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Abstract 
 

This paper addresses the problem of bond graph methodology as a graphical approach for the modeling of wind turbine generating sys-

tems. The purpose of this paper is to show some of the benefits the bond graph approach has, in contributing a model for wind turbine 

systems. We will present a nonlinear model of a wind turbine generating system, containing blade pitch, drive train, tower motion and 

generator. All which will be modeled by means of bond graph. We will especially focus on the drive train, and show the difference be-

tween modeling with a classical mechanical method and by using bond graph. The model consists of realistic parameters, but we are not 

trying to validate a specific wind turbine generating system. Simulations are carried out in the bond graph simulation software 20-sim [1].   
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1. Introduction 

The demand for energy world wide is increasing every day. 

And in these “green times” renewable energy is a hot topic all 

over the world. Wind energy is currently the most popular 

energy sector. The growth in wind power industry has been 

tremendous over the last decade. As of June 2012 the global 

wind capacity is 254000 MW, according to the World Wind 

Energy Association [2]. 

Whenever we are talking about models of wind turbine 

systems, the turbine model becomes a critical part of the 

discussion. Over the years it has been some discussion about 

how to model the wind turbine accurately. In Refs. [3, 4] they 

perform dynamic analysis on a one-mass-model, in Refs. [5, 

6] they examine a two-mass-model. In Ref. [7] they use actual 

measured data from a wind turbine and compare it with both a 

one-mass and a two-mass-model. They validate the model 

using a recorded case obtained in a fixed speed, stall regulated 

wind turbine. In Ref. [8] a six-, three- and a two-mass model 

are compared with each other. They argue that a six-mass 

model is needed for the precise transient analysis of the wind 

turbine system, and they develop a way to transform a six-

mass model into a two-mass model. The goal of that paper is 

not to use the model in the control scheme, but in the use of 

transient stability analysis of grid connected system. 

The pitching of the blades are usually executed by means of 

a hydraulic system, but for system modeling purposes it is 

often considered as a first or second order system. We are here 

dealing with variable speed generating system, therefore a 

wound machine or a double fed induction generator is needed. 

These can be modeled in different ways, ranging from 

complex electric equivalent circuits to a first order system. 

Several advanced wind turbine simulation softwares have 

emerged during the last decade. HAWC2 [9], Cp-Lambda 

[10] and FAST [11] are a few examples. They are developed 

at RISØ in Denmark, POLI-Wind in Italy and NREL in the 

US, respectively. In these codes the turbine and structure is 

considered as complex flexible mechanisms, and uses the 

finite-element-method (FEM) multibody approach. An aero-

servo-elastic model is introduced, which consists of aerody-

namic forces from the wind, the servo dynamics from the 

different actuators and the elasticity in the different joints and 

the structure. Both FAST and HAWC2 can simulate offshore 

and onshore cases while Cp-Lambda is limited to the onshore 

case. 

As seen above there are many ways to model a wind turbine 

generating system, some are simple and some are very 

complex. In a simulation point of view it is desirable that the 

model is as simple as possible and can capture as much of the 

dynamics as appear in reality. This is an absolute demand, 

another important issue is to keep the central processing unit 

(CPU) labor to a minimum. For example if we are dealing 

with hardware in the loop (HIL) simulation, then it is 

necessary to download the model to a programmable logic 

controller (PLC). This argues in favor of the importance in 

having a fast C-code. Things that can potentially have a 

negative effect on the execution of our C-code are for 

example; algebraic loops and differential causality on the  
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different elements in the system. These topics bring us to the 

use of the bond graph methodology. This is a unified approach 

to model all types of physical systems, producing both linear 

and nonlinear mathematical models. Engineers must work and 

interact in many different disciplines. An understanding of the 

intersections of these different disciplines is a valuable asset 

for any engineer. Using the language of bond graphs, one may 

construct models of electrical-, magnetic-, mechanical-, 

hydraulic-, pneumatic- as well as thermal systems. It is a 

systematic way to model these dynamic systems, and there are 

standard ways to translate them into differential equations or 

computer simulation schemes. After constructing the bond 

graph one can easily spot algebraic loops and whether you 

have integral causality on the dynamic elements by inspecting 

the bond graph. There are various ways to spot these things in 

typical simulation software such as MatLab [12], but it is 

beneficial to spot them before the implementation. It is a quite 

intuitive way in setting up the bonds and connecting the 

elements, this will be discussed in a later section. The outcome 

from the bond graph model is a set of first order differential 

equations, which afterwards can be used for systems response 

analysis or for example controller design. After constructing 

the bond graph one gets a better understanding of what 

actually happens in the system. In an educational point of 

view one can easily understand which element decides what in 

the system. For example in a simple mass-spring-damper 

system, one can easily see which component decides the speed 

and which component decides the force. With these arguments 

in mind we are motivated to explore the possibilities there are 

with the use of bond graph. 

