
UNIVERSITY OF BERGEN

Linear dependencies between
non-uniform distributions in DES

by

Stian Fauskanger
Supervisor: Prof. Igor A. Semaev

Thesis for the degree Master of Science in Informatics

May 2014

in the
Faculty of Mathematics and Natural Sciences

Department of Informatics
Selmer Centre

Abstract

Davies and Murphy[1] explained some non-uniform distributions of the output from
pairs and triplets of S-boxes in DES, and how they are completely dependent on some
key bits. There are linear dependencies between these distributions. In this thesis, we
describe these linear dependencies. We also describe linear dependencies between the
distributions of the output from three adjacent S-boxes after n rounds in DES. We have
found all linear dependencies between the distributions of the output from 5 of the S-box
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Chapter 1

Introduction

In this thesis we study The Data Encryption Standard (DES). Davies and Murphy[1]
found some statistical properties of the S-boxes in DES that lead to non-uniform distri-
butions on fixed output-bits from the round function. The distributions are completely
determined by fixed key bits. As a consequence, there is a correlation between fixed
plaintext/ciphertext-bits and key bits.

We have found linear dependencies between those non-uniform distributions. All linear
dependencies between the distributions of the output from pairs and triplets of adjacent
S-boxes are found. All dependencies between the distributions of the XOR of all such
outputs in full DES are found for all pairs and for 5 out of the 8 triplets. The triplet
with S-box 4, 5 and 6 is found to have an abnormal large amount of linear dependencies
between the distributions. We have not managed to explain this abnormality at this
time.

In an attempt to compute all linear dependencies between the distributions of the output
from all S-boxes in 1-round DES, a modified version of DES (denoted by QDES) is
studied. QDES is equal to DES, but with fewer S-boxes and correspondingly smaller
block size. All dependencies in QDES with up to 4 S-boxes are found. A lower bound on
the number of dependencies for QDES with up to 7 S-boxes is found. The complexity
for computing linear dependencies between the distributions for QDES with 8 S-boxes
(full DES) is too high.



Chapter 2

Background

Part of my work has been to do a survey on Matsui’s work on linear cryptanalysis[2] of
DES and on Davies and Murphy’s analysis[1] of DES. These are described in Chapters 3
and 4. Linear dependencies between distributions are discussed in Chapter 5. This
chapter will give a short introduction to The Data Encryption Standard, explain the
notations used in this thesis and briefly present linear cryptanalysis of DES and Davies
and Murphy’s attack.

2.1 The Data Encryption Standard

The Data Encryption Standard[3] (DES) is a symmetric block cipher standardized by
the National Bureau of Standards (now known as National Institute of Standards and
Technology) in 1979. It has block size of 64 bits, and a 56-bit key. It is a 16 round
Feistel network, which is depicted in Figure 2.1.

DES uses a key-scheduling algorithm to produce 16 48-bit round keys, from the 56-bit
key. The algorithm permutes the 56 bits and selects 48 of them for each round in such
a way that each of the 56 bits is used in approximately 14 of the 16 rounds.

Encryption in DES is done by first applying an initial permutation (IP) to the plain-text.
The resulting string is divided into two 32-bit strings, L0 and R0. The cipher-text is
the inverse of the initial permutation (IP−1) applied to R16L16, which is computed by
16 iterations of this recursive equation:

Li+1 = Ri and Ri+1 = Li ⊕ F (Ri,Ki+1) for i = 0, 1, ..., 15.
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Figure 2.1: Feistel network Figure 2.2: Round function in DES

(Source: wikipedia.org)

The round function, F (Ri,Ki+1), depicted in Figure 2.2, is built using these three build-
ing blocks: an expansion function E; 8 different substitutions S-boxes S1 to S8 and a
permutation P . F (Ri,Ki+1) takes a 32-bit string, and a 48-bit round-key as input, and
outputs 32 bits. The expansion function expands the 32-bit Ri into 48 bits by repeating
some of the bits as shown by the grey cells in Table 2.3 (the numbers are bit indices).
The resulting 48-bit string is XORed with the round key, and then divided into eight
6-bit strings. The eight S-boxes map each of these 6-bit strings to 4-bit strings. The
result of F (Ri,Ki+1) is a permutation of the 32 output-bits from the S-boxes.

http://en.wikipedia.org/wiki/Data_Encryption_Standard
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2.2 Notations

This thesis will use the same numbering rule for bit positions as Matsui used in his
description of linear cryptanalysis; in an n-bit string, the right-most bit is the zero-th
bit and the left-most bit is the (n − 1)-th bit. Matsui assumed that inputs to different
rounds are independent and uniformly distributed. This is also assumed in this thesis.
The following notations are used on symbols.

X[i] The i-th bit of symbol X.
X[i, j, ..., k] X[i]⊕X[j]⊕ ...⊕X[k].
X[i ∼ j] Substring of symbol X starting with X[i] and

ending with X[j].
X||Y Concatenation of X and Y .
X ⊕ Y Bitwise XOR between X and Y .

2.3 Linear cryptanalysis of DES

Linear cryptanalysis[2] of DES is a known-plaintext attack found by Mitsuru Matsui.
The attack is impractical, in the sense that it requires a huge amount (≈ 244.5) of known
plaintexts and their corresponding ciphertexts, but it is still of great theoretical interest.

The basic concept of linear cryptanalysis is to find a linear approximation to S-boxes.
That is the parity of some input- and output-bits for S-boxes in the round function,
that is zero with probability p 6= 1

2 . An approximation of an S-box leads to a linear
approximation of the round function which includes some key bits that is zero with
probability p as well. Different linear approximations is then used for different rounds
to get a linear approximation of the DES cipher.

The cryptanalytic problem is to determine the key bits in the linear approximation,
given enough plaintext/ciphertext pairs. Matsui gave an algorithm for this which is
presented in Chapter 3.

0 31 30 29 28 27 28 27 26 25 24 23 24 23 22 21 20 19 20 19 18 17 16 15
16 15 14 13 12 11 12 11 10 9 8 7 8 7 6 5 4 3 4 3 2 1 0 31

Table 2.3: Expansion function in F (Ri,Ki+1)
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2.4 Davies and Murphy’s attack

Donald Davies and Sean Murphy[1] found some statistical properties of S-boxes in
DES. Let S(x5, ..., x0) = y3, y2, y1, y0. So the output from an S-box is uniformly dis-
tributed. However, the distribution of (x1, x0, y3, y2, y1, y0) and (x5, x4, y3, y2, y1, y0) is
non-uniform.

The expansion function in the round function in DES repeats some of the function’s 32
input-bits so that there are 6 bits for each S-box. The bits are repeated in such a way
that neighbouring S-boxes share two of the function’s input bits.

The non-uniform distribution of (x1, x0, y3, y2, y1, y0) and (x5, x4, y3, y2, y1, y0) combined
with the way how input-bits in the round function are repeated, make the output from
multiple S-boxes non-uniform. The distribution of this output is easily computed, and
depends only on some key bits. The distribution of the XOR of the output from multiple
rounds is also non-uniform and easily computed.

The output from two adjacent S-boxes has only two different distributions, and is de-
termined by the XOR of some key bits. The number of different distributions for 3
adjacent S-boxes is even for 16-round DES manageable. Observing a large number of
plaintext/ciphertext pairs with a fixed key give us some information about the key. The
complexity of the attack is, however, about the same as brute-force attack on the key
space.



Chapter 3

Linear Cryptanalysis of DES

Mitsuru Matsui[2] describes a known-plaintext attack, known as linear cryptanalysis,
that theoretically breaks DES. It’s a theoretical attack because it requires a huge amount
(≈ 244.5) of known plaintexts and their corresponding ciphertexts.

Linear cryptanalysis looks at correlations between the parity of some fixed input-bits and
the parity of fixed output-bits of the round function in DES that hold with probability
p 6= 1

2 for a fixed key. This is extended through multiple rounds of DES, and is used to
deduce information about key bits.

3.1 Principle of Linear Cryptanalysis

The central part of linear Cryptanalysis is to find what Matsui called an ”effective” lin-
ear approximate expression which holds with probability p 6= 1

2 for a random plaintext
P , the corresponding cipher text C and fixed secret key K:

P [i1, i2, ..., ia]⊕ C[j1, j2, ..., jb] = K[k1, k2, ..., kc]. (3.1)

i1, i2, ..., ia, j1, j2, ..., jb, k1, k2, ..., kc denote bit indices. Both sides of the equation repre-
sents one bit of information. Linear Cryptanalisys is a known plaintext attack, so we
know all the bits on the left side of the equation. When we have such an ”effective” linear
approximate expression, we can derive one key bit, K[k1, k2, ..., kc], from the plaintex-
t/ciphertext pairs. Matsui gives the following algorithm, based on maximum likelihood,
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to find the most probable value for the derived key bit, given N plaintext/ciphertext
pairs:

Algorithm 1

Step 1: Let T be the number of plain texts such that the left hand side of (3.1) is equal
to zero.

Step 2: If T > N/2:
then guess K[k1, k2, ..., kc] = 0 (when p > 1

2) or 1 (when p < 1
2)

else guess K[k1, k2, ..., kc] = 1 (when p > 1
2) or 0 (when p < 1

2)

(3.1) and Algorithm 1 only gives us one bit of information about the key. To increase the
number of bits, one can find a linear approximation for (n-2)-round DES which includes
the remaining two rounds.

P [i1, i2, ..., ia]⊕ C[j1, j2, ..., jb]⊕ F1(PL,K1)[u1, u2, ..., ud]

⊕ Fn(CL,Kn)[v1, v2, ..., ve] = K[k1, k2, ..., kc], (3.2)

where F1(PL,K1)[u1, u2, ..., ud] and Fn(CL,Kn)[v1, v2, ..., ve] depend on some of the bits
in the round keys K1 and Kn. For incorrect values for these bits, the probability (3.2)
holds is much closer to 1

2 . Matsui gave the following algorithm to derive K1, K2 and
K[k1, k2, ..., kc] from known plaintext/ciphertext pairs.

Algorithm 2

Step 1: Let K(i)
1 (i = 1, 2, ...) and K

(j)
n (j = 1, 2, ...) be possible candidates for the

”effective” bits in K1 and Kn respectively. Then for each pair (K(i)
1 , K(j)

n ), let
Ti,j be the number of plain texts such that the left side of (3.2) is equal to zero.

Step 2: Let Tmax be the maximal value and Tmin be the minimal value of all Ti,j ’s.

• If |Tmax − N
2 | > |Tmin −

N
2 |, then adopt the key candidate corresponding to

Tmax, and guess K[k1, k2, ..., kc] = 0 (when p > 1
2) or 1 (when p < 1

2)

• If |Tmax − N
2 | < |Tmin −

N
2 |, then adopt the key candidate corresponding to

Tmin, and guess K[k1, k2, ..., kc] = 1 (when p > 1
2) or 0 (when p < 1

2)

3.2 Linear Approximation of S-boxes

Matsui defined a measure of linearity for S-boxes. One counts how many times the XOR
of fixed input bits agrees with the XOR of fixed output bits out of all 64 possible inputs.
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For example, the most effective linear approximation is S5(x)[4] = x[3, 2, 1, 0] which
holds for 12 out of 64 possible values for x.

Definition 3.3. For a given S-box Sa (a = 1, 2, ..., 8), 1 ≤ α ≤ 63 and 1 ≤ β ≤ 15, let

NSa(α, β) = #{x | 0 ≤ x ≤ 64, (
5⊕
s=0

x[s] • α[s]) = (
3⊕
t=0

Sa(x)[t] • β[t])},

where the symbol • denotes bitwise AND.

There is a correlation between the input bits and output bits of Sa if NSa(α, β) 6= 32.
|NSa(α, β) − 32| gives a measure of the effectiveness of the linearity. The linear ap-
proximation, previously mentioned as the most effective, can be written as NS5(16, 15).
The effectiveness of this approximation is |NS5(16, 15) − 32| = 20. Because this is the
most effective linear approximation of an S-box, the following equations are the best
approximations of the round function F .

