
 
 

Analysis of Inspection Policy and Risk in High Product Mix Analysis of Inspection Policy and Risk in High Product Mix Analysis of Inspection Policy and Risk in High Product Mix Analysis of Inspection Policy and Risk in High Product Mix 

MultiMultiMultiMulti----Stage Flexible Manufacturing Systems Subjected to Stage Flexible Manufacturing Systems Subjected to Stage Flexible Manufacturing Systems Subjected to Stage Flexible Manufacturing Systems Subjected to 

Sequence Disorder and Multiple Stream EffectsSequence Disorder and Multiple Stream EffectsSequence Disorder and Multiple Stream EffectsSequence Disorder and Multiple Stream Effects    

by 

Anna RotondoAnna RotondoAnna RotondoAnna Rotondo    

 

DISSERTATIONDISSERTATIONDISSERTATIONDISSERTATION    

Presented to the School of Mechanical & Manufacturing Engineering of 

Dublin City University 

in Partial Fulfillment 

of the Requirements 

for the Degree of 

DOCTOR OF PHILOSOPHYDOCTOR OF PHILOSOPHYDOCTOR OF PHILOSOPHYDOCTOR OF PHILOSOPHY    

Supervisors 

Dr. Paul YoungDr. Paul YoungDr. Paul YoungDr. Paul Young    

Dr. John GeraghtyDr. John GeraghtyDr. John GeraghtyDr. John Geraghty    

Dublin City University 

School of Mechanical and Manufacturing Engineering 

May 2010  



 
 

I hereby certify that this material, which I now submit for 

assessment on the programme of study leading to the award of 

Doctor of Philosophy (PhD) is entirely my own work, that I have 

exercised reasonable care to ensure that the work is original, and 

does not to the best of my knowledge breach any law of copyright, 

and has not been taken from the work of others save and to the 

extent that such work has been cited and acknowledged within the 

text of my work. 

Signed:  

ID No.: 58117695 

Date:  

 

 

 



 
 

 

 

 

 

 

 

 

 

TÄÄt aÉààx 

v{x Äx vÉáx v| ÇtávÉÇwx 

x tÄÄx fàxÄÄx 

v{x Ät ÜxÇwÉÇÉ ÑÜxé|Éát 

 



 
 

 

 

 

 

 

 

 

ÂWâÅ ÄÉÖâ|ÅâÜ? yâzxÜ|à |Çä|wt 

txàtáM vtÜÑx w|xÅ? ÖâtÅ Å|Ç|ÅâÅ vÜxwâÄt ÑÉáàxÜÉAÊ 

dâ|Çàâá [ÉÜtà|âá YÄtvvâá 

 

Â_|äx tá |y çÉâ ãxÜx àÉ w|x àÉÅÉÜÜÉãA 

 _xtÜÇ tá |y çÉâ ãxÜx àÉ Ä|äx yÉÜxäxÜAÊ 

`A^A ZtÇw{| 

 

 



V 
 

Acknowledgments 

Hundreds of creatures have spangled my transient journey on earth and have made 

my existence wonderful so far and I wish to thank them all, but I fear I would make my 

masterpiece unbearably tedious. 

I am extremely grateful to Dr. Paul Young for realising my dream of becoming a 

Doctor.  His supervision never faltered and remained focused and inspirational 

throughout my doctorate at DCU.  I greatly appreciate the time he has generously given 

me in resolving any issues I encountered while under his supervision in a professional 

capacity carrying out research.  I would also like to thank him for showing an interest in 

my personal well being.  Dr. Paul has a very positive outlook on life and this is evident 

by one of his enlightening statements which I hope he does not object to me quoting, 

“if you are not happy, you won’t make the people around you happy”. This statement 

has become an important part of my life and offers me inspiration on a daily basis.  I 

would also like to thank Dr. John Geraghty for his exceptional guidance during the last 

three years.  Dr. John has been very helpful and has given me an infinite amount of 

technical support and advice which have been invaluable during the last three years at 

DCU. 

I would like to thank Prof. Eamonn Murphy and Dr. PJ Byrne for the interest they 

have shown for my work and their invaluable advice on how to improve my thesis. 

My transfer from Politecnico di Bari to DCU was made possible by the extreme 

generosity of Dr. Paul and Dr. John and the openness of my previous supervisors, Dr. 

Giuseppe Casalino and Prof. Antonio Domenico Ludovico.  Both supervisors were 

truly inspirational in setting out early goals and targets for my academic progression and 

they have blessed me with fond memories of my years at Politecnico di Bari.  Their 

smiles and those of my ex-fellow students have become impressed in my heart. 



VI 
 

I would like to acknowledge and thank the production staff of the company that has 

supported this research.  The level of help and support they offered was tremendous 

and unfaltering throughout the project.  It ensured that my research was at all times very 

enjoyable and rewarding. 

My stay in Dublin over the last few years has been enjoyable and made memorable 

by a few wonderful people.  I’m especially grateful to a girl, who has been my fellow 

student, neighbour and favourite chef.  In her I found my alter ego.  I wish her all the 

best in the years to come. 

I wouldn’t be on the verge of realising a dream without the unwavering support of 

my fantastic family.  They have inculcated in me the love for life.  They have instilled 

the belief that my dreams should be pursued and should become a reality.  I owe a great 

deal of gratitude to them.  The morbid affection we feel for each other sustains me in 

every moment of my life.  The awareness that they are always there for me is a source of 

immense serenity.  Skype has been a faithful companion for the last three years, but in 

spite of that I’ve missed them all very much, each day with the same intensity. 

Finally, it’s not every day that you are the victor having experienced a plumbing 

catastrophe such as a faulty water pump and an unavailable real estate agent but in this 

case it was to become a life changing experience. It gave me the opportunity to meet a 

man whom has since become the love of my life, a man who brings unlimited amounts 

of joy and happiness into my heart on a daily basis. 

  



 VII 
 

Table of Contents 

Acknowledgments V 

Table of Contents VII 

Abstract   XI 

List of Tables  XIII 

List of Figures XIV 

Nomenclature XXI 

 

Chapter 1  Introduction 1 

 1.1 Introduction 1 

 1.2 Organisation of this thesis 6 

Chapter 2  Literature Review 8 

 2.1 Introduction 8 

 2.2 Quality control 10 

  2.2.1  Brief history of quality control 12 

  2.2.2 Quality vs. Costs 15 

  2.2.3 Quality and production system design 20 

  2.2.4 Quality control and risk 24 

 2.3 Flow of material 26 

  2.3.1 Sequence disorder effect 28 

  2.3.2 Multiple stream effect 30 

  2.3.3 Sequence disorder and multiple stream effects 33 

 2.4 Conclusions 34 

Chapter 3  System Description and Modelling 37 

 3.1 Introduction 37 

 3.2 Modelling 38 

  3.2.1 Simulation 39 



 VIII 
 

 3.3 System modelling 44 

  3.3.1 Description of the system 45 

  3.3.2 Sampling strategy and problem statement 48 

 3.4 Input data analysis 52 

  3.4.1 Processing times 53 

  3.4.2 Queuing and transportation times 61 

  3.4.3 Inter-arrival times 66 

  3.4.4 Routing patterns 67 

  3.4.5 Availability times 71 

 3.5 Simulation model development 73 

 3.6 Model validation 76 

 3.7 Conclusions 80 

Chapter 4  Quality Risk and Process Design Parameters: a Simulation 

Approach   82 

 4.1 Introduction 82 

 4.2 Experimental design 83 

 4.3 Results analysis 89 

  4.3.1 Line speed impact 91 

  4.3.2 Impact of changing the sampling interval 95 

  4.3.3 Proximity to the inspection station 99 

  4.3.4 Station width 102 

  4.3.5 Results overview 108 

 4.4 Defect introduction 109 

  4.4.1 Intermittent vs. persistent defect introduction 111 

  4.4.2 Station width 113 

  4.4.3 Effective repair events impact 116 

  4.4.4 WECO rules impact 118 

  4.4.5 Type I and II errors 119 

 4.5 Conclusions 123 

Chapter 5  Quality Risk Prediction: an Analytical Approach 126 

 5.1 Introduction 126 

  5.1.1 Methodology considerations 127 

  5.1.2 Objectives 122 

 5.2 Prediction of average values 130 



 IX 
 

  5.2.1 Time between samples 131 

  5.2.2 Number of consecutive unsampled items 136 

 5.3 Distribution of the number of consecutive unsampled items 140 

 5.4 Non-sampling station case 141 

  5.4.1 Validation 145 

  5.4.2 Monitored flows merging 148 

  5.4.3 Random serial route impact 150 

  5.4.4 Generalisation: basic model 152 

  5.4.5 Stochastic approach 165 

 5.5 Sampling station case 175 

  5.5.1 One monitored product + unmonitored flow case 176 

  5.5.2 Two monitored products case 182 

  5.5.3 Two monitored products + unmonitored flow case 209 

  5.5.4 Impact of the time related distributions 225 

 5.6 Applications in industry 229 

  5.6.1 Quality risk associated with a sampling strategy 230 

  5.6.2 Sampling strategy with quality risk constraints 233 

  5.6.3 Industrial applicability 237 

 5.7 Conclusions 240 

Chapter 6  Discussion 244 

 6.1 Results summary and discussion 244 

Chapter 7  Conclusions 252 

 7.1 Conclusions 252 

 7.2 Recommendations for future work 254 

 

Appendix A Simulation Model Input Data A.1 

 A.1 Introduction A.1 

 A.2 Processing times A.2 

 A.3 Queuing and transportation times A.4 

 A.4 Inter-arrival times A.7 

Appendix B Simulation Model Structure B.1 

 B.1 Introduction B.1 



 X 
 

Appendix C Software Algorithms C.1 

 C.1 Introduction C.1 

 C.2 Data analysis codes C.1 

  C.2.1 Defect introduction analysis C.6 

 C.3 Enumerative algorithm C.10 

  C.3.1 Main function C.11 

  C.3.2 Combinatorial nature functions C.15 

Appendix D Probability Distributions D.1 

 D.1 Introduction D.1 

 D.2 The geometric distribution D.2 

  D.2.1 Applications D.5 

 D.3 The negative binomial distribution D.8 

  D.3.1 Applications of the negative binomial distribution  D.9 

 D.4 References D.11 

Appendix E Prediction Error Patterns E.1 

 E.1 Introduction E.1 

Appendix F Impact of the Time Related Distributions on the CNB Model 

Accuracy   F.1 

 F.1 Introduction F.1 

 F.2 Inter-arrival time impact F.2 

 F.3 Other time related input parameters F.5 

  F.3.1 Queuing and transportation times F.5 

  F.3.2 Processing times F.6 

  F.3.3 Availability times F.7 

  F.3.4 Experimental design F.8 

  F.3.5 Results F.9 

 F.4 References F.18  

Appendix G Publications to Date G.1 

 G.1 Introduction G.1 

  



XI 
 

Analysis of Inspection Policy and Risk in High Product 

Mix Multi-Stage Flexible Manufacturing Systems 

subjected to Sequence Disorder and Multiple Stream 

Effects 

Anna Rotondo 

Abstract 

When inspection economies are implemented in complex manufacturing 

environments, quality risks will arise.  The impossibility to predict the monitoring 

effectiveness of an inspection strategy in all the stations of a production system 

eventually leads to a loss of time, money and resources which could be avoided.  When 

a product-oriented sampling is implemented in one station of a production segment, the 

analysis of the available quality measurements presents relevant complexities in all the 

stations of the segment.  The complexities arise as the multiple streams of product and 

the randomness of cycle times manifest their effects at the stations upstream or 

downstream of the sampling station.  For the sampling station, the variability of the 

departure process is responsible for the loss of the deterministic pattern of sampling 

when a global flow perspective is considered. 

This research develops fundamental models which support the prediction of the 

‘quality risk’ in all the stations of a high product mix, multi-stage, parallel manufacturing 

system subjected to multiple stream and sequence disorder effects.  The ‘quality risk’ is 

measured in terms of number of unsampled items between consecutive samples at a 

machine level.  The time related corresponding measure, that is the time between 

samples, is partially analysed. Acknowledging the relevance that factory performance 

decisions have on quality related issues, the impact of some system design parameters 

on the two performance measures is investigated using a simulation approach.  The 

results obtained have provided a fundamental basis for the development of the 

prediction models for the distribution of the number of consecutive unsampled items 



XII 
 

under different product flow conditions.  Based on those models the risk deriving from 

apparently random sampling can be immediately assessed.  The prediction models are 

also useful in supporting the choice of the sampling parameters able to reduce the 

‘quality risk’ to an acceptable level.  
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Chapter I 

Introduction 

1  

1.1 Introduction 

Quality is an “elusive and indistinct construct” which is often mistakenly reduced to 

a heterogeneous ensemble of imprecise adjectives [1].  Definitions of quality are often 

avoided by recourse to uni-dimensional purpose-oriented measures which try to capture 

circumstantial connotations of a comprehensive concept [2]. Whilst the substance and 

determinants of quality may elude a systematic definition, its relevancy to companies 

and customers is unequivocally recognised.  

In the manufacturing environment, product’s quality is relevantly affected by product 

design.  Recourse to quality function deployment helps engineers in translating 

customers’ needs into product design characteristics.  Marketers use conjoint analysis to 

“explore the impact of different design decisions on sales, profits and cannibalisation”  so that the 

optimal set of quality characteristics can be defined.  “Design for quality” techniques 

support the development of products which jointly meet customer requirements and 

production costs targets [3].  However, product quality is not just a matter of design. 

The randomness affecting a production system and the limited reliability of the 

machines operating in it undermine the stability of the system’s performances [4, 5].  As 

a result, a production process designed to generate products which conform to pre-

determined specifications does not always guarantee the desired quality outcome.  In 
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order to prevent non-conforming products from being delivered to the next stage of the 

supply chain, quality inspections are usually performed in a production system.  The 

measurements performed on some quality characteristics of the items produced are not 

only useful to evaluate the conformance of the items to the designed quality 

specifications.  They can be also used to draw inferences on the quality status of the 

production process [6]. 

The presence of several inspection points along a production line contributes to a 

fundamental improvement of the quality level of production and reduces production 

waste caused by quality failures of machines involved in the process.  However, 

intensifying quality control inevitably means an increase in quality prevention and 

appraisal costs and, ultimately, an increase in the cycle time of inspected products.  For 

these reasons, the quality strategy implemented in a production system is often 

determined as a trade-off between the needs of both quality and production managers 

[7-9].  In order to allow a reduction of inspection costs and minimise the impact of 

inspections on cycle times, inspection economies are usually implemented in a 

production system.  These can consist of the reduction of the number of inspection 

points; as an example, in a serial production segment, just one step can be chosen as a 

sampling step, which is the step where the sampling decision is made based on an 

arbitrary sampling scheme.  Inspection economies can also be obtained by reducing the 

frequency with which items are sampled at the inspection points. 

Independently of the fashion with which inspection economies are implemented in a 

production system, they are source of quality risk.  Quality risk is here intended as the 

risk of not regularly having information about the conformance of items to quality 

specifications and, more importantly, information about the quality status of the 

machines operating in the system.  If monitoring machines eludes regularity, the risk of 

production waste caused by an undetected failure obviously increases.  A possible 

measure of such a concept of quality risk at a machine level can be the time elapsing 

between two consecutive pieces of quality information, that is two consecutive sampled 

items processed at that machine.  An alternative measure can be the number of 

unsampled items consecutively processed at a production machine. 



 CHAPTER I  INTRODUCTION 

3 
 

It is understandable that the magnitude of the quality risk associated with a sampling 

strategy is dependent on the level of complexity of the production system.  For a serial 

production system the effects of inspection economies could prove less dramatic than 

the impact of a reduced sampling frequency in a job-shop system.  This is because of 

both the level of disorder governing the system, which can be measured with respect to 

the variation of the item sequence order, and the level of complexity of the 

correspondence relationships between the machines operating in the system.  The first 

phenomenon is known as sequence disorder effect and it is due to the randomness of 

cycle times [10].  The second one, which is common in production systems that do not 

implement deterministic rules for routing items between the machines of consecutive 

stations, is called multiple stream effect [10].  Both these effects complicate the 

interpretation of the quality data patterns at the non sampling steps [10]. 

The primary objective of this research is to contribute to a better understanding of 

the level of quality risk that inspection economies introduce in complex manufacturing 

environments.  This is achieved through the development of prediction models for two 

quality risk related performance measures.  The quality risk related performance 

measures analysed here are the number of consecutive unsampled items and the time 

between consecutive samples at any machine of the system.  The prediction models for 

the quality risk will prove an invaluable decision making support tool for management 

involved in the definition of sampling strategies capable of guaranteeing to operate 

under a desired level of quality risk.  These models can also be used to facilitate 

management decisions while assessing the efficacy of the implemented sampling 

strategy.  

The production system under investigation can be classified as a multi-product, 

multi-stage, parallel manufacturing system; adopting a more recent definition, this 

system can also be referred to as a multi-product, serial-parallel system [11].  The 

randomness of cycle time and the lack of deterministic routing decision rules make this 

production system subjected to the effects of sequence disorder and multiple streams.   

A product oriented sampling strategy is implemented in the system.  For each 

product flowing serially through the system, a deterministic sampling interval is set so 
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that for every given number of items of that product consecutively processed by a 

machine of the sampling station, one is chosen as a sample.  The sampling strategy is 

implemented independently at all the machines of the sampling station. 

For such a combination of production system and sampling strategy, the main 

challenges are 

− the identification of the mechanisms which annihilate the deterministic pattern 

of the sampling strategy at the machines of both the sampling stations and the 

non-sampling stations; 

− the prediction of their effects on the quality risk related performance measure. 

The identification of the parameters which mostly affect the performance measures 

is also a fundamental goal of this research. 

There is a strong industrial motivation for the development of this research.  It stems 

from the need of controlling the quality risk in production environments whose 

dynamics elude a systematic control and for which the cause-effect relationships are 

difficult to foreshadow.  This need is testified by the circumstances why this research 

was commenced.  In a multinational company operating in Ireland, the divergent 

opinions of production and quality managers about the effects on quality of the 

variation of the factory line speed highlighted the lack of available models to conduct 

systematic analysis on the relationship between production system design parameters 

and quality risk related measures.  This contributed to develop the awareness in quality 

management that the quality risk related performance measures adopted in the firm 

could be monitored but they could not be predicted.  As a result, it was evident that a 

reactive approach to quality was adopted; the impact of both production and quality 

related decisions on the quality risk could only be analysed a posteriori by using real data.  

Ultimately, the benefits of having prediction models for the quality risk able to support 

an a priori analysis of the cause-effect relationships were clear. 

The academic motivation for this research is based on solid foundations.  There are 

fundamental gaps in the literature relative to two research fields investigated in this 

work. 
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Firstly, as highlighted in a recent paper by Jin [11], research focusing on the quality 

control of serial-parallel multi-stage manufacturing systems is very limited.  Despite 

being very common in reality, serial-parallel multi-stage manufacturing systems are rarely 

subjects of investigations due to the relevant complexities by which they are 

characterised.  Structural information, such as correlations between stages, and material 

flow dynamics, such as item sequence disorder, when ignored during the development 

of quality control strategies impact the effectiveness of the quality control strategy 

adopted [11].  The analyses available in the literature tend to focus on either the 

structural information [11-13] or the sequence disorder [14-16].  To the author’s 

knowledge, the only contributions to the quality control analysis in multi-stage serial-

parallel systems subjected to sequence disorder and multiple stream effects are by Fan et 

al. [10, 17-20].  They investigate the quality control problem in complex manufacturing 

systems by developing robustly designed control charts capable of coping with both the 

effects. 

Secondly, the little attention paid by researchers to the mutual relationship between 

production system design and quality related issues was highlighted by Inman et al [21].  

They demonstrate with different examples from the automotive industry that the 

interaction between quality and production system design is more important than 

theretofore recognised in the academic world.  Inman’s invitation to investigate this 

relationship in the several different research areas embraced has motivated works in the 

fields of buffer location [22-26], ergonomics [27], rework policies [28], absenteeism [29], 

plant build complexity [30], line speed [31].  However, more contributions are needed to 

fully explore the complex interaction between quality and productivity. 

This PhD research contributes to fill the first gap mentioned since it investigates the 

effectiveness of a quality control strategy in a serial-parallel multi-stage manufacturing 

system without ignoring the presence of sequence disorder and multiple stream effects.   

Relatively to the second gap highlighted, the mutual relationship between quality and 

line speed is investigated using a different perspective from the one adopted by Inman 

[21] and Owen [31].  The line speed is intended here as the inverse of cycle time rather 

than processing time and the concept of quality is expanded so to include control 



 CHAPTER I  INTRODUCTION 

6 
 

aspects.  This confirms Inman’s premise that the intersection between quality and 

system production design can go beyond the domain defined in his paper. 

The most interesting elements of this research consist of the availability of a 

simulation model completely built on real data coming from the company which 

supported this research and the novelty of the prediction models for the distribution of 

one of the quality risk performance measures analysed here.  In particular, recourse to 

enumerative techniques to develop distributions resulting from the combination of 

degenerative distributions represents an interesting approach which could find 

applications to various problems categories.  

1.2 Organisation of this thesis 

This section provides a brief summary of the contents of the different chapters 

which constitute this thesis. 

Chapter II presents a review of the literature focusing on the different research issues 

investigated in this thesis.  Analyses on inspection economies from various perspectives 

are reported.  Contributions to the emerging field of the intersection between quality 

and production system design are explored.  Finally, studies about issues related to the 

flow of material in complex manufacturing environments are analysed. 

After a general introduction about the merits and limits of the simulation 

approaches, Chapter III gives a detailed description of the simulation model developed 

to investigate the behaviour of a segment of a real production system, from a quality 

control perspective, under operating conditions which would have been difficult to 

implement without relevant consequences on the production performance. 

Chapter IV introduces the experimental plan used to explore the efficacy of the 

sampling strategy.  Based on the simulation results, the impact of production system 

design parameters such as the line speed and the station configuration on the two 

quality risk related performance measures is investigated.  The effect of the variation of 

the sampling frequency on the quality risk is also analysed. 
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A study on the responsiveness of the sampling strategy to quality failures concludes 

Chapter IV.  This study focuses on the sensitivity of the sampling strategy performances 

to variations of defect introduction modalities consequent to machines quality break 

down. 

In Chapter V, the simulation results are further analysed to derive prediction models 

for the average values of the time between samples and the number of consecutive 

unsampled items.  An analytical shape is given to the relationships between the control 

parameters and the quality risk related performance measures already illustrated in 

Chapter IV from a partial and qualitative perspective.  In order to support the 

evaluation of the quality risk, a stochastic analysis of the performance measures is 

needed.  This is conducted for the number of consecutive unsampled items under 

different product flow scenarios.  The validity of the prediction model for the non-

sampling station is tested against the results obtained by the simulation of a production 

system with a basic structure.  The analysis of different operating conditions and the 

introduction of input errors in the prediction models will be used to assess the 

robustness of the algorithms developed to the variations of the hypotheses on which 

they are based. 

The last part of Chapter V is dedicated to considerations on the industrial 

applicability of the prediction models developed.  Using the predicted distributions, the 

quality risk associated with a sampling strategy can be quantified in terms of maximum 

number of consecutive unsampled items at a given confidence level.  A possible 

approach to set sampling parameters capable to keep the quality risk in the system under 

the desired level is illustrated. 

Chapter VI presents the discussion of the results obtained in this work.  Chapter VII 

concludes this PhD project and introduces future research directions arising from it.



 

 

8 
 

Chapter II 

Literature Review 

2  

2.1 Introduction 

As stated in the previous chapter, the “quality risk” is the core of this research.  The 

risk of not continuously monitoring the quality status of machines operating in a 

production system arises from the implementation of inspection economies.  The 

impact that inspections have on time and cost in conjunction with the need of delivering 

high quality products has historically (See Section 2.2.1) put company managers through 

a Shakespearian dilemma: to set or not to set quality as a priority?  The answer is 

generally not drastic.  Compromise solutions are preferred and trade-offs between 

quality and cost/production are pursued (See Section 2.2.2).  Quality still remains a 

strategic factor; however, when the attention is re-focused on other issues, the alert on it 

is relaxed.  The point is: “How deleterious is this relaxation in sole terms of quality?” or 

“What’s the impact of economically advantageous sampling on the uncertainty level of 

the inspection policy?” 

In order to answer these questions, in this research, a retrospective approach has 

been taken against the common trend of including economic considerations when 

analysing quality related issues.  The problem of assessing an inspection policy has been 

abstracted to a level where quality and risk (See Section 2.2.4) represent the research 

fulcrum.  The abstraction proves fundamental, since when the problem is analysed from 

its nucleus, the obscure way to the synapses turns into a straight short-cut.  This means, 
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considerations on cost or productivity could be eventually made at a stage when the 

sampling strategy has been already assessed from an impartial and isolated viewpoint.  

When sampling is implemented in a product oriented deterministic fashion in each 

machine of a particular station of a production segment, the possibility of predicting the 

number of items that will be processed between two consecutive samples at any 

machine in that segment represents a fundamental quality risk related measure.  The 

same could be said for the time elapsing between two consecutive samples at any 

machine.  These measures that are closely related to the quality risk perspective could 

eventually be included in analyses which look to other specific objectives. 

In a flexible manufacturing environment, the complexities arising from the 

implementation of inspection economies merge with the complexities deriving from the 

flow of material.  When this happens, controlling the quality risk proves prohibitive.  

The randomness of the cycle time and the combinatorial number of paths which items 

can follow through a multi-stage, serial-parallel manufacturing system introduce in the 

system a level of disorder which impacts the hypothetical regularity of deterministic 

sampling plans.  Disentangling the skein made up of item sequence disorder (See 

Section 2.3.1) and random routing patterns (See Section 2.3.2) is a key through which a 

clearer vision of the problem can be gained. 

The need for a quality oriented analysis which takes hexogen elements into account 

but keeps its internal focus is actually vivid.  When the hexogen elements regard system 

design parameters, the industrial interest mixes with the academic avant-garde (See 

Section 2.2.3).  Only a few years ago, Inman et al. [21] highlighted the need to 

investigate the mutual relationship between quality and system design issues.  Finding 

inspiration from the automotive industry, they reported several cases where decisions 

made about system design affected production quality and vice versa.  Noting the lack 

of literature on those themes, they exhorted researchers to focus their attention on 21 

research areas defined by the intersection of quality and system design related issues.  

Among these areas, the relationship between quality and line speed represents the frame 

by which the research presented here can be located.  The meaning of line speed and 

quality is here different from what intended by Inman.  The interaction between line 

speed and quality as perceived by Inman regards the realisation that reducing processing 
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times could entail a reduction of production quality for both manual and automatic 

operations.  In this study, the impact of line speed, intended as the speed at which items 

cross a production segment, on the effectiveness of a sampling policy is analysed.  The 

effect of the configuration of the stations is also taken into account during the analysis.  

With different meanings conferred to quality and line speed/configuration the horizons 

of Inman’s proposal have been widened.  Line speed and system configuration represent 

two of the research areas individuated by Inman for which the interaction with quality 

has been analysed here.  In order to frame these areas in the wider field of the 

intersection between quality and production system design issues, contributions directly 

motivated by Inman’s paper to different research areas will also be illustrated in Section 

2.2.3. 

Section 2.2 offers a review of the literature in the quality control area.  Quality is 

analysed with respect to cost (Section 2.2.2), process design issues (Section 2.2.3) and 

risk (Section 2.2.4).  Section 2.3 gives a general review of the academic solutions to the 

problem of dealing with the complexities related with the flow of material in flexible 

manufacturing environment. 

2.2 Quality control 

When different products compete in the market, quality represents one of the most 

important factors on which customers base their purchase decision [32, 33].  

Independently of the particular customer or the product category, the management of 

production systems can not ignore this attitude and the decision to make quality a 

crucial element in the production strategy seems to be the only way to guarantee 

success.  Nowadays, the concept of quality is very broad and assumes different 

connotations not only to different people but even to the same people at different times 

[34].  The traditional definition of good quality as “conformance to specifications” has 

been surpassed by definitions which trigger a more proactive attitude with respect to 

quality commitment at any organisational level [2]. 

The development and implementation of different statistical tools and humanistic 

theories about quality in a manufacturing system will be briefly traced in the next 
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section.  The remainder of Section 2.2 will explore the relationships between quality and 

the main factors that help quality engineers in making decisions about monitoring 

strategies and quality design.  As is evident in the graph reported in Figure 2.1, 

economical considerations have dominated this decision process in the history of quality 

control.  The histograms in Figure 2.1 are based on data extracted from the web-based 

discovery platform Engineering Village using as search keywords “optimisation & 

quality control & manufacturing” for the bars in dark blue and “optimisation & quality 

cost & manufacturing” for the bars in light blue.  A review of the literature on the 

relationship between quality and costs is presented in Section 2.2.2. 

Despite the historical significant predominance of economical considerations during 

the analysis of quality strategies, a good quality design process should not be confined to 

its mutual relationships with costs.  There is a fundamental need of taking other factors 

into consideration when quality, and as a consequence quality control, has to be 

designed [21].  These factors embrace all the different elements involved in production 

system design (See Section 2.2.3).  

 
FIGURE 2.1  NUMBER OF PUBLICATIONS ABOUT QUALITY CONTROL OPTIMISATION AND QUALITY 

COST OPTIMISATION. 

 

Finally, a brief introduction on the concept of risk in quality control will be given in 

Section 2.2.4.  The most common quality related risk measures will be defined.  Studies 
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on particular measures that can be easily related to the ultimate objective of this research 

will be introduced. 

2.2.1 Brief history of quality control 

The creation of the quality control function in a production system can be traced 

back to the late 19th century when Taylor introduced the concept of “division of 

labour” in the industrial world [35].  Along with the standardisation of each process 

stage, that reduced the single worker responsibility for quality and made management 

more aware of quality issues.  100% inspection was usually used to guarantee the 

conformance of the final product to specifications [36]. 

The use of statistical methodologies for monitoring and improving production 

quality is largely due to W. E. Shewhart, who in his book “Economic Control of Quality 

of Manufactured Product” (1931) [37] presented the application of a statistical chart for 

the control of measurable characteristics of a product.  One of the interesting 

implications of the use of the control charts is the realisation that 100% inspection is 

not always necessary and the implementation of an efficient sampling strategy can lead 

to a noticeable cost and time reduction while keeping the system under control. 

Different control charts have been developed since Shewhart introduced the first 

ones.  Duncan [38] introduced economic considerations in the design of a control chart; 

this highlights the ever increasing interest in pursuing quality and financial targets at the 

same time.  The evolution of the control chart characteristics has usually followed the 

demand of the industry where Statistical Process Control (SPC) was applied.  Spanos 

[39] undertakes a brief summary of the evolution of SPC schemes, and in particular 

control charts, with a particular focus on their applications to semiconductor industries 

(Table 2.1). 

In the same direction of Duncan’s work, is the contribution of H.F. Dodge and H.G. 

Romig, who soon after the definition of control charts, proposed the use of acceptance 

sampling in place of 100% inspection [40].  The rationale for promoting the application 

of acceptance sampling was based on the consideration that a production sample, if 

reasonably large, homogeneous and randomly drawn, can provide the operators with  
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TABLE 2. 1  SPC TECHNIQUES ILLUSTRATED BY SPANOS [39]. 

Traditional SPC techniques 

�� � � chart − Controlling location and spread of a continuous variable 

− Able to detect only large variation of the spread 

− Suitable for subgroup size less than 10 

�� � � chart − Controlling location and spread of a continuous variable 

− Suitable for subgroup size greater than 10 

Moving Range 

chart 

− Ideal when data can not be easily grouped 

− Simple to use 

− Frequent false alarms due to the possible data autocorrelation 

p-chart − Attribute chart 

− Controlling the fraction of nonconforming items 

c-chart − Attribute chart 

− Controlling the number of defects on each inspection unit 

− Assumption of defects distributed according to a Poisson distribution 

with a constant defect density  

u-chart − Attribute chart 

− Controlling the average defect count over a group of n  entities 

CUSUM chart − Based on the concept of Maximum Likelihood 

− Sensitive to small and persistent deviations of a process  

− Faster response and more unambiguous interpretation than the 

Shewhart charts 

Modern SPC techniques 

Hotelling’s T
2
 

chart 

− Based on the concept of Multivariate Control 

− Sensitive to the collective deviations of a number of cross-correlated 

parameters from their respective targets 

− Clear global picture of the process status 

− Reduced number of false alarms 

Regression chart − A Model-Based SPC technique 

− Based on the development of prediction model of the parameter to be 

monitored  

− Systematic out of controls indicate the need to update the regression 

models 

− Ideal for multi-recipe production environment 

Time Series 

Analysis 

− Controlling the forecasting errors 

− Elimination of the problem of the auto-correlation of the parameters 

measures for continuous parameter readings 
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enough information to develop inferences about the population from which it was 

drawn and which it tries to resemble [34, 36].  The debate about the effectiveness of 

sampling or screening strategies animated research on quality control in the past 

decades.  For multi-stage systems, under particular quality costs scenarios, Lindsay and 

Bishop [41], White [42], Britney [43] and Raz [44] supported the recourse to 100% 

inspection rather than sampling; on the other hand, a high emphasis was been placed on 

the efficacy of sampling plans rather than screening in multi-stage systems [45, 46].  In 

the literature of late, simulation approaches [47-49] and evolutionary algorithms [47, 50] 

are used to support the choice of the optimal inspection strategy, among 0%, 100% and 

sampling, after each production step in multi-stage systems. 

Initially, these statistical concepts were not readily accepted. It was only after World War 

II that the American government almost forced manufacturers to implement the SPC 

techniques in order to reduce the production of defective items which was systemic 

during the war.  In order to ease the inspection procedures, sampling tables adapted 

from the one devised by the Bell System, were published, during the war, as a military 

standard, MIL-STC-105.  However, this standard was in practise extended to contracts 

signed in the non-military industry as well, and the desired quality improvement was 

soon realised. [36, 51]. 

More so than the Americans, the Japanese believed in the advantages of 

implementing SPC tools in the manufacturing environment. The all-embracing role of 

quality in a production system involving technical, financial and strategic choices, along 

with the indications on personnel training procedures, is the ultimate message of the 

“Total Quality Management” (TQM) methods which were proposed by W.E. Deming.  

With the human involvement suggested by these motivational theories, quality is 

implemented at all organisational levels and is pursued in an effective fashion, with a 

constant focus on cost reduction [36]. 

During the 1980’s, the contributions of G. Taguchi, regarding the Design of 

Experiment (DOE), and Ishikawa, primarily in respect to Cause and Effect Diagram, 

have enhanced the application of TQM in manufacturing systems. 
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During the 1990’s, the attention for quality control and management was heavily 

focused on quality certification.  This guarantees that a certified firm operates at 

standard quality levels, from the perspective of both the manufacturers and the 

customers.  In order to promote quality awareness, recognize quality and business 

achievements of organizations and make the organizations’ successful performance 

strategies known, different awards have been established.  The most popular are the 

Malcolm Baldridge National Quality Award in the US, the Deming Prize in Japan and 

the European Quality Award in the EU [34]. 

More recently, there is an increasing attention in the literature on the emergence of 

new quality philosophies, such as Six Sigma and Lean Manufacturing.  Six Sigma inherits 

from TQM the focus on customer satisfaction, different problem solving methodologies 

and the recognition that all employees are responsible for quality.  It expands TQM’s 

focuses to objectives complementary to quality, such as availability, reliability, delivery 

performances and after-market services.  The Six Sigma metric, that is one of the 

novelties of this new philosophy, is now extensively applied in a more flexible fashion.  

The constant search for perfection, through the elimination of non-value-adding 

operations and the reduction of variability at every opportunity, briefly summarises the 

fundamentals of Lean Manufacturing.  Quality management practices in lean production 

are based on the concept of Zero Quality Control (ZQC).  A ZQC system includes 

mistake-proofing, source inspection and 100% automated inspection.  A fusion of the 

two philosophies with the consequent creation of Lean, Six Sigma organisations seems 

to be the latest trend in Quality Management [52]. 

2.2.2 Quality vs. costs 

Looking through the history of quality control a particular research pattern can be 

noticed: the constant trend to reduce the impact of quality control on time and costs 

[34].  This is clear in the introduction of the concept of sampling in place of 100% 

inspection for monitoring the production quality [37, 38].  In fact, apart from plants 

where quality tests are destructive, the recourse to sampling simply obeys the need for 

reducing any time delay and cost increase due to the introduction of inspection points at 

some stages of the material flow in the production system [34].  Another attempt to 
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monitor process quality while aiming for good net profits has been made by Duncan, 

who has published a long series of studies about economical design of quality control.  

Before Duncan [38], Girshick and Rubick [53] had studied quality control issues from 

an economic perspective.  Their contribution consists of the introduction of the 

criterion of the expected cost per unit time in quality control design.  Their objective 

was to optimise quality control from an economical perspective.  However, even though 

extremely valuable from a theoretical point of view, their study has had very few 

practical applications due to its complexity; that’s the reason why Duncan’s model has 

commonly been considered a reference model for economical design of quality control.  

Duncan’s model [38] quantifies the hourly economic loss associated with out of control 

production in relation to the net profit during in and out of control production and 

conventional costs, such as inspection costs and investigation costs following a false 

alarm.  The optimisation is clearly focused on the factory profit itself, with very little 

focus on the consequence that a poor quality production can have on the market. 

Over the years, more attention has been given to the customer and the so called 

opportunity and hidden costs have been taken into account [54, 55].  In fact, the need to 

satisfy customers represents a very relevant obstacle to the trend of reducing the 

number and frequency of quality inspections.  The optimisation is still mainly based on 

costs but cost components of a different nature are included in the analysis.  Quality 

costs are evaluated under different perspectives; Chang et al. illustrate how to measure 

four types of quality costs in multi-stage manufacturing systems [56].  Menipaz proposes 

a taxonomy of economically based quality control procedures which, among other 

things, analyses the various costs taken into account [6].  The most common quality cost 

model is the PAF model, which include prevention, appraisal and failure costs.  In this 

model, the failure costs are further subdivided into internal and external.  Variants of the 

PAF cost model are also available [57]. 

A considerable number of papers in the literature present the objective to define a 

sampling strategy able to achieve a trade-off between inspection costs and costs related 

to the impact of the sampling strategy on the quality level of the production [58-61].  

Hsu [62] illustrates a hybrid sampling strategy for a multistage production process which 

optimises costs by means of dynamic programming.  Penn and Raviv [9] solve two 
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quality control optimisation problems.  They consist of the minimisation of the 

expected operational costs under a given production rate and the maximisation of the 

expected profit where both the quality control configuration and the production rate are 

to be simultaneously determined.  Inman’s suggestion [21] that quality and process 

design affect each other and should be complementary developed is taken into account 

here.  Using a simulation approach, Alfares includes in the economical optimisation of 

an inspection strategy considerations about safety; in fact, relief valves in a 

petrochemical plant are analysed and the risk cost are introduced in the objective 

function along with the inspection and repair costs [63].  Engi’n adapts Duncan’s 

economic control chart methodology for applications to the weaving industry.  The 

methodology is compared with another optimisation model based on a different 

interpretation of machine efficiency [64].  Ng and Hui define the economical optimum 

for the number of learning actions to be taken in place of routine rectifying actions 

when an out-of-control signal occur [65].  The inspection allocation problem in re-

entrant manufacturing systems is analysed by Rau and Cho [66].  They develop a GA 

approach to maximise the total profit and compare its performance with that of the 

exact approach, based on enumeration, and a previously developed heuristic. 

Many sampling strategies are based on the capacity to exploit the knowledge of the 

production defectivity in conjunction with cost consideration.  This is the case of the 

studies conducted by Oppermann et al. [8, 67] who develop a quality costs model that 

eases the choice of the sampling strategy by comparing the actual defect rate with the 

break even rates determined by the intersection of cost functions associated with 

different strategies. For multi-stage systems a graphical dynamic programming 

procedure is proposed to assist the decision process.  McIntyre et al. [68], Kuo et al. [69] 

and Hall et al. [70] develop sampling strategies for the maximisation of the excursion 

detectability with costs considerations.  Lin et al. [71] focus their attention on the impact 

of the defect capture rate of an inspection technology on excursion costs and show the 

use of a cost analysis program which can provide an optimised sampling strategy based 

on excursion costs and lots at risk.  Jang et al. [72] include yield learning information in 

their wafer inspection strategy model.  Even though more cost intensive in the early 

stages of a product life, the resulting dynamic sampling strategy, in comparison with its 
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corresponding static sampling strategy, achieves a higher rate of yield enhancement and 

a reduction in the average cost per wafer in the long run. 

Inspector fallibility or, in general, inspection errors and their impact on inspection 

costs occupy a big part of quality control literature [73-77].  The dynamic sampling 

strategy suggested by Sheu et al. [78] is aimed to minimise the costs related with 

inspection and is based on a probabilistic model.  Emphasis is given to the impact of 

inspection errors on the optimal inspection policy and total costs.  Ballou and Pazer [79] 

investigate the impact of the inspector fallibility on the inspection strategy in terms of 

both error magnitude and variability and propose a sampling strategy that optimises 

total costs.  They find that fallibility magnitude has more impact on inspection costs and 

configuration than its variability and that it can not be compensated for by an increase 

in the number of inspections.  Moreover, the Type II error is less relevant than the Type 

I error in terms of impact on the sampling strategy.  Type I and Type II errors are 

classification errors which can occur during an inspection.  Type I error refers to the 

mistake of classifying a process under statistical control as out of control due to its 

natural variability.  It is closely related to the classification criteria used during the 

inspection.  In most cases, a comparison between the quality measurement and a control 

interval is operated; however, more complicated criteria can be followed.  For instance, 

when control charts are used as quality tools, the Western Electric Company (WECO) 

rules can be implemented.  These rules take into consideration stricter limits than the 

common 3σ control limits and pay attention to the quality measure patterns in order to 

detect in advance eventual quality deteriorations of the process.  Control charts which 

adopt WECO rules are characterised by an enhanced sensitivity to quality issues with 

respect to the charts exclusively based on 3σ control limits.  The main drawback of the 

use of WECO rules consists of the generation of more frequent false alarms, which is 

extremely inconvenient in terms of time and resources needed for restoring the 

production.  Type II error occurs when an item processed during an out of control 

scenario is classified as a good quality item because its characteristics are accidentally 

within the control limits.  Lee and Unnikrishnan [80] develop and compare a 

mathematical model and three heuristic solution methods for the optimisation of 

sampling plans based on costs and inspection error with inspection capacity and time 
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constraints for a multi-stage, multi-product manufacturing system.  Bendavid and Herer 

try to find an optimal inspection/disposition policy which minimises the expected 

quality costs associated with classification errors of uninspected items.  In order to 

overcome the limited applicability of the dynamic programming solution proposed, due 

to its computational complexity, they also develop four heuristics and compare their 

respective performances [81].  Wang incorporates the effects of Type I and Type II 

errors in an off-line quality control strategy optimisation model for the minimisation of 

expected total cost for a batch production [82]. 

Other topics taken into account for the optimisation of a sampling strategy involve 

availability constraints and congestion problems at any point in the production system.  

Sakurai, Fujii and Kahiara [83] base their optimisation on the balance between yield and 

tool availability.  Lee et al. [84] propose a dynamic sampling strategy which would enable 

the optimisation of the inspection station utilisation by tuning the sampling frequency 

and the cycle time of inspections according to the length of the queue upstream the 

inspection.  Chen et al. [85] propose a near optimal allocation inspection model for a 

multi-stage production system with limited capacity and congestion problems for the 

inspection station.  A hybrid sequencing policy is considered ideal for a faster detection 

of yield problems and congestion costs reductions. 

The use of simulation models and several optimisation techniques is obtaining an 

ever increasing interest.  Heredia-Langner et al. [50] uses genetic algorithms and a 

desirability function to solve the sampling strategy optimisation problem in a multi-stage 

manufacturing system.  The combination of the search and expansion mechanisms used 

in the solution of the problem is found to affect the results.  Van Volsem et al. [47] 

propose a fusion between a discrete event simulation and an Evolutionary Algorithm in 

order to model a multi-stage manufacturing system, calculate the costs associated with a 

sampling strategy and optimise the sampling parameters in terms of inspection location, 

type and inspection limits.  The objective is to minimise the total inspection costs for a 

given expected proportion of defective items at each stage.  Sarhangian et al. [48] solve 

the same type of problem by means of simulation modelling and a search algorithm 

which combine Tabu search, Scatter Search and Neural Networks.  Vaghefi and 

Sarhangian revise the model in [48] by including the effect of misclassification errors; 



 CHAPTER II  QUALITY CONTROL 

20 
 

they also conduct a sensitivity analysis to investigate the impact of the distribution of the 

proportion of defectives and the magnitude of Type I and II errors on the optimal 

inspection plan [49]. 