The wind turbine generating system can be divided into 

several subsystems, see Fig. 1. 

The system setup is adopted from Ref. [13], where 
w
V  is 

the wind speed, 
a
V  is the wind speed for power production, 

Z&  is the tower speed, 
t
F  is the thrust force acting on the 

tower, 
ref
β  is the pitch angle reference, β  is the actual 

pitch angle, 
a
T  is the aerodynamic torque, 

H
Ω  is the hub 

speed, 
G

Ω  is the generator speed, 
EMref
T  is the generator 

torque reference and 
EM
T  is the actual generator torque. 

The expression for power produced by the wind is given by 

Ref. [14] 

 

. (1)
 

 

The dimensionless tip-speed ratio (TSR) λ  is defined as 

                 

 
(2)
 

 

where bv  is the tip speed of the blade and v  is the wind 

speed. From Eq. (1) we can find the aerodynamic torque and 

the thrust force acting on the tower  
 

 (3) 

 
(4)
 

 

where 
a
P  is the aerodynamic power, ρ  is the air density 

and R  is the blade radius. Cp gives the relationship between 

how much power is available in the wind and how much can 

be converted to electrical power. Not all the available power 

can be converted, this is due to the fact that the wind cannot be 

completely drained of energy, otherwise the wind speed at the 

rotor front would reduce to zero and the rotation of the rotor 

would stop. It can be proven that the theoretical upper limit of 

Cp is 16 / 27 0.59,≈  this is known as the Betz limit. A gen-

eral modern wind turbine has a maximum power coefficient of 

about 0.5. 
T
C  is the thrust force coefficient, both these coef-

ficients are dependent on the TSR λ  and the pitch angle β . 

This paper is organized as follows. Section II gives a short 

overview on the bond graph methodology and its different 

elements. Section III describes the different parts of our sys-

tem model; aerodynamics, pitch, drive train, tower motion and 

generator. In section IV the simulation results are presented 

and section V gives the conclusion and states some sugges-

tions regarding future work. 

 

2. Introduction to bond graph 

Bond graph is a graphical way of modeling physical 

systems. All these physical systems have in common the 

conservation laws for mass and energy. Bond graph, 

originated by Paynter [15] in 1961, deals with the 

conservation of energy. This gives a unified approach to 

model physical systems. This section gives a short 

introduction to this modeling tool, the interested reader can 

find more information in Refs. [16, 17]. The bond graph 

approach has several advantages over conventional methods, 

i.e.: 1) providing a visual representation of the design; 2) 

controlling the consistency of the topological settings of the 

design; 3) providing the hierarchical modeling of designs; 4) 

extracting the system equations symbolically in a structured 

way. 

Within physical systems, energy is transported form one 

item to another. This energy is either stored or converted to 
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Fig. 1. Setup for a wind turbine system. 
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other forms. But the important thing is that it does not dissi-

pate. If the energy is changing in one place, it also changes in 

an opposite way at another location. The definition of power is 

the change in energy ( E ) with respect to time:  

 

 
(5) 

            
 

The power is transferred between the different parts in the 

bond graph model with the use of power bonds, see Fig. 2. In 

bond graph notation the definition of power is effort 

multiplied with flow. For example, in electric systems this 

would mean voltage multiplied with current, in mechanical 

systems it is force multiplied with velocity and in hydraulics it 

is pressure multiplied with flow. 

 

2.1 System elements 

In bond graph modeling there are a total amount of nine 

different elements. We will here introduce the causality 

assignments, but first we have to explore the cause and effect 

for each of the basic bond graph elements. Only elements with 

its preferred causality will be discussed. The importance of 

causality will be dealt with later in the paper. 

 

1. Junctions: There are two different types of junctions that 

connects the different parts in a bond graph model, the 0-

junction and the 1-junction. The 0-junction is an effort 

equalizing connection, see Fig. 3 and its corresponding 

equation in Eq. (6). Since the efforts are the same, only one 

bond can decide what it is. The 1-junction is a flow equalizing 

connection, see Fig. 4 and its corresponding equation in Eq. (7). 

