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Abstract:
Landing gear suspension systems fulfill the tasks of absorbing the vertical energy of the
touch-down as well as providing passenger and crew comfort with a smooth ground ride before
take-off and after landing. They are also designed to have optimal performance in the case of a
hard landing. In general, the tasks of aircraft landing gears are complex and sometimes lead to
a number of contradictory requirements. Although there are existing modifications of aircraft
shock absorbers to reduce the problem, the basic design conflict between the requirements
for landing and for rolling cannot be fully overcome by a passive suspension layout. Active
and semiactive suspension techniques are a solution to this problem and are capable of
reducing fuselage vibrations effectively. In order to get satisfactory damping performance
with active and semiactive devices, appropriate control laws must be employed. In this paper,
we study the use of an adaptive backstepping control with H∞ performance to cope with
disturbances, uncertainties and nonlinearities, typical of suspension systems and damping
devices. A comparison between active and semiactive strategies is provided through the analysis
of simulation results.

1. INTRODUCTION

Suspension systems are one of the most critical parts of
transportation vehicles. A good suspension system should
be able to provide safety to both passengers and loads
and protect the vehicle from damage caused by the un-
evenness of the roads. In aircrafts, the landing gears fulfill
these tasks. Not only are they designed to provide com-
fort during taxiing but absorb the energy during touch
down. Landing gears mainly consist of a strut attached to
the aircraft fuselage. The strut is coupled to the ground
via one or more wheels with flexible tyres mounted on
an axle [1]. Landing gears are normally equipped with
passive damping devices that absorb the energy. However,
there may be cases when the impact is large because the
damper cannot be tuned for every single runway charac-
teristics. This is why active and semiactive absorbers are
currently being studied and experimented to overcome the
adaptability problem [2]. Compared with passive dampers,
active and semiactive devices can be tuned due to their
flexible structure. One of the drawbacks of active dampers
is that they may become unstable if the controller fails.
On the contrary, semiactive devices are inherently stable

because they cannot inject energy. Thus, the latter acts as
pure passive dampers in case of control failure [3].

In recent years, there has been an increasing interest in
the control of suspension systems using both active and
semiactive dampers. As such, different control techniques
have been applied. For instance, in [4], it is proposed a
semiactive controller based on a hybrid approach that
combines a non-linear PID term based on the expression
of the shock absorber viscous force contribution; in [3],
a kind of Nonlinear Model Predictive Control algorithm
(NMPC) for semiactive landing gears is developed using
Genetic Algorithms (GA) as the optimization technique
and chooses damping performance of landing gear at touch
down to be the optimization object; in [5], a semiactive
backstepping controller is proposed as a means to control
a magnetorheological damper for suspension systems; in
[6] a fuzzy adaptive output feedback controller to control
landing gear shimmy through active damping is proposed;
in [7], a hybrid control of active suspension systems for
quarter-car models with two-degree-of-freedom is imple-
mented by controlling the linear part with H∞ techniques
and the nonlinear part with and adaptive controller based
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on backstepping. In this paper, as an extension to pre-
vious works, an adaptive backstepping control with H∞
techniques is presented. To the best of the authors’ knowl-
edge, this idea has not been deeply developed, being the
work by Li and Liu [9] one example on this topic. Their
method integrates the adaptive dynamics surface control
and H∞ control techniques guaranteeing that the output
tracking error satisfies the H∞ tracking performance. The
contribution of our paper is two-fold: first, this paper
extends previous works on backstepping problem; second,
by utilizing an adaptive technique, using a Lyapunov func-
tion and a suitable change of backstepping variables, we
derive the explicit expression of the controllers to satisfy
both asymptotic stability and an H∞ performance for the
controlled system.

This paper is organized as follows. In Section 2, a detailed
description of the model of the suspension system of the
landing gear is presented. Section 3 explains the target
problem and the objective of the control to be designed.
Then, the details on the control formulation are outlined
in Section 4. The controller performance is analyzed in
Section 5. The conclusions are outlined in Section 6.

