Winter Simulation Conference,

Vol. 1, pp. 663–671.

Martin, D. 1996. Optimizing manufacturing asset utilization, Proceedings of the 1996

IEEE/SEMI Advanced Semiconductor Manufacturing Conference and Workshop.

MASM Lab Factory Datasets 1996. Available from: http://wwwalt.sim.

uni-hannover.de/˜svs/wise0910/pds/masmlab/factory_datasets/

[Accessed 12 January 2010].

May, G. and Sze, S. 2004. Fundamentals of Semiconductor Manufacturing, Wiley.

McIntosh, S. 1997. Conquering semiconductor’s economic challenges by increasing capital

efficiency, Proceedings of the 1997 IEEE International Symposium on Semiconductor

Manufacturing Conference, pp. 1–3.

Miller, D. J. 1990. Simulation of a semiconductor manufacturing line, Communications

of the ACM 33(10), pp. 98–108.

Miltenburg, J., Cheng, C. H. and Yan, H. 2002. Analysis of wafer fabrication facilities

using four variations of the open queueing network decomposition model, IIE Trans-

actions 34(3), pp. 263–272.

Montgomery, D. C. 1991. Design and Analysis of Experiments, 3rd edn, Wiley.

Moore, G. E. 1995. Lithography and the future of Moore’s law, in R. D. Allen (ed.),

Advances in Resist Technology and Processing XII, Vol. 2438, SPIE, pp. 2–17.

Moore, G. E. 2000. Cramming more components onto integrated circuits, Electronics

1, pp. 56–59.

Morrison, J. and Martin, D. 2007. Practical extensions to cycle time approximations for

the G/G/m-queue with applications, IEEE Transactions on Automation Science and

Engineering 4(4), pp. 523–532.

Mueller, R., Alexopoulos, C. and McGinnis, L. 2007. Automatic generation of simulation

models for semiconductor manufacturing, Proceedings of the 2007 Winter Simulation

Conference, pp. 648–657.

Nordgren, W. 1995. Steps for proper simulation project management, Proceedings of the

1995 Winter Simulation Conference, pp. 68–73.

202

http://wwwalt.sim.uni-hannover.de/~svs/wise0910/pds/masmlab/factory_datasets/
http://wwwalt.sim.uni-hannover.de/~svs/wise0910/pds/masmlab/factory_datasets/

REFERENCES

Olhager, J. and Persson, F. 2008. Using simulation-generated operating characteristics

curves for manufacturing improvement, in T. Koch (ed.), Lean Business Systems and

Beyond, Vol. 257 of IFIP Advances in Information and Communication Technology,

Springer Boston, pp. 195–204.

Otto, K. 2007. Anderson-darling normality test calculator [Online]. Available from: www.

robuststrategy.com/Software/ [Accessed 22 September 2008].

Parkin, T. 2010. Python community website [Online]. Available from: http://www.

python.org/ [Accessed 17 August 2010].

Paul, R. and Taylor, S. 2002. What use is model reuse: is there a crook at the end of the

rainbow?, Proceedings of the 2002 Winter Simulation Conference, Vol. 1, pp. 648–652.

Pidd, M. 1992. Computer Simulation in Management Science, John Wiley & Sons.

Pidd, M. 2002. Simulation software and model reuse: a polemic, Proceedings of the 2002

Winter Simulation Conference, Vol. 1, pp. 772–775.

Poeter, D. and Hachman, M. 2011. Next Intel chips will have the world’s first ‘3D’ tran-

sistors [Online]. Available from: http://www.pcmag.com/article2/0,2817,

2384897,00.asp#fbid=qI2QX9xoq07 [Accessed 12 October 2011].

Potti, K. and Whitaker, M. 2003. Cycle time reduction at a major Texas Instruments

wafer fab, Proceedings of the 2003 IEEE/SEMI Advanced Semiconductor Manufactur-

ing Conference, pp. 106–110.

Riddick, F. and Lee, Y. 2008. Representing layout information in the CMSD specification,

Proceedings of the 2008 Winter Simulation Conference, pp. 1777–1784.

Robinson, S. 1997. Simulation model verification and validation: Increasing the users’

confidence, Proceedings of the 1997 Winter Simulation Conference, pp. 53–59.

Robinson, S. 2002. A statistical process control approach for estimating the warm-up

period, Proceedings of the 2002 Winter Simulation Conference, pp. 439–446.

Robinson, S. 2003. Simulation: The Practice of Model Development and Use, Wiley.

Robinson, S. 2005. Automated analysis of simulation output data, Proceedings of the

2005 Winter Simulation Conference, pp. 763–770.

Robinson, S. 2006. Conceptual modeling for simulation: issues and research requirements,

Proceedings of the 38th Winter Simulation Conference, pp. 792–800.

203

www.robuststrategy.com/Software/
www.robuststrategy.com/Software/
http://www.python.org/
http://www.python.org/
http://www.pcmag.com/article2/0,2817,2384897,00.asp#fbid=qI2QX9xoq07
http://www.pcmag.com/article2/0,2817,2384897,00.asp#fbid=qI2QX9xoq07

REFERENCES

Robinson, S. 2007. A statistical process control approach to selecting a warm-up period for

a discrete-event simulation, European Journal of Operational Research 176(1), pp. 332–

346.

Robinson, S. and Bhatia, V. 1995. Secrets of successful simulation projects, Proceedings

of the 1995 Winter Simulation Conference, pp. 61–67.

Robinson, S. and Brooks, R. (eds) 2010. Conceptual Modeling for Discrete-Event Simu-

lation, CRC Press.

Rosenblueth, A. and Wiener, N. 1945. The role of models in science, Philosophy of Science

12(4), pp. 316–321.

Rubinstein, R. and Melamed, B. 1998. Modern Simulation and Modeling, John Wiley &

Sons.

Rupp, K. and Selberherr, S. 2010. The economic limit to Moore’s law, Proceedings of the

IEEE 98(3), pp. 351–353.

Sadowski, D. and Grabau, M. 2004. Tips for successful practice of simulation, Proceedings

of the 2004 Winter Simulation Conference, Vol. 1, pp. 56–61.

Sargent, R. 1998. Verification and validation of simulation models, Proceedings of the

1998 Winter Simulation Conference, Vol. 1, pp. 121–130.

Sattler, L. 1996. Using queueing curve approximations in a fab to determine produc-

tivity improvements, Proceedings of the 1996 IEEE/SEMI Advanced Semiconductor

Manufacturing Conference and Workshop, pp. 140–145.

Schaller, R. 1997. Moore’s law: Past, present and future, IEEE Spectrum 34(6), pp. 52–59.

Schriber, T. and Brunner, D. 2010. Inside discrete-event simulation software: How it

works and why it matters?, Proceedings of the 2010 Winter Simulation Conference,

pp. 151–165.

Semiconductor Industry Association Factsheet 2010. Available from: http://www.

sia-online.org/ [Accessed 3 October 2010].

Shanthikumar, J., Ding, S. and Zhang, M. 2007. Queueing theory for semiconductor man-

ufacturing systems: A survey and open problems, IEEE Transactions on Automation

Science and Engineering 4(4), pp. 513–522.

204

http://www.sia-online.org/
http://www.sia-online.org/

REFERENCES

Simon, W. 2008. CPU transistor counts 1971-2008 and Moore’s law [Online]. Available

from: http://commons.wikimedia.org/wiki/File:Moores_law.svg [Ac-

cessed 24 April 2008].

Slifker, J. F. and Shapiro, S. S. 1980. The johnson system: Selection and parameter

estimation, Technometrics 22(2), pp. 239–246.

Sprenger, R. and Rose, O. 2010. On the Simplification of Semiconductor Wafer Factory

Simulation Models, CRC Press, Chapter 17, pp. 451–470.

Steele, M., Mollaghasemi, M., Rabadi, G. and Cates, G. 2002. Generic simulation mod-

els of reusable launch vehicles, Proceeding of the 2002 Winter Simulation Conference

pp. 747–753.

Storer, R. H., Swain, J. J., Venkatraman, S. and Wilson, J. R. 1988. Comparison methods

for fitting data using Johnson translation distributions, Proceedings of the 1988 Winter

Simulation Conference, pp. 476–481.

Stroud, K. 1995. Engineering Mathematics, MacMillan.

Taha, H. A. 2005. Operations Research: An Introduction, 8th edn, Prentice Hall.

Valentin, E. and Verbraeck, A. 2002. Guidelines for designing simulation building blocks,

Proceedings of the 2002 Winter Simulation Conference, Vol. 1, pp. 563–571.

Veeger, C., Etman, L., van Herk, J. and Rooda, J. 2008. Generating cycle time-

throughput curves using effective process time based aggregate modeling, Proceedings

of the 2008 IEEE/SEMI Advanced Semiconductor Manufacturing Conference, pp. 127–

133.

Verbraeck, A. and Valentin, E. 2008. Design guidelines for simulation building blocks,

Proceedings of the 2002 Winter Simulation Conference, pp. 923–932.

Vucurevich, T. 2008. 3-D semiconductors: More from Moore, Proceedings of the 45th

Annual ACM/IEEE Design Automation Conference, pp. 664 –664.

Wheeler, R. E. 1980. Quantile estimators of Johnson curve parameters, Biometrika

67(3), pp. 725–728.

Whitner, R. and Balci, O. 1989. Guidelines for selecting and using simulation model

verification techniques, Proceedings of the 1989 Winter Simulation Conference, pp. 559–

568.

205

http://commons.wikimedia.org/wiki/File:Moores_law.svg

REFERENCES

Whitt, W. 1983. The queueing network analyzer, The Bell Systems Technical Journal

62(9), pp. 2779–2815.

Whitt, W. 1989a. Planning queuing simulations, Journal of Management Science

35(11), pp. 1341–1366.

Whitt, W. 1989b. Simulation run length planning, Proceedings of the 1989 Winter Sim-

ulation Conference, pp. 106–112.

Whitt, W. 1993. Approximations for the GI/G/m queue, Production and Operations

Management 2(2), pp. 114–161.

Worldwide Sales of Semiconductors in Billion USD 2010. Available from: http://www.

semi.org/ [Accessed 3 October 2010].

Yao, X., Fernandez-Gaucherand, E., Fu, M. and Marcus, S. 2004. Optimal preventive

maintenance scheduling in semiconductor manufacturing, IEEE Transactions on Semi-

conductor Manufacturing 17(3), pp. 345–356.

Youngblood, S. 2006. VV&A recommended practices guide [Online]. Available

from: http://vva.msco.mil/ [Accessed 19 January 2011].

206

http://www.semi.org/
http://www.semi.org/
http://vva.msco.mil/

Appendices

APPENDIX A

Coded Algorithms for Designing

DES Experiments

This chapter lists the coded algorithms used to create the framework for designing discrete

event simulation experiments as described in Chapter 3.

A.1 Required number of simulation replications

This function returns the number of replication based on the precision of a confidence

interval. If the number of required replications is greater than 30 then the central limit

theorem applies and returns the value 30 (see Section 3.2 for discussion).

from math import sqrt
from scipy.stats import t.isf

def numRepsReq(data,relError=0.1,precision=0.05):
xbar=mean(data)
S_squared=var(data)
adjError=relError/(1+relError)

A-1

Appendix A. Code for DES Framework

repsReq=len(data)
tInv=(t.isf(precision,repsReq-1)*sqrt(S_squared/repsReq))/xbar

while tInv>adjError and repsReq<=30:
repsReq=repsReq+1
tInv=(t.isf(precision,repsReq-1)*sqrt(S_squared/repsReq))/xbar

return repsReq

A.2 Whitt approximation for simulation run length

Returns the approximate run length for a simple single stage queueing system according

to Whitt (1989a) (see Section 3.3). Default values give an M/M/1 queue with mean

process rate of 1.0, and the default confidence and relative confidence width are 0.95%

and 0.05 respectively. A factor of safety can also be deployed (default value is 1.0) and

the recommended minimum traffic intensity (utilisation) is 0.5. Note also, that the return

value is rounded upwards to the nearest 1,000.

def whittRunLength(u,m,arrRate,te=1.0,scv_e=1.0,scv_a=1.0,cl=0.95,cw=0.05,FoS=1.0,min_u=0.3):
z_val=ltqnorm(1-((1-cl)/2))
if u<min_u:
u=min_u

numCust=(8*te*(scv_e+scv_a)*(z_val**2))/((u**2)*m*(cw**2)*((1-u)**2))
return FoS*int(round((numCust/arrRate),-3))

Note: The function whittRunLength uses the function tlqnorm given in Appendix A.5.

A.3 Batch size approximation

This function returns the recommended number of batches according to the Von Neu-

mann test for correlation and the Anderson Darling test for normality. It is based on

an algorithm described in Section 3.4.1. The function has a terminating minimum batch

size of 20.

def recNumBatches(data,precision=0.05,minBatches=20):

bSize =2
n=len(data)
numBatches=n/bSize
batch=makeBatch(data,numBatches)
VN=vonNeumann(batch,precision)
AD=andDar(batch,precision)

A-2

Appendix A. Code for DES Framework

while bSize<=n/2:
if VN == True or AD == False: # data is correlated or not normal

"false test"
bSize=bSize*2
numBatches=n/bSize
batch=makeBatch(data,numBatches)
VN=vonNeumann(batch,precision)
AD=andDar(batch,precision)

else: # data is not correlated and is normal
"true test"
if bSize<=n/2:

upperBound=bSize
lowerBound=bSize/2
break

else:
"an error occurred"

while (upperBound-lowerBound)>3:
bSize = lowerBound + ((upperBound - lowerBound) / 2)
numBatches=n/bSize
batch=makeBatch(data,numBatches)
VN=vonNeumann(batch,precision)
AD=andDar(batch,precision)
if VN == True or AD == False: # data is correlated or not normal

"false test"
lowerBound=bSize

else:
"true test"
upperBound=bSize

if numBatches>minBatches:
return numBatches

else:
return minBatches

Note: The function recNumBatches uses the functions vonNeumann and andDar

as follows.

A.3.1 Von Neumann algorithm

This algorithm returns True if the input data is correlated according to Von Neumann

test for autocorrelation.

def vonNeumann(data,alpha=0.05):

n=len(data)
temp1=[]
for i in range(n-1):
temp1.append((data[i]-data[i+1])**2)

temp1=sum(temp1)

ybar=mean(data)
temp2=[]
for y in data:
temp2.append((y-ybar)**2)

temp2=sum(temp2)

VNstat=sqrt(((n**2)-1)/(n-2))*(1-(temp1/(2*temp2)))
z=ltqnorm(1-alpha)

if VNstat>z:
return True # data is correlated

else:
return False # data is not correlated

Note: The function vonNeumann uses the function ltqnorm (see Appendix A.5).

A-3

Appendix A. Code for DES Framework

A.3.2 Anderson-Darling test for normality

The andDar function returns True if the data series is normally distributed. The

function was adapted from Otto (2007).

def andDar(data,alpha=0.05):

n=len(data)
ybar=mean(data)
y=std(data,ddof=1)

s_data=sort(data)

F1i=[]
for i in s_data:
F1i.append(norm.cdf((i-ybar)/y))

F2i=[]
for i in F1i:
F2i.append(1-i)

F2i_s=sort(F2i)
Si=[]
for i in range(len(F2i)):
Si.append(((2*(i+1))-1)*(log(F1i[i])+log(F2i_s[i])))

ADTestStat=((-1)*(sum(Si))/n)-n
ADStarTestStat=ADTestStat*(1+(0.75/n)+(2.25/(n**2)))

if ADStarTestStat>=0.6 and ADStarTestStat < 13:
p1 = exp(1.2937-(5.709*ADStarTestStat)+(0.0186*(ADStarTestStat**2)))

else:
p1 = 0

if ADStarTestStat< 0.6 and ADStarTestStat >= 0.34:
p2 = exp(0.9177 - (4.279*ADStarTestStat)-(1.38*(ADStarTestStat**2)))

else:
p2 = 0

if ADStarTestStat<0.34 and ADStarTestStat>=0.2:
p3 = exp(((-1)*8.318)+(42.796*ADStarTestStat)-(59.938*(ADStarTestStat**2)))

else:
p3 = 0

if ADStarTestStat < 0.2:
p4 =1- exp(((-1)*13.436)+(101.14*ADStarTestStat)-(223.73*(ADStarTestStat**2)))

else:
p4 = 0

maxp=max(p1,p2,p3,p4)
if maxp>alpha: # then the data is normally distributed
return True

else:
return False

Note: The function andDar uses the function tlqnorm (see Appendix A.5).

A.4 SPC Algorithm

The function SPCMethod returns the index number of the element in the time series

where steady state is assumed to have begun according to the statistical process control

(SPC) control rules (Robinson, 2007). The warm-up period for the model can be selected

by identifying the point at which the time-series data is in control and remains in control.

A-4

Appendix A. Code for DES Framework

The function returns the value −1 if data failed on last half of data. If the series is always

in control, the warm up period is assumed to be the point were the mean line is crossed

for the first time by the transient. See Section 3.4.1 for more detailed discussion.

Declare Imports
from numpy import *
from scipy.stats import t,norm
import pylab

##SPC Function
def SPCMethod(data,plotit=False):

""dataArray should be of the form numPyarray ([[rep1],[rep2],...,[rep n]])""

n=data.shape[0]
m=data.shape[1]
mean_vals=zeros(m)

for i in range(m):
sum=0.0
for j in range(n):

sum=sum+data[j,i]
mean_vals[i]=sum/n

b=recNumBatches(mean_vals)
varArray=batchVar(data,b)
batchArray=makeBatch(mean_vals,b)

p0=b/2+1 # p0 is start of second half of data
sum=0.0
for i in arange(p0,b,1):
sum=sum+batchArray[i]

mean_val=sum/(b-p0-1)

sum=0.0
for i in arange(p0,b,1):
sum=sum+varArray[i]

std_val=sqrt(sum/(b/2))

control limits
UL3 = mean_val + ((3 * std_val) / sqrt(n))
UL2 = mean_val + ((2 * std_val) / sqrt(n))
UL1 = mean_val + ((1 * std_val) / sqrt(n))
LL1 = mean_val - ((1 * std_val) / sqrt(n))
LL2 = mean_val - ((2 * std_val) / sqrt(n))
LL3 = mean_val - ((3 * std_val) / sqrt(n))

Test 1: a point plots outside a 3 sigma control limit
test1=0
for i in arange(b-1,-1,-1):
if batchArray[i]>UL3 or batchArray[i]<LL3:

test1=i
break

Test 2: two out of three consecutive points plot outside 2 sigma control limit
test2=0
for i in arange(b-1,2,-1):
if batchArray[i]>UL2:

if batchArray[i-1]>UL2 or batchArray[i-2]>UL2:
test2 = i
break

elif batchArray[i]<LL2:
if batchArray[i-1]<LL2 or batchArray[i-2]<LL2:
test2 = i
break

Test 3: four out of five consecutive points plot outside the a 1-sigma control
test3=0
for i in arange(b-1,4,-1):
if batchArray[i]>UL1:
failCount=1
for j in arange(i-1,i-4,-1):

if batchArray[j]>UL1:
failCount=failCount+1

if failCount>3:
test3=i
break

A-5

Appendix A. Code for DES Framework

elif batchArray[i]<LL1:
failCount=1
for j in arange(i-1,i-4,-1):

if batchArray[j]<LL1:
failCount=failCount+1

if failCount>3:
test3=i
break

Test 4: eight consecutive points plot on one side of the mean
test4=0
for i in arange(b-1,7,-1):
if batchArray[i]>mean_val:

failCount=1
for j in arange(i-1,i-7,-1):

if batchArray[j]>mean_val:
failCount=failCount+1

if failCount>7:
test4=i
break

elif batchArray[i]<mean_val:
failCount=1
for j in arange(i-1,i-7,-1):

if batchArray[j]<mean_val:
failCount=failCount+1

if failCount>7:
test4=i
break

plot
if plotit == True:
pylab.plot(batchArray,label='transient',color='black',linewidth=2)
pylab.plot(ones(b)*UL3,label ='spc limit 3',color='black',linewidth=0.5,linestyle='dotted'

)
pylab.plot(ones(b)*UL2,label ='spc limit 2',color='black',linewidth=0.5,linestyle='-.')
pylab.plot(ones(b)*UL1,label ='spc limit 1',color='black',linewidth=0.5,linestyle='dashed'

)
pylab.plot(ones(b)*LL1,color='black',linewidth=0.5,linestyle='dashed')
pylab.plot(ones(b)*LL2,color='black',linewidth=0.5,linestyle='-.')
pylab.plot(ones(b)*LL3,color='black',linewidth=0.5,linestyle='dotted')
pylab.plot(ones(b)*mean_val,label ='mean',color='black')
pylab.legend(bbox_to_anchor=(1.05, 1), loc=2)
pylab.xlabel('time series')
pylab.ylabel('performance indicator')
pylab.title('Warm up period using SPC Method')
pylab.grid(False)
pylab.savefig('spc_plot.ps')
pylab.show()

if max(test1,test2,test3,test4)>p0: # test failed on last half of data
return -1

elif max(test1,test2,test3,test4)>0: # test failed in first half of data
return max(test1,test2,test3,test4)+1

else:
assume warmup occurs at point where transient crosses mean
if batchArray[i]<mean_val:

for i in arange(2,b,1):
if batchArray[i]>mean_val:
return i

else:
for i in arange(2,b,1):
if batchArray[i]<mean_val:
return i

Note: The function SPCMethod uses the python module Pylab, a tool for plotting data

in python scripts. Plotting can be turned off in the function by setting the input variable

plotit = False.

A-6

Appendix A. Code for DES Framework

A.5 Miscellaneous Functions

This section lists the miscellaneous functions and modules used to code the framework

described in Chapter 3.

A.5.1 Inverse normal distribution function

This function returns an approximation of the inverse cumulative standard normal dis-

tribution function, i.e., given P , it returns an approximation to the X satisfying P =

Pr {Z ≤ X} where Z is a random variable from the standard normal distribution based

on an algorithm provided by (Acklam, 2003).

def ltqnorm(p):
if p <= 0 or p >= 1:
raise ValueError("Argument to ltqnorm %f must be in open interval (0,1)"% p)

Coefficients in rational approximations.
a = (-3.969683028665376e+01, 2.209460984245205e+02, \

-2.759285104469687e+02, 1.383577518672690e+02, \
-3.066479806614716e+01, 2.506628277459239e+00)

b = (-5.447609879822406e+01, 1.615858368580409e+02, \
-1.556989798598866e+02, 6.680131188771972e+01, \
-1.328068155288572e+01)

c = (-7.784894002430293e-03, -3.223964580411365e-01, \
-2.400758277161838e+00, -2.549732539343734e+00, \

4.374664141464968e+00, 2.938163982698783e+00)
d = (7.784695709041462e-03, 3.224671290700398e-01, \
2.445134137142996e+00, 3.754408661907416e+00)

Define break-points.
plow = 0.02425
phigh = 1 - plow

Rational approximation for lower region:
if p < plow:
q = sqrt(-2*log(p))
return (((((c[0]*q+c[1])*q+c[2])*q+c[3])*q+c[4])*q+c[5]) / \

((((d[0]*q+d[1])*q+d[2])*q+d[3])*q+1)

Rational approximation for upper region:
if phigh < p:
q = sqrt(-2*log(1-p))
return -(((((c[0]*q+c[1])*q+c[2])*q+c[3])*q+c[4])*q+c[5]) / \

((((d[0]*q+d[1])*q+d[2])*q+d[3])*q+1)

Rational approximation for central region:
q = p - 0.5
r = q*q
return (((((a[0]*r+a[1])*r+a[2])*r+a[3])*r+a[4])*r+a[5])*q / \

(((((b[0]*r+b[1])*r+b[2])*r+b[3])*r+b[4])*r+1)

A.5.2 Batch means method

Returns the batch means series based on a requested number of batches (Law and Carson,

1979; Law and Kelton, 1997). See Section 3.4.1 for details.

A-7

Appendix A. Code for DES Framework

def makeBatch(data,b):

n = len(data)
b_width = n/b
output = []

for i in range(b):
sum = 0.0
for j in arange((b_width*i),b_width*(i+1),1):

sum = sum + data[j]
if i == (b-1) and b_width*(i+1) < (n-1): # if last batch and some odd points are left

for k in arange(b_width*(i+1),n,1):
sum = sum + data[k]
output.append(sum/(b_width + len(rem_range)))

else:
output.append(sum/b_width)

return output

A.5.3 Batch variance

The function batchVar calculates the batch variance given a set of time series (from

individual replications) and a specified batch size. It returns an array of the batch variance

for each batch across the reflections. If the batch means of a replication are given by,

¯̄Yi =

bk∑
i=(b−1)k+1

Ȳi

b
, (A.1)

for a number of batches b of batch width k and a data series Yi, where i = 1, 2, . . . , n.

Then the variance of the batch means across the replications j = 1, 2, . . . ,m for each

batch is given by V ar(¯̄Yi)j.

def batchVar(data,b):

numReps=data.shape[0]
m=data.shape[1]
b_width = m/b
varArray=zeros(b)

for i in range(b):
means=zeros(numReps)
for c in range(numReps):

sum=0.0
for j in arange((b_width*i),b_width*(i+1),1):

sum=sum+data[c,j]
if i==(b-1) and b_width*(i+1) < (m-1):

for k in arange((b_width*(i+1)),m,1):
sum=sum+data[c,k]

means[c]=sum/(b_width+len(rem_range))
else:

means[c]=sum/b_width
varArray[i]=var(means)

return varArray

A-8

Appendix A. Code for DES Framework

A.5.4 Queue operating point

The function optOperating solves for the optimum operating point on a queueing

curve approximation. See Section 3.1.2 for discussion.

from sympy import *

def optOperating(te=1,cva2=1,cve2=1,m=1):
u=Symbol('u')
return solve((diff(u/(te*(1+((cva2+cve2)/2)*(u**(sqrt(2*(m+1))-1))/(m*(1-u)))),u)))

Note: The function optOperating uses symbolic functions called from the third party

Sympy module for Python.

A-9

APPENDIX B

Flexible Toolset Modelling

Application Code

This chapter includes the program code and decision algorithms used to create the Flex-

ible Toolset Modelling (FTM) application in Visual Basic (VB) and ExtendSim. Addi-

tional description is given in Chapter 4.

B.1 Front-End

The graphical user interface (GUI) home screen Run button executes the main function

of the application after selection of the tools to be examined.

Sub DoProgram()
'This subroutine executes the main program and is triggered by the Run button in the GUI

Userform

If RetrieveModel(modelFile) = False Then
MsgBox "Error occurred opening model " + modelFile + " . in sub DoProgram."

End If

B-1

Appendix B. FTM Application Code

GetDatafromServers
CreateProcessDataSheet
getInterarrivalTimes
GetProcessTimes
FillToolOfflineData
GetDT
GetPM
ToolRank.Show
PassAllDataToExtendSim

If CustomPMFlag Then
GetCustomPM

Else
GetPM

End If

RunExtendSimModel
End Sub

Public Function GetTools()

Dim i, y, r As Integer
Dim rawTools() As Variant
Dim delTool As Boolean
Dim chr As Integer
Dim tempString As String

On Error GoTo ErrorHandling:

y = Sheets("InfoSheet").Cells(1, 1).End(xlDown).Row
r = 0
For i = 1 To y
If Sheets("InfoSheet").Cells(i, 2) = True Then

r = r + 1
ReDim Preserve rawTools(r)
rawTools(r) = Sheets("InfoSheet").Cells(i, 1)

End If
Next i

Validate:
'Validate the data
For i = 1 To UBound(rawTools)
delTool = False
If IsEmpty(rawTools(i)) = True Then

delTool = True
GoTo Delete:
End If

tempString = CStr(rawTools(i))
For chr = 1 To Len(tempString)
If Mid(tempString, chr, 1) = "/" Or Mid(tempString, chr, 1) = "(" Or Mid(tempString, chr,

1) = ")" Then
delTool = True
GoTo Delete:

End If
Next

Delete:
If delTool = True Then
j = i
For j = i To UBound(rawTools) - 1

rawTools(j) = rawTools(j + 1)
Next j
ReDim Preserve rawTools(UBound(rawTools) - 1)
GoTo Validate:

End If
Next

'Get unique items
Tools = UniqueItems(rawTools, False)
GetTools = 1

ErrorHandling:
If Err.Number <> 0 Then
If Err.Number = 9 Then

GetTools = -1
Exit Function

Else

B-2

Appendix B. FTM Application Code

MsgBox Err.Number & ": " & Err.Description & " (" & Erl & ")"
Exit Function

End If
End If

End Function

B.2 Data Collection and Generation of Distributions

for Model

Procedures, algorithms and programming code associated with collection, sorting and

filtration of raw data for the simulation model.

B.2.1 Data pull and cross-referencing

The CreateProcessDataSheet procedure takes the lot history and the entity/tool

history and combines them into a single database. The data is then scrubbed by removing

any test lot data, accounting for any rework lots and deleting any incomplete or error

logs.