Chan and Spedding [7] have recourse to the combination of simulation modelling, a 

Neural Network Metamodel, Design of Experiments and Response Surface 

Methodology to analyse the propagation of defectives in the system.  Their model can 

be used as a decision support tool for optimising the process control configuration of 

the manufacturing system in terms of quality and productivity at the lowest costs.   

2.2.3 Quality and production system design 

In direct contrast to conventional wisdom, which held that a product’s quality 

depended on its design more than its production, Inman et al. [21] highlighted the 

feeling that production system design issues could impact quality in a more significant 

manner than theretofore recognised in the literature.  In fact, only a few studies 

mentioned the eventual advantages and the opportunities deriving from considering 

quality and production system design all together [86], even from a performance 

evaluation perspective [87].  While investigating the impact of Flexible Manufacturing 

Systems (FMS) on productivity and quality, Chen and Adam [87] conducted first a 

separate analysis and came to the conclusion that a measure quality in terms of 

productivity and investments would prove more meaningful and comprehensive.  Their 

suggestion is based on the consideration that an increase in output, usually guaranteed 

by FMS, has no economic value if it results in a reduced production quality.  More 

generally, Mapes et al. suggest that the correlation between different performances in a 

company is not necessarily negative; trade-off strategies do not characterise the most 

successful companies present in their survey [88]. 

Inman et al. [21] systematically studied the different elements of production system 

design which interact with the quality performances of a system.  That resulted in the 

identification of twenty-one areas for research opportunity in the field of production 

systems design for quality and a summary of relevant research in each area. In the 

intervening period, the intersection between quality and productivity has been 
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recognised as an important research topic as decisions taken in one often impact 

adversely on the other [28, 86, 89, 90].  The majority of the papers illustrated in the rest 

of this section explicitly find motivation from Inman’s invitation. 

Gershwin and Schick [89] provided a taxonomy of quality and quantity issues in 

manufacturing systems in order to assist researchers entering this emerging research 

field, which has proved useful in informing the research presented in this project.  For 

two-machine systems in which the first machine is impacted by quality failures and 

inspection occurs only at the second machine, analytical results of Queuing Network 

Models (QNM) have shown that in the presence of quality information feedback there 

are cases when the effective production rate first increases and then decreases with 

increasing buffer sizes [22].  When the impact of reworking defects produced by stations 

subject to multiple out of control signals is considered for two-machine systems, it has 

been shown that there is a buffer level that optimises the effective production rate.  

Additionally, for these systems it has been demonstrated that improving the failure rate 

of the first machine does not increase the effective production rate when the buffer 

level is greater than the optimal one [24].  Similar results were obtained for longer 

production lines monitored by SPC off-line inspections [25].  A QNM decomposition 

method for simplifying the analysis of long lines with quality and operational failures by 

transforming them into long lines with operational failures only has been presented in 

the literature and comparison with simulations was favourable [23].  In a paper by 

Carcano and Portioli-Staudacher, the problem of allocating assembly tasks and 

inspection task in an assembly line is simultaneously solved in a model to balance the 

line with minimum total costs of quality and installation.  The model was tested against 

two benchmark serial models that pursued the same objectives; the concurrent model 

always achieves better performances than the two benchmark models [91]. 

When the impact of production, sales and quality policy development are considered, 

numerical results indicate that coordinated policies will achieve higher profits than 

individually deployed or loosely coordinated policies [86, 90].  Inspection frequency and 

total production run time are simultaneously considered as decision variables in the 

model developed by Yu and Yu for the profit optimisation of a vendor [92].  Issues 

arising from the impact of quality decisions on production lot sizing and thereby the 
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performance of the manufacturing system in terms of productivity related performance 

measures has received some attention in the literature of late.  In particular, when 

process deterioration or machine breakdown are included in the analysis of 

manufacturing systems, the optimal lot size is not necessarily greater than that obtained 

from the classical economic manufacturing quantity model [93-95].  Moreover, the 

presence of preventive maintenance consistently reduces the costs of the manufacturing 

system [93].  The analysis illustrated in [94] expands the analysis reported in [93] by 

including the effects of inspection on production lot sizing decisions.  Sarker, Jamal and 

Mondal [96] compare two different rework policies in terms of sensitivity to the 

production defect level and provide suggestions on which of those is preferable based 

on production and quality costs considerations.  The ratio between the inspection cost 

and the savings when the inspected item is defective drives the choice of the optimal 

inspection policy to be applied along with the definition of the optimal production run 

length in the model developed by Wang [97].  When the restoration cost following a 

production failure are higher than the defective cost the optimal production run length 

proves to be longer than the classical length. 

Using field experiment studies, Erdinç and Yeow generalise to labour intensive 

manufacturing processes the cause-effect relationship between ergonomics and quality 

previously analysed within limited field settings [27] .  They find that ergonomics issues 

facilitate human fallibility and, as a consequence, can lead to a reduction of production 

quality.  They also show how to use quality measurements to draw inference on the 

efficacy of ergonomics improvement interventions implemented in a plant.  Huang and 

Inman investigate the impact of plant flexibility/build complexity on quality by carrying 

out a comparative study [98].  Two assembly lines with different levels of task 

complexity were considered and the performance of the operators in terms of product 

quality were analysed.  At the end of their analysis, they suggest that complexity should 

be avoided if not rewarded by the marketplace or “embraced with countermeasures” 

whenever positively recognised by the customers.  Blumenfeld and Inman demonstrate 

that quality and throughput suffer from absenteeism by using the results of queuing 

theory based models [29].  Different models are developed for assembly lines with and 
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without Andon.  Random absenteeism proves to be more deleterious than constant 

absenteeism in terms of both quality and throughput. 

The research, just discussed, primarily addresses research opportunities 9, 11 and 14 

(rework policies, buffer size & location and production lot size, respectively) identified 

by Inman et al. [21] on the intersection of productivity and quality.  Research 

opportunity 15 (flexibility) is also addressed in [30].  In research opportunity 4 “Line or 

Machine Speed”, Inman et al. [21] state that “Further research on how line or machine speed 

impacts quality would be very valuable to industry”. In their summary of research to-date on 

this topic they focus on the impact of reducing the time to perform tasks at manual or 

automated stations on product quality and the impact of task complexity on the trade-

offs between throughput and quality performance.  On this subject, Boring and 

Gertman [99] highlight the fundamental role played by the available time to perform a 

task on human reliability, which obviously affects the delivered quality.  Along with the 

temporal factor, different factors contributing to human error are introduced and their 

impact on the time needed to correctly perform a task is in turn analysed.  In the 

development of a human reliability model based on the multi-attribute utility analysis, 

ElMaraghy et al. [100] include time pressure as an attribute contributing to human 

proneness to errors since it increases the stress level of a task in terms of the available 

time for its completion.  Assuming a relationship between quality and speed based on 

Taylor’s tool life formula, Owen and Blumenfeld analyse the effects of the operating 

speed on the production throughput performance in the context of processing items in 

a manufacturing plant.  For three different quality policy scenarios, the models 

developed show that there exists a trade-off between quality and speed which maximise 

the production throughput.  Other quality-speed relationships, not based on Taylor’s 

formula, were explored; similar results were obtained [31]. 

Although, as stated by their authors, the studies reported in [27] and [29] find 

inspiration from Inman’s paper they do not directly refer to any of the research 

opportunities identified by Inman.  This confirms that the twenty-one research areas 

described in [21] do not exhaustively describe the variegated aspects of production 

system design that mutually interact with quality issues. 
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Inams’s attempt to promote a conjoint analysis of quality and production design 

related issues can be considered as a specific application of the more general 

considerations by Ackoff [101] on the need for viewing problems “from as many 

perspectives as possible”.  Ackoff suggests that, when managing problems in any type of 

system, a trans-disciplinary approach should be taken in order to avoid to reduce the 

nature of the problem to the point of view of people operating in the disciplinary 

category where the problem is initially placed.  Indeed, “disciplinary categories reveal nothing 

about the nature of the problems placed in them, but they do tell us about the nature of those who place 

them there” [101]. 

2.2.4 Quality control and risk 

When quality control is analysed from the quality risk perspective, the most common 

results recall the well known concepts of customer’s risk and manufacturer’s risk, used 

for control chart design.  In this case, the quality risk is conceived as the risk determined 

by misclassification errors which can occur during the inspection process.  These errors 

expose the manufacturer to the risk of incurring in extra failure costs, either internal or 

external.  The Average Run Length (ARL) and the Average Time to Signal (ATS) 

represent other two quality risk performance measures commonly used in SPC.  ARL 

and ATS measure the expected number of samples and time to observe an out of 

control signal, respectively, for both the cases when the process is in-control and out-of-

control.  ARL and ATS can be considered related to the performance measures 

investigated in this research, which are the number of items between consecutive 

samples and the time between samples.  The idea in common is the quantification of the 

risk associated with a sampling strategy in terms of both number of items and time.  The 

main difference consists of the perspective they consider.  ARL and ATS refer to alarm 

signals generated by control charts; the measures analysed here simply refer to 

successive events with a non-negative connotation. 

From this point of view, the number of consecutive unsampled items and, above all, 

the time between samples recall the nature of the variates that are monitored in a newly 

defined family of control charts.  These control charts are based on Time Between 

Events (TBE), where “time” and “event” can have different interpretations according to 
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the application areas.  Chan et al. [102], who introduced this chart in 2000 as the 

Cumulative Quality Control chart (CQC-chart), refer to the monitored variate as Q and 

intend it as the number of units required to observe exactly one defect.  The flowchart 

in Figure 2.2 describes the procedure to be followed for the development of a CQC-

chart.  However, in the case study presented in [102], Q is the observed time between 

failures, suggesting the versatility of the chart to be applied in reliability studies, as in 

[103], or in any situation where the random event under investigation can be modelled 

by a homogeneous Poisson process. 

 
FIGURE 2.2  FLOWCHART FOR THE IMPLEMENTATION OF THE CQC-CHART [102]. 
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The hypothesis of a Poisson process is necessary to guarantee that TBE follows an 

exponential distribution.  The main advantage of this chart is its efficacy in monitoring 

high-yielded processes, since unlike the c- and u-charts, which are its classical 

corresponding charts, it does not react to noises so frequently.  A standardisation of the 

CQC-chart has been proposed by Chan et al. [104]; this standardised chart plots the 

cumulative probability of Q and can be also used for standardising the cumulative count 

control chart, which unlike the CQC-chart monitors TBE geometrically distributed, 

generated by Bernoulli processes.  Zhang et al. [105] introduce economic considerations 

in the design of the CQC-chart and define two different approaches for the 

maximisation of the expected profit per unit time: the pure economic design approach 

and the economic-statistical design approach, which also considers constraints relative 

to ATSs.  Finally, Shamsuzzan et al. [106] generalise the use of this control chart to 

multistage manufacturing systems, characterised by multiple streams.  They develop a 

model for the optimisation design of the integrated control chart system, which tries to 

achieve a proper allocation of Type I error among the individual charts based on the 

values of the affecting parameters. 

2.3 Flow of material 

The underlying complexities that govern a multi-stage serial-parallel system represent 

a fundamental obstacle to a straightforward investigation on the effectiveness of quality 

control strategies used to monitor the production process [11].  Although very common 

in the industrial world this type of systems has been object of a limited number of 

studies [11].  The majority of literature in the field of quality control of complex 

manufacturing systems dwells on the analysis of inspection allocation and sampling 

frequency optimisation for multi-stage serial systems [47-50, 107].  Due to productivity 

and quality balance requirements, several machines are often assigned to a production 

step and complexities in the control of production quality arise.  When parallel machines 

operate in a serial line, the dynamics relative to the propagation of defects are complex 

to study.  Huang et al. developed a stream of variation model to support the 

dimensional control in multi-stage serial-parallel systems [12].  They extend the state 

space modelling approach for a single process route to a serial-parallel system.  They 
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also prove that the application of reduction techniques for the elimination of redundant 

input and output variables make the application of the approach simpler without 

affecting its capability to capture variation streams.  A state-space model is also used by 

Jin et al. [11] to generalise the chart allocation strategy they developed for multi-stage 

serial systems [108] to parallel-serial systems.  The state-space model is adapted to 

include the three mechanisms which determine mean shift propagation through the 

multiple stages of production.  These mechanisms consist of the coincidence, 

divergence and convergence correspondence relationships between machines operating 

in consecutive stations.  The chart allocation strategy developed is applicable to any 

charting scheme and includes consideration on ARL.  The complex interactions among 

key product characteristics at different stages of a serial-parallel system are analysed by 

Zeng and Zhou [13].  They use a chain graph building technique that, for each 

production stage, takes the process physical layout and the relationship found for the 

previous stages into consideration.  Under the assumption that each critical quality 

characteristic is monitored at each production step, Lam et al. [109] Wu and 

Shamsuzzaman [110] and Shamsuzzaman et al. [106] optimise an integrated control 

chart system by allocating the detection power of the control chart system between and 

within the stages for �� charts, ��-S charts and time between events charts, respectively. 

The analysis of the characteristics of the flow of material in a complex manufacturing 

system is crucial to the understanding of the mechanism which transforms the 

properties of a sampling strategy along the different stages of a production line.  As a 

result of inspection economies, in most cases, the measurements taken in a particular 

production step are supposed to provide information about the quality status of the 

entire segment.  This production step usually coincides with the last step in the segment 

or, in some cases, it is chosen from among the several steps which constitute the 

segment for its relative importance in comparison with the others in terms of costs or 

value added to the processed items.  Due to different process flows and routing policies, 

the cycle time through each segment can vary from item to item; resulting in a disorder 

effect in the sequence of items between the different process steps. As a consequence, 

the sequence of measurements obtained in the sampling step might contain misleading 

information about the quality status of steps upstream or downstream of the sampling 
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station if the dynamics of the flow of material are ignored.  Along with the sequence 

disorder effect, another phenomenon related to the evolution of the flow is relevant in 

multi-stage serial-parallel manufacturing systems; namely the multiple stream effect.  

Both these effects shall be illustrated in the following sections. 

2.3.1 Sequence disorder effect 

For most manufacturing systems, randomness seems to be the word which best 

describes time related data [111].  Processing times vary not only when different 

products are manufactured at a particular machine.  Variability is intrinsic to most 

processes and it is usually considered an element to fight in order to ease the control of 

production and meet quality specifications [4, 5].  For highly automated processes, 

processing time variability is quite low, and deterministic values do not constitute a poor 

approximation if a model of the system is developed [112].  Nonetheless, randomness is 

still present in the system.  No matter which queuing discipline is adopted, queuing 

times are very prone to be variable.  In fact, they are highly influenced by machine and 

resource availability which, in turn, are describable in terms of a random temporal 

variable.  Finally, the item inter-arrival time at each step of the segment is still 

characterised by randomness [111]. 

The reduction of variability at any level of production represents a fundamental 

target in any manufacturing system and not only for quality management reasons [113].  

In fact, the Six Sigma objective of reducing the process variance so that the most of the 

items produced be within the six standard deviations of the mean of product 

specifications, has proved to provide benefits in terms of processing time variability 

reduction and cycle time reduction as well [114].  The corruptive impact of variability 

rather than mean values on system performance is documented for both the processing 

times [5] and machine availability [4].  The literature concerning the efforts to measure 

and reduce variability in a manufacturing system is very wide and goes beyond the scope 

of this study.  However, it is worth noting that among the negative impacts that 

variability has in a manufacturing system there is one which relevantly affects the 

problem of assessing the risk associated with a sampling strategy; namely the sequence 

disorder effect [18]. 
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The sequence disorder effect simply represents the variation in the sequence with 

which the processed items move out from consecutive stations of a production 

segment.  Its impact on the efficacy of a sampling strategy is not banal.  In fact, when 

only one step is chosen as a sampling station, some difficulties may arise in the early 

detection of out of control production in steps different from the sampling ones, since 

the sequence disorder effect represents an obstacle to the clear identification of a 

negative trend pattern because of the data order change.  In order to quantify the 

sequence disorder effect, its magnitude can be calculated as follows.  Assume that �� is 

the quality characteristic monitored at the sampling station and ���	
 the item data 

sequence at the sampling station, with i denoting the item output sequence index.  

When the same data are referred to any other step, s, in the production line, the data 

have to be reordered in order to represent the actual data sequence at that step.  If ����
 

represents the reordered data sequence with k being the item sequence label at step s, 

the sequence disorder magnitude of an item, at the step s, can be defined as: 

 	 � � � � (2.1) 

This concept is exemplified in Figure 2.3. 
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FIGURE 2.3  DEFINITION OF SEQUENCE DISORDER MAGNITUDE. 
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An overall measure of the sequence disorder magnitude at the step s can be evaluated as 

the range of the items sequence disorder magnitude: 

 �� � ���	�|	|
. (2.2) 

For the case reported in Figure 2.3 Rs is equal to the absolute value of D19, that is 3; 

this means that between step s and the sampling step, the system has experienced a 

variation of item sequence that has involved a maximum of three items. 

Only a few studies are available on the impact of the sequence disorder effect on the 

performances of a quality control plan.  The methods suggested to deal with this effect 

can be summarised as:  

− the implementation of data sequence trace back before any statistical analysis 

[16]; 

− knowledge-based practices [14]; 

− the use of several statistics in the control chart system at the sampling steps [10]; 

− the combination of control charts with variance decomposition as suggested by 

Montijn-Dorgelo and ter Horst [15]  for the distinction of different types of 

variation in the semiconductor industry; 

− the recourse to exponentially weighted moving average (EWMA) control charts 

with an appropriate weighting factor [17]; 

− the fusion of classical SPC approaches with data mining techniques, such as 

predictive analytics [115]. 

2.3.2 Multiple stream effect 

Another complication factor in the analysis of the flow of material in a 

manufacturing system can be represented by the multiple stream effect.  This effect is 

due to the presence of a different number of machines which can perform the same 

operation at a specific step.  In the absence of any predefined routing policy which 

would force items to follow a particular path, assigning an item to a machine in the 

station is usually dictated by machine availability; that is an item, not necessarily the one 

waiting for the longest time in the buffer, is routed to the first available machine in the 
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station.  This usually results in the randomness in the routing patterns; in fact, it often 

happens that the distribution describing the destination machine from any machine of 

the immediately previous station is uniform (see Section 3.4.4). 

Since the multiple-stream effect introduces more variability in the system, it can be 

seen as a cause of the sequence disorder [19] and creates remarkable complexity in the 

phase of tracing back data to the original source of the quality issue.  Suppose that a 

machine m out of the set of identical and independent M machines of a station shifts to 

an out of control mode.  All the items processed by that machine will carry the 

information about the process shift.  However, this information will be spread among 

the different machines which populate the following stations and it will be difficult to 

associate the out of control signals with the exact machine which has generated them.  

For the machines in the stations upstream or downstream of the sampling station, there 

is not much difference if the sampling is carried out at a machine level or at a station 

level.  However, a sampling strategy implemented at a machine level would avoid the 

confusing effects of the multiple streams at least for the machines in the sampling 

station.  This last sampling procedure is the most widely adopted in the statistical tools 

developed for the control of multiple stream processes. 

A control procedure for a multiple stream process has a double objective: 

− detecting target shifts for one of the streams, assignable causes are affecting only 

one stream; 

− realising when the overall process is out of control, assignable causes interest the 

overall process. 

There are three approaches historically available to monitor multiple steam processes 

[34]:  

− The use of one chart for each stream.  The main advantage of this approach is 

to keep the information about the different streams separate so that a better 

insight in the process performance is obtained.  Moreover, the use of one chart 

for each stream allows a solution to be derived to the problem of differences in 

centring, which increases the number of false alarms, and enhance the ability of 
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distinguish between assignable causes affecting one stream or all the streams. 

The limit of this approach is that for very large systems the number of charts to 

manage might prove prohibitive to their application; 

− The use of a group chart.  The information coming from the different streams is 

plotted on one chart; for the ��-chart the minimum and maximum average for all 

the streams are plotted with an indication of the stream they are associated with. 

For the R-chart only the maximum value over all the stream ranges is 

considered.  The group chart approach is more convenient than the previous 

one in case there is a high correlation between the streams; that means the 

behaviour of the different streams is very similar.  However, with this method 

the insight into the process is lower and the detection capability for target shifts 

decreases if more than one stream changes at the same time; 

− The Mortell and Runger approach, which is a variant of the group chart 

approach [116].  The main difference is that on the ��- and R-charts overall 

statistics are plotted rather than values relative to each single stream.  The 

insight into the process is even lower and more investigations could be needed if 

an out of control signal is detected. 

The most recent contributions to the multiple stream process control procedure 

include the development of new statistics to be monitored in place of the traditional 

ones [117], the integration of more information in the definition of the control limits 

[118], different sampling strategies [119], economic considerations [106].  Liu et al. [117] 

introduce four control charts statistics, two based on the F-test and the other two based 

on the likelihood test, in order to monitor multiple stream processes and distinguish 

between assignable causes which impact on the overall process and causes which only 

affect one stream.  The main advantage of charts using these statistics is the fact that no 

historical information is needed.  A peculiar positive note of the charts based on the 

likelihood test is the definition of a specific alternative hypothesis which improves the 

detection performance of the approach when the observed process changes match the 

ones which the hypothesis is based on.  Contrary to common believe that the use of one 

chart for each stream could be computationally expensive, Meneces et al. [118] argue 

that the availability of powerful computer resources makes the running of several charts 
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much easier than the process of decoding and tracing back the information provided by 

a sample.  They suggest that during the definition of the control limits of the different 

charts, the number of streams and the correlation between them should be taken into 

account.  They analyse the sensitivity .of ARL to the number of stream and the degree 

of correlation between the streams and find that low correlation reduces ARL when 

special causes impact all the streams whilst increases ARL when a single stream goes out 

of control.  In the case where a large number of independent streams are present in the 

system and the lack of full automation introduces difficulties in monitoring each singular 

stream, Lanning et al. [119] propose an adaptive fractional sampling approach, which 

consists of monitoring only a fraction of the streams and increasing the sample size, that 

is the number of sampled streams, only when further information is needed to establish 

suspected out of control situations.  It is noted that an R-chart could join a ��-chart 

more for improving the detection of differences in the various streams rather than 

monitoring the variability of the overall process.  

2.3.3 Sequence disorder and multiple stream effects 

Since, as stated before, the multiple stream effect can be considered one of the 

causes which generate disorder in the system, it is obvious that the sequence disorder 

and the multiple stream effects coexist in a complex manufacturing environment.  Their 

combination determines relevant complexities in the understanding of the information 

provided by quality control procedures.   

The problem of dealing with both the sequence-disorder and the multiple-stream 

effects in a semiconductor manufacturing environment monitored by end-of-line 

measurements has been investigated by Fan et al. [10, 17-20].  In [17] and [18], the 

authors propose the use of an EWMA control chart to smooth out the sequence-

disorder effect and detect abnormal trends at any process step.  Based on the range of 

disorder between the step to be monitored and the end-of-line, the number of machines 

in the step and the assumed possible process shift, several possible combinations of the 

chart parameters are given.  The parameters which match the requirements for both the 

false alarm rate and the quality failure detection speed should be chosen.  The main 
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reason for the use of the EWMA relies on the fact that a proper choice of the weighting 

factor, which is related to the moving average size, allows tuning the relevance of the 

most recent data.  In an environment characterised by a relevant sequence-disorder less 

importance should be given to recent data, which means it is necessary to operate with a 

big moving average size, even though a reduction of the detecting speed is obtained.  

The combined use of EWMA and Shewhart control charts [10] and the fusion of 

EWMA, exponentially weighted moving Cpk  (EWMC) and Shewhart control charts [19, 

20] are suggested to maximise the detection speed in every condition of process shift.  

In fact, the EWMA chart outperforms in the case of a small shift (<1.5σ), the EWMC is 

the most suitable for the detection of median shifts (1.5 σ – 2.5 σ) and the Shewart chart 

should detect more quickly big process shifts (>3 σ).  With the SHEWMA (combined 

Shewhart and EWMA chart) approach, the detection time for small target shifts is 

reduced by at least 10% in comparison with the combined approach Shewhart-EWMA 

chart without considering the multiple stream and sequence disorder effects [10].  In 

turn, the approach considering the EWMC chart as well [19, 20] outperforms the 

Shewhart-EWMA [10] methodology in terms of detection speed. 

It is worth noting that, despite being cited, the problem of the disorder has not been 

directly addressed by Fan et al. in their papers; rather methods to smooth its presence 

out have been proposed.  Moreover, the end-of-line measurements are taken on a lot-

by-lot basis, and the complexity arising from adding the effect of a sampling strategy is 

not considered. 

2.4 Conclusions 

The literature reviewed in this chapter focused on the research areas relevant to this 

research work.  The analysis of the contributions to the areas of quality control, with 

particular attention to its relationship with risk and production system design, and 

production flow dynamics in complex manufacturing environments highlighted 

fundamental gaps in research that this study will contribute to fill.   

The large number of papers dealing with the optimisation of quality control strategies 

in simply structured manufacturing systems makes the lack of attention paid by 



 CHAPTER II  CONCLUSIONS 

35 
 

researchers to the analysis of quality control in complex manufacturing systems even 

more evident.  Investigations on the effectiveness of quality control policies in multi-

stage serial-parallel manufacturing systems are limited to a few contributions focusing 

on the development of models able to capture the inter-relation of quality characteristics 

and the propagation of defects throughout the different production stages.  

Contributions on the optimisation of integrated control chart systems in multi-stage 

serial-parallel production environments are also available.  Among these, the analyses 

conducted by Fan et al. [10, 17, 20] provide a fundamental reference for a systematic 

definition of the flow dynamics that complicate the quality information analysis and 

contribute to increase the quality risk in multi-stage serial-parallel systems.  These 

dynamics, which can be synthesised in the sequence disorder and the multiple stream 

effects, originate from the randomness governing complex manufacturing 

environments.  The deleterious effects of randomness determine the lack of control of 

the regularity of the sampling strategy implemented in a multi-stage serial-parallel system 

and amplify the risk of not monitoring every single machine operating in it.  This risk is 

the key element investigated here. 

The review of the literature on the quality risk (Section 2.2.4) highlighted the great 

attention paid by researchers to the analysis of risk measures related to the efficacy of 

the quality control system in signalling suspected quality failures (ARL and ATS).  On 

the contrary, very few studies are available in the literature when the quality risk is 

measured in terms of the efficacy of the quality control system in monitoring all the 

processes/machines in the system with the desired regularity.  This concept of quality 

risk, which is adopted in this research, proves particularly interesting since it logically 

precedes the concept of quality risk on which ARL and ATS are based.  It also 

promotes a more proactive attitude towards quality than the concepts focused on quality 

failure detection. 

The analysis of the quality risk related performance measures illustrated in this thesis 

will not be confined to quality considerations.  It will expand its domain to include the 

effects of production system design decisions.  Only lately, the interaction between 

quality and production system design has attracted the attention of researchers.  Several 

research opportunities in this hybrid research field have been identified [21] and the 
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number of papers focusing on the mutual relationship between quality and production 

design issues, as buffer location, rework policies and batch size, is increasing.  

Ergonomics, workers absenteeism and plant complexity have also been investigated as 

factors impacting the level of production quality.  The negative effects of line speed on 

the probability of quality defects have been described by Owen et al. [31].  In their 

analysis, the line speed is intended as the inverse of processing times.  The non-

exhaustive nature of the investigation proposed in [21] and the fuzzy boundaries of the 

research opportunities identified encourage to extend the concept of line speed to the 

inverse of cycle times, so that the effects of queuing time variation can be included.  

Under these premises, the analysis illustrated in Chapter IV will contribute to the 

investigation of the mutual impact of quality control and production system design 

issues from a novel perspective. 
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Chapter III 

System description and modelling 

3  

3.1 Introduction 

As evidenced in the previous literature review chapter there is a requirement to 

develop a fundamental understanding of the principle influencers on the risk associated 

with sampling strategies in complex manufacturing systems.  When a sampling strategy 

has to be defined, the prediction of its performance and the understanding of the 

impact that some control parameters have on it are highly desirable. 

In this chapter, the simulation model used to carry out an analysis of the impact of 

production systems design and quality control related parameters on two quality risk 

related performance measures will be described in detail.  The performance measures 

considered support the quantification of the risk of not monitoring the quality status of 

the machines which populate a production segment and, as a consequence, the status of 

the items processed by them. 

The problem investigated here was inspired by an industrial case.  The system initially 

analysed represents a segment of a wider production line which can be classified as a 

multi-product, multi-stage, parallel manufacturing system.  Based on that segment a 

simulation model was developed.  At a later stage, modifications to the system 

configuration were also considered in order to analyse the impact on the performance 

measures of some variables related with the system configuration, such as the number 

of stations in the segment and the number of machines in a station.  In order to abstract 
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the conclusions drawn for the simulated systems to more general scenarios, a basic 

model, consisting of only two stations and a buffer, was also developed.  The simulation 

results obtained from this basic simulation model proved useful for the investigation on 

the validity domain of the stochastic model developed to predict the distribution of the 

number of unsampled items in the non-sampling stations.  In particular, the new set of 

simulation results supported a better understanding of the hypotheses required for the 

application of the stochastic model developed.  For these reasons, the basic simulation 

model and its output results will be presented in chapter V, after the introduction of the 

stochastic model developed for the non-sampling station case.  

Before describing the development of the simulation model used for this analysis, a 

brief general introduction on modelling issues will be presented.  This is primarily 

intended to highlight the merits and the limits of the simulation approach in comparison 

with the analytical approach and hence, justify the choice to complete this research with 

the development of analytical models. 

3.2 Modelling 

In order to find the solution to a problem, the system which the problem refers to 

has to be modelled with a detail level sufficient to guarantee the validity of the solution 

for the analysis purpose.  The system includes all the entities and elements that interact 

together for the accomplishment of an objective [120].  The constraints and the rules 

which regulate the system should also be integral part of the model if it is aimed to 

represent reality as good as possible.  Assumptions are usually made during the model 

development and might prove very useful for simplifying the solution procedures or 

making the solution possible. 

Modelling can be used for different purposes [121].  In analysis, it enables the 

generation of the output corresponding with a system configuration and a given set of 

inputs.  In optimisation it can be used to optimise the objective function.  A model and 

some solution procedures may support the investigation of the system behaviour and 

help in the comparison of alternative systems. 



 CHAPTER III MODELLING 

39 
 

Two big families of modelling techniques proved particularly useful aids in this study: 

the analytical approaches and the simulation approaches.  The choice of one or the 

other approach is usually dictated by several factors, among which the nature of the 

problem, the complexity of both the problem and the system, the availability and power 

of solvers represent the crucial factors.   

The simulation approach, with its merits and limits, will be illustrated in the next 

section.  Some applications on the research field of quality control, that is the area 

where this approach has proved to be useful in this study will be introduced in section 

3.2.1.2.  Consideration on the analytical approaches will be presented in Section 5.1.1 

where the analytical model will be introduced. 

3.2.1 Simulation 

As Shannon [122] states, “simulation is the next best thing to observing a real system in 

operation since it allows to study the situation even though we are unable to experiment directly with the 

real system”.  The reasons why a system would not allow a direct exploration of its 

behaviour under certain hypothesis can be different; it may not exist yet or its 

manipulation might prove too expensive or time consuming.  While the complexity of a 

system might represent a constraint for the possibility to be modelled by means of 

mathematical methods, such as algebra, calculus or probability theory, there is almost no 

limitation to the types of system that can be simulated [121].  A proof of that is the 

broadness of research areas where simulation has been successfully applied; these areas 

range from manufacturing to ecology and environmental issues, from business to 

biosciences. 

Among the different simulation approaches available, the discrete event simulation 

approach has been chosen to conduct part of the analysis presented here.  With this 

technique, the evolution of a system over time is modelled so that changes of its state 

variables are allowed at discrete points in time.  At these points, some events occur and, 

as a consequence, the state of the system may change.  The procedure to be followed 

for developing a simulation model is almost standardised [111, 121, 122].  The different 

steps will be briefly illustrated since they constitute the methodological structure which 
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will be retraced later on in this chapter, when the development of the simulation model 

is presented.   

The problem definition represents the very first thing to be carefully defined; a 

comprehensive knowledge of the project scope is crucial since the purpose of the 

analysis usually has relevant implications on the model building and experimental design 

phases.  After making sure that all the resources needed for the whole simulation 

process are available, the system should be defined in terms of the elements to be 

included in the model and the detail level.  That includes the assessment of the 

simplifying assumptions that can be made without reducing the significance of the 

model for the analysis purposes.  Then the conceptual model can be formulated and a 

preliminary experimental design developed; in this phase, the systems characteristics to 

be measured should be clearly defined.  The collection of the input data, with their 

eventual conversion into theoretical distributions, constitutes the next step of the 

simulation process. Once the model is built in a simulation language, its verification and 

validation should be carried out.  Verification is a sort of rigorous debugging that aims 

to verify if the computer program effectively implements the features of the conceptual 

model; on the contrary, validation seeks to show that the model developed validly 

reproduces the behaviour of the real system.  Different techniques of verification and 

validation are available [123] and should be chosen based on the model characteristics.  

At this point the experimental phase can start and the simulation process can end with 

the analysis and documentation of the results. 

3.2.1.1 Advantages and limits of simulation  

The possibility of modelling even very complex systems with a relevant detail level 

represents the main advantage of simulation.  In fact, in many cases, simulation 

represents the only technique available for solving very complex problems.  For these 

types of problems, the analytical approach might provide the basic equations to model 

the system, but their complexity, usually caused by the presence of randomness, might 

constitute an insurmountable obstacle for gaining either numerical or qualitative 

solutions.  Moreover, if the system does not exist yet, simulation can represent a cost 

effective way to explore its possible future performances; that still holds for existing 
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systems, when the analysts want to assess the impact of new policies and procedures 

without interfering with the current operations. 

If the simulation approach is used, specific constraints and different rules governing 

the modelled system can be also incorporated in the model, so allowing a realistic 

reproduction of the system behaviour.  There is no need to force the assumptions on 

which the system is based in order to keep the system modelling and the solution 

procedure simple or at least feasible.  

The fact that the simulation models usually present a stochastic nature enables a 

proper analysis of a system afflicted by randomness in any of its events or elements 

[124].  Analytical models are characterised by a deterministic relationship between input 

and output parameters.  If the model is applied to the same set of input parameters, it 

produces the exact same response, no matter how many times the solution procedure is 

applied.  The intrinsic randomness on which a simulation model is based generates 

different results even when the input parameters are kept constant. 

The availability of a good simulation model can offer a better insight to the system 

behaviour and help in the identification of the variables most affecting the system 

performance.  That might, in turn, prove useful for the optimisation of the system 

performances.  In fact, the versatility of simulation models and their capacity of 

generating outputs relative to a wide input domain make them suitable for being 

integrated with optimisation techniques.  From an optimisation viewpoint, a simulation 

model can be thought of as a function of an unknown form that transforms input 

parameters into output performance measures [111].  Considering a simulation model as 

a function has enabled the use of a family of approaches to optimise simulations based 

on response surfaces and metamodels [125].  A response surface is a numerical 

representation of the unknown function; on the contrary, a metamodel is an algebraic 

approximation of the function itself.  Once the function to be optimised is obtained, 

either in numerical or algebraic form, classical optimisation techniques, such as the 

random search, the stochastic approximation, gradient-based approaches, response 

surface methodology, etc., can be applied and an optimal solution can be found.   
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However, these classical approaches to optimisation prove to be technically 

sophisticated from the user perspective and they often require a considerable amount of 

computer time [125].  Nowadays, most simulation software has recourse to a 

metaheuristic approach for simulation optimisation.  This approach considers the 

simulation model as a black box which produces output responses when input 

parameters are provided.  The metaheuristic approach bases the choice of the input 

parameters on the results obtained by the previous simulations in a sort of evolutionary 

methodology.  Over the classical approaches, the evolutionary methodology presents 

the advantage to explore larger domains of the solution space with a fewer number of 

simulation runs.   In order to further reduce the time needed to find the optimal 

solution, metamodels, usually neural networks, can be also developed and integrated in 

the optimisation structure.  April et al. [125] illustrate the advantages of combining 

simulation and optimisation with an application to a problem of an investment portfolio 

optimisation. 

Among the principal drawbacks that a simulation approach presents, there are the 

complexity in the model building itself and the difficulty in results interpretation.  

Moreover, the simulation process can prove very expensive and time consuming and the 

main risk, sometimes, is not being able to obtain the desired results in the time available.  

For this reason, less accurate approaches, such as simplified analytical models, might be 

preferable. 

3.2.1.2 Simulation and quality control 

Simulation has been applied to several research domains.  Particular attention will be 

given here to different applications in the quality control area.  These range from the 

determination of control chart limits [126] to the identification of problems that affect 

the productivity and quality of the manufactured items [127].  

Roy [126] suggests the use of discrete event simulation as a technique is to explore 

the actual potential of a manufacturing system and better define its targets.  In fact, very 

often, in control design, and specifically in the developing of the control charts which 

are supposed to monitor the systems performances, the control limits are based on 
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either historical information or management decisions.  In both cases, it is not 

guaranteed that the true capability of the system is exploited at its maximum level.  A 

very conservative attitude, which tends to look at the past performance of the system 

rather than at the present when its targets are to be defined, can prevent the realisation 

of opportunities to gain the improvement margins the system already presents in its 

structure.  The development of a detailed simulation model can help in the evaluation of 

the best performances achievable with a given system configuration and so can help the 

management to set objectives at any strategic level.  Neubauer [128] uses a simulation 

approach to compare the performances of the EWMA control chart with respect to 

other quality-control procedures in medical applications.  Goel et al. [127] develop a 

simulation model of a critical process in a supply chain for “continuous tracking of product 

and process quality, cost and time during manufacturing”.  The model, which also includes the 

simulation of the different operator experience levels in detecting quality problems 

during the manufacturing process, allows the assessment of each process scenario from 

the perspective of quality, cost and time and it results a fundamental tool for optimising 

the supply-chain logistics and meet customers’ requirements at the lowest possible costs 

and time.  Flowers and Cole [129] use computer simulation to assess the efficacy of 

different sampling strategies in terms of inspector productivity and average outgoing 

quality.  The implementation of the strategy suggested by the simulation results analysis 

led to improvements in costs and quality which even though not as good as the ones 

predicted by the model were still relevant. 

Following the trend already found for the SPC tools, simulation applications to 

quality control progressively incorporate economic considerations.  A conspicuous 

number of publications analyse the costs of quality by means of computer simulations 

[57, 130, 131].  Freeman [57] exhorts firms’ management to use computer simulation 

methods as support tools for making quality-related decisions and illustrate two 

different approaches which can be used for simulating quality costs.  De Ruyter et al. 

[132] investigate the impact of inspections and control errors on the total quality costs 

for an automotive stamping plant monitored by self-inspection system.  The model 

provides an optimal control strategy in terms of number of defective panels to be 

accepted before stopping and investigating the production line.  The simulation also 
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demonstrates the negative effects of pursuing separately quality and productivity targets.  

In fact, it is found that quality costs are minimised at low line efficiency and, in turn, 

rapid gains in efficiency can be obtained at the expense of quality.  This shows the need 

of addressing the manufacturing objectives as a system rather than single targets relative 

to discrete operational areas.  Visawan and Tannock [133] try to quantify the benefits 

generated by quality improvement in the automotive market.  They develop simulation 

models which include manufacturing operations and marketing position with the intent 

to analyse quality costs and benefits both when the selling price of the products 

delivered is sensitive to the quality level and when it is fixed.  The variable price scenario 

proved to be better when the organisation operates at excellent quality level; in case of a 

low quality production, the fixed price scenario guarantees higher profits.  Lee et al. 

[134] propose a cost of quality measurement and estimate it using simulation.  The 

measure helps in the evaluation of the impact of inspection and rework on the quality 

costs.  The model is also used to set quality targets through the implementation of a 

variance reduction method. 

3.3 System modelling 

Freely following the steps suggested by Shannon [122], this section will trace the 

development of the simulation model used for the first part of the analysis.  For various 

reasons, the presentation of some steps might be omitted and the order followed might 

be subjected to changes.  In order to frame the problem investigated here in its 

environment, the system description, presented in Section 3.3.1 will anticipate the 

problem definition, reported in Section 3.3.2.  The project planning phase is not 

formally described.  When the research proposal was formulated it was evident that the 

necessary software was already available within the academic institution.  The 

production staff of the company supporting this research, which was familiar with the 

system modelled, ensured a supportive collaboration during the model development and 

validation.  They also agreed to concede a limited access to the historical database in 

order to extract the input data needed for developing the model, provided that the 

information made available would be protected by confidentiality.  The conceptual 

model formulation and the preliminary experimental design are not expressively 
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described in this section; they can be deduced from the simulation model development 

in Section 3.5 and the experimental analysis reported in the Chapter IV, respectively.  

The analysis of the real data extracted from the historical database of the company 

supporting the research is extensively reported in Section 3.4. The model characteristics, 

the assumptions on which it is based and the complexities in it included are illustrated in 

Section 3.5.  The model validation is presented in Section 3.6.  The experimental design 

and the analysis of the simulation results are reported in Chapter IV. 

3.3.1 Description of the system 

As stated before, the production line of interest to this research can be considered as 

a segment of a wider production system.  The modularity and repetitiveness with which 

the system can be described allows restricting the analysis focus on only one segment of 

the system.  Here modularity is intended as the divisibility of the system into smaller 

parts, or segments, similarly configured and characterised by similar elements.  These 

parts basically consist of production and inspection stations; the transportation system 

and the buffers between the stations are other elements present in each module. 

A production station can perform a particular type of process at different stages of 

the production.  An item is allowed visiting the same station more than once in its 

production cycle, being processed each time with different operations from the set of 

operations that the machines in the station are capable of performing.  The operation to 

be performed on an item is usually chosen based on both the production stage, that the 

item has reached, and its product type. 

An inspection station measures some quality characteristics of the parts produced at 

the upstream production stations.  The information coming from that station allows 

monitoring of the quality status of the whole segment, from both a machine and an item 

perspective.  The fact that the machines in a station can perform different operations 

means that a station can be shared by different segments.  Even if a few segments 

overlap in correspondence with a station, the focus of one of those segments does not 

affect the generality of the problem here analysed.  In fact, from a theoretical point of 

view, the segments can be still considered independent of each other and flow is serial 
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between them.  The independence between the segments is also confirmed by the way 

the inspection information is exploited.  An inspection performed in a segment provides 

information about the quality status of the particular operation performed in that 

“theoretical” segment.  Even if the information coming from inspections performed in 

other overlapping segments was available and useful to determine the quality status of a 

particular machine of the station in common between the segments, this would 

constitute an advantage from a control viewpoint.  It is worth noting that, even in this 

case, the analysis performed here, focused on only one segment, still provides 

interesting results since if some useful information is ignored the quality risk estimates 

will prove conservative, that is higher than their actual value.  However, for 

completeness sake, the effects of combining inspection data coming from different 

sources were also analysed and will be shown later on in the course of this thesis 

(Section 5.4.2). 

Different types of products are produced in the system.  Relative to a segment, only a 

few products, at a particular production stage, visit all its stations in a serial order.  

These products enter the first station, visit all the consecutive stations and then exit the 

system downstream of the last production station, after an eventual visit to the 

inspection station.  For these products the system layout can be considered a serial 

production segment.  Other products cross the segment in one station and follow 

different paths in the system.  They may re-visit the segment at the same or a different 

production station during their production cycle.  In this case, they would be the 

products which serially flow through one of the segments which overlap the segment 

under investigations.  For the purposes of this analysis, it is convenient to distinguish 

between products which serially flow through a segment and products which cross the 

segment at some stations.  The difference between the serial flow types and the cross 

flow types might not correspond to an actual difference in the product types, since as 

stated before, products of the same type might revisit a particular station in the segment 

at later stages in the production cycle.  Figure 3.1 shows the product flow dynamics in 

the system.  Station 2 in segment X is also used by segment Y for performing either the 

same or some other operation type.  In order to keep Figure 3.1 as clear as possible, 

only segment Y crosses segment X; that is not the case in the real system, where more 
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than one segment might cross another one in correspondence with the same station or 

even more than one station.  The different products are represented with differently 

coloured arrows.  As it can be noted, the light blue arrow flows serially in both the 

segments; however, from the segment X perspective, the arrival of that product in 

station 2 from station A will be classified as a cross flow. 