X[15]⊕ F (X,K)[7, 18, 24, 29] = K[22], (3.4)

X[15]⊕ F (X,K)[7, 18, 24, 29] = K[22]⊕ 1. (3.5)

(3.4) was computed from NS5(16, 15) by tracing the 4-th input-bit to S5 through the
expansion function to the 15-th bit of X. X[15] is XORed with the 22-th bit in the round
key before it reaches the S-box, which is why we have K[22]. The four output-bits from
S5 is traces through the permutation to output-bits 7, 18, 24 and 29. The first equation
holds with probability p = NS5(16, 15)/64 ≈ 0.19, and the second equation holds with
probability q = 1− p ≈ 0.81.

3.3 Linear Approximation of DES

This section explains how linear approximations of the round function can be extended
to a linear approximation of multiple rounds in DES. First, an approximation of 3 and
5-round DES is given. An approximation of n-round DES is then described and used
to approximate 16-round DES. Matsui gave a lemma for computing the probability the
XOR of multiple random variables is equal to zero.

Lemma 3.6 (Piling-up Lemma). Let Xi (1 ≤ i ≤ n) be independent random variables
whose values are 0 with probability pi. Then the probability that X1⊕X2⊕ ...⊕Xn = 0 is

1
2 + 2n−1

n∏
i=1

(
pi −

1
2

)
.
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3.3.1 3-round DES

Applying (3.4) to the first round we get the following equation:

F1(PL,K1)[7, 18, 24, 29]⊕ PL[15] = K1[22].

We can substitute F1 by X2 ⊕ PH to get

X2[7, 18, 24, 29]⊕ PH [7, 18, 24, 29]⊕ PL[15] = K1[22].

Similarly, applying (3.4) to the third round gives us the following equation:

X2[7, 18, 24, 29]⊕ CH [7, 18, 24, 29]⊕ CL[15] = K3[22].

Combining these, and canceling the common term X2[7, 18, 24, 29], we get a linear ap-
proximation (3.7) of 3-round DES. All bits on the left hand side of the equation are
known, and we can thus compute K1[22]⊕K3[22] by Algorithm 1.

PH [7, 18, 24, 29]⊕ CH [7, 18, 24, 29]⊕ PL[15]⊕ CL[15] = K1[22]⊕K3[22]. (3.7)

(3.7) will be correct if both, or none, of the linear approximations of the first and third
round is correct. Since NS5(16, 15) = 12, the probability for this is (12

64)2 + (1− 12
64)2 =

0.70, or by the Piling-up Lemma:

1
2 + 22−1 × (12

64 −
1
2)× (12

64 −
1
2) = 0.70.

3.3.2 5-round DES

For 5-round DES we will make use of the following equation derived from NS1(27, 4) =
22:

X[27, 28, 30, 31]⊕ F (X,K)[15] = K[42, 43, 45, 46]. (3.8)

Applying the above linear approximation on the first round and (3.4) to the second
round gives us the following equation:

X3[7, 18, 24, 29]⊕ PH [15]⊕ PL[7, 18, 24, 27, 28, 29, 30, 31] = K5[42, 43, 45, 46]⊕K4[22].

Use the same linear approximations on the fifth and forth rounds respectively, to get

X3[7, 18, 24, 29]⊕ CH [15]⊕ CL[7, 18, 24, 27, 28, 29, 30, 31] = K1[42, 43, 45, 46]⊕K2[22].
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Each of these two holds with probability (12
64)(22

64) + (1− 12
64)(1− 22

64) = 0.598. Combin-
ing these, and canceling the common term X3[7, 18, 24, 29], we get the following linear
approximation of 5-round DES:

PH [7, 18, 24, 29]⊕ CH [7, 18, 24, 29]⊕ PL[15]⊕ CL[15] = K1[22]⊕K3[22]. (3.9)

(3.9) holds with probability 0.5982 + (1 − 0.598)2 = 0.519 since the approximation of
the first and last two rounds both hold with probability 0.598. Calculating the same
probability using the Piling-up Lemma gives us the same result.

1
2 + 23

(12
64 −

1
2

)2 (22
64 −

1
2

)2
= 0.519.

3.3.3 n-round DES

To make a linear approximation for n-round DES we need to introduce two more lin-
ear approximations which come from NS1(4, 4) = 30 and NS5(16, 14) = 42, respectively.

X[29]⊕ F (X,K)[15] = K[44], (3.10)

X[15]⊕ F (X,K)[7, 18, 24] = K[22]. (3.11)

Matsui built a linear approximation (3.12) to any intermediate 5 rounds in DES con-
taining Xi and Xi+4 only, by applying (3.4), (3.10) and (3.11) to round i+ 1, i+ 2 and
i+ 3, respectively.

Ki+1[22] = Xi+1[15]⊕ Fi+1(X,K)[7, 18, 24, 29],

Ki+2[44] = Xi+2[29]⊕ Fi+2(X,K)[15],

Ki+3[22] = Xi+3[15]⊕ Fi+3(X,K)[7, 18, 24].

Ki+1[22] = Xi+1[15]⊕Xi[7, 18, 24, 29]⊕Xi+2[7, 18, 24, 29],

Ki+2[44] = Xi+2[29]⊕Xi+1[15]⊕Xi+3[15],

Ki+3[22] = Xi+3[15]⊕Xi+2[7, 18, 24]⊕Xi+4[7, 18, 24].

Combining these we get:
Xi[7, 18, 24, 29]⊕ (Xi+1[15]⊕Xi+1[15])

⊕ (Xi+3[15]⊕Xi+3[15])⊕Xi+4[7, 18, 24]

⊕ (Xi+2[7, 18, 24, 29]⊕Xi+2[7, 18, 24]⊕Xi+2[29])

= Xi[7, 18, 24, 29]⊕Xi+4[7, 18, 24]

= Ki+1[22]⊕Ki+2[44]⊕Ki+3[22] (3.12)
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(3.12) holds with probability 0.506 (by Piling-up Lemma). This is less than the
previous linear approximation for 5-round DES (3.9), which hold with probability 0.519.
However, (3.12) can be used repeatedly to build a linear approximation of n-round DES.

Matsui built an example to show how to use this repeatedly, by making a linear approx-
imation of 16-round DES. For this, (3.12) is used repeatedly to approximate 12 of the
round functions, and (3.4), (3.8) and (3.13) approximate the remaining round functions,
where (3.13) is derived from NS5(34, 14) = 16.

X[7, 18, 24]⊕ F (X,K)[12, 16] = K[19, 23]. (3.13)

(3.14), a linear approximation of 16 round DES, was built by approximating the in-
termediate rounds as listed below. Terms containing bits from round 2, 6, 10 and 14
got canceled out by common terms in the approximation of the rounds before and after
them.

Round 1: (3.13)

Round 3, 4 and 5: (3.12)

Round 7, 8 and 9: (3.12)

Round 11, 12 and 13: (3.12)

Round 15: (3.4)

Round 16: (3.8)

PH [7, 18, 24]⊕ PL[12, 16]⊕ CH [15]⊕ CL[7, 18, 24, 27, 28, 29, 30, 31]

= K1[19, 23]⊕K3[22]⊕K4[44]⊕K5[22]⊕K7[22]⊕K8[44]⊕K9[22]

⊕ K11[22]⊕K12[44]⊕K13[22]⊕K15[22]⊕K16[42, 43, 45, 46]. (3.14)

The probability that (3.14) holds is:

1
2 + 211

(16
64 −

1
2

)(12
64 −

1
2

)4 (30
64 −

1
2

)3 (42
64 −

1
2

)3 (22
64 −

1
2

)
= 1

2 − 1.49× 2−24.

3.4 The best expression and the best probability of DES

Matsui gave the following lemma for the probability of success when using Algorithm 1.
It’s based on approximating binomial distributions by normal distributions.
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Lemma 3.15. Let N be the number of given random plaintext and p be the proba-
bility that (3.1) holds. Assuming that |p − 1

2 | is sufficiently small, the success rate of
Algorithm 1 is ∫ ∞

−2
√
N |p− 1

2 |

1√
2π
e−x

2/2dx.

He noted that the success rate of Algorithm 1 only depends on
√
N |p− 1

2 | and calculated
that if N = |p− 1

2 |
−2, the success probability would be 97.7%.

Matsui also made a list of the best linear approximations together with the best proba-
bilities for up to 20 rounds. He found this for 3 rounds by brute force, and used induction
on the best i-round (0 ≤ i < n) probabilities to find the best n-round approximation
and probability[4].

For some n, there are two linear approximations with the best probability. For these
cases, one can compute one of the best linear approximations from the other by switch-
ing P and C and substituting the round index i with (n + 1 − i) for Fi and Ki. For
example, the following two best linear approximations of 6-round DES can be computed
from each other:

PL[α]⊕ PH [15]⊕ F1(PL,K1)[15]⊕ CL[15]⊕ CH [α, β]⊕ F6(CL,K6)[α, β]

= K2[22]⊕K4[22]⊕K5[γ]

←→ (3.16)

CL[α]⊕ CH [15]⊕ F6(CL,K6)[15]⊕ PL[15]⊕ PH [α, β]⊕ F1(PL,K1)[α, β]

= K5[22]⊕K3[22]⊕K2[γ],

where α = (7, 18, 24, 29), β = (27, 28, 30, 31) and γ = (42, 43, 45, 46).

3.5 Known-plaintext attack of DES

Matsui described a practical method for a known-plaintext attack on DES. First, he de-
scribed an attack on 8-round DES. The same method was used for 12 and 16-round DES.
These practical attacks used Algorithm 2 and thus used the best linear approximations
for 6, 10 and 14 rounds DES.

Lemma 3.15 can not be used to calculate the success rate for these attacks, since Algo-
rithm 2 is used. The complexity of running the attack on 16-round DES was too high,
so Matsui used experimental results from 8 and 12-round DES to predict the success
rate for 16-round DES.
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3.5.1 8-round DES

The following expression is a linear approximation of 8-round DES that holds with the
best 6-round probability 1

2 + 1.95 × 2−9, given that we substitute the correct keys K1

and K8.

PH [7, 18, 24]⊕ F1(PL,K1)[7, 18, 24]⊕ CH [15]

⊕ CL[7, 18, 24, 29]⊕ F8(CL,K8)[15]

= K3[22]⊕K4[44]⊕K5[22]⊕K7[22]. (3.17)

The 4 bits, F1(PL,K1)[7, 18, 24] and F8(CL,K8)[15], on the left hand side of (3.17) is
unknown, but can be determined by 6 bits from K1 and 6 bits from K8. The left hand
side can thus be divided into:

• 13 known bits from plaintext: PL[11] ∼ PL[16], CL[0], CL[27] ∼ CL[31],
PH [7, 18, 24]⊕ CH [15]⊕ CL[7, 18, 24, 29].

• 12 unknown bits from subkeys: K1[18] ∼ K1[23],K8[42] ∼ K8[47].

Matsui calls these 13 known, and 12 unknown bits the effective text bits and the effective
key bits respectively. He also presented a practical implementation of Algorithm 2, which
compute the effective key bits and the right hand side of (3.17) using the effective text
bits. The implementation is given in Algorithm 2-A.

Algorithm 2-A
[Data counting phase]

Step 1: Prepare 213 counters Ui (0 ≤ i ≤ 213) and initialize them to zero, where i

corresponds to each value on the 13 effective text bits of (3.17).
Step 2: For each plaintext P and the corresponding ciphertext C, compute the value i

of Step 1 and count up the counter Ui by one.

[Key counting phase]

Step 3: Prepare 212 counters Tj (0 ≤ j ≤ 212) and initialize them to zero, where j
corresponds to each value on the 12 effective text bits of (3.17).