2. SYSTEM DESCRIPTION

The aircraft landing gear can be modeled as a quarter car
model as shown in Figure 1. It is composed of two subsys-
tems: the tyre subsystem and the suspension subsystem.
The tyre subsystem is represented by the wheel mass mu

while the suspension subsystem consists of a sprung mass,
ms, that resembles the aircraft mass. The compressibility
of wheel pneumatic is kt, while cs and ks are the damping
and stiffness of the uncontrolled suspension system. The
following state variables are used to model the system: x1

is the tyre deflection, x2 is the unsprung mass velocity,
x3 is the suspension deflection and x4 is the sprung mass
velocity. Thus, the state space representation of the system
of Figure 1 is:

Fig. 1. Landing gear model

• Tyre subsystem:
ẋ1 = x2 − d
ẋ2 = − kt

mu
x1 + ρu

(1)

• Suspension subsystem:
ẋ3 = −x2 + x4

ẋ4 = −u (2)

where ρ = ms/mu, d is the velocity of the input distur-
bance and u is the acceleration input due to the damping
subsystem. The input u is given by:

u = m−1
s (ksx3 + cs(x4 − x2) + fi) (3)

where fi is the damping force generated by the active or
semiactive device.

3. PROBLEM STATEMENT

In this section we present the details of the active and
semiactive controller for the aircraft landing gear. The
objective is to design an adaptive backstepping controller
to regulate the suspension deflection of the landing gear
with the aid of a damper, either active or semiactive, thus
providing safety and comfort while the aircraft is taxiing
on the runways. The adaptive backstepping controller will
be designed in such a way that, for a given γ > 0, the state-
dependent error variables e1 and e2 (to be defined later)
accomplish the following H∞ performance if J∞ < 0:

J∞ =
∫ ∞

0

(eT Re− γ2wT w)dt (4)

where e = (e1, e2)T is a vector of controlled signals,
R = diag{r1, r2} is a positive definite matrix and w is
the vector of incoming disturbances.

In order to formulate the adaptive backstepping controller,
the state space model of Eqs. (1) - (2) must be first
written in strict feedback form [8]. Therefore, the following
coordinate transformation is performed [10]:

z1 = x1 + ρ(ρ+ 1)−1x3

z2 = (ρ+ 1)−1x2 + ρ(ρ+ 1)−1x4

z3 = x3

z4 = −x2 + x4

(5)

The system, represented in the new coordinates, is given
by:

• tyre subsystem:
ż1 = z2 − d
ż2 = −kt[mu(ρ+ 1)]−1z1 + ρkt[mu(ρ+ 1)2]−1z3

(6)
• Suspension subsystem:

ż3 = z4
ż4 = ktm

−1
u z1 − ktρ[mu(ρ+ 1)]−1z3 − (ρ+ 1)u (7)

Substitution of the expression for u (Eq. 3) in Eq. 7 yields:
ż3 =z4
ż4 =ktm

−1
u z1 − ktρ[mu(ρ+ 1)]−1z3

− (ρ+ 1)m−1
s [ksx3 + cs(x4 − x2) + fi]

=di − akz3 − acz4 − affi

(8)

where ak = [ktρ(ρ+1)−1+(ρ+1)ks]m−1
u , ac = (ρ+1)m−1

s cs
and af = (ρ + 1)m−1

s ; di = ktm
−1
s z1 reflects the fact

that the disturbance enters to the suspension subsystem
through the tyre subsystem. ak and ac are uncertain
constant parameters whose estimated values are âk and
âc, respectively. Thus, the errors between the estimates
and the actual values are given by:

ãk = ak − âk

ãc = ac − âc
(9)
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Let a1 = kt[ms(ρ + 1)]−1, a2 = ρkt[ms(ρ + 1)2]−1 and
am = ktm

−1
s . From Eqs. (6) - (7), it can be shown that

the transfer functions from d(t) and fi(t) to z1(t) are:
Z1(s)
D(s)

=
−s(s2 + acs+ ak)

s4 + acs3 + (a1 + ak)s2 + a1acs+ a1ak − ama2

(10)
Z1(s)
Fi(s)

=
−a2af

s4 + acs3 + (a1 + ak)s2 + a1acs+ a1ak − ama2

(11)

If the poles of the transfer functions of Eqs. (10) and (11)
are in the left side of the s plane, then we can guarantee
the bounded input - bounded output (BIBO) stability of
Z1(s) for any bounded input D(S) and Fi(s). Thus, the
disturbance input di(t) in Eq. (8) is also bounded. This
boundedness condition will be used later in the controller
formulation.