Sub CreateProcessDataSheet()

Dim i, j, k, y, y2, rwCount, count As Long
Dim tempval1, tempj As Integer
Dim rw As Variant
Dim entHistVals() As Variant
Dim foundFlag As Boolean

Application.ScreenUpdating = False

'Fill in the headings in ProcessData sheet
With Sheets("ProcessData")
.Cells.Clear 'clear the sheet
.Cells(1, 1) = "ENTITY"
.Cells(1, 2) = "LOT"
.Cells(1, 3) = "OPERATION"
.Cells(1, 4) = "PREVOUT_DATE"
.Cells(1, 5) = "IN_DATE"
.Cells(1, 6) = "BEGIN RUN"
.Cells(1, 7) = "END PROCESS"
.Cells(1, 8) = "END RUN"
.Cells(1, 9) = "OUT DATE"
.Columns("D:I").NumberFormat = "dd/mm/yy hh:mm:ss"
.Columns("D:I").ColumnWidth = 17

End With

'Copy the entries from lotHist
y = Sheets("LotHist").Cells(1, 1).End(xlDown).Row
For i = 2 To y
If Sheets("LotHist").Cells(i, 1) <> "" Then

With Sheets("ProcessData")
.Cells(i, 1) = Sheets("LotHist").Cells(i, 1) 'Entity
.Cells(i, 2) = Sheets("LotHist").Cells(i, 2) 'Lot
.Cells(i, 3) = Sheets("LotHist").Cells(i, 3) 'Operation

B-3

Appendix B. FTM Application Code

.Cells(i, 4) = Sheets("LotHist").Cells(i, 4) 'Prevout

.Cells(i, 5) = Sheets("LotHist").Cells(i, 5) 'In Date

.Cells(i, 9) = Sheets("LotHist").Cells(i, 6) 'OutDate
End With

End If
Next i

'Remove test lots
y = Sheets("ProcessData").Cells(1, 1).End(xlDown).Row
On Error Resume Next
For i = y To 2 Step -1
tempval1 = (Mid(Sheets("ProcessData").Cells(i, 2), 8, 1))
If Err.Number = 13 Then 'this means that the last digit is not an integer value

Sheets("ProcessData").Cells(i, "A").EntireRow.Delete
Err.Clear

End If
Next i

'Sort the ProcessData by Entity, then by IN_Date
y = Sheets("ProcessData").Cells(1, 1).End(xlDown).Row
Sheets("ProcessData").Select
Sheets("ProcessData").Range("A2:i" & y).Select
Selection.Sort Key1:=Range("A1"), Order1:=xlAscending, Key2:=Range("E1"), Order2:=

xlAscending

'Sort the EntHist by Entity, then by TXN Date
y2 = Sheets("EntHist").Cells(1, 1).End(xlDown).Row
Sheets("EntHist").Select
Sheets("EntHist").Range("A2:F" & y2).Select
Selection.Sort Key1:=Range("A1"), Order1:=xlAscending, Key2:=Range("B1"), Order2:=

xlAscending

'Count the "BEGIN RUN" in EntHist
count = 0
For i = 2 To y2
If Sheets("EntHist").Cells(i, 5) = "BEGIN RUN" Then

count = count + 1
End If

Next i

'Copy the EntHist values into a 4 column array with cols Tool Name, Begin Run, End Process,
End Run

ReDim entHistVals(count, 4)
i = 2
r = 0
Do Until i > y2
If Sheets("EntHist").Cells(i, 5) = "BEGIN RUN" Then

j = 1
Do Until Sheets("EntHist").Cells(i + j, 5) = "END PROCESS" Or j > 20

j = j + 1
Loop

k = 1
Do Until Sheets("EntHist").Cells(i + j + k, 5) = "END RUN" Or k > 20

k = k + 1
Loop

If j <= 20 And k <= 20 Then
r = r + 1
entHistVals(r, 1) = Sheets("EntHist").Cells(i, 1)
entHistVals(r, 2) = Sheets("EntHist").Cells(i, 2)
entHistVals(r, 3) = Sheets("EntHist").Cells(i + j, 2)
entHistVals(r, 4) = Sheets("EntHist").Cells(i + j + k, 2)
i = i + j + k + 1

Else
i = i + 1

End If
Else

i = i + 1
End If

Loop

'Match the array up with the LotHist values in ProcessData Sheet
foundFlag = False
For i = 2 To y
If foundFlag = False Then

j = tempj
End If

Do Until (Sheets("ProcessData").Cells(i, 1) = entHistVals(j, 1) And _
((((Sheets("ProcessData").Cells(i, 5) - entHistVals(j, 2)) * 24) ˆ 2) ˆ 0.5) <= 0.15)

Or _
j >= count

B-4

Appendix B. FTM Application Code

j = j + 1
Loop

If j < count Then
If ((((Sheets("ProcessData").Cells(i, 5) - entHistVals(j, 2)) * 24) ˆ 2) ˆ 0.5) <= 0.15

And _
((((Sheets("ProcessData").Cells(i, 9) - entHistVals(j, 4)) * 24) ˆ 2) ˆ 0.5) <= 0.15

And _
Sheets("ProcessData").Cells(i, 1) = entHistVals(j, 1) Then

Sheets("ProcessData").Cells(i, 6) = entHistVals(j, 2)
Sheets("ProcessData").Cells(i, 7) = entHistVals(j, 3)
Sheets("ProcessData").Cells(i, 8) = entHistVals(j, 4)
foundFlag = True
tempj = j

End If
Else

foundFlag = False
End If

Next i

'Remove any zero date entries
For i = y To 2 Step -1
delRow = False
tempval = WorksheetFunction.CountA(Sheets("ProcessData").rows(i))
If WorksheetFunction.CountA(Sheets("ProcessData").rows(i)) <> 9 Then

delRow = True
End If

For j = 1 To 9
If Sheets("ProcessData").Cells(i, j) = 0 Then

delRow = True
End If

Next j

If delRow = True Then
Sheets("ProcessData").rows(i).EntireRow.Delete

End If
Next i

'Sort the ProcessData by Entity, then opID then lot
y = Sheets("ProcessData").Cells(1, 1).End(xlDown).Row
Sheets("ProcessData").Select
Sheets("ProcessData").Range("A2:I" & y).Select
Selection.Sort Key1:=Range("A1"), Order1:=xlAscending, Key2:=Range("C1"), Order3:=

xlAscending, Key2:=Range("B1"), Order3:=xlAscending

'Count Rework
rwCount = 0
For i = 2 To y - 1
If Sheets("ProcessData").Cells(i, 1) = Sheets("ProcessData").Cells(i + 1, 1) And _

Sheets("ProcessData").Cells(i, 2) = Sheets("ProcessData").Cells(i + 1, 2) And _
Sheets("ProcessData").Cells(i, 3) = Sheets("ProcessData").Cells(i + 1, 3) Then

rwCount = rwCount + 1
End If

Next i

Application.ScreenUpdating = True

End Sub

B.2.2 Calculating arrival rates

The getInterarrivalTimes procedure calculates the inter-arrival mean for each op-

eration passing through the selected tools or toolsets.

Sub getInterarrivalTimes()
Dim i, j, k, y, count As Long
Dim sum As Double
Dim range1 As Range
Dim percentOp() As Variant
Dim opID() As Variant

B-5

Appendix B. FTM Application Code

Dim meanIA() As Variant

Application.ScreenUpdating = False
'Sort the data by operation then PREVOUT_DATE
y = Sheets("ProcessData").Cells(1, 1).End(xlDown).Row
Sheets("ProcessData").Select
Sheets("ProcessData").Range("A2:I" & y).Select
Selection.Sort Key1:=Range("C1"), Order1:=xlAscending, Key2:=Range("D1"), Order2:=

xlAscending

'Populate opID
Set range1 = Sheets("ProcessData").Range("C2:C" & y)
opID = UniqueItems(range1, False)
ReDim meanIA(UBound(opID))
ReDim percentOp(UBound(opID))

'Populate meanIA
For j = 1 To UBound(opID)
count = 0
sum = 0
For i = 2 To (y - 1)

If Sheets("ProcessData").Cells(i, 3) = opID(j) And _
Sheets("ProcessData").Cells(i + 1, 3) = opID(j) And _
Sheets("ProcessData").Cells(i, 4) <> "" And _
Sheets("ProcessData").Cells(i + 1, 4) <> "" Then
count = count + 1
sum = sum + ((Sheets("ProcessData").Cells(i + 1, 4) - Sheets("ProcessData").Cells(i,

4)) * 24)
End If

Next i
percentOp(j) = count
meanIA(j) = sum / count

Next j

'Populate percentOp
sum = 0
For j = 1 To UBound(percentOp)
sum = sum + percentOp(j)
Next j

For j = 1 To UBound(percentOp)
percentOp(j) = percentOp(j) / sum
Next j

'Populate Arrival Info, an array that holds opID,mean IA time and %op.
ReDim arrivalInfo(UBound(opID), 3)
For j = 1 To UBound(arrivalInfo)
arrivalInfo(j, 1) = opID(j)
arrivalInfo(j, 2) = meanIA(j)
arrivalInfo(j, 3) = percentOp(j)

Next j

Application.ScreenUpdating = True

End Sub

B.2.3 Calculating process time

The getProcessTimes procedure collects data to construct the process pattern for

each operation type that passes through the toolsets. The process time data is collected,

filtered and passed into a subroutine JSFitter (see Appendix F.1) that outputs the

Johnson distribution parameters.

Sub getProcessTimes()

Dim i, j, y, c, k, r, lastRow As Long
Dim range1 As Range

B-6

Appendix B. FTM Application Code

Dim processArray(), moveOutArray(), processArray2() As Double
Dim toolID() As Variant
Dim jValues() As Variant
Dim tempOpID() As Variant
Dim tempArray1(), tempArray2() As Variant
Dim meanPTforOpOnTool() As Variant

Sheets("ProcessData").Select
y = Sheets("ProcessData").Cells(1, 1).End(xlDown).Row
Sheets("ProcessData").Range("A2:I" & y).Select
Selection.Sort Key1:=Range("A1"), Order1:=xlAscending, Key2:=Range("C1"), Order2:=

xlAscending

toolID = Tools

'i and j are the lower and upper bounds of the tool in question
tempSum = 0
j = 2
For c = 1 To UBound(toolID)
i = j
Do Until Sheets("ProcessData").Cells(i, 1) = toolID(c)

i = i + 1
Loop

j = i
Do Until Sheets("ProcessData").Cells(j, 1) <> toolID(c)

j = j + 1
Loop

Set range1 = Sheets("ProcessData").Range(Cells(i, 3), Cells(j, 3))
tempOpID = UniqueItems(range1, False) 'get unique operations for that tool
For t = 1 To UBound(tempOpID)

tempCount = 0
For z = i To j

If tempOpID(t) = Sheets("ProcessData").Cells(z, 3) Then
empCount = tempCount + 1 'the number times a unique operation was carried out on a

tool
End If

Next z
If tempCount > 30 Then

tempSum = tempSum + 1
ReDim Preserve tempArray1(tempSum)
ReDim Preserve tempArray2(tempSum)
tempArray1(tempSum) = toolID(c)
tempArray2(tempSum) = tempOpID(t)

End If
Next t

Next c

ReDim pTimes(UBound(tempArray1), 10)
For i = 1 To UBound(pTimes)
pTimes(i, 1) = tempArray1(i) 'the dummy tool list
pTimes(i, 2) = 1 'the tool type 1: Single Process
pTimes(i, 3) = tempArray2(i) ' the dummy op id list

Next i

ReDim meanPTforOpOnTool(UBound(pTimes))
ReDim scvPTforOpOnTool(UBound(pTimes))

'Build Arrays and pass for JSFitter
For c = 1 To UBound(pTimes)
j = 0
For i = 2 To y

If pTimes(c, 1) = Sheets("ProcessData").Cells(i, 1) And _
pTimes(c, 3) = Sheets("ProcessData").Cells(i, 3) Then

j = j + 1
ReDim Preserve processArray(j)
ReDim Preserve moveOutArray(j)
ReDim Preserve processArray2(j)
processArray(j) = (Sheets("ProcessData").Cells(i, "H") - Sheets("ProcessData").Cells(i

, "E")) * 24
moveOutArray(j) = (Sheets("ProcessData").Cells(i, "I") - Sheets("ProcessData").Cells(i

, "H")) * 24
processArray2(j) = (Sheets("ProcessData").Cells(i, "I") - Sheets("ProcessData").Cells(

i, "E")) * 24
End If

Next i

meanPTforOpOnTool(c) = WorksheetFunction.Average(processArray2)
scvPTforOpOnTool(c) = ((WorksheetFunction.StDev(processArray2)) ˆ 2) / ((WorksheetFunction

.Average(processArray2)) ˆ 2)

'Fill process time parameters

B-7

Appendix B. FTM Application Code

jValues = JSFitter(processArray)
If jValues(1) > 0 Then

pTimes(c, 4) = jValues(1) 'Dist Type
pTimes(c, 5) = jValues(2) 'neta
pTimes(c, 6) = jValues(3) 'gamma
pTimes(c, 7) = jValues(4) 'lambda
pTimes(c, 8) = jValues(5) 'epsilon
pTimes(c, 9) = WorksheetFunction.Average(moveOutArray) 'move out average
pTimes(c, 10) = j / y 'the percent of all operations

Else 'Insufficient data for JSFitter
MsgBox ("Warning insufficient data for Johnson Distribution")

End If
Next c

'Rename pTimes ToolID column because Extend cant take strings
For i = 1 To UBound(pTimes)
j = 1
Do Until pTimes(i, 1) = toolID(j)

j = j + 1
Loop
pTimes(i, 1) = j

Next i

'Create a meanPT() and an scvPT() array for the tools to be used in QTOpCurve subroutine
ReDim meanPT(UBound(toolID))
ReDim scvPT(UBound(toolID))

For c = 1 To UBound(toolID)
count = 0
tempPT = 0
tempSCV = 0
For i = 1 To UBound(pTimes)

If pTimes(i, 1) = c Then
count = count + 1
tempPT = tempPT + meanPTforOpOnTool(i)
tempSCV = tempSCV + scvPTforOpOnTool(i)

End If
Next i
meanPT(c) = tempPT / count
scvPT(c) = tempSCV / count

Next c

End Sub

B.2.4 Estimate downtime parameters

The fillToolOfflineData procedure collects all references to a down event from

the tool history. The event name tags are also captured and the user is prompted to

distinguish between unscheduled and scheduled downtime from the downtime tag names.

Two additional functions, getDT and getPM then collect all the necessary data into

arrays for distribution building.

Sub fillToolOfflineData()
'This subroutine fills the array ToolOffLineData() with all references to either a PM event

or a downtime event

Dim i, j, k, y, m, n, x As Long
Dim pmFlag As Boolean
Dim OffLineID As Integer
Dim MinReqTime As Double
Dim count1, count2 As Integer
Dim ToolOfflineData() As Variant

MinReqTime = 1 'This is the minimum time required between offline events for them to be
unique

B-8

Appendix B. FTM Application Code

Sheets("EntHist").Select
y = Sheets("EntHist").Cells(1, 1).End(xlDown).Row
Sheets("EntHist").Range("A2:F" & y).Select
Selection.Sort Key1:=Range("A1"), Order1:=xlAscending, Key2:=Range("B1"), Order2:=

xlAscending 'By Entity then Time

k = 0
For i = 2 To y
If Sheets("EntHist").Cells(i, "C") = "D" Or Sheets("EntHist").Cells(i, "D") = "D" Then

k = k + 1
End If

Next i

'Fill all into ToolOffLineData array 1-6 as in wkbook, col 7 is sched flag, col 8 is unique
offline occurrence identifier

ReDim ToolOfflineData(k, 8)
ReDim dtStates(k)

'Fill ToolOffLineData with all references to a down state
k = 0
For i = 2 To y
If Sheets("EntHist").Cells(i, "C") = "D" Or _

Sheets("EntHist").Cells(i, "D") = "D" Then
k = k + 1
For j = 1 To 6

ToolOfflineData(k, j) = Sheets("EntHist").Cells(i, j)
Next j
dtStates(k) = ToolOfflineData(k, 6)

End If
Next i

dtStates = UniqueItems(dtStates, False) 'dtStates array now contains all unique DT states
Call SelectPMstates 'puts all pm event names into an array called PMstates

'Use this loop to mark the downtime event 1 for PM and 2 for unscheduled(DT)
OffLineID = 0
i = 1
Do Until i >= k - 1
If ToolOfflineData(i, 4) = "D" And ToolOfflineData(i, 3) = " " Then 'It is the start of an

offline event
pmFlag = False
For j = 1 To UBound(PMState)

If ToolOfflineData(i, 6) = PMState(j) Or ToolOfflineData(i + 1, 6) = PMState(j) Then
pmFlag = True 'it is a PM event
Exit For

End If
Next j

m = 1
sameEvent:

Do Until (ToolOfflineData(i + m, 4) = " " And ToolOfflineData(i + m, 3) = "D") Or ((i +
m) >= k - 1) 'end of the DT event

m = m + 1
Loop

n = 1
Do Until (ToolOfflineData(i + m + n, 4) = "D" And ToolOfflineData(i + m + n, 3) = " ")

Or ((i + m + n) >= k - 1) 'start of next DT event
n = n + 1

Loop

'check exit
If (i + m + n) >= k - 1 Then 'we are finished

Exit Do
End If

'Check if its the same event occurence
If ToolOfflineData(i, 1) = ToolOfflineData(i + m, 1) And _

ToolOfflineData(i, 1) = ToolOfflineData(i + m + n, 1) Then 'all the same tool
If ((ToolOfflineData(i + m + n, 2) - ToolOfflineData(i + m, 2)) * 24) <= MinReqTime

Then 'they are the same event
m = m + n
GoTo sameEvent:

End If
End If

If ToolOfflineData(i, 1) = ToolOfflineData(i + m, 1) Then
OffLineID = OffLineID + 1
For z = i To (i + m)
ToolOfflineData(z, 8) = OffLineID
If pmFlag = True Then
ToolOfflineData(z, 7) = 1 'it is a PM

B-9

Appendix B. FTM Application Code

Else
ToolOfflineData(z, 7) = 2 'it is an unsched down

End If
Next z
i = i + m + 1
GoTo QuickLoop:

End If
End If
i = i + 1
QuickLoop:

Loop

'Count the number of PM events so we can split the array into two arrays rawPMdata and
rawDTdata

count1 = 0
count2 = 0
For i = 1 To UBound(ToolOfflineData)
If ToolOfflineData(i, 7) = 1 And IsEmpty(ToolOfflineData(i, 8)) = False Then

count1 = count1 + 1
Else

If ToolOfflineData(i, 7) = 2 And IsEmpty(ToolOfflineData(i, 8)) = False Then
count2 = count2 + 1

End If
End If

Next i

ReDim rawPMdata(count1, 7)
ReDim rawDTdata(count2, 7)

count1 = 0
count2 = 0
For i = 1 To UBound(ToolOfflineData)
If ToolOfflineData(i, 7) = 1 And IsEmpty(ToolOfflineData(i, 8)) = False Then

count1 = count1 + 1
rawPMdata(count1, 7) = ToolOfflineData(i, 8)
For j = 1 To 6

rawPMdata(count1, j) = ToolOfflineData(i, j)
Next j

Else
If ToolOfflineData(i, 7) = 2 And IsEmpty(ToolOfflineData(i, 8)) = False Then

count2 = count2 + 1
rawDTdata(count2, 7) = ToolOfflineData(i, 8)
For j = 1 To 6
rawDTdata(count2, j) = ToolOfflineData(i, j)

Next j
End If

End If
Next i

End Sub

Sub GetDT()
Dim y, i, counter As Integer
Dim toolName(), downtimeTemp(), upTimeTemp() As Variant
Dim OLID, startCell, endcell, startEvent, endEvent, nextEvent As Integer

toolName = Tools

ReDim DToutput(UBound(toolName), 3)
For t = 1 To UBound(toolName)
j = 1
Do Until rawDTdata(j, 1) = toolName(t)

j = j + 1
Loop
startCell = j

k = 0
Do Until rawDTdata(startCell + k, 1) <> toolName(t) Or startCell + k = UBound(rawDTdata)

k = k + 1
Loop

If startCell + k = UBound(rawDTdata) Then 'the last in rawDTdata
endcell = startCell + k

Else
endcell = startCell + k - 1

End If

counter = 0
i = startCell

B-10

Appendix B. FTM Application Code

Do While i <= endcell
OLID = rawDTdata(i, 7)
startEvent = i
Do Until rawDTdata(i, 7) <> OLID Or i >= endcell

i = i + 1
Loop

endEvent = i - 1
nextEvent = i

If i < endcell Then
counter = counter + 1
ReDim Preserve downtimeTemp(counter)
ReDim Preserve upTimeTemp(counter)
downtimeTemp(counter) = (rawDTdata(endEvent, 2) - rawDTdata(startEvent, 2)) * 24
upTimeTemp(counter) = (rawDTdata(nextEvent, 2) - rawDTdata(endEvent, 2)) * 24

Else
i = i + 1

End If
Loop

DToutput(t, 1) = t 'Tool Number not name
DToutput(t, 2) = WorksheetFunction.Average(upTimeTemp) 'Mean Uptime
DToutput(t, 3) = WorksheetFunction.Average(downtimeTemp) 'Mean Downtime

Next t

End Sub

Sub GetPM()
Dim y, i, counter As Integer
Dim toolName(), downtimeTemp(), upTimeTemp() As Variant
Dim OLID, startCell, endcell, startEvent, endEvent, nextEvent As Integer

toolName = Tools

ReDim PMoutput(UBound(toolName), 3)
For t = 1 To UBound(toolName)
j = 1
Do Until rawPMdata(j, 1) = toolName(t)

j = j + 1
Loop
startCell = j

k = 0
Do Until rawPMdata(startCell + k, 1) <> toolName(t) Or startCell + k = UBound(rawPMdata)

k = k + 1
Loop

If startCell + k = UBound(rawPMdata) Then 'the last in rawPMdata
endcell = startCell + k

Else
endcell = startCell + k - 1

End If

counter = 0
i = startCell
Do While i <= endcell

OLID = rawPMdata(i, 7)
startEvent = i
Do Until rawPMdata(i, 7) <> OLID Or i >= endcell

i = i + 1
Loop

endEvent = i - 1
nextEvent = i

If i < endcell Then
counter = counter + 1
ReDim Preserve downtimeTemp(counter)
ReDim Preserve upTimeTemp(counter)
downtimeTemp(counter) = (rawPMdata(endEvent, 2) - rawPMdata(startEvent, 2)) * 24
upTimeTemp(counter) = (rawPMdata(nextEvent, 2) - rawPMdata(endEvent, 2)) * 24

Else
i = i + 1

End If
Loop

PMoutput(t, 1) = t 'Tool Number not name
PMoutput(t, 2) = WorksheetFunction.Average(upTimeTemp) 'Mean Uptime

B-11

Appendix B. FTM Application Code

PMoutput(t, 3) = WorksheetFunction.Average(downtimeTemp) 'Mean Downtime
Next t

End Sub

Downtime userform

Figure B.1: User prompt to distinguish between scheduled and unscheduled
downtime events recorded in the tool history.

Private Sub doneButton_Click()

Dim lItem, counter As Integer

counter = 0
For lItem = 0 To DTUserform.ListBox1.ListCount - 1
If DTUserform.ListBox1.Selected(lItem) = True Then

counter = counter + 1
ReDim Preserve PMState(counter)
PMState(counter) = DTUserform.ListBox1.List(lItem)
DTUserform.ListBox1.Selected(lItem) = False
End If

Next lItem

Unload Me

End Sub

B.2.5 Lot selection parameters

This section includes the VB Userform code required for the selection and ranking of

operation types for each tool. A full description is given in Section 4.3.4

ToolRank userform

B-12

Appendix B. FTM Application Code

Figure B.2: VB Userform used to select lot prioritisation options for each tool.

Private Sub UserForm_Initialize()

Dim newlabel As MSForms.Label
Dim newComboBox As MSForms.ComboBox
Dim tempStr As String
Dim x As Integer
Dim recHeight As Double
Dim actHeight As Double
Dim dialogHeight As Double

Application.VBE.MainWindow.Visible = False

dialogHeight = 18
y = UBound(Tools)

'set numbers
For x = 1 To y
Set newlabel = ToolRank.Frame1.Controls.Add("Forms.label.1")
With newlabel

.Name = "RkToolNo" & x

.Caption = x

.Top = 10 + (dialogHeight * (x - 1))

.Left = 10

.Width = 40

.Height = dialogHeight

.Font.Size = 10

.Font.Name = "Tahoma"
End With

Next x

'set text
For x = 1 To y

Set newlabel = ToolRank.Frame1.Controls.Add("Forms.label.1")
With newlabel
.Name = "RankToolName" & x
.Caption = ": " & Tools(x)
.Top = 10 + (dialogHeight * (x - 1))
.Left = 24
.Width = 70
.Height = dialogHeight
.Font.Size = 10
.Font.Name = "Tahoma"

End With
Next x

'set comboboxes
For x = 1 To y

B-13

Appendix B. FTM Application Code

Set newComboBox = ToolRank.Frame1.Controls.Add("Forms.combobox.1")
With newComboBox

.Name = x

.AddItem ("1. No ranking of operations")

.AddItem ("2. Rank operations by last run process")

.AddItem ("3. Rank operations by historical data")

.AddItem ("4. Manually input operation ranks")

.Top = 10 + (dialogHeight * (x - 1))

.Left = 100

.Width = 180

.Height = dialogHeight

.Font.Size = 10

.Font.Name = "Tahoma"

.EnterFieldBehavior = fmEnterFieldBehaviorRecallSelection

.MatchEntry = fmMatchEntryFirstLetter

.MatchRequired = True

.ListIndex = 0
End With

Next x

actHeight = 240
recHeight = 20 + (dialogHeight * x)
If recHeight > actHeight Then
Me.Frame1.ScrollBars = fmScrollBarsVertical
Me.Frame1.ScrollHeight = recHeight

End If

Application.VBE.MainWindow.Visible = True

End Sub

Private Sub RankOKButton_Click()

Dim ctrl As Control
Dim selIdentifier, count, i, j, k As Integer
Dim tempInfo(), tempOpID() As Variant
Dim toolName As String
Dim Temp As Variant
Dim changedFlag As Boolean
Dim count1 As Integer

count1 = 0
For Each ctrl In Me.Frame1.Controls
If TypeName(ctrl) = "ComboBox" Then

selIdentifier = Mid(ctrl.value, 1, 1)

count = 0
For i = 1 To UBound(pTimes)

If ctrl.Name = pTimes(i, 1) Then
count = count + 1
ReDim Preserve tempOpID(count)
tempOpID(count) = pTimes(i, 3)

End If
Next i

ReDim tempInfo(count, 3)
For j = 1 To count

tempInfo(j, 1) = tempOpID(j)
Next j

Select Case selIdentifier
Case 1 'no ranking

For z = 1 To count
tempInfo(z, 2) = 0
tempInfo(z, 3) = tempInfo(z, 1)

Next z

Case 2 'last processed ranking
For z = 1 To count
tempInfo(z, 2) = -1
tempInfo(z, 3) = tempInfo(z, 1)

Next z

Case 3 'product ratio priority detected by FlexiSim
For z = 1 To count
k = 1
Do Until pTimes(k, 1) = ctrl.Name And pTimes(k, 3) = tempInfo(z, 1)

k = k + 1
Loop

B-14

Appendix B. FTM Application Code

tempInfo(z, 3) = pTimes(k, 10)
Next z

'Rank them by the highest in column 3
For i = 1 To count - 1
For j = i + 1 To count

If tempInfo(j, 3) > tempInfo(i, 3) Then
Temp = tempInfo(i, 3)
tempInfo(i, 3) = tempInfo(j, 3)
tempInfo(j, 3) = Temp
Temp = tempInfo(i, 1)
tempInfo(i, 1) = tempInfo(j, 1)
tempInfo(j, 1) = Temp

End If
Next j

Next i

For m = 1 To count
tempInfo(m, 2) = m
tempInfo(m, 3) = tempInfo(m, 1)

Next m

Case 4 'user selects priorities
count1 = count1 + 1
ReDim Preserve passedToolID(count1)
passedToolID(count1) = ctrl.Name

Case Else
MsgBox ("Warning error in selecting operation ranks in UserForm ToolRank. Operation

aborted")
Exit Sub

End Select

If Not (selIdentifier = 4) Then
toolName = "gaOpRank" & ctrl.Name

End If
End If

Next ctrl

Unload Me

If count1 > 0 Then
GetManualOpRanks

End If

End Sub

Private Sub RankCancelButton_Click()
Unload Me

End Sub

RankOps userform

Private Sub UserForm_Initialize()

Dim toolID, x As Integer
Dim toolName As String
Dim tempOpID() As Variant
Dim newlabel As MSForms.Label
Dim newComboBox As MSForms.ComboBox
Dim dialogHeight As Double
Dim count As Integer

toolName = CStr(Tools(CInt(passedToolID(toolIdentifier))))
ToolIDLabel.Caption = toolName

count = 0
For i = 1 To UBound(pTimes)
If passedToolID(toolIdentifier) = pTimes(i, 1) Then

count = count + 1
ReDim Preserve tempOpID(count)

B-15

Appendix B. FTM Application Code

Figure B.3: VB Userform used to rank processing priority for operations.

tempOpID(count) = pTimes(i, 3)
End If

Next i

dialogHeight = 18

'set numbers
For x = 1 To UBound(tempOpID)
Set newlabel = RankOps.Frame1.Controls.Add("Forms.label.1")
With newlabel

.Name = "OpLabel" & x

.Caption = "Operation: " & tempOpID(x)

.Top = 10 + (dialogHeight * (x - 1))

.Left = 10

.Width = 80

.Height = dialogHeight

.Font.Size = 10

.Font.Name = "Tahoma"
End With

Next x

'set comboboxes
For x = 1 To UBound(tempOpID)
Set newComboBox = RankOps.Frame1.Controls.Add("Forms.combobox.1")
With newComboBox

.Name = "ComboBox" & x
For j = 1 To UBound(tempOpID)

.AddItem (j)
Next j
.Top = 10 + (dialogHeight * (x - 1))
.Left = 100
.Width = 40
.Height = dialogHeight
.Font.Size = 10
.Font.Name = "Tahoma"
.EnterFieldBehavior = fmEnterFieldBehaviorRecallSelection
.MatchEntry = fmMatchEntryFirstLetter
.MatchRequired = True
.ListIndex = 0
End With

Next x

actHeight = 132
recHeight = 20 + (dialogHeight * x)
If recHeight > actHeight Then
Me.Frame1.ScrollBars = fmScrollBarsVertical
Me.Frame1.ScrollHeight = recHeight

End If

End Sub

Private Sub OkButton_Click()

B-16

Appendix B. FTM Application Code

Dim ctrl As Control
Dim tempArray1(), tempArray2(), finalArray() As Variant
Dim tempStr, toolName As String
Dim j As Integer

count = 0
count2 = 0
For Each ctrl In Me.Frame1.Controls
If TypeName(ctrl) = "Label" Then

count = count + 1
ReDim Preserve tempArray1(count)
tempArray1(count) = Mid(ctrl, 12, 4)
End If

If TypeName(ctrl) = "ComboBox" Then
count2 = count2 + 1
ReDim Preserve tempArray2(count2)
tempArray2(count2) = ctrl.value

End If
Next ctrl

ReDim finalArray(count, 3)
For i = 1 To UBound(finalArray)
finalArray(i, 1) = tempArray1(i)
finalArray(i, 2) = tempArray2(i)
finalArray(i, 3) = finalArray(i, 1)

Next i

'Arrange in ranking order by column 2
For i = 1 To UBound(finalArray) - 1
For j = i + 1 To UBound(finalArray)

If finalArray(j, 2) < finalArray(i, 2) Then
Temp = finalArray(i, 2)
finalArray(i, 2) = finalArray(j, 2)
finalArray(j, 2) = Temp
Temp = finalArray(i, 1)
finalArray(i, 1) = finalArray(j, 1)
finalArray(j, 1) = Temp

End If
Next j

Next i

'Reset col3 = col1
For i = 1 To UBound(finalArray)
finalArray(i, 1) = finalArray(i, 3)

Next i

toolName = "gaOpRank" & passedToolID(toolIdentifier)
If Not (PassArraytoExtendSim(finalArray, toolName)) Then
MsgBox ("Warning. error when passing operation rank data to ExtendSim in Userform ToolRank

. Operation aborted.")
Exit Sub

End If

Unload Me

End Sub

Private Sub CancelButton_Click()
Unload Me

End Sub

B-17

Appendix B. FTM Application Code

B.3 VBA Wrapper for ExtendSim Commands and

Functions

This section includes some custom functions written in Visual Basic for the FTM Ap-

plication to control and interact with the ExtendSim model. The functions rely heavily

on execute, request and poke methods described by the ExtendSim manual (ExtendSim,

2009). The procedure and functions include:

- RetrieveModel Opens the ExtendSim model file.

- GetExtendAppPath Finds the local ExtendSim installation.

- PassAllDataToExtendSim Sends all the data and distribution information from

VB to ExtendSim.

- RunExtendSimModel Runs the model.

- SaveAndCloseExtendSimModel Saves the model and cleanly exits ExtendSim.

- PassArrayToExtendSim Creates an ExtendSim array and populates it with the

contents of a VB array.

- PassRunInfo Informs ExtendSim of some essential run parameters such as start

time, end time and the number of replication to perform.

- ExtendDBTableWrite Writes an ExtendSim database to a text file in the root

folder of the ExtendSim application.

- ReceiveDBfromExtendSim Creates an array in VB and populates it with an

ExtendSim array.

- ReceiveArrayfromExtendSim Converts a VB array to string and passes it to

a newly created ExtendSim array.

- SimAnimation Turns the simulation animation off.