Step 4: For each j of Step 3, let Tj be the sum of Ui’s such that the left side of (3.17),
whose value can be uniquely determined by i and j, is equal to zero.

Step 5: Let Tmax be the maximal value and Tmin be the minimal value of all Ti,j ’s.

• If |Tmax− N
2 | > |Tmin−

N
2 |, then adopt the subkey value j corresponding to

Tmax and guess that the right hand side of (3.17) is 0.
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• If |Tmax− N
2 | < |Tmin−

N
2 |, then adopt the subkey value j corresponding to

Tmin and guess that the right hand side of (3.17) is 1.

The complexity of the data counting phase is O(N) as it looks at every plaintext once.
Step 4 in the key counting phase computes the left side of (3.17) 212+13 times. The
total complexity of the algorithm is thus O(N) + O(2t+k), where t and k is the number
of effective text bits and effective key bits, respectively.

Using Algorithm 2-A on (3.17) gives us 13 subkey bits. There is another linear approxi-
mation of 8-round DES, with the same probability. It is found by using the same method
as used in (3.16) on (3.17).

CH [7, 18, 24]⊕ F8(CL,K8)[7, 18, 24]⊕ PH [15]

⊕ PL[7, 18, 24, 29]⊕ F1(PL,K8)[15]

= K6[22]⊕K5[44]⊕K4[22]⊕K2[22]. (3.18)

Solving (3.17) and (3.18) gives us the following 26 subkey bits: K1[18] ∼ K1[23],
K1[42] ∼ K1[47], K8[18] ∼ L8[23], K8[42] ∼ K8[47], K6[22] ⊕K5[44] ⊕K4[22] ⊕K2[22]
and K3[22]⊕K4[44]⊕K5[22]⊕K7[22]. Tracing these through the key-schedule algorithm
gives us the following 23 key bits:

0, 1, 3, 5, 8, 11, 14, 15, 18, 20, 23, 24, 28, 31, 37

38, 41, 44, 46, 50, 53, 54, 2⊕ 22⊕ 26⊕ 52.

Matsui created and ran a program implementing Algorithm 2-A, solving (3.17) and
(3.18) at the same time, and found the above 23 key bits in a few seconds using 400KB
memory. The remaining 33 key bits where found by brute force in 5 hours. This was
done with 220 plaintext/ciphertext pairs with 99.9% success rate.

Matsui showed another implementation of Algorithm 2 as well. The goal was to shorten
the computational time, while accepting that more plaintext/ciphertext pairs would be
required or accepting a lower success rate. For this purpose, he used the second-best
linear approximations of 6-round DES to create the following 8-round linear approxima-
tions:

PH [7, 18, 24, 29]⊕ F1(PL,K1)[7, 18, 24, 29]

⊕ CH [12, 16]⊕ CL[7, 18, 24]⊕ F8(CL,K8)[12, 16]

= K3[22]⊕K4[44]⊕K5[22]⊕K7[19, 23], (3.19)
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and
CH [7, 18, 24, 29]⊕ F8(CL,K8)[7, 18, 24, 29]

⊕ PH [12, 16]⊕ PL[7, 18, 24]⊕ F1(PL,K1)[12, 16]

= K6[22]⊕K5[44]⊕K4[22]⊕K2[19, 23]. (3.20)

In contrary to previous expressions with F (X,K) where output from only one S-box
is considered, Fi(X,K)[12, 16] is the XOR of 2 output-bits from two adjacent S-boxes.
Therefore, F8(CL,K8)[12, 16] and F1(PL,K1)[12, 16] depends on 12 subkey bits each.
(3.19) thus has the following effective text/key bits:

• 17 effective text bits: PL[11] ∼ PL[16], CL[0], CL[15] ∼ CL[24],
PH [7, 18, 24, 29]⊕ CH [12, 16]⊕ CL[7, 18, 24].

• 18 effective key bits: K1[18] ∼ K1[23],K8[24] ∼ K8[35].

The execution of Algorithm 2 will take longer time since there are more effective key
bits to try, while the brute-force attack on the rest of the keys will take less time. The
overall time used on the attack is much shorter.

Using Algorithm 2-A on (3.19) would cause problems because Step 4 would take too
long. Matsui gave the following implementation of Algorithm 2, which solves (3.17) and
(3.19) or (3.17) and (3.20). Matsui’s implementation in software solved all three of them
at the same time.

Algorithm 2-B
[Data counting phase 1]

Step 1: Prepare 213 counters Ui (0 ≤ i ≤ 213) and 217 counters Vj (0 ≤ j ≤ 217), and
initialize them to zero, where i and j correspond to each value on the 13 effective
text bits of (3.17) and the 17 effective text bits of (3.19), respectively.

Step 2: For each plaintext P and the corresponding ciphertext C, compute i and j of
Step 1, and count up the counters Ui and Vj by one.

[Key counting phase 1]

Step 3: Solve (3.17) using Ui’s. We then have the 12 effective key bits and one subkey
bit of the right hand side of (3.17).
In this stage, we are able to calculate the exact value of F1(PL,K1). It is therefore
possible to regard the effective text bits and the effective key bits of (3.19) as
follows:
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• 11 effective text bits: CL[15] ∼ CL[24],
F1(PL,K1)[7, 18, 24, 29]⊕ PH [7, 18, 24, 29]⊕ CH [12, 16]⊕ CL[7, 18, 24].

• 12 effective key bits: K8[24] ∼ K8[35].

This enables us to ”pack” Vj ’s into the following new counters Wk:

[Data counting phase 2]

Step 4: Prepare 211 counters Wk (0 ≤ k ≤ 211) and initialize them by zeros, where k
corresponds to each value on the 11 effective text bits above.

Step 5: For each j (0 ≤ j ≤ 217), compute k of Step 4, whose value is uniquely
determined by j, and add Vj to Wk.

[Key counting phase 2]

Step 6: Solve (3.19) using Wk’s. We then have the 12 effective key bits above and the
right hand side of (3.19).

Solving (3.17), (3.19) and (3.20), and tracing the subkey bits through the key-schedule
algorithm, gives us the following 38 key bits:

0, 1, 3, 5, 8, 11, 14, 15, 18, 20, 23, 24, 25, 28, 29, 30, 31,

32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47,

48, 50, 51, 53, 54, 2⊕ 7⊕ 13, 2⊕ 22⊕ 26⊕ 52.

Matsui’s instance of Algorithm 2-B found the above 38 key bits and the remaining 18
key bits, by brute force, in less than 10 seconds using 1MB of memory. This was done
with 220 plaintext/ciphertext pairs with 96.2% success rate.

3.5.2 12-round DES

For 12-round DES, Matsui used the same procedure as for 8-round DES. The following
linear approximations, which holds with probability 1

2 − 1.53× 2−15, was used with Al-
gorithm 2.

PH [7, 18, 24, 29]⊕ F1(PL,K1)[7, 18, 24, 29]⊕ CH [15]

⊕ CL[7, 18, 24, 29]⊕ F12(CL,K12)[15]

= K3[22]⊕K4[44]⊕K5[22]⊕K7[22]⊕K8[44]⊕K9[22]⊕K11[22], (3.21)
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and
CH [7, 18, 24, 29]⊕ F12(CL,K12)[7, 18, 24, 29]⊕ PH [15]

⊕ PL[7, 18, 24, 29]⊕ F1(PL,K1)[15]

= K10[22]⊕K9[44]⊕K8[22]⊕K6[22]⊕K5[44]⊕K4[22]⊕K2[22]. (3.22)

Both (3.21) and (3.22) have 13 effective text bits and 12 effective key bits. Solving them
both gives us 26 subkey bits which corresponds to the following 25 key bits:

0, 3, 4, 8, 11, 14, 16, 18, 22, 24, 26, 30, 31, 34, 38, 39,

41, 44, 46, 49, 50, 52, 54, 2⊕ 15⊕ 45, 13⊕ 17⊕ 20.

Matsui’s implementation of Algorithm 2 found the 25 key bits in just above 4 hours using
400KB of memory. This was done with 232 plaintext/ciphertext pairs with a success rate
of 94%. The remaining 31 bits was found by brute force in 1.5 hours.

3.5.3 16-round DES

The procedure for full, 16-round, DES is exactly the same as for 8 and 12-round DES.
The following linear approximations both hold with probability 1

2 − 1.19× 2−21.

PH [7, 18, 24]⊕ F1(PL,K1)[7, 18, 24]⊕ CH [15]⊕ CL[7, 18, 24, 29]⊕ F16(CL,K16)[15]

= K3[22]⊕K4[44]⊕K5[22]⊕K7[22]⊕K8[44]⊕K9[22]

⊕ K11[22]⊕K12[44]⊕K13[22]⊕K15[22], (3.23)
and
CH [7, 18, 24]⊕ F16(CL,K16)[7, 18, 24]⊕ PH [15]⊕ PL[7, 18, 24, 29]⊕ F1(PL,K1)[15]

= K14[22]⊕K13[44]⊕K12[22]⊕K10[22]⊕K9[44]⊕K8[22]

⊕ K6[22]⊕K5[44]⊕K4[22]⊕K2[22]. (3.24)

Both (3.23) and (3.24) has 13 effective text bits and 12 effective key bits. Solving them
both gives us 26 subkey bits which corresponds to the following 25 key bits:

0, 1, 3, 4, 8, 9, 14, 15, 18, 19, 24, 25, 31, 32, 38, 39, 41, 42, 44,

45, 50, 51, 54, 55, 5⊕ 13⊕ 17⊕ 20⊕ 46, 2⊕ 7⊕ 11⊕ 22⊕ 26⊕ 37⊕ 52.

Matsui did not run Algorithm 2 on (3.23) and (3.24) because it would require too much
computations. Instead, he used the experimental results from 8 and 12-round DES
to calculate the number of required plaintext/ciphertext pairs, and the probability of
success.
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He computed the efficiency of the attack on 8 and 12 round DES when N = a|p− 1
2 |
−2

for (a=2, 4, 8), where p is the best probability for 6 and 10-round DES, 1
2 + 1.95× 2−9

and 1
2 − 1.53× 2−15, respectively. Table 3.25 lists his results.

N 2|p− 1/2|−2 4|p− 1/2|−2 8|p− 1/2|−2

(3.17)
N = 1.05× 217 N = 1.05× 218 N = 1.05× 219

17.9% 53.7% 94.8%

(3.21)
N = 1.72× 229 N = 1.72× 230 N = 1.72× 231

13% 46% 91%

Table 3.25: Experimental results to solve (3.17) and (3.21)

Matsui estimated from Table 3.25 that the attack on 16-round DES with (3.23) should
be successful with high probability when the number of plaintext/ciphertext pairs is
N = 8|1.19× 2−21|−2 = 1.41× 244.

This chapter has described linear cryptanalysis. Linear approximations of the S-boxes
in DES was found and used to build linear approximations of the round function. These
were extended to multiple rounds and resulted in a best linear approximation of DES. A
known-plaintext attack on 8, 12 and 16-round DES was described, where it was shown
that full DES can be broken with high success rate, given 1.41×244 plaintext/ciphertext
pairs.



Chapter 4

Davies and Murphy’s attack

Donald Davies and Sean Murphy[1] found, in 1993, some statistical properties of S-
boxes in DES. The distribution for fixed input-bits and all output-bits is non-uniform
and completely depends on some of the key bits, and can be used in a known-plaintext
attack on DES.

The complexity of the attack described in the Davies and Murphy’s paper is about the
same as brute-force attack on the key space. The attack was later improved by Biham
and Biryukov[5] to a complexity of 250. Later, Kunz-Jacques and Muller[6] improved
the results to a chosen-plaintext attack with the cost of 245 plaintexts.

This chapter explain Davies and Murphy’s original analysis, with a different notation.