Finally, since di is the only disturbance input to the sus-
pension subsystem, the vector w of the H∞ performance
objective as given in Eq. (4) becomes:

J∞ =
∫ ∞

0

(eT Re− γ2d2
i )dt (12)

4. CONTROLLER FORMULATION

In order to begin with the adaptive backstepping design,
we firstly define the following error variable and its deriva-
tive:

e1 = z3 (13)
ė1 = ż3 = z4 (14)

Now, the following Lyapunov function candidate is chosen:

V1 =
1
2
e21 (15)

whose first-order derivative is:
V̇1 = e1ė1 = e1z4 (16)

Equation (14) can be stabilized with the following virtual
control input:

z4d = −r1e1 (17)
ż4d = −r1ė1 = −r1z4 (18)

where r1 > 0. Now define a second error variable and its
derivative:

e2 = z4 − z4d (19)
ė2 = ż4 − ż4d (20)

Therefore,
V̇1 = e1z4 = e1(e2 − r1z4) = e1e2 − r1e1z4 (21)

On the other hand, the derivatives of the errors of the
uncertain parameter estimations are given by:

˙̃ak = − ˙̂ak (22)
˙̃ac = − ˙̂ac (23)

Now, an augmented Lyapunov function candidate is cho-
sen:

V = V1 +
1
2
e22 +

1
2rk

ã2
k +

1
2rc

ã2
c (24)

Thus, by using Eqs. (19) - (23) and the fact that ak = ãk +
âk and ac = ãc + âc, the derivative of V yields:

V̇ =e1ė1 + e2ė2 + r−1
k ãk

˙̃ak + r−1
c ãc

˙̃ac

=e1e2 − r1e21 + e2di − akz3e2 − acz4e2 − affie2

− r1z4e2 − r−1
k ãk

˙̂ak − r−1
c ãcȧc

=e1e2 − r1e21 + e2di − affie2 − r1z4e2 − r−1
k ãk

˙̂ak

− (ãk + âk)z3e2 − (ãc + âc)z4e2 − r−1
c ãc

˙̂ac

=e1e2 − r1e21 + e2di − ãk(z3e3 + r−1
k

˙̂ak)− âkz3e2

− ãc(z4e2 + r−1
c

˙̂ac)− âcz4e2 + affie2 − r1z4e2
(25)

Now consider the following adaptation laws:
z3e1 + r−1

k
˙̂ak = 0 (26)

z4e2 + r−1
c

˙̂ac = 0 (27)

Substitution of Eqs. (26) and (27) into Eq. (25) yields:

V̇ = −r1e21 +e2di +e2(e1− âkz3− âcz4 +affi−r1z4) (28)

By choosing the following control law:
fi = −a−1

f (e1− âkz3− âcz4−r1z4 +r2e2 +e2(2γ)−2) (29)

with γ > 0 and r2 > 0, we get:
V̇ =− r1e21 + e2di − r2e22 − e2(2γ)−2

=− r1e21 + e2di − r2e22 − e2(2γ)−2

+ γ2d2
i − γ2d2

i

=− r1e21 − r2e22 + γ2d2
i − (γdi − e2(2γ)−2)2

V̇ ≤− r1e21 − r2e22 + γ2d2
i

(30)

The objective of guaranteeing global boundedness of tra-
jectories is equivalently expressed as rendering V̇ negative
outside a compact region. As stated earlier in Section 3, the
disturbance input di is bounded as long as the poles of the
transfer functions (10) and (11) are in the left side of the s
plane. When this is the case, the boundedness of the input
disturbance di guarantees the existence of a small compact
region D ⊂ R2 (depending on γ and di itself) such that
V̇ is negative outside this set. More precisely, when r1e21 +
r2e

2
2 < γ2d2

i , V̇ is positive and then the error variables are
increasing values. Finally, when the expression r1e21 + r2e

2
2

is greater than γ2d2
i , V̇ is then negative. This implies that

all the closed-loop trajectories have to remain bounded, as
we wanted to show. Now, under zero initial conditions, we
can write:∫ ∞

0

V̇ dt ≤−
∫ ∞

0

r1e
2
1 dt−

∫ ∞
0

r2e
2
2 dt

+
∫ ∞

0

γ2d2
i dt

V |t=∞ − V |t=0 ≤−
∫ ∞

0

eT Re dt+ γ2

∫ ∞
0

d2
i dt

J∞ =
∫ ∞

0

(eT Re− γ2d2
i ) dt ≤ −V |t=∞ ≤ 0

(31)