Public Function RetrieveModel(moxfile As String)

Dim GettingObject As Integer

modelFile = moxfile

On Error GoTo ErrorHandler:

B-18

Appendix B. FTM Application Code

GettingObject = 1

Set ExtendApp = GetObject(, "Extend.Application")

loadmodel:
GettingObject = 0
ExtendApp.Execute "OpenExtendFile(" + """" + modelFile + """" + ");"
GoTo Done:

ErrorHandler:
If GettingObject Then

' ExtendSim is not running (otherwise GetObject would have worked) so we
' call create object to start ExtendSim
Set ExtendApp = CreateObject("Extend.Application")
GoTo loadmodel:

Else
MsgBox Error$
Set ExtendApp = Nothing

End If

Done:

End Function

Public Sub GetExtendAppPath()
ExtendApp.Execute "globalStr2 =getAppPath();"
ExtendAppPath = ExtendApp.Request("System", "globalStr2+:0:0:0")

End Sub

Sub PassAllDataToExtendSim()

Dim extendArray As String

Arrival:
extendArray = "gaArrivalInfo"
If PassArraytoExtendSim(arrivalInfo, extendArray) = False Then

MsgBox "Error occured when passing to " + extendArray + " . in sub DoProgram."
End If

Tools:
extendArray = "gaTool"
If PassArraytoExtendSim(pTimes, extendArray) = False Then

MsgBox "Error occured when passing to " + extendArray + " . in sub DoProgram."
End If

Downtime:
extendArray = "gaDT"
If PassArraytoExtendSim(DToutput, extendArray) = False Then

MsgBox "Error occured when passing to " + extendArray + " . in sub DoProgram."
End If

PM:
extendArray = "gaPM"
If PassArraytoExtendSim(PMoutput, extendArray) = False Then

MsgBox "Error occured when passing to " + extendArray + " . in sub DoProgram."
End If

End Sub

Sub RunExtendSimModel()
ExtendApp.Execute "ExecuteMenuCommand(6000);" 'Use the ExecuteMenuCommand() function to run

the simulation
End Sub

Sub SaveAndCloseExtendSimModel()
ExtendApp.Execute "ExecuteMenuCommand(5);" 'close the model

B-19

Appendix B. FTM Application Code

ExtendApp.Execute "ExecuteMenuCommand(4);" 'Use the ExecuteMenuCommand() function to save
the simulation

ExtendApp.Execute "ExecuteMenuCommand(1);" 'close Extend
Set ExtendApp = Nothing 'Destroy the extendApp

End Sub

Public Sub PassArraytoExtendSim(dataArray() As Variant, extendArray As String)

'Converts the dataArray to string and passes it to a newly created extendArray
Dim i, j, x, y As Integer
Dim strArray() As String
Dim n, m As String
Dim blockNum() As Integer

On Error GoTo ErrorHandler:

y = UBound(dataArray, 1)
x = UBound(dataArray, 2)
ReDim strArray(y, x)

For i = 1 To y
For j = 1 To x
strArray(i, j) = CStr(dataArray(i, j))
Next j

Next i

ExtendApp.Execute "globalStr2 =GAGetIndex(" + """" + extendArray + """" + ");"
globalIndex = ExtendApp.Request("System", "globalStr2+:0:0:0")

If globalIndex > -1 Then 'delete array and recreate it
ExtendApp.Execute "globalStr2 =GaDispose(" + """" + extendArray + """" + ");"

End If

ExtendApp.Execute "globalStr2 =GACreate(" + """" + extendArray + """" + ",1," & x & ");"
globalIndex = ExtendApp.Request("System", "globalStr2+:0:0:0")

If globalIndex < 0 Then
MsgBox "Failed to create the global array named " + extendArray + " in " + modelFile
PasstoExtendSim = False
Exit Sub

End If

globalIndex = val(globalIndex)
ExtendApp.Execute "GAResize(" + """" + extendArray + """" + "," & y & ");"

For i = 1 To y
For j = 1 To x

m = CStr(i - 1)
n = CStr(j - 1)
ExtendApp.Execute "GASetReal(" & strArray(i, j) & "," & globalIndex & "," + m + "," + n

+ ");"
Next j

Next i

ErrorHandler:
If Err.Number <> 0 Then
MsgBox Error$ & "Error occured when passing to array " + extendArray + " to simulation.

Operation aborted."
Exit Sub

End If

End Sub

Public Sub PassRunInfo(value As Variant, infoType As Integer)

'This function passes information to ExtendSim that refers to its sim setup variable the
permitted infoTypes are

SimEndTime = 1
SimStartTime = 2
SimReps = 3

Dim val, which As String
Dim returnValue As Integer

If infoType > 3 Or infoType < 1 Then

B-20

Appendix B. FTM Application Code

MsgBox ("Undefined information type in function PassRunInfo. Operation aborted.")
Exit Sub

End If

val = CStr(value)
which = CStr(infoType)

ExtendApp.Execute "globalStr2 = SetRunParameter(" & val & "," & which & ");"
returnValue = ExtendApp.Request("System", "globalStr2+:0:0:0")

If returnValue <> 1 Then
MsgBox ("Error returned form ExtendSim in function PassRunInfo. Operation aborted.")
Exit Sub

End If

End Sub

Public Sub ExtendDBTableWrite(dbName As String, tableName As String, textFileName As String)

'Writes a database to a text file in the root folder of the ExtendSim application
Dim dbNameIndex As Integer
Dim tableNameIndex As Integer
Dim numOfRecords, numOfFields As Long
Dim strDelim, strPrompt As String
Dim successFlag As Long

'Get DB Index
ExtendApp.Execute "globalStr2 = DBDatabaseGetIndex(" + """" + dbName + """" + ");"
dbNameIndex = ExtendApp.Request("System", "globalStr2+:0:0:0")

If dbNameIndex <= 0 Then
MsgBox ("Warning database " & dbName & " not found in ExtendSim. Operation aborted")
Exit Sub

End If

'Get Table Index
ExtendApp.Execute "globalStr2 = DBTableGetIndex(" & dbNameIndex & "," + """" + tableName + "

""" + ");"
tableNameIndex = ExtendApp.Request("System", "globalStr2+:0:0:0")

If tableNameIndex <= 0 Then
MsgBox ("Warning table " & tableNameIndex & " not found in ExtendSim. Operation aborted")
Exit Sub

End If

'Get number of Records
ExtendApp.Execute "globalStr2 = DBRecordsGetNum(" & dbNameIndex & "," & tableNameIndex & ");

"
numOfRecords = ExtendApp.Request("System", "globalStr2+:0:0:0")

'Get number of fields
ExtendApp.Execute "globalStr2 = DBFieldsGetNum(" & dbNameIndex & "," & tableNameIndex & ");"
numOfFields = ExtendApp.Request("System", "globalStr2+:0:0:0")

strDelim = ","
strPrompt = ""

ExtendApp.Execute "globalStr2 = DBTableExportData(" + """" + textFileName + """" + ", " + ""
"" + strPrompt + """" + ", " + """" + strDelim + """" + ", " & dbNameIndex & ", " &
tableNameIndex & ", " & numOfRecords & ", " & numOfFields & ");"

successFlag = val(ExtendApp.Request("System", "globalStr2+:0:0:0"))

If successFlag = -1 Then
MsgBox ("Error occurred during data export from simulation. Operation aborted.")
Exit Sub

End If

End Sub

Public Function RecieveDBfromExtendsim(dbName As String, tableName As String) As Variant

Dim dbNameIndex As Integer
Dim tableNameIndex As Integer
Dim numOfRecords, numOfFields As Integer
Dim dataArray() As Variant

B-21

Appendix B. FTM Application Code

Dim i, j, lastusedRow As Integer

'Get DB Index
ExtendApp.Execute "globalStr2 = DBDatabaseGetIndex(" + """" + dbName + """" + ");"
dbNameIndex = ExtendApp.Request("System", "globalStr2+:0:0:0")

If dbNameIndex <= 0 Then
MsgBox ("Warning database " & dbName & " not found in ExtendSim. Operation aborted")
Exit Function

End If

'Get Table Index
ExtendApp.Execute "globalStr2 = DBTableGetIndex(" & dbNameIndex & "," + """" + tableName + "

""" + ");"
tableNameIndex = ExtendApp.Request("System", "globalStr2+:0:0:0")

If tableNameIndex <= 0 Then
MsgBox ("Warning table " & tableNameIndex & " not found in ExtendSim. Operation aborted")
Exit Function

End If

'Get number of Records
ExtendApp.Execute "globalStr2 = DBRecordsGetNum(" & dbNameIndex & "," & tableNameIndex & ");

"
numOfRecords = ExtendApp.Request("System", "globalStr2+:0:0:0")

'Get number of fields
ExtendApp.Execute "globalStr2 = DBFieldsGetNum(" & dbNameIndex & "," & tableNameIndex & ");"
numOfFields = ExtendApp.Request("System", "globalStr2+:0:0:0")

ReDim dataArray(numOfRecords, numOfFields)

For i = 1 To numOfRecords
For j = 1 To numOfFields

ExtendApp.Execute "globalStr2 = DBDataGetAsNumber(" & dbNameIndex & "," & tableNameIndex
& "," & j & "," & i & ");"

dataArray(i, j) = val(ExtendApp.Request("System", "globalStr2+:0:0:0"))
Next j

Next i

RecieveDBfromExtendsim = dataArray

End Function

Public Function RecieveArrayfromExtendsim(extendArray As String) As Variant

'Converts the dataArray to string and passes it to a newly created extendArray
Dim i, j, globalIndex, NumRows, numCols As Integer
Dim dataArray() As Variant

ExtendApp.Execute "globalStr2 =GAGetIndex(" + """" + extendArray + """" + ");"
globalIndex = ExtendApp.Request("System", "globalStr2+:0:0:0")

ExtendApp.Execute "globalStr2 =GAGetRows(" + """" + extendArray + """" + ");"
NumRows = ExtendApp.Request("System", "globalStr2+:0:0:0")

ExtendApp.Execute "globalStr2 =GAGetColumns(" + """" + extendArray + """" + ");"
numCols = ExtendApp.Request("System", "globalStr2+:0:0:0")

ReDim dataArray(NumRows, numCols)

For i = 1 To NumRows
For j = 1 To numCols

m = CStr(i - 1)
n = CStr(j - 1)
ExtendApp.Execute "globalStr2 = GAGetReal(" & globalIndex & "," + m + "," + n + ");"
dataArray(i, j) = ExtendApp.Request("System", "globalStr2+:0:0:0")

Next j
Next i

RecieveArrayfromExtendsim = dataArray

End Function

Public Function SimAnimation(TRUEorFALSE As Boolean)

B-22

Appendix B. FTM Application Code

Dim IsAnimationOn As Boolean

ExtendApp.Execute "globalStr2 =AnimationOn;"
IsAnimationOn = ExtendApp.Request("System", "globalStr2+:0:0:0")

If Not (IsAnimationOn) And TRUEorFALSE Then 'Then Anim is OFF and we want it turned ON
ExtendApp.Execute "ExecuteMenuCommand(2020);" 'change the animation from ON to OFF

ElseIf IsAnimationOn And Not (TRUEorFALSE) Then 'Then Anim is ON and we want it OFF
ExtendApp.Execute "ExecuteMenuCommand(2020);" 'change the animation from ON to OFF

End If

End Function

B.4 ExtendSim Custom Blocks

This section includes the custom blocks coded in ModL for the ExtendSim model in the

FTM application.

B.4.1 Lot generator code

The lot generator block reads the ArrivalInfo array which contains the necessary infor-

mation about the lot arrival patterns. It then reconstructs the distributions, samples

from them and creates and releases lots during model runtime.

Figure B.4: Dialog of custom Lot Generator block for FTM Application.

B-23

Appendix B. FTM Application Code

real itemArrayR[][3];
integer itemArrayI[][5];
integer ItemArray3D[][10];
string itemArrayT[];
real itemArrayC[][10];
real timeArray[];
integer timeblocks[];
integer timeEventMsgType[];
integer exec;
integer rCount;
integer intArray[][2];
integer itemOutIsConnected;
integer numofAttribs;
integer opIDAttribExist;
integer attribListIndex;
integer itemIndex;
integer sending;
integer attribListCols;
integer OpIDColIndex;
integer itemTypeColIndex;
integer attribValueIndex;
integer arrivalInfoIndex;
integer gaArrivalInfoIndex;
real ArrivalInfo[][3];
integer nextRelease;
integer nextOpForRelease;
integer i,j;
integer myindex;
integer myNumber;
integer downstreamBlockNumber;

constant rejects is 0;
constant wants is 1;
constant taken is 2;
constant needs is 3;
constant query is 4;
constant notify is 5;
constant blocked is 6;
constant init is 7;

#include "CheckVersion v7.h";

//this procedure takes in all the itemArray information controlled by the executive
procedure getArrays()
{

if (rCount != sysGlobalint2)
{
getPassedArray(sysGlobal3, itemArrayR);
getPassedArray(sysGlobal4, itemArrayI);
getPassedArray(sysGlobal9, itemArrayC);
getPassedArray(sysGlobal12, itemArray3D);
rCount = sysGlobalint2;
}

}

//this function is called to create an item by interacting with executive
integer createItem()
{

integer value;
getArrays();

if (sysGlobalint1+1 >= sysGlobalint2) //the first free row of the item index list
{
sendMsgToBlock(exec, blockreceive0Msg); // expand array if not big enough
getArrays();
}

ItemIndex = sysGlobalint1; //the value is now the items index number
itemArrayI[itemIndex][0] = 0; // row used
itemArrayI[itemIndex][1] = 0; // batch ID
itemArrayI[itemIndex][2] = 0; // user value
itemArrayI[itemIndex][3] = 0; // batch ID #2
itemArrayI[itemIndex][4] = 0; // unused
itemArrayR[itemIndex][0] = 1.0; // value
itemArrayR[itemIndex][1] = BLANK; // Priority
itemArrayR[itemIndex][2] = BLANK; // user value

//update the attribute value with the opID name
GaSetReal(NextOpforRelease,attribValueIndex,itemIndex,OpIDColIndex);
GaSetReal(1,attribValueIndex,itemIndex,itemTypeColIndex); //will always be 1
GaSetReal(66,attribValueIndex,itemIndex,0); //0 for animation, 66 for green circle

B-24

Appendix B. FTM Application Code

sendMsgToBlock(exec, blockReceive1Msg); // check for next space
return(itemIndex);

}

//This function was called from 'on blockReceive1'
procedure SendItem()
{

sending = TRUE;
if(itemOut > 0.0) //if an item is ready to leave

{
sysGlobalInt3 = wants; //tell upstream block we are ready
sendMsgToInputs(itemOut); //upstream will check if it can accept
}

if(sysGlobalInt0 == needs)
{
sysGlobalInt3 = needs;
sendMsgToInputs(itemOut);

//Any Statistics
i=0;
while(nextOpforRelease!=ArrivalInfo[i][0])

{
i++;
}

ArrivalInfo[i][2]=strToReal(ArrivalInfo[i][2])+1;
RefreshDatatableCells(myNumber, "MultiGenTable", 0, 0, getDimension(MultiGenTable),

getdimensioncolumns(MultiGenTable));
TotalExited = TotalExited+1;
}

if(itemOut >= 0.0)
{
Usererror("Failure");
abort;
}

sending = FALSE;
}

// If the dialog data is inconsistent for simulation, abort.
on checkdata
{

exec = sysGlobalint1; //block number for the executive block
myIndex=sysGlobalInt0; //assigns a unique integer for positioning in TimeArray and

TimeBlockArray
sysGlobalInt0 += 1; //updates for the next block

//Initialse the table to blanks
for (i=0;i<GetDimension(MultiGenTable);i++)
{
for (j=0;j<GetDimensionColumns(MultiGenTable);j++)

{
MultiGenTable[i][j]=BLANK;
}

}

//ensure that gaarrivalInfo exists
gaArrivalInfoIndex = gagetindex("gaArrivalInfo");
If (gaArrivalInfoIndex <0)
{
UserError("Warning global array gaArrivalInfo does not exist. Report from "+ myblocknumber

()+".");
abort;
}

}

// stepsize
on Stepsize
{

//set the OpID Attribute.
attribListIndex = GAGetIndex("_AttributeList");
numofAttribs = GAGetRowsByIndex (attribListIndex) ;

//check if it already exists
if(GAFindStringAny(attribListIndex,"opID",0,numofAttribs,4,FALSE) <0)
{
GAResizeByIndex(AttribListIndex,numofAttribs+1);
GaSetString15("opID",attribListIndex, numofAttribs, 0);
}

//check if itemType exists, if not add it to the attribute list

B-25

Appendix B. FTM Application Code

numofAttribs = GAGetRowsByIndex (attribListIndex) ;
if(GAFindStringAny(attribListIndex,"itemType",0,numofAttribs,8,FALSE) <0)
{
GAResizeByIndex(AttribListIndex,numofAttribs+1);
GaSetString15("itemType",attribListIndex, numofAttribs, 0);
}

numofAttribs = GAGetRowsByIndex(attribListIndex);
}

// Initialize any simulation variables.
on initsim
{

itemIndex = 0;
rCount = -1; //row count for item index
myNumber = MyBlockNumber();
TotalExited = 0;

//check to see if executive has been placed properly
if(GetPassedArray(sysGlobal0, timeArray))
{
CheckVersionExec();
exec = sysGlobalInt23;
}

else
{
UserError("The Executive block must be present and to the left of all blocks on the

worksheet.");
AbortAllSims();
}

// get the pointer to the TimeArray and TimeEventMsgType arrays
if(getPassedArray(SysGlobal0, timeArray) > 0)
{
// set the first event time to the start of the simulation
timeArray[MyIndex] = StartTime;
// get the pointer to the TimeBlocks array
getPassedArray(SysGlobal7,TimeBlocks);
// put this block's # in reserved position in TimeBlocks
TimeBlocks[myindex] = myBlockNumber();
//Get the pointer to the TimeEventMsgType array
getPassedArray(SysGlobal13,TimeEventMsgType);
//reserved position in TimeEventMsgType
TimeEventMsgType[myIndex] = BlockReceive1Msg;
}

GetSimulateMsgs(FALSE); //this is discrete event block. No simulate messages

//find the output connector block number and store as downstreamNumber
if (novalue(GetConnectedTextBlock(myNumber, getConNumber(myNumber,"ItemOut"))))
{
userError("Output not connected in 'MultiGen' block number " + myNumber + ".Recorrect");
abort;

}

//Ensure downstream block is a queue block.
if (GetConnectedTextBlock(myNumber, getConNumber(myNumber,"ItemOut"))<0)
{
GetConBlocks(myNumber, getConNumber(myNumber,"ItemOut"), intArray);
If (getdimension(intArray)<=0)

{
UserError("Output not connected in 'MultiGen' block number " + myNumber + ".Recorrect");
abort;
}

downstreamBlockNumber = intArray[0][0];
itemOutIsConnected = TRUE;

if (GetBlockType(downstreamBlockNumber) != "Queues")
{
UserError("Item is blocked from leaving 'MultiGen' block number " + MyBlockNumber() + ".

Place a queue after the 'Create' to prevent items from being destroyed.");
itemOutIsConnected = FALSE;
AbortAllSims();
}

}

//Read in the values from the global array named
//gaArrivalInfo into local dynamic array named ArrivalInfo
makeArray(ArrivalInfo,GaGetrowsByIndex(gaArrivalInfoIndex));
for(i=0;i<GAGetRowsByIndex(gaArrivalInfoIndex);i++)
{
ArrivalInfo[i][0]=GAGetReal(gaArrivalInfoIndex,i,0);

B-26

Appendix B. FTM Application Code

ArrivalInfo[i][1]=GAGetReal(gaArrivalInfoIndex,i,1);
ArrivalInfo[i][2]=0;
}

//set up table
DynamicDataTable(myNumber, "MultiGenTable", ArrivalInfo);
RefreshDatatableCells(myNumber, "MultiGenTable", 0, 0, getDimension(MultiGenTable),

getdimensioncolumns(MultiGenTable));

//Find the row index of the attribute OpID in ("_AttributeList")
numofAttribs = GAGetRowsByIndex (attribListIndex) ;
if(GAFindStringAny(attribListIndex,"opID",0,numofAttribs,4,FALSE) >=0)
{
OpIDColIndex = 1+ GAFindStringAny(attribListIndex,"opID",0,numofAttribs,4,FALSE);
}

//Find the row index of the attribute itemtype in ("_AttributeList")
numofAttribs = GAGetRowsByIndex (attribListIndex) ;
if(GAFindStringAny(attribListIndex,"itemType",0,numofAttribs,8,FALSE) >=0)
{
itemTypeColIndex = 1+ GAFindStringAny(attribListIndex,"itemType",0,numofAttribs,8,FALSE);
}

attribValueIndex = GaGetIndex("_AttribValues");

//initialise list to store next operation release time
nextRelease =ListCreate(myNumber, 1, 1, 0, 0, 0, 1, 0);
ListCreateElement(myNumber, nextRelease);

for (i = 0; i < GetDimension(ArrivalInfo); i++)
{
//setup list
ListSetLong(myNumber, nextRelease,-1,0, ArrivalInfo[i][0]);
ListSetDouble(myNumber, nextRelease,-1,0,0);
ListAddElement(myNumber, nextRelease, 2);
}

ListSetSort(myNumber, nextRelease, 1, 0) ; //resort the list

//get NextOpForRelease post to exec
NextOpForRelease = ListGetLong(myNumber, nextRelease, 0, 0);
TimeArray[myIndex] = ListGetDouble(myNumber, nextRelease, 0, 0);

}

//we receive this message from the executive because we posted and event
on BlockReceive1
{

// create an item and set the output to its index value
ItemOut = CreateItem();
// initiate the send item prodedure
SendItem();
//Update nextReleaseTime and post event to executive
i=0;
while(ArrivalInfo[i][0]!=NextOpForRelease)
{
i++;
}

ListDeleteElement(myNumber, nextRelease, 0);
ListSetLong(myNumber, nextRelease,-1,0, ArrivalInfo[i][0]);
ListSetDouble(myNumber, nextRelease,-1,0,currenttime+DExponential(1/(ArrivalInfo[i][1])));
ListAddElement(myNumber, nextRelease, 2);
ListSetSort(myNumber, nextRelease, 1, 0) ; //resort the list
NextOpForRelease = ListGetLong(myNumber, nextRelease, 0, 0);
TimeArray[myIndex] = ListGetDouble(myNumber, nextRelease, 0, 0);

}

on endsim
{

ListDispose(myNumber, nextRelease);
}

B-27

Appendix B. FTM Application Code

B.4.2 Tool generator code

The tool generator block reads the gaTool global array that was populated by the VB

front end. At simulation time zero, the block creates a tool item for each tool in the array

and attaches the attribute information such as tool name, tool type, allowable operations,

processing distribution information for each operation on that tool (Johnson parameters)

and the mean move-out time for that tool. The tool items are then released into the

model.

Figure B.5: Dialog of custom Tool Generator block for FTM Application.

// Declare constants and static variables here.
real itemArrayR[][3];
integer itemArrayI[][5];
integer ItemArray3D[][10];
string itemArrayT[];

B-28

Appendix B. FTM Application Code

real itemArrayC[][10];
real timeArray[];
integer timeblocks[];
integer timeEventMsgType[];
integer exec;
integer rCount; //number of rows in the itemArrays
integer intArray[][2]; //the connected outputs
integer itemOutIsConnected;
integer numofAttribs;
integer attribListIndex;
integer itemIndex;
integer sending;
integer attribListCols;
integer attribValueIndex;
integer i,j;
integer myindex;
integer myNumber;
integer downstreamBlockNumber;
integer gaToolIndex;
integer toolInfoIndex;
integer numOfTools;
integer numDeleted;
integer toolIDColumn;
integer toolTypeColumn;
integer itemTypeColumn;
integer toolForRelease;
integer toolTypeForRelease;
real ToolInfo[][3];

// item messages
constant rejects is 0;
constant wants is 1;
constant taken is 2;
constant needs is 3;
constant query is 4;
constant notify is 5;
constant blocked is 6;
constant init is 7;

//Include files:
#include "CheckVersion v7.h";

//-------
//this procedure takes in all the itemArray information controlled by the executive
procedure getArrays()
{

if (rCount != sysGlobalint2)
{
getPassedArray(sysGlobal3, itemArrayR);
getPassedArray(sysGlobal4, itemArrayI);
getPassedArray(sysGlobal9, itemArrayC);
getPassedArray(sysGlobal12, itemArray3D);
rCount = sysGlobalint2;
}

}

//this function is called to create an item by interacting with executive
integer createItem()
{

integer value;

getArrays();
if (sysGlobalint1+1 >= sysGlobalint2) //the first free row of the item index list
{
sendMsgToBlock(exec, blockreceive0Msg); // expand array if not big enough
getArrays();
}

ItemIndex = sysGlobalint1; //the value is now the items index number
value = sysGlobalint1; //the value is now the items index number

itemArrayI[value][0] = 0; // row used
itemArrayI[value][1] = 0; // batch ID
itemArrayI[value][2] = 0; // user value
itemArrayI[value][3] = 0; // batch ID #2
itemArrayI[value][4] = 0; // unused (not sure about this says, manual says its block

number where item is
itemArrayR[value][0] = 1.0; // value
itemArrayR[value][1] = BLANK; // Priority
itemArrayR[value][2] = BLANK; // user value

//update the attribute value
GaSetReal(toolForRelease,attribValueIndex,value,toolIDcolumn);

B-29

Appendix B. FTM Application Code

GaSetReal(toolTypeForRelease,attribValueIndex,value,tooltypecolumn);
GaSetReal(2,attribValueIndex,value,itemtypeColumn); //itemType is 2 because it is a tool.
GaSetReal(66,attribValueIndex,value,0); //0 for animation, 66 for green circle

sendMsgToBlock(exec, blockReceive1Msg); // check for next space
return(value);

}

//This function was called from 'on blockReceive1'
procedure SendItem()
{

sending = TRUE;
if(itemOut > 0.0) //if an item is ready to leave

{
sysGlobalInt3 = wants; //tell upstreamblock we are ready
sendMsgToInputs(itemOut); //upstream will check if it can accept
}

if(sysGlobalInt0 == needs)
{
sysGlobalInt3 = needs;
sendMsgToInputs(itemOut);

//Any Statistics
ToolInfo[i][2]= ToolInfo[i][2]+1;
TotalExitNumber = TotalExitNumber+1;
RefreshDatatableCells(myNumber, "ToolTable", 0, 0, getDimension(ToolTable),

getdimensioncolumns(ToolTable));
}

if(itemOut >= 0.0)
{
Usererror("Failure");
abort;
}

sending = FALSE;
}

// If the dialog data is inconsistent for simulation, abort.
on checkdata
{

exec = sysGlobalint1; //block number for the executive block
myIndex=sysGlobalInt0; //assigns a unique integer for positioning in TimeArray and

TimeBlockArray
sysGlobalInt0 += 1; //updates for the next block

//Ensure that the global array gaTool exists
GaToolIndex = GaGetIndex("gaTool");
If (GaToolIndex<0)
{
Usererror("The global array gaTool does not exist. This simulation must be run from VB");
abort;
}

DynamicDataTable(MyBlockNumber(), "ToolTable", ToolInfo);
}

on Stepsize
{

attribListIndex = GAGetIndex("_AttributeList");

//check if toolID exists, if not add it to the attribute list
numofAttribs = GAGetRowsByIndex (attribListIndex) ;
if(GAFindStringAny(attribListIndex,"toolID",0,numofAttribs,6,FALSE) <0)
{
GAResizeByIndex(AttribListIndex,numofAttribs+1);
GaSetString15("toolID",attribListIndex, numofAttribs, 0);
}

//check if toolType exists, if not add it to the attribute list
numofAttribs = GAGetRowsByIndex (attribListIndex) ;
if(GAFindStringAny(attribListIndex,"toolType",0,numofAttribs,8,FALSE) <0)
{
GAResizeByIndex(AttribListIndex,numofAttribs+1);
GaSetString15("toolType",attribListIndex, numofAttribs, 0);
}

//check if itemType exists, if not add it to the attribute list
numofAttribs = GAGetRowsByIndex (attribListIndex) ;
if(GAFindStringAny(attribListIndex,"itemType",0,numofAttribs,8,FALSE) <0)
{
GAResizeByIndex(AttribListIndex,numofAttribs+1);

B-30

Appendix B. FTM Application Code

GaSetString15("itemType",attribListIndex, numofAttribs, 0);
}

numofAttribs = GAGetRowsByIndex (attribListIndex) ;
}

// Initialize any simulation variables.
on initsim
{

itemIndex = 0;
rCount = -1; //row count for item index
myNumber = MyBlockNumber();
TotalExitNumber = 0;

//check to see if executive has been placed properly
if(GetPassedArray(sysGlobal0, timeArray))
{
CheckVersionExec(); //make sure the executive in the model is from the Item library
exec = sysGlobalInt23;
}

else
{
UserError("The Executive block must be present and to the left of all blocks on the

worksheet.");
AbortAllSims();
}

// get the pointer to the TimeArray and TimeEventMsgType arrays
if(getPassedArray(SysGlobal0, timeArray) > 0)
{
// set the first event time to the start of the simulation
timeArray[MyIndex] = StartTime;
// get the pointer to the TimeBlocks array
getPassedArray(SysGlobal7,TimeBlocks);
// put this block's # in reserved position in TimeBlocks
TimeBlocks[myindex] = myBlockNumber();
//Get the pointer to the TimeEventMsgType array
getPassedArray(SysGlobal13,TimeEventMsgType);
//reserved position in TimeEventMsgType
TimeEventMsgType[myIndex] = BlockReceive1Msg;
}

attribValueIndex = GaGetIndex("_AttribValues");
GetSimulateMsgs(FALSE); //this is discrete event block. No simulate messages

//find the output connector block number and store as downstreamNumber
if (novalue(GetConnectedTextBlock(myNumber, getConNumber(myNumber,"ItemOut"))))
{
userError("Output not connected in block number " + myNumber + ".Recorrect");
abort;

}

//Ensure downstream block is a queue block.
if (GetConnectedTextBlock(myNumber, getConNumber(myNumber,"ItemOut"))<0)
{
GetConBlocks(myNumber, getConNumber(myNumber,"ItemOut"), intArray);
If (getdimension(intArray)<=0)

{
UserError("Output not connected in block number " + myNumber + ".Recorrect");
abort;
}

downstreamBlockNumber = intArray[0][0];
itemOutIsConnected = TRUE;

if (GetBlockType(downstreamBlockNumber) != "Queues")
{
UserError("Item is blocked from leaving block number " + MyBlockNumber() + ". Place a

queue after it prevent items from being destroyed.");
itemOutIsConnected = FALSE;
AbortAllSims();
}

}

//get the unique tools and read them into ToolInfo
MakeArray(ToolInfo,gaGetRowsbyIndex(gaToolIndex)); //Expand the array

For (i=0;i<getDimension(ToolInfo);i++)
{
ToolInfo[i][0]=gaGetReal(gaToolIndex,i,0);
ToolInfo[i][1]=1; //for now delete this line and use next line when macro is set up
//ToolInfo[i][1]=gaGetReal(gaToolIndex,i,1);
ToolInfo[i][2]=0;

B-31

Appendix B. FTM Application Code

}

//Sort the array and remove duplicate entries
SortArray(ToolInfo,getDimension(ToolInfo),0,TRUE, FALSE);

i=getDimension(ToolInfo)-1;
numDeleted = 0;
while (i!=0)
{
If (ToolInfo[i][0]==ToolInfo[i-1][0])

{
ArrayDataMove(ToolInfo,i,1,i-1,TRUE);
numDeleted = numDeleted +1;
}

i=i-1;
}

numOfTools = getDimension(ToolInfo)-numDeleted;
SortArray(ToolInfo,getDimension(ToolInfo),0,TRUE, FALSE);
MakeArray(ToolInfo,numOfTools);

DynamicDataTable(myNumber, "ToolTable", ToolInfo);
RefreshDatatableCells(myNumber, "ToolTable", 0, 0, getDimension(ToolTable),

getdimensioncolumns(ToolTable));

//Find the col location of ToolID, ToolType and ItemType
numofAttribs = GAGetRowsByIndex (attribListIndex) ;
if(GAFindStringAny(attribListIndex,"toolID",0,numofAttribs,6,FALSE) >=0)
{
toolIDColumn = 1+ GAFindStringAny(attribListIndex,"toolID",0,numofAttribs,6,FALSE);
}

if(GAFindStringAny(attribListIndex,"toolType",0,numofAttribs,8,FALSE) >=0)
{
toolTypeColumn = 1+ GAFindStringAny(attribListIndex,"toolType",0,numofAttribs,8,FALSE);
}

if(GAFindStringAny(attribListIndex,"itemType",0,numofAttribs,8,FALSE) >=0)
{
itemTypeColumn = 1+ GAFindStringAny(attribListIndex,"itemType",0,numofAttribs,8,FALSE);
}

TimeArray[myIndex] = startTime; //so that we get a block recieve1 message at time zero
}

//we receive this message from the executive because we posted and event
on BlockReceive1
{

If (currentTime == StartTime)
{
i=0;
For (i=0; i<numOfTools;i++) //loop to ensure we get a BlockRecieve message until all

tools are released
{
toolForRelease = ToolInfo[i][0];
toolTypeForRelease = ToolInfo[i][1];
ItemOut = CreateItem(); // create an item and set the output to its index value
SendItem(); // initiate the send item prodedure
}

}

//TimeArray[myIndex] = endtime; //ensure we get no more messages
}

B.4.3 Unscheduled downtime generator code

The unscheduled downtime generator block reads from the gaDT array the mean time

before failure and the mean time to repair parameters of each tool. It then creates the

downtime items, assigns them the MTBF and MTTR values as attributes and releases

B-32

Appendix B. FTM Application Code

them into the model at simulation time zero.

Figure B.6: Dialog of custom unscheduled downtime generator block for FTM
Application.