 

 

 

Each station consists of several machines which operate in parallel.  Each of the 

machines has an independent behaviour and can process more than one item at the 

same time.  The maximum number of items a machine can process in parallel varies 

depending on the stations.  The machines are unreliable and subject to different failure 

modes.  Machines are regularly shut down for preventive maintenance.  The frequency 

for preventive maintenance depends on the stations.  Different modes of preventive 

maintenance are implemented in the system, for example shift-based daily, weekly, 

etcetera.  Each station is provided with an upstream buffer from which machines within 

the station can select their next items.  The assignation of an item waiting in the buffer 

to one of the machines in the station does not follow any predetermined routing policy; 

rather it is determined by the machine availability.  Transport between stations is via an 

automated guided vehicle and therefore, transport times are significant. 

St.A 

St.C 

Segment Y 

St.1 St.2 St.4 St.3 St.5 

Segment X 

FIGURE 3.1  PRODUCT FLOWS IN THE SYSTEMS.  ARROWS OF THE SAME COLOUR REPRESENT THE 

SAME PRODUCT TYPE. 
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The configuration of the segment chosen for this analysis is reported in Figure 3.2.  

The number of stations and the number of machines in each station reflects the 

operating status of the line when the analysis was initiated.  There are two products that 

flow serially in the full segment; hereinafter, they will be referred to as product A and 

product B.  Each station is also interested by independent cross flows, implying that 

other products visit the segment.  The width of the arrows is approximately an 

expression of the volumes of the product types represented.  Figure 3.2 omits the 

representation of the inspection station, which for this segment has four parallel 

machines.  It is worth noting that the configuration of the inspection station has a 

marginal role on this analysis, since, apart from the eventual imposition of inspection 

capability constraints, which is avoided in this study, the focus is turned towards the 

production stations.  Detailed information on inter-arrival, processing and queuing 

times will be given in the following paragraphs, along with indications on the availability 

of the machines. 

 

 

 

3.3.2 Sampling strategy and problem statement 

The inspection strategy implemented in the line is based on a sampling interval for 

each monitored product.  It emulates the skip-lot sampling inspection plan developed 
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FIGURE 3.2  PHYSICAL CONFIGURATION OF THE MACHINES. 



 CHAPTER III SYSTEM MODELLING 

49 
 

by Dodge, which is a sampling plan generally suitable for a continuous stream of lots 

expected to be good [135]. A particular station, generally the most critical one in the 

segment, is set as a decision station for making the sampling decision.  In that station a 

particular operation is chosen as the decision point.  A sampling interval is determined 

for each product so that for every given number of items of a given product which 

sequentially visit a machine in the station for a particular operation one item is marked 

as to be sampled.  The decision is usually made only on the products which follow a 

serial path in the segment.  For reasons different from an ordinary inspection, other 

products coming from elsewhere in the system visit the inspection station.  For the 

segment investigated here, the sampling station is the fifth station.  A sampling interval 

is set for the two products that flow serially through the segment.  The operation 

chosen is the only one performed on the two products while they flow serially through 

the segment.  That does not exclude the possibility that the two products revisit the 

same station for different operations; however, in that case they would theoretically 

belong to different segments.  

 

 

 

Figure 3.3 depicts the sampling strategy implemented in the segment.  The 

representation of station 5 has been limited to one machine since there is absolute 

equivalence of the different machines in a station from any viewpoint.  The sampling 

interval of both the product types is shown in Figure 3.3, and it is 5 for product A and 3 
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FIGURE 3.3  SAMPLING STRATEGY. 
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for product B.  The sampling interval of a monitored product is intended here as the 

number of consecutive unsampled items plus the sample of that product processed by a 

machine in the sampling station.  This number is deterministic for each monitored 

product in any machine of the sampling station.  However, owing to the randomness of 

the processing and inter-arrival times, it is easy to foreshadow that once the different 

product flows in a machine of the sampling station are merged, the count of the 

unsampled items between two consecutive samples loses its deterministic properties and 

turns into a random variable whose characteristics constitute one of the fulcra of this 

research. 

The randomness is further accentuated by the eventual presence of a cross flow.  In 

this case, even in the presence of one monitored product type, the number of 

unsampled items between consecutive samples proves to be random in the sampling 

station (Figure 3.4). 

 

 

FIGURE 3.4  PRODUCT FLOW MERGING IN THE SAMPLING STATION IN THE CASE OF ONE 

MONITORED PRODUCT TYPE AND UNMONITORED CROSS FLOW. 

 

As regards the stations upstream or downstream of the sampling station, the so-called 

non-sampling stations, the situation is clearly less controlled, in the sense that the 

multiple stream and the sequence disorder effects combine to turn even the simplest 

case scenario, which would be the one characterised by the presence of only one 

monitored product type, into a case subject to randomness (Figure 3.5).  When the 

sequence of items processed by a machine of the sampling station is traced back to a 

machine of an upstream station, it will be evident that the sequence of items at the non-
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sampling station machine is different; as a consequence, the sampling interval of the 

items is subjected to possible variations.  

The number of unsampled items between consecutive samples has not been the only 

performance measure analysed in this work.  Its corresponding time related measure, 

the time between consecutive samples has been also considered, at least in the first 

stages of the analysis.  The randomness of this measure is even more relevant since it is 

a continuous variable and the sampling plan is based on the number of items rather than 

on the time. 

 

 

 

 

The aim of this study is to develop fundamental tools for supporting the decision 

process about the sampling strategy with quality risk considerations.  For this research, 

this ultimately requires the development of some functional models allowing the 

assessment of the risk associated with a sampling strategy in terms of the 

aforementioned performance measures.  That obviously includes the understanding of 

the impact of some control parameters on the sampling strategy performances.  This 

last point has been investigated by means of simulation and the results obtained will be 

illustrated in the next chapter.  The control parameters considered are related to the 

system configuration, the logistic policy, the line speed and the sampling intervals.  The 

prediction models for the distribution of the number of consecutive unsampled items 

between two consecutive samples will be presented in chapter 5. 
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FIGURE 3.5  RANDOMISATION OF THE SAMPLING PLAN IN THE NON-SAMPLING STATIONS. 
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3.4 Input data analysis 

After choosing the segment to be modelled, the analysis of the data available for that 

segment constituted a fundamental step in the development of the simulation model.  In 

fact, it was extremely helpful in improving the understanding of the system behaviour 

and, based on it, discerning which simplifying assumptions were possible and when the 

model had to faithfully reproduce reality was easier.   

The main objective of the data analysis was to model the product flow in the 

segment as closely as possible; that required taking the variability of the cycle times into 

account.  With this purpose, the different time parameters were analysed not only in 

terms of mean values but considering their distributions.  The next step consisted of 

fitting theoretical distributions to the empirical data.  In order to conduct an objective 

data analysis, a priori assumptions, whether they were justifiable by knowledge-based 

considerations or by common feelings, were avoided.  However, a sort of learning effect 

was not ignored above all in the cases when the repetitiveness of the nature of the data 

was not negligible.  That reduced the time required to conduct the analysis in the later 

stages.  It is worth noting that sometimes the level of detail of the analysis was 

conditioned by data availability; in these cases, when even data aggregations didn’t yield 

the amount of data at such a level that the derivation of a probability density function 

was statistically valid, the time parameter in question was modelled by means of 

empirical distributions. 

The time variables analysed were the inter-arrival times, the processing times, the 

queuing and transportation times and the availability parameters, which are the time 

between failures and the time to repair.  The next sections will give more details about 

the procedures followed for the data analysis for each of the time variables considered.  

The data analysis was mainly carried out using the MATLAB® statistical toolbox, which 

proved very helpful in selecting the distribution shapes which best fit the data and 

calculating the corresponding parameters. 
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3.4.1 Processing times 

The Processing Time (PT) is intended here as the time spent by an item in a machine 

in order to receive appropriate operations.  It is calculated as the difference between the 

time at which an item moves out of the machine (Timeout) and the time at which it moves 

into the same machine (Timein), independently of the number of operations it receives in 

the same machine  

 PTi = Timeout i – Timein i (3.1) 

where the subscript i refers to the station which the machine belongs to. 

This quantity of time does not necessarily correspond with the actual time needed to 

complete the operation.  In fact, while processing an item, the machine can be subjected 

to sudden shut down, caused by either preventive maintenance events or unscheduled 

(random) break-downs.  As a consequence, the item waits in the machine for a time 

much longer than what is actually required to conduct the operation.  It is worth noting 

that, as happens in the real system, in the simulation model these items are kept in the 

machine in order to wait for the completion of the operation when the machine 

functionality is restored.  The processing times for these particular cases are easily 

detectable since they generally correspond with the highest values in the list of the 

processing times relative to a machine.  These anomalous values were excluded by the 

list, since the time delay caused by maintenance events was included in the simulation 

model in a different fashion. 

The entrapment of the items within a machine for maintenance events does not 

constitute the only reason why anomalous processing times can be found.  Extremely 

low processing times often resulted when incomplete items were processed.  This type 

of item was usually sent to a station in order to assess small variations in the product 

design.  The entries relative to these items were deleted so that the fictitious process 

time variability caused by them could be ignored. 

Other anomalies present in the data could be traced back to the human factor.  In 

fact, it was found that low processing times for standard items were due to the decision 

of the operators to reallocate the items into a different chamber of the machine where 
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they were originally routed or move them to other machines in the same station.  That 

could be done for different reasons.  Similarly, the presence of high processing times 

might be caused by the delay with which the operator collects the processed item from a 

machine or by the missing registration of either the Timein or Timeout in the database.  

Errors of an informative nature might be another reason of anomalous processing 

times.  These errors are usually due to different classification criteria used by different 

operators for the same item. 

Finally, the elimination of the anomalous processing times from the dataset on which 

the fits of the theoretical distributions were based was considered opportune even when 

these times were not attributable to any of the reasons listed before.  Even though those 

times could have been the expression of the intrinsic variability of the processing times, 

they appeared excessively far from the typical values and caused relevant bias of the 

population statistics.  The elimination of the anomalous values was carried out 

separately for each dataset investigated.  As a general criterion, the values higher than 

the 95th percentile of the distribution of the processing times were eliminated; in any 

case, no more than 10% of the data were excluded from further analysis.   

 
FIGURE 3.6  SAMPLE EMPIRICAL DISTRIBUTION FOR A MACHINE PROCESSING TIME. 
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the excluded values includes the very low values before the peak.  The x-axis in Figure 

3.6 has been rescaled by an arbitrary factor for confidentiality reasons.  The elimination 

of the outliers in Figure 3.6 causes a 14% reduction of the mean value; the standard 

deviation is reduced by 50%.  It can be noted that the variability is halved whereas the 

mean slightly decreases.  In fact, since values are eliminated from both the extreme parts 

of the domain the effect of the elimination on the mean can result in either a reduction 

or an increase; whereas the variability always decreases. 

Since no a priori assumption was used, the data relative to every single machine in a 

station were separately analysed.  Moreover, for each machine, the data were split based 

on the operation numbers first and were further divided according to the product.  Two 

categories for the operation numbers were created; the operation performed on the 

items which flow serially in the segment constitutes one category, the other operations 

were grouped together since they were not of particular interest for the purposes of this 

study.  Three product categories were considered; they corresponded with the two 

monitored products which flow serially through the segment and the unmonitored 

products which cross the single stations.  Again, the choice of grouping the 

unmonitored products is based on the marginal role that these products played in the 

segment for the purposes of this study.  Finally, some categories were grouped; that 

resulted in the final presence of three macro-categories which are made of: 

1. The data relative to the first monitored product (A) for the operation performed 

while it serially flows through the segment; 

2. The data relative to the second monitored product (B) for the operation 

performed while it serially flows through the segment; 

3. All the other data. 

This grouping approach did not compromise the modelling accuracy of the 

processing times and it was considered congruent with the final objective of this study.  

In fact, all the unmonitored products or the monitored products which do not receive 

the particular operation performed on the items flowing serially in the segment, from 

perspective of this study, have the mere role to simulate the reduction of the processing 
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capacity from the monitored items viewpoint.  However, at the same time, their 

presence can not be ignored for the reason that it enables the assessment of the 

exposition to the quality risk of the unmonitored categories in the segment. 

The data analysis performed on the first few machines revealed that the processing 

times of the first two data categories were significantly similar for the same machine.  

That was quite expectable since it is reasonable to think that the time needed to 

complete an operation does not consistently change if the products on which it is 

performed do not substantially differ from each other and the boundary conditions are 

kept the same, as happens when a single machine is considered.  The statistical 

equivalence of the two categories as regards the processing time is at the base of the 

decision to join them for the rest of the processing time analysis.  This decision was also 

partially motivated by the smaller availability of the data belonging to the second 

category, with comparison with the first one.  In fact, in some cases, the amount of 

available data was objectively limited to make any statistical analysis valid. 

Similar processing times for the same operation number were also expected not only 

in relation to different product categories but with respect to different machines in the 

same station.  The data analysis revealed these similarities; however, it was noted that 

some groups of machines presented processing times closer between them than times 

relative to other groups.  The differences were not relevant and usually were in respect 

of the standard deviations rather than mean values.  Nonetheless, in order to reflect the 

variability which characterised the real system in the model, after a machine dedicated 

analysis, some groups of machines were defined based on the similarities of the analysis 

results.  It was observed that very often the groups of machines based on the processing 

times similarities found a correspondence with the physical location of the machines.  A 

different position in the plant can mean that different operators with different tasks 

were looking after the machines; hence, the differences could presumably be traced back 

to the human factor.  However, the operator performances can not be considered the 

only reason for the difference between the groups since in the time interval considered 

(six months) it is very likely that personnel turnover was experienced. 
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FIGURE 3.7  DIFFERENCES BETWEEN THE PROCESSING TIMES OF TWO GROUPS OF MACHINES IN 

STN5. 

 

TABLE 3.1  VARIATION OF THE PROCESSING TIME MEANS AND STANDARD DEVIATIONS AFTER THE 

ELIMINATION OF THE OUTLIERS FOR THE MACHINE IN THE FIFTH STATION. 

Machine Statistics Before After 

M1 
m 0.34 0.32 

std dev 0.39 0.12 

M2 
m 0.33 0.32 

std dev 0.28 0.12 

M3 
m 0.29 0.29 

std dev 0.14 0.09 

M4 
m 0.29 0.29 

std dev 0.11 0.09 

M5 
m 0.29 0.29 

std dev 0.10 0.08 
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Figure 3.7 offers a clear example of the similarities of processing times within 

subgroups of machines in a station.  In the case reported, for clarity reasons, the fitted 

distributions are compared and two different groups emerge.  Machines 1 and 2 

present a slightly greater mean processing time than machines 3, 4 and 5. 

The machine location was not the only possible reason which could justify any 

difference in the processing times of the machines in station 5.  The greater mean and 

standard deviation for machines 1 and 2 can be also due to the fact that those machine 

are loaded slightly more heavily than machines 3, 4 and 5 and, hence, the waiting time 

within the machine itself, which has been always included in the processing time 

because it is not distinguishable from it, might have increased as a result.  Without 

fitting any distribution, the similarities can be also noted by observing the statistics 

reported in Table 3.1, before and after the elimination of the anomalous values.  Two-

way ANOVA has been applied in order to investigate the statistical relevance of both 

the data elimination and the machine grouping on the variability of the processing times.  

In order to make the experimental design balanced, the data relative to M4 and M5 have 

been averaged.  This choice is justified by the extreme similarity of the standard 

deviation for these two machines.  The significance levels for the data elimination and 

the machines groups are 1.24% and 1.33%, respectively.  This suggests that both the 

main effects prove to be statistically significant. As a consequence, the generation of two 

different groups of machines is a sensible choice.  The interaction between the two 

effects proves less significant (p=3.57%). 

Since the grouping based on the different operations and products which generated the 

third product category was considered general enough, the machine grouping for the 

generation of a common probability density function for the processing times was not 

performed for this category.  Moreover, the available data quantity for this category was 

so big that, from a statistical viewpoint, the benefits deriving from a further grouping 

were not as evident as they were for the other categories.  As expected, in most cases, 

the differences between the fitted distributions were irrelevant, as happens for three 

machines (M2, M3 and M4) in the second station (Figure 3.8), where the log-logistic 

distributions are practically indistinguishable; in a few cases, the differences were not 

negligible, however, they were in respect of the variability more than the mean values  
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FIGURE 3.8  IRRELEVANT DIFFERENCES BETWEEN THE PROCESSING TIME DISTRIBUTIONS IN STN2. 

 

 
FIGURE 3.9  DIFFERENT VARIABILITY OF THE FITTED PROCESSING TIMES DISTRIBUTIONS (STN4). 
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(Figure 3.9). For both Figure 3.8 and Figure 3.9 the data are shifted by the minimum 

values.  

The data analysis for the first two categories proceeded with the individuation of the 

distribution types, with the corresponding parameters, which best fitted the empirical 

distribution for each group defined.  The choice between the different distribution types 

was based on the log-likelihood ratio. 

Data transformations were sometimes needed in order to allow proper data 

modelling.  In particular, data were shifted by their minimum value and the new 

minimum value, zero, was discarded so that fitting distribution types whose domains 

were strictly greater than zero (e.g. lognormal, log-logistic distributions) was possible.  

As is evident, these transformations do not intend to be variance-stabilising 

transformations.  As for the elimination of the anomalous values, these transformations 

have the objective to make the data smoother and ease the distribution fitting process.  

This concept applies to the all the time-related input parameter analyses illustrated in 

this chapter. 

Finally, for practicality, one distribution type was chosen for modelling all the data 

groups.  This choice was based on the consideration that the differences between the 

distribution types were almost irrelevant and that the benefits deriving from dealing with 

only one distribution shape were significant.  The advantages were considered from the 

perspective of the future use of the model.  In fact, a provisional experimental plan 

included the variation of time related parameters, in terms of both mean values and 

variability, in order to investigate their impact on the quality risk related performance 

measures.  Modelling data by means of one distribution type simplifies the data 

management within the model.  It eases the comparison between different data groups 

and enhances the capability of controlling the effects of parameter changes on the 

distribution characteristics.  This last aspect was particularly interesting.  In fact, the 

variation of the characteristic parameters of a distribution might cause different effects 

on the centrality, dispersion, skewness and kurtosis according to the distribution type.  

When one distribution type is considered, the parameter variations are likely to 

determine similar effects on the aforementioned characteristics.  The most common 
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best distribution type among the different groups was chosen as the only distribution 

type to model the processing time.  This distribution happened to be the log-logistic 

distribution.  The parameters of the log-logistic distribution were fitted for all the data 

groups (Appendix A). 

 
FIGURE 3.10  EMPIRICAL AND FITTED DISTRIBUTION FOR THE PROCESSING TIME RELATIVE TO A 

GROUP OF MACHINES IN THE FIRST STATION. 

 

Figure 3.10 shows how the lognormal and the log-logistic distributions fit for the 

empirical processing times for a group of machines in the first station.  The data 

represented were shifted by their minimal value.  Based on the log-likelihood ratio, the 

lognormal normal distribution proved the best one to fit the data; however, as can be 

noted in Figure 3.10, the fitted log-logistic distribution is not much different from the 

lognormal distribution, apart from the peak which moves slightly towards higher values. 
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and transportation times at the ith station, denoted here as QTi, can be expressed as 

follows 

 QTi = Timein i – Timeout i-1 (3.2) 

The choice of joining the queuing time, which is the waiting time in the buffer 

upstream of a station, and the transportation time, which is the time needed for the item 

to reach that buffer after moving out the previous station, was somewhat forced by 

difficulties in gaining access to the information relative to the time when an item entered 

into a buffer.  On the other hand, this choice proved quite advantageous from a 

modelling perspective since the necessity of modelling the transportation system was 

avoided.  It is worth noting that the transportation system, in the simulation model, 

would have made sense only for those items which flow serially through the segment.  

For the cross flow products, modelling the transportation system would have presented 

more complexities.  Nonetheless, for these items the transportation and queuing times 

have also been calculated in order to simulate the presence of items of different types in 

the buffer and keep the inventory level under control. 

The analysis of the queuing and transportation times was performed as a 

consequence of the choice of modelling these times as imposed delays on the product 

flow rather than the consequence of the unavailability of machines ready to process the 

items in a station. 

The approach used in this analysis was similar to the one adopted for the processing 

times.  No a priori assumptions were considered for the first station analysed.  However, 

the recurrent results obtained for that station represented a good base on which 

decisions whether or not to use some simplifying assumptions for the other stations 

could be easily made. 

For the first station the analysis started by splitting the data between the three 

categories previously defined.  The outliers were then individuated and eliminated from 

the successive analysis.  The data elimination almost exclusively regarded high values, 

since low queuing times were judged not only desirable but possible, given the system 

characteristics.  Since the transportation system was highly reliable, the presence of 

anomalous values is more likely determined by the human factor impact on the waiting 
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times.  In fact, there was no structured queuing discipline implemented in the system, 

and no pre-determined routing policy either; the choice of the item to be routed to the 

first available machine in the station was completely left to the operator’s discretion.  

This means that the sequence order of the items moving out of a buffer might be 

different from the entrance sequence order.  An item might be left for a very long time 

in the buffer and be overtaken by other items more recently located in the buffer.  Long 

waiting times usually represents an anomaly and their inclusion into the dataset can 

cause relevant bias of the distribution statistics.  This is the reason why the elimination 

of the outliers from the dataset based on which the theoretical distributions were fitted 

was considered advisable. 

Since no priority queuing strategy of any sort was applied in the system, for the 

queuing times more than for the processing times, the differences between the three 

categories were expected to be irrelevant.  Since the transportation times are included, a 

higher variability for the third category could be expected for the reason that these items 

follow different routes.  On the contrary, the products of the first two categories visit 

the stations in the same order and, hence, use the same transport means; as a 

consequence, eventual differences would be difficult to explain. 

When the analysis carried out on the first station confirmed these suppositions, the 

aggregation of the data belonging to the first two categories was considered opportune.  

This was also justified by the limited quantity of data available for the second category.  

Even if the comparison between the different machines in the first station revealed 

consistent similarities, it was decided to keep the analysis separated for each machine.  

In fact, from a statistical point of view, there was no need for further data aggregation. 

Since the log-logistic distribution was the distribution that most commonly better 

modelled the empirical data for the first station, the same distribution type was chosen 

to fit the queuing and transportation time for the datasets relative to the other machines 

in the segment (Appendix A).  This choice contributes to give a certain level of 

uniformity to the time parameter modelling and helps for both the data management 

and the control of the impact of parameter variations.  However, relative to the fourth 

station, for all three data categories, a relevant inadequacy of the log-logistic distribution 
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in modelling the queuing and transportation time was noticed.  As a consequence, 

exclusively for this station, the exponential distribution was preferred (Figure 3.11). 

 
FIGURE 3.11  BETTER FIT OF THE EXPONENTIAL DISTRIBUTION FOR THE QUEUING TIMES IN STN4. 

 

The relative closeness of the waiting and transportation times for the different 

machines in a station was observed not only for the first station but for all the other 

stations in the segment.  A particular case is represented by the fifth station.  In fact, as 

it was also noticed for the processing times, there are noticeable differences between 

two groups of machines, above all for the third category (Figure 3.12).  The differences 

can be traced back to the different location of the two groups in the plant; as a 

consequence, different transportation times are needed to reach each of them.  The data 

reported in Figure 3.12 have been slightly rescaled by an arbitrary factor for 

confidentiality reasons. 

Finally, it is worth noting that tehere are cases when the queuing times are irrelevant 

in comparison with the transportation times.  This is the case of station 3, which 

happens to share the same working area of station 2.  Since there is no transport, the 

times calculated are reduced to the mere queuing times, which as shown by Figure 3.13,  
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FIGURE 3.12  DIFFERENCES BETWEEN THE QUEUING AND TRANSPORTATION TIMES OF TWO GROUPS 

OF MACHINES IN STN5. 

 

 
FIGURE 3.13  VERY LOW QUEUING AND TRANSPORTATION TIMES IN STN2. 
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are extremely low.  That happens not only for the first two data categories but for the 

third one as well.  The reason for that relies on the technological link that exists between 

the two stations so that the products processed in the first one usually visit the second.  

Since the magnitude of the value was relevant, in this case, the data reported in Figure 

3.13 have not been changed. 

3.4.3 Inter-arrival times 

The inter-arrival time is generally intended as the time elapsed between the arrival of 

two successive items in the system.  Let Timein i j be the time when the jth item in the 

arrival sequence at the ith station moves into that station, then the inter-arrival time 

associated with that item, IATi j, can be formally represented as follow: 

 IATi j = Timein i j – Timein i j-1. (3.3) 

If all the products flowing through the segment had followed a serial path, the inter-

arrival time analysis would have been limited to the first station visited in that segment.  

In fact, in steady state conditions, the flow in the segment would be exactly steady; that 

means, the rate at which items arrive at a station should equalise the rate at which they 

move out of that station.  Other conditions would cause unstable situations in the 

system such as the presence of bottlenecks and the starvation of the machines in some 

other stations.  Moreover, in steady state conditions, the rate at which the items move 

out of a station should be the rate at which they arrive at the following station, provided 

that the transportation system is reliable. 

However, in the segment on which this analysis is focused, products also exist that 

cross the segment in a few stations without following a serial route.  The fact that those 

products could visit a few successive stations in that segment has a minor relevance 

from a modelling perspective; in fact, it might constitute an undesirable and unnecessary 

complication factor.  As a consequence, it was preferred to analyse the inter-arrival 

times for the cross flows in each station independently of the existence of partial serial 

routes followed by the cross flow items.  On the other hand, the evaluation of the 
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queuing and transportation times for this product category allows the ability, to some 

extent, to recover the information about the path followed. 

With the aim of including queuing and transportation times for all the data categories 

in the model, the inter-arrival times were calculated as the difference between the times 

out of the previously visited station for two successively processed items 

 IATi j = Timeout (i-1)* j – Timeout (i-1)* j-1 (3.4) 

where (i-1)* indicates the station immediately previously visited by the item j, no matter 

whether it belongs or not to the segment, and the second sub index, j, refers to the 

sequence of the increasing Timesout from the previous stations of the items crossing the 

ith station.  In other words, all the cross flow products were grouped and their Timesout 

from the previous station, whichever it was, were sorted in ascending order.  Then, the 

differences between two following Timesout represented the inter-arrival times in that 

particular station for the products of the third category.  Appendix A summarises the 

results obtained by the data fitting process. 

With regards to the first station, the first two categories were also considered.  

Keeping the analysis for the two categories separated is in this case very important, since 

the difference in the inter-arrival times reflects the difference in the volume fraction of 

the two product types. 

3.4.4 Routing patterns 

Even though the routing pattern analysis has apparently little to do with the time-

related parameters, the necessity of investigating the presence of preferential paths 

followed by the items in the segment considered was in part motivated by the approach 

used for the inter-arrival time analysis.  In fact, this was conducted at a station level and 

not at a machine level.  As a consequence, the decision on how to route an item towards 

a particular machine in a station had to be made.  The routing pattern analysis was also 

aimed to detect any eventual preferential path followed by the items so as to include it 

in the model.  Finally it served to verify the assumption that the machines in a station 

were uniformly loaded. 
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For the third product category, the high product volumes made the hypothesis to 

consider a uniform routing policy between the different machines credible.  That means 

that the items in the simulation model would be routed to a particular machine on a 

probabilistic basis.  In practice, each machine presents the same probability as another 

in that station to be chosen.  However, for the first two categories, it was preferred to 

conduct an attentive analysis on the routing patterns followed in the segment.  The 

analysis consisted of determining for each machine in a station what the percentages of 

items moving toward each of the machines in the following station were.  The analysis 

was conducted with the support of Visual Basic macros and interesting results were 

found. 

The most relevant finding that emerged from the analysis was that the results 

obtained are difficult to generalise.  That confirms the assertion by the production staff 

familiar with the segment that no structured routing policy was applied in the real 

system.  In fact, the decision to route an item towards a machine is left to the operator 

and it is usually based on machine availability.  However, that did not exclude the 

possibility that some systematic routing decisions could be unconsciously made.  In fact, 

relative to the product categories analysed, some patterns were actually found but, in 

most cases, there is no apparent reason which can justify them. 

The last conclusion is supported by the following results.  In contrast to what one 

may expect, the physical closeness between machines of succeeding stations is not the 

preponderant criterion followed.  Moreover, the fact that the machines of a station 

belong to the same working area does not generally determine any recurrent routing 

decision. 

This happens, for instance, between the machines of the fourth and the fifth station.  

Machines number 1 and 2 of the fourth station are located in a different area with 

respect to machine number 3.  For the fifth station, the location of machines 1 and 2 is 

quite far from the location of the other three machines in that station.  It is also far 

from machine number 3 of the fourth station, which, in turn, is close to machines 3, 4 

and 5 of the fifth station.  If the location would suggest that the most items from 

machine 3 of the fourth station would be routed to machines 3, 4 and 5 of the fifth 
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Figure 3.14 shows that product 1 items processed by machine 3 are 

evenly distributed in two groups which are directed to the two locations of the machines 

of the fifth station.  Then, the items are uniformly distributed between the machines of 

each location.  Since the same considerations can be extended to the other two 

machines of station 4, it can be concluded that machines 1 and 2 each roughly process 

1 items coming from the fourth station and machines 3, 4 and 5 

process the remaining 50% in equal parts. 
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cross flow and the tendency of the cross flow to spread uniformly across the machines 

allow the correct use of the linear relationship between the inter

at a machine level and the inter-arrival time at a station level. The linear facto

by the number of machines operating in the station.   

NUMBER OF PR1 ITEMS MOVING FROM THE MACHINES OF STN1 TO TH

STN2. 

NUMBER OF PR2 ITEMS MOVING FROM THE MACHINES OF STN1 TO THE MACHINES OF 

STN2. 

2
3

4

1
2

3

4

5Source Machine

(Stn1)

Destination Machines

(Stn2)

Routing Patterns (Pr1 Stn1-Stn2)

2
3

4

1
2

3

4

5Source machine

(Stn1)

Destination Machine

(Stn2)

Routing Patterns (Pr2 Stn1-Stn2)

NPUT DATA ANALYSIS 

cross flow and the tendency of the cross flow to spread uniformly across the machines 

between the inter-arrival time 

he linear factor is given 

 
TO THE MACHINES OF 

 
TO THE MACHINES OF 

-

200 

400 

600 

N
u

m
b

e
r 

o
f 

it
e

m
s

Destination Machines

(Stn2)

-

200 

400 

600 

N
u

m
b

e
r 

o
f 

it
e

m
s

Destination Machine

(Stn2)



 CHAPTER III INPUT DATA ANALYSIS 

71 
 

It is worth noting that, since the number of items has been scaled using the same 

factor, Figure 3.15 and Figure 3.16 also show how the first product category is produced 

in relevantly higher volumes than the second one.  In turn, the first product category is 

noticeably smaller in volume in comparison with the third category. 

3.4.5 Availability times 

The analysis of the availability times of the machines operating in each station 

consisted of the analysis of two different parameters, the Time between Failures (TBF) 

and the Time to Repair (TTR).  The TBF describes the time elapsed between two 

successive shut down events of a machine; the TTR measures the time needed to 

complete a repair event.  A machine can be shut down for either Preventive 

Maintenance (PM) or sudden breakdown, also known as Corrective Maintenance (CM).  

The regularity which characterise PM events, in terms of both the availability 

parameters, is lost when sudden breakdown events are considered. 

The availability parameters were analysed at a station level.  This was primarily done 

to overcome the issue of a limited quantity of data available for each machine.  It was 

also justified by the nature of the data analysed.  In fact, for the same type of machines 

which perform the same operations, the PM programs should be the same.  Moreover, 

since the machines of a station share the same working environment and are, pretty 

much, uniformly loaded, it is very likely that they are interested by breakdown events 

with similar patterns. 

The data available for each station were initially analysed at an aggregated level.  This 

means that no difference was operated between CM events and PM events or between 

the different PM events.  This was due to the difficult interpretation of the information 

available in the historical database.  In fact, it might happen that PM events, while in 

progress, might reveal the presence of failures of different natures and are turned into 

CM events.  Moreover, the classification of the maintenance events does not follow 

rigid criteria, so that the same event type can be recorded under different denominations 

according to the operator which performed it.  The distinction between events of 

different nature was performed at a later stage, limited to the stations for which the 
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aggregated data pattern revealed irregularities which could be presumably solved by a 

more accurate data classification.  This was the case of station 2, where a peak in the 

upper tail of the distribution of the aggregated data suggested the presence of PM 

events which could be grouped in a separated data category (Figure 3.17).  The time 

between failures of the PM events were modelled by means of a normal distribution; the 

exponential distribution fitted the time between failures of the other events very well.  It 

is worth noting that the apparent shift of the fitted distributions towards higher values is 

caused by the data separation; the time elapsed between two events obviously increases 

when, in the same time interval, the events pertaining to a data category are reduced. 

 
FIGURE 3.17  IRREGULAR SHAPE OF THE TBF DISTRIBUTION AT AN AGGREGATE LEVEL IN STN2 AND 

THE TWO FITTED DISTRIBUTIONS OF THE CATEGORIES DERIVED. 

 

The exponential distribution, opportunely shifted, proved the best fitted distribution 

for the data left at an aggregate level.  For clarity, in this case, the different events of the 

maintenance program were not analysed separately and the distributions characterising 
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availability times of each single event were exponentially distributed.  This is confirmed 

0 5 10 15 20 25 30 35 40
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Data

D
e

n
si

ty

Time between Failures (Stn2)

 

 

st2

PM events

Other events



 CHAPTER III INPUT DATA ANALYSIS 

73 
 

by the shape of the availability times at an aggregated level; if these data were the 

combination of exponentially distributed data, they would follow a gamma distribution. 

For the data categories corresponding with PM events the recourse to empirical 

distributions generally proved the most effective solution to cope with the issue of very 

low data dispersion. 

3.5 Simulation model development 

A discrete event simulation model of the production segment introduced in Section 

3.3.1 was developed by means of the discrete event simulation software Extend® v6.  

The graphical interactive approach was used; the blocks available in the different 

libraries of the software proved to be enough to correctly model the real segment.  As a 

consequence, there was no need to program for developing new blocks or enhancing 

the functionalities of the existing blocks.  In order to keep the model structure simple, 

the different stations, including the monitoring station, were modelled as hierarchical 

blocks which were serially located in the workspace so as to resemble the theoretical 

structure of the segment.  Two more hierarchical blocks, one at the beginning and the 

other one at the end of the line, were also included in the model; they do not represent 

stations but blocks functional to the items generation and the simulation data 

management.  Figure 3.18 shows the high level structure of the simulation model, with 

the eight serial hierarchical blocks. 

 
FIGURE 3.18  HIGH LEVEL STRUCTURE OF THE MODEL. 

 

The first block was conceived for generating items which are going to visit the first 

operation station.  It consists of three different generation modules, as can be seen in 

Figure 3.19.  Two of them generate items of the first two product categories.  The 



 CHAPTER III SIMULATION MODEL DEVELOPMENT 

74 
 

generation of these items happens only in this first block; once they leave the first 

operation station they will continue visiting all the other stations serially.  The third 

module simulates the generation of items from the third category which after having 

been processed in the first station leave the segment and go directly to the last block. 

The last block was built with the intention to manage the data collected by the items 

during their path through the segment.  All the items eventually pass through this block.  

The information gathered is saved in a global array and eventually transferred to Excel 

worksheets which are generated at the end of each simulation run. 

 

 
FIGURE 3.19  THE THREE GENERATION MODULES INSIDE THE FIRST HIERARCHICAL BLOCK. 

 

In each generation module the items are generated at random time intervals 

according to the inter-arrival time distributions fitted on the real data.  Soon after the 

generation, some attributes are assigned to each item.  These attributes constitute part of 

the data which will be recorded in the last block; they include the product type, the 

timestamp of the time at which the item is generated and the id of the machine that the 

item is going to visit in the first station. As illustrated in the previous paragraph, this last 

attribute is randomly generated based on the empirical probability distributions. 

Excluding the block representing the first operation station, similar generation 

modules to the ones present in the first block can be found in all the other blocks 
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representing stations.  They only generate third category items, whose path in the 

segment is limited to the block where they are generated.  These items also visit the last 

block for data collection. 

Six hierarchical blocks are located in series to the first block.  They represent the five 

operation stations and the final inspection station. These blocks are similarly structured.  

After the generation module, a combination module merges the serial and the cross flow 

items which visit the station.  Then, a routing module helps each item to be routed to 

the machine previously assigned to it.  A defined number of machines, each of which is 

modelled as a hierarchical block, populate the station.  A final routing module routes the 

items to either the following station or the data collection block according to the 

product type.  The structure of the first station is reported in Figure 3.20.  The white 

blocks in the figure represent the machines in the station; an extra machine was included 

in case the number of operating machines in the station needed to be changed.  The 

routing module described previously prevents the items from being assigned to the non-

operating machines. 

 
FIGURE 3.20  STRUCTURE OF THE FIRST PRODUCTION STATION. 
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Each block representing a machine includes two multiple activity blocks.  The first 

multiple activity block simulates the delay caused by the transportation and queuing 

time.  The second multiple activity block introduces the delay caused by the processing 

time.  The imposed delays are provided by a random number generator block. 

A shutdown block, located between the two multiple activity blocks, prevents items 

from accessing the machine when events that compromise the machine availability 

occur.  This block receives signals from different sources, which respectively represent 

the different maintenance event types identified during the data analysis.  Each source 

sends at a random time frequency a signal which contains the information about the 

duration of the event.  The frequency and the duration of a shutdown event depend on 

the typology of the event itself. 

A timestamp is assigned to each item both when it moves in and moves out from the 

second multiple activity block. Finally, before leaving the machine, based on both the 

product and the machine itself, the serial flow items will record the id of the machine 

they are going to visit in the following station, which is randomly generated based on 

the routing patterns empirical tables. 

The block structure of the machines in the last operation station slightly differs from 

the other ones because of the presence of a final module intended to implement the 

sampling strategy. This module is of interest only for the first two product categories.  

According to the product type, a sampling rate is imposed so that every predetermined 

number of items of a product type processed by that machine an item is marked to be 

measured.  The marked items will obviously be routed to the monitoring station. All the 

other items are sent directly to the data collection block. 

A more detailed representation of the model structure is available in Appendix B. 

3.6 Model validation 

The simulation model validation was mainly based on a face validity approach [123].  

The production staff familiar with the segment modelled attentively analysed the 

simulation results and agreed that the simulation model was able to faithfully reproduce 
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the real system behaviour.  Attention was first paid to the correctness of the flow 

dynamics in the system.  The availability of graphical animations during the simulation 

runs supported a better understanding of the logics behind the routing decisions 

implemented in the model.  The flow of items through the segment did not encounter 

unexpected delays.  The simulated availability of the machines operating in the different 

stations was considered compatible with the maintenance program performed in the real 

system.  This last aspect was of primary concern since it was deemed possible that in the 

stations where a complicated maintenance program was implemented, blocking issues 

could arise for the modality with which the combination of CM and PM events was 

modelled. 

The most relevant aspect of the validation process was based on the verification of 

the typical values for both the performance measures.  According to the production 

staff, the average number of consecutive unsampled items and the time between 

samples calculated from the simulation results for the initial scenario analysed were 

reasonably close to the values which they would expect to see in the real system.  The 

model was also able to capture the differences in the monitoring ability of the sampling 

strategy between the different stations; indeed, the different volumes of items processed 

at the various stations impacted the magnitude of the quality risk related performance 

measures in a fashion that the production staff deemed realistic.  More importantly, 

observations concerning the strategy with which the quality risk was monitored and kept 

under control in the real system most definitely revealed to the production staff 

involved in this research the suitability of the simulation model for conducting the 

needed quality risk analyses.  These observations involved the quantification of the 

quality risk in terms of maximum number of consecutive unsampled items.  The values 

of the risk measure calculated for realistic confidence levels by using the distributions 

derived from the simulation results corresponded to the maximum numbers of 

consecutive unsampled items which quality management had set as a risk threshold 

value.  When the number of consecutive unsampled items at any machines of the 

segment reached the threshold an immediate sampling of an item processed at that 

machine was forced in the real system.  This was generally implemented by sending 

ahead an item to the inspection station.  The threshold values adopted were based on a 
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balanced combination of common sense and historical data analysis.  The simulation 

results and the definition adopted for the quality risk could provide a formally correct 

support to the quality management decisions.  For confidentiality reasons, the numerical 

aspects of this specific validation analysis are not reported. 

In general, a validation of the model on a numerical base was made difficult by both 

the limited access to the company’s historical database and some modelling choices.  

For instance, the choice to model the queuing times as imposed delays prevented the 

possibility of using the comparison between actual queuing times and queuing times 

resulting from the simulation as a validation criterion.  However, for modelling reasons, 

a fictitious buffer had to be placed before the block simulating the actual buffer.  Hence, 

an alternative comparison of actual queuing times and simulated queuing times is 

possible.  If the real system is correctly simulated, the time for which items await in the 

fictitious buffer should prove irrelevant in comparison with the waiting times in the 

actual buffer; ideally, these times should tend to zero.  A preliminary analysis of the 

queuing times in the fictitious buffers revealed that rarely, usually less than the 5% of 

the production time, items stopped in these buffers for a time interval.  In general, it 

was noted that a queue built up in the fictitious buffers whenever a machine in the 

successive station experienced a prolonged shut down.  This is understandable since the 

rigidity of the routing policy implemented in the simulation model.  The decision to 

reproduce the routing patterns found in the real system by pre-assigning to an item the 

machine at which it had to be processed in the successive station caused a rigidity in the 

routing decisions which was not experienced in the real system.  Whenever a machine is 

not available, an operator would re-route an item to another available machine in the 

same station; in the model, re-routing decisions are not possible and an item assigned to 

a machine temporarily shut down for maintenance operations will wait in the buffer 

until that machine is made available again.  The choice of setting a maximum number of 

items that a machine can contemporarily process higher than the actual number is 

partially motivated by the rigidity of the simulated routing policy.  Indeed, when the 

machine is made available the queue built up in the fictitious buffer will reduce in a 

shorter time and the system will shortly acquire its natural actual behaviour.  As a 
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consequence of these modelling choices, a little distortion of the distribution of the total 

queuing times could be justified.   

Figure 3.21 shows the probability plot for the distribution of the global queuing 

times observed at M1 of Stn4 with respect to the exponential distribution fitting the 

actual data.  The plot has been obtained using the statistical software MINITABv14®.  

As can be seen in Figure 3.21, the variation of the distribution statistics in the global 

queuing time distribution is not significant; the mean value of the distribution is reduced 

by 3.7%.  This result suggests that the presence of a fictitious buffer has very little 

impact on the variation of the resulting distribution of the queuing times since it could 

increase but never reduce the global waiting times.  In this case the variation of the 

distribution parameter is most likely a mere effect of the randomness of the imposed 

queuing times.  The small value of the Anderson-Darling test statistics, equal to 4.61, 

generates a small P-value for the goodness-of-fit test.  The exponential distribution used 

to model the actual queuing times can be considered a good approximation of the global 

queuing times derived from the simulation results only when significance levels less than 

0.05% are deemed acceptable.  Analyses conducted on different machines revealed that 

the distribution of the resulting queuing times does not significantly differ from the 

actual data distribution. 

 
FIGURE 3.21  PROBABILITY PLOT FOR THE DISTRIBUTION OF THE QUEUING TIMES RESULTING FROM 

SIMULATION AT M1 OF STN4. 
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3.7 Conclusions 

In this chapter, the problem investigated in this thesis was stated.  Two quality risk 

related performance measures under investigation were introduced and the phenomena 

which determine their randomness, for the particular sampling strategy adopted in the 

system, were illustrated.  The relationship between the two performance measures and 

some process design parameters and the development of analytical models for allowing 

quality risk considerations represents the ultimate objective of this work. 

The development of the simulation model used for the analysis of the relationship 

between the two quality risk related performance measures and some process design 

parameters has been described in details in this chapter.  The model reproduces the 

behaviour of part of a multi-product manufacturing system.  The part analysed can be 

considered as a segment consisting of five operation stations serially located and a final 

inspection station.  Several identical machines operate in parallel in each station.  Two 

types of product flow cross the segment: a serial flow, that interests the whole segment, 

and a cross flow, that visits only one station of the segment and continues following 

random paths in the system. 

Particular attention has been paid to the data analysis.  For the time related 

parameters used in the model the procedure followed to fit theoretical distributions on 

the data available in the company database has been illustrated.  Data were usually 

grouped in three macro categories.  These were based on the relevancy of the product 

and the operation types. 

In order to simulate the flow of the serial products in a realistic fashion, the routing 

patterns of the items between the machines of consecutive stations were also analysed.  

Apart from a few machines for which preferential routes were detectable, the item 

routing seems to be random; in fact, uniform patterns were often obtained. 