Since the flows are the same, only one bond can decide what it 

is. Which bond decides the flow and which one decides the 

effort is indicated with the vertical causality stroke. If the 

vertical line is closest to the junction, then this element decides 

the effort, furthest away from the junction decides the flow. 

 

2. Source element: We can divide the source elements into 

two different kinds, effort- and flow-source. The effort source 

gives an effort into the system, then it is up to the system to 

decide the flow. This is what is meant with cause and effect, 

and its vice versa for the flow source. Fig. 5 shows how the 

causality is indicated on the graphical elements. For the source 

elements these causality assignments are fixed. 

 

 
(6)
 

. 
(7)
 

 

3. Compliance element: The causality assignment for the C-

element has two possibilities, but one is preferred in contrast 

to the other. This is discussed at the end of this section. The 

preferred case is seen in Fig. 6 and its corresponding equation 

in Eq. (8). We see from both the equation and the figure that 

flow is given to the element/equation and it gives the effort in 

return. 
 

. 

(8)

 
 

The variable q  is called the generalized displacement. For 

example, this can be rotational position of the rotor in a wind 

turbine. 

 

4. Inertia element: There are two choices for the causality 

assignment for the I-element, also here one is preferred in 

contrast to the other. The preferred case is seen in Fig. 7 and 

its corresponding equation in Eq. (9). 
 

 (9)
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Fig. 2. Power bond with effort and flow. 
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Fig. 4. 1-junction. 

 

e

f
Se

e

f
Sf

 
 

Fig. 5. Effort and flow source with their causality assignment. 
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Fig. 6. Example of compliance element with integral causality. 
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The variable p  is called the generalized momentum. For 

example, this can be rotor inertia times rotor velocity in a 

wind turbine.  

 

5. Resistive element: It is a bit more freedom when it comes 

to the causality assignment for the R-element. Its equation do 

not include any dynamics, it is only an algebraic expression. 

The two causality choices are shown in Fig. 8 and its 

corresponding equation in Eq. (10).  

 

. 

(10)

 

 

6. Transformer: The transformer element can work in two 

ways; either it transforms a flow into another flow or it 

transforms an effort into another effort. Fig. 9 corresponds to 

Eqs. (11) and (12), where m  is the transformation ratio. 

 

 
(11)

 

. 

(12)

 
 

For example, this can represent a mechanical gearing or an 

electric transformer. 

 

7. Gyrator: The gyrator can also work in two ways; either it 

transforms a flow into an effort or it transforms an effort into a 

flow. Fig. 10 corresponds to Eqs. (13) and (14), where r  is 

the gyrator ratio. 
 

 

(13)

 

. 

(14)

 
 

This can for example be an electric motor, where you have 

voltage as input and a rotational speed as output. 

The importance of integral causality is nicely explained in 

Ref. [18]. First imagine a step in effort is imposed on a C-

element, then the causality assignment will be opposite of 

what is shown in Fig. 6. This means the flow output is propor-

tional to the derivative of the input effort. From calculus we 

know that the derivative of the step function at the beginning 

is infinite, i.e. this do not give any physical meaning. We can 

imagine a simple electric circuit containing a voltage source 

coupled with a capacitor, if a step input were to be imposed on 

the voltage source, the capacitor would experience a very high 

current and it would blow up. From this we can conclude that 

nature integrates and only mathematicians differentiate! 

On the other hand, the ability to spot algebraic loops is one 

of the benefits with the use of bond graph as a modeling tool. 

These loops can be spotted simply by inspection of the bond 

graph representation, if the causality assignment on the R-

elements are different from each other, then we have algebraic 

loops in the system. If they have the same causality, there are 

no algebraic loops. These loops occur for example if you have 

two resistors in series. In this circuit both resistors will try to 

decide what the current should be, i.e. they depend on each 

other. This will not necessarily cause problems to the 

simulation, but it might. Especially if the resistors are 

nonlinear, then the simulation could easily crash. The 

simulation program will also be forced to spend time to solve 

this algebraic loop. If we can easily spot these loops early in 

the modeling process, then we can try to fix them by simply 

adding an element. For example, regarding our circuit with 

two resistors in series, we can add an inductive element to the 

circuit. Then it would be the inductive element which decides 

what the current should be and not the resistive elements. The 

resistive elements would simply have to take what current the 

inductive element lets through. We can give the inductive 

element a value such that the voltage drop over the element is 

very low, i.e. it does not play any major role in the circuit. 