// Constants
real itemArrayR[][3];
integer itemArrayI[][5];
integer itemArray3D[][10];
string itemArrayT[];
real itemArrayC[][10];
real timeArray[];
integer timeblocks[];
integer timeEventMsgType[];
integer exec;
integer myIndex;
integer myNumber;
integer rCount;
integer intArray[][2];
integer downstreamBlockNumber;
integer itemOutisConnected;
integer i,j;
integer ItemIndex;
integer itemTypeCol;
integer toolTypeCol;
integer MTBFCol;
integer MTTRCol;
integer toolIDCol;
integer attribValueIndex;
integer attribListIndex;
integer numOfAttribs;
integer sending;
integer gaDTIndex;
integer dtInfoIndex;
real DTInfo[][3];

// item messages
constant rejects is 0;
constant wants is 1;
constant taken is 2;
constant needs is 3;
constant query is 4;
constant notify is 5;
constant blocked is 6;
constant init is 7;

//this procedure takes in all the itemArray information controlled by the executive
procedure getArrays()
{

if (rCount != sysGlobalint2)
{

B-33

Appendix B. FTM Application Code

getPassedArray(sysGlobal3, itemArrayR);
getPassedArray(sysGlobal4, itemArrayI);
getPassedArray(sysGlobal9, itemArrayC);
getPassedArray(sysGlobal12, itemArray3D);
rCount = sysGlobalint2;
}

}

//this function is called to create an item by interacting with executive
integer createItem()
{

getArrays();
if (sysGlobalint1+1 >= sysGlobalint2) //the first free row of the item index list
{
sendMsgToBlock(exec, blockreceive0Msg); // expand array if not big enough
getArrays();
}

ItemIndex = sysGlobalint1; //the value is now the items index number
itemArrayI[ItemIndex][0] = 0; // row used
itemArrayI[ItemIndex][1] = 0; // batch ID
itemArrayI[ItemIndex][2] = 0; // user value
itemArrayI[ItemIndex][3] = 0; // batch ID #2
itemArrayI[ItemIndex][4] = 0; //
itemArrayR[ItemIndex][0] = 1.0; // value
itemArrayR[ItemIndex][1] = BLANK; // Priority
itemArrayR[ItemIndex][2] = BLANK; // user value

//update the attribute values.
GaSetReal(dtInfo[i][0],attribValueIndex,itemIndex,toolIDCol);
GaSetReal(dtInfo[i][1],attribValueIndex,itemIndex,MTBFCol);
GaSetReal(dtInfo[i][2],attribValueIndex,itemIndex,MTTRCol);
GaSetReal(3,attribValueIndex,ItemIndex,itemTypeCol); //itemType is 3 because it is a DT item

.
GaSetReal(66,attribValueIndex,ItemIndex,0); //0 for animation column, 65 for green circle

sendMsgToBlock(exec, blockReceive1Msg); // check for next space
return(ItemIndex);

}

//This function was called from 'on blockReceive1'
procedure SendItem()
{

sending = TRUE;

if(itemOut > 0.0) //if an item is ready to leave
{
sysGlobalInt3 = wants; //tell upstreamblock we are ready
sendMsgToInputs(itemOut); //upstream will check if it can accept
}

if(sysGlobalInt0 == needs)
{
sysGlobalInt3 = needs;
sendMsgToInputs(itemOut);
}

if(itemOut >= 0.0)
{
Usererror("Failure");
abort;
}

sending = FALSE;
}

// If the dialog data is inconsistent for simulation, abort.
on checkdata
{

exec = sysGlobalint1; //block number for the executive block
myIndex=sysGlobalInt0; //assigns a unique integer for positioning in TimeArray and

TimeBlockArray
sysGlobalInt0 += 1; //updates for the next block

//Ensure that the global array gaDT exists
GaDTIndex = GaGetIndex("gaDT");
If (GaDTIndex<0)
{
Usererror("The global array gaDT does not exist. This simulation must be run from VB");
abort;
}

}

B-34

Appendix B. FTM Application Code

on Stepsize
{

attribListIndex = GAGetIndex("_AttributeList");
//check if toolID exists, if not add it to the attribute list
numofAttribs = GAGetRowsByIndex (attribListIndex) ;
if(GAFindStringAny(attribListIndex,"toolID",0,numofAttribs,6,FALSE) <0)
{
GAResizeByIndex(AttribListIndex,numofAttribs+1);
GaSetString15("toolID",attribListIndex, numofAttribs, 0);
}

//check if toolType exists, if not add it to the attribute list
numofAttribs = GAGetRowsByIndex (attribListIndex) ;
if(GAFindStringAny(attribListIndex,"toolType",0,numofAttribs,8,FALSE) <0)
{
GAResizeByIndex(AttribListIndex,numofAttribs+1);
GaSetString15("toolType",attribListIndex, numofAttribs, 0);
}

//check if itemType exists, if not add it to the attribute list
numofAttribs = GAGetRowsByIndex (attribListIndex) ;
if(GAFindStringAny(attribListIndex,"itemType",0,numofAttribs,8,FALSE) <0)
{
GAResizeByIndex(AttribListIndex,numofAttribs+1);
GaSetString15("itemType",attribListIndex, numofAttribs, 0);
}

//check if MTBF exists, if not add it to the attribute list
numofAttribs = GAGetRowsByIndex (attribListIndex) ;
if(GAFindStringAny(attribListIndex,"MTBF",0,numofAttribs,4,FALSE) <0)
{
GAResizeByIndex(AttribListIndex,numofAttribs+1);
GaSetString15("MTBF",attribListIndex, numofAttribs, 0);
}

//check if MTTR exists, if not add it to the attribute list
numofAttribs = GAGetRowsByIndex (attribListIndex) ;
if(GAFindStringAny(attribListIndex,"MTTR",0,numofAttribs,4,FALSE) <0)
{
GAResizeByIndex(AttribListIndex,numofAttribs+1);
GaSetString15("MTTR",attribListIndex, numofAttribs, 0);
}

numofAttribs = GAGetRowsByIndex (attribListIndex) ;
}

// Initialize any simulation variables.
on initsim
{

itemIndex = 0;
rCount = -1; //row count for item index
myNumber = MyBlockNumber();

// get the pointer to the TimeArray and TimeEventMsgType arrays
if(getPassedArray(SysGlobal0, timeArray) > 0)
{
// set the first event time to the start of the simulation
timeArray[MyIndex] = StartTime;
// get the pointer to the TimeBlocks array
getPassedArray(SysGlobal7,TimeBlocks);
// put this block's # in reserved position in TimeBlocks
TimeBlocks[myindex] = myBlockNumber();
//Get the pointer to the TimeEventMsgType array
getPassedArray(SysGlobal13,TimeEventMsgType);
//reserved position in TimeEventMsgType
TimeEventMsgType[myIndex] = BlockReceive1Msg;
}

attribValueIndex = GaGetIndex("_AttribValues");
GetSimulateMsgs(FALSE); //this is discrete event block. No simulate messages

//find the output connector block number and store as downstreamNumber
if (novalue(GetConnectedTextBlock(myNumber, getConNumber(myNumber,"ItemOut"))))
{
userError("Output not connected in block number " + myNumber + ".Recorrect");
abort;

}

//Ensure downstream block is a queue block.
if (GetConnectedTextBlock(myNumber, getConNumber(myNumber,"ItemOut"))<0)
{
GetConBlocks(myNumber, getConNumber(myNumber,"ItemOut"), intArray);
If (getdimension(intArray)<=0)

B-35

Appendix B. FTM Application Code

{
UserError("Output not connected in block number " + myNumber + ".Recorrect");
abort;
}

downstreamBlockNumber = intArray[0][0];
itemOutIsConnected = TRUE;

if (GetBlockType(downstreamBlockNumber) != "Queues")
{
UserError("Item is blocked from leaving block number " + MyBlockNumber() + ". Place a

queue after it prevent items from being destroyed.");
itemOutIsConnected = FALSE;
AbortAllSims();
}

}

MakeArray(DTInfo,gaGetRowsbyIndex(gaDTIndex)); //Expand the array

For (i=0;i<getDimension(DTInfo);i++)
{
For (j=0;j<getDimensioncolumns(DTInfo);j++)
DTInfo[i][j]=gaGetReal(gaDTIndex,i,j);
}

DynamicDataTable(myNumber, "DTTable", DTInfo);
//Find the col location of ToolID, ToolType, ItemType, dtType, dtNum.
numofAttribs = GAGetRowsByIndex (attribListIndex) ;
if(GAFindStringAny(attribListIndex,"toolID",0,numofAttribs,6,FALSE) >=0)
{
toolIDCol = 1+ GAFindStringAny(attribListIndex,"toolID",0,numofAttribs,6,FALSE);
}

if(GAFindStringAny(attribListIndex,"toolType",0,numofAttribs,8,FALSE) >=0)
{
toolTypeCol = 1+ GAFindStringAny(attribListIndex,"toolType",0,numofAttribs,8,FALSE);
}

if(GAFindStringAny(attribListIndex,"itemType",0,numofAttribs,8,FALSE) >=0)
{
itemTypeCol = 1+ GAFindStringAny(attribListIndex,"itemType",0,numofAttribs,8,FALSE);
}

if(GAFindStringAny(attribListIndex,"MTBF",0,numofAttribs,4,FALSE) >=0)
{
MTBFCol = 1+ GAFindStringAny(attribListIndex,"MTBF",0,numofAttribs,4,FALSE);
}

if(GAFindStringAny(attribListIndex,"MTTR",0,numofAttribs,4,FALSE) >=0)
{
MTTRCol = 1+ GAFindStringAny(attribListIndex,"MTTR",0,numofAttribs,4,FALSE);
}

TimeArray[myIndex] = startTime; //so that we get a block recieve1 message at time zero
}

//we receive this message from the executive because we posted and event
on BlockReceive1
{

If (currentTime == StartTime)
{
For (i=0; i<getdimension(dtInfo);i++) //loop to ensure we get a BlockRecieve message until

all tools are released
{
ItemOut = CreateItem(); // create an item and set the output to its index value
SendItem(); // initiate the send item procedure
}

}
}

B.4.4 Preventative maintenance generator code

The preventative maintenance generator block reads from the gaPM array the mean time

before failure and the mean time to repair parameters of each tool. It then creates the

B-36

Appendix B. FTM Application Code

downtime items, assigns them the MTBF and MTTR values as attributes and releases

them into the model at simulation time zero.

Figure B.7: Dialog of custom preventative maintenance generator block for FTM
Application.

// Constants
real itemArrayR[][3];
integer itemArrayI[][5];
integer itemArray3D[][10];
string itemArrayT[];
real itemArrayC[][10];
real timeArray[];
integer timeblocks[];
integer timeEventMsgType[]; // array that stores the message that this block will receive

when a message occurs
integer exec;
integer myIndex;
integer myNumber;
integer rCount; //number of rows in the itemArrays
integer intArray[][2]; //the connected outputs
integer downstreamBlockNumber;
integer itemOutisConnected;
integer i,j;
integer ItemIndex;
integer itemTypeCol;
integer toolTypeCol;
integer MTBFCol;
integer MTTRCol;
integer toolIDCol;
integer attribValueIndex;
integer attribListIndex;
integer numOfAttribs;
integer sending;
integer gaPMIndex;
integer pmInfoIndex;
real PMInfo[][3];

// item messages
constant rejects is 0;
constant wants is 1;
constant taken is 2;
constant needs is 3;
constant query is 4;
constant notify is 5;
constant blocked is 6;
constant init is 7;

B-37

Appendix B. FTM Application Code

//this procedure takes in all the itemArray information controlled by the executive
procedure getArrays()
{

if (rCount != sysGlobalint2)
{
getPassedArray(sysGlobal3, itemArrayR);
getPassedArray(sysGlobal4, itemArrayI);
getPassedArray(sysGlobal9, itemArrayC);
getPassedArray(sysGlobal12, itemArray3D);
rCount = sysGlobalint2;
}

}

//this function is called to create an item by interacting with executive
integer createItem()
{

getArrays();
if (sysGlobalint1+1 >= sysGlobalint2) //the first free row of the item index list
{
sendMsgToBlock(exec, blockreceive0Msg); // expand array if not big enough
getArrays();
}

ItemIndex = sysGlobalint1; //the value is now the items index number
itemArrayI[ItemIndex][0] = 0; // row used
itemArrayI[ItemIndex][1] = 0; // batch ID
itemArrayI[ItemIndex][2] = 0; // user value
itemArrayI[ItemIndex][3] = 0; // batch ID #2
itemArrayI[ItemIndex][4] = 0; // unused (not sure about this says, manual says its block

number where item is
itemArrayR[ItemIndex][0] = 1.0; // value
itemArrayR[ItemIndex][1] = BLANK; // Priority
itemArrayR[ItemIndex][2] = BLANK; // user value

//update the attribute values.
GaSetReal(pmInfo[i][0],attribValueIndex,itemIndex,toolIDCol);
GaSetReal(pmInfo[i][1],attribValueIndex,itemIndex,MTBFCol);
GaSetReal(pmInfo[i][2],attribValueIndex,itemIndex,MTTRCol);
GaSetReal(4,attribValueIndex,ItemIndex,itemTypeCol); //itemType is 4 because it is a PM item

.
GaSetReal(66,attribValueIndex,ItemIndex,0); //0 for animation column, 65 for green circle

sendMsgToBlock(exec, blockReceive1Msg); // check for next space
return(ItemIndex);

}

//This function was called from 'on blockReceive1'
procedure SendItem()
{

sending = TRUE;
if(itemOut > 0.0) //if an item is ready to leave

{
sysGlobalInt3 = wants; //tell upstreamblock we are ready
sendMsgToInputs(itemOut); //upstream will check if it can accept
}

if(sysGlobalInt0 == needs)
{
sysGlobalInt3 = needs;
sendMsgToInputs(itemOut);
}

if(itemOut >= 0.0)
{
Usererror("Failure");
abort;
}

sending = FALSE;
}

// If the dialog data is inconsistent for simulation, abort.
on checkdata
{

exec = sysGlobalint1; //block number for the executive block
myIndex=sysGlobalInt0; //assigns a unique integer for positioning in TimeArray and

TimeBlockArray
sysGlobalInt0 += 1; //updates for the next block

//Ensure that the global array gaDT exists
GaPMIndex = GaGetIndex("gaPM");
If (GaPMIndex<0)
{

B-38

Appendix B. FTM Application Code

Usererror("The global array gaPM does not exist. This simulation must be run from VB");
abort;
}

}

on Stepsize
{

attribListIndex = GAGetIndex("_AttributeList");
//check if toolID exists, if not add it to the attribute list
numofAttribs = GAGetRowsByIndex (attribListIndex) ;
if(GAFindStringAny(attribListIndex,"toolID",0,numofAttribs,6,FALSE) <0)
{
GAResizeByIndex(AttribListIndex,numofAttribs+1);
GaSetString15("toolID",attribListIndex, numofAttribs, 0);
}

//check if toolType exists, if not add it to the attribute list
numofAttribs = GAGetRowsByIndex (attribListIndex) ;
if(GAFindStringAny(attribListIndex,"toolType",0,numofAttribs,8,FALSE) <0)
{
GAResizeByIndex(AttribListIndex,numofAttribs+1);
GaSetString15("toolType",attribListIndex, numofAttribs, 0);
}

//check if itemType exists, if not add it to the attribute list
numofAttribs = GAGetRowsByIndex (attribListIndex) ;
if(GAFindStringAny(attribListIndex,"itemType",0,numofAttribs,8,FALSE) <0)
{
GAResizeByIndex(AttribListIndex,numofAttribs+1);
GaSetString15("itemType",attribListIndex, numofAttribs, 0);
}

//check if MTBF exists, if not add it to the attribute list
numofAttribs = GAGetRowsByIndex (attribListIndex) ;
if(GAFindStringAny(attribListIndex,"MTBF",0,numofAttribs,4,FALSE) <0)
{
GAResizeByIndex(AttribListIndex,numofAttribs+1);
GaSetString15("MTBF",attribListIndex, numofAttribs, 0);
}

//check if MTTR exists, if not add it to the attribute list
numofAttribs = GAGetRowsByIndex (attribListIndex) ;
if(GAFindStringAny(attribListIndex,"MTTR",0,numofAttribs,4,FALSE) <0)
{
GAResizeByIndex(AttribListIndex,numofAttribs+1);
GaSetString15("MTTR",attribListIndex, numofAttribs, 0);
}

numofAttribs = GAGetRowsByIndex (attribListIndex) ;
}

// Initialize any simulation variables.
on initsim
{

itemIndex = 0;
rCount = -1; //row count for item index
myNumber = MyBlockNumber();

// get the pointer to the TimeArray and TimeEventMsgType arrays
if(getPassedArray(SysGlobal0, timeArray) > 0)
{
// set the first event time to the start of the simulation
timeArray[MyIndex] = StartTime;
// get the pointer to the TimeBlocks array
getPassedArray(SysGlobal7,TimeBlocks);
// put this block's # in reserved position in TimeBlocks
TimeBlocks[myindex] = myBlockNumber();
//Get the pointer to the TimeEventMsgType array
getPassedArray(SysGlobal13,TimeEventMsgType);
//reserved position in TimeEventMsgType
TimeEventMsgType[myIndex] = BlockReceive1Msg;
}

attribValueIndex = GaGetIndex("_AttribValues");
GetSimulateMsgs(FALSE); //this is discrete event block. No simulate messages

//find the output connector block number and store as downstreamNumber
if (novalue(GetConnectedTextBlock(myNumber, getConNumber(myNumber,"ItemOut"))))
{
userError("Output not connected in block number " + myNumber + ".Recorrect");
abort;

}

B-39

Appendix B. FTM Application Code

//Ensure downstream block is a queue block.
if (GetConnectedTextBlock(myNumber, getConNumber(myNumber,"ItemOut"))<0)
{
GetConBlocks(myNumber, getConNumber(myNumber,"ItemOut"), intArray);

If (getdimension(intArray)<=0)
{
UserError("Output not connected in block number " + myNumber + ".Recorrect");
abort;
}

downstreamBlockNumber = intArray[0][0];
itemOutIsConnected = TRUE;

if (GetBlockType(downstreamBlockNumber) != "Queues")
{
UserError("Item is blocked from leaving block number " + MyBlockNumber() + ". Place a

queue after it prevent items from being destroyed.");
itemOutIsConnected = FALSE;
AbortAllSims();
}

}

MakeArray(PMInfo,gaGetRowsbyIndex(gaPMIndex)); //Expand the array

For (i=0;i<getDimension(PMInfo);i++)
{
For (j=0;j<getDimensioncolumns(PMInfo);j++)
PMInfo[i][j]=gaGetReal(gaPMIndex,i,j);
}

DynamicDataTable(myNumber, "PMDataTable", PMInfo);

//Find the col location of ToolID, ToolType, ItemType, dtType, dtNum.
numofAttribs = GAGetRowsByIndex (attribListIndex) ;

if(GAFindStringAny(attribListIndex,"toolID",0,numofAttribs,6,FALSE) >=0)
{
toolIDCol = 1+ GAFindStringAny(attribListIndex,"toolID",0,numofAttribs,6,FALSE);
}

if(GAFindStringAny(attribListIndex,"toolType",0,numofAttribs,8,FALSE) >=0)
{
toolTypeCol = 1+ GAFindStringAny(attribListIndex,"toolType",0,numofAttribs,8,FALSE);
}

if(GAFindStringAny(attribListIndex,"itemType",0,numofAttribs,8,FALSE) >=0)
{
itemTypeCol = 1+ GAFindStringAny(attribListIndex,"itemType",0,numofAttribs,8,FALSE);
}

if(GAFindStringAny(attribListIndex,"MTBF",0,numofAttribs,4,FALSE) >=0)
{
MTBFCol = 1+ GAFindStringAny(attribListIndex,"MTBF",0,numofAttribs,4,FALSE);
}

if(GAFindStringAny(attribListIndex,"MTTR",0,numofAttribs,4,FALSE) >=0)
{
MTTRCol = 1+ GAFindStringAny(attribListIndex,"MTTR",0,numofAttribs,4,FALSE);
}

TimeArray[myIndex] = startTime; //so that we get a block recieve1 message at time zero
}

//we receive this message from the executive because we posted and event
on BlockReceive1
{

If (currentTime == StartTime)
{
For (i=0; i<getdimension(pmInfo);i++) //loop to ensure we get a BlockRecieve message

until all tools are released
{
ItemOut = CreateItem(); // create an item and set the output to its index value
SendItem(); // initiate the send item procedure
}

}
}

B-40

Appendix B. FTM Application Code

B.4.5 Pairing block code

The pairing block is responsible for storing any of the necessary tool, lot, PM or downtime

items to be paired and released signifying the occurrence of some event.

//Static Variables:
integer myIndex;
integer exec;
real timeArray[];
integer timeBlocks[];
integer itemArrayI[][5];
integer itemArray3D[][10];
real nextTime;
real lastTime;
real beginTime;
integer delayTimeInConnected;
integer itemIndex;
integer sending;
integer getting;
integer meBlocked;
integer gotItem;
real timeUnitConversionFactor;
integer rescheduled;
integer connectedToSensor;
integer itemOutConnectionInfo[][2];
integer numInBlocks;
integer inBlock;
integer inConn;
integer connected[][2];
real clearStatsTime;
real lastTConnectorVal;
real utilSum;
integer colClicked;
integer rowClicked;
integer costAttrib;
integer rateAttrib;
integer numOfAttribs;
integer opIDAttribCol;
integer toolIDAttribCol;
integer toolTypeAttribCol;
integer itemTypeAttribCol;
integer lotList;
integer toolList;
integer offlineList;
real LotTableInfo[][3];
real ToolTableInfo[][4];
real OfflineTableInfo[][4];

//attribute variables
integer attribListIndex; //index of the array holding the attrib list
integer attribValuesIndex; //index to global array containing the attribute values
integer attribTypeIndex; //index of the _attribType GA
string attribCategories[][3]; //used to separate the list of all attrib names into three

columns: normal attribs, string attribs, db attribs
string31 attribNameArraysRemote[];
string15 attribNameOldNew[];

//btb: common variables
integer BTB_AnimationIndex;
integer BTB_NumUserPicts;
integer BTB_NumPicts;
string31 BTB_PictNames[];

//btb: "change to" animation vars
string31 BTB_ChangeToPicture;

//btb: multi-out options table vars
integer BTB_CurrentNumItemOutCons;
string31 BTB_MultiOutOptionsTable_DA[][2];
string BTB_MultiOutOptions[];
integer BTB_MultiOutNumEquivs[][2];
//col 0 contains the numeric equivalent of which option has been chosen for that row
//col 1 contains the numeric equivalent of which picture has been chosen for that row

//btb: attribute based conversion
integer BTB_AttribType[];
string BTB_AttribPopContents[];
string15 BTB_AttribNamesChosen[];

B-41

Appendix B. FTM Application Code

integer BTB_AttribColumnID[];
string31 BTB_AttribTable_DA[][5];
integer BTB_AttribNumConvert;
real BTB_AttribConvert[][5];
//col 0 contains the different attribute values that items may have
//col 1 contains the numeric equivalents of the pictures chosen in the picture table

integer BTB_NumRowsAttribTable;

// 3D animation
String31 E3DSelectedNames[];
String31 E3DNames[];
integer E3DObject[];
integer UnmountDirection;
integer E3D_AnimationIndex;
String31 E3DObjects[];
integer SaveXYClickPosition[];
real B3DPictureAngles[];
String31 Skins[];
String31 E3DChangeObjectName[];
integer E3DChangeObjectNum[];
integer E3D_AnimationItemIndex; // index of global array with item based animation objects

// Proof Animation
integer ProofStuff[];
String31 ProofStr[]; // contains animation object and attribute name

//Constants:
constant OUTPUT is 0;
constant INPUT is 1;
constant REJECTS is 0;
constant WANTS is 1;
constant TAKEN is 2;
constant NEEDS is 3;
constant QUERY is 4;
constant NOTIFY is 5;
constant CONDITIONAL_ROUTE_BLOCKER is 6;
constant PROPERTY_NAME_CHECK is 7;
constant ITEM_IN is 0;
constant ITEM_OUT is 1;
constant PUSH is 0;
constant PULL is 1;
constant NO_RESPONSE is -1;

//animation constants
constant BTB_ANIM_OBJECT is 1;

//proof animation constants
constant ProofControlRow is 0; //block number of the proof control block (this block)
constant ConcurrentRow is 1; // true if concurrent animation is turned on
constant TraceRow is 2; // true if the trace option is turned on
constant FileNumRow is 3; // file number for the trace file
constant PauseRow is 4; // true if proof has paused the simulation
constant PausingBlock is 5; // block number of the pausing block
constant BlockNumber is 6; // block number of the block which is sending a message to

the control block
constant ItemIndexRow is 7; // item index of the animated item
constant CommandType is 8; // animation command associated with this block

//prototypes
procedure GetItem();
procedure SendItem(integer sendMechanism);
procedure ProofAnimate(integer ProofIndex, Real SendValue);
procedure UpdateList(integer theIndex);
procedure CheckOffline();
procedure SendItem(integer theIndex);
procedure CheckLots();
procedure UpdateLotTable();
procedure UpdateToolTable();
procedure UpdateOfflineTable();
procedure changeLastProcessed(integer theArrayIndex, integer thePos);
procedure shuffleTiedOps(integer tempToolInfoIndex);

//Include files:
#include "Constants v7.h"
#include "ColumnTags v7.h"
#include "Attribs v7.h"
#include "BTB Animation v7.h"
#include "Proof v7.h"

//this procedure re-establishes the location in memory of itemArrayI and keeps track of how
many items are in the model.

on DEExecutiveArrayResize
{

B-42

Appendix B. FTM Application Code

GetPassedArray(sysGlobal4, itemArrayI);
GetPassedArray(sysGlobal12, ItemArray3D);

}

// This routine sends out a message, and returns an answer.
integer SendMsg(integer whatMsg, integer where)
{

sysGlobalint3 = whatMsg;

if (where == INPUT)
SendMsgToOutputs(itemIn);

else
SendMsgToInputs(itemOut);

return(sysGlobalint0);
}

procedure UpdateLotTable()
{

integer i;

MakeArray(LotTableInfo, ListGetElements(MyBlockNumber(), LotList));
for (i=0;i<ListGetElements(MyBlockNumber(), LotList);i++)
{
LotTableInfo[i][0]= ListGetDouble(MyBlockNumber(), LotList, i, 0);
LotTableInfo[i][1]= ListGetLong(MyBlockNumber(), LotList, i, 0);
LotTableInfo[i][2]= ListGetLong(MyBlockNumber(), LotList, i, 1);
}

DynamicDataTable(MyBlockNumber(), "LotTable", LotTableInfo);
RefreshDatatableCells(MyBlockNumber(), "LotTable", 0, 0, ListGetElements(MyBlockNumber(),

LotList)-1, 2);
}

procedure UpdateToolTable()
{

integer i;

MakeArray(ToolTableInfo, ListGetElements(MyBlockNumber(), ToolList));
for (i=0;i<ListGetElements(MyBlockNumber(), ToolList);i++)
{
ToolTableInfo[i][0]= ListGetDouble(MyBlockNumber(), ToolList, i, 0);
ToolTableInfo[i][1]= ListGetLong(MyBlockNumber(), ToolList, i, 0);
ToolTableInfo[i][2]= ListGetLong(MyBlockNumber(), ToolList, i, 1);
ToolTableInfo[i][3]= ListGetLong(MyBlockNumber(), ToolList, i, 2);
}

DynamicDataTable(MyBlockNumber(), "ToolTable", ToolTableInfo);
RefreshDatatableCells(MyBlockNumber(), "ToolTable", 0, 0, ListGetElements(MyBlockNumber(),

ToolList)-1, 3);
}

procedure UpdateOfflineTable()
{

integer i;
MakeArray(OfflineTableInfo, ListGetElements(MyBlockNumber(), OfflineList));
for (i=0;i<ListGetElements(MyBlockNumber(), OfflineList);i++)
{
OfflineTableInfo[i][0]= ListGetDouble(MyBlockNumber(), OfflineList, i, 0);
OfflineTableInfo[i][1]= ListGetLong(MyBlockNumber(), OfflineList, i, 0);
OfflineTableInfo[i][2]= ListGetLong(MyBlockNumber(), OfflineList, i, 1);
OfflineTableInfo[i][3]= ListGetLong(MyBlockNumber(), OfflineList, i, 2);
}

DynamicDataTable(MyBlockNumber(), "OfflineTable", OfflineTableInfo);
RefreshDatatableCells(MyBlockNumber(), "OfflineTable", 0, 0, ListGetElements(MyBlockNumber()

, OfflineList)-1, 3);
}

//GetItem() is the procedure responsible for getting items from the upstream residence block.
procedure GetItem()
{

integer i;
getting = TRUE; //set getting flag to avoid re-entrance.
if (itemIn > 0.0) //if item is available on item in, pull it in
{
itemIndex = itemIn;
itemIn = -itemIn;
BTB_GetItem(itemIndex, BTB_ANIM_OBJECT, inBlock, inConn, 0); //0 for index of itemIn

connector
ItemArrayI[ItemIndex][4] = MyBlockNumber(); //record where this item is in the integer

item array
SendMsg(TAKEN, INPUT); //item taken
ConnectorMsgBreak(); //if this activity was placed in parallel, then prevent the other

B-43

Appendix B. FTM Application Code

parallel activities from getting messages from upstream
}

else
{
userError("An upstream block sent or returned 'needs' without making an item available on

" +
"its itemOut connector. Currently in 'GetItem()' of block " + MyBlockNumber() + "."