The validation of the model mainly relied on the positive feedback of the production 

staff familiar with the segment modelled.  For the limited access to the company’s 

historical database, a validation based on a numerical base proved quite difficult.  
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Nonetheless, quantitative verifications on the correctness of the model were successfully 

conducted. 
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Chapter IV 

Quality Risk and Process Design Parameters: 

a Simulation Approach 

4  

4.1 Introduction 

The simulation model illustrated in the previous chapter represents an extremely 

useful tool for investigating the relationship between some control parameters and the 

quality risk related performance measures considered in this research.  In the area of 

SPC, and in particular of control charts, the ever increasing attention paid to quality risk 

related performance measures reveals the importance of controlling the quality risk 

associated with the implementation of a sampling policy.  The vastness of the literature 

reporting analyses on Type I and Type II errors, also called α and β risks, is emblematic 

in this regard; moreover, the Average Run Length (ARL) or the Average Time to Signal 

(ATS) are cited very often and are objects of attentive studies [136-138].  In most cases, 

the analyses take only quality control aspects into account or, at most, economic 

considerations are included.  As suggested by Inman et al. [21], quality issues should 

never be considered separately from process design elements, and even if the authors 

refer to quality in general, it is very presumable that their suggestion can be extended to 

quality control. 

In this chapter, an analysis of the impact of quality control and production system 

design related control parameters on two quality related risk performance measures is 
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carried out using a simulation approach.  The performance measures considered allow 

the risk of not monitoring the quality status of the machines in a production segment to 

be quantified.  As a consequence, the status of the items processed by them can be 

assessed.  This analysis is also preliminary to the development of analytical prediction 

models for the same measures and it proved very useful in gaining an insight into the 

system behaviour and determining the parameters most affecting the performance of 

the sampling strategy. 

The results obtained by the simulation model illustrated in the previous chapter 

provided the base on which the analysis reported in this chapter was built.  

Modifications to the system configuration were also considered in order to analyse the 

impact on the performance measures of some variables related with the system 

configuration, such as the number of stations in the segment and the number of 

machines in a station.  In order to generalise the conclusions drawn for the simulated 

systems, a basic model, consisting of only two stations and a buffer, was also developed.  

Besides supporting the investigation on the validity domain of the conclusions drawn 

from the initial analysis, this basic model also allowed the determination of the 

hypothesis required for the application of the analytical models developed.  For this 

reason, it will be presented in the next chapter.  

Using the simulation approach, the analysis of the responsiveness of the sampling 

strategy to quality failures was also conducted.  Different defect introduction modes 

were simulated and the sensitivity of the quality risk related performance measures with 

respect to some control parameters was analysed.  The results obtained on the defect 

detectability of the sampling strategy adopted will conclude this chapter. 

4.2 Experimental design 

Based on the original model, different variants were developed in order to investigate 

the effect of some control parameters on the performances of the sampling strategy 

adopted, in terms of both the number of unsampled items between consecutive samples 

and the time between samples.  Following on from discussions with the production staff 

familiar with the segment, three parameters were considered of primary interest in the 
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initial analysis.  They consist of the line speed, the line configuration and the sampling 

intervals. 

The line speed is expressed here in terms of WIP-Turns, which is a measure of how 

fast the WIP in a line is turned over.  This performance measure can be improved 

without recourse to reducing the processing times of stations, for example by optimising 

the inventory release strategy, increasing the utilisation and/or availability of existing 

machines and providing additional capacity at key workstations.  Increasing the line 

speed by reducing the processing times usually proves a very costly and, in most cases, 

not feasible solution [5]; this is because the processing times are constrained by the 

technology available.  As in the case of the company supporting this research, when the 

state-of-the-art technology is implemented in the system, reducing the processing times 

becomes a very difficult, if not impossible task.  The increase in line speed was 

implemented with interventions on queuing times using two different strategies which 

will be illustrated later on in this section.  From a quality point of view, increase in line 

speed will sort similar effects independently on the fact that processing times or queuing 

times are involved. 

A variation in line speed may not directly impact the quality of the product but may 

impact the level of risk associated with a sampling strategy.  Indeed, among production 

personnel of the company involved in this research, there was a strong belief that an 

increase in line speed would prove beneficial from a quality control point of view.  This 

was based on the consideration that if the items cross the segment in a shorter time the 

quality information they carry with them will also be available more quickly. 

Although the concept of line speed is intended here differently from the concept of 

line speed as envisioned by Inman et al. [21], there are strong commonalities between 

the essence of the analysis developed in this research and Inman’s invitation.  Indeed, 

the main objective of Inman’s paper was to make researchers aware of unexplored fields 

of research in the intersection area between quality and production design issues.  As the 

authors state, the twenty-one areas identified in the paper are definitely not exhaustive.  
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The line configuration refers to the station width, which is intended as the number of 

parallel machines operating in a station.  It should be interesting to analyse what 

happens when the product flow is spread across a higher number of machines. 

Finally, the sampling intervals of the two monitored products indicate the frequency 

with which the monitored items are sampled.  That obviously impacts the sampled 

fraction of the entire production volume, provided that the production volumes of each 

product are kept constant. 

 

 

 

The experimental plan initially developed was based on a 23 factorial plan.  Two 

levels for each of the three parameters were considered and all the eight combinations 

between them simulated.  Figure 4.1 schematically represents the eight scenarios 

investigated; the numbers at each corner indicate the denomination with which the 

scenarios will be referred to hereafter. 

Avoiding absolute figures for confidentiality reasons, with the line speed at a high 

level the time needed for the items to cross the segment is reduced by about 35% when 
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half of the sampling intervals used in the high level.  Later on in this section, the reasons 

behind the choice of the levels will be given. 

The passage from the low to the high level for the line configuration consisted of 

adding an extra machine in all the stations of the segment, apart from station 3.  A 

machine was added in the stations where a reduction of the upstream routing times was 

considered feasible.  For station 3, which shares the same working area of station 2, this 

reduction did not make sense.  

The higher capacity obtained for the large configuration could well justify the 

reduction in queuing times and hence the increase in WIP-Turns.  In fact, when an extra 

machine is available, the buffer upstream of the station where the extra machine is 

located is emptied in a shorter time.  As a result, the queuing times were reduced; the 

processing times obviously do not change.  This solution was supposed to be the easiest 

way to increase the line speed.  In order to complete the factorial plan, another possible 

way to increase the line speed without increasing the system capacity had to be found.  

It involved considerations on the inventory level.  In fact, since an increase in WIP-

Turns can be obtained by acting on the amount of inventory kept in the system, a leaner 

line can reach the same objective as an enlarged configuration from a WIP-Turns point 

of view.  In the case of a leaner line, the reduction of the routing times is obtained by 

reducing the number of items present in each station.  This is possible by reducing the 

inter-arrival rate of each product.  As a consequence, a scenario with the higher line 

speed and the initial configuration can be considered realistic.  The only drawback is 

that, since the number of items in the segment is reduced, keeping the same sampling 

intervals would lead to fewer measured items.  In order to allow consistent comparisons 

between scenarios differing for the line speed it is reasonable to maintain the same 

number of samples per period of time as in the initial configuration and because of this 

the sampling intervals for both the product types to be measured were properly 

adjusted.  The changes to the simulation model needed to implement this scenario only 

required a variation of the inter-arrival and queuing and transportation time parameters 

which are provided to the simulation software by means of an Excel file.  While for the 

line configuration changes a modification of the model itself was needed (Figure 4.2).  

In fact, from the configuration point of view the model developed proved quite rigid 
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even though the modularity with which it was conceived made the variation of the 

number of parallel machines in a station quite fast. 

Although not logical from a managerial point of view, for completeness sake, the 

lower line speed, that is the higher routing time values, in combination with the enlarged 

configuration was also simulated.  This was done to provide the analysis reported with 

scientific rigours. 

It is worth noting that the number of samples per unit time might differ between the 

scenarios simulated.  It is higher when the small sampling intervals are combined with 

the lower line speed value; it is lower when the lower sampling intervals are combined 

with the higher line speed. In order to simulate configurations which would generate 

more samples it was assumed that the inspection station has sufficient excess capacity to 

manage the increased workload. 

To the eight scenarios which made up the factorial plan, two more were added in 

order to investigate more closely the impact of the sampling station width on the 

monitoring ability of the sampling strategy in the other stations of the segment. This 

choice was motivated by the initial believe that the width of the sampling station played 

a fundamental role in the determination of the number of samples per unit time. 

Table 4.1 summarises the characteristics of all the scenarios investigated for the first part 

of the analysis.  The column “Global Sample Rate” refers to the global rate at which 

items are sampled; it is calculated as the inverse of the weighted sum of the sampling 

intervals adopted for each monitored product.  The weights used are the production 

volumes of the monitored products, which can be derived from the average inter-arrival 

times. The global sample rate gives an indication of the sampled fraction which 

characterises each scenario.  As will be shown in the next chapter, the sampled fraction 

turned out to be one of the most important parameters for determining the monitoring 

efficacy of the sampling strategy.  The number of machines for station 4 is reported in 

grey, since, due to the particular nature of the process carried out, the data from this set 

of machines was not analysed.  In fact, unlike the other stations in the segment, in 

station 4 two serial operations are simulated.  The first operation type is performed on 

all the items arriving at the station; whereas, the second operation type, which in the real 
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facility is performed in a different station, is applied only on a fraction of the items 

undergoing the first operation.  These items are randomly chosen based on a predefined 

probability.  The decision to group the two serial operations in one station was based on 

the intent to reduce the simulation model size. 
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IMPLEMENTING THE LINE SPEED INCREASE. 
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TABLE 4.1  WIP TURN AND SAMPLING FREQUENCY FOR EACH SCENARIO SIMULATED. 

Scen. 
WIP 

turn 

Number of Machines 

Product 

Sampling 

Intervals 

Inter-Arrival 

Rate 
Global 

Sample 

Rate 
St 1 St 2 St 3 St 4 St 5 Insp. A B A B 

1 
Low 

4 4 3 3 5 4 

Large Large High High Low 

2 Small Small High High High 

3 
High 

Large Large Low Low Very Low 

4 Small Small Low Low Low 

5 
Low 

5 5 3 4 6 5 

Large Large High High Low 

6 Small Small High High High 

7 
High 

Large Large High High Low 

8 Small Small High High High 

9 
Low 

5 5 3 4 5 5 Large Large High High Low 

10 5 5 3 4 7 5 Large Large High High Low 

 

4.3 Results analysis 

Along with the impact on the performance measures of the parameters which vary in 

the experimental plan, the proximity to the inspection station was investigated.  In this 

case, the presence of different stations progressively closer to the inspection in any of 

the scenarios simulated does not require any additional experiment.  In fact, any single 

scenario could provide useful and sufficient information to conduct this particular 

analysis. 

The analysis of the interactions between the three factors investigated is not reported 

since it was deemed not fundamental for an initial understanding of the effectiveness of 

the sampling strategy.  This was based on the consideration that whilst the cause-effect 

relationships of the single factors on the quality risk related performance measures can 

be assessed without involving quantitative evaluations, the effects of the interactions are 

strongly dependent on the particular values of the contributing factors.  In other words, 

a general pattern of the effects of the single factors could be extrapolated from the data 

available; on the contrary, the patterns of the effects of the interactions would not allow 

a straightforward generalisation.  The way the factors interact between each other will be 
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encapsulated in the deterministic formulae for the average values of the time between 

samples (Section 5.2.1) and the number of consecutive unsampled items (Section 5.2.2). 

 

 
FIGURE 4.3  TYPICAL EXCEL OUTCOME AT THE END OF A SIMULATION RUN. 

 

In order to avoid unnecessary complications to the simulation model and reduce the 

simulation run times, the two performance measures on which the analysis was based 

are not a direct output of the simulations.  In fact, as mentioned before, at the end of 

each simulation run, an Excel file containing all of the information gathered with respect 

to the items processed in the segment is generated.  This file is composed of four 

worksheets, one for the serial flow items and the other ones for the cross flow items.  

These sheets are similarly structured (Figure 4.3).  The first column indicates the 

product type; three id’s are used reflecting the three categories identified in the system 

description.  The second column contains an item id, which is applied exclusively to the 

serial flow items and represents the order with which those items are generated within 

the segment.  From the third to the eighth column the id’s of the machines visited by 

the items in each of the six stations in the segment are registered.  The timestamps 

relative to the item generation and the times in and out of each visited machine are 

reported in the remaining thirteen columns.  Each item corresponds with a row in a 

worksheet and whenever the information relative to a column is not applicable, the 

corresponding cell is left blank.  Keeping the same structure for all the worksheets, 

independently of the particular product type, eased the output data processing which 

was conducted using the software Matlab v7.1®.  Different Matlab functions were 

developed in order to calculate the number of unsampled items between consecutive 

samples and the time between samples.  Different versions of those functions are 
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available; they try to respond to the different objectives of the analyses conducted.  One 

of the functions used is shown in Appendix C. 

The simulation model was run for 6,000 hours with a warm-up period of 1500 hours 

and 5 replications were conducted with the model each time an experimental scenario 

was investigated.  Data from the models was averaged across the 5 simulation runs.  

This provided a population of about 3,000 samples behind each reported statistic.  

Sections 4.3.1 to 4.3.4 will focus on the impact of each of the factors investigated on 

the quality risk related performance measures, namely the line speed, the sampling 

interval, the proximity to the inspection station and the station width.  A table 

summarising the main findings of these analyses is reported in Section 4.3.5. 

4.3.1 Line speed impact 

At the beginning of the analysis great interest was paid by the production staff involved 

in this research to the impact that the line speed could have on the sampling strategy 

performances.  The reason is that the predictions of the effects it could have on the 

monitoring speed were not straightforward and the opinions each person had were 

different.  However, the feeling that speeding up the line could have beneficial effects 

on the monitoring speed was definitely more common.  If the items went faster through 

the line, in the same timeframe, more samples could be measured and the information 

about the quality status of the line could be updated more frequently.  That could result 

in a fewer number of items exposed to the risk of being produced by an out of control 

machine. 

The results obtained from the simulations seem to contradict this opinion.  Figure 

4.4 shows the patterns for the mean and some high percentiles of the distribution of the 

number of unsampled items between consecutive samples based on the results obtained 

for the second station.  The sequence of scenarios on the horizontal axis is reordered so 

that a direct comparison between scenarios differing exclusively for the line speed is 

easier.  The similar patterns of the mean and the percentiles up to the 95th percentile 

should guarantee that any consideration made about the mean values is still valid for the 

whole distributions.   
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FIGURE 4.4  IMPACT OF THE LINE SPEED ON THE NUMBER OF UNSAMPLED ITEMS BETWEEN 

CONSECUTIVE SAMPLES. 

 

 
FIGURE 4.5  PATTERN OF THE MAXIMUM VALUES OF THE NUMBER OF UNSAMPLED ITEMS BETWEEN 

CONSECUTIVE SAMPLES. 
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Any eventual variation of the pattern of the maximum values should be more likely 

due to anomalies rather than to a systematic behaviour of the system.  For 

demonstrative purposes, the pattern of the maximum values obtained for the same 

station as the one considered in Figure 4.4 is shown in Figure 4.5.  Strong anomalies can 

be noted and for this reason the maximum values will never be taken into account in 

this analysis hereafter.  The exact same observations apply to the other performance 

measure considered, the time between samples, which is shown in Figure 4.6. 

 
FIGURE 4.6  IMPACT OF THE LINE SPEED ON THE TIME BETWEEN SAMPLES. 

 

Figure 4.4 indicates that the number of consecutive unsampled items for each 

machine, which was supposed to decrease by increasing the WIP-Turns, appears not to 

be affected by the line speed when the sampling rate is kept constant in both the 

configurations.  In fact, the variation of the line speed affects all the product flows in 

the same measures; this means that the volumes of the different product categories are 

kept unchanged.  As a consequence, the increased line speed can not be noticed on the 

number of items; however, this will most likely impact the time between samples as, if 

the line speed is higher, this should mean that the same quantity of items is produced in 

a shorter time, at least for the case when the inter-arrival times are affected by line speed 

variations. 
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This supposition is contradicted by the results reported in Figure 4.6.  In fact, for the 

enlarged configurations, the time between samples seems to be independent of the 

WIP-Turns and it even increases with the line speed, for the original configurations.  

The explanation of this behaviour is found if the line speed variation is analysed in 

terms of the impact it has on the inter-arrival time at a machine level.  In the original 

configuration, the line speed increase is actually obtained by increasing the inter-arrival 

time at a station level.  Since the number of machines for these scenarios (scenarios 3 

and 4) does not change with respect to the corresponding low speed scenarios 

(scenarios 1 and 2), the increase in the inter-arrival time implemented at a station level 

means that the inter-arrival time at a machine level proportionally increases.  The 

increased time between samples is a consequence of the slower time at which items 

moves in and out of the segment.  In the enlarged configurations, an increase in the 

inter-arrival time is still observed at a machine level.  In this case, it is caused by the 

presence of an extra machine in the stations and not by a variation of the inter-arrival 

time at a station level.  The increased inter-arrival time at a machine level causes the 

increase in the time between samples for all the scenarios with the enlarged 

configuration in comparison with the scenarios using the original configuration.  In 

particular, just by coincidence, the variation that the extra machine in the second station 

determines on the inter-arrival times for scenario 5 (and 6) is the same as the one 

imposed in scenario 3 (and 4); hence, the same results.  However, looking at the 

enlarged configuration scenarios, the passage from the low line speed to the high line 

speed (scenarios 5 to 7, and 6 to 8) does not have any impact on the time between 

samples.  In fact, the speed was increased by making the production line leaner, that is, 

reducing the queuing times.  The inter-arrival times between the low line speed 

scenarios and the high line speed scenarios remain unchanged; that means no variation 

is registered for the times since no variation was detected in the number of unsampled 

items between samples. 

The same effect was seen across all the stations in the segment.  The results shown in 

Figure 4.4, Figure 4.5 and Figure 4.6 report results normalised with respect to results 

obtained in the fifth station for the first scenario.  This was done for confidentiality 

reasons and, where not differently specified, it will hold for all the figures hereafter. 
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In conclusion, matching the number of samples per unit time, as happens for 

scenarios 1 and 5, the risk associated with the system quality performances theoretically 

doesn’t change, in terms of number of unsampled items between samples (Figure 4.4).  

However, in the enlarged configuration, which appeared to be the simplest 

implementation of the decision to speed up the line, the time between samples 

significantly increases (Figure 4.6).  It is worth noting that the presence of an extra 

machine in each station is by itself a cause of further risk and costs. 

4.3.2 Impact of changing the sampling interval 

When everything else is kept constant, the variation of the sampling intervals 

effectively means the variation of the sampled fraction.  In particular, if the frequency 

with which items are sampled increases it should be reasonable to expect a reduction of 

the quality risk, which means a reduction of both the performance measures. 

 
FIGURE 4.7  IMPACT OF THE SAMPLING INTERVAL ON THE NUMBER OF CONSECUTIVE UNSAMPLED 

ITEMS IN THREE STATIONS OF THE SEGMENT. 
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Independently of the station, the number of unsampled items significantly decreases 

when the sampling intervals for both the monitored products decrease.  The slope of 

the segments represented in Figure 4.7 is very similar for the different stations.  It 

approximately equals the variation of the global sampling intervals. 

In order to observe a beneficial effect on the number of consecutive unsampled 

items, the global sampled fraction and not only the sampled fraction of the monitored 

products has to increase.  Indeed, if the sampled fraction increase is implemented with 

respect to the monitored volume, that is smaller sampling intervals are set for the 

monitored products, it can happen that a contemporary increase in the unmonitored 

volume crossing a station could determine a reduction of the global sampled fraction 

with consequent deleterious effects on the number of unsampled items. 

The different quantities of consecutive unsampled items which characterise the 

different stations are due to the different unmonitored volumes processed.  The only 

other parameter which could potentially be the reason for the reported differences is the 

station width.  It is worth noting that both the variation of the unmonitored volume and 

the different width determines different loadings of the machines in terms of the global 

number of processed items.  This means, the variation of the volume processed by each 

machine, independently of the phenomena by which it is caused, is the ultimate reason 

for the differences between the number of consecutive unsampled items observed in the 

different stations (Figure 4.7). 

Since there is no impact from the unmonitored flow on the number of unsampled 

items between consecutive samples, any difference in the time between samples should 

be related to the number of machines in the station.  The effect of station width may be 

examined by considering the results from stations 1 and 2 (same number of machines) 

and station 5 which has a larger number of machines.  The first and the second stations 

show the same results while the fifth station is characterised by higher times (Figure 4.8)  

This is reasonable since the number of monitored type items is the same through the 

stations; the wider the station is, the more spread is the product flow between the 

machines and the greater is the time between two successive samples. 
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FIGURE 4.8  IMPACT OF THE SAMPLING INTERVAL ON THE TIME BETWEEN CONSECUTIVE SAMPLES 

IN THREE STATION OF THE SEGMENT. 

 

As happens for the number of unsampled items, the magnitude of the reduction of 

the time between samples caused by the increased sampled fraction is similar for the 

three stations represented and reflects the average variation of the global sampling 

interval. 

Considering that, in relative terms, the impact of the sampling interval on both the 

performance measures is similar in the different stations, further analyses can focus on 

one station only.  The first station has been chosen as a reference.  The comparison 

between the number of consecutive unsampled items between samples is proposed in 

Figure 4.9. Figure 4.10 shows the impact of the sampling interval on the time between 

samples.  In both the figures, the data are grouped so that a direct comparison is 

allowed for scenarios differing only for the sampling intervals. 

Independent of both the configuration and the line speed, the main observation is 
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FIGURE 4.9  IMPACT OF THE SAMPLING INTERVALS ON THE NUMBER OF ITEMS BETWEEN 

CONSECUTIVE SAMPLES IN DIFFERENT SCENARIOS. 

 

 

 
FIGURE 4.10  IMPACT OF THE SAMPLING INTERVALS ON THE TIME BETWEEN SAMPLES IN 

DIFFERENT SCENARIOS. 

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8

Large Small Large Small Large Small Large Small

Large Small Large Small Large Small Large Small

#
 u

n
sa

m
p

le
d

 it
e

m
s

scenarios

Sampling Interval Impact on # items
Comparison between scenarios (Stn 1)

95%

90%

85%

mean

SI

LS

Conf

Low

Original

High HighLow

Enlarged

Small SmallLarge LargeSmall SmallLarge Large

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8

Large Small Large Small Large Small Large Small

Large Small Large Small Large Small Large Small

T
im

e
 b

e
tw

e
e

n
 s

a
m

p
le

s

scenarios

Sampling Interval Impact on Time
Comparison between scenarios (Stn 1)

95%

90%

85%

mean

SI

LS

Conf

Large

Low

Small

Original

High HighLow

Enlarged

SmallSmall SmallLarge Large Large



 CHAPTER IV RESULTS ANALYSIS 

99 
 

 

The magnitude of time reduction between the grouped scenarios is independent of 

the line configuration, i.e. the station width, and reflects the average increase in the 

number of samples.  The higher values of the time between samples for scenarios 3 and 

4 with respect to scenarios 1 and 2 are a consequence of the reduced inter-arrival rate 

for all the products, and in particular for the monitored products.  In fact, if the 

sampled fraction is kept constant but the frequency with which all the products arrive is 

lower, it is understandable that nothing changes in terms of the number of unsampled 

items between samples (scenarios 1 and 3 in Figure 4.9) but the time needed to observe 

two consecutive samples increases. 

In conclusion, a reduction of the sampling intervals of the monitored products 

reduces the quality risk in that it results in an increase in the sampled fraction.  In the 

case where the sampling intervals reduction is followed by an increase of the 

unmonitored flow the effects may be balanced, which means the beneficial effects of 

the sampling intervals can be apparently reduced or even lost since the sampled fraction 

of the global volume might, as a result, be decreased.  At the end of this analysis, it is 

clear that talking in terms of global sampled fraction allows a more immediate 

evaluation of the impact that the sampling intervals of the monitored products have on 

the quality risk performance measures, and in particular on the number of unsampled 

items between consecutive samples.  The reason is that the global sampled fraction is a 

more comprehensive measure, which includes in itself information about the 

production volumes of the different product categories. 

4.3.3 Proximity to the inspection station 

The proximity to the inspection station is another factor that logically could affect 

the monitoring capability of the system, and in particular, the speed of defect detection 

and feedback information.  This is investigated here in terms of the impact on the 

number of unsampled items between samples and the time between samples.  These 

measures quantify in relative terms the delay in quality failure detection for a particular 

machine.  In fact, they take as a reference the processing of the previous sample in that 

machine and ignore the number of items processed during the time needed for the 
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sample to reach the inspection station.  On the other hand, investigating the impact of 

the proximity to the inspection station from an absolute perspective can be trivial; it is 

understandable that the further a station is from the inspection station the later the 

feedback information will be available.  The same can’t be said for the relative 

perspective. 

 
FIGURE 4.11  MEAN AND SOME PERCENTILES OF THE DISTRIBUTION OF THE NUMBER OF 

UNSAMPLED ITEMS FOR STATIONS 1, 2 AND 5 (SCENARIO 9). 
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the analysis.  In Figure 4.11, the comparison between the stations proves very difficult; 

the different values of the mean are more likely caused by the different cross flow 

volumes.  It is worth noting once again that since the cross flow is independent from 

station to station, the unmonitored volumes processed in each station varies and, as a 

consequence, the number of items between samples, which depends on the global 

production volume, does not necessarily provide useful indications for this analysis 

purpose.  The proximity of the station to the inspection station can play a marginal role 

too in the difference between the mean values in Figure 4.11.  For clarity, station 1 is the 
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farthest from and station 5 the closest to the inspection station.  The high value of the 

95th percentile of the distribution of the number of unsampled items for the fifth station 

is probably due to an anomalous dispersion of the simulation results. 

Considerations based on the time between samples should be more reliable.  In fact, 

Figure 4.12 shows more regular patterns for some statistics of the distribution of the 

time between samples for the three stations.  The mean values do not change; that 

implies that the differences in the means of the number of items between samples are 

only due to the different unmonitored volumes processed in each station.  As regards 

the higher percentiles, Figure 4.12 indicates an interesting reduction of the slope of the 

lines as the inspection station gets closer.  Whereas the relevantly different dispersion of 

the distributions between stations 1 and 2, and station 5 is due to the fact that station 5 

is a sampling station, the slight reduction of the line slope observed between station 1 

and station 2 reveals that also the proximity to the inspection has a positive effect on the 

variability of the distributions. 

 
FIGURE 4.12  MEAN AND SOME PERCENTILES OF THE DISTRIBUTION OF THE TIME BETWEEN 

SAMPLES FOR STATIONS 1, 2 AND 5 IN SCENARIO 9. 
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when compared to the other stations.  The lack of any deterministic component and the 

distance from the sampling station determine a higher variability in the other stations 

for both the performance measures.  It has to be noted that the different variability of 

the inter-arrival times for the cross flow also contributes to the variability of the number 

of items between samples. 

The involvement of a deterministic factor in the sampling station has diverted the 

focus of this analysis from the inspection station itself to the sampling station.  In fact, 

the results shown are more indicative of the impact of the distance from the sampling 

station rather than from the inspection station.  However, in most cases, the sampling 

and the inspection stations are immediately close, as happens in this system. 

In the end, the distance from the sampling station, contrary to what one may expect, 

does not have a remarkably negative effect on the monitoring capacity apart from a 

slight reduction of the variability which is detectable for both the measures. 

4.3.4 Station width 

Due to its impact on the inter-arrival time at a machine level, the station width is 

expected to be a relevant factor for the effectiveness of the sampling strategy, in 

particular from a time perspective.  In fact, keeping the inter-arrival time at a station 

level constant, the wider the station is, the higher the inter-arrival time of the items at 

each machine will be.  This immediately implies that more time is needed for a machine 

to receive the same quantity of items and, as a consequence, the arrival of a sample will 

be delayed.  The fact that the time is expanded should not necessarily have an impact on 

the number of items between samples. 

The comparison between the results of scenarios 2 and 6 provides a better 

understanding of the nature of the impact of the station width on the performance 

measures.  In fact, the scenarios only differ for the line configuration, i.e. the number of 

machines in the stations.  Apart from station 3, which operates with only three 

machines for both the scenarios, all the other stations in scenario 6 contain an extra 

machine with regards to the original configuration in scenario 2.  The production 

volumes in each station and the sampling intervals of the monitored product types do 
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not change between the two scenarios; hence, the resulting global sampled fraction is 

unchanged. 

 
FIGURE 4.13  IMPACT OF THE STATION WIDTH ON THE TIME BETWEEN SAMPLES. 

 

As the dashed line in Figure 4.13 reveals the time between samples increases as the 

number of machines increases within the same scenario; that is a direct consequence of 

the reduction of machine loading due to the spreading of the flow across a greater 

number of machines.  Stations 1 and 2, which have the same width, present no 

difference in the time between samples.  Evidently, the reason is that the inter-arrival 

time at a machine level for the monitored flow is the same for both the stations.  The 

comparison of the results of the two scenarios in Figure 4.13, confirms the negative 

effect of the number of machines in a station on the time between samples.  Adding an 

extra machine causes an increase in the time between samples.  Independently of the 

station, when the number of machines matches between the two scenarios, as happens 

for station 5 in scenario 2 and stations 1 and 2 in scenario 6, the same times between 

samples are obtained.  The same happens for station 3, which has the same width in 

both the scenarios.  When an extra machine is added in a station, the differences in the 

time between samples between the same stations in the original and enlarged scenarios 

prove proportional to the variation of the inter-arrival times in each machine.  
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It is, therefore, clear that the time between samples is governed by the inter-arrival 

time of the monitored products and their sampling intervals; the unmonitored flow has 

no effect on it. 

 
FIGURE 4.14  IMPACT OF THE STATION WIDTH ON THE NUMBER OF CONSECUTIVE UNSAMPLED 

ITEMS. 

 

Due to the presence of the cross flow, the only valid comparison for the number of 

items between samples is limited to each single station in the two scenarios.  The 

variation of the number of machines has no impact on this measure (Figure 4.14) and 

the reason for that is that the extra machine does not cause any change in the sampled 

fraction.  The expansion of the inter-arrival times in the stations with the extra machine 

affects the different flows in the same proportion.  For example, when the number of 

machines goes from 4 to 5, the inter-arrival time at a machine level increases by 5% for 

each of the three product flows.  That means, in terms of relative volumes, nothing 

changes.  If the sampling intervals and the proportion between the monitored flow and 

the unmonitored flow are kept unchanged, the number of items between samples does 

not change.  It is interesting to notice that not even the high percentiles of the 

distributions change; hence, even the variability of the number of unsampled items is 
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The importance of the station width on the time between samples has its origin in 

the impact it has on the inter-arrival time at a machine level.  In the case that variations 

of different parameters keep the inter-arrival time unchanged, the station width 

apparently loses its impact.  The comparison between scenarios 3 and 7 can prove this 

statement.  These two scenarios differ for the line configuration and the inter-arrival 

rate at a station level.  In scenario 3 the inter-arrival time at a station level for all the 

product flows is 20% higher than in scenario 7.  Given that the sampling intervals of the 

two products are equal for the two scenarios, the variation in the number of samples per 

unit time reflects the variation of the inter-arrival rates at a station level; that means 

scenario 3 has 20% fewer samples per unit time than scenario 7.  However, in relative 

terms, since the inter-arrival rate variation interests all the flows, the sampled fraction 

remains unchanged. 

 
FIGURE 4.15  COMPARISON OF THE TIME BETWEEN SAMPLES BETWEEN SCENARIOS WITH 

DIFFERENT INTER-ARRIVAL TIMES AND DIFFERENT LINE CONFIGURATIONS. 
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the time between samples.  The reduction of the time between samples for the machines 

of station 3 in scenario 7 is due to the higher inter-arrival rate in scenario 7, given the 

number of machines remained constant.  Finally, the slight difference in the time 

between samples for the fifth station is an effect of the change from 5 to 6 machines 

between scenario 3 and 7 which means the inter-arrival rate is decreased by 

approximately 17% in scenario 7, compared with the 20% reduction in scenario 3.  This 

proves that as long as the sampling intervals and the inter-arrival rate at each machine 

are kept constant, the station width has no impact on the time between samples. 

Finally, the impact of the sampling station width on the quality risk measures, when 

the other stations keep the same width, was investigated.  Considering scenario 5 as a 

reference scenario, the width of station 5 was increased and decreased by a machine in 

scenarios 9 and 10 respectively.  Since nothing changes apart from the sampling station 

width, the sampled fraction does not vary between the three scenarios.  As a 

consequence, as can be seen in Figure 4.16, there was no variation of the number of 

items between consecutive samples in the different stations of the segment across the 

three scenarios.  The inter-arrival time at a machine level is modified only in the 

sampling station; it linearly increases with the number of machines in the station.  As a 

result, the time between samples in the sampling station increases with the same linear 

pattern (Figure 4.17).  As was expected, the time between samples in the other stations 

was not affected by the sampling station width. 
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FIGURE 4.16  IMPACT OF THE SAMPLING STATION WIDTH ON THE NUMBER OF ITEMS BETWEEN 

CONSECUTIVE SAMPLES IN DIFFERENT STATIONS. 

 

 

 

 
FIGURE 4.17  IMPACT OF THE SAMPLING STATION WIDTH ON THE TIME BETWEEN SAMPLES IN 

DIFFERENT STATIONS. 
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4.3.5 Results overview 

The main findings of the first part of the analysis are summarised in Table 4.2. 

 

 

TABLE 4.2  MAIN FINDINGS OF SECTION 4.3. 

Parameter 

# consecutive 

unsampled 

items 

Time between 

samples 
Comments 

Line Speed No impact 

No impact for the 

enlarged 

configurations; 

Increases with the 

line speed for the 

original 

configurations 

In the original configurations, a line 

speed increase is obtained through an 

inter-arrival time decrease at a 

station/machine level; in the enlarged 

configurations the inter-arrival time at a 

machine level is not affected by the line 

speed increase. 

Sampling 

Interval 

Reduces with 

lower sampling 

intervals 

Reduces with lower 

sampling intervals 

Sampling interval variations affect the 

performance measures when the global 

sampled fraction is modified by them. 

Proximity 

to the 

inspection 

station 

Irrelevant impact Irrelevant impact 

The proximity to the sampling/inspection 

station tends to reduce the dispersion of 

the performance measures.  This is 

particularly evident for the time between 

samples; the number of consecutive 

unsampled items variability is also 

affected by the variability of the inter-

arrival time of the cross flow products. 

Station 

Width 
No impact 

Increases with the 

station width 

The variation of the number of machines 

in a station causes a variation of the 

inter-arrival time at a machine level, 

hence, the impact on the time between 

samples.  The global sampled fraction is 

not affected by this parameter and so the 

number of consecutive unsampled items. 
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4.4 Defect introduction 

In order to investigate the responsiveness of the sampling policy in detecting the 

production of poor quality items, the introduction of defects in some stations of the 

segment modelled was simulated.  The model used for this analysis purpose is the same 

used in the previous study; the actual configuration of the line corresponds with the 

configuration used in scenario 1 and the production parameters were unchanged.  The 

stations chosen for introducing defects are the farthest one from the monitoring station, 

which is obviously station 1, the narrowest station in the segment, station 3, and the 

sampling station, station 5.  Due to the sampling policy, which aims to monitor each 

single machine independently in all the stations, it was decided that the production of 

poor quality items could happen at all the machines in a station at the same time.  

Besides being a possible natural behaviour of the system, this choice reduces the 

experimental time since a sufficiently high number of samples are available in a small 

number of simulation runs. 

Different modalities of defect introduction were considered; a malfunctioning 

machine may produce poor quality items in a persistent or in an intermittent fashion.  

The persistent mode implies that once the machine has entered a poor quality state it 

will only produce defective items.  On the other hand, defect introduction in the 

intermittent mode implies that the machine produces poor quality items on a 

probabilistic basis and that while in this state the machine will still produce a certain 

percentage of items which are defect free.  Following the logic of when poor quality 

items are produced while the machine is working perfectly, the percentage of good 

items produced reflects both the statistical dispersion of the production of good items 

and the choice of the control limits for monitoring the process.  Considering what 

happens in the real segment, which has been modelled, another method of defect 

introduction was simulated.  This consists of introducing defects in a permanent fashion 

until a repair event with duration higher than a threshold value is conducted on the 

machine; after this event the production of poor quality items will prove intermittent.  

This event, which can be usually classified as a PM event, is not intended to fix the 

machine.  It only consists of an ordinary intervention on the machine which is triggered 
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not by the quality failure but for reaching a due timestamp or number of completed 

operations.  Hence, it might happen that the quality failure is not noticed during the 

maintenance operation and the machine is not properly fixed so that the quality status 

of the items produced after the reparation can be still poor based on a given probability. 

Moreover, a case was studied to check how robust the sampling policy was in dealing 

with Type II errors.  In this case, even though the machines operate in a quality control, 

due to the natural variability of the process, the production of good items is spaced out 

with the production of bad ones. 

Finally, the effects of the variation of the WECO rules adopted in the sampling 

policy on the number of poor quality items produced were investigated.  In this study, 

the current rule, which suggests a repair intervention when four out of five lots coming 

from a machine are classified as defective, was compared with a stricter rule which 

triggers the machine shut down when two out of three items fail the inspection. 

In all the scenarios investigated the inspection is considered reliable.  However, the 

consequences of an item misjudgement were analysed for certain values of the Type I 

error. 

The performance measures on which the comparison of the different scenarios was 

based are the quantity of poor quality items produced up to the quality failure detection, 

which is expressed in both absolute and relative terms with respect to the whole 

production, the corresponding production time and the number of good items 

produced after the machine goes out of control.  This last measure has obviously less 

importance than the other two for the aim of this study.  The number of poor quality 

items produced up to the quality failure detection and the corresponding production 

time were conceived as the adaptation of the measures used during the first part of the 

analysis to the scenarios simulating the defect introduction.  All the measures were 

calculated by processing the simulation output by means of the functions developed and 

presented in Appendix C. 

Table 4.3 summarises the scenarios simulated for the defect detectability analysis.  

The initials displayed in the table will be used as a reference in the rest of this chapter. 
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TABLE 4.3  DENOMINATION OF THE SCENARIOS SIMULATING THE DEFECTS INTRODUCTION. 

 Defect Introduction Mode 

Persistent Intermittent 

Persistent 

with PM 

events 

WECO rule 

(2/3) 

Intermittent 

Type II 

defects 

O
u

t 
 o

f 

C
o

n
tr

o
l 

S
tn

 St 1 D1 D2 - - - 

St 3 D3 D4 - - - 

St 5 D5 D6 D7 D8 D9 

 

Each scenario was replicated 100 times.  A terminating condition was imposed so 

that each simulation run was ended when the WECO rule adopted for the 

corresponding scenario was triggered.  The simulation output was averaged across all 

the replications.  This provided 100 samples behind each reported statistics. 

4.4.1 Intermittent vs. persistent defect introduction 

In order to compare the impact of the persistent and the intermittent introduction of 

defects on the ability of detecting the quality inefficacy, defects are introduced within 

the same station so that no other factor can influence the analysis. In the intermittent 

mode, the good quality items represent 5% of the whole machine production after the 

quality failure.  The number of poor quality items produced before the machine shut 

down is shown in Figure 4.18.  The event which determines the interruption of the 

machine operating status is the verification of the adopted WECO rule, which is four 

out of five consecutive samples fail the inspection.  As for all the results shown in the 

rest of this chapter, the results in Figure 4.18 were normalised with regard to the 

maximum number of poor quality items produced in station 1, in scenario D1.  The 95th 

percentile of the distribution obtained by the simulation results, the mean and the 5th 

percentile are shown.  The choice to consider the two percentiles instead of the 

maximum and the minimum values is based on the consideration that the extreme 

values usually express anomalies, whereas the high and low percentiles are more 

expressive of the shape of the distributions.  The production time of poor quality items, 

normalised with respect to station 1 results in scenario D1, is shown in Figure 4.19. 
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FIGURE 4.18  NUMBER OF POOR QUALITY ITEMS: COMPARISON BETWEEN THE PERSISTENT AND 

INTERMITTENT DEFECT INTRODUCTION IN THREE STATIONS. 

 

 

 
FIGURE 4.19  TIME TO DETECTION: COMPARISON BETWEEN THE PERSISTENT AND INTERMITTENT 

DEFECT INTRODUCTION IN THREE STATIONS. 
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The number of poor quality items and the time until detection present the same 

patterns, being the number of items produced strictly related with the production time.  

Apart from the machines in the first station, when the defect introduction is 

intermittent a delay effect on the detection of defects can be noticed.  This is reasonable 

since, as happens in the intermittent mode, when good quality items are still produced 

there is the possibility that a good quality item is chosen as a sample.  Hence, the 

triggering of the WECO rule is delayed.  On the other hand, it is possible that, even if 

produced, good quality items are never chosen as samples; that obviously implies a 

reduction of the out of control production time and the number of poor quality items 

until the problem detection.  This justifies the similar results obtained for both the 

defect introduction modes in the machines of the first station (Figure 4.18 and Figure 

4.19).  The results obtained would suggest that, when defects are introduced 

intermittently, a delay in the quality failure detection is a more common situation than 

the eventuality when times to detection do not changed in comparison with the 

persistent defect introduction mode.  Moreover, it has to be noted that the 

measurements depend on the percentages of good items produced after the machines 

go out of control.  As regards the particular scenarios analysed, it is worth noting that 

the impact of the different introduction methods though detectable is not absolutely 

significant. 

4.4.2 Station width 

The effect of the width of the station where defects are introduced on the detection 

ability can be investigated using the results obtained.  In fact, Scenarios D3, D1 and D5 

introduce defects in a permanent fashion in station 3, 1 and 5, respectively; for the same 

stations, scenarios D2, D4 and D6 simulate the intermittent introduction of defects.  

The three stations considered differ for the number of operating machines; in particular, 

station 3 is the narrowest and station 5 the widest (Figure 4.20). 

The number of poor quality items produced until the quality failure detection is 

shown in Figure 4.22.  The results are grouped in Figure 4.22 in order to isolate the 

station width effect from the defect introduction mode effect.  The pattern of the 95th 
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percentile, the mean and the 5th percentile of the distribution of the production time of 

poor quality items to detection is represented in Figure 4.23. 

 

 

 

 

 

 

 
FIGURE 4.22  NUMBER OF POOR QUALITY ITEMS: COMPARISON BETWEEN DEFECT INTRODUCTION 

IN STATIONS OF DIFFERENT WIDTH. 
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FIGURE 4.23  NORMALIZED TIME TO DETECTION: COMPARISON BETWEEN DEFECT INTRODUCTION 

IN STATIONS OF DIFFERENT WIDTH. 
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segment increases.  That increases the probability that a poor quality item is sampled.  

As happened in the previous analysis, a comparison between the number of items 
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vary.  However, given the results illustrated in Section 4.3.4, this analysis was considered 

repetitive and its outcome predictable.  For these reasons, further investigation on this 

issue was not planned.  

4.4.3 Effective repair events impact 

The introduction of defects in experiments with the inclusion of the PM policy 

adopted in the factory was simulated on the basis that when routine maintenance events 

are carried out even if the inspection feedback has not yet pointed to any quality failure 

of the machine, a certain improvement of the machine functionality is still obtained.  In 

most cases, however, these events do not completely solve the quality problem and the 

production of poor quality items is still possible.  In fact, quite surely, after a short 

period of an apparent good quality production, defective items will be produced.  It is 

presumable that the repair events which are supposed to improve the behaviour of the 

machine have higher duration than the usual maintenance events.  In this analysis, PM 

events longer than two hours were assumed to restore an apparently normal functioning 

of the machine.  Scenario D7 was used to investigate the impact of effective PM events 

in the fifth station of the segment.  The results are compared with scenario D5 and D6, 

which simulate the introduction of defects in a permanent and intermittent fashion in 

the same station. 

Figure 4.24 shows the number of poor quality items produced before the quality 

failure is detected for these three scenarios.  The persistent introduction has the lowest 

number of poor quality items in comparison with the intermittent introduction and the 

persistent mode with effective repairing events. The last mode represents the worst 

behaviour in quality terms since the production of poor quality items is not easily 

detectable.  This is due to the partial re-establishment of the in-control state of the 

machine so that the consequent production of good quality items for a period delays the 

detection of the quality failure.  At the same time, since the machine is still experiencing 

a quality failure, poor quality items are still produced and their production persists for 

longer even if it is spaced out with a relevant production of non-defective items. 
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FIGURE 4.24 NUMBER OF POOR QUALITY ITEMS: COMPARISON BETWEEN DIFFERENT DEFECT 

INTRODUCTION MODES. 