Thus, the adaptive backstepping controller satisfies the
H∞ performance and the asymptotic stability of the sys-
tem is guaranteed.
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The control force given by Eq. (29) can be used to drive
an actively controlled damper. However, the fact that
semiactive devices cannot inject energy into a system,
makes necessary the modification of this control law in
order to implement it with a semiactive damper; that is,
semiactive dampers cannot apply force to the system, only
absorb. There are different ways to perform this [17, 14].
In this work, we will use the algorithm by [11], which
computes the control signal based on the force required by
the control law and the force that the damper is currently
generating:

v = Vmax ·H {(fi − fm) fm} (32)

where v is the damper input control signal, fi is the active
control input, fm is the current damping force, H{·} is
the Heaviside function and Vmax is the highest value of
the damper input control signal. The control signal v can
be a voltage or current signal that drives the mechanism
of the semiactive damper to provide the required damping
force.

Since the controller is derived using the backstepping tech-
nique, nonlinearities and uncertainties can be accounted
for by including them in the development of the control
law as done in [17].

5. NUMERICAL RESULTS

The controllers of Eqs. (29) and (32) were implemented
in MATLAB/Simulink in order to evaluate their perfor-
mance. The landing gear model (Eqs. 1 - 2) was imple-
mented with the following values: ms=11739 kg, mu=300
kg, ks=252000 N/m, cs=10000 N-s/m and kt=300000
N/m. With these values, the poles of the transfer functions
of Eqs. (10) and (11) are −0.34×10−3±j0.78 and −17.09±
j24.38 and thus, the disturbance input di is bounded. In
order to compare the active and the semiactive controllers,
we assume that:

• The dynamics of the active damper is given by the
first order filter

Ff (s)
Fi(s)

=
60

s+ 60
(33)

where Ff (s) is the Laplace transform of the output
of the active damper and Fi(s) is also the Laplace
transform of the active control force.
• The dynamics of the semiactive damper is given by

the Bouc-Wen model of a magnetorheological damper
[12, 16]:

fm =(c02(x4 − x2) + k02x3 + δ02ξ)v
+ (c01(x4 − x2) + k01x3 + δ01ξ)

(34)

ξ̇ =− κ|x4 − x2|ξ|ξ|n−1 − β(x4 − x2)|ξ|n

+A(x4 − x2)
(35)

where c01 + c02v and k0 = k01 + k02v are the damp-
ing and stiffness of the damper, which depend on a
voltage control input (v), ξ is an evolutionary vari-
able that accounts for the hysteretic dynamics of the
device and A, β, κ and n are parameters that control
the shape of the hysteresis loop.

The value of the Bouc-Wen model parameters are [13]:
α=33.27 N/m, α=182.65 N/m-V, c01=754.41 Ns/m,

c02=712.73 Ns/m-V, k01=1137.57 N/m, k02=1443.50 N/m-
V, κ=4209.8 m−2, β=4205.2 m−2, A=10246 and n=2.
Since this is a mid scale damper, able to generate ap-
proximately 3000 N at low velocities, the damping force is
scaled by a factor of 10 in order to make it suitable for this
landing gear system. The adaptive backstepping controller
is implemented with r1=1, r2=100, rc=1, rk=5 and γ=0.2.
The performance indices J1 – J8 of Table 1 were used to
numerically evaluate the controller performances. Indices
J1 – J6 show the ratio between the peak and root mean
square (RMS) values of of the system response (suspension
deflection, sprung mass velocity and sprung mass accelera-
tion) in the controlled case (‘active’ and ‘semiactive’) with
respect to the uncontrolled case (‘unc’, in the figures). J7

is the RMS value of the control effort and J8 is a measure
of the H∞ performance.

Index Definition, [Units]

J1 =
max|x3(t)|cont
max|x3(t)|unc

Pk. susp. defl. ratio, [m].

J2 =
max|x4(t)|cont
max|x4(t)|unc

Pk. sprung mass vel. ratio, [m/s].

J3 =
max|ẋ4(t)|cont
max|ẋ4(t)|unc

Pk. spr. mass accel. ratio, [m/s2].