Now when our model has no algebraic loops and all the 

dynamic elements have integral causality, the simulation 

should go smooth. If we have a large set of equations or a 

large block diagram it is not easy to spot these things right 

away, but with a bond graph representation of the model we 

can spot them simply by inspection. To simply remember the 

e
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Fig. 7. Example of an  inertia element. 
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Fig. 8. Example of resistiveelements. 
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e1

f1

GY
e2

f2

e1

f1

GY
e2

f2  
 

Fig. 10. Example of the two gyrators. 

 



 T. Bakka and H. R. Karimi / Journal of Mechanical Science and Technology 27 (6) (2013) 1843~1852 1847 

 

  

aforementioned relations we can use what Paynter called the 

tetrahedron of state, shown in Fig. 11. The procedure of how 

to extract the algebraic and dynamic equations from a bond 

graph model is not included in this short overview, but it can 

be done in a very systematic way and it will partly be shown 

in the next section. 

We will end this section with a small example. The purpose 

is to show how to set up a bond graph of a simple system, and 

also show the difference in relation to block diagrams. Fig. 12 

shows two equivalent circuits in two different domains, and 

they have exactly the same governing equations. The 

corresponding bond graph is shown in Fig. 13. The easiest 

way to set up a bond graph when having a mechanical system, 

is to start with setting up 1-junctions. One junction for each 

mass, this gives two 1-junctions in our example. We add a 0-

junction in between, because we know the speed is different 

but the force is the same. Force is transferred through the C-

element (spring). The right side of the damper has the same 

speed as m_{1}, R-element and I-element is therefore con-

nected to the left 1-junction. 

Regarding the electric circuit, we know that the source and 

1
L  have the same current 

1
i . We know that 

2
L  and R  

have the same current 
2
i , and we know that the parallel 

branches have the same voltage. In this way we end up with 

the exact same bond graph. We also note that the bond graph 

has integral causality. The two I-elements receive effort and 

give flow in return, the C-element receives flow and gives 

effort in return. We will now find the governing equations. 

First we find ,
i
p&  second we find .

i
q&  In mechanical terms 

this is 
i

mx&&  and ,
i
x&  respectively. Subscript i  corresponds 

to in which bond we are at.   

 

 
(15a)

 

 

(15b)

 

 
(15c)

 
 

In mechanical domain terms, Eq. (15) correspond to Eq. 

(16). 

 

 (16a) 

 (16b) 

. (16c) 

 

These are exactly the same equations we will end up with if 

we do it in the classical Newtons 2nd  law approach. The 

block diagram for these equations are shown in Fig. 14. Block 

diagrams represent the structure of the mathematical model and 

displays which variables must be known in order to compute 

others. They do not reflect the physical structure. The reason is 

that feedback is represented in separate feedback loops. 

By using bond graph as the modeling tool we get a good 

overview of the model’s physical structure and we can do 

 
 

Fig. 11. The tetrahedron of state. 
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Fig. 12. Bond graph of the two equivalent circuits. 
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Fig. 13. Two equivalent circuits. 

 

 
 

Fig. 14. Block diagram of mechanical example. 
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simulations in one step, instead of first deriving the equations 

and then drawing the block diagram. 

 

3. Model description  

In the following section, the bond graph based modeling for 

the different subsystems shown in Fig. 1, will be presented. It 

is shown that the bond graph method provides a hierarchical 

modeling for the entire wind turbine generating system as well 

as the system equations can be extracted symbolically in a 

structured way. 

 

3.1 Aerodynamics  

In the aerodynamics part we need to find a way to convert 

the wind into torque and thrust force, i.e. transform a flow into 

efforts. This is done by means of a modulated gyrator. We use 

the torque and thrust equations given in Eqs. (3) and (4). The 

only difference between a MGY and a GY is that the gyrator 

ratio is not a constant parameter, but it is a varying parameter. 

In this case the transformation is dependent on two varying 

parameters, the pitch angle β  and the rotor rotational speed 

r
ω . 

A generic equation is used to model Cp. This equation and its 

coefficients, based on the turbine characteristics of Ref. [19], is 

shown in Eq. (17). A plot of the Cp curve is shown in Fig. 16, 

the plot is made with different pitch- and λ  values. Similar 

formulas can be found regarding the thrust force coefficient 

T
C , in our calculations only a simple relation is used. 