 

 

FIGURE 4.25  TIME TO DETECTION: COMPARISON BETWEEN DIFFERENT DEFECT INTRODUCTION 

MODES. 

 

0

10

20

30

40

50

60

70

80

90

100

D5 D6 D7

#
 p

o
o

r 
q

u
a

li
ty

 i
te

m
s 

u
n

ti
l 

d
e

te
ct

io
n

scenarios

Defect Introduction Mode
Impact on # poor quality items

95%

mean

5%

Persistent IntermittentIntr. Mode Pers. (PM events)

0

20

40

60

80

100

120

D5 D6 D7

T
im

e
 t

o
 d

e
te

ct
io

n

scenarios

Defect Introduction Mode
Impact on Time to Detection

95%

mean

5%

Persistent IntermittentIntr. Mode Pers. (PM events)

WECO 

rule 
4/5 

Intr. 

St. 
5 

WECO 

rule 
4/5 

Intr. 

St. 
5 



 CHAPTER IV DEFECT INTRODUCTION 

118 
 

Paradoxically, a repairing event partially correcting a quality failure reduces the 

chances to properly restore the machine functioning in a short time and creates an 

amplification effect on the production of poor quality items. The same pattern 

characterises the time to detection, as Figure 4.25  shows. 

4.4.4 WECO rules impact 

The use of stricter rules in quality control policies has two controversial elements.  It 

is generally supposed to catch any quality problem faster but at the same time there is a 

higher probability that false alarms will cause unnecessary interruption of production 

[34].  In this study the effectiveness of a stricter rule in detecting quality problems was 

investigated (Scenario D8).  The stricter WECO rule, whose effects are analysed here, 

would stop the machine when 2 out of 3 items processed by that machine fail the 

inspection.  Figure 4.26 and Figure 4.27 show how dramatic the effect is of using the 

stricter rule in comparison with the currently used rule.  A reduction of almost 75% is 

obtained for both the number of poor quality items produced until detection and the 

time to detection. 

 
FIGURE 4.26  IMPACT OF A STRICTER WECO RULE ON THE NUMBER OF POOR QUALITY ITEMS BEFORE 

DETECTION. 
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FIGURE 4.27  IMPACT OF A STRICTER WECO RULE ON THE TIME TO DETECTION. 
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replications available for this scenario.  Figure 4.30 reports the histogram of the number 

of the poor quality items chosen as samples in the same timeframes.  In spite of the fact 

that some poor quality items were produced and sometimes even measured, as Figure 

4.30 reveals, the WECO rule adopted, which is 4 defectives out of 5 successive samples, 

was never satisfied.  That gives confidence in the effectiveness of this WECO rule 

against false alarm signals.  

 

 

 

 
FIGURE 4.29  HISTOGRAM OF THE NUMBER OF POOR QUALITY ITEMS PRODUCED IN 750 HRS 
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FIGURE 4.28  ASSIGNMENT OF QUALITY STATUS BY MEANS OF AN EXTERNAL RANDOM NUMBER 

GENERATOR. 



 CHAPTER IV DEFECT INTRODUCTION 

121 
 

 

 
FIGURE 4.30  HISTOGRAM OF THE NUMBER OF POOR QUALITY ITEMS MEASURED IN 750 HRS. 

 

The same results were used to test the effectiveness of the 2 defectives out of 3 

consecutive sample rule.  The better efficiency of this rule in detecting quality failures 

presents some drawbacks when the Type I error is considered.  In fact, in 15 cases the 

rule is triggered, hence, the machine would have been shut down if that rule had been 

implemented in the sampling strategy.  The 15 cases correspond with 0.7% of the rule 

implementations in the total production time simulated.  The number of rule 

implementations is equal to the number of samples (2135 for this particular scenario).  

The percentage of times for which the WECO rule was triggered, 0.7%, is easily 

predictable, since the quality status of a sample can be considered a Bernoulli random 

variable.  In fact, since the rule has been applied a posteriori, the Bernoulli theorem 

suggests that the probability of having the rule satisfied is equal to 
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samples would fail the inspection and would prevent the machine from maintaining 

production under controlled conditions.  The last result is quite reasonable, since in a 

random sampling policy, the percentage of the poor quality samples should reflect the 

percentage of poor quality items produced, which is exactly 5% in this case. 

Along with Type I errors, Type II errors, usually indicated with β, can be experienced 

while sampling.  They consist of sampling good quality items coming from an out of 

control machine with the consequent wrong conclusion that the process is in-control.  

That is possible for the natural dispersion of the production process and represents the 

opposite situation as the one beforehand analysed.  Sometimes measurements errors 

caused by a relatively low reliability of an inspection machine are still referred to as Type 

II errors. 

The presence of Type II errors ranging in the interval 1-5% (β values) have been 

considered during the post-processing of scenario D1.  Relative to the original decision 

rule adopted and as expected from the previous results, this error does not impact the 

measurements at all; therefore, it does not cause any delay in the triggering of the shut 

down event.  Further investigations on higher β values were considered inappropriate, 

since it would not be realistic in a high quality standard manufacturing environment.  

The results obtained look reasonable since according to the Bernoulli distribution the 

chance of having four poor quality items out of five measured items is less than 3*10-

3%, when β=0.05.  However, it is not so reasonable that no poor quality items were 

reported. 

Table 4.4 summarises the main results found in this section.  
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TABLE 4.4  MAIN FINDINGS OF SECTION 4.4. 

Parameter Impact on Quality Failure Detection 

Intermittent 

Defect 

Introduction 

Generally, the production of good quality items 

while the machine experiences a quality failure 

delays the detection of the quality issue.  The 

number of poor quality items might reduce with 

respect to the case of persistent production of 

defectives. 

Station Width 
For a narrow station, a quality failure is detected 

faster. 

PM policy 
PM events, when not able to reveal the quality 

failure, delay the detection of the issue. 

WECO Rules 

Dramatic reduction of both the # poor quality 

items produced before detection and the time to 

detection when the 2 out of 3 sample rule is 

adopted with respect to the 4 out of 5 rule.  

However, the probability of false alarms arises 

(from 3*10
-3

% to 0.7%). 

 

 

4.5 Conclusions 

The analysis conducted in this chapter by means of a simulation approach provided 

interesting and sometimes apparently counterintuitive results relative to the impact of 

some control parameters on the monitoring capabilities of the sampling strategy under 

investigation.  The availability of a reliable simulation model permitted the investigation 

of scenarios which would have been difficult to realise in the real factory.  It also proved 

useful for reducing the time needed to obtain statistically valid results for those 

scenarios which could be more easily implemented in the real manufacturing 

environment, particularly when the distribution is more significant than the mean. 

A very interesting finding regards the negative effect of the line speed on the 

monitoring frequency of the machines in the segment.  In fact, when the line speed is 

reduced by reducing the production volumes that cross the segment, the time between 

samples increases as a consequence of the reduced inter-arrival times.  In the same 

circumstances, the number of unsampled items between consecutive samples is not 

affected by the line speed.  The number of parallel machines in a station plays an 
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interesting role on the time between samples in the moment the different production 

capacity determines variations of the inter-arrival times at a machine level.  That occurs 

when the inter-arrival times at a station level are kept unchanged while the number of 

available machines is varied.  Another relevant result found is the fact that the reduction 

of the sampling intervals seems to be the only way to relevantly reduce the number of 

unsampled items between consecutive samples.  In particular, the number of unsampled 

items proves quite sensitive to the variations of the sampled volume fraction.  This 

means that the presence of an unmonitored flow in the station magnifies the effects of 

long times between samples in terms of items produced. 

The analysis of the defect introduction modes revealed that a persistent production 

of defectives helps to reduce the time needed to detect a machine quality failure; the 

eventual production of good quality items while the machine is out of control could 

cause delays in the detection of the problem.  It was found that the worst case scenario 

from a quality control viewpoint occurs when a machine is partially fixed by ordinary 

maintenance operations which don’t address the failure but partially restores a 

temporarily good functioning of the machine.  The same parameters investigated in the 

previous analysis were also studied in terms of the impact they have on the defect 

detectability and results compatible with the results previously obtained were found. 

The sampling strategy was also assessed with respect to the WECO rules 

implemented.  The WECO rule originally adopted in the factory proved quite effective 

in avoiding false alarms but not as efficient as stricter rules for quality failure detection.  

The machine shut down when two out of three consecutive samples fail the inspection 

seems to be a better compromise in terms of monitoring performances and false alarm 

dangers. 

Type I and II errors were also investigated.  As regard the Type I error, it was 

interesting to find that the results obtained by means of the simulation approach are 

well predicted using some statistical considerations.  In fact, the binomial distribution 

can provide the same information revealed by the simulation results about the impact of 

the Type I error on the actual danger of sampling poor quality items while the machine 
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is under control, when different WECO rules are adopted.  Finally, the Type II error 

does not seem to create any inconvenience relatively to the case scenarios analysed. 

The individuation of the parameters that have the greatest influence on the quality 

risk related performance measures and the understanding of their impact on these 

measures represent a relevant result obtained from the analysis of the simulation output.  

Even though a quantitative analysis has been presented, the relationship between the 

control parameters investigated and the performance measures has been essentially 

explored in a qualitative fashion; in fact, the impact of a particular combination of 

parameters can be roughly foreshadowed considering the effect that every single 

parameter has on the time and the number of items between consecutive samples.  This 

prediction might prove poor since based on partial perspectives; the interaction between 

parameter variations is difficult to assess, above all, when they cause opposite effects on 

the final measures.  This is because an understanding of the impact of the single 

parameters is not supported by a quantitative estimation that could reveal which of the 

different effects eventually prevails.  A quantitative assessment requires the simulation 

of the particular scenario to be investigated and the comparison between different 

parameter settings can prove a time consuming process.  The availability of analytical 

models able to translate the qualitative relationships analysed into quantitative 

expressions would be extremely convenient for both speeding up the analysis process 

and pose the basis for the development of standard procedures for keeping the quality 

risk under the desired control level. 

The next chapter reports the investigation of the simulation results from a 

mathematical perspective and the derivation of analytical models for the quantitative 

prediction of the quality risk associated with a sampling strategy. 
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Chapter V 

Quality Risk Prediction: 

an Analytical Approach 

5  

5.1 Introduction 

As the analyses conducted in the previous chapter show, the simulation model of the 

production segment under investigation proved to be a fundamental tool for gaining 

insight into the system behaviour and exploring scenarios which would have been 

difficult to implement in the real system without causing relevant inconveniences.  

However, even if its availability represented a great advantage for evaluating the impact 

of some control parameters on the performances of the sampling strategy adopted, it is 

also true that the prediction of the quality risk using such a tool is inefficient.  In fact, 

statistically valid results require several simulation runs and data processing by means of 

different software; in other words they are not immediately available and the time 

needed to obtain them could be greater than the time available to make decisions.  

Moreover, due to its rigidity, the cost of ownership of the model could prove quite high.  

For these reasons, the opportunity to derive from the simulation results analytical 

models for the prediction of the performance measures previously considered was 

explored.  To this end, a brief literature survey is presented in the next section.  This 

survey highlights merits and limits of the analytical approaches.  It also suggests that the 

fusion of simulation and analytical approaches has proved to be particularly effective in 

different research fields. 
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5.1.1 Methodology considerations 

The advantages and limits of the analytical approach are basically complementary 

with respect to the limits and advantages of the simulation approach.  That means most 

of them have already been illustrated from the simulation world viewpoint (Section 

3.2.1.1).  A few more are presented in this section. 

The fact that, whenever applicable, analytical models are generally considered 

preferable to simulation approaches [139] could be a signal that these models are easier 

to use and usually provide more immediate answers.  In fact, apart from the cases when 

numerical approaches are needed, the application of the analytical procedures is cheaper 

in comparison to the solution costs required by a simulation approach [140].  Here the 

concept of costs is generalised to include time, resources and skills necessary to obtain 

solutions.  Even building the model itself and developing solution procedures can have, 

on average, lower costs for an analytical approach than for simulation [139]. 

However, there is a cost to pay for these merits.  The level of details that is possible 

to include in the analytical models is limited by the feasibility of the solution procedure.  

The assumptions made sometimes defy reality and, as a consequence, the resulting 

model, even though alluring and perfect from a theoretical point of view, is barely useful 

in real life; in the end, the model developed does not reproduce the real behaviour of 

the system. 

Conversely, the process of abstraction from reality sometimes does not compromise 

the efficacy of the model in gaining insight into the system dynamics.  In fact, if the 

simplifying assumptions regard marginal aspects of the problem or consist of 

generalisations whose impact on the solution can be predicted and eventually corrected, 

sufficient model realism and enough accuracy for the desirable performance measures 

can be obtained.  The validation of these simplified analytical models should be carried 

out against the real system, or against its faithful representation.  That is the idea based 

on which Ignall et al. [139] suggest that the use of simulations to test other mathematical 

models can be considered conceptually analogous to the use of experiments performed 

in a real system, provided that the simulation model has been previously validated.  To 

support this suggestion, they report four case studies where simulations were used to 
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develop and validate simplified analytical models.  Ensuring that an analytical model 

works as well as a simulation model will result in immediate savings in time and money.  

Among the other advantages, the authors also consider that an analytical model can be 

more easily embedded in other models.  The methodology proposed by Ignall et al. 

[139] has been adopted in this study where simulations constitute the basis on which the 

analytical models have been developed and successively validated.   

TABLE 5.1  CLASSIFICATION OF THE SIMULATION/ANALYTIC MODELS IN [140]. 

Class Definition 

I 

“A model whose behaviour over time is obtained by alternating between using 

independent simulations and analytical models” 

The simulation and the analytical part of the model do not interact during the 

solution procedure 

II “A model in which a simulation model and an analytical model operate in parallel 

over time with interaction during the solution procedure” 

III “A model in which a simulation model is used in a subordinate way for an analytic 

model of the total system” 

IV 
“A model in which a simulation model is used as an overall model of the total system, 

and it requires values from the solution procedure of an analytic model representing a 

portion of the system for some or all of its input parameters” 

 

The combined use of simulation and analytical models can result in great advantages 

since the limits of one can be overcome by the merits of the other, all resulting in a 

reduction of costs.  Hybrid simulation/analytical models and modelling are investigated 

in a broader sense by Shanthikumar and Sargent [140] who classify the different possible 

ways to integrate these two modelling approaches.  Table 5.1 reports the definitions 

proposed in [140] for the four classes identified by the authors.  Nyhuis et al. [141] show 

how the use of a hybrid approach for the prediction of operating curves of different 

logistic performance measures can be an interesting alternative to the use of simulation.  

Since analytical and numerical methods are not available, Wang [142] optimises a static 

and dynamic model for the definition of the condition monitoring interval by means of 

a hybrid approach.  Byrne and Bakir [143] illustrate the benefits of the hybrid approach 

in comparison to using either simulation or analytic methods alone for the multi-period, 

multi-product, production planning problem.  Improvements of their approach are also 

available in [144] and [145]. 
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The analysis conducted in this chapter has been fundamentally based on the 

intention to embed the simulation results in the shape of analytical models.  The 

approach intended to be used is similar to the first class of hybrid approaches defined in 

[140], since apart from the initial results made available from the simulation runs, no 

interactions is meant to happen between the simulation and the analytical models during 

the solution procedure. 

5.1.2 Objectives 

The models developed in this chapter focus on two different aspects.  First, attention 

was paid to the prediction of both the time between samples and the number of 

unsampled items between two consecutive samples in terms of average values.  The 

formulae obtained provide useful insights on the average risk of not monitoring each of 

the machines operating in the segment.  However, they are not able to quantify in terms 

of either time or number of items the quality risk exposure associable with any 

confidence level.  This type of evaluation is only possible when the distribution of the 

performance measures is available.  In fact, the confidence level can be seen as a 

cumulative probability and, for instance, the maximum number of consecutive items 

exposed to the risk of not being sampled at that confidence level would be the value 

corresponding to that cumulative probability.  This value is easily derived from the 

distribution.  Hence, the second group of analytical models attempts to predict the 

distributions.  Only the number of unsampled items between consecutive samples was 

considered in the second part of the study.  The reason for this choice was based on the 

consideration that the number of items between samples was more frequently used as a 

risk measure by the production staff in the organisation supporting this research.  

Moreover, given the close relationship between the two performance measures, as was 

proved by the formulas for the average values, it originally made sense to focus the 

analysis on one of the two adopted measures.  Finally, another reason for the choice 

came from the fact that the number of items is a discrete measure and, hence, 

theoretically, it should be simpler to deal with it rather than with the time between 

samples, which is obviously a continuous random variable. 
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The analysis relative to the prediction formula for the average values of the time 

between samples and the number of consecutive unsampled items will be illustrated in 

Section 5.2.  Section 5.41.1 will delineate the development of the prediction models for 

the distribution of the number of unsampled items between consecutive samples in a 

non-sampling station.  The sampling station case will be analysed in Section 5.5.  Finally, 

considerations about the use of the prediction models will be presented in Section 5.6 

for both the evaluation of the quality risk associated with a sampling strategy and the 

definition of sampling parameters able to satisfy quality risk constraint. 

 

TABLE 5.2  SPECIFICATIONS OF THE NEW SCENARIOS SIMULATED. 

Scen. 
WIP 

turn 

Number of Machines 
Product Sampling 

Intervals 

Inter-Arrival 

Rate 
Global 

Sample 

Rate 
St 1 St 2 St 3 St 4 St 5 Insp. A B A B 

1 
Low 

4 4 3 3 5 4 

Large Large High High Low 

2 Small Small High High High 

3 
High 

Large Large Low Low Very Low 

4 Small Small Low Low Low 

5 
Low 

5 5 3 4 6 5 

Large Large High High Low 

6 Small Small High High High 

7 
High 

Large Large High High Low 

8 Small Small High High High 

9 
Low 

5 5 3 4 5 5 Large Large High High Low 

10 5 5 3 4 7 5 Large Large High High Low 

11 Low 
5 5 3 4 6 5 Very Small Small High High Very High 

12 High 

 

5.2 Prediction of average values 

The results available from the ten scenarios simulated for the initial analysis provided 

a good base on which an attentive analysis of the average values could be carried out.  

Two more scenarios, scenario 11 and 12, were added in order to have a wider range of 

values for the global sampling rate.  Apart from this rate, which was higher for the new 

scenarios, scenarios 11 and 12 are similar to scenarios 6 and 8, respectively, as their main 

characteristics reported in Table 5.2 suggest. 
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The aim of the analysis was to find a regular pattern in the data which could suggest 

the nature of the mathematical relationship between the average time between samples 

and the control parameters previously explored, which basically are the sampling 

intervals, the station width and the line speed.  In fact, due to some considerations made 

in the previous chapter, more than the line speed, the inter-arrival time at a machine 

level was considered potentially more likely to have an important affect on the 

performance measures. 

5.2.1 Time between samples 

The time between samples was considered first since a greater number of results 

were available for it.  That is due to the fact that the time, unlike the number of items 

between samples, is not affected by the presence of a cross flow; hence, the results 

obtained in any station could be useful. 

After considering different variables with respect to which the average values of the 

time between samples obtained from the simulation results could be plotted, the most 

effective display proves to be a 3D graph that has as the two independent variables the 

number of samples per unit time and the number of machines in a station (Figure 5.1).  

The third dimension of the graph, that is the dependent variable, is obviously given by 

the average time between samples.  The effectiveness of the different independent 

variables was assessed based on the regularity of the resulting graphical representation 

of the average time between samples. 

The twelve scenarios (Table 5.2) used to derive the prediction formula for the 

average time between samples provided more than twelve points to be plotted on the 

graph.  This is because, for each scenario, results corresponding with different numbers 

of machines are available.  On the contrary, there exists a biunique correspondence 

between the scenarios and the number of samples per unit time.  In order to keep the 

plot as clear as possible, when the same combination of number of machines and 

number of samples per unit time was available different times either within the same 

scenario or in different ones, the average of the corresponding time between samples 

was plotted in Figure 5.1.  This does not affect the quality of the plot since the same 
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combination of parameters provides very similar results independently of the scenario 

they come from.  For example, the results available for the combination of five 

machines and low line sample rate are shown in Table 5.3; this particular combination 

of variables has been chosen as an example since it presents the greatest number of 

results associated with it. 

 

 
FIGURE 5.1  TIME BETWEEN SAMPLES VS NUMBER OF MACHINES AND NUMBER OF SAMPLES PER 

UNIT TIME. 

 

 

TABLE 5.3  MEAN TIME BETWEEN SAMPLES OBTAINED FOR THE COMBINATION OF 5 MACHINES AND 

A LOW LINE SAMPLE RATE. 

Scenario Station 
Time between 

samples (mean) 
 Scenario Station 

Time between 

samples (mean) 

1 5 51.64  

9 

1 51.5 

4 5 51.34  2 51.56 

5 
1 51.48  5 51.52 

2 51.46  
10 

1 51.68 

7 
1 51.6  2 51.76 

2 51.6     
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In order to improve the data representation, the values reported in Figure 5.1 and 

Table 5.3 were multiplied by a factor different from the one used for the results shown 

in Chapter 4. 

A better understanding of the nature of the patterns was found by projecting the 

points onto the vertical planes.  Relatively simple relationships with each of the 

parameters emerged from the projected graphs.  This provided the basis for the 

development of the prediction model in that, when the total number of samples per unit 

time is kept constant, the time between samples for each machine is linear with respect 

to the number of machines in the station (Figure 5.2).  This is a result of the linear 

relationship between the mean inter-arrival time of items at any one machine and the 

number of machines in a station for a constant line speed.  It is worth remembering that 

the time between samples is related only to the inter-arrival time of products which are 

monitored.  Keeping the number of machines constant, an inversely proportional 

relationship between the time between samples and the number of samples per unit 

time emerged (Figure 5.3).  It is intuitive that the greater the number of samples the 

lower the time between samples; moreover, the nature of the relationship can be 

explained with the fact that the inverse of the number of samples per unit time 

represents the time between samples at the station level.  Multiplying this value by the 

number of machines allows the consideration of the delay in the inter-arrival time at a 

machine level caused by the spread of the overall flow into a station across its machines. 

Based on the previous observations the prediction model for the average time 

between samples, samplesT∆ , can be derived very easily. It can be expressed as follows 

 time unit
samples  samples#

m
T =∆  (5.1) 

where m represents the number of machines in the station and 
time unit samples# the number 

of samples per unit time, respectively. Since 
time unit samples#  is the same for all the stations 

in the monitored segment, the time between samples varies from station to station 

depending only on the number of machines. 
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FIGURE 5.2  TIME BETWEEN SAMPLES VS NUMBER OF MACHINES. 

 

 

 
FIGURE 5.3  TIME BETWEEN SAMPLES VS NUMBER OF SAMPLES PER UNIT TIME. 
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Equation 5.1 is the most compact expression which can be used for the time 

between samples; however, relating the number of samples per unit time with its 

affecting parameters, which are the sampling intervals and the inter-arrival times of 

monitored products, a more basic equation can be found.  

 

∑ 







=∆

i ii

samples

f
*

e. arr. timint

m
T

11
 (5.2) 

where the index i refers to all the products undergoing the sampling decision and if  

represents the sampling interval of the ith product, that is the number of items between 

samples, sample included, in the station where the sampling decision is made. 

5.2.1.1 Validation 

The formula derived for the time between samples was validated against some 

simulation results.  Other scenarios were simulated so that the validity of the formula 

could be tested both within and outside the domain on which the prediction model was 

developed.  In particular, the sampling intervals for both the monitored product types 

were reduced so that a higher number of samples per unit was available; two other 

sample rates, in between the low and the high number of samples per unit time were 

also tested.  The new scenarios were characterised by a low WIP turn; stations 1, 2, 3 

and 5 operated with 5, 4, 3 and 6 machines, respectively. 

The surface illustrated in Figure 5.4 is generated by the application of Equation 5.1.  

The time between samples is represented against the number of samples per unit time 

and the number of machines in a station.  As noted before, this is the easiest way to 

represent the time between samples; in fact, the use of Equation 5.2 would have been 

impossible on a 3-D graph, unless at least one of the variables involved would have 

been kept unchanged.  The squares represent the results on which the formula was 

developed, whereas the circles are the simulation results based on which the validation 

was conducted.  The fact that these points lie on the surface gives confidence in the 

validity of the prediction model.  The relative percentage errors observed for the 
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scenarios analysed are always less than 1.7%.  The relative percentage error was 

calculated as follows: 

 Relative Error % � 9:;<=>?@<= ABCD<+E?@DBC ABCD<
E?@DBC ABCD< 9 F 100%  (5.3) 

where the actual values are the simulation results and the predicted values the results 

obtained with Equation 5.2. 

 

 

 

5.2.2 Number of consecutive unsampled items 

Once the time between samples is defined, the prediction model for the average 

number of unsampled items can be immediately derived.  In fact, the average inter-

arrival time at a machine level can be used to convert the time between samples into the 

number of unsampled items between samples.  This obviously works exclusively for the 

average values.  The formula obtained is the following: 
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 (5.4) 

where the machine int. arr. timeglobal represents the overall inter-arrival time for a 

machine, inclusive of all products under manufacture.  The unit decrement in equation 

5.4 represents the sampled item.  Substituting Equation 5.2 into Equation 5.4 the 

following expression is obtained: 

 1
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1 −
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∑ global
i ii

 samplesbetween

time arr. int. *
f

*
time arr. int.

items #

 

 

 (5.5) 

Considering the meaning of the denominator, Equation 5.5 can be rewritten in a 

more compact fashion.  Due to the number of parameters involved, the new 

formulation, reported in Equation 5.6, would prove more convenient than Equation 5.5 

when a graphical representation of the pattern of the average number of items between 

samples with respect to an affecting parameter is needed. 

 1
1 −=

fraction Sampled
items #  samplesbetween  (5.6) 

Equation 5.5 reveals that the average number of unsampled items is independent of 

the number of machines in the station.  This means that where there is no cross flow to 

vary the inter-arrival rate between stations, all stations have the same number of 

unsampled items, which is the average sampling interval in the station where the 

sampling decision is made minus one. 

The presence of the cross flow, which does not affect the time between samples, 

appears in Equation 5.5, in terms of the int. arr. timeglobal.  The greater this flow, the 

smaller the global inter-arrival time at the station, hence, the greater the number of 

items between samples.  Therefore, the cross flow acts as a scaling factor; large 
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unmonitored volumes represent a risk in the station since the impact of a quality failure 

could affect a greater quantity of items. 

Equation 5.5 has been specifically developed for the particular sampling strategy 

described in Section 3.3.2; this means it predicts the average number of unsampled 

items between samples when the sample size is equal to one.  When more than one item 

is consecutively sampled at the sampling station, that is, when an item is chosen to be 

sampled the consecutive n-1 items that immediately follow it are also sampled, it is 

believed that Equation 5.6 can still described the average number of consecutive 

unsampled items at a non-sampling station.  This statement is supported by the results 

illustrated later on in this chapter (Section 5.4).  For the sampling station, a 

generalisation of Equation 5.5 for this variant of the sampling strategy is not immediate 

and would require additional experiments.  Since the structure of this variant of the 

sampling strategy substantially differs from the original one, further investigations on 

the reaction of the measures to variation of the sampling scheme are considered not 

opportune in this dissertation. 

It is worth noting that all the equations developed in this section can be adapted to a 

batch production provided that the focus is kept on the number of consecutive 

unsampled batches and information on sampling within a batch is ignored. 

Apparently there is no difference in the number of unsampled items between the 

station with the deterministic sampling and the stations with the random sampling.  In 

fact, there is no element in Equation 5.5 which prevents using it in any situation.  As for 

the average time between samples, the formula was developed by also taking the 

simulation results obtained in the sampling station into account.  Moreover, the nature 

of the variables involved makes the formulae extendable to more complex combinations 

of flow; that means, Equations 5.2 and 5.5 should be still valid when more than two 

monitored product types flow through the segment.  This is affirmed based on the 

consideration that it is the number of samples per unit time that plays the most relevant 

role in the formulae, no matter how many monitored product types contribute to their 

determination. 
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FIGURE 5.5  VALIDATION OF THE FORMULA OF THE AVERAGE NUMBER OF CONSECUTIVE 

UNSAMPLED ITEMS. 

 

The formula for the average number of unsampled items was validated against the 

simulation results used for the validation of the prediction formula for the time between 

samples.  As Figure 5.5 shows, a very good fit was found, and for the scenarios 

investigated the relative percentage error was never higher than 3.5%.  Relative to the 

validation data, the root mean square error was equal to 0.37 [item] and its 

corresponding relative measure was 2.9%.  Along with high prediction accuracy within 

the domain defined by the observed data, it is interesting to note the capability of the 

model to predict values outside this domain with the same accuracy level.  This gives 

confidence that the validity of the model is not confined to restricted parameter ranges 

and can be effectively used to predict the mean number of unsampled items in any 

production and sampling condition. 

The formulae developed in this section for predicting the average values of the time 

between samples and the number of items between samples will be referred to as 

Average Prediction (AP) formulae hereinafter.  The approaches based on these formulae 

will be named algebraic approaches. 
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Even though the prediction of the average values of both the number of consecutive 

unsampled items and the time between consecutive samples represents a useful tool for 

an approximated evaluation of the monitoring effectiveness of the sampling strategy 

analysed in this research, the quantification of the risk of not monitoring a machine 

requires a better understanding of the way the number of consecutively unsampled 

items distribute around the mean value.  The rationale behind the development of 

prediction models for the distribution of the number of unsampled items between 

consecutive samples under different scenarios is presented in the next sections. 

5.3 Distribution of the number of consecutive unsampled 

items 

As noted in the comments pertaining to Equation 5.5, there is no element in the 

equation which presumes any differences between a sampling and a non-sampling 

station as regards the number of unsampled items between consecutive samples.  

However, this is true only when the analysis is limited to the average values. In fact, 

when the distributions are considered some differences arise.  For example, this is 

intuitive when only one product flows through the segment.  In the station where it is 

sampled, the distribution of the number of unsampled items is obviously degenerative.  

It consists of only one value, the sampling interval minus one, with probability equal to 

one.  Due to the sequence disorder effect and the multiple stream effect, in all the other 

stations the number of unsampled items is a random variable and the results obtained 

suggest that it tends to assume an exponentially shaped distribution.  When the product 

flows get more complicated and, for example, a monitored flow is merged with an 

unmonitored one, even in the sampling station the regularity of the sampling strategy is 

lost from a global perspective and an apparent randomness permeates the system. 

Figure 5.6 highlights the different shapes of the distribution of the number of 

unsampled items for a non-sampling and a sampling station.  In the case reported, the 

effect of the cross flows has been ignored so that the scale of the horizontal axes in 

both the figures could be the same.  In this way, besides the different shapes, the 

different variability of the distribution can also be appreciated.  In the sampling station, 
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the number of items is obviously discrete.  Moreover, the reasons why this distribution 

could fit the data had to be found in order to justify its applicability and identify the 

conditions needed for its validity. 

Other scenarios were investigated to analyse the impact of the volume of monitored 

product and the sampling interval on the distributions. The parameter ranges 

investigated are shown in .  A basic model was also developed in order to study the 

impact of different sources of variability on the shape of the distribution (Section 5.4.4). 

TABLE 5.4  PARAMETERS RANGES FOR THE NEW SCENARIOS SIMULATED. 

Parameter Values 

Monitored Volume 20% 40% 60% 80% 100% 

Sampling Interval 2 3 4 5 

 

First, it is worth noting that the cross flow does not change the shape of the 

distribution for the non-sampling stations.  As also Equation 5.5 suggests, its impact is 

limited to scaling the axis.  This is shown in Figure 5.7 where the distribution of the 

number of unsampled items is drawn for two scenarios differing only by the presence of 

an unmonitored cross flow.  For both the scenarios the sampling intervals of the 

monitored products is set so that one item out of four is sampled.  The distribution 

relative to the 100% monitored flow scenario proves peakier than the other scenario, 

which means its mean value and dispersion are less than the other distribution.  

However, the shape of both the distributions is still decreasing with an exponential 

pattern.  The representation of the distribution of the number of unsampled items, 

which is discrete, by means of a continuous curve is only due to style preferences.  This 

holds for the rest of this thesis. 

Due to the sequence disorder and the multiple stream effects, the order with which 

monitored items move out from a machine in a station is different with respect to the 

order with which they exit the machines in the sampling station.  Moreover, there is no 

biunique relationship between the machines of the different stations; this means that 

even in absence of a sequence disorder effect, the regularity of the sampling plan, even 

from a single product perspective, would be lost in the stations upstream or 



 CHAPTER V  NON-SAMPLING STATION CASE 

143 
 

downstream of the sampling station.  As a consequence, for any of the machines in a 

non-sampling station, the sampling plan implemented proves random, that is the 

monitored items are no longer sampled on a regular basis.  Hence, the distinction 

between monitored and unmonitored products does not help the analysis, in the sense 

that no deterministic pattern which could suggest possible solutions to the problem can 

be found for any of them.  As a result, an unsampled monitored item is not different 

from an unmonitored item. 

 
FIGURE 5.7  IMPACT OF THE CROSS FLOW ON THE DISTRIBUTION OF THE NUMBER OF UNSAMPLED 

ITEMS BETWEEN SAMPLES. 

 

Another element which can prove useful in the development of the prediction model 

is the fact that the sequence of products processed by a machine in a non-sampling 

station is not determined by any logistic rule.  This is theoretically justified by the shape 

of the distributions of the inter-arrival time for the different product types which is 

exponential.  In particular, the memory-less property, which characterises the 

exponential distribution, makes it possible to state that, since an event is not 

conditioned by the previous event, the sequence with which items are processed is 

random.  In particular, the sequence of monitored and unmonitored items processed 

can be considered a geometric process, with the success event being either the first 

monitored item after consecutive unmonitored items or vice versa.  Based on the same 

reasons, the sequence of sampled and unsampled items is also a geometric process. 
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The last observation is fundamental.  Based on it, it is straightforward to derive the 

prediction model for the distribution of the number of unsampled items between 

consecutive samples for the machines of a non-sampling station.  In fact, the event of 

processing either a sampled or an unsampled item can be considered an independent 

Bernoulli trial which happens with a predefined probability.  The probability in question 

is given by the sampled volume fraction (or the unsampled volume fraction, according 

to the perspective), which is determined by both the monitored product production 

volume and the sampling intervals and is constant for each processed items at a non-

sampling station machine.  If a successful event is intended as the processing of a 

sampled item and a failure, or an unsuccessful event, as the processing of an unsampled 

item, the probability corresponding with a given number of unsuccessful events which 

occur before a sampled item is processed represents the essence of the problem studied 

in this section.  When the number of unsuccessful events is varied, the corresponding 

probabilities describe a curve which represents the probability mass function of the 

distribution of the successful event.  A basic knowledge of probability theory suggests 

that the distribution able to describe this particular situation is geometric (See Appendix 

D).  So, the geometric distribution apparently constitutes the prediction model for the 

distribution of the number of unsampled items in the machines of a non-sampling 

station, at least in the case when the product flow consists of two monitored products 

and an unmonitored flow.  As the observation just made suggests, the parameter of the 

geometric distribution, also called proportion, is the sampled fraction of the whole 

production volume in a station.  The proportion, p, in the ith non-sampling station can 

be calculated using the formula for the average number of unsampled items; it is given 

by: 

 H	 � �
IJKL # NL�KIOPJQ 	RJI�ST� (5.7) 

It is worth noting that, in general, the inverse of the mean number of observed 

unsuccessful events (e.g. unsampled items) represents the maximum likelihood 

estimator of the parameter of the geometric distribution [146]. 

From Equation 5.7, it is clear that the proportion changes in the different stations 

due to different unmonitored volumes.  Moreover, the fact that Equation 5.5 is 
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generally valid, no matter what the combination of flow is, gives confidence in the 

possibility to extend the applicability of the geometric model to more complicated 

combinations of product flows. 

As justification for the initial tendency to consider the distribution of the number of 

unsampled items exponential, it is worth remembering that the geometric distribution is 

the discrete analogue of the exponential distribution as the two distributions share the 

memory-less characteristic. 

5.4.1 Validation 

An immediate test of the validity of the model can be conducted by deriving the 

distribution mean using the formulation given in Appendix D.  The second variant 

(Equation D.5) has to be chosen, since it expresses the number of events needed on 

average to observe the first success, which in this case is the sampled items.  This 

variant allows to exclude the sample from the count. 

U � 1 � H
H � 1

H � 1 

� 1
1

�V�W # XWY��HZV[ �\V�Y ] 1
� 1 

 � �V�W # XWY��HZV[ �\V�Y  (5.8) 

The results obtained for the mean of the distribution agree with what was found 

from the formula of the average number of unsampled items, which reproduced the 

simulation results. 

In order to gain more confidence in the model validity, the predicted distributions 

were compared with the distributions obtained from the simulation results. 

As Figure 5.8 shows, the predicted geometric distribution fits the simulation results very 

well.  The average absolute error for the case shown is as little as 0.21%; whereas, the 

cumulative absolute error range is 3.27%.  The average absolute error was calculated as 

the arithmetic mean of the absolute errors relative to the first 15 points, being the 

absolute error intended as the absolute difference between the predicted and the actual 



 CHAPTER V  NON-SAMPLING STATION CASE 

146 
 

value.  The cumulative absolute error range represents the difference between the 

maximum and the minimum prediction errors.  The high goodness of fit is not limited 

to the case shown in Figure 5.8; considering all the scenarios investigated, a very high 

accuracy is still obtained.  It always proves to be higher than 99.6%, in terms of average 

absolute error (Figure 5.9).  The Pearson’s chi square test was applied to different 

scenarios to investigate the statistical significance of the goodness-of-fit for the 

geometric model.  For the scenario illustrated in Figure 5.8, the P-value proved equal to 

0.0122, with 27 degrees of freedom characterising the test statistics distribution.  The 

lowest P-value observed for the different scenarios simulated was equal to 0.003 (for 29 

degrees of freedom).  This result indicates the adequacy of the geometric model for 

predicting the distribution of the number of consecutive unsampled items in any 

machine of the non-sampling stations.  Since the geometric model is characterised by 

one parameter, the correction to the degrees of freedom was equal to 2.  The number of 

classes chosen for the test depended on the number of samples available.  Whenever 

more than 5 items were present in a class of width equal to one, the number of classes 

was increased.  It happened that to increase the number of samples in a class, successive 

classes were grouped together.  

 

 
FIGURE 5.8  VALIDATION OF THE GEOMETRIC PREDICTION MODEL FOR THE DISTRIBUTION OF THE 

NUMBER OF UNSAMPLED ITEMS BETWEEN CONSECUTIVE SAMPLES. 

 

 

0

0.05

0.1

0.15

0.2

0.25

0 2 4 6 8 10 12 14 16 18 20 22 24

R
e

la
ti

v
e

 F
re

q
u

e
n

cy

# unsampled items

Geometric Model Validation

Simulation Results

Geom fit (p=0.2)



 CHAPTER V  NON-SAMPLING STATION CASE 

147 
 

 
FIGURE 5.9  IMPACT OF THE SAMPLED FRACTION ON THE AVERAGE ABSOLUTE PREDICTION ERROR. 

 

 

 
FIGURE 5.10  IMPACT OF THE SAMPLED FRACTION ON THE CUMULATIVE ABSOLUTE PREDICTION 

ERROR RANGE. 

 

The pattern of the prediction errors was also analysed in order to determine the 

means by which the magnitude of the proportion impacted the accuracy of the model.  

For the average absolute error, a decreasing pattern was found with respect to the 
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of unsampled items processed between two consecutive samples.  The same pattern, 

with similar slope, was also found for the cumulative absolute error range (Figure 5.10). 

5.4.2 Monitored flows merging 

Being based on the formula for the average number of unsampled items, which 

apparently should work for any product flow combination, the geometric model should 

very likely describe the distribution of the number of unsampled items between 

consecutive samples for more general product flow scenarios.  With the aim of partially 

proving this, a new scenario was investigated.  In particular, the applicability of the 

prediction model in the case when the monitored flow crossing a station is sampled in 

two different stations, belonging to different theoretical segments, was analysed.  In the 

simulation model built for this particular analysis, two different products cross the first 

station.  The first product is sampled in the original sampling station, which is the fifth 

station in the segment.  The second product is sampled in a station not belonging to the 

original segment (Figure 5.11).  In order to model the different route followed by the 

second product, another station was introduced downstream of station 1.  Random 

queuing & transportation, and processing times were considered for this station.  One 

station was considered enough to investigate the effect of merging monitored flows in a 

station upstream, since the previous analysis showed that the distance from the 

sampling station has very little impact on the average number of unsampled items and, 

hence, on its distribution. 

 

S 

S 

1 2 5 4 3 

B 

FIGURE 5.11  SCHEMATIC REPRESENTATION OF THE SYSTEM WITH TWO SAMPLING STATIONS 

GENERATING QUALITY STATUS INFORMATION ABOUT STATION 1. 
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The two products, with the same inter-arrival times and sampling intervals as used in 

the modified production model, were also generated in the original simulation model.  

They were both monitored in the fifth station.  The first station was obviously 

interested by the same sampled fraction as in the previous scenario. 

 
FIGURE 5.12  IMPACT OF DIFFERENT SAMPLING SOURCES ON THE DISTRIBUTION OF THE NUMBER 

OF UNSAMPLED ITEMS BETWEEN SAMPLES. 

 

The comparison between the distributions of the number of unsampled items in 

station 1 for both the scenarios simulated show an extreme closeness of the two curves 

(Figure 5.12).  The small differences between them are very likely a consequence of the 

different variability which is caused by the different proximity of station 1 from the 

sampling stations.  In fact, whereas the relative difference between the means of the two 

distributions is only 0.05%, the standard deviations differ relatively by 2.33%.  The 

presence of some items sampled only one station downstream of station 1 slightly 

reduces the variability of the distribution in comparison with the case when both the 

monitored products are sampled four stations downstream. 

Besides showing that the geometric model is suitable for predicting the distribution 

of the number of unsampled items in the case when samples are originated by different 

sampling stations, possibly belonging to different segments, the results obtained also 
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constitute a proof that the formula for the average number of unsampled items (Eq. 5.5) 

works for more complicated flow combinations as well. 

5.4.3 Random serial route impact 

The investigation on the validity of the geometric model for the prediction of the 

distribution of the number of unsampled items between consecutive samples continued 

with the analysis of another particular case scenario.  The case when a station in the 

segment can be skipped by some serial flow items based on a given probability was 

considered.  This case scenario was inspired by a situation observed in the real system; a 

station in the real segment processed only half of the serial flow production volume.  As 

already stated in Section 4.2, this led to the choice of simulating two real stations in one 

station, namely station 4, in the original simulation model and ignoring the results 

coming from that station due to its particular nature.  

The system simulated for this analysis was crossed by two monitored products, A 

and B.  The inter-arrival times of Product B were set to 3.5 times the inter-arrival times 

for Product A.  The second operating station was chosen as the station that could be 

skipped.  The decision whether or not to skip station 2 was made, at a station level, in 

the moment when the global flow moved out of station 1 (Figure 5.13).  Each item, 

independently of the station 1 machine by which it was processed, had a 50% chance to 

be routed either to station 2 or directly to station 3.  In this case the machine it would be 

going to visit in station 3 was also randomly assigned. 

 

 

 

1 2 3 

FIGURE 5.13  STATION 2 IS PARTIALLY SKIPPED BY THE SERIAL FLOW. 



 CHAPTER V  NON-SAMPLING STATION CASE 

151 
 

This scenario was designed so that the impact of random routes, not always strictly 

serial, followed by the items could have on the shape of the distribution of the number 

of consecutive unsampled items could be investigated.  These random routes obviously 

create a difference in the number of available samples for the skipped station, so that a 

variation in the shape of the distribution could be expectable. 

The results obtained contraddicted this consideration since irrelevant differences 

were found between the distributions of the number of unsampled items for the three 

non-sampling stations (Figure 5.14).  This means, not only the shape of the distribution 

of the number of consecutive unsampled items relative to the partially skipped station 

but also the mean value is not affected by the random routes. 

 
FIGURE 5.14  IMPACT OF A PARTIALLY SKIPPED NON-SAMPLING STATION ON THE DISTRIBUTION OF 

THE NUMBER OF CONSECUTIVE UNSAMPLED ITEMS IN NON-SAMPLING STATIONS. 

 

On the contrary, the average time between samples in station 2 proves to be twice 
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determine a reduction of the product flow crossing station 2 keeping, on average, the 

same volume fractions between the two products and the same sampled fraction as 

observed in the other stations in the segment.  This is obviously valid, from a long term 

perspective, for the randomness of the routing constraints, which are applied in the 

same fashion independently of the product.  For this reason the sampled fraction 
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items keeps its mean value unchanged.  However, in the skipped station, the inter-arrival 

times of the two products are obviously increased by the percentage of the flow 

skipping the station.  This causes the increase of the time between samples, which, 

unlikely the number of unsampled items, is affected by the absolute inter-arrival times. 