);
abort;
}

UpdateList(itemIndex);
CheckOffline();
CheckLots();
getting = FALSE;

}

procedure UpdateList(integer theIndex)
{

integer i;
integer tempItemtype;
integer tempToolDetailIndex;

//get the itemtype
tempItemType = gaGetReal(attribValuesIndex,theIndex,itemTypeAttribCol);

switch (tempItemType)
{
case 1:
//item is a lot.
ListCreateElement(myblockNumber(), LotList);
ListSetLong(myBlockNumber(), LotList, -1, 0, gaGetReal(attribValuesIndex,theIndex,

opIDAttribCol));// set opID
ListSetLong(myBlockNumber(), LotList, -1, 1, gaGetReal(attribValuesIndex,theIndex,

itemTypeAttribCol));// set itemType
ListSetLong(myBlockNumber(), LotList, -1, 2, theIndex);// set itemIndex
ListSetDouble(myBlockNumber(), LotList, -1, 0, currentTime);// set entryTime
ListAddElement(myblockNumber(), LotList, -2);
UpdateLotTable();
break;

case 2:
//item is a tool
tempToolDetailIndex = GAGetIndex("gaOpRank"+gaGetReal(attribValuesIndex,theIndex,

toolIDAttribCol));
ListCreateElement(myblockNumber(), ToolList);
ListSetLong(myBlockNumber(), ToolList, -1, 0, gaGetReal(attribValuesIndex,theIndex,

toolIDAttribCol));// set toolID
ListSetLong(myBlockNumber(), ToolList, -1, 1, gaGetReal(attribValuesIndex,theIndex,

toolTypeAttribCol));// set toolType
ListSetLong(myBlockNumber(), ToolList, -1, 2, gaGetReal(attribValuesIndex,theIndex,

itemTypeAttribCol));// set itemType
ListSetLong(myBlockNumber(), ToolList, -1, 3, tempToolDetailIndex);// find index to tool

details
ListSetLong(myBlockNumber(), ToolList, -1, 4, theIndex);// set itemIndex
ListSetDouble(myBlockNumber(), ToolList, -1, 0, currentTime);// set entryTime
ListAddElement(myblockNumber(), ToolList, -2);
UpdatetoolTable();
break;

case 3:
//item is a downtime (uncheduled) event
ListCreateElement(myblockNumber(), offlineList);
ListSetLong(myBlockNumber(), offlineList, -1, 0, gaGetReal(attribValuesIndex,theIndex,

toolIDAttribCol));// set toolID
ListSetLong(myBlockNumber(), offlineList, -1, 1, gaGetReal(attribValuesIndex,theIndex,

toolTypeAttribCol));// set toolType
ListSetLong(myBlockNumber(), offlineList, -1, 2, gaGetReal(attribValuesIndex,theIndex,

itemTypeAttribCol));// set itemType
ListSetLong(myBlockNumber(), offlineList, -1, 3, theIndex);// set itemIndex
ListSetDouble(myBlockNumber(), offlineList, -1, 0, currentTime);// set entryTime
ListAddElement(myblockNumber(), offlineList, -2);
UpdateOfflineTable();
break;

case 4:
//item is a PM item
ListCreateElement(myblockNumber(), offlineList);
ListSetLong(myBlockNumber(), offlineList, -1, 0, gaGetReal(attribValuesIndex,theIndex,

toolIDAttribCol));// set toolID
ListSetLong(myBlockNumber(), offlineList, -1, 1, gaGetReal(attribValuesIndex,theIndex,

toolTypeAttribCol));// set toolType
ListSetLong(myBlockNumber(), offlineList, -1, 2, gaGetReal(attribValuesIndex,theIndex,

B-44

Appendix B. FTM Application Code

itemTypeAttribCol));// set itemType
ListSetLong(myBlockNumber(), offlineList, -1, 3, theIndex);// set itemIndex
ListSetDouble(myBlockNumber(), offlineList, -1, 0, currentTime);// set entryTime
ListAddElement(myblockNumber(), offlineList, -2);
UpdateOfflineTable();
break;

default: // any other number
UserError("Spurious ItemType found in "+myblocknumber()+".");
abort;
break;
}

}

procedure CheckOffline()
{

integer i,j;

restart:
for (i=0;i<ListGetElements(myBlockNumber(), ToolList);i++)
{
for (j=0;j<ListGetElements(myBlockNumber(), offlineList);j++)

{
If (ListGetLong(myBlockNumber(), ToolList, i, 0)==ListGetLong(myBlockNumber(),

offlineList, j, 0))
{
//Remove the Tool from the ToolList and send it using SendItem
SendItem(ListGetLong(myBlockNumber(), ToolList, i, 4));
ListDeleteElement(myBlocknumber(), ToolList, i);
UpdateToolTable();

//Remove the Offline Event form the list and send it using Send Item
SendItem(ListGetLong(myBlockNumber(), offlineList, j, 3));
ListDeleteElement(myBlocknumber(), offlineList, j);
UpdateOfflineTable();
goto Restart;
}

}
}

}

procedure CheckLots()
{

integer i,j,k,m;
integer tempToolInfoIndex;
integer theOperation;
integer tempVal;

restart:
for (i=0;i<ListGetElements(myBlockNumber(), ToolList);i++)
{
tempToolInfoIndex = ListGetLong(myBlockNumber(), ToolList, i, 3);

switch (GAGetReal(tempToolInfoIndex, 0, 1))
//row0, col1 contains an indication of the priority system of the tool.
// -1: last processed
// 0: no Ranking(FIFO)
// any other number: user selected ranking system

{
case -1:

{
//use last processed. Tied Operation are selected on a FIFO basis
for (j=0;j<GAGetRowsByIndex(tempToolInfoIndex);j++)
{
theOperation = GAGetReal(tempToolInfoIndex, j, 2);//converts it to integer, last col

stores last selected

for (k=0;k<ListGetElements(myBlockNumber(),LotList);k++)
{
If (ListGetLong(myblockNumber(), LotList, k, 0)== theOperation)

{
//Remove the Tool from the ToolList and send it using SendItem
SendItem(ListGetLong(myBlockNumber(), ToolList, i, 4));
ListDeleteElement(myBlocknumber(), ToolList, i);
UpdateTooltable();

//Remove the Lot from the list and send it using Send Item
SendItem(ListGetLong(myBlockNumber(), LotList, k, 2));
ListDeleteElement(myBlocknumber(), LotList, k);
UpdateLotTable();
changeLastProcessed(tempToolInfoIndex, j);
goto restart;
}

B-45

Appendix B. FTM Application Code

}
}

}

case 0:
{
//no selecting criteria. Adopt FIFO
for (j=0;j<ListGetElements(myBlockNumber(),LotList);j++)
{
for (k=0;k<GAGetRowsByIndex(tempToolInfoIndex);k++)
{
theOperation = GAGetReal(tempToolInfoIndex, k, 0);//converts it to integer

If (ListGetLong(myblockNumber(), LotList, j, 0)== theOperation)
{
//Remove the Tool from the ToolList and send it using SendItem
SendItem(ListGetLong(myBlockNumber(), ToolList, i, 4));
ListDeleteElement(myBlocknumber(), ToolList, i);
UpdateToolTable();

//Remove the Lot from the list and send it using SendItem
SendItem(ListGetLong(myBlockNumber(), LotList, j, 2));
ListDeleteElement(myBlocknumber(), LotList, j);
UpdateLotTable();

//changeLastProcessed(tempToolInfoIndex, k);
goto restart;
}

}
}

}

default:
{
//use selected ranking system (assuming that the opID are in order in the gaOpRankXXX

array)
shuffleTiedOps(tempToolInfoIndex); //randomly shuffle tools with tied ranks
for (j=0;j<GAGetRowsByIndex(tempToolInfoIndex);j++)
{
theOperation = GAGetReal(tempToolInfoIndex, j, 2);//converts it to integer

for (k=0;k<ListGetElements(myBlockNumber(),LotList);k++)
{
If (ListGetLong(myblockNumber(), LotList, k, 0)== theOperation)

{
//Remove the Tool from the ToolList and send it using SendItem
SendItem(ListGetLong(myBlockNumber(), ToolList, i, 4));
ListDeleteElement(myBlocknumber(), ToolList, i);
UpdateTooltable();

//Remove the Lot from the list and send it using Send Item
SendItem(ListGetLong(myBlockNumber(), LotList, k, 2));
ListDeleteElement(myBlocknumber(), LotList, k);
UpdateLotTable();
goto restart;
}

}
}

}
}

}
}

procedure changeLastProcessed(integer theArrayIndex, integer thePos)
{

integer i;
real temp;

temp = GAGetReal(theArrayIndex,thePos, 2);
for(i=thePos;i>0;i--)
{
GASetReal(GAGetReal(theArrayIndex, (i-1), 2), theArrayIndex, i, 2);
}

GASetReal(temp, theArrayIndex, 0, 2);
}

procedure shuffleTiedOps(integer theArrayIndex)
{

integer i;
real temp;

for (i=0;i<(GAGetRowsByIndex(theArrayIndex)-1);i++)
{

B-46

Appendix B. FTM Application Code

if (GAGetReal(theArrayIndex, i, 1) == GAGetReal(theArrayIndex, i+1, 1))
{
if (Random(100)>=49) // 50/50 chance of swapping them

{
//swap them
temp = GAGetReal(theArrayIndex, i, 2);
GASetReal(GAGetReal(theArrayIndex, i+1, 2), theArrayIndex, i, 2);
GASetReal(temp, theArrayIndex, i+1, 2);
}

}
}

}

procedure SendItem(integer theIndex)
{

sending = TRUE;
itemIndex = theIndex;

//if appropriate, move current item to itemOut, i.e., if have an
if(itemIndex > 0)
{
if(itemOut <= 0.0)

{
itemOut = itemIndex; //move the item out of processing
itemIndex = 0; //signal we're no longer processing an item
}

else
{
UserError("An item message passing failure occurred in SendItem() of " + "block number "

+ MyBlockNumber() + ".");
abort;
}

}

if(itemOut > 0.0) //if an item is ready to leave
{
if(sendMsg(WANTS, OUTPUT) == NEEDS) //if downstream block wants the item, it will return

NEEDS
{
BTB_SendItem(itemOut, 0); //set the btb animation attrib on the item
sendMsg(NEEDS, OUTPUT);

if(itemOut < 0.0) //if the downstream block took the item
{
meBlocked = FALSE;
}

else
{
UserError("An item message passing failure occurred in SendItem() of " +

"block number " + MyBlockNumber() + ". The downstream block returned " +
"NEEDS but then did not take the item.Use a queue block here");

abort;
}

}
else //if downstream block does not want the item, then the item is blocked

{
meBlocked = TRUE;
}

}
else
{
UserError("An item message passing failure occurred in SendItem() of " + "block number " +

MyBlockNumber() + ". An item that was done processing has disappeared.");
abort;
}

sending = FALSE;
}

//called in itemOut after receiving a taken message
procedure Departure()
{

if(connectedToSensor == TRUE) //if itemOut is connected to a block containing a sensor
connector (eg, the timer, gate, and status blocks), then send a notify message

sendMsg(NOTIFY, OUTPUT);
meBlocked = FALSE;

}

on itemIn
{

integer whichMessage;

whichMessage = sysGlobalint3;

B-47

Appendix B. FTM Application Code

if (whichMessage == CONDITIONAL_ROUTE_BLOCKER || whichMessage == NOTIFY)
return;

else if((whichMessage == WANTS || whichMessage == NEEDS) && (getting)) //safety
checking

{
sysGlobalInt0 = REJECTS;
}

else if(whichMessage == WANTS)

{
sysGlobalInt0 = NEEDS;
ConnectorMsgBreak(); //cancels the messages to other blocks connected to the output of

this block
}

else if(whichMessage == NEEDS)
{
GetItem(); //upstream block is pushing an item to us.
sysGlobalint0 = REJECTS;
connectorMsgBreak();
}

else
{
userError("Spurious message received in 'on itemIn' in block " + MyBlockNumber() + ".");
abort;
}

sysGlobalint3 = whichMessage;
//sending message out to other blocks could have resulted in sysGlobalInt3 being
//changed so before returning, set sysGlobalInt3 to its original state.

}

on itemOut
{

integer whichMessage;
whichMessage = sysGlobalint3;

if (whichMessage == QUERY) //a downstream block wants to know what the item index of the
next item will be.

{
if (itemOut > 0.0)

{
sysGlobalint0 = itemOut;
}

else
{
sysGlobalint0 = 0;
}

}

else if (whichMessage == WANTS) //a downstream block is trying to pull an item.
{
}

else if (whichMessage == TAKEN)
{
}

else
{
userError("Spurious message received in 'on ItemOut' in block " + MyBlockNumber() + ".");
abort;
}

sysGlobalint3 = whichMessage;
//sending message out to other blocks could have resulted in sysGlobalInt3 being
//changed so before returning, set sysGlobalInt3 to its original state.

}

//If the dialog data is inconsistent for simulation, abort.
on checkData
{

exec = sysGlobalint1; // the id number of the exec block
myIndex = sysGlobalint0;
sysGlobalint0 += 1;

}

// Initialize any simulation variables.
on initSim
{

integer x, y, i;
integer numBlocksConnectedToItemOut;

B-48

Appendix B. FTM Application Code

string nextConnName;
getting = FALSE;
sending = FALSE;
itemOut = 0.0;
itemIndex = 0;
meBlocked = FALSE;
gotItem = FALSE;
lastTConnectorVal = 0.0;
rescheduled = FALSE;

attribValuesIndex = GaGetIndex("_AttribValues");

//inBlock and inConn are used in block to block animation.
inBlock = 0;
inConn = 0;
GetConBlocks(MyBlockNumber(), ITEM_IN, connected);
//The dynamic array "connected" is now filled with all the global block
//numbers and connector numbers of the "net list" that itemIn is part of.

if (GetDimension(connected) > 0) //itemIn is conneced
{
inBlock = connected[0][0]; //the global block number of the block directly connected to

itemIn
inConn = connected[0][1]; //the connector number of the connector directly connected

to itemIn
}

DisposeArray(connected);

//find all the blocks connected to itemOut and check to see if any connectors are named "
sensor"

connectedToSensor = FALSE;
numBlocksConnectedToItemOut = GetConBlocks(MyBlockNumber(), ITEM_OUT, itemOutConnectionInfo)

; //for blocks connected to itemOut, put block and connector number info into the "
itemOutConnectionInfo" array

for(i=0; i<numBlocksConnectedToItemOut; i++)
{
nextConnName = GetConName(itemOutConnectionInfo[i][0], itemOutConnectionInfo[i][1]);
if(nextConnName == "sensorIn")

{
connectedToSensor = TRUE;
break;
}

}

DisposeArray(itemOutConnectionInfo);

if(getPassedArray(sysGlobal0, timeArray))
{
//do nothing
}

else
{
userError("The Executive block must be present and to the left of all blocks on the

worksheet");
abort;
}

getPassedarray(sysGlobal7,timeblocks);
timeblocks[myindex] = myBlockNumber();
getSimulateMsgs(FALSE);

if(HAnim && !Novalue(HAnimNum) && HanimNum > 0.999)
{
animationHide(-HAnimNum,FALSE);
}

//Find the column location of OpID, ToolID, ToolType and ItemType
numofAttribs = GAGetRowsByIndex (attribListIndex) ;

if(GAFindStringAny(attribListIndex,"opID",0,numofAttribs,4,FALSE) >=0)
{
opIDAttribCol = 1+ GAFindStringAny(attribListIndex,"opID",0,numofAttribs,4,FALSE);
}

if(GAFindStringAny(attribListIndex,"toolID",0,numofAttribs,6,FALSE) >=0)
{
toolIDAttribCol = 1+ GAFindStringAny(attribListIndex,"toolID",0,numofAttribs,6,FALSE);
}

if(GAFindStringAny(attribListIndex,"toolType",0,numofAttribs,8,FALSE) >=0)
{
toolTypeAttribCol = 1+ GAFindStringAny(attribListIndex,"toolType",0,numofAttribs,8,FALSE);
}

B-49

Appendix B. FTM Application Code

if(GAFindStringAny(attribListIndex,"itemType",0,numofAttribs,8,FALSE) >=0)
{
itemTypeAttribCol = 1+ GAFindStringAny(attribListIndex,"itemType",0,numofAttribs,8,FALSE);
}

//Create lotlist with the following cols opID, ItemType, itemIndex and EntryTime sorted by
EntryTime

LotList = ListCreate(myblockNumber(), 3, 1, 0, 0, 0, 1, 0);
//Create toolList with the following cols toolID, toolType, itemType, IndexToToolDetails,

itemIndex and EntryTime sorted by EntryTime
ToolList = ListCreate(myblockNumber(), 5, 1, 0, 0, 0, 1, 0);
//Create OfflineList with the following cols toolID, toolType, itemType, itemIndex and

EntryTime sorted by EntryTime
OfflineList = ListCreate(myblockNumber(), 4, 1, 0, 0, 0, 1, 0);

}

on DialogClick
{

string31 dName; // name of the dialog item clicked

dName = whichDialogItemClicked();
rowClicked = WhichDTCellClicked(0);
colClicked = WhichDTCellClicked(1);

}

on DataTableResize
{

integer numRowsAttribTable;
string whichTable;

whichTable = WhichDialogItemClicked();
if(whichTable == "BTB_Attrib_ttbl")
{
numRowsAttribTable = GetDimension(BTB_AttribTable_DA);
numRowsAttribTable = NumericParameter("Maximum rows in attribute animation conversion

table:",numRowsAttribTable);
BTB_OnDataTableResize(numRowsAttribTable);
}

}

on FinalCalc
{

sendMsgtoBlock(myblockNumber(),updatestatisticsMsg);
}

on endSim
{

//Clean up lists
ListDisposeAll(myBlockNumber());

}

on ContinueSim
{

attribValuesIndex = GaGetIndex("_AttribValues");
}

B.5 Post Processing Scripts

Code and scripts in VB used to analyse the data output from ExtendSim.

Public Function simCT(dataArray() As Variant, steadyState As Double) As Double
'gets the average simulation CT
Dim i, count As Long
Dim sum As Double

sum = 0
count = 0
For i = 1 To UBound(dataArray)
If dataArray(i, 1) = 1 Then

If dataArray(i, 6) > steadyState Then
sum = sum + (dataArray(i, 6) - dataArray(i, 3))

B-50

Appendix B. FTM Application Code

count = count + 1
End If

End If
Next i

simCT = sum / count
End Function

Public Function GetIntervals(dataArray() As Variant, timeInc As Double, numIncs As Integer) As
Variant

'returns a 2 column array containing the warmup inc and the average ct value for that period
Dim i, j, k, z As Long
Dim tempArray(), workXArray(), valuesArray() As Variant
Dim count, numExited, endRow, startRow As Long
Dim startVal, endVal, aveCTPeriod As Double

ReDim workXArray(numIncs)
For i = 1 To UBound(workXArray)
workXArray(i) = i * timeInc

Next i

'Find number of used rows
count = 0
For i = 1 To UBound(dataArray)
If dataArray(i, 1) = 1 And dataArray(i, 6) > 0 Then 'lot did exit

count = count + 1
End If

Next i

ReDim tempArray(count, 2)
'Col1 is the exit time, col2 is the CT
count = 0
For i = 1 To UBound(dataArray)
If dataArray(i, 1) = 1 And dataArray(i, 6) > 0 Then 'lot did exit

count = count + 1
tempArray(count, 1) = dataArray(i, 6)
tempArray(count, 2) = dataArray(i, 6) - dataArray(i, 3)

End If
Next i

'Sort by the exit time (NB this was changed now the sorting is done in Extend, much faster)
'tempArray = BubbleSortMultiCol(tempArray, 1)

ReDim valuesArray(UBound(workXArray))
j = 1
For i = 1 To UBound(workXArray)
If i = 1 Then

startVal = 0
endVal = workXArray(i)

Else
startVal = workXArray(i - 1)
endVal = workXArray(i)

End If

Do Until tempArray(j, 1) >= startVal Or j >= UBound(tempArray)
j = j + 1

Loop

k = 1
Do Until tempArray(j + k, 1) > endVal Or (j + k) >= UBound(tempArray)

k = k + 1
Loop

startRow = j
endRow = j + k - 1

numExited = (endRow - startRow) + 1
aveCTPeriod = 0
For z = startRow To endRow

aveCTPeriod = aveCTPeriod + tempArray(z, 2)
Next z

aveCTPeriod = aveCTPeriod / numExited
valuesArray(i) = aveCTPeriod
j = endRow + 1

Next i

GetIntervals = valuesArray

B-51

Appendix B. FTM Application Code

End Function

Public Function simUTIL(dataArray() As Variant, simStartTime As Double, simEndTime As Double,
Optional uOverA As Integer) As Double

'gets the average tool utilisation for the simulation

Dim i, count As Long
Dim idleTime, timeInProcess, timeInRepair, totalRunTime As Double

idleTime = 0
timeInProcess = 0
timeInRepair = 0

count = 0
For i = 1 To UBound(dataArray)
If dataArray(i, 1) = 1 And dataArray(i, 3) > simStartTime And dataArray(i, 3) < simEndTime

Then
If dataArray(i, 6) = 0 Then

If dataArray(i, 4) <> 0 And dataArray(i, 5) <> 0 Then
idleTime = idleTime + dataArray(i, 4) - dataArray(i, 3)
timeInProcess = timeInProcess + dataArray(i, 5) - dataArray(i, 4)

End If
ElseIf dataArray(i, 6) = 1 Then

If dataArray(i, 8) <> 0 And dataArray(i, 9) <> 0 Then
idleTime = idleTime + dataArray(i, 8) - dataArray(i, 3)
timeInRepair = timeInRepair + dataArray(i, 9) - dataArray(i, 8)

End If
End If

End If
Next i

If uOverA Then
simUTIL = 1 - (idleTime / (idleTime + timeInProcess))

Else
simUTIL = 1 - (idleTime / (idleTime + timeInProcess + timeInRepair))

End If

End Function

B-52

APPENDIX C

Semiconductor Wafer Manufacturing

Data Format Specification

This chapter describes the format for the Semiconductor Wafer Manufacturing Data For-

mat Specification, as outlined by Feigin et al. (1994) and Fowler and Robinson (1995) and

made available to the public by Sematech at http://www.eas.asu.edu/˜masmlab/

ftp.htm. The format was formed to address the lack a factory level representative data

available for academics and industrial engineers to experiment with product flows and

compare fab specification. Currently there exists eight sample datasets (see Table C.7

on pg. C-9), some of which have been constructed by the authors of the format and oth-

ers that have been donated by anonymous fabs and have been desensitised. The format

consists of six files per dataset. The purpose of the files are listed in Table C.1.

C-1

http://www.eas.asu.edu/~masmlab/ftp.htm
http://www.eas.asu.edu/~masmlab/ftp.htm

Appendix C. Semiconductor Manufacturing Data Specification

Table C.1: Data files used for wafer data format specification.

File Suffix ID Description Ref

Process Route pr Process route information for all processes Table C.2
Rework Sequences rw Information on rework sequences Table C.3
Tool Set ts Information on tools Table C.4
Operator Set os Information on operators Table C.5
Volume Release vr Release rate information Table C.6
Comment File cf General comments and sample run results n/a

C.1 File Description Overview

The volume release file divides product groups into specific recipes known as process flows

and describes how the product is released into the factory. The process route file details

the operations list (or steps) that each process flow follows. Each step contains processing

information for a particular operation including batching and setup requirements, type

of operator, toolset and processing pattern. It also contains post-processing information

such as yield and rework probabilities and transport mechanisms. The rework sequence

file is very similar to the process route file and contains all the processing and routing

information for lots that must undergo a rework path. Once this rework path is complete

the lots rejoining the ‘normal’ process route.

The operator set file contains information about the quantity of operators and their

break requirements. Similarly the toolset file contains tool information such as tool

quantity per toolset, wafer-based and time-based downtime patterns (maximum of five)

and the percentage time required by operators for each phase of operation on the tool.

The comments file contains examples of output from simulations and a narrative of any

further general information about the factory that the dataset is based on.

C.2 File Descriptions

Tables C.2 to C.6 list the format for each of the file types listed in Table C.1. Details

included are the field name, the data type (string, float, integer), the number of characters

C-2

Appendix C. Semiconductor Manufacturing Data Specification

reserved in the file for each field and some remarks about the field.

Table C.2: Structure of Process Route (pr) file.

Field Name Type Width Remarks

Process Flow ID String 10 Unique process flow ID
Step ID String 10 Process step ID
Operation Description String 25 A brief operation description
Tool Set ID String 10 Assume 1 tool needed from this tool group for this

operation
Operator Set ID String 15 Assume 1 operator needed for this operation
Load Time Float 10 Time to load wafers/lot/batch into tool
Unload Time Float 10 Time to unload wafers/lot/batch from tool
Time per Wafer in Process Float 10 Processing time per wafer (as appropriate)
Wafer Travel Time Float 10 Travel time within tool (as appropriate)
Time per Lot Float 10 Lot processing time (as appropriate)
Time per Batch Float 10 Batch processing time (as appropriate)
Min Batch Size Integer 5 Minimum batch size (in wafers)
Max Batch Size Integer 5 Maximum batch size (in wafers)
Batch ID String 10 Used to identify which operations can be batched

together
Time per Spec. Setup Float 10 Setup time required for changing from one process

flow step (recipe spec.) to another
Time per Group Setup Float 10 Setup time required for changing from one ‘group’

to another where group is specified by the Setup
Group ID

Setup Group ID String 15 See above
Lot Scrap Probability Float 10 Prob. an entire lot is scrapped after this operation
Wafer Scrap Probability Float 10 Prob. a wafer in a lot is scrapped after this opera-

tion
Lot Rework Probability Float 10 Prob. an entire lot is sent for rework after this op-

eration given it has not been scrapped
Wafer Rework Probability Float 10 Prob. a wafer in a lot is sent for rework given it is

has not been scrapped
Rework Sequence ID String 10 Rework sequence to follow
Rework Return Step ID String 10 Step to which wafers return after rework
Travel Time Float 10 Travel time to next operation process step
Travel Time Operator ID String 15 Operator set needed for travel

C-3

Appendix C. Semiconductor Manufacturing Data Specification

Table C.3: Structure of Rework Sequence (rw) file.

Field Name Type Width Remarks

Rework Sequence ID String 10 Unique process flow ID
Step ID String 10 Process step ID
Operation Description String 25 A brief operation description
Tool Set ID String 10 Assume 1 tool needed from this tool group for this

operation
Operator Set ID String 15 Assume 1 operator needed for this operation
Load Time Float 10 Time to load wafers/lot/batch into tool
Unload Time Float 10 Time to unload wafers/lot/batch from tool
Time per Wafer in Process Float 10 Processing time per wafer (as appropriate)
Wafer Travel Time Float 10 Travel time within tool (as appropriate)
Time per Lot Float 10 Lot processing time (as appropriate)
Time per Batch Float 10 Batch processing time (as appropriate)
Min Batch Size Integer 5 Minimum batch size (in wafers)
Max Batch Size Integer 5 Maximum batch size (in wafers)
Batch ID String 10 Used to identify which operations can be batched

together
Time per Spec. Setup Float 10 Setup time required for changing from one process

flow step (recipe spec.) to another
Time per Group Setup Float 10 Setup time required for changing from one ‘group’

to another where group is specified by the Setup
Group ID

Setup Group ID String 15 See above
Lot Scrap Probability Float 10 Prob. an entire lot is scrapped after this operation
Wafer Scrap Probability Float 10 Prob. a wafer in a lot is scrapped after this opera-

tion
Lot Rework Probability Float 10 Prob. an entire lot is sent for rework after this op-

eration given it has not been scrapped
Wafer Rework Probability Float 10 Prob. a wafer in a lot is sent for rework given it is

has not been scrapped
Rework Sequence ID String 10 Rework sequence to follow
Rework Return Step ID String 10 Step to which wafers return after rework
Travel Time Float 10 Travel time to next operation process step
Travel Time Operator ID String 15 Operator set needed for travel

C-4

Appendix C. Semiconductor Manufacturing Data Specification

Table C.4: Structure of Tool Set (ts) file.

Field Name Type Width Remarks

Tool Set ID String 10 Tool set identifier
Tool Description String 25 Name or description of tool
Quantity Integer 5 Number of (identical) tools in tool set
Operator Load Fraction Float 10 Fraction of time operator is needed for lot

loading
Operator Unload Fraction Float 10 Fraction of time operator is needed for lot

unloading
Operator Process Fraction Float 10 Fraction of time operator is needed for lot

processing
Down Time #1 Description String 25 Description of tool down time type 1
Down Time #1 Type Integer 5 0 = time based; 1 = run based
Time or Runs Between #1 Float 15 Mean time (runs) between this down time

event
Duration #1 Float 10 Duration of this down time event
Down Time #1 Operator Set ID String 15 Operator needed from this set during this

down time event
Down Time #2 Description String 25 Description of tool down time type 2
Down Time #2 Type Integer 5 0 = time based; 1 = run based
Time or Runs Between #2 Float 15 Mean time (runs) between this down time

event
Duration #2 Float 10 Duration of this down time event
Down Time #2 Operator Set ID String 15 Operator needed from this set during this

down time event
Down Time #3 Description String 25 Description of tool down time type 3
Down Time #3 Type Integer 5 0 = time based; 1 = run based
Time or Runs Between #3 Float 15 Mean time (runs) between this down time

event
Duration #3 Float 10 Duration of this down time event
Down Time #3 Operator Set ID String 15 Operator needed from this set during this

down time event
Down Time #4 Description String 25 Description of tool down time type 4
Down Time #4 Type Integer 5 0 = time based; 1 = run based
Time or Runs Between #4 Float 15 Mean time (runs) between events
Duration #4 Float 10 Duration of this down time event
Down Time #4 Operator Set ID String 15 Operator needed from this set during this

down time event
Down Time #5 Description String 25 Description of tool down time type 5
Down Time #5 Type Integer 5 0 = time based; 1 = run based
Time or Runs Between #5 Float 15 Mean time (runs) between events
Duration #5 Float 10 Duration of this down time event
Down Time #5 Operator Set ID String 15 Operator needed from this set during this

down time even

C-5

Appendix C. Semiconductor Manufacturing Data Specification

Table C.5: Structure of Operator Set (os) file.

Field Name Type Width Remarks

Operator Set ID String 15 Operator set identifier
Operator Description String 25 Operator Set Name
Quantity Integer 5 Number of operators in this set
Break #1 Description String 25 Description of break type
Time Between #1 Float 15 Time between breaks of this type
Duration #1 Float 10 Duration of breaks of this type
Break #2 Description String 25 Description of break type
Time Between #2 Float 15 Time between breaks of this type
Duration #2 Float 10 Duration of breaks of this type
Break #3 Description String 25 Description of break type
Time Between #3 Float 15 Time between breaks of this type
Duration #3 Float 10 Duration of breaks of this type

Table C.6: Structure of Volume Release (vr) file.

Field Name Type Width Remarks

Process Flow String 10 Process Flow ID
Product ID String 10 Unique product family ID
Product Name String 25 Name of Product (optional)
Start Rate Float 10 Number of wafers per day released into line based on

7 day/week operation
Lot Size Integer 10 Number of wafers in a released lot

C-6

Appendix C. Semiconductor Manufacturing Data Specification

C.3 Additional Information

This section describes important information about how the data sets should be inter-

preted and how the information that they contain should be implemented in a simulation.

Finally, Table C.7 lists some descriptive attributes regarding each of the datasets.

1. All times are specified in minutes except if stated explicitly otherwise.

2. All tools in a tool set and all operators in an operator set are considered identical.

In particular, all tools in a tool set are considered qualified to perform all operations

coming to that tool set. The same holds true for operators.

3. An operation is uniquely specified by its Process ID (or Rework ID) and Step ID.

However, we allow multiple entries for the same Product ID, Step ID pair. The

resolution of such multiple entries should be made in the description field. Multiple

entries might be used to specify alternative tool sets or operator sets that can be

used to perform an operation.

4. The following formulas can be used to calculate processing time per lot (pt), time

until tool becomes free (tf), and total lot cycle time through an operation (ct):

pt = Time per Batch ∗ No. of batches required for the lot

+ Time per Lot

+ Time per Wafer in Process ∗ No. of wafers in the lot

+ Product Setup(if appropriate)

+ Group Setup(if appropriate)

tf = Load Time + pt + Unload Time

ct = Load Time + pt + Wafer Travel Time + Unload Time

5. No distributional information is included in the data sets beyond first moment

(mean) information. Fields with names like Load Time have the implicit prefix

qualifier Mean.

6. The wafer start rates given in the Volume/release file are intended as guidelines.

The exact method by which lots are released is to be determined by the users of

the data.

7. Information on process holds, engineering holds and send aheads is not included.

C-7

Appendix C. Semiconductor Manufacturing Data Specification

8. Time bound sequences cannot be specified explicitly.

9. The following types of tools typically found in a semiconductor wafer manufacturing

line can be modelled by making appropriate use of the processing time parameters:

(a) Single wafer tools. Set Time per Wafer in Process field to wafer pro-

cessing time and all other process time parameters to zero.

(b) Batch tools. Set Min Batch Size and Max Batch Size fields appro-

priately. Set Time per Batch field to batch processing time and all other

process time parameters to zero. Lots with the same batch ID may be batched

together (up to the maximum batch size). Where batch ID’s are left blank

only lots at the same step of the same process flow may be batched together.

(c) Multi-Sequence tools. Set Min Batch Size and Max Batch Size fields

appropriately. Set Time per Batch field to the largest single tank time and

set Wafer Travel Time field to the remaining tank time. Set other process

time parameters to zero.

(d) Conveyor tools. Set Time per Wafer in Process field to wafer process-

ing time and Wafer Travel Time field to the wafer travel time. Set other

process time parameters to zero.

(e) Inspect tools. Set Time per Lot field to inspect time. Set other process

time parameters to zero.

(f) Certain cluster tools. Model as batch tools.

(g) Linked track/linked lithography tools. Model as conveyor tools.

10. Group and spec. setups are assumed to be done whenever the group or process flow

step ID changes from one operation to another. However, the duration of the setup

does not vary as a function of the specific group or product preceding the operation.

11. An Operator Set ID or Tool Set ID field that is blank indicates that no

resource is needed for that step.

C-8

Appendix C. Semiconductor Manufacturing Data Specification

T
ab

le
C

.7
:

C
om

p
ar

is
on

of
S

em
at

ec
h

d
at

as
et

s.

D
a
ta

se
ts

m
in

if
ab

se
t

1
se

t
2

se
t

3
se

t
4

se
t

5
se

t
6

se
t

7

T
y
p

e
of

p
ro

d
u

ct
w

af
er

s
n

on
-

vo
la

ti
le

m
em

or
y

A
S

IC
&

m
em

o
ry

m
em

o
ry

m
ic

ro
-

p
ro

ce
ss

o
rs

A
S

IC
A

S
IC

S
R

&
D

w
a
fe

r

N
u

m
b

er
of

p
ro

ce
ss

fl
ow

s
1

2
7

1
1

2
2
1

9
1

N
u

m
b

er
of

p
ro

d
u

ct
s

3
2

7
1
1

7
1
7
7

9
1

D
at

as
et

m
ak

es
u

p
w

h
at

%
of

fa
ct

or
y

n
/a

95
-9

8%
u

n
d

is
c.