 
(17a)

 

 

(17b)

 

 
(17c)

 
 

where 
1 2 3 4 5
0.5176, 116, 0.4, 5, 21c c c c c= = = = =  and 

6
c  

0.0068.=  

 

3.2 Pitching system  

The pitching mechanism can be modeled as a second order 

system: 
 

 (18) 
 

where 
ref
θ  is the reference pitch angle, 

n
ω  is the natural 

frequency and ξ  is the damping ratio. By setting up the 

dynamic equation of the mass-spring-damper system in Fig. 

17, we can compare the elements in the equation with Eq. (18). 

In this way we can set up the bond graph in Fig. 18 with 

appropriate coefficients. 
 

.
 

 

3.3 Drive train  

A sketch of a two-mass drive train model is seen in Fig. 19. 

As discussed in the introduction there are many types of drive 

train models, ranging from for example one- to six mass mod-

els. For simplicity we will assume a two-mass-model is 

enough. To derive the governing equations from a two-mass 

model is not too hard. If we are talking about a six-mass 

model the work can be quite extensive, and the possibility of 

making a mistake in the process is high. This is one of the 

reasons bond graph is a safer choice. As the complexity of the 

v
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Fig. 15. Modulated gyrator transforming wind speed into aerodynamic 

torque and thrust force. 
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mechanical system grows, our work as modelers stays about 

the same. If we have a six-mass model with many springs and 

dampers, this gives us many equations and to translate this 

into a block diagram can take quite some time. As for dealing 

with bond graph, the work is to set up the graphical represen-

tation. If we want to see the equations, these can be derived in 

a very specific way. Or, off course, we can choose to get them 

from the bond graph simulation program 20-sim. 

By utilizing Newton’s second law on rotational form of the 

wind turbine sketch in Fig. 19, we end up with the following 

differential equations: 

 

 (19a) 

 
(19b)

 
 

where 

 

 
 

In a quite intuitive way we can translate the mechanical 

system in Fig. 19 into a bond graph representation, as shown 

in Fig. 20. This can again be simplified a bit in order to make 

a minimal bond graph representation, see Fig. 21. The bond 

graph model consists of three 1-junctions and one 0-junction. 

The 1-junction connected to the rotor inertia describes the 

rotor rotational speed. Since there are dynamics in between the 

rotor inertia and the generator inertia, they do not have the 

same speed. This is the reason for the 0-junction, because we 

know the transferred torque is the same (no loss included in 

the drive train). The 1-junction connected to the resistive- and 

the compliance element indicates the rotational speed 

difference between the two inertias. This connection also 

indicates that the compliance- and resistive element have the 

same rotational speed (flow), but different torque (effort). The 

last 1-junction is connected to the generator inertia and de-

scribes the generator rotational speed. 

Once the bond graph representation is made, the procedure 

for extracting its governing equations is quite straight forward. 

One has to follow some certain rules, and at the end the equa-

tions will be the outcome. We can also choose to get the equa-

tions from the simulation software. The equations can be de-

rived as follows. 

From the bond graph representation we see there are three 

dynamic elements, two inertias and one spring, i.e. three dy-

namic equations must exist. These first order differential equa-

tions are given in Eq. (20). 

 

 

(20a)

 

 

(20b)

 

 

(20c)

 

 

With some manipulations this is exactly the same as in Eq. (19). 

 

3.4 Generator  

There are many ways to model the generator dynamics. One 

of the recurring ways is with an equivalent circuit. In this 

system we assume that a first order transfer function will 

capture its dynamics. We do this in the same way as for the 

pitching system, but since it is first order we do not include the 

spring. 
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Fig. 20. First bond graph of drive train. 
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Fig. 21. Final bond graph of drive train. 

 

Jr

Jg

Kd

Dd Ng

Ta

Te

 
 

Fig. 19. Sketch of wind turbine. 
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 (21) 
 

where 
ref
T  is the reference torque and τ  is the time constant. 

In this way we can set up the bond graph similar to Fig. 18 

with appropriate coefficients. 

 

. 

 

3.5 Tower 

In Fig. 22 we see the turbine sketch and where the thrust 

force is acting on the structure. It is assumed that the tower 

movement will not influence the mechanical system, it only 

affects its input, i.e. the wind speed. The bond graph model of 

the tower can be seen in Fig. 23. Since the deflections of the 

tower are assumed to be small, we assume tower movement 

only in horizontal direction. 