4.1 Principle of Davies and Murphy’s attack

A property of DES is that E causes two adjacent S-boxes in Fi(Xi,Ki) to share two
bits from X. This is caused by the way that E replicates half of the bits in Xi (see
Figure 4.1). If we name the 2 right-most input bits to S-box 5 ’x’, and the 2 left-most
input bits to S-box 6 ’y’, then we will have that x⊕ y = (Ki[17, 19],Ki[16, 18]), which is
part of the round key. We will refer to this as the common key bits from now on. This
will be true for any pair of adjacent S-boxes, where S-box 8 and 1 is considered to be
adjacent because of the way E ”wraps around” the first and last bit of X.

Another property of DES is that the output from any single S-box is uniformly dis-
tributed. This comes from the fact that the S-box is a permutations on the 4 middle
bits, where the two outer bits selects the permutation. It turns out however, that output
from two or more adjacent S-boxes is not uniformly distributed and the common key bits
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E(X)

⊕

345678910111213141516Input bit:

45678910111213141516171819202122232425Key bit:

S4 S5 S6 S7 S8

Figure 4.1: E replicates input bits to adjacent S-boxes

determines which distribution the output follows. This non-uniform distribution and the
correlation between the distribution and the common key bits is what the Davies and
Murphy’s attack exploits.

Davies and Murphy used a different notation than in this paper. We use the same
notation as in our work on linear dependencies between such distributions (next chapter).
They also represented the distributions differently.

4.2 2 adjacent S-boxes

We define two distributions related to one S-box, illustrated in Figure 4.4, and use them
to compute the distribution of the output from two adjacent S-boxes.

Definition 4.2. An S-box is a mapping S(x5, x4, x3, x2, x1, x0) = (y3, y2, y1, y0).
The right distribution of Si is the distribution of (x1, x0, y3, y2, y1, y0) given uniformly
random input to Si. We denote p(i)

xr = Pr(x1x0 = x and y3y2y1y0 = r).
The left distribution of Si is the distribution of (x5, x4, y3, y2, y1, y0) given uniformly
random input to Si. We denote q(i)

xr = Pr(x5x4 = x and y3y2y1y0 = r).

If the S-box index is unimportant, we may use the notation pxr or qys. Appendix A lists
pxr and qxr for all S-boxes. The row index in the tables represents the value for x (the
2 right/left-most input-bits) and the column index represent r. The tables show that
the left and right distributions are non-uniform and the following equations hold for all
S-boxes.

p(x⊕2)r + pxr = 1
32 , q(x⊕1)r + qxr = 1

32 , (4.3)
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S-Box

X (2 random bits)4 random bits

R

pxr = Pr(X = x and R = r)

S-Box

Y (2 random bits) 4 random bits

S

qys = Pr(Y = y and S = s)

Figure 4.4: Right and left distribution of an S-box

where we use the following notation. Let x = x1||x0, then x ⊕ 2 = (x1 ⊕ 1)||x0 and
x⊕ 1 = x1||(x0 ⊕ 1).

Adding the first and the second (or third and forth) row of any of the tables representing
q produces a constant row. Similarly adding the first and third (or second and forth)
row of any of the tables representing p produces a constant row as well.

The distribution on the 8-bit output from two adjacent S-boxes can be calculated by
using the left and right distributions on each S-box. The probability for output rs given
random input is the combined probability of pxr and qys, where x ⊕ y = A, and A are
common key bits of the two S-boxes. We have

Pr(rs | A) =
∑

[x⊕y=A] p
(i)
xrq

(i+1)
ys

Pr(A) = 4×
∑

x⊕y=A
p(i)
xrq

(i+1)
ys

= 4×
∑
x

p
(i)
(x⊕A)rq

(i+1)
xs = 4×

∑
x

p(i)
xrq

(i+1)
(x⊕A)s. (4.5)

Davies and Murphy proved

210 ×Pr(rs | A) = 4 + (−1)A[0,1](p0r − p1r)(q0s − q2s)212.

That implies that rs can have only two distributions, determined by the XOR of the
two bits in A. We show this is true as well.

Lemma 4.6.
Pr(rs | A) = Pr(rs | A⊕ 3), for any rs.
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Proof:
Pr(rs | A) = 4×

∑
x⊕y=A

p(i)
xrq

(i+1)
ys

= 4×
∑

x⊕y=A
( 1
32 − p

(i)
(x⊕2)r)(

1
32 − q

(i+1)
(y⊕1)s) (by (4.3))

= 4×
∑

x⊕2⊕y⊕1=A⊕3
( 1
32 − p

(i)
(x⊕2)r)(

1
32 − q

(i+1)
(y⊕1)s)

= 4×
∑

x⊕y=A⊕3
( 1
32 − p

(i)
xr )( 1

32 − q
(i+1)
ys )

= 4×
∑

x⊕y=A⊕3
( 1
322 −

p
(i)
xr

32 −
q

(i+1)
ys

32 + q(i)
xr q

(i+1)
ys )

= 4× ( 4
322 −

1
32× 16 −

1
32× 16) + 4×

∑
x⊕y=A⊕3

q(i)
xr q

(i+1)
ys (by

∑
x

pxr = 1
16)

= 4×
∑

x⊕y=A⊕3
q(i)
xr q

(i+1)
ys = Pr(rs | A⊕ 3).

The distribution of the XOR of two outputs from pairs of S-boxes is computed by the
self-convolution of (4.5), and the distribution for the XOR of n outputs from pairs of
S-boxes is computed by the n-fold self-convolution of (4.5). We assume independent
input to each round function in DES, so we have for 2 rounds

Pr(rs | AB) =
∑
ab

Pr(ab | A)Pr(rs⊕ ab | B), (4.7)

and for n rounds

Pr(rs | K1...Kn) =
∑

Pr(I1 | K1)× ...×Pr(In | Kn), (4.8)

where the sum is over all Ii such that
⊕n
i=1 Ii = rs and Ki is the common key bits for

the i-th pair of S-boxes.

Davies and Murphy showed that the XOR of n outputs can not have more than two
distributions. To show this with our representation of the distributions, we first need to
show the following 2 lemmas about n-fold convolutions of pxr and qyt.
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Lemma 4.9.∑
⊕ai=r

px1a1px2a2 ...pxnan +
∑
⊕ai=r

px1a1p(x2⊕2)a2 ...pxnan = 2−(2n+3),

and ∑
⊕ci=t

qy1c1qy2c2 ...qyncn +
∑
⊕ci=t

qy1c1q(y2⊕1)c2 ...qyncn = 2−(2n+3).

Proof:∑
⊕ai=r

px1a1px2a2 ...pxnan +
∑
⊕ai=r

px1a1p(x2⊕2)a2 ...pxnan

=
∑

a1a2...an−1

px1a1px2a2 ...pxn−1an−1pxn(a′⊕r) +
∑

a1a2...an−1

px1a1p(x2⊕2)a2 ...pxn−1an−1pxn(a′⊕r)

=
∑

a1a2...an−1

px1a1px3a3px4a4 ...pxn−1an−1pxn(a′⊕r)
(
px2a2 + p(x2⊕2)a2

)

= 1
32 ×

∑
a1a3a4...an−1

px1a1px3a3px4a4 ...pxn−1an−1

(∑
a2

pxn(a′⊕r)

)

= 1
32× 4 ×

∑
a1a3a4...an−2

px1a1px3a3px4a4 ...pxn−2an−2

∑
an−1

pxn−1an−1


. . .

= 1
32× 4n−4 ×

∑
a1a3

px1a1px3a3

(∑
a4

px4a4

)

= 1
32× 4n−3 ×

∑
a1

px1a1

(∑
a3

px3a3

)

= 1
32× 4n−2 ×

(∑
a1

px1a1

)

= 1
32× 4n−1 = 2−(2n+3)

where a′ = a1 ⊕ a2 ⊕ ...⊕ an−1.

Similarly, one proves the second equality.

Lemma 4.10. ∑
⊕ai=r

p(x1⊕2)a1px2a2 ...pxnan =
∑
⊕ai=r

px1a1p(x2⊕2)a2 ...pxnan ,

and ∑
⊕ci=t

q(y1⊕1)c1qy2c2 ...qyncn =
∑
⊕ci=t

qy1c1q(y2⊕1)c2 ...qyncn .
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Proof:
By Lemma 4.9 we have that

∑
⊕ai=r

px1a1px2a2 ...pxnan +
∑
⊕ai=r

px1a1p(x2⊕2)a2 ...pxnan

=
∑
⊕ai=r

px1a1px2a2 ...pxnan +
∑
⊕ai=r

p(x1⊕2)a1px2a2 ...pxnan .

Canceling the common term (the two left-most sums) we get

∑
⊕ai=r

p(x1⊕2)a1px2a2 ...pxnan =
∑
⊕ai=r

px1a1p(x2⊕2)a2 ...pxnan .

Similarly, one proves the second equality.

From Lemma 4.10 we have

Corollary 4.11. For C = 1 or 2

Pr(rs | K1...Ki...Kj ...Kn) = Pr(rs | K1...(Ki ⊕ C)...(Kj ⊕ C)...Kn).

Proof:
Pr(rs | K1...Ki...Kj ...Kn) =

∑⊕
Ii=rs

Pr(I1 | K1) ... Pr(In | Kn),

after changing the summation order

=
∑

x1...xn

 ∑
⊕ai=r

p(x1⊕K1)a1 ...p(xn⊕Kn)an

 ∑
⊕bi=s

qx1b1 ...qxnbn

 (4.12)

=
∑

x1...xn

 ∑
⊕ai=r

px1a1 ...pxnan

 ∑
⊕bi=s

q(x1⊕K1)b1 ...q(xn⊕Kn)bn

 , (4.13)

where Ii = ai||bi.

By Lemma 4.10, we can XOR Ki and Kj in (4.12) or (4.13) with C, depending on
whether C equals 2 or 1, respectively.

We can now show what we have been working towards, namely that the XOR of n
outputs can not have more than two different distributions.
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Lemma 4.14. The XOR of n outputs can have only two different distributions, depend-
ing on the XOR of all common key bits. That is

Pr(rs | K1...Kn) = Pr(rs | 0...0k),

where k = K1[0]⊕K1[1]⊕ ...⊕Kn[0]⊕Kn[1].

Proof:
By Corollary 4.11

Pr(rs | K1...Kn) = Pr(rs | 0(K1 ⊕K2)K3...Kn)

= · · ·

= Pr(rs | 0...0(K1 ⊕ ...⊕Kn)).

By the same procedure as in the proof of Lemma 4.6

Pr(rs | 0...0(K1 ⊕ ...⊕Kn)) = Pr(rs | 0...0(K1 ⊕ ...⊕Kn ⊕ 3)),

which is the same as to say that

Pr(rs | 0...0(K1 ⊕ ...⊕Kn)) = Pr(rs | 0...0k).

4.3 3 adjacent S-boxes

Davies and Murphy extended their results for pairs of S-boxes in DES to triplets of
S-boxes. The principle is the same, namely, the output rst from 3 adjacent S-boxes is
non-uniform and is determined by the common key bits. For triplets there are two sets
of common key bits, one for each pair of adjacent S-boxes in the triplet. We will denote
these four common key bits by AB (A and B are 2-bit values), or Ki (4-bit value) if
we look at multiple outputs. To compute the distributions, we need to define another
distribution on fixed input-bits and all output-bits for an S-box.

Definition 4.15. An S-box is a mapping S(x5, x4, x3, x2, x1, x0) = (y3, y2, y1, y0).
The Q distribution of Si is the distribution of (x5, x4, x1, x0, y3, y2, y1, y0) given uni-
formly random input to Si. We denote Q(i)

xyr = Pr(x5x4 = x, x1x0 = y, y3y2y1y0 = r).
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S-Box

Y(2 random bits)2 random bits

R

X(2 random bits)

Figure 4.16: Q distribution: Qxyr = Pr(X = x, Y = y,R = r)

If the S-box index is unimportant, we may use the notation Qxyr. See Figure 4.16 for
an illustration.