8
6
%

1
0
0
%

9
8
%

9
5
-9

8
%

1
0
0
%

A
ve

.
n
u

m
b

er
of

p
ro

-
ce

ss
st

ep
s

p
er

m
as

k
la

ye
r

n
/a

15
2
6

3
5

1
0

3
0

3
0

1
4

O
p

er
at

or
s

in
cl

u
d

ed
ye

s
y
es

ye
s

n
o

n
o

ye
s

ye
s

n
o

R
ew

or
k

in
cl

u
d

ed
n

o
ye

s
ye

s
y
es

n
o

n
o

n
o

n
o

E
q
u

ip
m

en
t

se
tu

p
s

in
-

cl
u

d
ed

n
o

y
es

ye
s

n
o

n
o

n
o

n
o

n
o

S
cr

ap
an

d
y
ie

ld
in

-
cl

u
d

ed
n

o
y
es

ye
s

ye
s

n
o

n
o

ye
s

n
o

E
q
u

ip
m

en
t

d
ow

n
ti

m
e

in
cl

u
d

ed
ye

s
y
es

ye
s

ye
s

y
es

ye
s

ye
s

y
es

N
u

m
b

er
of

eq
u

ip
m

en
t

gr
ou

p
s

3
83

9
7

7
3

3
5

8
5

1
0
4

2
4

A
p

p
ro

x
im

at
e

w
af

er
st

ar
ts

p
er

m
on

th
9,

00
0

30
,0

00
1
0
,0

0
0

2
1
,4

0
0

3
,4

0
0

1
0
,0

0
0

5
,5

0
0

4
0
8

C-9

APPENDIX D

Code for Fab Model A

This chapter includes the code used to create the VB implementation of the Sematech

full fab simulation. A description of the application is given in Chapter 5.

D.1 Simulation Model Inputs

The simulation model inputs are taken from local dataset text files, cleaned up and input

to ExtendSim’s database for easier access, speed and reliability during model runtime.

Table D.1 lists the subroutines and functions used in this process.

Sub GetInputData()
'There are 6 files that contain information about the fab cf, ts, os, pr, rw, vr
'cf contains general text information about the fab (unused)
'ts contains toolset information
'os contains operator information
'pr contains process route information
'rw contains rework sequence information
'vr contains volume release information

Dim sourceFile As String, targetFile As String
Dim DBName As String
Dim FieldNames() As Variant
Dim FieldTypes() As Variant

D-1

Appendix D. Code for Fab Model A

Table D.1: Input data subroutines and functions for the Sematech model.

Subroutine Purpose

GetInputData() Pulls the Sematech dataset text files from the local sources.
CLeanUpVRData() Formats the information from the volume release file.
CleanUpOsData() Formats the information from the operator set file.
CleanUpTSData() Formats the information from the toolset file.
CleanUpPRData() Formats the information from the process route file.
CleanUpRWData() Formats the information from the rework sequence file.
GetFieldNames Function that returns the field names of the datasets.
GetFieldTypes Function that returns the field types (string, value, integer) of the field names.

Dim dbIndex As Integer
Dim fieldIndex As Integer
Dim tableIndex As Integer
Dim tempFolderPath As String
Dim i, j As Integer
Dim dataArray() As Variant
Dim tableExist As Boolean

tableExist = False
DBName = "SematechDB"
dbIndex = CreateExtendSimDB(DBName, True) 'create and overwrite if necessary

'create temp folder in dataset location
tempFolderPath = datasetLocation & "\" & "temp"
CreateAFolder tempFolderPath

For i = 1 To 5
sourceFile = datasetLocation & "\" & datasetName & "." & dataTable(i)
targetFile = tempFolderPath & "\" & dataTable(i) & ".txt"
If FileOrDirExists(sourceFile) Then

Select Case dataTable(i)
Case "vr"
vrData = ReadSematechFileToArray(sourceFile)
If Not (IsEmpty(vrData)) Then
CLeanUpVRData
writeArrayToCSV vrData, targetFile
tableExist = True

End If
Case "os"
osData = ReadSematechFileToArray(sourceFile)
If Not (IsEmpty(osData)) Then
CleanUpOsData
writeArrayToCSV osData, targetFile
tableExist = True

End If
Case "ts"
tsData = ReadSematechFileToArray(sourceFile)
If Not (IsEmpty(tsData)) Then
CleanUpTSData
writeArrayToCSV tsData, targetFile
tableExist = True

End If
Case "pr"
prData = ReadSematechFileToArray(sourceFile)
If Not (IsEmpty(prData)) Then
CleanUpPRData
writeArrayToCSV prData, targetFile
tableExist = True

End If
Case "rw"
rwData = ReadSematechFileToArray(sourceFile)
If Not (IsEmpty(rwData)) Then
CleanUpRWData
writeArrayToCSV rwData, targetFile
tableExist = True

End If
End Select

If tableExist Then
FieldNames = GetFieldNames(dataTable(i))
FieldTypes = GetFieldTypes(dataTable(i))

D-2

Appendix D. Code for Fab Model A

tableIndex = CreateExtendSimTable(DBName, dataTable(i), True)
For j = 1 To UBound(FieldNames)
fieldIndex = CreateExtendSimField(DBName, dataTable(i), FieldNames(j), FieldTypes(j)

, 2, True)
Next j
ExtendDBTableImportText DBName, dataTable(i), targetFile
tableExist = False

End If
End If

Next i

End Sub

Function GetFieldNames(dataTableType As String) As Variant
'Returns a single column array containing a list of the field names for the dataset file

Dim infoArray() As Variant
Dim ext As String
Dim ws As Worksheet
Dim y As Integer, i As Integer

For Each ws In ThisWorkbook.Worksheets
If Mid(ws.name, 1, 2) = dataTableType Then

Exit For
End If

Next ws

y = ws.Cells(1, 1).End(xlDown).Row
ReDim infoArray(y)
For i = 1 To y
infoArray(i) = CStr(ws.Cells(i, 1))

Next i

GetFieldNames = infoArray

End Function

Function GetFieldTypes(dataTableType As String) As Variant
'Returns a single column array containing a list of the field types for the dataset file
'Integer is 4096
'Float is 8192
'String is 16384

Dim infoArray() As Variant
Dim ext As String
Dim ws As Worksheet
Dim y As Integer, i As Integer

For Each ws In ThisWorkbook.Worksheets
If Mid(ws.name, 1, 2) = dataTableType Then

Exit For
End If

Next ws

y = ws.Cells(1, 1).End(xlDown).Row
ReDim infoArray(y)
For i = 1 To y
Select Case ws.Cells(i, 2)

Case "Integer"
infoArray(i) = 4096

Case "Float"
infoArray(i) = 8192

Case "String"
infoArray(i) = 16384

Case Else
MsgBox ("Spurious data type in worksheet " & ws.name & ". Operation aborted")
GetFieldTypes = Empty
Exit Function

End Select
Next i

GetFieldTypes = infoArray

End Function

D-3

Appendix D. Code for Fab Model A

Public Sub CLeanUpVRData()
'Process Flow -change to Integer store unique string values in ProcessFLow
'Product ID -change to integer, store unique string values in ProductID
'Product Name -unchanged, store in ProductName corresponding to ProductID
'Start Rate
'Lot Size

Dim i As Integer, y As Integer, x As Integer, j As Integer, y2 As Integer
Dim tempArray() As Variant

y = UBound(vrData)
ReDim tempArray(y)

For i = 1 To y
tempArray(i) = vrData(i, 1)

Next i

ProcessFlow = UniqueItems(tempArray, False)
y2 = UBound(ProcessFlow)

For i = 1 To y
For j = 1 To y2

If vrData(i, 1) = ProcessFlow(j) Then
vrData(i, 1) = Int(j)
Exit For

End If
Next j

Next i

ReDim ProductName(y)
ReDim ProductID(y)
For i = 1 To y
ProductID(i) = vrData(i, 2)
ProductName(i) = vrData(i, 3)
vrData(i, 2) = i

Next i

End Sub

Sub CleanUpOsData()
'Operator Set ID -store unique values in OperatorSetID
'Operator Description -store unique values in OperatorDescription
'Quantity
'Break #1 Description
'Time Between #1 -change to hour basis if hourflag is true
'Duration #1 -change to hour basis if hourflag is true
'Break #2 Description
'Time Between #2 -change to hour basis if hourflag is true
'Duration #2 -change to hour basis if hourflag is true
'Break #3 Description
'Time Between #3 -change to hour basis if hourflag is true
'Duration #3 -change to hour basis if hourflag is true

Dim i As Integer, y As Integer, x As Integer, j As Integer, y2 As Integer
Dim tempArray() As Variant

y = UBound(osData)
ReDim tempArray(y)

For i = 1 To y
tempArray(i) = osData(i, 1)

Next i

OperatorSetID = UniqueItems(tempArray, False)
y2 = UBound(OperatorSetID)
ReDim OperatorDescription(y2)

For i = 1 To y
For j = 1 To y2

If osData(i, 1) = OperatorSetID(j) Then
osData(i, 1) = Int(j)
OperatorDescription(j) = osData(i, 2)
Exit For

End If
Next j

Next i

If hourFlag Then

D-4

Appendix D. Code for Fab Model A

For i = 1 To y
osData(i, 5) = osData(i, 5) / 60
osData(i, 6) = osData(i, 6) / 60
osData(i, 8) = osData(i, 8) / 60
osData(i, 9) = osData(i, 9) / 60
osData(i, 11) = osData(i, 11) / 60
osData(i, 12) = osData(i, 12) / 60

Next i
End If

End Sub

Sub CleanUpTSData()
'Toolset ID -change to integer, store unique values in ToolsetID
'Tool Description -store unique values in ToolDescription
'Quantity
'Operator Load Fraction
'Operator Unload Fraction
'Operator Process Fraction
'DownTime #1 Description
'DownTime #1 Type
'Time or Runs Between #1 -change to hour if hourFlag is true and the DT type is 0
'Duration #1 -change to hour if hourFlag is true
'Downtime #1 Operator Set ID -change to integer
'DownTime #2 Description
'DownTime #2 Type
'Time or Runs Between #2 -change to hour if hourFlag is true and the DT type is 0
'Duration #2 -change to hour if hourFlag is true
'Downtime #2 Operator Set ID -change to integer
'DownTime #3 Description
'DownTime #3 Type
'Time or Runs Between #3 -change to hour if hourFlag is true and the DT type is 0
'Duration #3 -change to hour if hourFlag is true
'Downtime #3 Operator Set ID -change to integer
'DownTime #4 Description
'DownTime #4 Type
'Time or Runs Between #4 -change to hour if hourFlag is true and the DT type is 0
'Duration #4 -change to hour if hourFlag is true
'Downtime #4 Operator Set ID -change to integer
'DownTime #5 Description
'DownTime #5 Type
'Time or Runs Between #5 -change to hour if hourFlag is true and the DT type is 0
'Duration #5 -change to hour if hourFlag is true
'Downtime #5 Operator Set ID -change to integer

Dim i As Integer, y As Integer, x As Integer, j As Integer, y2 As Integer
Dim tempArray() As Variant

y = UBound(tsData)
ReDim tempArray(y)

For i = 1 To y
tempArray(i) = tsData(i, 1)

Next i

ToolSetID = UniqueItems(tempArray, False)
y2 = UBound(ToolSetID)
ReDim ToolDescription(y2)
ReDim ToolQuantity(y2)

For i = 1 To y
For j = 1 To y2

If tsData(i, 1) = ToolSetID(j) Then
tsData(i, 1) = Int(j)
ToolQuantity(i) = tsData(i, 3)
ToolDescription(j) = tsData(i, 2)
Exit For

End If
Next j

Next i

If Not (IsEmpty(osData)) Then
For i = 1 To y

For j = 1 To UBound(OperatorSetID)
If OperatorSetID(j) = tsData(i, 11) Then
tsData(i, 11) = j
Exit For

End If
Next j

D-5

Appendix D. Code for Fab Model A

For j = 1 To UBound(OperatorSetID)
If OperatorSetID(j) = tsData(i, 16) Then
tsData(i, 16) = j
Exit For

End If
Next j

For j = 1 To UBound(OperatorSetID)
If OperatorSetID(j) = tsData(i, 21) Then
tsData(i, 21) = j
Exit For

End If
Next j

For j = 1 To UBound(OperatorSetID)
If OperatorSetID(j) = tsData(i, 26) Then
tsData(i, 26) = j
Exit For

End If
Next j

For j = 1 To UBound(OperatorSetID)
If OperatorSetID(j) = tsData(i, 31) Then
tsData(i, 31) = j
Exit For

End If
Next j

Next i
End If

If hourFlag Then
For i = 1 To y

If tsData(i, 8) = 0 Then
tsData(i, 9) = tsData(i, 9) / 60
tsData(i, 10) = tsData(i, 10) / 60

Else
tsData(i, 10) = tsData(i, 10) / 60

End If

If tsData(i, 13) = 0 Then
tsData(i, 14) = tsData(i, 14) / 60
tsData(i, 15) = tsData(i, 15) / 60

Else
tsData(i, 15) = tsData(i, 15) / 60

End If

If tsData(i, 18) = 0 Then
tsData(i, 19) = tsData(i, 19) / 60
tsData(i, 20) = tsData(i, 20) / 60

Else
tsData(i, 20) = tsData(i, 20) / 60

End If

If tsData(i, 23) = 0 Then
tsData(i, 24) = tsData(i, 24) / 60
tsData(i, 25) = tsData(i, 25) / 60

Else
tsData(i, 25) = tsData(i, 25) / 60

End If

If tsData(i, 28) = 0 Then
tsData(i, 29) = tsData(i, 29) / 60
tsData(i, 30) = tsData(i, 30) / 60

Else
tsData(i, 30) = tsData(i, 30) / 60

End If
Next i

End If

End Sub

Sub CleanUpPRData()
'Process Flow ID -change to integer
'Step ID -change to integer steps of 1 for each
'Operation Description -store in OperationDescription
'Tool Set ID -change to integer, from ToolsetID array
'Operator Set ID -change to integer, from OperatorSetID array
'Load Time -change to hour if hourflag is true

D-6

Appendix D. Code for Fab Model A

'Unload Time -change to hour if hourflag is true
'Time Per Wafer in Process -change to hour if hourflag is true
'Wafer Travel Time -change to hour if hourflag is true
'Time per Lot -change to hour if hourflag is true
'Time Per Batch -change to hour if hourflag is true
'Min Batch Size
'Max Batch Size
'Batch ID -change to integer, store unique entries in BatchID
'Time per Spec. Setup -change to hour if hourflag is true
'Time per Group Setup -change to hour if hourflag is true
'Setup Group ID -change to integer, store unique entries in setupGroupID
'Lot scrap Probability
'Wafer Scrap Probability
'Lot Rework Probability
'Wafer Rework Probability
'Rework Sequence ID
'Rework Return Step ID
'Travel Time -change to hour if hourflag is true
'Travel Time Operator -change to integer from operatorSetID

Dim i As Integer, y As Integer, x As Integer, j As Integer, y2 As Integer, k As Integer
Dim tempArray() As Variant
Dim count As Integer
Dim counter() As Integer
Dim tempUpperBound As Integer
Dim inc As Integer
Dim findStep As Variant
Dim findProcess As Integer

y = UBound(prData)
ReDim counter(UBound(ProcessFlow))

For k = 1 To UBound(counter)
counter(k) = 0

Next k

For i = 1 To y
For j = 1 To UBound(ProcessFlow)

If prData(i, 1) = ProcessFlow(j) Then
prData(i, 1) = CInt(j)
counter(j) = counter(j) + 1
Exit For

End If
Next j

Next i

tempUpperBound = WorksheetFunction.Max(counter)

For k = 1 To UBound(counter)
counter(k) = 0

Next k

ReDim StepID(tempUpperBound, UBound(ProcessFlow))
ReDim OperationDescription(tempUpperBound, UBound(ProcessFlow))

For i = 1 To UBound(StepID)
For j = 1 To UBound(StepID, 2)

StepID(i, j) = 0
OperationDescription(i, j) = ""

Next j
Next i

For i = 1 To y
inc = prData(i, 1)
counter(inc) = counter(inc) + 1
StepID(counter(inc), inc) = prData(i, 2)
OperationDescription(counter(inc), inc) = prData(i, 3)
prData(i, 2) = counter(inc)

Next i

'Rename tools
For i = 1 To y
For j = 1 To UBound(ToolSetID)

If ToolSetID(j) = prData(i, 4) Then
prData(i, 4) = j
Exit For

End If
Next j

Next i

'Get BatchID
count = 0
For i = 1 To y

D-7

Appendix D. Code for Fab Model A

If Not Len(prData(i, 14)) = 0 Then
count = count + 1
ReDim Preserve tempArray(count)
tempArray(count) = prData(i, 14)

End If
Next i

If count > 0 Then
BatchID = UniqueItems(tempArray, False)
For i = 1 To y

For j = 1 To UBound(BatchID)
If Not Len(prData(i, 14)) = 0 Then
If BatchID(j) = prData(i, 14) Then
prData(i, 14) = CInt(j)
Exit For

End If
End If

Next j
Next i

End If

'Now check if a batchID should be assigned(for lots that have no batch Id but are batched by
'their StepID and ProcessFlowID)
If count > 0 Then
count = UBound(BatchID)

Else
count = 0

End If

For i = 1 To y
If (Len(prData(i, 14)) = 0) And (prData(i, 12) > 0) And (prData(i, 13) > 0) Then

count = count + 1
ReDim Preserve BatchID(count)
BatchID(count) = "_" & prData(i, 1) & "0000" & prData(i, 2)
prData(i, 14) = count

End If
Next i

'Get SetupGroupID
count = 0
For i = 1 To y
If Not Len(prData(i, 17)) = 0 Then

count = count + 1
ReDim Preserve tempArray(count)
tempArray(count) = prData(i, 17)

End If
Next i

If count > 0 Then
SetupGroupID = UniqueItems(tempArray, False)
For i = 1 To y

For j = 1 To UBound(SetupGroupID)
If Not Len(prData(i, 17)) = 0 Then
If SetupGroupID(j) = prData(i, 17) Then
prData(i, 17) = CInt(j)
Exit For

End If
End If

Next j
Next i

End If

If Not (IsEmpty(osData)) Then
'Rename operators
For i = 1 To y

For j = 1 To UBound(OperatorSetID)
If OperatorSetID(j) = prData(i, 5) Then
prData(i, 5) = j
Exit For

End If
Next j

Next i

'Travel Operator
For i = 1 To y

For j = 1 To UBound(OperatorSetID)
If OperatorSetID(j) = prData(i, 25) Then
prData(i, 25) = j
Exit For

End If
Next j

Next i
End If

D-8

Appendix D. Code for Fab Model A

'Get Rework Return StepID
For i = 1 To y
If Not Len(prData(i, 23)) = 0 Then

findStep = prData(i, 23)
findProcess = prData(i, 1)
For j = 1 To UBound(StepID)

If findStep = StepID(j, findProcess) Then
prData(i, 23) = CInt(j)
Exit For

End If
Next j

End If
Next i

'Get ReworkSequenceID
count = 0
For i = 1 To y
If Not Len(prData(i, 22)) = 0 Then

count = count + 1
ReDim Preserve tempArray(count)
tempArray(count) = prData(i, 22)

End If
Next i

If count > 0 Then
ReworkSequenceID = UniqueItems(tempArray, False)
For i = 1 To y

If Not (Len(prData(i, 22)) = 0) Then
For j = 1 To UBound(ReworkSequenceID)
If ReworkSequenceID(j) = prData(i, 22) Then
prData(i, 22) = j
Exit For

End If
Next j

End If
Next i

End If

'Convert to hour
If hourFlag Then
For i = 1 To y

prData(i, 6) = CDec(prData(i, 6) / 60)
prData(i, 7) = CDec(prData(i, 7) / 60)
prData(i, 8) = CDec(prData(i, 8) / 60)
prData(i, 9) = CDec(prData(i, 9) / 60)
prData(i, 10) = CDec(prData(i, 10) / 60)
prData(i, 11) = CDec(prData(i, 11) / 60)
prData(i, 15) = CDec(prData(i, 15) / 60)
prData(i, 16) = CDec(prData(i, 16) / 60)
prData(i, 24) = CDec(prData(i, 24) / 60)

Next i
End If

End Sub

Sub CleanUpRWData()
'Rework Sequence ID -change to integer, store in ReworkSequenceID
'Step ID -change to integer
'Operation Description -store in OperationDescription
'Tool Set ID -change to integer, from ToolsetID array
'Operator Set ID -change to integer, from OperatorSetID array
'Load Time -change to hour if hourflag is true
'Unload Time -change to hour if hourflag is true
'Time Per Wafer in Process -change to hour if hourflag is true
'Wafer Travel Time -change to hour if hourflag is true
'Time per Lot -change to hour if hourflag is true
'Time Per Batch -change to hour if hourflag is true
'Min Batch Size
'Max Batch Size
'Batch ID -change to integer, store unique entries in BatchID
'Time per Spec. Setup -change to hour if hourflag is true
'Time per Group Setup -change to hour if hourflag is true
'Setup Group ID -change to integer from operatorsetID
'Lot scrap Probability
'Wafer Scrap Probability
'Lot Rework Probability
'Wafer Rework Probability
'Rework Sequence ID -ignore(typically unused)

D-9

Appendix D. Code for Fab Model A

'Rework Return Step ID -ignore(ignore typically unused)
'Travel Time -change to hour if hourflag is true
'Travel Time Operator -change to integer from operatorSetID

Dim i As Integer, y As Integer, x As Integer
Dim j As Integer, y2 As Integer, k As Integer
Dim tempArray() As Variant
Dim count As Integer, counter() As Integer, maxCount As Integer, inc As Integer
Dim BatchIDFound As Boolean, SetupGroupIDFound As Boolean

y = UBound(rwData)

For i = 1 To y
For j = 1 To UBound(ReworkSequenceID)

If ReworkSequenceID(j) = rwData(i, 1) Then
rwData(i, 1) = j
Exit For

End If
Next j

Next i

ReDim counter(UBound(ReworkSequenceID))
For k = 1 To UBound(counter)
counter(k) = 0

Next k

'get Rework Step Id counts
For i = 1 To y
For j = 1 To UBound(ReworkSequenceID)

If rwData(i, 1) = j Then
counter(j) = counter(j) + 1
Exit For

End If
Next j

Next i

maxCount = WorksheetFunction.Max(counter)
ReDim ReworkStepID(maxCount, UBound(ReworkSequenceID))
ReDim ReworkDescription(maxCount, UBound(ReworkSequenceID))

For i = 1 To UBound(ReworkStepID)
For j = 1 To UBound(ReworkStepID, 2)

ReworkStepID(i, j) = 0
ReworkDescription(i, j) = ""

Next j
Next i

For k = 1 To UBound(counter)
counter(k) = 0

Next k

For i = 1 To y
inc = rwData(i, 1)
counter(inc) = counter(inc) + 1
ReworkStepID(counter(inc), inc) = rwData(i, 2)
ReworkDescription(counter(inc), inc) = rwData(i, 3)
rwData(i, 2) = counter(inc)

Next i

'Rename tools
For i = 1 To y
For j = 1 To UBound(ToolSetID)

If ToolSetID(j) = rwData(i, 4) Then
rwData(i, 4) = j
Exit For

End If
Next j

Next i

'Get BatchID
If Not (IsEmpty(BatchID)) Then
count = UBound(BatchID)

Else
count = 0

End If

For i = 1 To y
If Not (Len(rwData(i, 14)) = 0) Then

BatchIDFound = False
If Not (IsEmpty(BatchID)) Then

For j = 1 To UBound(BatchID)
If BatchID(j) = rwData(i, 14) Then
rwData(i, 14) = j

D-10

Appendix D. Code for Fab Model A

BatchIDFound = True
Exit For

End If
Next j

End If
If Not (BatchIDFound) Then

count = count + 1
ReDim Preserve BatchID(count)
BatchID(count) = rwData(i, 14)
rwData(i, 14) = count

End If
End If

Next i

'Now check if a batchID should be assigned(for lots that have no batch Id but are batched by
'their RWStepID and RWSequenceID). Note that these batchID are different scheme so we do not

search batchID
'array for them because we are referring to RWStepId and ReworkSequenceId.

If Not (IsEmpty(BatchID)) Then
count = UBound(BatchID)

Else
count = 0

End If

For i = 1 To y
If (Len(rwData(i, 14)) = 0) And (rwData(i, 12) > 0) And (rwData(i, 13) > 0) Then

count = count + 1
ReDim Preserve BatchID(count)
BatchID(count) = rwData(i, 1) & "0000" & rwData(i, 2)
rwData(i, 14) = count

End If
Next i

'Get SetupGroupID
If Not (IsEmpty(SetupGroupID)) Then
count = UBound(SetupGroupID)

Else
count = 0

End If

For i = 1 To y
If Not (Len(rwData(i, 17)) = 0) Then

SetupGroupIDFound = False
If Not (IsEmpty(SetupGroupID)) Then

For j = 1 To UBound(SetupGroupID)
If SetupGroupID(j) = rwData(i, 17) Then
rwData(i, 17) = j
SetupGroupIDFound = True
Exit For

End If
Next j

End If
If Not (SetupGroupIDFound) Then

count = count + 1
ReDim Preserve SetupGroupID(count)
SetupGroupID(count) = rwData(i, 17)
rwData(i, 17) = count

End If
End If

Next i

If Not (IsEmpty(osData)) Then
'Rename operators
For i = 1 To y

If Not (Len(rwData(i, 5)) = 0) Then
For j = 1 To UBound(OperatorSetID)
If OperatorSetID(j) = rwData(i, 5) Then
rwData(i, 5) = j
Exit For

End If
Next j

End If
Next i

'Travel Operator
For i = 1 To y

If Not (Len(rwData(i, 25)) = 0) Then
For j = 1 To UBound(OperatorSetID)
If OperatorSetID(j) = rwData(i, 25) Then
rwData(i, 25) = j
Exit For

End If

D-11

Appendix D. Code for Fab Model A

Next j
End If

Next i
End If

'Convert to hour
If hourFlag Then
For i = 1 To y

rwData(i, 6) = rwData(i, 6) / 60
rwData(i, 7) = rwData(i, 7) / 60
rwData(i, 8) = rwData(i, 8) / 60
rwData(i, 9) = rwData(i, 9) / 60
rwData(i, 10) = rwData(i, 10) / 60
rwData(i, 11) = rwData(i, 11) / 60
rwData(i, 15) = rwData(i, 15) / 60
rwData(i, 16) = rwData(i, 16) / 60
rwData(i, 24) = rwData(i, 24) / 60

Next i
End If

End Sub

D-12

APPENDIX E

Code for Fab Model B

This chapter includes the code used to create the Python/SimPy discrete event simulation

(DES) model used in the Sematech fab model. A description of the application is given

in Chapter 6.

Declare Imports
from SimPy.Simulation import *
from SimPy.SimGUI import *
from SimPy.SimPlot import *
from math import ceil
from random import expovariate
from datetime import datetime
import random
import pylab
import os

Import Data
def importData():

"imports the data from Sematech data files"

global vrdata # volume release list
global prdata # process route list
global osdata # operator set list
global tsdata # toolset list
global rwdata # rework list

vrdata=[] # volume release list
prdata=[] # process route list
osdata=[] # operator set list
tsdata=[] # toolset list
rwdata=[] # rework list

E-1

Appendix E. Code for Fab Model B

if gui.params.Dataset==0:
folderName='minifab'
typeName='mf'

elif gui.params.Dataset==1:
folderName='set1'
typeName='set1'

elif gui.params.Dataset==2:
folderName='set2'
typeName='set2'

elif gui.params.Dataset==3:
folderName='set3'
typeName='set3'

elif gui.params.Dataset==4:
folderName='set4'
typeName='set4'

elif gui.params.Dataset==5:
folderName='set5'
typeName='set5'

elif gui.params.Dataset==6:
folderName='set6'
typeName='set6'

elif gui.params.Dataset==7:
folderName='set7'
typeName='set7'

dataPath = 'C:/Documents and Settings/nbyrn3x/My Documents/Sematech Datasets'
dataFileExt = ['vr','pr','os','ts','rw']

for i in range(len(dataFileExt)):
if os.path.exists(dataPath + '/' + folderName + '/' + typeName + '.' + dataFileExt[i]):

file=open(dataPath + '/' + folderName + '/' + typeName + '.' + dataFileExt[i],'r')
for line in file.readlines():

temp=[]
for elmt in line.split(','):

el=elmt.rstrip('\n')
temp.append(el)

if dataFileExt[i] == 'vr':
vrdata.append(temp)

elif dataFileExt[i] == 'pr':
prdata.append(temp)

elif dataFileExt[i] == 'os':
osdata.append(temp)

elif dataFileExt[i] == 'ts':
tsdata.append(temp)

elif dataFileExt[i] == 'rw':
rwdata.append(temp)

else:
"The file " + dataPath + '/' + folderName + '/' + \
typeName + '.' + dataFileExt[i] +" could not be found."