The dynamic equation from the bond graph model (Fig. 23), 

is given in Eq. (23). 
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Fig. 22. Sketch of wind turbine structure. 
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Fig. 23. Bond graph of tower motion. 
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Fig. 24. Bond graph of wind turbine generating system. 

 

 
 

Fig. 25. Time behavior of the selected signals from 20-sim. 

 

 
 

Fig. 26. Time behavior of the selected signals from MATLAB/ Simu-

link. 
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(22a)

 

. 
(22b)

 
 

We can rewrite Eq. (22) in a non bond graph notation: 

 

 
(23)

 
 

where 
t

m  is the tower mass, 
t
F  is the thrust force acting on 

the tower, 
t

D  is the tower damping and 
t

K  is the tower 

stiffness. 

 

4. Simulation results 

In this section we want to validate the bond graph design. 

The procedure is to first connected together all the subsystems 

from section III. Second, the same model is implemented as 

block diagrams in MATLAB/Simulink. This software is 

widely established throughout the academic community and 

the result from MATLAB/Simulink will act as a reference 

output for validation purpose. 

The bond graph representation of the system setup in Fig. 1 

is shown in Fig. 24. The inputs to the systems are pitch angle, 

reference power and wind speed. 

The simulations are made with maximum pitch angle, maxi-

mum wind condition, maximum power and with initial condi-

tions on the rotor and generator. All wind turbine parameters 

used in the simulations are found in Ref. [19]. Once the simu-

lations are carried out in the two softwares, time behavior of 

the most important dynamics are inspected. As seen in Figs. 

25 and 26, the behavior of the two systems are identical. This 

confirms the fact that we eventually end up with the same 

governing equations whether one uses the classical Newton’s 

2nd  law or the bond graph approach. 

 

5. Conclusion 

The purpose of this paper is to make a nonlinear model of a 

wind turbine generating system by using the bond graph 

approach. We are not looking to validate a specific turbine 

system, but we want to show a simple and suitable way to 

model it. The nonlinear wind turbine consists of drive train, 

pitching system, tower and generator. To model dynamic 

systems in the classical way and the bond graph way is quite 

different, but the outcome is a model with exactly the same 

governing equations. We have tried to emphasize that the 

bond graph approach will give a better understanding of what 

actually happens in the system. This include; spotting 

algebraic loops right away and maintaining integral causality, 

to name a few. The approach is unified, which means one can 

model all types of physical systems with the same 

methodology. Today, most engineers must work and interact 

in many different disciplines. An understanding of the 

intersections of these different disciplines is a valuable asset 

for any engineer. Based on the results in this paper, interesting 

future research include performing control design using bond 

graph and possibly constructing an offshore wind turbine 

model. Simulations can be carried out in the software 20-sim, 

or if one prefer, it is also possible to export the model to 

MatLab/Simulink via S-function. 

 

Appendix 

The wind turbine parameters used for this study in the 

model system are given in Table 1. 
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Table 1. Wind turbine parameters. 
 

Pitch 

Natural frequency 0.88
n

rad

s
ω

 
 =
 
 

 

Damping ratio 0.9[ ]ζ = −  

Maximum pitch angle max
25[ ]β = °  

Minimum pitch angle min
5[ ]β =− °  

Drive train 

Nominal power  
65 10 [ ]

nom
P W= ×  

Rotor inertia 
7 25.9154 10 [ ]

r
I Kg m= × ⋅  

Generator inertia 
2500[ ]

g
I Kg m= ⋅  

Drive train stiffness 
88.7354 10

d

N
K

rad

 
 = ×
 
 

 

Drive train damping 
78.3478 10

d

N
D

rad s

 
 = ×
 ⋅ 

 

Gear ratio 97[ ]
g

N = −  

Generator 

Time constant 0.1[ ]sτ =  

Nominal generator  

speed 
max

122.91
g

rad

s
ω

 
 =
 
 

 

Minimum generator  

speed 
min

70.16
g

rad

s
ω

 
 =
 
 

 

Structure/Tower 

Rotor speed 63[ ]R m=  

Hub height 90[ ]h m=  

Tower mass 
54.2278 10 [ ]

t
m Kg= ×  

Tower stiffness 
61.6547 10

t

N
K

m

 
 = ×
 
 

 

Tower damping 
32.0213 10

t

N
D

m s

 
 = ×
 ⋅ 
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