Appendix B lists Qxyr for all S-boxes. The row index in the tables represent the values
for x, y (2 bit each) and the column index represent r. The tables show that the Q
distributions are non-uniform.

The distribution on the 12-bit output from 3 adjacent S-boxes can be calculated by using
the left, Q, and right distribution of each S-box. We have

Pr(rst | AB) = 1
Pr(AB) ×

∑[
x⊕x′=A
y⊕y′=B

] p(i)
xrQ

(i+1)
x′y′s q

(i+2)
yt

= 16×
∑
x,y

p
(i)
(x⊕A)rQ

(i+1)
xys q

(i+2)
(y⊕B)t, (4.17)

where A is the common key bits of Si, Si+1 and B is the common key bits of Si+1Si+2.
Figure 4.18 illustrates 3 adjacent S-boxes and the variables in Pr(rst | AB).

(4.17) is an expression for the distribution on rst given key bits AB. We can use self-
convolution or n-fold self-convolution on (4.17) to calculate the distribution for the XOR
of 2 or n such outputs, respectively. We thus have

Pr(rst | AB,CD) =
∑
abc

Pr(abc | AB)Pr(rst⊕ abc | CD),

Pr(rst | K1...Kn) =
∑⊕
Ii=rst

Pr(I1 | K1) ... Pr(In | Kn),

where Ii are 12-bit intermediate values and Ki is the 4 common key bits for the i-th
S-box triplet.

For triplets there can be more than 2 different distributions. Davies and Murphy showed
that rst, the result of an n-fold convolution on (4.17), can have at most 4 × (n+3)!

6n!

distributions. We will now show this using our representation of the distributions.
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4 bits x

S-box

r

x⊕A 2 bits y ⊕B

S-box

s

y 4 bits

S-box

t

Figure 4.18: The variables in Pr(rst | AB)

Lemma 4.19.
Let

• XOR of the left-most bit in all Ki equals the XOR of the left-most bit in all K ′i
• XOR of the right-most bit in all Ki equals the XOR of the right-most bit in all K ′i
• The two middle bits in Ki equals the two middle bits in K ′i

then
Pr(rst | K1...Kn) = Pr(rst | K ′1...K ′n).

That is, Pr(rst | K1...Kn) does not change if we set the left-most bit in Ki (for i ≤ n−1)
to zero, and we set the left-most bit in Kn to the left-most bit of K1 ⊕ ... ⊕Kn. The
same is true for the right-most bits.

Proof:
For simplicity, we prove the lemma for a 2-fold convolution of Pr(rst | AB)

Pr(rst | AB,CD) =
∑
abc

Pr(abc | AB)Pr(abc⊕ rst | CD)

=
∑
x1,y1
x2,y2

(
∑
a

p
(i)
(x1⊕A)ap

(i)
(x2⊕C)(a⊕r))(

∑
c

q
(i+2)
(y1⊕B)cq

(i+2)
(y2⊕D)(c⊕t))(

∑
b

Q
(i+1)
x1y1b

Q
(i+1)
x2y2(b⊕s)),

let A = [k1k2], B = [k3k4], C = [k5k6], D = [k7k8],

=
∑
x1,y1
x2,y2

(
∑
a

p
(i)
(x1⊕[k1k2])ap

(i)
(x2⊕[k5k6])(a⊕r))

× (
∑
c

q
(i+2)
(y1⊕[k3k4])cq

(i+2)
(y2⊕[k7k8])(c⊕t))(

∑
b

Q
(i+1)
x1y1b

Q
(i+1)
x2y2(b⊕s)).

We fix the middle bits (k2, k3, k6, k7) and ”move” the right/left-most key-bits k1, k4, k5, k8

to the last term by Lemma 4.10. We get

∑
a

p
(i)
(x1⊕[k1k2])ap

(i)
(x2⊕[k5k6])(a⊕r) =

∑
a

p
(i)
(x1⊕[0k2])ap

(i)
(x2⊕[(k1⊕k5)k6])(a⊕r),
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and

∑
c

q
(i+2)
(y1⊕[k3k4])cq

(i+2)
(y2⊕[k7k8])(c⊕t) =

∑
c

q
(i+2)
(y1⊕[k30])cq

(i+2)
(y2⊕[k7(k4⊕k8)])(c⊕t).

The proof can be generalized to an n-fold convolution of Pr(rst | AB).

Lemma 4.20. Let Wi be the two middle bits in Ki. Pr(rst | K1...Kn) will not change
if one swaps Wi and Wj.

Proof:
Because XOR is commutative, the order in which the outputs from the triplets are
XORed does not affect the distribution. Changing the order of the keys thus give the
same distribution as changing the order of the outputs, since the distribution of an
output is fully dependent on the common key bits. Swapping the two middle bits of Ki

and Kj , is the same as first swapping the order of the Ki and Kj , and then reordering
the outer bits back to the original order (which does not affect the distribution according
to Lemma 4.19). Therefore, swapping the two middle bits of Ki and Kj cannot change
the distribution of rst.

A naive bound on the maximum number of different distributions, Pr(rst | K1...Kn),
would be 24n (the number of values K1...Kn can have). Using Lemma 4.19 and 4.20
we can give a much lower bound. The XOR of all left/right-most bits in Ki can only
have 2 values each. So if we fix the 2 middle bits in each Ki, we can have 4 different
distributions.

For each of these 4, we can permute the set of n middle-bit tuples without changing
the distribution. Each of the tuples can have 4 different values (0-3). The number of
different combinations when choosing n elements (with repetition) from 4 elements is
(n+3)!

6n! . The maximum number of different distributions is thus the same as Davies and
Murphy found, namely, 4× (n+3)!

6n! .

4.4 Practical attack

The two previous sections have described how to compute the distributions on the output
of two and three adjacent S-boxes after n rounds, given the common key bits from each
round. Davies and Murphy described a practical attack using this information. The
problem is to find which distribution a known set of plaintext/ciphertext pairs follows.
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For 2 adjacent S-boxes we have only 2 distributions to distinguish between, where the
XOR of all the common key bits decides which distribution the output follows. For 3
adjacent S-boxes we have up to 4× (n+3)!

6n! different distributions, and can thus divide the
possible keys into the same amount of classes. A successive attack will give information
on which class the correct key originates from.

4.4.1 2 adjacent S-boxes

The 8-bit output from two adjacent S-boxed can be regarded as a number i between 0
and 255. There are, as we have seen, 2 different distributions for this output. Which
distribution the output follows is decided from the XOR of all common key bits k. The
probability for output i given k is:

Pi(k) = Pr(rst = i | k),

where k =
⊕n
j=1Kj [0, 1]. Davies and Murphy proved

Pr(rs | K1...Kn) = 2−8 + (−1)kRS,

R =
∑
⊕xi=r

(p0x1 − p1x1)(p0x2 − p1x2) · · · (p0xn − p1xn),

S =
∑
⊕yi=s

(q0y1 − q2y1)(q0y2 − q2y2) · · · (q0yn − q2yn).

We thus have
Pi(k) = d+ (−1)kdi,

where d = 2−8 and di is easily computed. An attacker is given m plaintext/cipher-
text pairs where the value i occurs mi times. We denote our observations by M =
(m0, ...,m255). This give us the following likelihood function:

L(M ; k) =
255∏
i=0

Pi(k)mi .

The problem is to find out if k = 0 or k = 1. The Neyman-Pearson Lemma[7] state that
if we fix the probability of guessing k = 1 when k = 0, the likelihood ratio test is the
most powerful test, so that the probability of guessing k = 0 when k = 1 is the smallest.

λ = L(M ; k = 0)
L(M ; k = 1) =

255∏
i=0

(
Pi(0)mi

Pi(1)mi

)
.

If the correct value for k is 0, then λ will likely be bigger than one. If the correct value
for k is 1, then λ will likely be smaller than one. log(λ) will, however, be either positive
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or negative, respectively. So if we can decide the sign of log(λ), we can decide if k = 0
or k = 1.

log λ =
255∑
i=0

mi log
(
Pi(0)
Pi(1)

)
=

255∑
i=0

mi log
(
d+ di
d− di

)
=

255∑
i=0

mi log
(

1 + 2di
d− di

)

≈
255∑
i=0

mi
2di
d− di

≈ 2
d

255∑
i=0

midi,

I =
255∑
i=0

midi ≈
d

2 log λ.

The logarithm was approximated by the first term in the Taylor expansion of log(1+x),
and the other approximations is justified by di being much smaller than d. We can thus
use the sign of I to decide if k = 0 or k = 1.

To find the probability of success with a given number of plaintext/ciphertext pairs, we
need the expected value E[I] and the variance V ar[I] for I.

E[I] =
255∑
i=0

diE[mi] ≈
255∑
i=0

dim(d+ (−1)kdi)

=
255∑
i=0

dimd+
255∑
i=0

dim(−1)kdi = (−1)kmT,

V ar[I] ≈
255∑
i=0

d2
iV ar[mi] ≈ md

255∑
i=0

d2
i = mdT.

Where T =
∑255
i=0 d

2
i . Davies and Murphy stated that I is approximately normally dis-

tributed when m is large. To show this, we introduce a random vector Mi, with 256
binary entries and of weight 1 and each vector has probability Pi(k)

Mi =



(1, 0, 0, . . . , 0), P0(k)

(0, 1, 0, . . . , 0), P1(k)

· · · · · ·

(0, 0, . . . , 0, 1), P255(k).

So
Mi = (x0, ..., x255),

where
E[xi] = Pi(k).
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We thus have

M = (m0, ...,m255) =
m−1∑
j=0

Mj ,

E[Mi] = (P0(k), ..., P255(k)),

E[M ] = m× (P0(k), ..., P255(k)),

V ar[Mi] = V = (vij) (Covariance matrix),

(vij) = E[xixj ]− E[xi]E[xj ]

= E[xixj ]− Pi(k)Pj(k),

E[xixj ] =

0 i 6= j,

Pi(k) i = j.

The Central limit theorem[8] state that as m grows, the following distributions converges
towards the multivariate normal distribution:

M − E[M ]√
m

→ N (0, V ar[Mi])

=⇒∑255
i=0midi − E[I]√

m
→ N (0, d′ × V ar[Mi]× d′>).

We can thus approximate I by the normal distribution, N (0, V ar[I]). We fix α and
calculate m, the number of needed plaintext/ciphertext, such that α is the probability
of choosing k = 0 when k = 1.

α = Pr(I ≤ 0) = Φ
(

0− E[I]√
V ar[I]

)

= Φ−1(α) = −E[I]√
V ar[I]

,

E[I] = −Φ−1(α)×
√
V ar[I],

(−1)kmT ≈ −Φ−1(α)
√
mdT ,

m2T 2 ≈ Φ−1(α)2 ×mdT,

m ≈ Φ−1(α)2 × d
T

.

The S-boxes with the largest value for T is the S-box pair 78. Davies and Murphy
calculated T = 1.32−63. If we choose α = 0.0228 we get

m = Φ−1(0.0228)2 × 2−8

1.32−63 = 1.51× 256.
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An attack to find two key bits, one for odd rounds, one for even rounds, with success
probability (1−α)2 = (1− 0.0228)2 = 95.5% will require 1.51× 256 plaintext/ciphertext
pairs. This is about the same complexity as a brute-force attack on the key in DES.

4.4.2 3 adjacent S-boxes

We saw in Section 4.3 that the 12-bit output from three adjacent S-boxes can follow
a manageable number of distributions. Which distribution the output follows is deter-
mined by which class the key originated from. Let us denote the key class by

Ψ = (⊕s,W,⊕v),

where ⊕s is the XOR of the left-most common key bit in each of the n rounds, ⊕v is
the XOR of the right-most common key bits, and W is the set of the 2 middle common
bits from each of the n rounds, sorted in ascending order. All possible values for Ψ thus
represent each of the 4× (n+3)!

6n! different distributions by Lemmas 4.19 and 4.20.