The shape of the distribution of the number of unsampled items between 

consecutive samples is still geometric since nothing has changed in terms of flow 

dynamics.  There is still independence in the sequence of successively processed items 

and the sampled fraction is not affected by the random routes.  If the overall sampled 

fraction had kept changing throughout time, the shape of the distribution would have 

probably proved to be a combination of geometric distributions characterised by 

different proportions.  This was originally expected; however, once again, the results 

obtained show the relatively high robustness of the prediction model even in the 

presence of some relevant variations of the hypothesis on which it was built. 

5.4.4 Generalization: basic model 

The geometric prediction model mostly bases its validity on both a constant 

sampling probability and the independence of the events of processing either sampled 

or unsampled items.  Both of these elements should be guaranteed by the inter-arrival 

dynamics of the different product flows at a machine level; in particular, exponential 

inter-arrival times should constitute a relevant premise for the independence of the 

sequence of processed items, due to the memory-less property of the exponential 

distribution.  Moreover, if the arrival/departure process is memory-less, the sampling 

deterministic pattern, characteristic of the sampling station, is lost; as a result, the 

sampling probability will be constant for each item.  However, there is also a feeling that 

the disorder level in the system can contribute to this independence effect.  The 

disorder level is intended as both the variability of the time related parameters, which 

primarily causes the sequence disorder effect, and the randomness relative to the routing 

patterns, which determines the multiple stream effect.  Both these effects contribute to 

randomise the sequence of items processed consecutively by the machines of the non-

sampling stations. 
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In order to analyse which factors among those cited impact the efficacy of the 

geometric model in predicting the distribution of the number of unsampled items 

between consecutive samples, a simulation model of a basic production system was 

developed in ExtendSim and a few scenarios were simulated.  The disorder level was 

progressively introduced in the scenarios so that the parameters most affecting the 

distribution could be identified.  In particular, the variability of the inter-arrival, 

processing and waiting times was progressively increased, as shown in Table 5.5. 

 

TABLE 5.5  SCENARIOS CONSIDERED FOR THE ANALYSIS OF THE BEHAVIOUR OF THE BASIC MODEL. 

Scen. IAT PT1 QT (imposed) PT2 

T1 

Det. Det. 
No delay 

Det. (<PT1) 

T2 Det. (=PT1) 

T3 Det. (>PT1) 

T4 Det. Det. (>PT1) 

T5 

Lognormal 

(CV=0.6) 

Det. 

No delay 

Det. (>PT1) 

T6 Det. 

T7 
Det. 

+ Initial level 

T8 
Lognormal 

(CV=1) Det. 

+ Inventory increment 
T9 

Lognormal 

(CV=2) 

T10 Lognormal 

(CV=2) 

Lognormal 

(CV=0.125) Det. 
Det. (>PT1) T11 Lognormal 

(CV=0.625) T12 Constant No delay 

T13 

Lognormal 

(CV=1) 

Constant 

No delay 

Lognormal 

(CV=0.176) 
T14 

Lognormal 

(CV=0.187) 

T15 
Lognormal 

(CV=0.312) 

T16 
Lognormal 

(CV=0.5) 

Lognormal 

(CV=0.529) 

T17 
Lognormal 

(CV=1) 

Lognormal 

(CV=0.5) 
Lognormal (CV=2) 

Lognormal 

(CV=0.529) 

 

 

The first four scenarios are characterised by deterministic time related input 

parameters; among other things they allow an analysis of the impact of the differences 

between the processing time in station 1 (PT1) and station 2 (PT2) on the inventory 

level.  The scenarios from T5 up to T9 introduce inter-arrival time (IAT) randomness, 
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with progressively increasing variability.  Different cases for the imposed queuing times 

are explored at the same time.  In particular, the sudden inventory increment introduced 

in scenarios T8 and T9 is useful to analyse the effect of the inventory level on both the 

item sequence disorder and the randomisation of routing patterns.  The inventory 

increment is simulated by introducing a given number of items at a given timestamp in 

the buffer.  It is believed that the presence of either an initial or a suddenly increased 

inventory level can substantially contribute to increase the level of disorder in the 

system, even though this would be more significant when queuing times are random.  

Scenarios T10, T11 and T12 focus on PT1 variability; the effect of having deterministic 

inter-arrival times while the system operates with random processing times is also 

investigated.  Scenarios from T13 to T16 explore the impact of PT2 variability, which is 

increased along with PT1 variability, on the shape of the distribution of the number of 

consecutive unsampled items in a non-sampling station.  Finally, scenario T17 considers 

the effect on the same distribution of randomness of all the time related input 

parameters. 

 
FIGURE 5.15  SIMPLIFIED MODEL STRUCTURE 

 

The simulation model developed consisted of two stations and an intermediate 

buffer, as shown in Figure 5.15.  Both the stations operate with four machines, each of 

which can only process one item at a time.  This constraint applied to the processing 

capacity could relevantly impact the final results.  In fact, even though, the machines in 

the original model could technically process one item at a time, more than one item 

could wait within the machine before or after being processed; the waiting times within 

the machine were considered part of the processing times.  As a consequence, the 

1 

B 

2 
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machine could apparently process more than one item at a time and the resulting 

sequence disorder effect was even higher since the processing times also contributed to 

it at a machine level.  The focus on two stations makes sense since the distance from the 

sampling station, as previously found, does not relevantly impact the shape of the 

distribution. 

The first scenario analysed, T1, represents a system not affected by time related 

randomness, at least for the processing times.  In fact, deterministic processing times are 

considered for both the stations and no further delay is imposed in the buffer.  Only 

one product flows serially through the stations.  In this case, the sequence of items 

keeps its order through the line when the ratio between the processing time and the 

global inter arrival time, which is a kind of utilisation measure, respect some constraints.  

In the case considered, that is 4 machines in each station, the ratio has to be included 

between 3 and 4 (scenarios T2 and T3).  That guarantees that all the machines in the 

station are involved in the production.  In fact, if that ratio were less than 3, the product 

flow would be managed by only three machines without any delay caused by an over-

utilisation (scenario T4).  That obviously happens in the absence of any routing rule, 

when the decision of the machine where to route an item is left to the software and the 

strategy of maximising the machine utilisation is implemented.  In this condition a 

biunique relationship therefore exists between Station 1 (St1) and Station 2 (St2) 

machines and the distribution of the number of the unsampled items is deterministic in 

both the stations, no matter which is the sampling station. 

Randomness was then introduced in the inter-arrival times of items to St1; the 

processing times were kept constant (scenario T5).  The lognormal distribution was 

used, so that variation of the standard deviation, with no change for the mean value, 

could be implemented in an easier fashion than in the case of the exponential 

distribution.  With a coefficient of variation of 0.6, only a slight effect of disorder was 

noticed.  This is mainly due to the fact that the inter-arrival times usually prove so high 

that one of the St1 machines is missed in the ordered sequence of the machines visited.  

The presence of the buffer along with the fact that the processing time in St2 is greater 

than in St1 re-establishes a full machine sequence in St2.  In this case, the disorder is not 

intended as the variation in the item sequence since any further time randomness is not 
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imposed to the items after they are introduced in St1.  The disorder is more likely due to 

the multiple-stream effect which causes the loss of the biunique relationships between 

the machines of St1 and St2.  The distribution of the number of consecutive unsampled 

items is reported in Figure 5.16.  A deterministic sampling interval, equal to 3, was 

alternately set in both the stations, one at a time.  Since the model is symmetric, as 

expected, no relevant change is detectable between the two cases. 

 
FIGURE 5.16  DISTRIBUTION OF THE NUMBER OF UNSAMPLED ITEMS IN PRESENCE OF RANDOM 

INTER ARRIVAL TIMES WHEN ITEMS ARE SAMPLED IN ST2 AND ST1 (SCENARIO T5). 

 

 
FIGURE 5.17 DISTRIBUTION OF THE NUMBER OF UNSAMPLED ITEMS FOR IMPOSED QUEUING TIMES 

AND AN INITIAL BUFFER LEVEL GREATER THAN ZERO (SCENARIO T7). 
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The introduction of a constant imposed delay in the buffer (scenario T6 and T7) has 

no significant impact on the distribution (Figure 5.17), even in the presence of an initial 

buffer level.  In fact, due to the average machine utilisation, which is close to 85% for 

St2 machines, the backlog in the buffer can be reduced by temporarily exploiting the 

remaining machine utilisation; it eventually becomes zero. 

 
FIGURE 5.18  IMPACT OF THE VARIABILITY OF THE INTER-ARRIVAL TIME ON THE DISTRIBUTION OF 

THE QUEUING TIME. 

 

 
FIGURE 5.19  DISTRIBUTION OF THE NUMBER OF UNSAMPLED ITEMS WHEN THE IAT COEFFICIENT 

OF VARIATION IS EQUAL TO 2 (SCENARIO T9). 
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FIGURE 5.20  ROUTING PATTERN BETW
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ROUTING PATTERN BETWEEN ST1 AND ST2 MACHINES FOR SCENARIO T9

The increase in the coefficient of variation for the distribution of the inter

has the only effect of slightly increasing the mean queuing time 

).  No effect is registered as regards the distribution of the number of 

unsampled items, even though, when the coefficient of variation is further increased 

), the distribution seems to become a little peakier on the values of 

the deterministic sampling interval (Figure 5.19).  Preferential routing paths still 

this scenario at the point that a kind of biunique relationship between St1 

and St2 machines is still detectable (Figure 5.20 ). 

When the processing time in St1 is characterised by a lognormal distribution, the 

effect on the distribution of the number of unsampled items between consecutive 

becomes more significant as the corresponding coefficient of variation of the 
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items progressively gets closer to the geometric 

when the coefficient of variation for the processing times in St1 is equal to 0.625 (

5.23). 

 

FIGURE 5.21 

 

 

FIGURE 5.22  
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items progressively gets closer to the geometric distribution.  This happens, for example, 

when the coefficient of variation for the processing times in St1 is equal to 0.625 (

  ROUTING PATTERN WHEN PT1 HAVE CV=0.125 (SCENARIO T10)

  ROUTING PATTERN WHEN PT1 HAVE CV=0.625 (SCENARIO T11)
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FIGURE 5.23 DISTRIBUTION OF THE NUMBER OF UNSAMPLED ITEMS FOR RANDOM PT1: EFFICACY OF 

THE GEOMETRIC PREDICTION MODEL (SCENARIO T11). 

 

From the results obtained so far, it is possible to state that, even more than the 

exponential inter-arrival times, the geometric model needs a reasonably high level of 

disorder and almost uniform patterns between the machines of the different stations in 

order to work.  This means that the sequence disorder and the multiple stream effects 
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investigation is affected by them, the geometric model provides a very accurate 

prediction for the distribution of the number of unsampled items between consecutive 

samples. 

Keeping the processing time in St1 random with a CV=0.625, the inter-arrival time 

was set to a constant value (scenario T12), it was found that the impact on the 

distribution of the number of unsampled items is not relevant.  This was easily 
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the sampling station, for more general cases.  For these stations, the sequence disorder 

and the multiple stream effects make the inter-arrival time distribution tend to an 

exponential distribution (Figure 5.24).  Analogously, the nature of the departure process 

from a station could play a major role for the validity of the geometric model. 

 
FIGURE 5.24  INTER-ARRIVAL TIME DISTRIBUTION AT ST2. 

 

 

 
FIGURE 5.25  DISTRIBUTIONS OF THE NUMBER OF UNSAMPLED ITEMS FOR SCENARIO T12: 

COMPARISON WITH THE GEOMETRIC PREDICTION MODEL. 
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The curves in Figure 5.25 confirm the goodness of fit of the geometric distribution 

for the upper tail of the distribution of the number of unsampled items; the greatest 

error is registered for the region of theoretical sampling interval to the detriment of the 

probability frequency at 0 unsampled items. 

 
FIGURE 5.26  DISTRIBUTION OF THE NUMBER OF CONSECUTIVE UNSAMPLED ITEMS FOR RANDOM 

PROCESSING TIMES (SCENARIO T14): COMPARISON WITH THE PREDICTION MODEL. 

 

 

 
FIGURE 5.27  DISTRIBUTION OF THE NUMBER OF CONSECUTIVE UNSAMPLED ITEMS FOR  RANDOM 

PROCESSING TIMES (SCENARIO T16): COMPARISON WITH THE PREDICTION MODEL. 
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An analogous compensation effect between the probability frequencies 

corresponding with 0 and 2 (3 being the sampling interval) unsampled items is obtained 

when the processing times of both the stations are log-normally distributed with a 

coefficient of variation approximately equal to 0.18 (scenario T14) (Figure 5.26).  In this 

case, random inter-arrival times have been considered (CV=1).  When the coefficient of 

variation of the processing times for both the stations is increased (CV=0.5) (scenario 

T16) the distribution becomes smoother (Figure 5.27) and much closer to the geometric 

distribution.  In order to avoid repetitiveness, results coming from scenarios T13 and 

T15 are not shown since similar to the results of the other scenarios illustrated above. 

Finally, random imposed queuing times were introduced in the system so that all the 

time parameters would be random variates (scenario T17).  The resulting distribution of 

the number of unsampled items is somewhat smoother, which means it is characterised 

by less dispersion (Figure 5.28).  The geometric distribution seems to fit better than in 

the previous cases.  However, a discrepancy between the frequency values for 0 and 2 

unsampled items is still detectable. 

 
FIGURE 5.28  DISTRIBUTION OF THE NUMBER OF CONSECUTIVE UNSAMPLED ITEMS AFTER THE 

INTRODUCTION OF IMPOSED QUEUING TIMES: COMPARISON WITH THE PREDICTED DISTRIBUTION. 
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Figure 5.29 and Figure 5.30 confirm this suspicion.  Mainly in Figure 5.29, where a 

sampling interval of 5 was adopted, the effect of concentrating the probability frequency 

in the nearness of 4 to the detriment of smaller values is clear. 

 

 
FIGURE 5.29  DISTRIBUTIONS OF THE NUMBER OF CONSECUTIVE UNSAMPLED ITEMS: BIAS IN THE 

NEARNESS OF THE SAMPLING INTERVAL (SI=5). 

 

 

 
FIGURE 5.30  DISTRIBUTION OF THE NUMBER OF CONSECUTIVE UNSAMPLED ITEMS: BIAS IN THE 

NEARNESS OF THE SAMPLING INTERVAL (SI=8). 
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Evidently, when the sampled fraction becomes smaller, as in the case of Figure 5.30 

where a sampling interval equal to 8 was considered, this effect is spread across a larger 

domain.  This presumably cause a better fit when very small sampled fractions are 

considered, as happens for the case analysed in the original simulation model. 

Another observation can be inferred by the graphs in Figure 5.29 and Figure 5.30.  If 

a system is characterised by a low level of sequence disorder, as a system with a simple 

structure usually is, the sampling interval of the monitored product will impact the 

distribution of the number of consecutive unsampled items in a non-sampling station 

machine in a more significant way than in a system characterised by a high level of 

disorder.  Since the deviation of the actual distribution of the number of consecutive 

unsampled items from the geometric model occurs in the nearness of the sampling 

interval and interests a region which gets wider as the sampling interval increases, opting 

for smaller sampling intervals also means that the distribution becomes more right-

skewed.  This causes immediate benefits in terms of quality risk since the probability of 

observing a high number of unsampled items reduces. 

Finally, it has to be noted that the decision to model the machine so that only one 

item at a time could be processed certainly causes a relevant reduction of the sequence 

disorder effect.  In fact, items are forced to keep the same sequence in and out of a 

machine.  The sequence disorder for the particular scenarios investigated in this section 

is mainly due to the randomness of the queuing times.  This could be another reason of 

the small distortion of the actual distribution of the number of unsampled items in the 

nearness of the deterministic sampling interval relatively to the case with no processing 

overlapping in the operating machines. 

5.4.5 Stochastic approach 

The analytical approach used so far has involved a pure statistical analysis of the 

simulation results, the individuation of algebraic functions for the data description and 

some basic knowledge of probability theory.  That worked quite well and provided 

prediction models which can be easily applied.  However, considering the nature of the 

problem, another approach can be followed.  In fact, when different products flow 
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through a parallel production system with random inter-arrival and processing times at 

each station, the type of the item moving out from a particular tool in any station, at any 

time t, can be considered a discrete random variable whose number of states and their 

corresponding probabilities are determined by the product mix.  The family of these 

random variables, as time goes by, can be studied as a stochastic process.  With good 

approximation, this can be considered a Markov process since the occurrence of each 

state depends at most only on the immediately previous state and not on the sequence 

of several preceding states. 

The number of states of the random variable, which are at least equal to the number 

of products which cross a station, can be increased if a further distinction between 

sampled and unsampled items is made.  Considering the sampling strategy analysed in 

this thesis, the sequence of sampled and unsampled items for any monitored product is 

deterministic only for the sampling station.  In fact, the sequence disorder and the 

multiple stream effects turn that ordered sequence into a memory-less, random 

sequence in any machine of the stations upstream/downstream from the sampling 

station from both a single product and a global product flow perspective.  In this case, 

splitting the state associated with one particular product into the sampled and the non-

sampled state simply means partitioning the probability of the original state into two 

complementary probabilities based on the sampling interval of that product. 

Modelling this system as a Markov chain should easily allow the evaluation of the 

steady-state probabilities which are the probabilities associated with any state of the 

system in the long term.  Their inverse represents the mean return time to the same 

state which is particularly interesting from a quality risk point of view.  In fact, the sum 

of the steady-state probabilities relative to the sampled states of all the monitored 

products represents the probability that a processed item could be measured at the end 

of the line.  The inverse of this probability estimates the average number of items 

between consecutive samples in any machine of a station, which is the performance 

measure also predicted by Equation 5.5.  The comparison of the results obtained using 

the stochastic approach with the predictions coming from the deterministic prediction 

formula could prove interesting. 
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In order to see how stochastic theory can help in the evaluation of the quality risk, let 

us consider an example.  A station is crossed by three products arriving at the station 

with exponentially distributed times.  The mean inter-arrival times are 2, 4 and 3 time 

units for product A, B and C, respectively, which gives an approximated volume 

fraction of 0.46, 0.23 and 0.31 for the three products.  Product A and B are monitored 

with a sampling interval of 3 and 4, respectively. This means that one third of product A 

items are sampled and the remaining two thirds are unsampled.  Hence, the 46% 

product A volume fraction can be further divided into 15% and 31% which represent 

the sampled fraction and the unsampled fraction of product A, respectively.  The same 

approach can be followed for product B; it makes no sense doing the same for product 

C, since it is not monitored. 

The system can be then described in terms of a Markov chain with a finite number of 

states, 5, in this case, and a transition matrix which can be built based on the volume 

fractions.  Indicating with subscript u the unsampled fraction and with subscript s the 

sampled fraction, the transition matrix for the case described is the following: 

 Destination 

So
u
rc

e 

310170060310150

310170060310150

3102300310150

310170060310150

3101700604600

.....C

.....B

....B

.....A

....A

CBBAA

u

s

u

s

usus

 

 (5.9) 

The zeros in matrix (5.9) show that when the system is in a sampled item state it can 

not immediately return to itself.  This way of modelling particularly fits the behaviour of 

the system in a sampling station, since the sequence of sampled and unsampled items is 

clearly defined by the sampling interval.  Suspending for the moment the analysis of 

matrix (5.9), in a non-sampling station, this constraint can be loosened.  In fact, the 

sequence disorder effect could change the sequence of processed items so that two 

sampled items of the same product can consequently move out of a machine.  In this 

case, the transition matrix will appear as follows 
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 Destination 

So
u
rc

e 
310170060310150

310170060310150

310170060310150

310170060310150

310170060310150

.....C

.....B

.....B

.....A

.....A

CBBAA

u

s

u

s

usus

 

 (5.10) 

All the rows in the matrix are the same, which means that the probability of reaching 

a particular state does not actually depend on the initial state of the system.  The 

evaluated probabilities are, then, the steady-state probabilities based on which the 

average number of unsampled items between consecutive samples can be calculated.  

This result agrees with what was previously found with the prediction model described 

by Equation 5.5. 

In fact, using the steady-state probabilities from the transition matrix, it results that 

the system is under a sampled state for a fraction of: 

 210060150 ...BA ss =+=+  (5.11) 

which means that to return to a sampled state it is necessary to wait, on average, for  a 

number of items given by the following formula: 
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==
+

=
 (5.12) 

Since this result include the sample, the average number of unsampled items between 

consecutive samples is then equal to 3.76, that is 4.76-1, which is the same value 

obtained by the formula in Equation 5.5.  The results obtained show that the prediction 

model developed on a deterministic base has complete support from a stochastic theory 

point of view as well. 

For completeness sake, the same procedure followed for matrix (5.10) was also 

applied to matrix (5.9).  The impact of the use of matrix (5.9) on the goodness of fit of 

the geometric model for the prediction of the distribution of the number of unsampled 
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items between consecutive samples was also investigated.  It is worth remembering that 

this approach is more suitable for describing the behaviour of the system in a sampling 

station. 

The system described by a transition matrix of the likes of matrix (5.9) is actually an 

ergodic Markov chain, which means all its states are recurrent and aperiodic.  A state is 

recurrent when it has opportunities to be revisited from other states; it is aperiodic when 

it is not periodic, which means a return to the state is not constrained to any period of 

time. 

For an ergodic chain, the steady-state probabilities iπ  can be calculated from the 

equations 

 

∑ =
=

i
i

P

1π
ππ

 (5.13) 

where P is the transition matrix.  The equations in the set ππ P=  are not linearly.  One 

of the equations is redundant and substituted by the normalising equation, ∑ =
i

i 1π .  

Solving this set of equations gives the same results as multiplying the transition matrix 

by itself for a number of times until no change is detectable in the result of the 

multiplication.  Once the steady-state probabilities are obtained, the same procedure 

used before can be applied for the calculation of the average number of unsampled 

items between consecutive samples. 

For the example described before, the set of equations in Equation 5.13 gives the 

following steady-state probabilities 
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which means that the system is in a sampled condition with an 18% probability (As + 

Bs).  The number of unsampled items between samples is now increased to 4.55 

(
�

^_T`_
� 1".  

The fact that the probability relative to the sampled states is reduced was quite 

expectable.  In fact, the sampled states can not return to themselves; they can be 

reached only from other states.  The sum of the probabilities relative to a product, as 

before, is exactly equal to the volume fraction of that product; however, in this case, 

there is a kind of imbalance between the states associated with a product and the 

partitioning of the steady-state probabilities does not perfectly follow the sampling 

intervals. 

There is only a trivial case where the two matrix building approaches converge to the 

same results. It is the case when the sampling intervals are 2 for both the products. 

Considering the case where only products A and B flow through the station with the 

same inter-arrival times as before, the transition matrix with sampling intervals equal to 

2 is given by 
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 (5.15) 

 

Since a sampling interval of 2 means that alternate items are measured, the sampled 

and unsampled conditions of a product alternate.  The matrix reacquires a perfect 

balancing between the states, since it happens that the unsampled states can not 

immediately return to themselves.  In fact, the application of equations 5.13 produces 

the following results 
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  (5.16) 

 

which are the exact same as the results immediately obtained building the matrix by 

means of the approach relative to a non-sampling station 
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  (5.17) 

It is quite intuitive that if any other unmonitored product was present, nothing would 

change as long as all the monitored products have a sampling interval equal to 2.  

Excluding this last trivial case, different sampling intervals were considered for the 

scenario relative to matrix (5.15).  The steady-state probabilities found were then used to 

evaluate the parameter of the geometric model, so that the distribution of the number 

of unsampled items in a non-sampling station can be predicted.  The distributions 

predicted using the sampled fractions obtained from the stochastic analysis were 

compared with simulation results; the comparisons show that the prediction is relatively 

good with cumulative absolute error ranges always less than 10%.  However, the 

performances of this approach are always poorer than the ones obtained using Equation 

5.5.  This is particularly evident for the high sampling frequencies, most likely because 

the sampled fraction is large and comparable with the unsampled fraction.  When the 
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magnitude of the sampled fraction reduces, the impact of the steady-state probability 

approach on the original probabilities is less evident and the error consistently reduces 

and gets closer to the error associated with the algebraic approach, that is the approach 

based on the AP formulae. 

The results reported in Figure 5.31 refer to a scenario characterised by the presence 

of two monitored products, A and B.  Product A has an inter-arrival time equal to 2 

[time unit/item] and its sampling interval is set to 2; product B has inter-arrival time 

equal to 4 [time unit/item] and a sampling interval set to 3.  The comparison proposed 

in Figure 5.31 clearly shows that the algebraic approach performs much better than the 

Markov chain approach.  The cumulative error of the latter reaches 10.5%, whereas, the 

error of the former is 3.43%.  As a consequence of the reduction in the steady-state 

probabilities of the sampled states, the Markov chain approach predictions always 

underestimate the lower tail of the distribution of the number of unsampled items in 

contrast to what happens with the algebraic approach. 

 
FIGURE 5.31  COMPARISON BETWEEN THE ALGEBRAIC AND THE STOCHASTIC APPROACHES FOR THE 

PREDICTION OF THE DISTRIBUTION OF THE NUMBER OF UNSAMPLED ITEMS. 

 

As discussed earlier, for larger sampling intervals the performances of the Markov 

chain predictions clearly improve, as shown in Figure 5.32, where both products are 
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Markov chain approach in terms of cumulative absolute error ranges, which are 4.7% 

and 5.5%, respectively.  However, the Markov chain approach has better performance 

in terms of absolute error ranges, which are 3.61% and 2.18%, respectively. 

 
FIGURE 5.32  COMPARISON BETWEEN THE ALGEBRAIC AND THE STOCHASTIC APPROACHES FOR LOW 

SAMPLED FRACTIONS. 

 

The tendency of the Markov chain approach to underestimate the distribution of the 

number of unsampled items makes the minimum cumulative error quite large in 

comparison with that obtained from the deterministic approach for which the 

associated geometric distribution has quite well balanced underestimated and 

overestimated areas with respect to the simulation results. 

Finally, a similar smoothing effect as obtained with the larger sampling intervals is 

determined by the introduction of unmonitored products. The unmonitored items 

reduce the monitored volume fraction, thus reducing the sampled fraction as well.  In 

absolute terms, the Markov chain procedure has very little impact on the smaller 

fractions, that is, the steady state probabilities calculated are smaller than the volume 

fractions in input.  As a consequence, the Markov chain approach and the algebraic 

approach produce very similar distributions.  An example of that is provided in Figure 
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produces some benefits on the prediction of the distribution of the number of 

unsampled items between consecutive samples.  In fact, the cumulative absolute error 

ranges for the Markov chain approach, 4.31%, is a bit less than the error associated with 

the mathematical approach, 4.55%.  The better fit of the geometric prediction based on 

the stochastic approach is also confirmed by the Person’s chi square test.  The P-value 

for the geometric prediction based on the stochastic approach (2.99*10-2) is slightly 

greater than the P-value for the geometric prediction based on the deterministic 

approach (2.26*10-2). 

 
FIGURE 5.33  COMPARISON BETWEEN THE ALGEBRAIC AND STOCHASTIC APPROACH FOR THE 

PREDICTION OF THE DISTRIBUTION OF THE NUMBER OF CONSECUTIVE UNSAMPLED ITEMS. 
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prediction of the distribution of the number of unsampled items whose lower tail is 

usually overestimated by the algebraic approach. 

5.5 Sampling station case 

When a sampling station is considered, the sequence disorder and the multiple-

stream effects are no longer relevant for the analysis of the distribution of the number 

of unsampled items.  In fact, being the station where the sampling decision is made on a 

deterministic basis at the moment when items move out of a machine, the randomness 

of both the time related parameters and the routing patterns do not immediately affect 

the dynamics behind the definition of the distribution of the number of consecutive 

unsampled items.  Indeed, the sampling station can be considered the source of the 

quality information, no matter where it is located in the production segment which it is 

meant to monitor.  This might lead one to consider that the sampling station case is 

easier to investigate than the non-sampling station case. 

However, only one trivial case exists.  That is the scenario with only one product 

crossing the station; if the product is monitored with sampling interval f, the distribution 

of the number of unsampled items between consecutive samples banally degenerates to 

a one-value distribution with probability equal to 1.  The only value is obviously equal to 

f-1. 

Excluding this case, complexity factors, partially different from those impacting the 

non-sampling station scenarios, intervene in the development of the prediction model 

for the distribution of the number of consecutive unsampled items.  These factors, 

which are mainly traceable to the product flow complexity, will be gradually introduced 

in the model and their impact on the distribution of the number of unsampled items will 

be progressively explored.  With this aim the scenarios characterised by one monitored 

product (Product 1 (Pr.1)) and unmonitored product flow will be first investigated.  

Then the introduction of a second monitored product (Product 2 (Pr.2)) will be 

considered, with and without the presence of an unmonitored product flow.  As noted 

in the previous sections, unmonitored products can either cross the single station or 

flow serially through the segment; the nature of the unmonitored flow does not impact 
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the characteristics of the resulting distribution of the number of unsampled items 

between consecutive samples. 

5.5.1 One monitored product + unmonitored flow case 

The first complexity factor introduced in the analysis of the distribution of the 

number of unsampled items between consecutive samples is the presence of an 

unmonitored product flow into the sampling station.  This turns the number of 

consecutive unsampled items into a random variable.  In fact, due to the randomness of 

the inter-arrival times, there is no theoretical limit to the number of unmonitored items 

which can be produced between two consecutive monitored items.  Indeed, for the 

same reasons highlighted for the non-sampling station case, the succession of the items 

moving out from a machine can be considered a geometric process.  This means that 

the sequence of monitored and unmonitored items registered immediately downstream 

of a machine is definitely random and based on the proportions of the volume mix. 

A deterministic element is still associable with this particular scenario.  In fact, the 

monitored flow is made up of one product; hence, from a monitored flow perspective, 

the sampling interval coincides with the sampling interval of the only monitored 

product flowing through the segment.  So, while processing an unmonitored item does 

not trigger any particular event, it is necessary to keep the count of the number of 

monitored items processed by a machine, since the rth item will be chosen as a sample, 

when r is the sampling interval of the monitored product type. 

Once the problem of finding the distribution of the number of unsampled items is 

formulated in this fashion, its solution is easy to find among the most common known 

discrete distributions.  In fact, the definition of the negative binomial distribution, if 

opportunely interpreted, seems to match the problem thesis.  A negative binomial 

distribution describes the number of failures before the rth success in a sequence of 

independent Bernoulli trials with probability p of success (See Appendix D).  From the 

perspective of the investigated problem, a failure is an unmonitored item, as a 

consequence, a success would be a monitored item and, in particular, the rth success is 

the chosen sample; the independent Bernoulli trials are obviously the items processed, 
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whose sequence is actually independent, and, finally, the probability of success 

represents the monitored volume fraction.  As requested from the negative binomial 

distribution hypotheses, the probability of success is constant for each event observed.  

In other words, processing an item either monitored or unmonitored is the realisation 

of a Bernoulli event; as a consequence the distribution of number of unmonitored items 

processed before observing a monitored item should follow a geometric distribution.  

Since before choosing a sample r monitored items have to be processed, r geometric 

distributions have to be summed and a negative binomial distribution is obtained.  

Following this logic, at least theoretically, the number of unsampled items between 

consecutive samples in a sampling station crossed by one monitored product type and 

an unmonitored flow should follow a negative binomial distribution, with parameters 

given by the sampling interval of the monitored product and the monitored volume 

fraction, shifted by the sampling interval minus one. 

The need for shifting the negative binomial distribution is a direct consequence of 

the definition used for it.  In fact, it exclusively takes into account the number of 

failures, which are the unmonitored items, before the rth success.  However, in the 

number of unsampled items, the monitored items between two consecutive samples 

should also be included.  These items can be formally considered successes, since they 

contribute to triggering the sampling choice; however, from a quality viewpoint they are 

still items at risk since they can not be used to spot quality failures and, hence, can only 

be passive carriers of it. 

It is worth noting that some authors, as for example Montgomery [34], define the 

negative binomial distribution as the distribution which describes the number of 

independent trials, no matter whether successful or not, before the rth success; according 

to this definition, the domain of the distribution presents as its lower limit the value r-1.  

Obviously, in this case, no shift would be needed. 

In order to assess the efficacy of the negative binomial distribution in modelling the 

number of unsampled items between consecutive samples for the scenario investigated 

in this section, the simulation experiments conducted for the non-sampling station case 



 CHAPTER V  SAMPLING STATION CASE 

178 
 

and reported in  (p. 142) proved to be useful for investigating the robustness of the 

prediction model to variations of its parameters. 

Figure 5.34 and Figure 5.35 show the results obtained for two scenarios characterised 

by very high monitored volume fractions.  The accuracy of the prediction model is very 

high so that the representation of the predicted distribution and the actual distribution 

as curves would hardly reveal eventual prediction errors. Then, the representation of the 

distributions by means of histograms was preferred. 

The application of the Pearson’s chi square test confirmed the high goodness-of-fit 

of the negative binomial model; the P-values obtained for the different scenarios ranged 

from 0.03 (for a case with one degree of freedom) to 0.91 (for 16 degrees of freedom).  

The choice of the number of classes was based on the number of available samples and 

on the simulation results obtained; until the absolute frequency of samples in a class was 

consistently over 5 items, additional classes were considered.  The width of each class 

was chosen equal to one, unless merging consecutive classes was necessary to increase 

the number of observations in a class (more than 5).  Being the number of parameters 

of the negative binomial distribution equal to 2, the correction to the degrees of 

freedom for the chi square test was equal to 3. 

The maximum absolute error is less than 0.55% for the scenario in Figure 5.34 and 

smaller than 0.40% for the scenario in Figure 5.35.  These scenarios present an average 

absolute error of 0.11% and 0.14% respectively; the average absolute error was 

calculated based on the first 15 points of the distribution. The higher maximum absolute 

error registered for the first scenario with respect to the second scenario is a 

consequence of the more limited range and, therefore, the higher relative frequencies 

which interest the first distribution.  In relative terms, that wouldn’t happen.  It is 

opportune to note that the absolute error is a reasonable choice as an error measure, 

since the distributions are normalised and the values involved are usually very small, in 

particular for the upper tail of the distributions.  That would result in very high average 

relative errors which would mislead the goodness-of-fit analysis.   
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FIGURE 5.34  DISTRIBUTION OF THE NUMBER OF CONSECUTIVE UNSAMPLED ITEMS: VALIDATION OF 

THE NEGATIVE BINOMIAL PREDICTION MODEL FOR R=3 AND P=0.8. 

 

 

 
FIGURE 5.35  DISTRIBUTION OF THE NUMBER OF CONSECUTIVE UNSAMPLED ITEMS: VALIDATION OF 

THE NEGATIVE BINOMIAL PREDICTION MODEL FOR R=2 AND P=0.6. 

 

When the monitored volume fraction is reduced, the goodness of fit of the negative 

binomial prediction model is still relevant; however, the prediction error slightly 

increases.  Considering the scenarios in Figure 5.36 and Figure 5.37 the maximum 

absolute errors increase to 0.97% and 0.92%, respectively; the average absolute errors 

are 0.38% and 0.35%, respectively. 
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FIGURE 5.36  DISTRIBUTION OF THE NUMBER OF CONSECUTIVE UNSAMPLED ITEMS: VALIDATION OF 

THE NEGATIVE BINOMIAL PREDICTION MODEL FOR R=2 AND P=0.4. 

 

 

 
FIGURE 5.37  DISTRIBUTION OF THE NUMBER OF CONSECUTIVE UNSAMPLED ITEMS: VALIDATION OF 

THE NEGATIVE BINOMIAL PREDICTION MODEL FOR R=2 AND P=0.2. 
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FIGURE 5.38  AVERAGE ABSOLUTE ERROR WITH RESPECT TO THE UNMONITORED VOLUME 

FRACTION FOR R=2. 

 

Figure 5.38 reveals the negative impact of the unmonitored volume fraction on the 

average absolute prediction error, while the sampling interval is kept equal to 2.  The 

increasing pattern can be explained with consideration of the random nature of the 

unmonitored flow.  In fact, the randomness of the number of unsampled items for the 

combination flow analysed in this section is entirely due to the presence of the 

unmonitored flow.  The larger its volume is, the larger the variability that characterises 

the system.  In the scenarios simulated, this is also stressed by the fact that the inter-

arrival time distributions are exponentially shaped; hence, larger unmonitored volume 

fraction not only correspond with larger mean inter-arrival time, in comparison with the 

monitored type, but also larger variability of the inter-arrival time.  This introduces 

higher dispersion, which also determines the presence of numbers of unsampled items 

much higher than the typical values in the distribution studied in this thesis. 

The impact of the sampling interval on the prediction error proves less relevant than 

the impact of the monitored volume fraction.  This is shown in Figure 5.39 where the 

error pattern can not be clearly defined.  However, excluding the second point a slightly 
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considered as the number of unmonitored items between consecutive monitored items 

times the sampling interval.  This is equivalent to summing up identically distributed 

geometric random variables.  The resulting distribution, which is negative binomial, is 

characterised by a variance greater than the variance of the originating distribution and 

linearly dependent on the number of added variables, which in this case is the sampling 

interval.  So the greater the sampling interval, the greater the dispersion, more frequent 

the anomalous values and, finally, greater the prediction error. 

 
FIGURE 5.39  AVERAGE ABSOLUTE ERROR WITH RESPECT TO THE SAMPLING INTERVAL FOR P=0.4. 
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sampling interval can be misleading.  In fact, it would be easy to erroneously consider 

the distribution of the number of consecutive unsampled items is still a degenerating 

distribution characterised by a single value domain, the common sampling interval 

minus one, with frequency equal to one.  However, when two products, in the same 

volume fraction, with different sampling frequencies, for instance equal to 4 and 3 

respectively, are considered, it should be immediate to understand that a distribution 

with a domain consisting of only one integer value is not realistic.  First, because the 

sampling intervals are different; second, because, even if the average sampling interval is 

evaluated it can result in a non integer value, in this case 3.5, and obviously this does not 

agree with the discrete nature of the distribution.  As a consequence the distribution of 

the number of unsampled items when two monitored products are present in the 

sampling station is surely a non-degenerative distribution.  On the other hand, as seen 

before, when variables described by distributions of the same nature are summed, the 

resulting variable is not necessarily described by the same distribution type (e.g. the sum 

of geometric distributions is a negative binomial distribution). 

The only aspect easy to deduce in this particular context concerns the domain of the 

distribution.  In fact, since the two distributions which generate the final one are 

characterised by only one value, it should be straightforward that the maximum value of 

the domain of the final distribution, which can roughly be considered a weighted sum of 

the two distributions, is given by the sum of the two values in question.  This appears 

even simpler by reflecting on the meaning of the variables summed.  Considering a 

practical example, if the first product type is sampled every third item (two items are 

skipped and the third one is measured) and the second product type is sampled every 

fourth item (three items are skipped and the fourth one is sampled), it is easy to agree 

that in the worst case scenario from a risk quality perspective, a maximum number of 

five consecutive items can miss the sampling decision.  This consideration has been 

verified by simulation experiments. 

Along with scenarios available from previous analyses (as scenario 1 (Table 4.1 (p. 89)) 

and scenario 11 (Table 5.2 (p. 130)) and scenarios considered for the non-sampling 

station case (Table 5.4 (p. 142)), new scenarios were simulated for the study of the 

sampling station case; since the procedures developed were based on logical reasoning, 
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the most of them proved useful for the validation process.  The new scenarios differ 

from each other for both the volume fractions of the three product categories 

populating the model and the shape of the inter-arrival time distributions.  The 

unmonitored product (Pr3) was not considered for the case analysed in this section; it 

will be taken into account during the analysis presented in Section 5.5.3.  Whenever the 

lognormal distribution was chosen to model the inter-arrival times, the coefficient of 

variation was set equal to one in order to allow a statistically consistent comparison 

between scenarios differing only for the inter-arrival distribution shape.  The choice of 

the log-normal (LN) distribution as an alternative to the exponential distribution for 

modelling inter-arrival times is due to both its shape, which is suitable for modelling an 

arrival process, and the possibility to easily control its mean and standard deviation.  

The scenarios which consider lognormal inter-arrival time distributions are only 

considered during the investigation on the impact of the time related distributions on 

the prediction models accuracy.  This analysis is extensively presented in Appendix F 

and summarised in Section 5.5.4.  All figures reported in Sections 5.5.2 and 5.5.3 refers 

to scenarios characterised by exponentially distributed inter-arrival times unless 

otherwise specified.  Table 5.6 lists the new scenarios simulated.  The four groups 

identified by the thicker lines correspond with four different volume fraction ratios 

between product 1 and product 2.  The slightly different ratio between Pr1 and Pr2 

volume fractions for scenarios SS5 (and SS7) and SS6 (and SS8) are due to the fact that 

the fractions are rounded to two decimal figures; the ratio is actually equal to 1.5.  For 

the same reason, the actual ratio between Pr1 and Pr2 volume fractions for scenarios 

SS1 and SS2 is 3.5.  For each ratio, different unmonitored volumes were considered 

and/or the impact of the inter-arrival time distribution shape was investigated.  

Scenarios SS10 and SS11 differ from each other for the absolute volumes.  In order to 

avoid repetitiveness, some of the scenarios in Table 5.6 are not included during the 

results analysis. 

The simulation model was run for 10,000 hours with a warm-up period of 1500 

hours.  5 replications were conducted for each scenario and data from the model was 

averaged across the 5 simulation runs.  Since different combinations of sampling 

intervals were considered, the number of samples behind each reported distribution 

varies; for the smallest sampling intervals (1,1) the sample population size is around 
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18000, for the largest sampling intervals considered (4,4) the population size reduces to 

7000 ca. 

 

TABLE 5.6  SCENARIOS SIMULATED FOR THE ANALYSIS OF THE SAMPLING STATION CASE. 

 Pr1 Pr2 Pr3 

Scen. IAT dist. 
Vol. Fr. 

(%) 
IAT dist. 

Vol. Fr. 

(%) 
IAT dist. 

Vol. Fr. 

(%) 

SS1 Exp. 0.16 Exp. 0.04 Exp. 0.80 

SS2 LN 0.16 LN 0.04 LN 0.80 

SS3 Exp. 0.46 Exp. 0.23 Exp. 0.31 

SS4 Exp. 0.18 Exp. 0.09 Exp. 0.73 

SS5 Exp. 0.14 Exp. 0.10 Exp. 0.76 

SS6 Exp. 0.34 Exp. 0.22 Exp. 0.44 

SS7 LN 0.14 LN 0.10 LN 0.76 

SS8 LN 0.34 LN 0.22 LN 0.44 

SS9 Exp. 0.25 Exp. 0.25 Exp. 0.50 

SS10
*
 Exp. 0.43 Exp. 0.43 Exp. 0.14 

SS11
*
 Exp. 0.43 Exp. 0.43 Exp. 0.14 

 * IAT values different for these two scenarios 

 

 
FIGURE 5.40  LIMITED DOMAIN FOR THE DISTRIBUTION OF THE NUMBER OF UNSAMPLED ITEMS 

BETWEEN CONSECUTIVE SAMPLES FOR TWO MONITORED PRODUCTS. 
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For all the combinations of sampling intervals considered, the maximum value of the 

random variable was exactly as predicted.  Figure 5.40 shows the distribution of the 

number of unsampled items between consecutive samples for a scenario characterised 

by two monitored products whose volume fraction are 0.6 and 0.4 respectively.  The 

sampling interval is 6 for the first product and 7 for the second product.  As expected, 

the maximum number of unsampled items is 11, which is 6+7-2, where 2 represents the 

samples, which are not included in the distribution. 

If the range of distribution domain is easily predictable, unfortunately, the shape of 

the distribution is not.  In the literature consulted [146, 147] arithmetic operations on 

continuous and discrete distributions are illustrated, but the case of the sum of two 

degenerative distributions was not treated.  An analytical approach or any aid from the 

most common distributions does not seem likely, since the shape of the distributions 

obtained from the simulation experiments does not recall the shape of any well known 

discrete distribution.  In a few cases, the negative binomial distribution fits reasonably 

well the simulation results.  However, there is no theoretical support to this solution.  

Moreover, the negative binomial distribution does not present a limited domain, even 

though it usually generates very low values for the upper tail. 