J4 =
RMS(x3(t))cont
RMS(x3(t))unc

Susp. defl. RMS ratio, [adim.].

J5 =
RMS(x4(t))cont
RMS(x4(t))unc

Spg. mass vel. RMS ratio, [adim.].

J6 =
RMS(ẋ4(t))cont
RMS(ẋ4(t))unc

Spg. mass accel. RMS ratio, [ad.].

J7 = RMS(fi) Control effort RMS, [N].

J8 =

√
||[r1/2

1 e1 r
1/2
2 e2]T ||√

||di||
H∞ performance, [adim.].

Table 1. Performance indices.

The system is first excited with the random input of Figure
2. In Figure 3 we can observe the system response to
this input, in particular, the suspension deflection and the
sprung mass velocities and accelerations obtained with the
active and the semiactive dampers. It can be noted that
both dampers have a similar performance and also that
they get to significantly reduce the sprung mass velocity.
In Figure 4, a comparison between the control effort of
the active and the semiactve dampers is depicted. On the
other hand, the tyre-unsprung mass subsystem through
which the disturbance enters the sprung mass, responded
satisfactorily during the simulations as can be observed in
Figure 5. In spite of the fact that, for design purposes, this
subsystem was not explicitly considered in the formulation
of the control law, the effect of the controllers on it were
the reduction of the tyre deflection and the unsprung mass
velocity.

The performance indices of these controllers appear in
Table 2. This table shows a reduction in the suspension
deflection peaks and RMS values. At the beginning of the
control action, the peak acceleration is almost the same in
all controlled and uncontrolled cases, but the controllers
attempt to reduce it afterwards, as index J6 shows. Index
J7 shows that the control effort achieved by the semiactive
controller is less than that of the active controller, while
index J8 shows that the value of the H∞ performance of
both controllers is less than that of the prescribed γ.
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Fig. 5. tyre deflection and unsprung mass velocity.

Index Active control Semiactive control

J1 0.8861 0.8365
J2 0.3879 0.7558
J3 0.9669 0.9851
J4 0.9578 0.6897
J5 0.4164 0.6179
J6 0.6755 0.8151
J7 4232.3 2718.2
J8 0.0525 0.0446

Table 2. Performance indices for the random
input case.

The next simulation was performed with a bump-like dis-
turbance input, shown in Figure 6 and the system response
is shown in Figure 7. In this figure, it is readily observed
the reduction in suspension deflection and sprung mass
velocities and accelerations achieved by both controllers.
The control effort of both dampers can be seen in Figure
8. The tyre deflection and the unsprung mass velocity are
shown in Figure 9, where it can observed a significant
reduction with respect to the uncontrolled cases.

Despite the peak velocities and accelerations are slightly
higher than in the uncontrolled cases, this occurs only at
the beginning of the excitation and their values are signif-
icantly reduced after this. These facts are also reflected in
Table 3, where it can also be noted that the control effort
of the semiactive controller is less than that of the active
one. From these simulations, it can be seen that in spite of
the fact that active and semiactive control performances
are similar, the difference relies in favor of the semiactive
controller.
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Fig. 6. Bump-like disturbance input.
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Fig. 7. System response to the bump-like disturbance
input.
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input.
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Fig. 9. tyre deflection and unsprung mass velocity.

Index Active control Semiactive control

J1 0.9399 0.8220
J2 0.9912 1.0661
J3 1.0240 1.0779
J4 0.6001 0.5655
J5 0.3123 0.4129
J6 0.7828 0.7929
J7 6402.9 4917.0
J8 0.1913 0.1835

Table 3. Performance indices for the bump-like
input case.

6. CONCLUSIONS

In this paper we have explored the design of an adaptive
backstepping controller for the suspension system of a
landing gear. The controller was designed in such a way the
tracking errors achieved an H∞ performance. This class of
control allows to account for uncertainties, nonlinearities
and disturbances in a systematic way. Two controllers
were formulated: an active and a semiactive. This allowed
to make a comparison between two usual schemes in
suspension systems which consist of adding active or
semiactive dampers to improve the performance of the
pure passive damping system. As a result, the vibrations in
the sprung mass of the system were significantly reduced in
both active and semiactive cases. Despite the performance
of the active and semiactive controllers were similar, it
could be noted that the semiactive controller required of
less control effort to achieve the objectives.
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