If the key for DES is chosen randomly, the different values for Ψ are not equally probable.
For 2-round DES, for example, there are 4 key bits in W . Only one of the 24 possible
4-bit string give W = {0, 0}, namely (0, 0, 0, 0). There are however, two possible values
which give W = {1, 3}, and that is (0, 1, 1, 1) and (1, 1, 0, 1). We can thus calculate a
prior distribution of Ψ.

We denote the initial distribution of W by q(w) = Pr(W = w). We denote the prior
distribution of ⊕s and ⊕v by f(c) = Pr( ⊕ s = c) and g(d) = Pr( ⊕ v = d), which is
both 1

2 . We thus have the following prior distribution for Ψ:

p(c, w, d) = Pr(Ψ = (c, w, d)) = f(c)q(w)g(d).

The 12-bit output from 3 adjacent S-boxes can be regards as a number i between 0 and
N − 1 = 4095. The probability for output i, given Ψ is

Pi(Ψ) = Pr(rst = i | K = Ψ)

= d+ di(Ψ),

where d = 2−12 and K is any key that, according to Lemmas 4.19 and 4.20, falls into
the class Ψ. Since we know how to compute Pr(rst | K1...Kn), we can easily compute
the bias, di(Ψ), for all Ψ.

An attacker is given m plaintext/ciphertext pairs where the value i occurs mi times.
We denote our observations by M = (m0, ...,mN−1) We have the following likelihood
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function:

l(M ; Ψ) =
N−1∏
i=0

Pi(Ψ)mi ,

and the log-likelihood function

L(M ; Ψ) =
N−1∑
i=0

mi × log(Pi(Ψ))

=
N−1∑
i=0

mi × log(d+ di(Ψ))

=
N−1∑
i=0

mi × (log(1 + di(Ψ)
d

) + log(d))

≈
N−1∑
i=0

mi ×
di(Ψ)
d

+m log(d)

= 1
d

N−1∑
i=0

midi(Ψ)− c,

where c = 12m log(2).

We denote the correct key by ψ and any possible key by θ. We define I(θ), which is an
approximation of the log-likelihood.

I(θ) =
N−1∑
i=0

midi(θ) ≈ dL(M ; θ) + c.

Davies and Murphy’s idea was to do repeated usage of Bayes’ Theorem with the same
observation M , using the old posterior as the new prior. Since M is fixed, the posterior
is proportional to the likelihood times prior. Taking the logarithm of both sides of the
proportionality, we get the following (up to an additive constant).

posterior ∝ likelihood× prior,

log(posterior) ≈ log(likelihood) + log(prior),

log(Pr(θ | M)) ≈ log(l(M ; θ)) + log(p(θ)),

log(Pr(θ | M)) ≈ I(θ) + log(p(θ)),

where ∝ denotes proportional to. Doing this for each possible key candidate, we alter
the belief for each key cancidate θ with I(θ). We have the following expectation for I(θ).

E[I(θ)] =
N−1∑
i=0

di(θ)E[mi] =
N−1∑
i=0

di(θ)m(d+ di(ψ)) = m
N−1∑
i=0

di(θ)di(ψ).

The amount Bayes’ Theorem will alter our belief for θ will thus increase as the correlation
between di(θ) and di(ψ) increases. We then choose the θ with the highest posterior as
our key candidate.
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By the same argument as for I in the case for 2 adjacent S-boxes in Section 4.4.1, I(θ)
is approximately normally distributed when m is large. We want to compute how many
plaintext/ciphertext pairs we need to get a probability (1 − α) for I(ψ) to be positive.
For this, we need the the expectation and variance for I(ψ).

E[I(ψ)] = m
N−1∑
i=0

di(ψ)di(ψ) = mΓ(ψ),

V ar[I(ψ)] ≈ mdΓ(ψ),

where Γ(ψ) =
∑N−1
i=0 di(ψ)2. We can now compute m for every possible ψ, by the fol-

lowing calculations. We then choose the highest m to ensure that I(ψ) is likely to be
positive regardless of ψ.

α = Pr(I(ψ) ≤ 0) = Φ
(

0− E[I(ψ)]√
V ar[I(ψ)]

)

= Φ−1(α) = −E[I(ψ)]√
V ar[I(ψ)]

,

E[I(ψ)] = −Φ−1(α)×
√
V ar[I(ψ)],

mΓ(ψ) = −Φ−1(α)
√
mdΓ(ψ),

m2Γ(ψ)2 = Φ−1(α)2mdΓ(ψ),

m = Φ−1(α)2 × d
Γ(ψ) .

Davies and Murphy computed m for all triplets, and found that the S-box triplets 678
and 781 require 1.51 × 256 plaintext/ciphertext pairs. This is the same amount that is
required for S-box pair 78, and about the same complexity as a brute-force attack on
the key in DES.
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Linear dependencies between
distributions

(4.3) in Chapter 4 shows two relations between the rows in the tables for left and
right distributions. They turn out to have a great impact on relations between other
distributions in DES. In this chapter we will explore such relations. We repeat (4.3) as
a lemma.

Lemma 5.1.
p(x⊕2)r + pxr = 1

32 , q(x⊕1)r + qxr = 1
32 .

More specifically, this chapter will discuss linear dependencies between distributions. A
distribution on a n-bit output can be represented by a 2n vector, v = (v0, ..., v2n−1),
where each entry vi represents the probability that the output equals i. By linear
dependencies between distributions, we mean linear dependencies between such vectors.

For a given output, we usually have multiple possible distributions. For example, the
output from two adjacent S-boxes, given the common key bits, have 4 different distri-
butions. Which distribution the output follows depend on the common key bits. Since
we represent distributions by vectors, we can represent the set of all distributions for
a given output by a matrix (distribution matrix). In the example above, the row
index represents the value for the common key bits and the row vector represents the
distribution.

Representing all distributions by matrices gives us the ability to effortlessly use terms like
rank, kernel, nullspace, etc. on distributions. When we refer to the rank of distributions,
we mean the rank of the distribution matrix.
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5.1 Relations in left and right distributions

Lemma 5.1 trivially gives us one relation each for the left and right distributions. The
same relation can be found by looking at the tables for left/right distributions in Ap-
pendix A. Take, for example, the table for the right distribution for an S-box. If we add
the first two numbers in each column and subtract the last two numbers in the same
column, we get an all zero row. We thus have:

pxr − p(x⊕1)r + p(x⊕2)r − p(x⊕3)r = 0,

qxr + q(x⊕1)r − q(x⊕2)r − q(x⊕3)r = 0. (5.2)

The above equations hold for x = 0, 1, 2, 3, so they are actually 4 relations each. All of
them are however, either equal to or the negative of the following relations:

p0r − p1r + p2r − p3r = 0 and q0r + q1r − q2r − q3r = 0. (5.3)

The tables for the left/right distributions can be seen as matrices. We know that there
exists at least one linear relation between the rows in these tables. The rank of each
matrix must therefore be at most 3. Computing the rank of the 16 matrices, one for the
left and one for the right distribution for each of the 8 S-boxes, we see that it is 3 for
all of them. The linear relations in (5.2) can be represented by row vectors.

C1 = (1,−1, 1,−1) and C2 = (1, 1,−1,−1).

We have that

∑
A

C1
A × p(x⊕A)r = 0 and

∑
A

C2
A × q(x⊕A)r = 0. (5.4)

If we multiply C1 or C2 with the matrix for the left or right distributions, respectively,
the result is a zero vector.

5.2 Dependencies in distributions of 2 adjacent S-boxes

As described in Section 4.2, the 2 right most input bits of Si XORed with the 2 left
most input bits of Si+1 is the XOR of some of the round key bits, called common key
bits. The probability for output rs from Si and Si+1 given the common key bits A is

Pr(rs | A) = 4×
∑
x

p
(i)
(x⊕A)rq

(i+1)
xs = 4×

∑
x

p(i)
xrq

(i+1)
(x⊕A)s.
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From Lemma 4.6, we can find two linear dependencies. The following equations show
these dependencies represented as sums of distributions.

Pr(rs | 0)−Pr(rs | 3) = 0,

Pr(rs | 1)−Pr(rs | 2) = 0,

for any rs. Represented as vectors, we have

(1, 0, 0,−1) and (0, 1,−1, 0). (5.5)

We can also use (5.4) to get two linear dependencies between distributions on rs. The
vectors representing these dependencies will be the same as C1 and C2.

∑
A

CA ×Pr(rs | A) =
∑
A

CA ×
(

4×
∑
x

p
(i)
(x⊕A)rq

(i+1)
xs

)
(5.6)

= 4×
∑
A

∑
x

CA × p(i)
(x⊕A)rq

(i+1)
xs

= 4×
∑
x

q(i+1)
xs

(∑
A

CA × p(i)
(x⊕A)r

)

= 4×
∑
x

q(i+1)
xs × 0 = 0,

for C = C1, C2 and any rs. We now have four linear dependencies, two from (5.5) and
two from (5.6). All these dependencies can be represented by one of the row vectors in
the matrix R below.

R =


1 0 0 −1
0 1 −1 0
1 −1 1 −1
1 1 −1 −1


We want to use R to compute an upper bound on the rank of the distribution matrix.
For this, we introduce the following lemma.

Lemma 5.7.
Let M be a matrix with k rows and R be any matrix such that R×M = 0. Then

rank(M) ≤ k − rank(R).

Proof:
By the Rank-nullity theorem we have that

rank(M>) + nul(M>) = k,
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where M> denote the transpose of M . The row vectors in the basis of R must be in the
left null space of M . So

nul(M>) ≥ rank(R),

nul(M>) = k − rank(M) ≥ rank(R),

rank(M) ≤ k − rank(R).

Pr(rs | A) has four distributions, so the distribution matrix thus have 4 rows. The
rank of R is 2, so the rank of the distribution matrix must be ≤ 4 − 2 = 2. We have
computed the rank to be exactly 2, so we know that we have found all dependencies in
the distribution matrix. We already knew from the result of Chapter 4 that there are
only two different distributions, so the rank could not have been larger than 2.

5.3 Relations in Q distributions

Definition 4.15 defines theQ distribution as the distribution of (x5, x4, x1, x0, y3, y2, y1, y0).
It also defines

Q(i)
xyr = Pr(x5x4 = x, x1x0 = y, y3y2y1y0 = r),

where xi and yi are input and output bits of the S-box Si. Appendix B lists the Q
distribution for each S-box, where each row index represent x||y and the column index
represent r. These tables can be seen as matrices. We will find relations between its
rows. By definition we have

Lemma 5.8. ∑
x

Qxyr = pyr and
∑
y

Qxyr = qxr.

By Lemma 5.1 and Lemma 5.8:

∑
x

Qxyr +Qx(y⊕2)r = 1
32

∑
x

Qx(y⊕1)r +Qx(y⊕3)r = 1
32 for any y, (5.9)

and

∑
y

Qxyr +Q(x⊕1)yr = 1
32

∑
y

Q(x⊕2)yr +Q(x⊕3)yr = 1
32 for any x.

Subtracting one of the above from another will be a linear relation in a Q distribution.
There are 6 ways to choose two of the above sums (unordered and with no repetition).
We computed 6 linear relations and the rank of the corresponding relation matrix which
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was found to be 3. We have selected three independent relations, out of the 6, and listed
them as vectors in Table 5.10.

C3 = 0 1 0 1 0 1 0 1 -1 0 -1 0 -1 0 -1 0
C4 = 1 -1 1 -1 1 -1 1 -1 0 0 0 0 0 0 0 0
C5 = 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1

Table 5.10: C3, C4 and C5

Since the rank of the relation matrix is 3, the rank of the tables in Appendix B can be
at most 16− 3 = 13. We have computed the rank for each table which indeed is at most
13. The rank of Qxyr for each S-box is listed in Table 5.11. For some of the S-boxes
the rank is lower than 13. Some of these ”extra” relations comes from equal rows in the
tables, but not necessarily all of them. We have not investigated this any further.