Since, an immediate application of a classical distribution was not possible, another 

basic approach was considered.  It consisted of enumerating all the possible sequence 

combinations for a given sequence length and generating the final distribution as a 

weighted average of the distribution associated with each combination.  Enumerating 

techniques are treated in Meyer [147] and they seem to provide a solution to all the 

statistical problems when application of an analytical approach is difficult or impossible.  

This approach presents a combinatorial nature which, apart from very banal cases, 

makes it manually inapplicable.  Appendix C illustrates a few functions developed.  

However, owing to the limited specification of the computer used, only a limited range 

of sampling interval combinations could be analysed in a reasonable time period. 

The algorithm developed, based on an enumerative approach, consists of a few steps 

which will be described in Section 5.5.2.2.  Before that, the next section introduces the 

inputs needed to start the algorithm.  These include the number of iterations which the 
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algorithm should be run for, the distribution of the number of items of the second 

(/first) product between two consecutive items of the first (/second) product and the 

sampling intervals of the two products.    

5.5.2.1 Inputs description 

The indication of the number of iterations which the algorithm has to be run for, 

besides representing a fundamental parameter for the correct execution of the algorithm 

has a further meaning.  It is related to the maximum length of the item sequences which 

will be analysed during the procedure.  When the algorithm is applied from the product 

1 perspective, the number of product 2 items is increased every time a new iteration 

starts.  Hence, the number of iterations determines the maximum number of product 2 

items which will be included in the item sequences analysed.  In order to simplify the 

illustration of the concepts described in this section, a common reference scenario is set 

for the examples shown.  In this scenario, products 1 and 2 are monitored with 

sampling intervals equal to 4 and 6, respectively; their volume fraction is equal to 0.4 

and 0.6, respectively.  If the algorithm is first applied from the product 1 perspective, 

which means, as it will be shown later, that a different number of product 2 items will 

be progressively considered, a number of iterations equal to 15 means that the algorithm 

will be applied 16 times on increasingly longer product 2 item sequences.  In this case, 

the product 2 sequence length will range between 0 and 15 items.  The actual overall 

sequence length is obtained by summing up the number of product 1 items present in 

the sequence.  This number does not change throughout the different iterations and it is 

equal to product 1 sampling interval plus one.  For the example considered, the overall 

sequence length will range between 5 and 20 (Figure 5.41).  The mechanisms for the 

creation of the sequences will be illustrated during the description of the algorithm steps 

(see Section 5.5.2.2). 

In order to give statistical consistency to the item sequence analysis, the number of 

iterations should be chosen in relation to the sampling intervals analysed.  In particular, 

in order to explore different sequence combinations, it would be advisable considering a 

maximum number of items for the mobile product, which, in this example, is product 2, 

ranging between two or possibly three times its sampling interval. 
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The distribution of the number of product 2 (product 1) items between consecutive 

product 1 (product 2) items deserves more attention.  It is useful for evaluating with 

which probability items of the same product can be consecutively produced.  Hence, it 

also supports the calculation of the probabilities associated with each item sequence 

combination generated during the algorithm; the probabilities will serve as weighting 

factors in the final distribution sum.  The distribution of the number of consecutive 

items of the same product is not immediately available; however, two approaches can be 

used in order to build it.  The simpler approach is only feasible when historical data are 

# iterations 
Max sequence 

length 

It. 0 

Pr.1 Sampling Interval +1 

It. 1 

Seq. Length 

5 

Seq. Length 

6 

It. 2 Seq. Length 

7 

 

It. 15 Seq. Length 

20 

 

 

Pr.1 Item 

Pr.2 Item 

FIGURE 5.41  IMPACT OF THE ITERATION NUMBER ON THE ITEM SEQUENCE LENGTH. 
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available, either coming from a factory database or from simulation results.  Based on 

those data, the distribution can be immediately derived.  Another way to calculate the 

distribution is based on its meaning; it can be defined as the distribution of the random 

variable describing the number of consecutive failures, in this case the number of 

consecutive items of the same product, before the first success, that is, the first item of 

the other product.  Assuming that the trials are independent and the probabilities 

associated with the two events do not change over time, the distribution under 

investigation can be considered geometric with a proportion equal to the volume 

fraction of the product which is associable with the successful event.  Simulation 

experiments show that, in most cases, this approximation can be considered good. 

 
FIGURE 5.42  EFFICACY OF THE PREDICTION MODEL FOR THE DISTRIBUTION OF THE NUMBER OF 

CONSECUTIVE ITEMS OF THE SAME PRODUCT (SCENARIO 1)  

 

In Figure 5.42, the efficacy of the geometric distribution in predicting the distribution 

of the number of consecutive items of the same product is shown from the double 

perspective of product 1 and product 2 for a scenario different from the one set at the 

beginning of this section (p. 187). The volume fraction of product 1, in this first 

scenario, is 0.83. The distribution of the inter-arrival time for both the products is 

exponential.  The agreement of both the distributions with the geometric prediction is 

very good, with maximum absolute errors equal to 0.29% and 0.95% for consecutive 

product 2 and product 1 items, respectively.  The higher error for the consecutive 
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product 1 items distribution is probably due to the fact that being the inter-arrival time 

of product 2 items characterised by greater variability, the time range between two 

consecutive product 2 items is definitely less precise than between two consecutive 

product 1 items.  The chi square test provides statistical evidence of the goodness-of-fit 

of the geometric predictions; the P-values are 0.03 and 0.16 for product 2 and product 

1, respectively. 

 
FIGURE 5.43  IMPACT OF THE INTER-ARRIVAL TIME DISTRIBUTION ON THE EFFICACY OF THE 

GEOMETRIC MODEL PREDICTION FOR THE DISTRIBUTION OF THE NUMBER OF CONSECUTIVE 

ITEMS OF THE SAME PRODUCT. 

 

The impact of the shape of the inter-arrival time distribution and its variability on the 

distribution of the number of consecutive items of the same product was investigated.  

The results obtained, shown in Figure 5.43, reveal that the inter-arrival time distribution 

has an impact on the goodness-of-fit of the geometric prediction.  With respect to the 

exponential inter-arrival time scenarios, the maximum absolute error slightly increases 

for the lognormal distribution scenarios, when the coefficient of variation is equal to 1 

(Figure 5.43).  As Figure 5.43 shows, the variability of the inter-arrival time distribution 

relevantly impacts the prediction model accuracy; when the log-normal distribution has 

a CV greater than 1 the pattern of the prediction error presents a peak for central values 

of the volume fraction. 
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Figure 5.43 also suggests that the volume fraction, which is the only parameter of the 

prediction model, does not affect the prediction error when the inter-arrival time 

variability is low.  The error pattern presents a peak in correspondence with 50% 

volume fraction for the high inter-arrival time variability case.  This is presumably due to 

the fact that, in this case, there is no predominance of one product on the other and the 

resulting scenario can be considered the most uncertain since it is like the effects of the 

high variability are doubled.  It is worth noting that for the errors reported in Figure 

5.43 no distinction has been made between the two products; low volume fractions are 

usually associated with product 2 and high fractions correspond with product 1.  

However, given the perfect equivalence of the two products, it is possible to state that 

similar results would be obtained if the product fractions were switched around.  

Whenever more than one value was available for a particular volume fraction, the 

average between the values is reported in the graph. 

From the results obtained, the prediction model for the distribution of the number 

of consecutive items of the same product seems to work reasonably well.  It could be 

refined with consideration regarding the characteristics of the inter-arrival times 

distribution.  Unless otherwise specified, the distributions of the number of consecutive 

items of the same product obtained from simulation results will be used for the 

prediction of the distribution of the number of unsampled items between consecutive 

samples in all the applications proposed later on.  This is to avoid any cumulative effect 

of the prediction error, and, hence, any misleading evaluation of the efficacy of the 

algorithm developed for the prediction of the distribution of the number of consecutive 

unsampled items. 

5.5.2.2 Algorithm steps 

Given that the inputs required have now been defined the algorithm development 

will now be discussed.  The algorithm in effect involves the solution of two problems 

each of which is associated with one product.  The algorithm steps will be described for 

the product 1 perspective but the same procedure has to be applied to product 2 as well. 
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Considering product 1 perspective means that product 1 will be treated as a rigid 

product; its sampling interval univocally determines the number of product 1 items to 

be considered in all the sequences which will be generated during the algorithm.  Every 

sequence will have as the first and the last item a product 1 item; a number of product 1 

items equal to the product one sampling interval minus one will be allocated within the 

extremes of the sequences generated by the algorithm.  For instance, if product 1 

sampling interval is four, five product 1 items will be present in any sequence generated 

by the algorithm as all the sequences will have a product 1 item as the first and the last 

item and the other three (four minus one) items will be placed in the middle of every 

sequence. 

Each sequence is also characterised by the presence of a quantity of product 2 items 

which depends on the particular iteration run as one more product 2 item is included 

when a new iteration starts.  The algorithm starts with no product 2 items. This means 

the algorithm starts with only one sequence, exclusively composed by the fixed number 

of product 1 items, five in the example previously considered.  As a consequence, there 

is only one permutation for the initial iteration (iteration #0) as the probability that a 

sequence of five type 1 items can be consecutively processed by a machine is 

independent of the order with which those items move out.  The probability associated 

with an item sequence generated by the algorithm represents the probability to observe 

items moving out of a machine in the particular order defined by the sequence.  This 

probability can be calculated as a simple compound probability.  In fact, any sequence 

can be decomposed in partial sequences delimited by product 1 items (product 2 items 

when product 2 perspective is considered).  Depending on the position of product 1 

items in the original sequence, the length of the partial sequences can vary.  The 

probability associated with a partial sequence is the frequency, in the distribution of 

consecutive product 2 items, corresponding with the number of product 2 items in that 

partial sequence.  The probability associated with a sequence is calculated as the product 

of the probabilities associated with each single partial sequence of consecutive product 2 

items.  In the example considered, in the initial iteration, the probability associated with 

the only possible sequence is given by elevating to the power of four the frequency 

corresponding with zero consecutive product 2 items in the distribution of consecutive  
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FIGURE 5.44  CALCULATION OF THE PROBABILITY ASSOCIATED WITH AN ITEM SEQUENCE. 
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product 2 items (Figure 5.44).  The elevation to the power of four is the product of the 

frequency by itself for four times, four being the partial segments limited by product 1 

items in the original sequence.  In the case considered, each of the four partial segments 

presents a length equal to zero.  Figure 5.44 also shows the calculation of the probability 

associated with a possible sequence in the fifth iteration.  It is worth noting that the 

hypothesis, made here, of the independence of the length of each partial sequence is 

reasonable because of the geometric nature of the item departure process.  Therefore, 

the simple product of the probabilities associated with the partial sequences is 

acceptable. 

From each sequence, different distributions of the number of unsampled items 

between samples can be generated; they are stored along with the corresponding 

probabilities. 

In the second iteration one product 2 item is introduced.  This item can occupy four 

different positions in the sequence of five product 1 items that still do not have any 

relevant difference from a probability calculus perspective; in fact, no matter where the 

product 2 item is placed, one partial sequence of one product 2 item and three partial 

sequences of zero product 2 items will be obtained.  However, in this iteration, the 

position of the product 2 item is meaningful from the perspective of the definition of 

the distribution of the number of consecutive unsampled items.  In fact, the product 2 

item introduced might be a sample.  This means that the distribution of the number of 

unsampled items between consecutive samples will change according to the product 2 

item position.  For each of the four possible item sequences, two distributions can be 

derived, one considers the product 2 item as a sample, the other one not (Figure 5.45).  

The two distributions derived will be assigned an equal weight in order to develop the 

distribution of the number of unsampled items associated with the originating sequence.  

The sequences, the corresponding probabilities and the calculated distributions will be 

stored before the next iteration is started. 

In general, at each iteration, a further product 2 item is introduced (Figure 5.46).  All 

the possible sequences relevant from a probability perspective are generated.  The 

probability associated with each sequence is calculated.  For each sequence all the 
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possible distributions of the number of unsampled items compatible with the product 2 

sampling interval are generated (Figure 5.47).  This means that at most a number of 

distributions equal to the product 2 sampling interval minus one will be taken into  
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distribution of the number of consecutive unsampled items associated with the 

originating sequence. 

This procedure has to be repeated for the product 2 as well.  In fact, so far, the 

probabilities associated with the sequences of consecutive product 1 items between two 

consecutive product 2 items have been completely ignored.  This can be reasonable only 

when product 2 represents a very small fraction of the total volume, so that it is very 

rare that relatively long sequences of consecutive product 2 items can be generated.  In 

other circumstances, ignoring the product 2 perspective would cause a big loss of 

information and, hence, a not trivial bias of the final distribution. 

When the procedure is completed for both the products, a list of distributions with 

the relative probabilities is available.  The final distribution can be obtained from these 

in different fashions. 

In order to consider the perspective of both the products in equal measure, two 

provisional distributions can be calculated for each product as a sum of each 

distribution generated by the method weighted by the associated normalised probability.  

Then the two distributions can be summed up with the same weight or with a weight 

equal to the volume fraction of the product they are associated with.  When the volume 

fractions are used as weights, this approach will be referred to as the Simple Average 

(SA) approach hereinafter. 

Another way to proceed consists of summing up the distributions regardless of the 

product they are associated with and weighting them by the corresponding probabilities 

normalised for both the products.  This method seems more rigorous since the relative 

importance of the distributions associated with the two products is considered.  This 

approach will be referred to as the Weighted Average (WA) approach. 

It is worth noting that the two approaches for obtaining the final distribution are 

theoretically equivalent if the number of iterations run is large enough to produce 

probabilities whose sum is very close to one for both the products.  This means that the 

algorithm is ignoring only the most improbable item sequences.  Generally the WA 

approach provided better results than the simple average approach. A good example of 
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the better efficacy of the WA approach rather than the SA approach is shown in Figure 

5.48.  The WA approach seems to make more sense when the sum of the probabilities 

relative to the enumerated sequences is much less than one.  This happens either for 

calculation time saving reasons or for a reasonable accuracy level reached by a few 

number of iterations. 

  
FIGURE 5.48  DISTRIBUTION OF THE NUMBER OF UNSAMPLED ITEMS BETWEEN CONSECUTIVE 

SAMPLES: COMPARISON BETWEEN THE SIMPLE AND THE WEIGHTED AVERAGE MODEL (SCENARIO 1). 
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which consists of a very small number of product 1 items, represents, in this particular 

scenario, very improbable situations.  In this case, the WA approach makes more sense 

than the SA approach.  Considering a greater number of iterations for product 2, so that 

a set of combinations with higher total probabilities was available, would be the best 

way to proceed.  That would certainly allow a reduction of the maximum absolute 

prediction error, which is 3.12% for the WA approach and 10.00% for the simple 

average approach. The maximum cumulative absolute error is 5.23% for the best 

performing approach (WA approach).  Given the relatively poor specifications of the 

computer used for the calculations, a greater number of iterations for product 2 was not 

possible.  The computer used has a CPU frequency equal to 2.4 GHz and a 2 Gb RAM.  

For the limited specifications of the computer available, variations to the algorithm, so 

that considerations on the sequence probabilities could be included when forming and 

selecting the sequences, were considered not practical.  The advantage of introducing 

probability considerations during the selection of the sequences to consider for the 

generation of the distribution could be an interesting element to investigate in the 

future.  It is worth noting that the modifications to the algorithm needed to include 

probability considerations are minor; in fact, the probability associated with a sequence 

is calculated prior to the generation of the distributions.  This means that a selection of 

the sequences with the highest probabilities can be made before proceeding with the 

algorithm.  With the current calculator availability, a major concern consisted of the fact 

that the selected sequences could be very long, so that the computation time would be 

prohibitive.  More powerful calculators would solve this issue. 

 

TABLE 5.7  SAMPLING INTERVALS USED FOR THE MODEL VALIDATION. 

 Sampling Intervals 

Pr. 1 2 2 3 3 2 4 3 4 4 

Pr. 2 2 3 2 3 4 2 4 3 4 

 

 

The validation of the prediction model developed was carried out against simulation 

results.  Different scenarios, mostly included in Table 5.6 (p. 185), were considered so 

that the robustness of the model could be tested.  Nine different sampling intervals 

(Table 5.7) for each volume fraction combination for the two products were simulated.  
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Recourse to the Pearson’s chi square test to formally investigate the goodness-of-fit the 

WA/SA prediction models was deemed not suitable in this case.  Indeed due to the 

nature of the prediction model, the evaluation of the degrees of freedom to be adopted 

for the calculation of the test statistics proved prohibitive.  Establishing the number of 

parameters required by the model is not straightforward and, as a consequence, the 

correction to the number of degrees of freedom can not be performed.   Considering 

that a non-parametric version of the Pearson’s test is theoretically possible, the chi 

square test was applied ignoring the correction for the number of parameters; however, 

the results obtained revealed a general lack of goodness-of-fit of the predictions for the 

different scenarios considered.  This is due to the non suitability of this particular test.  

The runs test, also called Wald-Wolfowitz test, was also applied.  This test evaluates the 

goodness-of-fit of a model to an actual distribution by assessing the randomness of the 

runs of positive and negative prediction errors.  Since it is based on signs and not 

distances, this test is complementary to the chi square test, which, on the contrary, 

ignores the prediction error signs [148].  Due to the limited and narrow domain of the 

distributions, the application of the runs test to the predictions developed using the 

SA/WA approach proves not extremely significant and delivers quite predictable results.  

For all the scenarios analysed, high P-values were obtained, which means that there is 

no statistical evidence that the SA/WA models are not suitable for predicting the 

distributions. 

The prediction model proved to be quite accurate, as shown, for example, in Figure 

5.49.  The shape of the distribution is very well predicted and the prediction errors are 

reasonably low; the average absolute error calculated on the 5 points of the distribution, 

is 1.47% and the cumulative error range results 3.68%.  It is interesting to note that the 

peak of the distribution is obtained at the sampling interval (minus one) of product 1, 

which represents most of the production volume.  The case reported in Figure 5.49 

represents one of the best cases in terms of prediction accuracy; in general, very good 

results are also obtained for the other scenarios investigated. 
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FIGURE 5.49  PREDICTION MODEL VALIDATION: COMPARISON WITH THE SIMULATION RESULTS 

(SCENARIO SS1). 

 

 

 
FIGURE 5.50  PREDICTION OF A DISTRIBUTION OF THE NUMBER OF CONSECUTIVE UNSAMPLED 

ITEMS WITH AN IRREGULAR SHAPE (SCENARIO SS5). 
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peaks appear in correspondence of the sampling intervals minus one of the two 

products.  

The patterns of both the average absolute errors and the cumulative error ranges 

were analysed with respect to the sampled fraction, which contains information about 

the sampling intervals and the volume fractions of the two products. 

Despite the irregular pattern shown in Figure 5.51, the average absolute error seems 

to slightly increase with the sampled fraction.  This is reasonable since, keeping the 

different product volume fractions constant, the smaller the sampled fraction, the 

greater the sampling intervals.  As a consequence, the distribution of the number of 

unsampled items will have a wider domain and the absolute error will be presumably 

spread across it. 

 
FIGURE 5.51  IMPACT OF THE SAMPLED FRACTION ON THE AVERAGE ABSOLUTE ERROR FOR TWO 

DIFFERENT PRODUCT 1 VOLUME FRACTIONS (SCENARIO SS5 VS. SCENARIO SS1). 
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by only one monitored product, that is a deterministic scenario.  The closeness to a 

regular case could mean less anomalies and, hence, a reduced prediction error. 

The two lines in Figure 5.51 refer to the results obtained using the same set of 

sampling intervals (Table 5.7 (p. 201)).  The combination of these intervals with 

different volume fractions of the two products generates different sampled fractions 

and, for this reason, sometimes the points of the two lines in Figure 5.51 do not have 

the same abscissa. 

The pattern of the cumulative error range with respect to the sampled fraction, 

shown in Figure 5.52, proves even more irregular than the one characterising the 

average absolute error.  However, a decreasing trend is still detectable.  Even though it 

might seem incompatible with the average error trend, the pattern can be justified by the 

way the cumulative error is built.  Low sampled fractions generally mean high sampling 

intervals, that is, a distribution domain consisting of a greater number of values.  With 

an absolute average error that does not relevantly change with the sampling intervals, a 

greater number of points means a higher chance to increase the cumulative error, in 

particular when systematic errors affect the prediction model.  The impact of the 

product 1 volume fraction is presumably a consequence of the reduced average absolute 

error. 

 
FIGURE 5.52  IMPACT OF THE SAMPLED FRACTION ON THE CUMULATIVE ABSOLUTE ERROR RANGE 

FOR TWO DIFFERENT PRODUCT 1 VOLUME FRACTIONS. 
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FIGURE 5.53  SYSTEMATIC PATTERN OF THE ABSOLUTE ERROR (SCENARIO SS5). 

 

The analysis of the different results obtained and the conclusions drawn for the 

cumulative error range, lead to highlight the presence of a systematic pattern in the 

prediction errors.  The predicted distribution always tends to underestimate the 

frequencies of the lower tail and overestimates the frequencies of the upper tail, 

generally crossing the simulation results distribution close to its peak (Figure 5.53).  The 

reason for that is probably due to the fact that only very small sampling intervals have 

been analysed; probably, for larger intervals, the error will spread across the wider 

distribution domain in a random fashion.  Moreover, the fact that only part of all the 

possible sequences are explored compromises the accuracy of the model, as the results 

obtained from comparing the SA and the WA approach suggests. 

5.5.2.3 Compound sampling intervals 

The sampling interval for a product might not be described by an integer, but rather 

by a set of integers, that is, a cyclic sequence of sampling intervals might be applied.  For 

instance, a product might be sampled following the sequence [1, 2], that is two following 

items are sampled and one is skipped (and so forth), when that product needs to be 

sampled on average every 1.5 items.  For these scenarios, the algorithm developed can 

still be used to predict the distribution of the number of consecutive unsampled items.  

-4

-3

-2

-1

0

1

2

3

4

0 1 2 3 4

A
b

so
lu

te
 E

rr
o

r

# unsampled items

Absolute Error Pattern
within the distribution domain

SI 33

SI 24

SI 42

Intersection 

with the axis in 

the area of the 

 Vol. Fr. 

Pr.1 0.60 

Pr.2 0.40 

 



 CHAPTER V  SAMPLING STATION CASE 

206 
 

However, a modification is needed; it is still based on an enumerative approach.  It 

consists of analysing separately all the combinations of the sampling interval values 

which create the sampling interval sequence.  The results obtained combine to create the 

final distribution.  This approach was tested for scenario 11 (Table 5.2 (p. 130)), where 

the product 1 is subject to a sampling interval described by the sequence [2, 3].  It is 

obvious that the average sampling interval is 2.5; however, this value can not be directly 

fed into the algorithm, since only integers are accepted.  Product 2 presents a sampling 

interval equal to 3. 

The original problem of predicting the distribution of the number of consecutive 

unsampled items for sampling intervals equal to ([2,3],3) was split into two different 

problems.  The scenarios derived represent the two possible combinations of the integer 

sampling intervals, which are (2,3) and (3,3).  The distributions obtained from the two 

scenarios have been averaged to generate the final result (Figure 5.54).  The cumulative 

absolute error range is in this case equal to 3.31%. 

 

 
FIGURE 5.54  PREDICTION OF THE DISTRIBUTION OF THE NUMBER OF UNSAMPLED ITEMS BETWEEN 

CONSECUTIVE SAMPLES FOR COMPOUND SAMPLING INTERVALS (SCENARIO 11). 
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5.5.2.4 Impact of errors in input 

The impact of the use of the theoretical distribution of the number of consecutive 

items of the same product was also investigated in order to determine the relevancy of 

the error accumulation effect.  With the aim of stressing the eventual negative impact of 

a poor initial prediction, the analysis was performed on the scenario which represented 

one of the worst predictions of the distribution of the number of consecutive items of 

the same product (scenario SS5).  This consisted of a volume fraction for product 1 

equal to 0.6%; the maximum absolute prediction errors were equal to 4.32% and 7.65% 

for the distributions relative to product 1 and 2, respectively.  The distribution of the 

number of unsampled items between consecutive samples obtained using the 

theoretical, geometric, frequencies is plotted in Figure 5.55, where a visual comparison 

can be made with the distribution obtained from the simulation results and the one 

obtained by the approach developed using the actual frequencies. 

 
FIGURE 5.55  ACCURACY OF THE PREDICTION MODELS FOR THE DISTRIBUTION OF THE NUMBER OF 

UNSAMPLED ITEMS BETWEEN CONSECUTIVE SAMPLES (SCENARIO SS5). 

 

The cumulative prediction error range tends from 5.09% for the actual frequencies 

up to 7.47% for the theoretical frequencies.  The distribution generated using the 

predicted frequencies in input outperforms the one obtained with the actual frequencies 

for the lower tail, but presents higher errors for the upper tail.  This happens because 

0

0.1

0.2

0.3

0.4

0 1 2 3 4 5

R
e

la
ti

v
e

 f
re

q
u

e
n

cy

# unsampled items

Prediction accuracy 
for theoretical input distribution

Sim results

Actual freq pred

Theor freq pred

 Vol. Fr. SI 

Pr.1 0.60 3 

Pr.2 0.40 3 

 



 CHAPTER V  SAMPLING STATION CASE 

208 
 

the theoretical distribution of the number of consecutive items of the same product 

tends to advantage the higher values, and provides a lower estimation of the frequencies 

associated with very small sequences of consecutive items of the same product, such as 

zero or one.  This paradoxically causes an increase of the frequencies of the distribution 

of the number of consecutive unsampled items associated with small values, usually 

smaller than the modal value and, as a consequence, an increase of the frequencies 

associated with the larger values of the distribution.  In fact, the partial sequences, 

generated during the application of the approach developed, which contain zero 

consecutive unsampled items, usually contain a very long sequence of consecutive 

unsampled items as well.  If the theoretical distribution of the number of consecutive 

items of the same product does not penalise the higher values, as the simulated 

distribution does, some benefits are paradoxically provided to the smaller values in the 

final distribution, since what counts in the calculation of a compound probability (as the 

one associated with the partial distribution is) is not the highest probability of the partial 

events but the smallest probability. Obviously, as a result the values in the centre of the 

domain are penalised; hence, the very poor prediction of the peak of the distribution. 

Independently of the dynamics behind the nature of the impact of the theoretical 

input distribution on the prediction of the distribution of the number of unsampled 

items between consecutive samples, it is interesting to notice that in response to an 

average error equal to 6.25% introduced as an input, the algorithm produced an increase 

of the cumulative prediction error range equal to 2.38%.  That means that the error in 

input, even if it has an impact on the prediction accuracy, is not linearly transmitted to 

the final results.  The fact that the input error doesn’t linearly propagate through the 

different stages of the algorithm and it is actually reduced gives confidence in the 

possibility of using the predicted distribution of the number of consecutive items of the 

same product when the actual one is not available.  This won’t cause a relevant loss of 

accuracy. 
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5.5.3 Two monitored products + unmonitored flow case 

The presence of a cross flow and the combination of two monitored products 

determine relevant complexities in the analysis of this last case.  In fact, unlike what 

happens for a non-sampling station where the introduction of an unmonitored product 

flow has the mere impact of scaling the x-axis, in the sampling station, the effect of the 

introduction of an unmonitored product flow can not be confined to a variation of the 

axes scale.  Even when the simplest scenario, which includes the presence of one-

monitored product along with the non-monitored flow, is considered, the effect of the 

non-monitored flow turns a degenerative probability distribution, consisting of only one 

value with probability equal to 1, into a non-limited domain probability distribution.  In 

the case when two products are monitored, the original distribution is not so trivial.  It 

has a limited domain and almost predictable shape, with peaks in correspondence with 

the deterministic sampling intervals.  However, the distribution still presents difficulties 

in deriving predictable frequencies for the different values and its domain obviously 

contains more than one value. 

When the unmonitored flow is combined with two monitored products, an 

approximation can be made and the approach used for the simpler case of one 

monitored product can still be followed.  Since the dynamics of the item departure 

process are the same, independent of the particular product flow combination, it is 

possible to use the negative binomial distribution for an approximated prediction of the 

distribution of the number of unsampled items between consecutive samples.  The 

average sampling interval, rather than the two distinct sampling intervals, can be used as 

the parameter r of the negative binomial distribution.  The parameter p would be the 

volume fraction corresponding to the two combined monitored products.  The 

approximation derives from the fact that the hypotheses underlying the negative 

binomial distribution are not fully respected.  This is because a mean value is used as a 

deterministic value and the pattern of the distribution of the number of consecutive 

unsampled monitored items is completely ignored.  It is worth noting that the use of a 

non-integer value as a r parameter is not a limiting condition for the procedure as the 

negative binomial distribution is still applicable for any real value of r.  An example of 
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the application of this approximated prediction method, which shows different level of 

prediction accuracy, is provided in Figure 5.56 and Figure 5.57.` 

 

 
FIGURE 5.56  APPROXIMATED PREDICTION OF THE NUMBER OF CONSECUTIVE UNSAMPLED ITEMS: 

COMPARISON WITH THE SIMULATION RESULTS (SCENARIO 1).  

 

 
FIGURE 5.57  APPROXIMATED PREDICTION OF THE NUMBER OF CONSECUTIVE UNSAMPLED ITEMS: 

COMPARISON WITH THE SIMULATION RESULTS (SCENARIO SS5). 
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The larger unmonitored volume fraction for the scenario in Figure 5.56 might be the 

reason why the negative binomial distribution fits the simulation results better than in 

the case of Figure 5.57.  In fact, in presence of a greater unmonitored fraction, it is 

presumable that the shape of the distribution of the number of consecutive unsampled 

monitored items has a smaller impact on the final distribution.  This means that the 

average sampling frequency can be used as a reasonably good approximation for the 

entire distribution.  For the two scenarios illustrated, the cumulative error ranges are 

8.40% and 16.22%, respectively.  The runs test indicates a relatively poor fit for both the 

scenarios; the P-values are 0.14 and 0.0124 for the distributions in Figure 5.56 and 

Figure 5.57, respectively.  The distributions of the inter-arrival time for all the products 

are exponential. 

Observing the results obtained, the negative binomial distribution represents a good 

starting point; however, improvements are possible.  Relevant considerations for the 

development of an improved prediction model are: 

− the distribution of the number of unsampled monitored items is characterised by 

a limited domain and it is predictable; 

− the negative binomial distribution works reasonably well for the prediction of 

the number of consecutive unsampled items distribution in presence of an 

unmonitored cross flow and one product with deterministic integer sampling 

interval. 

A prediction approach which takes into account both these considerations should 

provide better results. 

An immediate way to combine the two elements consists of developing partial 

distributions for each value of the domain of the distribution of the number of 

unsampled items between consecutive samples associated with the corresponding no-

cross flow case.  Since considering a single value of the domain of the distribution of the 

consecutive unsampled monitored items is equivalent to setting a global deterministic 

sampling interval for the monitored flow, the partial distributions associated with that 

single value theoretically should follow a negative binomial distribution.  The parameter 

p will be common to all the partial distributions and equal to the monitored volume 
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fraction.  The other parameter, r, will be set equal to each value of the distribution of 

the consecutive unsampled monitored items variable plus one; it will be different for 

each iteration of the algorithm, that is given by the width of the domain of the 

originating distribution.  The correction used for the parameter r is due to the fact that 

the original distribution considers the number of unsampled monitored items only 

whereas, in the approach developed, the number of successful trials of the negative 

binomial distribution also includes the sample.  Once the partial distributions are 

developed they are shifted by the associated value of the originating distribution, unless 

the definition of the negative distribution as given in [34] is used.  The shifted 

distributions are then summed up by using, as weighting factors, the frequencies 

associated with the corresponding r values in the distribution of the consecutive 

unsampled monitored items.  The last approach/model introduced in this section will 

be referred to as Combined Negative Binomial (CNB) approach/model hereinafter.  

The denomination of this approach originates from the nature of the model which 

combines the negative binomial distribution with the distribution developed using an 

enumerative approach for the case of two monitored products.  At all effects, the 

distribution resulting from the combined model can be considered a compound 

distribution. 

5.5.3.1 Validation 

The CNB approach seems to generate reasonably good results, in particular for the 

scenarios characterised by a very low monitored fraction.  Figure 5.58 and Figure 5.60 

show the results obtained for the two scenarios previously considered in the validation 

of the negative binomial model and respectively represented in Figure 5.56 and Figure 

5.57.  Figure 5.59 refers to a scenario characterised by the same monitored volume 

fraction as the one in Figure 5.58 but a reduced sampling interval (scenario 11).  The 

representation of the results obtained for three scenarios is due to the intention of 

showing the differences in the CNB model prediction performances with respect to the 

monitored volume fraction and the sampling interval. 
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FIGURE 5.58  COMPARISON WITH THE SIMULATION RESULTS FOR SCENARIO 1. 

 

 

 
FIGURE 5.59  COMPARISON WITH THE SIMULATION RESULTS FOR SCENARIO 11. 
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range of the number of monitored unsampled items is, the higher the associated 

variability in terms of time between samples is.  In a wider time range, different 

numbers of unmonitored items can be processed and, as a consequence, the associated 

variability increases.  Hence, the accumulation of the variability for a high sampling 

interval causes anomalies in the final distribution which are noticeable in the irregular 

pattern of the simulation result distribution in Figure 5.58.  The pattern slightly 

smoothes out in the second scenario, as Figure 5.59 shows.  The better fit for the 

second scenario is confirmed by the results of the runs test.  For the scenario in Figure 

5.58, the P-values obtained are 0.45 for the CNB prediction and 0.42 for the negative 

binomial prediction.  The P-values for the second scenario (Figure 5.59) are 0.55 and 

0.36, respectively.  As is evident, for both the scenarios the shape of the distribution 

predicted using the CNB approach follows the shape of the distribution better than the 

prediction based on the negative binomial approximation.   

 
FIGURE 5.60  COMPARISON WITH THE SIMULATION RESULTS FOR SCENARIO SS5. 
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Figure 5.61 shows that the cumulative absolute prediction error range is affected very 

little by the average sampling intervals; however, the slightly higher values for the 

highest frequencies make the observation about the comparison between Figure 5.58 

and Figure 5.59 still reasonably valid.  Figure 5.61 also highlights that the monitored 

volume fraction impacts the quality of the prediction.  Very low error ranges are 

obtained when the monitored products represent most of the production volume.  This 

could be related to the greater randomness introduced by the presence of an 

unmonitored flow.  Even though the CNB model generally provides reasonably good 

predictions, the poor accuracy for the low monitored volume fraction in Figure 5.61 and 

the failure in predicting the peak in Figure 5.60 suggest that improvements could be 

made to this model. 

 
FIGURE 5.61  CUMULATIVE ABSOLUTE ERROR RANGE PATTERN WITH RESPECT TO THE SAMPLING 

INTERVALS (EQUAL FOR BOTH THE PRODUCTS). 

 

5.5.3.2 Peak correction variant 

In order to develop a correction variant to the algorithm just described, the results 

obtained were analysed in greater depth.  The most important conclusion found was 

that the peak of the simulated distribution in Figure 5.60 corresponds with the domain 

of the associated distribution of the number of unsampled monitored items.  As such, it 

0

2

4

6

8

10

2 3 4 5

C
u

m
u

la
ti

v
e

 a
b

s 
e

rr
o

r 
ra

n
g

e
 [

%
]

Sampling intervals

Prediction Error

(0.24;1.5)

(0.69;3.5)

(0.86;1)

(Monitored Volume Fraction; 

Pr.1 volume/ Pr.2 volume) 



 CHAPTER V  SAMPLING STATION CASE 

216 
 

appears that this last distribution overlaps with the distribution predicted by the 

algorithm and generates a slightly peakier distribution.  This could be caused by the 

fundamental role played by the monitored products for the shape of the distribution of 

the number of unsampled items.  Indeed, the cross flow can be considered a 

disturbance element for the sampling regularity; depending on the way the unmonitored 

flow mingles with the monitored flow, the presence of unmonitored items can either 

magnify the scale of the horizontal axis of the originating distribution and smooth its 

shape out or let the originating distribution transpire, when the number of unmonitored 

items processed between consecutive monitored items proves very little for the natural 

variability of the inter-arrival process.  In order to verify if the presence of the peak in 

the distribution reported in Figure 5.60 is just a coincidence or a repeated pattern, 

different scenarios were simulated.  First, different sampling intervals applied to the 

scenario relative to Figure 5.60 (scenario SS5) were investigated.  Then, based on the 

observation that the prediction method provides poorer results for the cases 

characterised by low monitored volume fractions, different combinations of product 

volume fractions were also considered. 

 
FIGURE 5.62  PEAK ANALYSIS: MISSING PREDICTION OF THE PEAK IN THE CNB MODEL (SCENARIO 

SS1). 
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showing the systematic nature of the missing peak prediction are presented in Appendix 

E.  In correspondence with the interval representing the domain of the associated 

distribution, a peak, which disrupts the smooth pattern of the distribution, arises.  This 

suggests that a correction variant to the CNB algorithm for the peak prediction should 

include the distribution of the number of unsampled monitored items in the prediction 

algorithm.  This was achieved by averaging this distribution with the distribution 

predicted by the CNB algorithm.  As a weighting factor, it was considered that a statistic 

which summarises the information about the volume fractions and the sampling 

intervals could provide interesting results.  In fact, it is likely that the impact of the 

distribution of the number of unsampled monitored items depends on the relevance 

that monitored items have in the system.  As a consequence, the sampled fraction was 

chosen as the weighting factor, since it is related to the mentioned elements and it is 

immediately predictable by Equation 5.5. 

The correction was applied to all the cases analysed and the results obtained show 

that the fit is very good and the peak is quite correctly reproduced.  The cumulative 

absolute error ranges are 1.8%, 2.35% and 6.35%, respectively, for the results shown in 

Figure 5.63, Figure 5.64 and Figure 5.65. 

 

 
FIGURE 5.63  VARIANT VALIDATION: COMPARISON WITH SIMULATION RESULTS FOR SCENARIO SS5 

(LOW SAMPLING INTERVALS). 
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FIGURE 5.64  VARIANT VALIDATION: COMPARISON WITH SIMULATION RESULTS FOR SCENARIO SS5 

(HIGH SAMPLING INTERVALS). 

 

 

 
FIGURE 5.65  VARIANT VALIDATION: COMPARISON WITH SIMULATION RESULTS FOR SCENARIO SS1. 
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The very good prediction obtained using the CNB approach suggests that any 

correction could worsen the goodness of fit of the predicted distribution.   In fact, the 

results shown in Figure 5.66 and Figure 5.67 reveal that the peak predicted by the 

algorithm correction variant does not find an actual correspondence with the simulated 

distribution, at least in Figure 5.66. 

 

FIGURE 5.66  POOR PREDICTION RESULTS WITH THE PEAK CORRECTION VARIANT FOR LOW 

MONITORED FRACTIONS (SCENARIO 1). 

 

 
FIGURE 5.67  POOR PREDICTION RESULTS WITH THE PEAK CORRECTION VARIANT FOR LOW 

MONITORED FRACTIONS (SCENARIO 11). 
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However, in terms of prediction errors, the correction implemented still proves 

beneficial.  In fact, the shift of the predicted distribution towards the lower values of the 

domain, caused by the peak presence, reduces the gap between the actual and the 

predicted distribution for the upper tail.  The cumulative error range is reduced by 0.5% 

and it is equal to 3.74%.  The benefits of the correction variant are confirmed by the 

runs tests applied to both the distributions; an increase the P-value from 0.27 to 0.45 is 

obtained for the correction variant which means that the corrected model follows more 

closely the shape of the actual distribution.  As regards Figure 5.67, the actual 

distribution presents a peak, however, it is less prominent than the one predicted by the 

corrected algorithm.  It looks like a lower weighting factor would be more appropriate 

for this case.  In comparison with the CNB prediction model, the error range increases 

by 1% and is equal to 3.88%. 

The lack of any regularity in the results obtained for the correction variant made the 

analysis of the error pattern a fundamental step for the understanding of the actual 

benefits brought by the variation.  For the same scenarios considered in Figure 5.61, the 

cumulative absolute prediction error pattern is illustrated in Figure 5.68. 

 

 
FIGURE 5.68  CUMULATIVE ABSOLUTE ERROR RANGE PATTERN FOR THE CORRECTED ALGORITHM 

WITH RESPECT TO THE SAMPLING INTERVALS (EQUAL FOR BOTH THE PRODUCTS). 
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This figure reveals that the corrected algorithm outperforms the original one only in 

a few cases, in terms of cumulative error ranges.  The most relevant benefits are 

obtained for the low monitored volume fraction scenario for which the prediction 

errors are consistently reduced.  The worst result is obtained for the lowest average 

sampling interval of the second scenario, for which the prediction error, increases by 

almost 6%.  The cumulative error range, which was independent of the sampling 

intervals, now assumes an irregular pattern with respect to those.  In fact, for the higher 

monitored volume fractions the error decreases with the sampling intervals; whereas for 

the low monitored volume fraction it increases. 

Based on these considerations and those previously made on the visual comparison 

between the distributions, it became apparent that an optimisation search for the 

weighting factor could both improve the results and justify the irregular pattern of the 

prediction error. 

The optimisation search was first based on a trial and error approach.  Different 

weights were tested on a few scenarios and based on the best results obtained a set of 

weights was defined.  Then, the weights in this set were applied to the other available 

scenarios and the best one, in terms of cumulative error range was identified.  When, 

based on the analysis of the variation of the shape of the predicted distribution, it was 

noticed that weights outside the set could produce better results, the search domain was 

expanded. 

First of all, the results obtained show that the weights which minimise the cumulative 

error ranges are apparently related neither to the monitored volume fraction nor to the 

sampling intervals.  This is shown in Figure 5.69, where for each unmonitored fraction 

simulated the average weights over 10 different sampling intervals investigated are 

reported.  The representation of the average value is still meaningful since the dispersion 

of the optimal weights relative to a particular unmonitored fraction is very limited.  The 

pattern of the optimal weights is very irregular; however, apart from the last point, the 

weights are very close to each other.  The anomalous value obtained for the last point is 

not clearly justifiable; however, it has to be said that, for this last case (scenarios 1 and 

11), a simulation model slightly different from the one used in the other scenarios 
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analysed here (Table 5.6) was considered.  The model did not differ substantially, either 

in its design or in the shape of the input distribution used.  For this reason, it is quite 

difficult to find any reason for the relevant variation of the weighting factor.  Further 

investigations would be advisable to determine a prediction model for the optimal 

weight; there is a strong inclination to believe that the dispersion of the distribution of 

the number of consecutive unsampled items and the dispersion of the distribution of 

the number of consecutive unsampled monitored items could be related to the optimal 

weight.  The only reason for this is based on the fact that the dispersion of those 

distributions is the only statistics that could eventually vary between the scenarios.  In 

fact, unlike the mean value of the distribution, which can be easily predicted and has 

proved not to be related with the optimal weight, the dispersion is not directly 

predictable yet. It could be derived by the distribution itself, but this would mean a 

deadlock situation in the case where it was needed for the prediction of the distribution 

itself, as happens for the corrected approach. 

 
FIGURE 5.69  OPTIMAL WEIGHTS OF THE CORRECTED ALGORITHM WITH RESPECT TO THE 

UNMONITORED VOLUME FRACTION. 
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The optimal weight significantly reduces the cumulative absolute prediction error 

range, such that in a few cases it is lower than 0.5%.  The patterns of the cumulative 

error range for the scenarios also analysed in Figure 5.61 and Figure 5.68 are reported in 

Figure 5.70.  The error is almost independent of the sampling intervals, even though a 

slight increasing slope is detectable.  The monitored volume fraction is again a 

significant factor, as happened in the original approach (Figure 5.61); the scenarios with 

a low monitored volume fraction present a lower prediction accuracy.  However, even 

in those cases, an average cumulative error range equal to 2.4% gives great confidence in 

the validity of the prediction model. 

 
FIGURE 5.70  CUMULATIVE ABSOLUTE ERROR RANGE PATTERN WHEN OPTIMAL WEIGHTS ARE USED 

IN THE CNB MODEL VARIANT. 
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5.5.3.3 Impact of the error of the distribution in input 

So far, the predicted distributions have been generated by using the simulation results 

to develop the distributions of the number of monitored unsampled items between 

consecutive samples.  This choice is similar to the one followed for the previous case 

analysed, when only two monitored products cross the sampling station.  It was 

suggested by the need to avoid a misleading evaluation of the prediction model as a 

consequence of an error accumulation effect.  However, considering that for the 

application of the approach the distribution of the number of consecutive unsampled 

monitored items is needed even when no historical information is available, it is 

advisable to assess how the use of the predicted distribution affects the results.  This 

was done for the scenarios in Figure 5.58 and Figure 5.59.  The original algorithm, 

without the correction variant, was used for the prediction of the distribution of the 

number of unsampled items between samples.  