Misc Functions

def stringToValChecker(item):
"""check a string to see if it is
not empty and greater than zero """
valid = False
if len(item)<>0:
if float(item)>0:

valid = True
return valid

class timer(Process):
"timer function estimates the remining run time"

def start(self,simulationEndTime,frq=100):
start_time=datetime.now()
count=0
holdTime=simulationEndTime/frq
while 1:

count+=1
start_Inc_Time=datetime.now()
yield hold,self,holdTime
interval=datetime.now()-start_Inc_Time
remaining=interval*(frq-count)
remaining_minutes=int(remaining.seconds/60.0)
runTime=datetime.now()-start_time
runTime_minutes=int(runTime.seconds/60.0)
print 'SimTime: %8.1f hours (Running: %d mins, Remaining: %d mins)' %(now(),

runTime_minutes,remaining_minutes)

E-2

Appendix E. Code for Fab Model B

Main Program Loop
def run_Prog():

initialize()
importData()

global printToggle, operatorToggle,breakToggle
global reworkToggle,scrapToggle,downtimeToggle
global plotTSQ

if gui.params.print_detail: printToggle=True
else: printToggle=False

if gui.params.Downtime: downtimeToggle=True
else: downtimeToggle=False

if gui.params.Operator: operatorToggle=True
else: operatorToggle=False

if gui.params.Rework: reworkToggle=True
else: reworkToggle=False

if gui.params.Scrap: scrapToggle=True
else: scrapToggle=False

if gui.params.Operator_Break: breakToggle=True
else: breakToggle=False

if gui.params.Plot_TSQ: plotTSQ=True
else: plotTSQ=False

global endtime,ct,exitedLots,exitMon,ctMon
endtime=float(gui.params.Simulation_End_Time)
ct=[];exitedLots=[]
exitMon=Monitor()
ctMon=Monitor()

global fullLotScrap
fullLotScrap=[]

'tools'
global toolsetQueue,toolList,incompleteBatch,tsqLevels,numToolGroups
tools=[];toolsetQueue=[]; incompleteBatch=[];toolList=[];tsqLevels=[]

numToolGroups=len(tsdata)

for row in tsdata:
desc=[];nr=[];ttr=[];oprtID=[]
for j in [6,11,16,21,26]: #the start of all dt columns

if row[j+1]<>"":
if int(row[j+1])==1: # run-based only
desc.append(row[j])
if stringToValChecker(row[j+2])>0.0: nr.append((float(row[j+2])/60))
else: nr.append(0.0)
if stringToValChecker(row[j+3])>0.0: ttr.append((float(row[j+3])/60))
else: ttr.append(0.0)
oprtID.append(row[j+4])

toolsetQueue.append(Store(name=row[0],
unitName='toolset',
capacity='unbounded',
initialBuffered=None,
monitored=True,
monitorType=Monitor))

tsqLevels.append([row[0],0])

for i in range(int(row[2])):
t=toolSource()

if len(nr)>0.0:
tools.append(activate(t,t.generate(toolsetID=row[0],

toolID=i+1,
toolDescription=row[1],
dtDescription=desc,
numRunsBeforeFail=nr,
mttr=ttr,
dtoperatorsetID=oprtID),
at=0.0))

else:
tools.append(activate(t,t.generate(toolsetID=row[0],

toolID=i+1,

E-3

Appendix E. Code for Fab Model B

toolDescription=row[1],
dtDescription=0,
numRunsBeforeFail=0,
mttr=0,
dtoperatorsetID=0),
at=0.0))

'downtime'
global downtimeQueue, dtList
downtimes=[]; downtimeQueue=[]; dtList=[]

if downtimeToggle:
for row in tsdata:

desc=[];tbf=[];ttr=[];oprtID=[]
for j in [6,11,16,21,26]: #the start of all dt columns

if row[j+1]<>"":
if int(row[j+1])==0: # time-based only
desc.append(row[j])
if stringToValChecker(row[j+2])>0.0: tbf.append((float(row[j+2])/60))
else: tbf.append(0.0)
if stringToValChecker(row[j+3])>0.0: ttr.append((float(row[j+3])/60))
else: ttr.append(0.0)
oprtID.append(row[j+4])

d=downtimeSource()
for i in range(int(row[2])):

downtimeQueue.append(SimEvent(row[0]+"-"+str(i+1)))
d=downtimeSource()
downtimes.append(activate(d,d.generate(toolsetID=row[0],

toolID=i+1,
dtDescription=desc,
dtMTBF=tbf,
dtMTTR=ttr,
dtOperatorID=oprtID),
at=0.0))

'operators'
if operatorToggle:
global operatorsetQueue,operatorList,numOperatorGroups
ops=[];operatorsetQueue=[];operatorList=[]
numOperatorGroups=len(osdata)

for row in osdata:
operatorsetQueue.append(Store(name=row[0],

unitName='opertorset',
capacity='unbounded',
initialBuffered=None,
monitored=True,
monitorType=Monitor))

for i in range(int(row[2])):
op=operatorSource()
ops.append(activate(op,op.generate(n=int(i+1),

op_setID=row[0],
op_Desc=row[1]),
at=0.0))

'breaks'
if breakToggle:
global breakList,breakQueue
breakList=[];breaks=[];breakQueue=[]
for row in osdata:

breakDescription=[]; timeBetweenBreak=[]; breakLength=[]
for j in [3,6,9]: # the start of all break columns

breakDescription.append(row[j])
if row[j+1]<>"": timeBetweenBreak.append(float(row[j+1])/60)
else: timeBetweenBreak.append(0.0)
if row[j+2]<>"": breakLength.append(float(row[j+2])/60)
else: breakLength.append(0.0)

for i in range(int(row[2])):
br=breakSource()
breakQueue.append(SimEvent(row[0]+"-"+str(i+1)))
breaks.append(activate(br,br.generate(n=int(i+1),

op_setID=row[0],
break_Desc=breakDescription,
betweenBreaks=timeBetweenBreak,
bl=breakLength),
at=0.0))

'lots'
global lotList
recipes=[];lotList=[]
for proc in vrdata:

E-4

Appendix E. Code for Fab Model B

s=lotSource()
nLotsDay=float(float(proc[3])/int(proc[4]))
iaTime=24/nLotsDay
recipes.append(activate(s,s.generate(process_Flow_ID=proc[0],

product_ID=proc[1],
product_Name=proc[2],
lot_Size=int(proc[4]),
inter_Arrival_Time=iaTime), # daily release
at=0.0))

#break # nbedit for RPT to release the first product only

'begin model'
tm=timer()
activate(tm,tm.start(endtime))
simulate(until=endtime)

'output'
if len(exitedLots)>0:
tempSum=0
for lt in exitedLots:

tempSum=tempSum+lt.ct

print 'number of lots entered is ',len(lotList)
print 'number of lots exited is ',len(exitedLots)
print 'average cycle time is', tempSum / len(exitedLots)

else:
print 'no lots exited the system'

print 'number of lots scrapped is ',len(fullLotScrap)

if operatorToggle:
print 'Operator Use'
for oprID in range(numOperatorGroups):

numOpr=0
sumU=0
for opr in operatorList:

if (opr.operatorsetID==str(oprID+1)):
numOpr += 1
sumU += opr.runTime

print 'OP%d inUse=%4.2f' %(oprID+1,(sumU/numOpr)/endtime)

toolUse=[]
for tsID in range(numToolGroups):
toolUse.append(0)
numT=0
sumU=0
for t in toolList:

if (t.toolsetID==str(tsID+1)):
numT += 1
sumU += t.runTime

toolUse[tsID]=((sumU/numT)/endtime)

if downtimeToggle:
print 'Tools'
dtUse=[]
for tsID in range(numToolGroups):

dtUse.append(0)
numDT=0
sumU=0
for dt in dtList:

if (dt.toolsetID==str(tsID+1)):
numDT += 1
sumU += dt.runTime

if numDT>0:
dtUse[tsID]=((sumU/numDT)/endtime)

if downtimeToggle:
for i in range(len(dtUse)):

print 'TS%d inProc=%6.4f Down=%6.4f u/a=%6.4f' %(i+1,toolUse[i],dtUse[i], toolUse[i]/(1.
0-dtUse[i]))

else:
for i in range(len(toolUse)):

print 'TS%d inUse=%6.4f' %(i+1,toolUse[i])

"Plot CT"
plt=SimPlot()
plt.plotLine(ctMon,color='blue')
plt.plotLine(exitMon,color='red')

E-5

Appendix E. Code for Fab Model B

plt.mainloop()

Lot Components
class lotSource(Process):

"source generates lots"

def generate(self,
process_Flow_ID,
product_ID,
product_Name,
lot_Size,
inter_Arrival_Time):

count=0
while now()<endtime:

count+=1
l=lot(n=count,

processFlowID=process_Flow_ID,
productID=product_ID,
productName=product_Name,
lotSize=lot_Size)

activate(l,l.doSteps()) # main loop called here
yield hold,self,expovariate(1/inter_Arrival_Time)
#yield hold,self,endtime #for rpt (Nbedit)

class lot(Process):
"lots"

def __init__(self,n,
processFlowID,
productID,
productName,
lotSize):

Process.__init__(self,name=productID + "-Lot" +str(n))
self.processFlowID = processFlowID
self.productID = productID
self.productName = productName
self.lotSize = lotSize
self.stepList=[]
self.startTime=now()
self.operationDescription=""
self.toolsetID=""
self.operatorsetID=""
self.loadTime=0.0
self.unloadTime=0.0
self.timePerWaferInProcess=0.0
self.waferTravelTime=0.0
self.timePerLot=0.0
self.timePerBatch=0.0
self.minBatchsize=0
self.maxBatchsize=0
self.batchID=""
self.timePerSpecSetup=0.0
self.timePerGroupSetup=0.0
self.setupGroupID=""
self.lotScrapProb=0.0
self.waferScrapProb=0.0
self.lotReworkProb=0.0
self.waferReworkProb=0.0
self.ReworkSequenceID=0.0
self.reworkReturnStepID=""
self.travelTime=0.0
self.travelTimeOperatorID=""
self.toolDescription=""
self.operatorLoadFraction=0.0
self.operatorProcessFraction=0.0
self.operatorUnloadFraction=0.0
self.currentStep=""
self.reqBatch=0
self.batchSize=0
self.originalLotSize=0
self.batchList=[]
self.batchName=""
self.batchFlag=False
self.usename=""
self.reworkFlag=False
self.currentRWStep=""
self.reworkStepList=""
self.secondaryLot=False
self.type='lot'
self.startStepTime=0.0

E-6

Appendix E. Code for Fab Model B

self.stepCT=[]
self.ct=0.0
lotList.append(self)

def doSteps(self):
"""carries out all the steps in a lots process flow"""

returnFlag=True #controls lots that need to return to earlier step

for row in prdata:
if self.processFlowID==row[0]:

self.stepList.append(row[1])

while returnFlag:
returnFlag=False
for theStep in self.stepList:

self.currentStep=theStep
self.startStepTime=now()
self.getDetail()
self.getToolDetail()
self.secondaryLot=False
self.batchFlag=False

if printToggle: print '%8.4f :'%(now()), self.name, 'has begun step', self.currentStep

Update toolset queue for plotting
if plotTSQ:
for tsp in tsqLevels:
if tsp[0]==self.toolsetID:

tsp[1]=int(tsp[1])+1
break

updateTSQPlot()

Batching
if self.maxBatchsize>0 and self.minBatchsize>0:
self.reqBatch=self.minBatchsize # or minBatchSize
lotsToBatch=[]
batchName=[]
self.batchList=[]
batchCount=0

if self.batchID <>"":
'batch by batchID'
for bt in incompleteBatch:

if (bt.batchID==self.batchID and
bt.toolsetID==self.toolsetID):
batchCount+=1
lotsToBatch.append(bt)
batchName.append(bt.name)

else:
'batch by process flow and step ID'
for bt in incompleteBatch:

if (bt.reworkFlag==False and
bt.processFlowID==self.processFlowID and
bt.currentStep==self.currentStep and
bt.toolsetID==self.toolsetID):
batchCount+=1
lotsToBatch.append(bt)
batchName.append(bt.name)

if self.reqBatch==batchCount+1:
'batch is complete'
batchName.insert(0,self.name)
self.batchName=batchName
self.batchFlag=True
self.batchSize=batchCount+1
self.originalLotSize=self.lotSize

for lt in lotsToBatch:
self.lotSize=self.lotSize+lt.lotSize
self.batchList.append(lt)
self.interrupt(lt)
'remove from incompleteBatch list'
foundLoc=False
for r,bt in enumerate(incompleteBatch):

if lt.name==bt.name:
loc=r
foundLoc=True
break

if foundLoc:
incompleteBatch.pop(loc)

E-7

Appendix E. Code for Fab Model B

else: print "warning did not find lot",lt.name

if printToggle: print '%8.4f :'%(now()), self.batchName, \
'formed a batch for toolset',self.toolsetID

else:
'batch is incomplete join the batch queue'
if printToggle: print '%8.4f :'%(now()),self.name, \

'is waiting to batch for toolset', self.toolsetID
self.batchFlag=True
incompleteBatch.append(self)
'hold the lot until the batch is completed'
yield hold, self, endtime
if self.interrupted(): # as in batch formed

"hold until primary lot in batch is finished its operation"
self.interruptReset()
yield hold, self, endtime
if self.interrupted(): # primary lot in batch is finished

self.interruptReset()
self.batchFlag=False
self.secondaryLot=True # so it skips to unbatching

if self.secondaryLot==False: # i.e. a normal lot or a primary batch lot

if self.batchFlag: self.usename=self.batchName
else: self.usename=self.name

Queueing
for ts in toolsetQueue:
if ts.name==self.toolsetID:

if printToggle: print '%8.4f :'%(now()), self.usename, \
'is waiting for an available tool on toolset', ts.name
yield get,self,ts,1,1
toolUsed=self.got[0]
toolCapturedAt=now()
if printToggle: print '%8.4f :'%(now()), self.usename, \
'has captured tool', toolUsed.name
break

Update toolset queue for plotting
if plotTSQ:
if self.batchFlag:

tsp[1]=tsp[1]-(self.reqBatch)
else:

tsp[1]=tsp[1]-1

updateTSQPlot()

Setup
if self.timePerSpecSetup>0.0:
if (self.currentStep<>toolUsed.lastStep or

self.processFlowID<>toolUsed.lastProcessFlowID):
if printToggle: print '%8.4f :'%(now()), toolUsed.name, \

'is changing setup for different process flow step'
yield hold,self,self.timePerSpecSetup
if printToggle: print '%8.4f :'%(now()), toolUsed.name, \

'has completed setup for',self.currentStep,'on',self.usename

if self.timePerGroupSetup>0.0 and toolUsed.lastSetupGroupID<>"":
if self.setupGroupID<>toolUsed.lastSetupGroupID:

if printToggle: print '%8.4f :'%(now()), toolUsed.name, \
'is changing setup for setup group ID',self.setupGroupID

yield hold,self,self.timePerGroupSetup
if printToggle: print '%8.4f :'%(now()), toolUsed.name, \

'has completed setup for',self.currentStep,'on',self.usename

toolUsed.lastProcessFlowID=self.processFlowID
toolUsed.lastStep=self.currentStep
toolUsed.lastSetupGroupID=self.setupGroupID

Check Operator
operatorReq=False
if operatorToggle and self.operatorsetID <> "":
for os in operatorsetQueue:

if os.name==self.operatorsetID:
operatorReq=True
break

if self.loadTime>0.0:
if operatorToggle and operatorReq and self.operatorLoadFraction>0.0:

'get an operator for a loading'
if printToggle: print '%8.4f :'%(now()), self.usename, 'is waiting for operator

set',\

E-8

Appendix E. Code for Fab Model B

self.operatorsetID, 'to load on tool', toolUsed.name
yield get,self,os,1,1
operatorGotAt=now()
operatorUsed=self.got[0]
if printToggle: print '%8.4f :'%(now()), 'Operator', operatorUsed.name, 'is

loading', \
self.usename, 'on tool', toolUsed.name

'hold operator for a set time'
yield hold,self,self.operatorLoadFraction*float(self.loadTime)
if printToggle: print '%8.4f :'%(now()), 'Operator', operatorUsed.name, \

'is finished loading', self.usename,'on', toolUsed.name

'release the operator'
if printToggle: print '%8.4f :'%(now()), 'Operator', operatorUsed.name, 'is

finished loading', \
self.usename, 'on tool', toolUsed.name

operatorUsed.runTime=operatorUsed.runTime +(now()-operatorGotAt)
operatorUsed.doneSignal.signal('lot')

'hold the lot for the remaining loading time'
yield hold,self,(1.0-self.operatorLoadFraction)*self.loadTime #remainder
if printToggle: print '%8.4f :'%(now()), self.usename, \

'is finished loading on', toolUsed.name

else:
"we dont need an loading operator"
if printToggle: print '%8.4f :'%(now()), self.usename, 'is loading on tool',

toolUsed.name
yield hold, self, self.loadTime

Processing
pt = (self.timePerBatch +
self.timePerLot +
self.timePerWaferInProcess * self.lotSize)

if pt > 0.0:
if operatorToggle and operatorReq and self.operatorProcessFraction>0.0:

'get an operator for processing'
if printToggle: print '%8.4f :'%(now()), self.usename, 'is waiting for operator

set',\
self.operatorsetID, 'for processing on tool', toolUsed.name

yield get,self,os,1,1
operatorGotAt=now()
operatorUsed=self.got[0]
if printToggle: print '%8.4f :'%(now()), 'Operator', operatorUsed.name, 'is

processing', \
self.usename, 'on tool', toolUsed.name

'hold operator for a set time'
yield hold,self,self.operatorProcessFraction*pt
if printToggle: print '%8.4f :'%(now()), 'Operator', operatorUsed.name, \

'is finished processing', self.usename,'on', toolUsed.name

'release the operator'
if printToggle: print '%8.4f :'%(now()), 'Operator', operatorUsed.name, 'is

finished processing', \
self.usename, 'on tool', toolUsed.name

operatorUsed.runTime=operatorUsed.runTime +(now()-operatorGotAt)
operatorUsed.doneSignal.signal('lot')

'hold the lot for the remaining loading time'
yield hold,self,(1.0-self.operatorProcessFraction)*pt #remainder
if printToggle: print '%8.4f :'%(now()), self.usename, \

'is finished processing on', toolUsed.name

else:
"we dont need an operator to process"
if printToggle: print '%8.4f :'%(now()), self.usename, 'is processing on tool',

toolUsed.name
yield hold, self, pt
if printToggle: print '%8.4f :'%(now()), self.usename, \

'is finished processing on tool', toolUsed.name

#Unloading
if self.unloadTime>0.0:
if operatorToggle and operatorReq and self.operatorUnloadFraction>0.0:

'get an operator for a loading'
if printToggle: print '%8.4f :'%(now()), self.usename, 'is waiting for operator

set',\
self.operatorsetID, 'to unload from tool', toolUsed.name

yield get,self,os,1,1

E-9

Appendix E. Code for Fab Model B

operatorUsed=self.got[0]
operatorGotAt=now()
if printToggle: print '%8.4f :'%(now()), 'Operator', operatorUsed.name, 'is

unloading', \
self.usename, 'from tool', toolUsed.name

'hold operator for a set time'
yield hold,self,self.operatorUnloadFraction*float(self.unloadTime)
if printToggle: print '%8.4f :'%(now()), 'Operator', operatorUsed.name, \

'is finished unloading', self.usename,'from', toolUsed.name

'release the operator'
if printToggle: print '%8.4f :'%(now()), 'Operator', operatorUsed.name, 'is

finished unloading', \
self.usename, 'from tool', toolUsed.name

operatorUsed.runTime=operatorUsed.runTime +(now()-operatorGotAt)
operatorUsed.doneSignal.signal('lot')

'hold the lot for the remaining unloading time'
yield hold,self,(1.0-self.operatorUnloadFraction)*self.unloadTime #remainder
if printToggle: print '%8.4f :'%(now()), self.usename, \

'is finished unloading from', toolUsed.name
else:

"we dont need an unloading operator"
if printToggle: print '%8.4f :'%(now()), self.usename, 'is unloading from tool',

toolUsed.name
yield hold, self, self.unloadTime

Tool Release
if printToggle: print '%8.4f :'%(now()), self.usename, 'is finished on tool',

toolUsed.name
toolUsed.runTime=toolUsed.runTime+(now()-toolCapturedAt)
toolUsed.doneSignal.signal('lot')

Wafer Travel
if self.waferTravelTime>0.0:
if printToggle: print '%8.4f :'%(now()), self.usename, \

'has begun wafer travel for step', self.currentStep
yield hold, self,self.waferTravelTime

Unbatching
if self.batchFlag==True:
'send signal to release the secondary lots in the batch'
for ml in self.batchList:

self.interrupt(ml)

self.batchType=""
self.batchFlag=False
self.batchName=""
self.batchList=[]
self.lotSize=self.originalLotSize
self.batchSize=0
if printToggle: print '%8.4f :'%(now()), self.usename, 'is unbatching'

'secondary lots in a batch jump to here'
Lot Transport
if self.travelTime>0.0:
if operatorToggle and self.travelTimeOperatorID <> "":
'gets an operator for lot transport'
for os in operatorsetQueue:

if os.name==self.travelTimeOperatorID:
break

if printToggle: print '%8.4f :'%(now()), self.name, 'is waiting for operator set',
self.operatorsetID, 'to transport from',self.currentStep

yield get,self,os,1,1
operatorUsed=self.got[0]
if printToggle: print '%8.4f :'%(now()), 'Operator', operatorUsed.name, 'is

transporting', \
self.name, 'from step', self.currentStep

'hold operator for a set time'
yield hold, self, self.travelTime
if printToggle: print '%8.4f :'%(now()), 'Operator', operatorUsed.name, \

'is finished transporting',self.name,'from step', self.currentStep

'release the operator'
operatorUsed.doneSignal.signal('lot')

else:
"we dont need an operator for lot tranport"
if printToggle: print '%8.4f :'%(now()), self.name, \

'is transporting from step', self.currentStep

E-10

Appendix E. Code for Fab Model B

yield hold, self, self.travelTime
if printToggle: print '%8.4f :'%(now()), self.name, \

'is finished transporting from step', self.currentStep

Scrap Test
if scrapToggle and self.lotScrapProb>0.0:
if random.random()<self.lotScrapProb:
if printToggle: print '%8.4f :'%(now()), self.name, \

'failed lot scrap test and exited'
fullLotScrap.append(self)
yield passivate,self
break

if scrapToggle and self.waferScrapProb>0.0:
numWfrScrap=0
for wfr in range(self.lotSize): #@UnusedVariable
if random.random()< self.waferScrapProb:

numWfrScrap+=1
if numWfrScrap>0:
if self.lotSize-numWfrScrap > 0:

self.lotSize=self.lotSize-numWfrScrap
if printToggle: print '%8.4f :'%(now()),numWfrScrap,\

'wafers scrapped from',self.name
else: #all wafers scrapped

if printToggle: print '%8.4f :'%(now()),\
'all remaining wafers were scrapped from',self.name

fullLotScrap.append(self)
yield passivate,self

Rework Test
if reworkToggle and self.lotReworkProb>0.0:
if random.random()<self.lotReworkProb:
'not implememnted yet'

if reworkToggle and self.waferReworkProb>0.0:
numWfrRwk=0
for wfr in range(self.lotSize): #@UnusedVariable
if random.random()< self.waferReworkProb:

numWfrRwk+=1
if numWfrRwk>0:
""" not implememnted yet"""

finished step
self.stepCT.append(now()-self.startStepTime)
if printToggle: print '%8.4f :'%(now()), self.name, \
'is finished step', self.currentStep

#print '%8.4f :'%(now()-self.startStepTime),self.currentStep #for rpt checking

#Exit
useS=0
if returnFlag==True:

for s in range(len(self.stepList)):
if self.stepList[s]==self.reworkReturnStepID:
useS=s
break

'remove the completed steps'
useS=useS-1
for inc in range(useS):
self.stepList.popleft()

self.ct=(now()-self.startTime)
exitedLots.append(self)
exitMon.observe(self.ct)
ctMon.observe(exitMon.mean())

if printToggle: print '%8.4f :'%(now()), self.name, \
'has exited the system after',now()-self.startTime,'hours'

def doRWSteps(self):
"""carries out all the rework steps in a lots process flow"""

self.reworkFlag=True
for row in rwdata:

if self.reworkSequenceID==row[0]:
self.reworkStepList.append(row[1])

for theStep in self.reworkStepList:
self.currentRWStep=theStep
self.getreworkDetail()
self.getToolDetail()

E-11

Appendix E. Code for Fab Model B

if printToggle: print '%8.4f :'%(now()), self.name, 'has begun rework step', self.
currentRWStep

break

def getreworkDetail(self):
foundFlag=False
for row in rwdata:

if self.ReworkSequenceID==row[0]:
self.operationDescription=row[2]
self.toolsetID=row[3]
self.operatorsetID=row[4]
self.reworkFlag=True
if stringToValChecker(row[5]): self.loadTime=float(row[5])/60
if stringToValChecker(row[6]): self.unloadTime=float(row[6])/60
if stringToValChecker(row[7]): self.timePerWaferInProcess=float(row[7])/60
if stringToValChecker(row[8]): self.waferTravelTime=float(row[8])/60
if stringToValChecker(row[9])>0: self.timePerLot=float(row[9])/60
if stringToValChecker(row[10])>0: self.timePerBatch=float(row[10])/60
if stringToValChecker(row[11])>0: self.minBatchsize=int(ceil(float(row[11])/self.

lotSize))
if stringToValChecker(row[12])>0: self.maxBatchsize=int(ceil(float(row[12])/self.

lotSize))
self.batchID=row[13]
if stringToValChecker(row[14]): self.timePerSpecSetup=float(row[14])/60
if stringToValChecker(row[15]): self.timePerGroupSetup=float(row[15])/60
self.setupGroupID=row[16]
self.LotScrapProb=float(row[17])
self.waferScrapProb=float(row[18])
self.lotReworkProb=float(row[19])
if stringToValChecker(row[23]): self.travelTime=float(row[23])/60
self.travelTimeOperatorID=row[24]
foundFlag=True
break

if foundFlag==False:
if printToggle: print """Warning could not find details in the

rework route data for """ + self.name

def getDetail(self):
for row in prdata:

if self.processFlowID==row[0] and self.currentStep==row[1]:
self.operationDescription=row[2]
self.toolsetID=row[3]
self.operatorsetID=row[4]
if stringToValChecker(row[5]): self.loadTime=float(row[5])/60
else: self.loadTime=0.0
if stringToValChecker(row[6]): self.unloadTime=float(row[6])/60
else: self.unloadTime=0.0
if stringToValChecker(row[7]): self.timePerWaferInProcess=float(row[7])/60
else: self.timePerWaferInProcess=0.0
if stringToValChecker(row[8]): self.waferTravelTime=float(row[8])/60
else: self.waferTravelTime=0.0
if stringToValChecker(row[9]): self.timePerLot=float(row[9])/60
else: self.timePerLot=0.0
if stringToValChecker(row[10]): self.timePerBatch=float(row[10])/60
else: self.timePerBatch=0.0
if stringToValChecker(row[11]): self.minBatchsize=int(ceil(float(row[11])/self.lotSize

))
else: self.minBatchsize=0
if stringToValChecker(row[12]): self.maxBatchsize=int(ceil(float(row[12])/self.lotSize

))
else: self.maxBatchsize=0
self.batchID=row[13]
if stringToValChecker(row[14]): self.timePerSpecSetup=float(row[14])/60
else: self.timePerSpecSetup=0.0
if stringToValChecker(row[15]): self.timePerGroupSetup=float(row[15])/60
else: self.timePerGroupSetup=0.0
self.setupGroupID=row[16]
if stringToValChecker(row[17]): self.lotScrapProb=float(row[17])
else: self.lotScrapProb=0.0
if stringToValChecker(row[18]): self.waferScrapProb=float(row[18])
else: self.waferScrapProb=0.0
if stringToValChecker(row[19]): self.lotReworkProb=float(row[19])
else: self.lotReworkProb=0.0
if stringToValChecker(row[20]): self.waferReworkProb=float(row[20])
else: self.waferReworkProb=0.0
self.ReworkSequenceID=row[21]
self.reworkReturnStepID=row[22]
if stringToValChecker(row[23]): self.travelTime=float(row[23])/60
else: self.travelTime=0.0
self.travelTimeOperatorID=row[24]
self.batchType=""
foundFlag=True

E-12

Appendix E. Code for Fab Model B

break

if foundFlag==False:
if printToggle: print """Warning could not find details in the

process route data for """ + self.name

def getToolDetail(self):
foundFlag=False
for row in tsdata:

if self.toolsetID==row[0]:
self.toolDescription=row[1]
if stringToValChecker(row[3]): self.operatorLoadFraction=float(row[3])
else:self.operatorLoadFraction=0.0
if stringToValChecker(row[4]): self.operatorProcessFraction=float(row[4])
else: self.operatorProcessFraction=0.0
if stringToValChecker(row[5]): self.operatorUnloadFraction=float(row[5])
else: self.operatorUnloadFraction=0.0
foundFlag=True
break

if foundFlag==False:
if printToggle: print "Warning could not find details in the tool set data for ",\

self.name," that requires tool set" , self.toolsetID

Tool Components
class toolSource(Process):

def generate(self,
toolsetID,
toolID,
toolDescription,
dtDescription,
numRunsBeforeFail,
dtoperatorsetID,
mttr):

t=tool(toolset_ID=toolsetID,
tool_ID=toolID,
tool_Description=toolDescription,
dt_Description=dtDescription,
num_Runs_Before_Fail=numRunsBeforeFail,
dt_Operator_ID=dtoperatorsetID,
time_To_Repair=mttr)

activate(t,t.run())
yield hold, self,endtime

class tool(Process):
def __init__(self,

toolset_ID,
tool_ID,
tool_Description,
dt_Description,
num_Runs_Before_Fail,
dt_Operator_ID,
time_To_Repair):

Process.__init__(self,name=toolset_ID + "-" + str(tool_ID))
toolList.append(self)
self.toolsetID=toolset_ID
self.toolID=tool_ID
self.toolDescription=tool_Description
self.lastProcessFlowID=""
self.lastStep=""
self.runTime=0
self.occupied=False
self.down=False
self.lastSetupGroupID=""
self.type='tool'
self.doneSignal=SimEvent()

if num_Runs_Before_Fail>0.0:
self.rbdtFlag=True
self.rbdtDescription=dt_Description
self.mrbf=num_Runs_Before_Fail
self.ttr=time_To_Repair
self.dtOperatorsetID=dt_Operator_ID

temp=[]
for i in range(len(self.rbdtDescription)): #@UnusedVariable

temp.append(0)
self.runCount=temp

E-13

Appendix E. Code for Fab Model B

else:
self.rbdtDescription=""
self.mrbf=0
self.ttr=0
self.runCount=0
self.dtOperatorsetID=0
self.rbdtFlag=False

def run(self):

for ts in toolsetQueue:
if ts.name == self.toolsetID:
break

while True:
yield put,self,ts,[self] #put it in the toolsetQueue store
yield waitevent,self,self.doneSignal
heldBy=self.doneSignal.signalparam

if heldBy=='lot':
self.runCount+=1
'check for run-based downtime'
if downtimeToggle and self.rbdtFlag:
for i in range(len(self.runCount)):
if self.runCount[i]>=self.mrbf[i]:

if printToggle: print '%8.4f :'%(now()), 'Tool', \
self.name,'has gone down for run based downtime',\
self.rbdtDescription[i]

yield hold,self,self.ttr[i]
self.runCount[i]=0
if printToggle: print '%8.4f :'%(now()), 'Tool', \

self.name,'has recovered from run based downtime',\
self.rbdtDescription[i]

Downtime Components
class downtimeSource(Process):

"source generates downtime units"

def generate(self,
toolsetID,
toolID,
dtDescription,
dtMTBF,
dtMTTR,
dtOperatorID):

for i in range(len(dtDescription)):
if dtMTBF[i]>0.0 and dtMTTR[i]>0.0:

dt=downtime(tool_ID=toolID,
toolset_ID=toolsetID,
dt_Description=dtDescription[i],
dt_MTBF=dtMTBF[i],
dt_MTTR=dtMTTR[i],
dt_OperatorID=dtOperatorID[i])

activate(dt,dt.run())

yield hold, self, endtime

class downtime(Process):
"downtime item initialisation"

def __init__(self,
toolset_ID,
tool_ID,
dt_Description,
dt_MTBF,
dt_MTTR,
dt_OperatorID):

Process.__init__(self,name=toolset_ID + "-" + str(tool_ID))
dtList.append(self)
self.toolsetID=toolset_ID
self.toolID=tool_ID
self.Description=dt_Description
self.mttr=dt_MTTR
self.mtbf=dt_MTBF
self.runTime=0
self.dtoperatorsetID=dt_OperatorID
self.type='downtime'

def run(self):
"causes downtime on tools"

E-14

Appendix E. Code for Fab Model B

def getItem(buff):
"gets the tool from the toolsetQueue store"
result=[]
for item in buff:

if item.name==self.name:
result.append(item)
break

return result

for ts in toolsetQueue:
if ts.name==self.toolsetID:
break

while True:
mtbfSample=expovariate(1/self.mtbf)
yield hold,self,mtbfSample # downtime item waits for mtbf

'get the tool'
yield get,self,ts,getItem,3 #priority is 3
toolGotAt=now()
toolOccupied=self.got[0]
if printToggle: print '%8.4f :'%(now()), 'Tool', \

toolOccupied.name,'has gone down for', self.Description

'locate the downtime operator'
if operatorToggle and self.dtoperatorsetID<>"":

for os in operatorsetQueue:
if os.name==self.dtoperatorsetID:
break

if printToggle: print '%8.4f :'%(now()), 'Waiting for operator set',\
self.dtoperatorsetID, 'to repair', toolOccupied.name

yield get,self,os,1,2
operatorGotAt=now()
operatorUsed=self.got[0]
if printToggle: print '%8.4f :'%(now()), 'Operator', operatorUsed.name,\

'is repairing tool', toolOccupied.name

mttrSample=expovariate(1/self.mttr)
yield hold,self,mttrSample
self.runTime=self.runTime+(now()-toolGotAt)
toolOccupied.doneSignal.signal('downtime')

'release the repair operator'
if operatorToggle and self.dtoperatorsetID<>"":

operatorUsed.doneSignal.signal('downtime')
operatorUsed.runTime=operatorUsed.runTime +(now()-operatorGotAt)
if printToggle: print '%8.4f :'%(now()), 'Operator', operatorUsed.name, \

'is finished repairing tool',toolOccupied.name

if printToggle: print '%8.4f :'%(now()), 'Tool', \
toolOccupied.name,'is back online'

Operator Components
class operatorSource(Process):

"source generates operators"

def generate(self,n,
op_setID,
op_Desc):

op=operator(num=n,
opSetID=op_setID,
opDesc=op_Desc)

activate(op,op.run())

yield hold, self, endtime

class operator(Process):
"operator item initialisation"

def __init__(self,
num,
opSetID,
opDesc):

Process.__init__(self,name=opSetID + "-" + str(num))
operatorList.append(self)
self.operatorsetID=opSetID
self.operatorDescription=opDesc
self.occupied=False

E-15

Appendix E. Code for Fab Model B

self.runTime=0
self.type='operator'
self.doneSignal=SimEvent()

def run(self):
"stasis loop for operators (slaves)"

for os in operatorsetQueue:
if os.name == self.operatorsetID:

break

while True:
yield put,self,os,[self] #put it in the operatorsetQueue store
yield waitevent,self,self.doneSignal

Break Components
class breakSource(Process):

"source generates breaks"

def generate(self,n,
op_setID,
break_Desc,
betweenBreaks,
bl):

for i in range(3):
if betweenBreaks[i]>0.0 and bl[i]>0.0:

br=breakItem(num=n,
opSetID=op_setID,
breakDesc=break_Desc[i],
between_breaks=float(betweenBreaks[i]),
break_Length=bl[i])

activate(br,br.run())

yield hold, self, endtime

class breakItem(Process):
"breakitem initialisation"

def __init__(self,
num,
opSetID,
breakDesc,
between_breaks,
break_Length):

Process.__init__(self,name=opSetID + "-" + str(num))
self.operatorsetID=opSetID
self.breakDescription=breakDesc
self.tbb=between_breaks
self.bl=break_Length
self.type='break'
breakList.append(self)

def run(self):
"stasis loop for break items (masters)"

def getItem(buff):
"gets the operator from the operatorsetQueue store"
result=[]
for item in buff:

if item.name==self.name:
result.append(item)
break

return result

for os in operatorsetQueue:
if os.name==self.operatorSetID:

break

while True:
tbbSample=self.tbb
yield hold,self,tbbSample
yield get, self,getItem,3
operatorCaptured=self.got[0]
if printToggle: print '%8.4f :'%(now()), 'Operator', \

operatorCaptured.name,'is breaking for', self.breakDescription

'send operator for break'
blSample=self.bl
yield hold,self,blSample

E-16

Appendix E. Code for Fab Model B

operatorCaptured.doneSignal.signal('break')
if printToggle: print '%8.4f :'%(now()), 'Operator', \

self.name,'has finished', self.breakDescription, 'break'

GUI
class SDSGUI(SimGUI):

def __init__(self,win,**par):
SimGUI.__init__(self,win,**par)
self.run.add_command(label="Run Model",

command=run_Prog,underline=0)
self.params=Parameters(Dataset=1,

print_detail=0,
Simulation_End_Time=50000,
Downtime=1,
Operator=1,
Rework=0,
Scrap=0,
Plot_TSQ=1,
Operator_Break=0)

Open GUI
root=Tk()
gui=SDSGUI(root,title="Sematech Simulation Console",consoleHeight=20)
gui.writeConsole("Click Run -> Run Model.To change parameters click Edit -> Change Parameters"

)
gui.mainloop()

E-17

APPENDIX F

Johnson Distribution

There are a number of distributions appropriate for characterising the time to perform

a task such as the lognormal, beta and logistic (Altiok, 1997; Law and Kelton, 1997;

Taha, 2005). Storer et al. (1988) and Wheeler (1980) suggest that the Johnson family of

distributions is one of the most generally applicable distribution types for this purpose.