S1 S2 S3 S4 S5 S6 S7 S8
# different rows 15 12 16 12 16 16 16 15

Rank 12 10 13 10 13 13 13 12

Table 5.11: Rank and number of different rows in each Q distribution

We now show how the vector C3 was computed. The same method was used for C4 and
C5. First, we selected two of the relations in (5.9).

∑
x′

Qx′yr +Qx′(y⊕2)r = 1
32 ,

∑
y′

Qxy′r +Q(x⊕1)y′r = 1
32 .

We subtract them from each-other to get a linear dependency.

0 =

∑
y′

Qxy′r +Q(x⊕1)y′r

− (∑
x′

Qx′yr +Qx′(y⊕2)r

)
,

0 =
∑
x′,y′

Qxy′r +Q(x⊕1)y′r −Qx′yr −Qx′(y⊕2)r.

Substitute x′ = x⊕A, y′ = y ⊕B and get

0 =
∑
A,B

Qx(y⊕B)r +Q(x⊕1)(y⊕B)r −Q(x⊕A)yr −Q(x⊕A)(y⊕2)r, (5.12)

for any x and y.
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Set x = y = 0

0 =
∑
A,B

Q0Br +Q1Br −QA0r −QA2r,

0 = Q01r +Q03r +Q11r +Q13r −Q20r −Q22r −Q30r −Q32r. (5.13)

The coefficient vector for (5.13) is C3, which is what we wanted to show. Each entry,
C3
AB, is the coefficient at QABr, and also Q(x⊕A)(y⊕B)r (since we derived (5.13) from

(5.12) by setting x = y = 0). The same procedure was used to find C4 and C5. So

∑
A,B

CAB ×Q(x⊕A)(y⊕B)r = 0, forC = C3, C4, C5. (5.14)

5.4 Dependencies in QDES

In this section we study multiple adjacent S-boxes in a modified version of DES, called
QDES. The round function F in QDES consists of n adjacent S-boxes (instead of 8 as in
DES). The number of input-bits to F is thus 4n and the number of key-bits is 6n. The
expansion function E′ : Z4n

2 → Z6n
2 ”wraps around” the first and last bit in the same

way that the original E does in DES (see Table 2.3).

We want to find the distributions of the output from all S-boxes in 1-round QDES,
given common key bits for all pairs of neighbouring S-boxes. We also want to find linear
dependencies between these distributions and thus get an upper bounds on the rank of
the distribution matrix. (5.16) and (5.17) show how to compute the distribution of the
output for QDES with 2 and n S-boxes. Figure 5.15 illustrates the S-boxes in QDES
where n = 3.

x1 ⊕A1 x2

S-box

r1

x2 ⊕A2 x3

S-box

r2

x3 ⊕A3 x1

S-box

r3

Figure 5.15: Modified version of DES with 3 S-boxes
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Pr(rs | AB) =
∑
x,y Q

(1)
(x⊕A)yrQ

(2)
(y⊕B)xs

Pr(AB) (5.16)

= 16×
∑
x,y

Q
(1)
(x⊕A)yrQ

(2)
(y⊕B)xs

= 16×
∑
x,y

Q
(1)
(x⊕A)(y⊕B)rQ

(2)
yxs

= 16×
∑
x,y

Q(1)
xyrQ

(2)
(y⊕B)(x⊕A)s,

Pr(r1...rn | K1...Kn) = 22n ×
∑

x1...xn

Q
(1)
(x1⊕K1)x2r1

... Q
(n)
(xn⊕Kn)x1rn

. (5.17)

To compute the distributions for QDES, we only need the Q distribution for each S-box.
We can use (5.14) to compute dependencies between the distributions by the following
lemma.

Lemma 5.18.

∑
KiKi+1

CKiKi+1 ×Pr(r1...rn | K1...Kn) = 0, for C = C3, C4, C5,

where Ki are the common bits between Si−1 and Si, and Ki+1 are the common bits
between Si and Si+1.

Proof: ∑
KiKi+1

CKiKi+1 ×Pr(r1...rn | K1...Kn)

= 22n ×
∑

KiKi+1

CKiKi+1 ×
∑

x1...xn

(
Q

(1)
(x1⊕K1)x2r1

... Q
(n)
(xn⊕Kn)x1rn

)
= 22n ×

∑
KiKi+1

CKiKi+1 ×
∑

x1...xn

(
... Q

(i)
(xi⊕Ki)xi+1ri

Q
(i+1)
(xi+1⊕Ki+1)xi+2ri+1

...

)

= 22n ×
∑

x1...xn

∑
KiKi+1

CKiKi+1 ×
(
... Q

(i)
(xi⊕Ki)(xi+1⊕Ki+1)ri

Q(i+1)
xi+1xi+2ri+1 ...

)

= 22n ×
∑

x1...xn

( ... )×

 ∑
KiKi+1

CKiKi+1 ×Q
(i)
(xi⊕Ki)(xi+1⊕Ki+1)ri


= 22n ×

∑
x1...xn

( ... )× 0 = 0.

The equation in Lemma 5.18 hold for all possible values of Kj (j 6= i, i + 1). There is
n− 2 such Kj , with a total of 22n−4 different values. There are three vectors C, and n

choices of i. This gives a total of 3n × 22n−4 linear dependencies in QDES that comes
from (5.14).
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We have computed all 3n × 22n−4 linear dependencies from Lemma 5.18 and the rank
of the corresponding relation matrix for 2 ≤ n ≤ 7. The complexity for computing the
relation matrix for n = 8 (full DES) was too high. The following table lists the result.
M is the distribution matrix and R is the relation matrix.

# S-boxes, n 2 3 4 5 6 7
# rows M 16 64 256 1024 4096 16384
# rows R 6 36 192 960 4608 21504
rank(R) 6 33 158 715 3123 9091

rank(M) ≤ 10 31 98 309 973 7293

Table 5.19: Rank of and number of rows in M and R

We have computed the rank of the distribution matrix for 2 ≤ n ≤ 4, and found that the
relations described above are all the linear dependencies for these values of n. rank(M)
for 5 ≤ n ≤ 7 are only upper bounds.

5.5 Dependencies in distributions of 3 adjacent S-boxes

In this section, and for the rest of the thesis, we will work with full DES again. We are
going to study 3 adjacent S-boxes like in Section 4.3. (4.17) shows how to compute the
distribution on output rst given the common key bits AB. We repeat (4.17) here for
the convenience of the reader.

Pr(rst | AB) = 16×
∑
x,y

p
(i)
(x⊕A)rQ

(i+1)
xys q

(i+2)
(y⊕B)t (4.17)

= 16×
∑
x,y

p(j)
xrQ

(j+1)
(x⊕A)(y⊕B)sq

(j+2)
yt .

To find linear dependencies between distributions for the output of 3 adjacent S-boxes,
we can use (5.4) and (5.14). We have derived (5.21), (5.22) and (5.23) from them. C1

and C2 are defined by (5.4) and C3, C4 and C5 are listed in Table 5.10. We can derive
11 linear dependencies from the three equations.

Lemma 5.20.
for any B

∑
A

C1
A ×Pr(rst | AB) = 0, (5.21)

for any A
∑
B

C2
B ×Pr(rst | AB) = 0, (5.22)

for C ∈ {C3, C4, C5}
∑
AB

CAB ×Pr(rst | AB) = 0. (5.23)
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Proof:

We will prove (5.21):

∑
A

C1
A ×Pr(rst | AB) = 16×

∑
A

C1
A ×

(∑
x,y

p
(j)
(x⊕A)rQ

(j+1)
xys q

(j+2)
(y⊕B)t

)

= 16×
∑
x,y

∑
A

C1
A ×

(
p

(j)
(x⊕A)rQ

(j+1)
xys q

(j+2)
(y⊕B)t

)

= 16×
∑
x,y

Q(j+1)
xys q

(j+2)
(y⊕B)t ×

(∑
A

C1
A × p

(j)
(x⊕A)r

)

= 16×
∑
x,y

Q
(j+1)
x(y⊕B)sq

(j+2)
yt × 0 = 0.

Similarly we prove (5.22). We will prove (5.23).

∑
AB

CAB ×Pr(rst | AB) = 16×
∑
AB

CAB ×
(∑
x,y

p(j)
xrQ

(j+1)
(x⊕A)(y⊕B)sq

(j+2)
yt

)

= 16×
∑
x,y

∑
AB

CAB ×
(
p(j)
xrQ

(j+1)
(x⊕A)(y⊕B)sq

(j+2)
yt

)

= 16×
∑
x,y

p(j)
xr q

(j+2)
yt ×

(∑
AB

CAB ×Q(j+1)
(x⊕A)(y⊕B)s

)

= 16×
∑
x,y

p(j)
xr q

(j+2)
yt × 0 = 0.

We have computed 11 linear dependencies from (5.21), (5.22) (5.23). The rank of the
relation matrix is 10. We have also computed the rank of the distribution matrix which
is 6. Since there are 16 distributions in total, we know that we have found all the linear
relations between the distributions for the output of 3 adjacent S-boxes.

5.6 3 adjacent S-boxes after multiple rounds

So far in this chapter, we have only discussed dependencies between distributions of
1-round DES. In this section we will study dependencies between the distributions of
the output from 3 adjacent S-boxes after multiple rounds.

The ciphertext in DES is the XOR of outputs from multiple round functions, F (X,K).
We ignore the initial permutation, final permutation and the permutations in the round
function. The XOR of the left-most 32 bits in the plaintext and the right-most 32 bits in
the ciphertext is thus an XOR of eight outputs from the round function. Similarly, the
XOR of the right-most 32 bits in the plaintext and the left-most 32 bits in the ciphertext
is also an XOR of eight outputs from the round function.
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As discussed in Section 4.3, the distribution of the XOR of n outputs from the round
function is the n-fold convolution of Pr(rst | K). The following equations show how to
compute the distribution for 2 and n rounds.

Pr(rst | AB,CD) =
∑
abc

Pr(abc | AB)Pr(rst⊕ abc | CD), (5.24)

Pr(rst | K1...Kn) =
∑⊕
Ii=rst

Pr(I1 | K1) ... Pr(In | Kn), (5.25)

where abc and Ii are 12-bit intermediate values.

5.6.1 Dependencies from C1, ..., C5

(5.4) and (5.14) are used to compute dependencies between the distributions of rst after
n rounds. The following equation hold when R is any of the 4-bits Ki, the left-most 2
bits in any Ki or the right-most 2 bits in any Ki (i = 1, ..., n).

Lemma 5.26. ∑
R

CR ×Pr(rst | K1...Kn) = 0,

where CR = C1 if R is the two left-most bits in Ki, CR = C2 if R is the two right-most
bits in Ki and CR = C3, C4, or C5 if R is any Ki.

Proof: ∑
R

CR ×Pr(rst | K1...Kn)

=
∑
R

CR ×

 ∑⊕
Ii=rst

Pr(I1 | K1) ... Pr(In | Kn)


=

∑⊕
Ii=rst

∑
R

CR ×Pr(I1 | K1) ... Pr(In | Kn).

Assume R = Kj , without loss of generality

=
∑⊕
Ii=rst

∑
Kj

CKj × ( ... Pr(Ij | Kj) ... )

=
∑⊕
Ii=rst

( ... )×

∑
Kj

CKj ×Pr(Ij | Kj)


=

∑⊕
Ii=rst

( ... )× 0 = 0.

The last step comes from Lemma 5.20.
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5.6.2 Number of different distributions after n rounds

Davies and Murphy found that there are at most 4× (n+3)!
6n! (660 in the case of full DES)

different distributions after n founds. We want to find and compute exactly how many
different distributions there are.

The key schedule in DES might duplicate key bits in Ki (0 ≤ i < n). If, for example,
Pr(rst | K1...K8) is the distributions for the S-box triplet 812 in 8-round DES, then
K1[2] = K2[3] and K4[2] = K5[3]. The common key bits for each round are thus
dependent for some triplets. We do not know if it is possible to use this to reduce the
upper bound on the number of different distributions.