 

 
FIGURE 5.71  IMPACT OF THE PREDICTED INPUT DISTRIBUTION ON THE DISTRIBUTION OF THE 

NUMBER OF CONSECUTIVE UNSAMPLED ITEMS FOR SCENARIO 1. 
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FIGURE 5.72  IMPACT OF THE PREDICTED INPUT DISTRIBUTION ON THE DISTRIBUTION OF THE 

NUMBER OF CONSECUTIVE UNSAMPLED ITEMS FOR SCENARIO 11. 
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obtained are presented in details in Appendix F.  In this section the main findings are 

summarised. 

The importance of the hypothesis of exponentially distributed inter-arrival times for 

the validity of the CNB prediction model was investigated.  This followed the 

consideration that the CNB model is based on the hypothesis of independence of 

consecutively processed items, which is guaranteed by the memory-less property of the 

exponential distribution.  The results of scenarios SS2, SS7 and SS8 (Table 5.6 (p. 185)) 

show that when the coefficient of variation is kept unchanged (100%), lognormally 

distributed inter-arrival times do not impact the distribution of the number of 

consecutive unsampled items.  The lognormal distribution was the only alternative 

considered to the exponential distribution since it would be very unlikely to encounter 

other distribution types to model inter-arrival times.  It might be interesting to 

investigate the effect of inter-arrival time variability on the distribution of the number of 

unsampled items; however, at this regard, the results obtained in Section 5.4.4 supported 

the decision to leave this analysis for future work. 

In the extra set of scenarios simulated for this analysis, the processing times were 

turned into deterministic times, whereas the queuing and transportation times and the 

availability times, that is MTBF and MTTR, were alternately modelled as exponential 

and lognormal distributions with different levels of variability according to the 

experimental plan reported in Table 5.8. 

TABLE 5.8  EXPERIMENTAL DESIGN. 
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The results obtained suggest that the variability and the shape of the queuing and 

transportation time distribution do not impact the mean and the standard deviation of 

the distribution of the number of consecutive unsampled items.  This is probably 

because the distributions considered during the analysis are not significantly different 

from the original distributions in terms of shape.  Moreover, the variability of the 

queuing times contributes to increase the sequence disorder effect, which, in a sampling 

station, is not as fundamental as in a non-sampling station for the characterisation of the 

distribution of the number of unsampled items. 

The noticeable variation of shape for the availability times for some stations causes a 

significant reduction of the standard deviation of the number of consecutive unsampled 

items as is evident in Figure 5.73.  It is worth noting that, even though the exponential 

distribution is commonly used for modelling MTBF and MTTR, it is not suitable when 

regular maintenance events are simulated.  These events are characterised by an almost 

deterministic recurrence and the time needed to perform the corresponding operations 

presents a very small variability. 

 
FIGURE 5.73  IMPACT OF THE SHAPE OF THE AVAILABILITY TIMES ON THE STANDARD DEVIATION OF 

THE NUMBER OF CONSECUTIVE UNSAMPLED ITEMS. 
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The variability reduction of the number of unsampled items is reflected in a little 

variation of the shape of the distribution of the number of consecutive unsampled 

items, as can be seen in Figure 5.74. 

 
FIGURE 5.74  VARIATION OF THE SHAPE OF THE DISTRIBUTION OF THE NUMBER OF UNSAMPLED 

ITEMS AS THE AVAILABILITY TIMES DISTRIBUTIONS CHANGE. 
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factor reduces.  The availability of prediction formulae for the standard deviation of the 

number of unsampled items should ease considerations on the approximated magnitude 

of the weighting factor and could eventually lead to its prediction.  The results obtained 

also suggest that the standard deviation of the number of consecutive unsampled items 

is affected by characteristics of the time related input distributions which are ignored for 

the prediction of both the mean value and the distribution of the number of consecutive 

unsampled items. 

 
FIGURE 5.75  PREDICTION EFFECTIVENESS OF THE CNB MODEL AND ITS VARIANT FOR 

EXPONENTIALLY DISTRIBUTED AVAILABILITY TIMES (SCENARIO C). 

 

5.6 Applications in industry 

When it was initiated, one of the main motivations for this research project was to 

develop a model for both predicting the risk associated with a sampling strategy and 

setting the sampling strategy parameters which would guarantee operating the strategy 

with a quality risk level lower than a predetermined level. 

The development of the prediction models of the distribution of the number of 

unsampled items between consecutive samples addresses these issues.  In fact, if the 

number of consecutive unsampled items is chosen as a quality risk related performance 

measure, the possibility to predict its distribution in different operating conditions 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 10 20 30 40 50

R
e

la
ti

v
e

 f
re

q
u

e
n

cy

# unsampled items

Prediction Models Accuracy

Sim Results

CNB Pred

Variant Pred

 Vol. Fr. SI 

Pr.1 
0.24 

4 

Pr.2 2 

 



 CHAPTER V  APPLICATIONS IN INDUSTRY 

230 
 

allows any risk level to be quantified in terms of maximum number of consecutive 

unsampled items exposed to that level of risk.  At the same time, the distributions 

should make it possible to derive the sampling strategy parameters once the maximum 

acceptable number of items exposed to a certain risk of not been sampled is set. 

Given that the problem of predicting the risk associated with a sampling strategy and 

the problem of setting the sampling strategy parameters able to guarantee a given quality 

risk level are dual, it is reasonable that the approaches followed to solve them are 

approximately based on symmetric procedures.  In the next sections the problems will 

be separately considered and a few applications will be illustrated. 

5.6.1 Quality risk associated with a sampling strategy 

The first problem considered regards the definition of a quality risk level associated 

with a sampling strategy based on deterministic sampling intervals in one step of a linear 

production segment.  The prediction models developed in this chapter can produce a 

straightforward answer when the number of consecutive items exposed to the risk of 

not being sampled is considered as an effective measure of this risk.  The confidence 

that the number of consecutive unsampled items could be extensively used as an 

appropriate measure is based on the consideration that, its complementary measure, 

which is the risk exposure time, does not always properly quantify the magnitude of the 

production losses as a consequence of a quality failure.  In fact, it can happen that, due 

to low machine utilisation, a very high time from the introduction of the quality failure 

to its detection corresponds with a very low number of defective items being produced.  

Hence, the information yielded by the time measure could prove misleading from a 

quality risk viewpoint. 

The quantification of the quality risk in terms of maximum number of unsampled 

items between consecutive samples in a production station is simply based on the 

calculation of the percentile of the distribution of the number of consecutive unsampled 

items corresponding with a cumulative probability equal to the risk level that the quality 

management intends to take as a reference level.  The distribution to be considered 
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obviously depends on the station type, whether a non sampling or a sampling station, 

and, in the last case, on the combination of product flows that cross the station. 

For example, if management agrees to assume as a quality risk measure the risk of 

not consecutively sampling items at a 90% confidence level, the 90th percentile of the 

distribution of the number of consecutive unsampled items is the solution to the 

problem.  That means that only in 10% of cases, the maximum number of consecutive 

unsampled items will be greater than the evaluated quality risk measure. 

In order to show how to apply this procedure in the different stations of a 

production segment, the following case will be considered.  Assume that the segment is 

crossed by two monitored products A and B, which have exponentially distributed inter-

arrival times, with mean equal to 2 and 4 [time unit/items], respectively; all the stations 

also receive cross flow items with an average inter-arrival time equal to 0.5 time units.  

The sampling intervals are set to 4 items and 2 items for the two products.  In this case, 

the monitored volume fraction is equal to 27% and the sampled fraction equal to 9%.  

The average sampling interval of the global monitored flow is 3 items.  For the non-

sampling station the predicted distribution of the number of consecutive unsampled 

items is geometric with parameter p equal to the sampled fraction. 

 
FIGURE 5.76  QUALITY RISK IN A NON-SAMPLING STATION IN TERMS OF NUMBER OF CONSECUTIVE 

UNSAMPLED ITEMS AT A 90% CONFIDENCE LEVEL. 
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Figure 5.76 shows the region of the predicted distribution of the number of 

consecutive unsampled items in a non-sampling station which corresponds with a 90% 

cumulative probability.  The value on the x axis delimiting the region consists of the 90th 

percentile of the distribution; it can also be interpreted as the quantification of the 90% 

quality risk in terms of number of items between samples.  In the example considered, 

with a sampled fraction of 9%, there exists a 90% risk of not consecutively sampling 24 

items at most.  This also means that there is only a 10% chance of having more than 24 

items consecutively unsampled. 

In the case of a sampling station, the prediction based on the original approach, 

without the peak correction, suggests that the risk corresponding with a 90% confidence 

level is equal to 20 consecutive unsampled items (Figure 5.77, pink line).  The risk 

reduction is expectable since the distribution of the sampling station is characterised by 

a lower variability than the non-sampling station one, whereas the mean value is the 

same for all the stations.  This results in a peakier distribution for the sampling station.   

 
FIGURE 5.77  DISTRIBUTIONS OF THE NUMBER OF UNSAMPLED ITEMS FOR THE PREDICTION OF THE 

QUALITY RISK. 
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visual comparison between the three predicted distributions used in this analysis is 

proposed in Figure 5.77. 

5.6.2 Sampling strategy with quality risk constraints 

The other problem to be solved consists of the definition of the sampling parameters 

which satisfy the imposed quality risk constraints.  For example, if management wishes 

to keep the maximum number of items exposed to the risk of not being sampled lower 

than a given value, at a certain confidence level, the prediction model should be able to 

suggest the smallest sampled fraction needed to meet the quality risk specifications.  

Based on that, the monitored product fractions and their respective sampling intervals 

can be derived. 

The simplest way to solve this problem is to consider the geometric prediction model 

for the distribution of the number of consecutive unsampled items as a reference, 

independently of the nature of the station, whether a non-sampling or a sampling one.  

The reason for this is twofold.  First, unlike the other prediction models developed, the 

geometric model is characterised by only one parameter, which is the sampled fraction; 

this means that the minimum possible number of unknown variables is involved in the 

procedure.  Second, as the example in the previous paragraph showed, the quality risk 

measures estimated by the geometric distribution prove more conservative than the 

ones generated by the other prediction approaches, in the sense that, due to the higher 

variability of the geometric distribution in comparison with the negative binomial 

distribution, the percentiles associated with it are always greater than those generated by 

the other prediction approaches.  This means that if the required sampled fraction is 

calculated based on the geometric prediction, it would be the minimum sampled 

fraction which guarantees the constraint validity in any station of the segment. 

As regards the higher variability of the distribution of the number of unsampled 

items in a non-sampling station in comparison with a sampling station, there are 

different ways to prove it.  First, it is immediately observable that if there is a 

deterministic element in the sampling station, the variability of the resulting distribution 

should be less than the variability of a station where the sampling strategy is apparently 



 CHAPTER V  APPLICATIONS IN INDUSTRY 

234 
 

random.  Second, a confirmation of this intuition was obtained with the simulation 

results.  Third, also as a consequence of this, the prediction models reflect this 

difference in variability.  Assuming that the negative binomial distribution is adopted to 

approximate the distribution of the number of unsampled items in a sampling station, 

the difference in the variability can be mathematically proved.  In fact, given that the 

sampled fraction, pG, which is the parameter of the geometric model, and the monitored 

fraction, pNB, which is one of the two parameters of the negative binomial model, are 

related to each other by means of the average sampling interval, s, which is the second 

parameter of the negative binomial model, then: 

 He � Ofg
�  (5.18) 

Consequently, the variances of the two distributions can be expressed in terms of the 

same proportion.  In particular, the variance of the geometric distribution can be 

expressed as follows: 

 he
& � �+Oi

Oi
j  

 � �+kfg
_

kfg
j
_j

 

 � Y
�+Ofg

Ofg
j  

 �
�+Ofg

�+Ofg

hl`
&   (5.19) 

Since s≥1, the equivalence in Equation 5.19 proves that the geometric model has a 

higher variability than any negative binomial distribution with the same mean as the 

geometric distribution.  Equation 5.19 also reveals that, keeping the same mean, the 

variability of the negative binomial distribution increases with the average sampling 

interval.  This observation is useful when the sampling strategy parameters have to be 

set. 

Once defined the quality constraint, the minimum necessary sampled fraction with 

respect to the constraints can be found using an iterative approach.  Based on this, the 

sampling intervals and, whenever the production plans flexibility allows it, the volume 
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fractions for the monitored products can be set so that the calculated sampled fraction 

is obtained.  This can be formally expressed as follows: 

 ∑ OS
�S	 � He  (5.20) 

where the index i refers to all the products chosen to be monitored and pi and si are the 

volume fraction and the sampling interval of the ith monitored product type, 

respectively.  Since there is only one condition to be satisfied, only one unknown 

parameter, among the pi’s and si’s can be determined; the rest of them can be set at will, 

that is, Equation 5.20 presents 2n-1 degrees of freedom, if n is the number of monitored 

products. It is worth noting that the product mix is usually set based on the product 

demand, so the volume fractions, pi, are most likely already known when the sampling 

strategy is to be determined.  This reduces the degrees of freedom in Equation 5.20 to 

n-1. 

The observation previously made about the characteristics of the negative binomial 

distribution variability is useful here to make decisions about the sampling strategy 

parameters.  In order to avoid a great variability of the number of the consecutive 

unsampled items in the sampling station, whenever possible, it is more convenient to 

increase the monitored volume rather than operate with a large volume of unmonitored 

flow.  Even though with a greater monitored volume the average sampling intervals 

increase, this does not generally cause an increase in the variability as Equation 5.19 

could suggest; in fact, the effect of the higher monitored proportions proves more 

beneficial.  A greater variability the higher percentiles of the distribution shifts towards 

greater values; this means, the quality risk, even though lower than the risk in the non-

sampling stations, is higher than it could be. 

The derived sampling plan should be tested again using the appropriate prediction 

model for the distribution of the number of unsampled items in a sampling station to 

ensure that the quality constraints are respected. 

For example, if management is looking for a sampling strategy so that the maximum 

number of items exposed to the risk of not being consecutively sampled is 10, at a 90% 

confidence level, a search can be done on the sampled fraction first.  Starting from a 
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reasonably low sampled fraction, for instance 0.1, based on the results obtained by 

applying the inverse of the geometric distribution function, the proposed sampled 

fraction can be increased or decreased.  The increment can be decided based on the 

desired accuracy.  In this case, after a few iterations, it was found that the minimum 

sampled fraction which satisfies the quality constraint is 0.19.  Any sampled fraction 

equal to or greater than 0.19 should guarantee the conditions imposed by management.  

Supposing that, due to available monitoring capacity, the management decides to 

operate with a 20% sampled fraction and 4 products flowed through a station, different 

sampling parameter combinations would be possible.  In the case where each product is 

produced in the same volume, that is 25% volume fraction for each product, using the 

equivalence in Equation 5.21, the decision to sample the 4 products with a sampling 

interval equal to 5 items should have similar effects as a decision of sampling 3 products 

with sampling intervals equal to 3.75 items, or 2 products with a sampling interval equal 

to 2.5 items, or only one product every 1.25 items.  This equivalence is in terms of 

average number of unsampled items.  The non-integer sampling intervals can be 

obtained using ordered sequences of integer sampling intervals (See section 5.5.2.3).  

The only differences are related to the number of consecutive unsampled items 

distribution variability, which should increase with the unmonitored volume fraction.  

This means, when the monitored fraction is 75%, the associated 90th percentile will be 

less than the 90th percentile associated with the option with a monitored fraction equal 

to 25%.  However, for any option considered, the risk measure in the sampling station 

should prove less than 10 items not consecutively sampled.  

This was proven using the negative binomial approximation for the distribution of 

the number of unsampled item in a sampling station.  For a 75% monitored volume, the 

quality risk measure at a 90% confidence level is 5.75 items; for a 25% monitored 

fraction the same measure is 9.25 items, which is very close to the non-sampling station 

measure (Figure 5.78). 
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FIGURE 5.78  IMPACT OF THE SAMPLING STRATEGY PARAMETERS ON THE NUMBER OF MAXIMUM 

ITEMS AT RISK (90% CONFIDENCE). 

 

5.6.3 Industrial applicability 

The models developed in this research and the approaches suggested for deriving 

both quality risk estimations and optimal sampling parameters have been illustrated to 

the quality personnel of the company supporting this work.  They deem the prediction 

models of the distribution of the number of unsampled items (Sections 5.4 and 5.5) and 

the considerations on the model applications (Section 5.6) very interesting and fully 

responsive to their initial questions.  Based on their understanding of the sampling 

process and on analyses of historical data, the prediction models are considered capable 

of capturing the actual patterns of the number of items between samples in both 

sampling and non-sampling stations and provide realistic estimates of the quality risk.   

In particular, the simple structure of the geometric model and its versatility to 

provide conservative quality risk estimations for both any station and any product flow 

combination positively impressed the management who are strongly considering the 

idea of using this model to support quality control related decisions.  The typical inertia 

of industrial companies in adopting approaches consolidated by tradition is making the 

implementation process of the models developed in this research quite slow.  In the 
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opinion of the quality staff, the practicality of the geometric model and the limited 

information required in input represent key elements for attracting the interest of the 

industrial world and facilitate a successful implementation of this model. 

The results obtained and the models developed here can be applied to a wide 

industrial domain.  In this research, the simulation model used for the development and 

validation of the different prediction models has been based on a real production 

segment of a particular company.  Real data from that company have been initially used 

to study and simulate the system behaviour.  However, this does not necessarily mean 

that the structure of the simulation model and the results obtained are peculiar of the 

company supporting this research and applicable exclusively to it.  The simulation 

model developed can be considered a generic model of production systems with a serial 

structure and parallel machines operating in consecutive stations.  This type of systems 

is very common in industry and quite complex to analyse [11]. 

The production system layout is not the only element needed for the applicability of 

the models developed.  The structure of the sampling strategy also plays a fundamental 

role for the application of the results found.  For a serial-parallel multi-stage system, 

whenever the different products (or even processes) which flow through the system are 

sampled on a regular and deterministic basis, the prediction models developed can be 

considered valid.  It is believed that the regularity of the sampling plan is fundamental 

for the validity of the prediction models for the distribution of the number of 

consecutive unsampled items at the machine of a sampling station.  For the negative 

binomial model a deterministic sampling interval is essential to guarantee a non-

approximated application of the model itself; this was discussed in Section 5.5.2, where 

the use of the average sampling interval in place of the actual ones was investigated.  As 

regard the enumeration approach, this was developed and tested for deterministic 

sampling intervals; its generalisation to repetitive sequences of deterministic sampling 

intervals was illustrated in Section 5.5.2.3.  However, due to its combinatorial nature, 

extending the application of the enumeration approach to random sequences of 

sampling intervals could prove not efficient or even not feasible.  Provided that the 

distribution of the sampling intervals is known or derivable, the CNB model is 

applicable to scenarios characterised by random sampling.  This statement is based on 
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the consideration that the distribution of the monitored unsampled items, which is 

compound with the negative binomial distribution, is at all effects the distribution of the 

global sampling intervals.  If this distribution was available a priori, the CNB model 

would be applicable independent of the number of monitored products in the system. 

The nature of the prediction model developed for the non-sampling stations 

supports the belief that this model can be applied to more general scenarios than the 

ones considered in this thesis.  Being the distribution parameter exclusively based on the 

sampled fraction, the validity of the geometric model could prove robust to variations 

of the sampling strategy if the system is characterised by an adequate level of 

randomness.  This is to guarantee that the sequence disorder effect, which has proved 

fundamental for the validity of the model (Section 5.4.4), affects the system at such a 

level that any particular sampling pattern in the sampling station is turned into a 

memory-less random pattern in a non-sampling station. 

The structure of the segment modelled and the location of the sampling station as 

the last station of the production segment suggest that the models developed have the 

potential to be applied in industrial environments where final inspection is performed.  

In order to reduce external failure costs, most companies perform a final quality check 

so that the number of defective products delivered to customers can be minimised.  

Final inspections are usually implemented prior to packaging in the pharmaceutical 

industry [149] as well as in the electronic [17, 150] industry.  The automotive industry 

[151] and other large consumption goods industries [64, 117-119] also implement final 

inspection.  In particular, the concept of final inspection can be generalised to 

inspections performed at the end of each cycle in re-entrant production systems such as 

semiconductor fabrication facilities [66, 152]. 

On the other hand, the applicability of the models is not confined to systems for 

which the inspection is located at the end of the production cycle.  In Section 5.4.4, 

when the first station in the segment was chosen as a sampling station, similar results 

were obtained in comparison with the case of the sampling station located at the end of 

the segment.  As a consequence, the observations above on the validity of the models 
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still apply to multi-stage systems that adopt inspection location strategies alternative or 

complementary to the implementation of a final inspection. 

Finally, the models developed can be applied to both batch and flow production.  

The systems analysed focused on the production of single items; however, if batches are 

considered in place of items nothing would change.  In this case, the sampling intervals 

would refer to batches rather than items and the distributions will describe the number 

of consecutive unsampled batches rather than items.  The modality with which 

inspection is performed within a batch, whether a screening or a random sampling, is 

not relevant for this analysis since it will not impact the validity of the models.  This is 

because, for the objective of this research, the inspection within a batch will only 

support the evaluation of the quality level of the production, that is, it will be used to 

assess if the batch is defective or not.  In other words, any further quality information 

that the inspection within the batch can provide, such as item-to-item variability or the 

presence of defect patterns within a batch (item), is certainly valuable from a quality 

perspective but it is irrelevant for the purpose of this research.  Indeed, this information 

is not useful for the estimation of the risk of not sampling a long sequence of batches at 

any machine of the production system, so that the quality status of both the machines 

and the production process can be inferred and eventual quality failures can be detected 

in a short period of time. 

5.7 Conclusions 

In this chapter the quality risk related performance measures investigated in the 

previous chapter by means of a simulation approach, were analytically analysed.  The 

parameters with the most influence were first individuated and, based on them, a 

formula for the prediction of the average values of both the measures was derived.  

Although formally interesting for giving a mathematical shape to the relationship 

between quality control/production system design and quality risk, the formulae for the 

average values do not support a quantification of the quality risk.  When assessing the 

efficacy of a sampling strategy, information on its worst performances is more 

significant than information on its average performances.  In order to infer the 
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maximum exposure to the risk of not continuously monitoring a machine in the 

segment, the analysis of the distributions of the quality risk related performance 

measures proves fundamental.  The number of unsampled items between consecutive 

samples was further analysed to derive stochastic prediction models.  A preliminary 

study showed that, keeping the same mean, this distribution changes shape according to 

the nature of the station.  In particular, when a non-sampling station is considered, the 

distribution tends to assume an exponential pattern, whereas, for a sampling station, it 

has a skewed bell shape. 

The non-sampling station case was considered first.  The memory-less characteristics 

of the item departure process from any of the machines of a non-sampling station 

suggests that the sequence of the products being consecutively processed is random.  As 

a consequence, the event of processing an item which will be chosen as a sample can be 

considered a Bernoulli trial with probability of success equal to the sampled fraction.  

This means that the distribution of the number of unsampled items between 

consecutive samples follows a geometric distribution with a parameter easily predicted 

by the formula for the average number of consecutive unsampled items.  This 

prediction model is valid for any product flow combination, since it is only based on the 

difference between sampled and unsampled items and their relative proportions. 

The validity of the geometric prediction model was also tested against the simulation 

results obtained using a basic production segment simulation model.  That allowed a 

better understanding of the relevance of the multiple stream and the sequence disorder 

effects for the applicability of the geometric model. 

As regards the sampling station, the analysis did not prove very straightforward.  

However, it was evident that conducting separate analyses according to the product flow 

combinations would help to make the investigation easier.  Product flow combinations 

involving up to two monitored products with or without cross flow were considered 

and the prediction models for each of them were derived.  In addition, even though it 

has not been tried yet, it is very reasonable to assume that the approach defined for two 

monitored products can be extended to situations involving three or more monitored 

products. 
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The simplest case to investigate was the case characterised by the presence of one 

monitored product and an unmonitored product flow.  In its structure, it resembled the 

non-sampling station case.  In fact, the sequence of processed items whether being 

monitored items or not, can still be considered random.  Hence, the distribution of the 

number of unsampled items still belongs to the family of distributions based on the 

concept of Bernoulli trials.  In this particular case, the negative binomial distribution 

offered the solution to the problem. 

When two monitored products are considered, the solution becomes more 

complicated and an enumerative approach is the most direct way to derive a distribution 

prediction.  This approach proved computational expensive and further investigation 

would be advisable to determine the nature of the systematic error which occurs when 

no unmonitored flow crosses the sampling station.  Nonetheless, the predictions, 

compared with the simulation results, are reasonably accurate. 

The introduction of the unmonitored flow was analysed by combining the prediction 

models developed for the previous cases.  A model mainly based on averaging negative 

binomial distributions (CNB model) was derived and a variant was also proposed.  In 

general, this prediction proved very accurate and quite robust to eventual errors 

introduced with some input parameters.  The variant usually outperforms the CNB 

approach; however, a preliminary search is required to determine the optimal weighting 

factor to be used. 

The impact of the shape and variability of the distribution of the time related input 

parameters on the distribution of the number of consecutive unsampled items in a 

sampling station was also investigated.  It emerged that the mean of the distribution is 

not affected by any change, confirming the robustness of the prediction formula for the 

average number of consecutive unsampled items.  On the contrary, the standard 

deviation is more vulnerable to the major changes in the system dynamics, such as the 

way of modelling shut down events.  This has an impact on the shape of the output 

distributions, which appear less peaky as the standard deviation decreases. 

The results obtained in this last analysis also suggested that the weighting factor used 

in the correction variant to the CNB prediction model might be related to the variability 
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of the number of consecutive unsampled items, which at the moment is not yet 

predictable.  This supposition is based on the fact that the only element changing when 

the optimum weighting factor varies consists of the standard deviation of the 

distribution of the number of consecutive unsampled items. 

Finally, it was shown how to use the prediction models developed to quantify the 

quality risk associated with a sampling strategy for a given confidence level.  The 

prediction models can also support the choice of sampling strategy parameters able to 

guarantee an actual quality risk lower than a predetermined threshold value.  It was 

shown that the geometric model, apart from being the easiest model to use, provides 

conservative sampling parameters so that the quality risk threshold is respected in all the 

stations of the production line.  
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Chapter VI 

Discussion 

6  

6.1 Results summary and discussion 

In an industrial environment characterised by high production costs and demand for 

high quality, reducing the risk of producing low quality products is fundamental.  The 

capability of predicting some quality risk measurements can be very helpful in assisting 

the decision process when the sampling parameters have to be set.  In particular, in a 

complex manufacturing environment, such as a flexible manufacturing system with 

stations provided with machines operating in parallel, even in the presence of a 

deterministic sampling policy for predefined products in one of the stations, the risk 

assessment is not trivial due to different complexity factors.  The combination of a serial 

flow through a set of stations and a cross flow in each station, different sampling 

frequencies for different products, random routing policies, and the randomness of the 

cycle time represent some elements which complicate the quality risk analysis.  All these 

factors contribute to turn a deterministic sampling plan into a random sampling plan in 

all the stations, including the sampling stations when analysed from a global flow 

perspective. 

For the non-sampling stations, the complexity factors can be summarised into two 

fundamental effects, recently introduced in the manufacturing research fields [17] and 

which have not been investigated in great depth so far by the research community.  

They are known as the sequence disorder and the multiple stream effects.  The latter is a 
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mere consequence of the presence of parallel machines in the operating stations and the 

randomness of routing policies; the multiple stream effect also contributes to the 

sequence disorder effect, which is mainly caused by the randomness of the cycle time.  

The absence of a logical relationship between the machines in the different stations, for 

the multiple stream effect, and the variation of the sequence order with which items 

move out from the machines at the different production steps, represent the reasons 

why the sampling strategy investigated in this research loses its deterministic property 

even in a single product situation. 

As regards the sampling stations, the sequence disorder and the multiple stream 

effects have very little to do with the randomness that characterises the sampling 

strategy when the global flow is considered.  In this case, the merging of different 

independent product flows and the randomness of their arrival process at the machines 

of the station is responsible for the loss of the deterministic property of the sampling 

strategy. 

Independently of its origin, this randomness is the main cause of difficulty in 

controlling and predicting the quality risk associated with a particular sampling strategy.  

For this research two measures of effectiveness of sampling were investigated.  They 

consider the risk of not continuously monitoring a particular machine in a production 

segment from the perspectives of the time and the number of processed items. 

In spite of the increasing attention paid by many researchers to quality issues, to the 

author’s knowledge, very few papers in the literature deal with the quality risk 

assessment of a sampling strategy in terms of the number of items between samples and 

the time between samples.  Even though an analogy exists between the measures 

considered in this thesis and the time between events, which has been more extensively 

investigated, the analysis of the time between events is limited to the analysis of the 

control chart associated with it [102, 103].  There is no investigation concerning the 

monitoring efficacy of the time between events in the stations not directly monitored by 

the chart.  Similarly, the analyses involving the multiple stream and the sequence 

disorder effects focus on the enhancement of the quality control chart performances in 

terms of reduction of false alarms, particularly in the stations upstream of the sampling 
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station [17, 34].  As a consequence of the lack of very specific references, the literature 

review only tries to introduce in a very generic way the research fields involved in this 

project.  Moreover, only a few papers are cited throughout the remainder of the thesis, 

since it was difficult to find appropriate references which could support or confute the 

results found, even if only in analogy. 

There are three primary contributions of this research.  First, the impact of some 

control parameters on the distributions of both the measures was investigated.  Second, 

a few prediction models for the distribution of the number of unsampled items between 

consecutive samples under different operating conditions were developed.  Finally, a 

possible way to assess the quality risk associated with a sampling strategy in terms of 

number of consecutive unsampled items was suggested along with a procedure to 

determine the sampling parameters which guarantee to operate with an acceptable 

quality risk level.  These three contributions are progressively related with each other.  

The first analysis, by individuating the parameters that mostly affected the performance 

measures, narrowed the domain of the parameters eligible for being included in the 

prediction models built in the second analysis.  Based on these models, the procedure 

for the quality risk assessment was developed. 

A simulation approach was used in support to the first part of the research (Chapter 

3).  The number of parallel machines in a station, the WIP-turn and the sampling 

intervals of two products were analysed in terms of their impact on both the 

performance measures considered (Chapter 4).  The rationale behind the choice of these 

parameters was the intention to cover the analysis from the perspective of the system 

configuration, the line speed and the sampling parameters.  The consideration of 

production system design issues, such as the line speed and the line configuration, 

during the analysis of quality related issues proves particularly interesting from a 

research viewpoint.  It follows the suggestion by Inman et al. [21] which highlighted the 

need for considering the mutual impact that production system design and quality issues 

have on each other.  In this study, Inman’s proposal is reinterpreted and its horizons are 

widened.  The intersection between productivity and quality is analysed here from the 

perspective of the quality control rather than from the one of the quality level of the 
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items produced; moreover, the concept of line speed includes queuing & transportation 

times rather than processing times only as in Inman et al . [21]. 

The results obtained reveal that line speed increase does not necessarily correspond 

with a quicker monitoring capability of the sampling strategy.  In general, the time 

between samples is affected by parameter changes which impact the inter-arrival time at 

a machine level.  Independent of the strategy with which the increase of the inter-arrival 

time at a machine level is obtained, by either increasing the inter-arrival time at a station 

level or increasing the number of machine in a station, the time between samples 

proportionally increases.  The results also suggest that the most direct way to reduce the 

number of items between samples and the time between samples is to reduce the 

sampling intervals.  An analogous effect can be obtained by increasing the monitored 

volume fraction. 

The monitoring performances of the sampling strategy analysed here were also 

assessed in terms of detection responsiveness to quality failures.  The introduction of 

defects following a quality failure was simulated in different fashions; different 

maintenance scenarios were also considered.  The analysis highlighted that an 

intermittent production of defects delays the detection of the quality problem.  The 

absolute worst case scenario was registered when, as a consequence of routine 

maintenance operations, partial corrective actions were performed on a machine which 

was experiencing an undetected failure.  The partial restoration of the machine only 

causes a reduction of the production frequency of defective items that, as suggested 

before, is very deleterious from a quality failure detection point of view. 

The second part of the analysis focused on the development of analytical models 

which could predict the performance measures derived by means of simulation (Chapter 

5).  In this part of the analysis, a hybrid approach was considered [139].  New simulation 

models were also built in order to investigate the validity and the robustness of the 

proposed prediction models. 

Based on the results available from the previous analyses, the formulae for the 

average value of both the performance measures were derived.  The time between 

samples proved to be proportional to the number of parallel machines in a station, 
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which impacts the inter-arrival time at a machine level, and inversely proportional to the 

number of samples per unit time.  This last parameter can be expressed in terms of the 

inter-arrival time at a station level of the monitored product types and their 

corresponding sampling intervals.  It is immediate to derive that a reduction of the time 

between samples can be obtained by either reducing the inter-arrival time at a machine 

level or increasing the sampling frequency of the monitored products. 

The formula for the average number of items between consecutive samples was 

determined by considering the relationship between the two performance measures.  

The formula reveals that the number of consecutive unsampled items depends on the 

volume fraction of the monitored product items and their corresponding sampling 

intervals.  Therefore, whereas the time between samples is affected by the absolute 

values of the inter-arrival times at a machine level, the number of items between 

samples depends on a relative measure of the inter-arrival time.  In particular, unlike the 

time between samples, it is not affected by the number of parallel machines in a station; 

however, it is affected by the presence of an unmonitored flow, which acts as a scale 

factor since it linearly varies the volume fractions of the different products. 

The formulae for the average values were obtained using the results relative to all the 

stations in the segment; this means that they are valid no matter what the nature of the 

station is, whether a sampling or a non sampling station.  However, the analogy between 

the stations is limited to the average values.  In fact, the observation of the distribution 

of the number of consecutive unsampled items reveals that noticeable differences are 

present between the stations.  The analysis focus hereinafter was exclusively addressed 

to the number of items between consecutive samples.  The reason for this was mainly 

related with the fact that, as suggested by the results obtained, the number of items 

between consecutive samples represents a more global measure, since information about 

the unmonitored flow is also included in it. 

The non-sampling station case was considered first.  The regularity of the shape of 

the distribution for the different non-sampling stations and under different product 

flow conditions restricted the number of theoretical distributions suitable for modelling 

the number of items between samples.  The nature of the events under investigation 
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provided the needed support to state that the number of unsampled items between 

consecutive samples follows a geometric distribution with proportion p equal to the 

sampled fraction.  In fact, the succession of sampled and unsampled items produced by 

a machine in a non-sampling station is a geometric process, in the sense that an item 

moving out of a machine could be a sample or not independently of the nature of the 

item previously processed by the same machine.  The nature of the item moving out of 

a machine is exclusively based on the proportion of the population, that is, on the 

fraction of the sampled and unsampled items.  This is immediately true when the item 

arrival and departure from a machine follows an exponential distribution, owing to its 

memory-less property.  However, it was found that the assumption of an exponential 

inter-arrival time is not crucial for the validity of the results.  The prediction accuracy 

proved very high; with respect to all the scenarios investigated the maximum absolute 

error was less than 99.6%, whereas the cumulative error range was always lower than 

94%. 

Given the nature of the formulae on which it is built, the presumable generality of 

the geometric model was tested against two scenarios with non-sampling stations 

characterised by different product flow conditions. The first scenario analysed the 

distribution of the number of unsampled items between consecutive samples in a non-

sampling station, shared by two production segments, where samples could indifferently 

come from both the segments.  The second case considered a station partially skipped 

by the global flow crossing the entire segment.  In both cases the geometric model 

provided very accurate results.  Finally, for a better understanding of the dynamics 

behind the generation of the distribution of the number of unsampled items, a basic 

simulation model, consisting of two stations and an intermediate buffer, was developed.  

Different elements of time related randomness were progressively introduced in the 

model.  It was shown that the level of item sequence disorder and the randomness of 

the routing patterns between the machines of two successive stations are fundamental 

for the validity of the model, more than any particular hypothesis on the shape of the 

time input distributions. 

The analysis of the sampling station case was split into three different parts, which 

correspond with the different product flow combinations considered in this research.  
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First, the case with one monitored product and an unmonitored flow was considered; 

then the analysis of the case with two monitored products without and with 

unmonitored flow followed. 

For the first case, it was straightforward to find that the number of unsampled items 

follows a negative binomial distribution, with parameters p and s given by the monitored 

volume fraction and the sampling interval of the only monitored items, respectively.  

The prediction accuracy is still very high, with an absolute error less than 0.4%. 

The challenge with the second case was to find a solution to the problem of 

generating a probability distribution by summing up deterministic values.  After a few 

analyses, the enumeration of all the possible item sequences when a predetermined 

number of items of both the products were considered proved to be an effective 

approach.  Due to its combinatorial nature, the approach developed is quite 

computationally expensive, so that only a limited range of sampling intervals could be 

investigated.  However, it can predict quite well the distribution of the number of 

unsampled items, which for this case, presents a limited domain.  The presence of a 

small but systematic error would require further investigation; however, it is very 

probable that this error is caused by the limited exploration of the whole population of 

the item sequences that was necessitated by the limited capabilities of the computer used 

during the analysis. 

As regards the third case, the negative binomial distribution can provide an 

approximated prediction of the distribution of the number of unsampled items.  The 

approximation depends on the fact that the average sampling interval of the two 

products is used as a parameter which is supposed to be deterministic.  In effect, the 

global sampling interval is actually better described by the distribution of the number of 

unsampled monitored items, which is the distribution of the number of unsampled 

items when only monitored products are considered.  This is the distribution obtained 

in the second case analysed.  Hence, the prediction model for this last case analysed is 

obtained as a negative binomial distribution compound with the distribution obtained 

for the second case.  The model is quite accurate; however, a variant developed 

outperforms it provided that a proper weighting factor is chosen.  This optimal factor 



 CHAPTER VI RESULTS SUMMARY AND DISCUSSION 

251 
 

was found by means of a trial and error search, which is not a feasible approach when 

simulation results are not available.  From analyses conducted on the robustness of the 

prediction model it emerged that the optimal factor is very likely connected with the 

standard deviation of the distribution of the number of unsampled items, which at the 

moment is still not predictable. 

For the third contribution of this study, a few suggestions were presented on how to 

use the prediction models developed for the assessment of the quality risk associated 

with a sampling strategy.  In summary, given a confidence level, the corresponding 

percentile of the distribution of the number of unsampled items between samples 

represents the quantification of the quality risk in terms of maximum number of items 

which might not be consecutively sampled (at that risk level).  The prediction model to 

be considered for the risk assessment is obviously the one relative to the scenario which 

is observed in the station under investigation.  It is worth noting that, due to its higher 

variability, the consideration of the geometric model will always provide more 

conservative estimates with respect to the other models developed.  This observation is 

particularly useful when a sampling strategy satisfying that requirement has to be defined 

given an acceptable quality risk level.  An iterative search allows the calculation of the 

minimum sampled fraction which guarantees the verification of the quality risk 

constraint in a non-sampling station.  The same sampled fraction will also generate a full 

respect of the constraint in the sampling station of the segment.  Based on the sampled 

fraction, a formula proposed allows the derivation of the sampling strategy parameters 

which satisfy the quality risk specifications.  The use of the geometric model for this 

search is convenient for two reasons.  First, the results based on it assure that the 

constraints will be respected everywhere in the segment, provided that the global flow is 

constant throughout the segment.  Second, unlike the other models, the geometric one 

is characterised by only one parameter, so that the unknown variables are initially 

reduced to the minimum and no distribution prediction is needed. 
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Chapter VII 

Conclusions and Future Work 

7  

7.1 Conclusions 

The quality risk assessment in a complex manufacturing environment was the 

compelling reason for this research.  The objective to turn random measures into 

predictable variables was its main challenge. 

In this study, the quantification of the quality risk passes through three fundamental 

steps 

1. The investigation of the mechanisms governing the effects of the implementation 

of a particular sampling strategy behaviour in a system characterised by sequence 

disorder effect and multiple stream effect;  

2. The development of prediction models for a quality risk related performance 

measure; 

3. The definition of a procedure for predicting the quality risk. 

The reasons for this progression can be found in the original concept of the quality 

risk related measure.  It should have expressed the maximum exposition of any machine 

in the system to the risk of not being monitored.  This was deliberately quantified in 

terms of the maximum number of consecutive unsampled items produced by that 

machine for a given confidence level.  The choice to relate this risk with a confidence 

level depends on both the concept of risk, which does not suit any definite notion, and 
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the random nature of the number of consecutive unsampled items, which did not allow 

for the quantification of the risk in terms of an absolute maximum measure.  The 

necessity for developing prediction models for the distribution of the number of 

unsampled items between samples is a direct consequence of this choice.  This is the 

reason why this study could not be considered complete when the formulae for the 

prediction of the average value of the performance measures were developed.  They are 

able to express in an effective, comprehensive way what the analysis initially conducted, 

based on a simulation approach, had revealed in a more fractional fashion.  They are 

fundamental for this work since 

1. they support a general evaluation of the sampling strategy effectiveness, which is 

not strictly related with the risk; 

2. most of the prediction models developed for the distribution of the number of 

unsampled items uses the formulae as an input. 

The initial analysis represents the solid foundation of this work.  The relationship 

between some control parameters and the performance measures were explored, the 

discernment of the most affecting parameters was made and an initial understanding of 

the interventions useful to reduce the quality risk was possible. 

Apart from the quantification of the quality risk, the most important achievement of 

this work is the possibility of developing a sampling strategy able to keep the quality risk 

under the desired threshold level.  The most important findings are 

1. the average time between samples depends on the inter-arrival time at a machine 

level and the sampling intervals of the monitored products crossing a station; 

2. in all the stations, the average number of unsampled items is inversely proportional 

to the sampled fraction; 

3. the number of unsampled items between consecutive samples in a non-sampling 

station follows a geometric distribution.  This is valid for any material flow 

scenarios; 

4. the distribution of the number of unsampled items in a sampling station can be 

predicted using more complicated models which depend on the material flow 

combinations; 
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5. the geometric model provides a conservative estimate of the quality risk in any 

station. 

7.2 Recommendations for future work 

The list of the principal elements which are worthy to investigate in the future mainly 

derives from the set of issues which have been neglected during the development of the 

thesis.  Initially, these issues were deemed not immediately fundamental for the 

development of reasonably well approximated solutions.  In fact, the results obtained 

are characterised by a very high accuracy, as regards the prediction models, and an 

immediate simplicity relative to the procedures for the quality risk assessment.  

However, going back to those issues and trying to pay more attention to them could 

surely prove beneficial for the analysis rigours and confer on the solutions proposed a 

more comprehensive frame. 

a) The time between samples should be analysed in terms of its distribution.  The lack 

of a prediction model for the distribution of the time between samples represents 

the main negligence in this thesis.  If for the industrial environments characterised 

by the production of discrete items, the availability of a time related quality risk 

measure merely represents an alternative option to the use of the number of items, 

the assessment of the quality risk from a time viewpoint becomes fundamental for 

the continuous production environments, where the lack of discrete items makes 

the application of the results obtained so far difficult.  The continuous nature 

represents a very challenging element for the development of the models. 

b) The systematic nature of the prediction error pattern for the distribution of the 

number of unsampled monitored items should be analysed and a correction to the 

prediction model should be proposed, whenever, unlike how suspected, the 

systematic error is not caused by the limited exploration of the item sequence space. 

c) The applicability of the prediction model of the distribution of the number of 

unsampled items developed for scenarios characterised by two monitored products 

should be tested for scenarios involving more than two monitored products.  The 
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availability of more powerful calculators should allow the analysis of more complex 

scenarios. 

d) The optimal weighting factor used in the correction variant of the prediction model 

for the distribution of the number of unsampled items for scenarios characterised 

by two monitored product types and an unmonitored flow should be predicted by 

means of analytical formula.  More investigations are needed to find the parameters 

which mostly affect it.  As suggested by the results found, these might include the 

standard deviation of the final distribution, which would be advisable to predict 

independently of its actual usefulness to the weighting factor definition. 

e) The analysis of the case when in a sampling station sampled items coming from 

elsewhere in the segment merges with the samples chosen in the station might be 

challenging.  In fact, in this case, a deterministic and a random element are both 

associated with the monitored flow.  Presumably, it will be difficult to find 

straightforward solutions in the commonly known distributions and an 

enumeration approach could prove necessary. 

f) The investigation of the robustness of the prediction models to slight variations of 

the sampling strategy dynamics could also be interesting.  For example, the analysis 

of the system reaction to sampling performed on a random basis in the sampling 

station represents a possible variant to be considered. 

g) Exploring the applicability of enumerating techniques to a more general class of 

problems and developing approaches to reduce their computational complexity 

could prove interesting. 
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