Johnson distributions are transformations of the normal distribution and can be used to

describe most naturally occurring uni-modal sets of data (DeBrota et al., 1989). The

Johnson family offers three curve fits; the Johnson unbounded SU , Johnson bounded SB

and the Johnson lognormal SL distribution (Slifker and Shapiro, 1980).

Selection of the most applicable of these distributions is based on the availability

and credibility of the data sample. If the data sample is large and verified, then the

unbounded distribution is used. The bounded distribution is generally better for smaller

sample sizes. The Johnson lognormal distribution is used in very unique circumstances

that exist in a narrow range between selection of the bounded and the unbounded, and

F-1

Appendix F. Johnson Distribution

requires an interval of operation that is poorly-defined.

F.1 Algorithm

The selection procedure for this method is given by Slifker and Shapiro (1980). The

algorithm delivers estimates for the four parameters required to describe the Johnson

distribution; the starting location ε, the range λ, the skewness γ and a shape factor η.

The normal standard variable z is given by the transformation z = γ + ηki(x, λ, ε)

for a sample set of data points from a population x1, x2, x3, . . . xr where r > 10. The

choice of z is motivated by the number of data points from the sample. For moderate

sized datasets (10 < r ≤ 25), z should be less than 1.0; hence the selection of z = 0.5 in

the algorithm. Choosing a value greater than 1.0 would make it difficult to estimate the

points in the higher percentile. However, for larger datasets (r > 25) a larger z value is

allowed, hence z = 1.2 is used in those circumstances.

For ζ = −3z,−z, z, 3z, the normal distribution from the percentages is given by Pζ .

The corresponding percentile x(i) to Pζ is the ith ordered observation where i = rPζ +1/2

which gives x−3z, x−z, xz and x3z.

m = x3z − xz (F.1)

n = x−z − x−3z (F.2)

p = xz − x−z (F.3)

F-2

Appendix F. Johnson Distribution

mn

p2
> 1⇒ SU (F.4)

mn

p2
≈ 1⇒ SL (F.5)

mn

p2
< 1⇒ SB (F.6)

From Eqs.(F.1)-(F.3), the quantile sizes m, n and p, are used to select the distribution

according to Eqs.(F.4) and (F.6). The parameters that describe the Johnson distribution

are then calculated according to Tables F.1 and F.2.

Table F.1: Parameters for estimation of Johnson bounded and unbounded distri-
bution.

Johnson unbounded SU Johnson bounded SB

z = γ + η sinh−1
(
x− ε
λ

)
z = γ + η ln

(
x− ε

λ+ ε− x

)

η =
2z

cosh−1
[
1
2

(
m
p + n

p

)] ; (η > 0) η =
z

cosh−1
(

1
2

[(
1 + p

m

) (
1 + p

n

)]1/2) ; (η > 0)

γ = η sinh−1

 n
p −

m
p

2
(

m
p

n
p − 1

)1/2
 γ = η sinh−1

[(
p
n −

p
m

) {(
1 + p

m

) (
1 + p

n

)
− 4
}1/2

2
(

p
m

p
n − 1

)]

λ =
2p
(

m
p

n
p − 1

)1/2
(

m
p + n

p − 2
)(

m
p + n

p + 2
)1/2 ; (λ > 0) λ =

p
[{(

1 + p
m

) (
1 + p

n

)
− 2
}2 − 4

]1/2
p
m

p
n − 1

; (λ > 0)

ε =
xz + x−z

2
+

p
(

n
p −

m
p

)
2
(

m
p + n

p − 2
) ε =

xz + x−z
2

− λ

2
+

p
(
p
n −

p
m

)
2
(

p
m

p
n − 1

)

The normal standard variable z can be used to construct the probability density function

P (z) (an example of which is shown in Fig. F.1) according to Eq.(F.7).

P (z) =
e
−
(

z2

2

)
√

2π
(F.7)

Many simulation modelling packages have a facility to generate most of the common

F-3

Appendix F. Johnson Distribution

Table F.2: Parameters for estimation of Johnson lognormal distribution.

Johnson lognormal SL

z = γ∗ + η ln (x− ε)

η =
2z

ln
(

m
p

)

γ∗ = η ln

 m
p − 1

p
(

m
p

)1/2

ε =
xz + x−z

2
− p

2

m
p + 1
m
p − 1

distributions given the distribution’s parameters. In particular, the four Johnson param-

eters ε, λ, γ and η can be used to reconstruct the Johnson curve and sample from it

as necessary during the model runtime. A significant advantage of using this method is

that it can be fully automated and the level of information transfer is very small, that is,

rather than use all of the original empirical data, the four parameters can be used directly

by the simulation package. A disadvantage to using this method is that the Johnson fit is

used without any verification or ‘goodness of fit’ tests such as the Chi-Square Test or the

Kilmogorov-Smirnov test, and therefore, there may be better distribution fits available

that are not examined.

F.2 Software Interpretation of Johnson Distribution

Table F.3 shows how the Johnson distribution is interpreted by Statfit, ExtendSim and

VB.

F.3 Python Implementation

The function JohnsonFitter takes a sequence of points from the data under obser-
vation returns a list of the four required parameters required to reconstruct the fitted
Johnson distribution.

F-4

Appendix F. Johnson Distribution

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

%
 f

re
qu

en
cy

process time (hrs)

raw data
johnson unbounded fit

Figure F.1: An example of the empirical data and the fitted Johnson unbounded
frequency distribution using the algorithm described in this chapter.

Table F.3: Different interpretation of Johnson distribution parameters.

Johnson distribution type parameter Statfit ExtendSim RandomCalculate
Function (ExtendSim)

VB

Bounded SB (ExtendSim
dist. type 22)

minimum min location Add to Random-
Calculate()

ε

range δ λ Parameter 1 λ
skewness γ γ Parameter 2 γ
shape δ δ Parameter 3 η

Unbounded SU (Extend-
Sim dist. type 23)

minimum min location Add to Random-
Calculate()

ε

range δ λ Parameter 1 λ
skewness γ γ Parameter 2 γ
shape δ δ Parameter 3 η

from scipy.stats import norm, scoreatpercentile
from math import acosh,asinh,sqrt,pi,exp,log
from numpy import zeros

def JohnsonFitter(data,numBins=100):

data.sort()
sampleSize=len(data)
if sampleSize<10:

F-5

Appendix F. Johnson Distribution

print "insufficient data"
return -1

elif sampleSize>25:
z=1.2

else:
z=0.5

max_data=max(data)
min_data=min(data)
increment=(max_data-min_data)/(numBins)

bins=[]
for i in range(numBins*2): # ensure there's a high max
bins.append(min_data+(i)*increment)
if bins[i]>max_data: # terminates the loop

break

quant=zeros(numBins)
for pt in data:
for j in range(len(bins)-2):

if pt>=bins[j] and pt<bins[j+1]:
quant[j]=1
break

sumQ=sum(quant)
for i in range(len(quant)):
quant[i]=quant[i]/sumQ

plus_z=norm.cdf(z)
plus_3z=norm.cdf(3*z)
minus_z=norm.cdf(-1*z)
minus_3z=norm.cdf(-3*z)
plus_x=scoreatpercentile(data,plus_z*100)
plus_3x=scoreatpercentile(data,plus_3z*100)
minus_x=scoreatpercentile(data,minus_z*100)
minus_3x=scoreatpercentile(data,minus_3z*100)
m = plus_3x - plus_x
n = minus_x- minus_3x
p = plus_x - minus_x
ind=m*n/(p**2)

jVals=[]
if ind>1.1:
"johnson UNbound"
neta=2*z/acosh(0.5*(m/p + n/p))
gamma=neta*asinh((n/p - m/p)/(2*((n/p)*(m/p)-1)**0.5))
lamd=(2*p*((n/p)*(m/p)-1)**0.5)/((m/p + n/p -2)*(m/p + n/p +2)**0.5)
epsilon=0.5*(plus_x+minus_x)+((p*(n/p - m/p))/(2*(m/p + n/p -2)))
for x in bins:

jVals.append(exp(((-1)*((gamma+neta*asinh((x-epsilon)/lamd))**2)/2))/(sqrt(2*pi)))

elif ind<0.9:
"johnson Bound"
neta=z/acosh(0.5*(((1+ p/n)*(1+p/m))**0.5))
gamma=neta*asinh(((p/n - p/m)*((1+ p/m)*(1+p/n)-4)**0.5)/(2*((p/m)*(p/n)-1)))
lamd=p*(((1+ p/m)*(1+p/n)-2)**2 -4)**0.5/((p/m)*(p/n)-1)
epsilon=0.5*(plus_x+minus_x)-(lamd/2)+((p*(p/n - p/m))/(2*(p/m + p/n -1)))
for x in bins:

jVals.append(exp(((-1)*((gamma+neta*log((x-epsilon)/(lamd+epsilon-x)))**2)/2))/(sqrt(2*
pi)))

else: # 0.9 <= ind <= 1.1
"johnson LOGnormal"
"not implemented"
neta=2*z/log(m/p)
gamma=neta*log((m/p -1)/(p*((m/p)**0.5)))
epsilon=0.5*(plus_x+minus_x)-(p/2)*((m/p +1)/(m/p -1))
for x in bins:

jVals.append(exp(((-1)*((gamma+neta*log(x-epsilon))**2)/2))/(sqrt(2*pi)))

return neta,gamma,lamd,epsilon

F-6

Appendix F. Johnson Distribution

F.4 VB Implementation

The Visual Basic (VB) implementation uses the importData to call either the johnson Bound

or the johnson Unbound function which returns the parameters necessary to construct

the proposed Johnson distribution.

Sub importData(data,inc)

Dim NumDataPoints, i As Integer
Dim MaxVal, minVal As Double
Dim z, threeZ, minusThreeZ, minusZ As Double
Dim Z_score, threeZ_score, minusThreeZ_score, minusZ_score As Double
Dim DataPointsArray() As Double
Dim xThree, xOne, xMinusOne, xMinusThree As Double
Dim m, n, p As Double
Dim mn_over_pSquared As Double
Dim arraySize As Integer
Dim stepperArray(), inc As Double
Dim dataAverage As Double
Dim temp As Double

dataAverage = WorksheetFunction.average(data)
minVal = WorksheetFunction.Min(data)
maxVal = WorksheetFunction.Max(data)

'Create Stepper array
arraySize = 100
ReDim stepperArray(arraySize)

temp = 0
Do Until temp > minVal
temp = temp + inc
Loop

stepperArray(1) = temp - inc

i = 1
Do
i = i + 1

If i >= arraySize Then
ReDim Preserve stepperArray(i + arraySize)
arraySize = i + arraySize
End If

stepperArray(i) = stepperArray(i - 1) + inc
Loop Until stepperArray(i) >= MaxVal

ReDim Preserve stepperArray(i)
arraySize = i

'Get z values and z scores
If NumDataPoints >= 25 Then
z = 1.2

ElseIf NumDataPoints >= 10 Then
z = 0.5

Else
MsgBox ("No Bin Width Specified")
Exit Sub

End If

minusZ = z * (-1)
threeZ = 3 * z
minusThreeZ = threeZ * (-1)
Z_score = WorksheetFunction.NormSDist(z)
minusZ_score = WorksheetFunction.NormSDist(minusZ)
threeZ_score = WorksheetFunction.NormSDist(threeZ)
minusThreeZ_score = WorksheetFunction.NormSDist(minusThreeZ)

'Get Percentile
xThree = WorksheetFunction.Percentile(DataPointsArray, threeZ_score)
xOne = WorksheetFunction.Percentile(DataPointsArray, Z_score)
xMinusOne = WorksheetFunction.Percentile(DataPointsArray, minusZ_score)
xMinusThree = WorksheetFunction.Percentile(DataPointsArray, minusThreeZ_score)

F-7

Appendix F. Johnson Distribution

'Get m, n and p values
m = xThree - xOne
n = xMinusOne - xMinusThree
p = xOne - xMinusOne

'Select Distribution
mn_over_pSquared = (m * n) / (p * p)
Select Case mn_over_pSquared
Case Is > 1
Call johnson_Unbound(m, n, p, z, xOne, xMinusOne, stepperArray, arraySize, DataPointsArray

)
Case Is < 1
Call johnson_Bound(m, n, p, z, xOne, xMinusOne, stepperArray, arraySize, DataPointsArray)

End Select

End Sub

Sub johnson_Unbound(m, n, p, z, xOne, xMinusOne, stepperArray, arraySize, DataPointsArray)

Dim neta, gamma, lambda, epsilon, sumArray As Double
Dim tempValue, johnsonSuArray() As Double
Dim i As Integer

neta = (2 * z) / (WorksheetFunction.Acosh(0.5 * ((m / p) + (n / p))))
gamma = neta * WorksheetFunction.Asinh(((n / p) - (m / p)) / (2 * ((((m / p) * (n / p)) - 1)

ˆ 0.5)))
lambda = ((2 * p) * ((((m / p) * (n / p)) - 1) ˆ 0.5)) / (((m / p) + (n / p) - 2) * Sqr(((m

/ p) + (n / p) + 2)))
epsilon = ((xOne + xMinusOne) * 0.5) + (p * ((n / p) - (m / p))) / (2 * ((m / p) + (n / p) -

2))

ReDim johnsonSuArray(arraySize)

For i = 1 To arraySize
tempValue = gamma + (neta * WorksheetFunction.Asinh((stepperArray(i) -epsilon) / lambda))
johnsonSuArray(i) = Exp(((-1) * (tempValue ˆ 2) / 2)) / (Sqr(2 * WorksheetFunction.Pi))

Next i

sumArray = 0
For i = 1 To arraySize
sumArray = sumArray + johnsonSuArray(i)

Next i

For i = 1 To arraySize
johnsonSuArray(i) = johnsonSuArray(i) / sumArray

Next i

return johnsonSuArray

End Sub

Sub johnson_Bound(m, n, p, z, xOne, xMinusOne, stepperArray, arraySize, DataPointsArray)

Dim neta, gamma, lambda, epsilon As Double
Dim tempValue, sumArray, johnsonSbArray() As Double
Dim i As Integer

neta = z / (WorksheetFunction.Acosh(0.5 * (((1 + (p / m)) * (1 + (p / n))) ˆ 0.5)))
gamma = neta * WorksheetFunction.Asinh((((p / n) - (p / m)) * ((((1 + (p / m)) * (1 + (p / n

))) - 4) ˆ 0.5)) / (2 * (((p / m) * (p / n)) - 1)))
lambda = p * ((((((1 + (p / m)) * (1 + (p / n))) - 2) ˆ 2) - 4) ˆ 0.5) / (((p / m) * (p / n)

) - 1)
epsilon = ((xOne + xMinusOne) * 0.5) - (lambda / 2) + (p * ((p / n) - (p / m))) / (2 * (((p

/ m) * (p / n)) - 1))

ReDim johnsonSbArray(arraySize)
For i = 1 To arraySize
If ((stepperArray(i) - epsilon) / (lambda + epsilon - stepperArray(i))) > 0 Then

tempValue = gamma + (neta * WorksheetFunction.Ln((stepperArray(i) - epsilon) / (lambda +
epsilon - stepperArray(i))))

johnsonSbArray(i) = Exp(((-1) * (tempValue ˆ 2) / 2)) / (Sqr(2 * WorksheetFunction.Pi))
End If

Next i

sumArray = 0
For i = 1 To arraySize

F-8

Appendix F. Johnson Distribution

sumArray = sumArray + johnsonSbArray(i)
Next i

For i = 1 To arraySize
johnsonSbArray(i) = johnsonSbArray(i) / sumArray

Next i

return johnsonSbArray

End Sub

F-9

APPENDIX G

Verification and Validation

Techniques

G.1 Verification Techniques

Verification is concerned with determining whether a conceptual model of a real sys-

tem has been correctly translated into a computer program (Banks and Gibson, 1997b;

Law and Kelton, 1997; Law, 2008; Robinson, 1997; Sargent, 1998). Table G.1 contains a

comprehensive list of techniques used to verify that a computer model is a good repre-

sentation of the conceptual model. The list was produced by Whitner and Balci (1989)

and categorised under six main headings,

Informal Analysis through informal consultations and activities. Many of the techniques

involve human intuitive decisions and reasoning.

Static Analysing the computer source code that constitutes the model. Static analysis

G-1

Appendix G. Verification and Validation Techniques

does not involves execution of the model. In fact, the code complier is a form of

static analysis.

Dynamic Analysing computer model parameters during model runtime. Many pro-

grammers refer to this step as debugging.

Symbolic Analysing transformation of inputs to outputs during model runtime.

Constraint Analysing the comparison between state transformation in the model with

the list of assumptions that the conceptual model is based on.

Formal Analysis through formal mathematical and scientific procedures.

Table G.1: Verification techniques for simulation modelling (Whitner and Balci,
1989).

Type Technique Description

Informal Desk Checking Checking the logic, consistency and completeness of the model.
Usually performed prior to debugging and execution.

Walk-through The walk-through is similar to desk checking but is usually
performed by all the parties with a stake in the success of the
simulation.

Code Inspection Carrying out a line by line inspection of the source code.
Review A review check that the intended specification standards and

guidelines of the model have been adhered to in the final ver-
sion.

Audit The audit is more concerned with the success of the develop-
ment process.

Static Syntax Analysis Ensures that the syntax of the computer language used is cor-
rect. This part is usually carried out by the compiler and
unnecessary in most modern simulation software.

Semantic Analysis Confirmation that the computer language functions and syntax
are in line with the actions the modeller intended them to
perform.

Structural Analysis Testing the model structure for breaches of basic language
structural errors.

Data Flow Analysis Tracing through the model from the perspective of a single
thread to ensure all possible eventualities have been included.

Consistency Analysis Ensuring that the model does not contain any contradic-
tions and model variable are consistent in there type and use
throughout the model.

Dynamic Top-down Testing Top down testing involves testing each subdivision fro the top
most to the bottom of the model using dummy inputs.

Bottom-up Testing Bottom up testing is similar to top-down testing but involves
beginning at the lowest sub-model.

continued on next page

G-2

Appendix G. Verification and Validation Techniques

continued from last page

Black-box testing Involves testing for any inputs that produce erroneous outputs.
White-box Testing As opposed to black-box testing, white-box testing is con-

cerned with the internals of the model and the data flow
through the code.

Stress Testing Stress testing involves checking the system with inputs that
are excessively beyond the normal input ranges.

Debugging Debugging is the actual process of removing errors from the
model. It is not really testing more the correction based on
results from testing.

Execution Tracing Execution tracing involves watching a number of parameters or
variables in the model develop over the course of its execution.

Execution Monitoring Monitoring the actual activities that the model is performing
during execution. This could involve a trace animation on a
graphical simulation package.

Execution Profiling This is very similar to execution monitoring but done on a
more macro level. Group movements and action are mainly
monitored here.

Symbolic Debugging Symbolic debugging is a method of debugging whereby the
modeller may examine various variables, change them during
execution or replay certain segments of the model execution.

Regression Testing Regression testing ensures that model corrections or develop-
ment steps to not cause new issues or error. It involves retest-
ing the updated model with a number of the same tests that
were performed before it was updated.

Symbolic Symbolic Execution The models symbolic values are examined as opposed to the
actual program values. The result of this examination can
often be shown in a symbolic decision making tree.

Path Analysis Path Analysis involves testing every possible route or path
through the model for potential errors and completeness.

Cause-Effect Graphing This involves documenting a large graph of the relationship
between the causes and effects of the simulation model

Partition Analysis Partition analysis is done by subdividing the model into its
component sub-models and testing each individual sub-model
against its correct intended use according to specifications.

Constraint Assertion Checking Assertion checking involves ensuring that certain rules about
how the model operates are never broken. For example, if a
particular variable or parameter is always non-negative than
coded testing loops can be employed to check that the variable
of interest is always non-negative.

Inductive Assertion The input/output relations are translated into assertions about
the transition. If the model can be traversed without any asser-
tions being broken then the model could be deemed as verified.

Boundary Analysis Assuming that the most error prone test cases lie on the bound-
aries of the model operating ranges, this analysis runs test data
at or around the boundaries.

Formal Proof of Correctness Use the technique of a formal logic system to prove that if
the input values satisfy certain constraints, the output values
produced by the program, satisfy certain properties.

continued on next page

G-3

Appendix G. Verification and Validation Techniques

continued from last page

Lambda Calculus The model is transferred into formal expressions using string
functions. The model itself can be considered a large string.
Lambda calculus specifies rules for rewriting strings to trans-
form the model into lambda calculus expressions. Using
lambda calculus, the modeller can express the model formally
to apply mathematical proof of correctness techniques to it
(Barendregt, 1984).

Predicate Calculus A predicate is a combination of simple relations that are given
boolean values of either true or false. The model can be de-
fined in terms of predicates and manipulated using the rules
of predicate calculus (Backhouse, 1986).

Predicate Transforma-
tion

Predicate transformation involves formally defining the seman-
tics of the model with a mapping that transforms model output
states to all possible model input states (Youngblood, 2006).

Induction, Inference,
and Logical Deduction

These tasks validate the model by justifying conclusions on
the basis of the specification premises. Arguments are deemed
valid if the path from premise to conclusion conforms to the
established rules of inference (Youngblood, 2006).

G.2 Validation Techniques

Validating a model “refers to the processes and techniques that the model developer,

model customer and decision makers jointly use to assure that the model represents the

real system (or proposed real system) to a sufficient level of accuracy”(Carson, 2002). Law

and Kelton (1997) define validation as the “process of determining whether a simulation

model . . . is an accurate representation of the system, for the particular objectives of

the study”. Table G.2 gives a comprehensive list, complied by Sargent (1998), of the

validation techniques discussed in the area of simulation.

Table G.2: Validation techniques for simulation models (Sargent, 1998).

Technique Description

Animation Validation and debugging using animation has become more acces-
sible with the advent of graphical simulation packages. Often both
symbolic animation and trace animation are available on modern sim-
ulation packages.

Comparison to other mod-
els

Using results from other previously validated models to compare with.

Degenerate Tests Checking that the model results become increasingly unstable when
the model is tested outside of its normal operational bounds.

Event Validity The discrete events of the simulation model are consistent with the
series of events that could take place in the real world system.

continued on next page

G-4

Appendix G. Verification and Validation Techniques

continued from last page

Extreme Conditions Test Similar to Degenerate tests, e.g., extremities such as zero throughput
and zero queueing should coexist.

Face Validity Face validity involves interviewing and questioning people that are
well versed with the real system, it is perhaps one of the most com-
mon methods but is hard to quantify and bot always documented
particularly well.

Fixed Values In some models it is possible to estimate an output value for a par-
ticular model configuration and input values. The constants should
be checked for consistency.

Historical Data Validation Historical data records are a very powerful tool for validating a model.
Model output data driven with empirical historical records can be
compared to the output.

Historical Methods Include methods such as positive economics, rationalism and empiri-
cism (see Sargent (1998) for description).

Internal Validity The model is tested for output variability of results, which may indi-
cate model instability.

Operational Graphics Monitoring system variables using animation.
Parameter Variability-
Sensitivity Analysis

Testing and comparing model inputs with model outputs.

Predictive Validation Using the model to predict future real system performance and com-
paring it to actual real system future performance.

Traces Tracing model entities as they flow through the model. This ensures
the internal logic of the model is reasonable.

Turing Tests Performing blind tests on the data outputted from both the model
and the real system.

G-5

APPENDIX H

Publications

The following is a list of publications arising from this thesis. The list is in chronological

order with the most recent first. It includes conference papers, poster presentations as

well as forthcoming publications and work stemming from the topics discussed.

Byrne, N. M., Liston, P., Geraghty, J. and Young, P. 2012. Open Source Discrete

Event Simulation Software, Proceedings of the Operational Research Society Simulation

Workshop 2012 , [Approved].

Liston, P., Byrne, N. M., Geraghty, J. and Young, P. 2011. Collaborating to Gain

Advantage from Non-Core Manufacturing Competencies, Proceedings of the 28th In-

ternational Manufacturing Conference, pp. 136-144.

Byrne, N. M., Liston, P., Geraghty, J.,Young, P. and O’ Donovan, A. 2011. An Industry

View of Discrete Event Simulation, Proceedings of the Intel European Research and

Innovation Conference 2011.

Byrne, N. M., Geraghty, J. and Young, P. 2010. Generating Operating Curves for Semi-

H-1

Appendix H. Publications

conductor Toolsets, Proceedings of the Intel European Research and Innovation Con-

ference 2010.

Byrne, N. M., Geraghty, J., Young, P., Sievwright, S. and Daly, K. J. 2009. Generat-

ing Operating Curves for Semiconductor Toolsets, Proceedings of the Intel European

Research and Innovation Conference 2009.

Byrne, N. M., Geraghty, J., Young, P., Sievwright, S. and Daly, K. J. 2008. Operational

Characteristic Curves for Semiconductor Fabs. Proceedings of the Intel European Re-

search and Innovation Conference 2008.

Byrne, N. M., Geraghty, J., Young, P., Sievwright, S. and Daly, K. J. 2007. Methodology

for filtering real data into distributions for use in complex manufacturing simulation.

Proceedings of the 24th International Manufacturing Conference, 2, pp. 883-892.

Byrne, N. M., Geraghty, J., Young, P., Sievwright, S. and Daly, K. J. 2007. Methodology

for Complex Semiconductor Manufacturing for Discrete Event Simulation Projects.

Proceedings of the Intel European Research and Innovation Conference 2007.

Byrne, N. M., Geraghty, J., Young, P., Sievwright, S. and Daly, K. J. 2007. An intelligent

queueing block for simulation software. Proceedings of the 3rd Workshop on Simulation

in Manufacturing, Services and Logistics.

H-2

	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Glossary
	Nomenclature
	Kendall Notation
	Acronyms
	Abstract
	Introduction
	Statement
	Motivation
	Thesis Outline

	Literature Review
	Semiconductor Manufacturing
	Semiconductor industry economics
	Fabrication plants
	Operational complexities in a wafer fab

	Operating Curves
	Queueing systems
	The advantages of using operating curves
	Factors that impact fab performance
	Fab utilisation and bottlenecks

	Modelling the Fab and its Operating Curve
	Generating Operating Curves using Analytical Modelling Methods
	Modelling semiconductor fabs using analytical models
	Benchmarking fabs using operating curves
	Implications of the fundamental assumptions associated with queueing theory
	Queueing networks
	Advanced queuing approximations

	Discrete Event Simulation Modelling
	Steps in a simulation study
	Components of a DES model
	Justification for using DES modelling
	Flexible reusable DES modelling

	Summary

	An Automated Framework for Designing Discrete Event Simulation Experiments
	Simulation Effort
	Selection and location of design points on an operating curve
	Allocating simulation effort

	Method of Independent Replications
	Whitt Simulation Run Length
	Methods for Identifying the Initial Bias and Warm Up Period
	SPC method

	Operational Characteristic Surfaces
	Summary

	Case Study: A Flexible Toolset Modelling Application
	Testbed Background
	Front-End for the FTM Application
	Data Mining and Collection
	Determining arrival patterns
	Determining lot processing patterns
	Downtime event distributions
	Lot selection and prioritisation of operations
	Exporting information to ExtendSim

	ExtendSim DES Model
	Lot Generator block
	Tool Generator block
	Unscheduled downtime generator block
	PM Generator block
	Pairing block
	Activity delay paths

	Recording Simulation Data from ExtendSim
	Generating the Operating Curve
	Estimating the theoretical operating curve

	Model Verification & Validation
	IDEF0 Model Interpretation
	Summary

	Semiconductor Fab Model A
	Semiconductor Wafer Manufacturing Data Format Specification
	Project Objectives
	Modelling Strategy
	Model Input and GUI
	Communicating with ExtendSim from VB
	Model Description
	Lots and batching
	Lot processing
	Tool downtime
	Operators and breaks
	Rework and scrap
	Capturing the model output
	Checking model stability

	Analysis of Sematech Dataset 1
	Batch size policies
	System bottleneck analysis
	Comparison with the CXFC approximation
	Downtime
	Operators

	Model Verification & Validation
	IDEF Model Diagrams
	Summary

	Semiconductor Fab Model B
	Justification for the use of Python and SimPy
	Model Input and GUI
	Modelling Entities and Processes using SimPy
	Lot and operation PEM's
	Tool PEM's
	Downtime PEM's
	Operator and break PEM's

	Capturing Model Output and Displaying Operating Curves
	Analysis of the Minifab Dataset
	Operating curve results for minifab dataset without operators or downtime
	Operating curve results for minifab dataset with operators and downtime

	ExtendSim and SimPy Comparison
	Model Verification & Validation
	Summary

	Discussion
	Overview
	Optimum Location of Simulated Design Points on Operating Curves
	Operating Points, Curves and Surfaces
	Reflections on the FTM application
	Craft-based versus Generic Modelling
	Industrial Implications

	Conclusion
	Technical Contributions
	Recommendations for Future Work

	References
	Coded Algorithms for Designing DES Experiments
	Required number of simulation replications
	Whitt approximation for simulation run length
	Batch size approximation
	Von Neumann algorithm
	Anderson-Darling test for normality

	SPC Algorithm
	Miscellaneous Functions
	Inverse normal distribution function
	Batch means method
	Batch variance
	Queue operating point

	Flexible Toolset Modelling Application Code
	Front-End
	Data Collection and Sorting
	Data pull and cross-referencing
	Calculating arrival rates
	Calculating process time
	Estimate downtime parameters
	Lot selection parameters

	VBA Wrapper for ExtendSim
	ExtendSim Custom Blocks
	Lot generator code
	Tool generator code
	Unscheduled downtime generator code
	Preventative maintenance generator code
	Pairing block code

	Post Processing Scripts

	Semiconductor Wafer Manufacturing Data Format Specification
	File Description Overview
	File Descriptions
	Additional Information

	Code for Fab Model A
	Simulation Model Inputs

	Code for Fab Model B
	Johnson Distribution
	Algorithm
	Software Interpretation of Johnson Distribution
	Python Implementation
	VB Implementation

	Verification and Validation Techniques
	Verification Techniques
	Validation Techniques

	Publications