As Davies and Murphy pointed out, the n-fold convolution of Pr(rst | K) can efficiently
be computed using fast Walsh-Hadamard transform. We computed all 4 × (n+3)!

6n! dis-
tributions for n = 2, ..., 8. Table 5.27 list the number of different distributions for all
triplets of S-boxes for 1 to 8 rounds.

As the table shows, the number of different distributions for S-box triplet 456 is for some
reason only increasing by 8 for each extra round, whereas the other triplets has exactly
4× (n+3)!

6n! different rows.

n Max bound 123 234 345 456 567 678 781 812
1 16 16 16 16 16 16 16 16 16
2 40 40 40 40 24 40 40 40 40
3 80 80 80 80 32 80 80 80 80
4 140 140 140 140 40 140 140 140 140
5 224 224 224 224 48 224 224 224 224
6 336 336 336 336 56 336 336 336 336
7 480 480 480 480 64 480 480 480 480
8 660 660 660 660 72 660 660 660 660

Table 5.27: Number of different distributions for 3 S-boxes after n rounds

5.6.3 Dependencies between distributions after n rounds

How many linear dependencies can we calculate from Lemma 5.26? First consider the
dependencies from C3, C4 and C5.

∑
Ki

[CKi × Pr(rst | K1...Kn)] = 0 hold for all
possible values for the (n − 1) other Kj (j 6= i). There is 24n−4 such values. There
are n choices for i, and three choices for C. This gives a total of 3n × 24n−4 linear
dependencies.
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Next, we consider linear dependencies from C1 and C2. These vectors have only 4
entries, so we only sum over the two left or right-most bits in Ki. There are n possible
choices of i. Lemma 5.26 holds for the four possible values for the remaining 2 bits in
Ki and for all possible values for the (n − 1) other Kj (j 6= i). The total number of
linear dependencies is thus 8n× 24n−4.

The total number of linear dependencies from Lemma 5.26 is 11n×24n−4 which becomes
impractical after 3 rounds as the relation matrix for 4 rounds would have ≈ 233.5 entries.
To find a upper bound on the rank of the distribution matrix, we need to compute the
rank of the relation matrix. So we want to find linear dependencies between the at most
N = 4× (n+3)!

6n! different distributions.

Lemmas 4.19 and 4.20 gives a structured way to select N distributions such that each
different distributions are selected at least once. Algorithm 3 generates a set D that
contains N vectors of length n, where each entry in the vectors are a 4 bit value. One
vector can be used as K1, ...,Kn and thus represents one distribution.

Algorithm 3

Step 1: Let S = {0, 1, 2, 3}, N = (n+3)!
6n! and let G be a generator which generates all un-

ordered tuples of S of length n. Each tuple should be sorted in ascending order.
Step 2: Prepare a list D where we will store the common key bits representing the

distributions.
Step 3: Use G to generate the N possible tuples.
Step 4: For each tuple t from Step 3:

• Extend each of the two bit values ti, to four bit values Ti by appending a
zero bit left to the left-most bit and a zero bit to the right of the right-
most bit in ti. That is, we have a vector T with quaternary elements and
Ti = (0, ti[1], ti[0], 0).

• Compute Kα by copying T to Kα and set Kα
n = Tn ⊕ α for each α ∈

{0, 1, 8, 9} (each possible value for the two outer bits) and add Kα to D.

The two underlined statements in Algorithm 3 give us a structured way to compute linear
dependencies between the distributions represented by the vectors in D. Algorithm 4
show how we computed linear dependencies between the different distributions.

Algorithm 4

Step 1: Let D be the set of common key bits representing the different distributions
from Algorithm 3
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Step 2: Prepare a storage space R where we will store the dependencies.
Step 3: For each K1...Kn in D:

• Repeat the next 5 steps for all (0 ≤ i < n)

• Make a list of pairs,
L = {(CKi ,K1...Kn) | for all 16 values for Ki}.

• Because we have changed the value of Ki, the 16 different distribution rep-
resented in L is not necessarily in D. The second co-ordinate in Lj can
be mapped to different value K ′1....K ′n representing an equal distribution by
sorting the set of all middle bits in each Ki and ”moving” the outer bits in
any Kk to Kn. (Lemmas 4.19 and Lemma 4.20). We know from how we
designed D that K ′1....K ′n will be in D. We now have:
L = {(CKi ,K

′
1...K

′
n) | for all 16 values for Ki}.

• Make a vector, V , of length N and set all entries to zero.

• L is a list of distributions in D and coefficients to these distributions such
that the sum of all these is the all zero vector. For each of these pairs in L,
find the index of K ′1...K ′n in D and set the value at the same index in V to
the value in the fist co- ordinate in the pair from L (the coefficient).

• Check if V is in R and append it to R if not already there.

The 2nd and 3rd points in step 3 in Algorithm 4 assumes that C is one of C3, C4 or C5.
The procedure is easily adjusted for C1 and C2. The maximum bound on the number
of relation in R is 4× (n+3)!

6n! × 56n. The total number of dependencies we can calculate
from Lemma 5.26 is more than 10n−3.3 times as much.

It turns out that in practice, many of the dependencies generated in step 3 are equal to
dependencies already in R, and therefore not added to R. For example, R contains 3342
different dependencies for n = 8 instead of the maximum bound, ≈ 3×105, or the number
of possible dependencies from Lemma 5.26 which is ≈ 1010. We ran both algorithms for
n = 2, ..., 10 simultaneously and computed the rank of all relation matrices in less than
five minutes using approximately 1GB of memory.

The maximum number of different distributions minus the rank of the relation matrix
computed by Algorithms 3 and 4 is a maximum bound on the rank of the distribution
matrix. Table 5.28 lists the upper bound and the actual rank for each triplet for 1-8
rounds. The upper bound on the rank of the relation matrices for 9 and 10 rounds is 58
and 69, respectively.

Again we see that the triplet 456 is abnormal. There are also a few unknown dependen-
cies between distributions for triplet 123 and 345 after 6 rounds or more, which we have
not investigated any further.
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n Upper bound 123 234 345 456 567 678 781 812
1 6 6 6 6 6 6 6 6 6
2 9 9 9 9 7 9 9 9 9
3 13 13 13 13 8 13 13 13 13
4 18 18 18 18 9 18 18 18 18
5 24 24 24 24 10 24 24 24 24
6 31 30 31 29 11 31 31 31 31
7 39 36 39 34 12 39 39 39 39
8 48 42 48 39 13 48 48 48 48

Table 5.28: Rank of pQq after n rounds

The distribution matrices for triplets 234, 567, 678, 781, and 812 have the same rank as
the upper bound. For these triplet, Algorithms 3 and 4 have thus found all linear de-
pendencies between distributions on rst, for ≤ 8 rounds. They originate from properties
common to all S-boxes.
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Conclusion

In this thesis, we started with a survey of Matsui’s linear cryptanalysis and Davies and
Murphy’s analysis of pairs and triplets in DES. Davies and Murphy showed that the
distributions of the output from two and three adjacent S-boxes are non-uniform, and
easily computed given some of the key bits.

The output from two adjacent S-boxes in DES has only two different distributions, and
is determined by the XOR of what we called the common key bits in each round. The
number of different distributions of the output from three adjacent S-boxes is low and
determined by the common key bits.

Davies and Murphy gave a known-plaintext attack exploiting the non-uniform distri-
butions. The attack on S-box pairs and triplets both has about the same complexity,
as brute-force attack on the key in DES as ≈ 256 known plaintext/ciphertext pairs is
needed.

There are linear dependencies between those distributions. We defined a distribution
matrix and relation matrix. These were used to compute an upper bound on the number
of linear independent distributions and to show that, in some cases, all linear dependen-
cies were found.

All linear dependencies for all S-box pairs and triplets in 1-round DES were found. We
looked at a different version of DES (QDES) with fewer S-boxes, in an attempt to com-
pute the rank of all distributions for the output of all S-boxes. All linear dependencies
for QDES with up to 4 S-boxes were found, and an upper bound on the rank of the
distributions for QDES with up to 7 S-boxes was computed. The complexity for com-
puting dependencies between the distributions for QDES with 8 S-boxes (full DES) was
too high.
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Davies and Murphy showed that the maximum number of different distributions for
the output of any S-box triplet in full DES is manageable and that they are easily
computed. We found an upper bound on the rank of these distributions, and computed
linear dependencies between them.

It was found that S-box triplet 456 has a lower number of different distributions, and
thus has a greater number of linear dependencies than the other 7 triplets. All linear
dependencies were found for 5 of the S-box triplets in full DES. The linear dependencies
originate from properties common to of DES’ S-boxes.

We do not know whether or not the linear dependencies described in this thesis can be
used to enhance an attack on DES. We find the results very interesting, and hope to
answer this question some day in the future.
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Appendix A

Right and left distribution for
each S-box

The following tables show the normalized right/left distributions. That is, each entry
is 26 times it’s original value to make it more readable. The 4 first rows in each table
show pxr and the last 4 rows show qxr.

HHH
HHHx

r 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 0 2 2 1 2 1 0 0 1 0 1 0 2 2 1
1 1 1 0 2 1 1 1 1 1 1 2 0 1 1 1 1
2 1 2 0 0 1 0 1 2 2 1 2 1 2 0 0 1
3 1 1 2 0 1 1 1 1 1 1 0 2 1 1 1 1
0 1 2 2 0 2 0 0 1 1 0 0 1 0 2 2 2
1 1 0 0 2 0 2 2 1 1 2 2 1 2 0 0 0
2 0 2 2 0 2 0 1 1 2 1 0 1 1 1 1 1
3 2 0 0 2 0 2 1 1 0 1 2 1 1 1 1 1

Table A.1: Right and left distribution for S1
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H
HHH

HHx
r 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 0 2 1 0 2 1 1 1 2 1 0 2 1 0 1
1 1 1 0 2 2 0 1 1 1 0 1 2 1 1 1 1
2 1 2 0 1 2 0 1 1 1 0 1 2 0 1 2 1
3 1 1 2 0 0 2 1 1 1 2 1 0 1 1 1 1
0 0 1 1 2 2 0 1 1 2 0 0 1 0 1 2 2
1 2 1 1 0 0 2 1 1 0 2 2 1 2 1 0 0
2 1 2 1 1 2 0 0 1 1 0 2 1 0 2 1 1
3 1 0 1 1 0 2 2 1 1 2 0 1 2 0 1 1

Table A.2: Right and left distribution for S2

HHH
HHHx

r 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 1 2 1 1 1 1 0 1 1 1 2 1 1 1 1
1 1 1 2 1 1 1 2 0 1 0 0 1 1 2 1 1
2 2 1 0 1 1 1 1 2 1 1 1 0 1 1 1 1
3 1 1 0 1 1 1 0 2 1 2 2 1 1 0 1 1
0 2 0 0 2 1 1 2 1 0 2 2 0 0 1 1 1
1 0 2 2 0 1 1 0 1 2 0 0 2 2 1 1 1
2 2 1 0 1 1 0 2 1 2 2 1 0 0 2 0 1
3 0 1 2 1 1 2 0 1 0 0 1 2 2 0 2 1

Table A.3: Right and left distribution for S3

HHH
HHHx

r 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 1 0 1 1 1 0 2 2 2 1 1 1 0 1 1
1 2 1 2 1 1 1 1 0 0 1 1 1 1 2 1 0
2 1 1 2 1 1 1 2 0 0 0 1 1 1 2 1 1
3 0 1 0 1 1 1 1 2 2 1 1 1 1 0 1 2
0 2 0 0 2 0 1 2 1 1 1 1 1 0 2 1 1
1 0 2 2 0 2 1 0 1 1 1 1 1 2 0 1 1
2 2 1 0 1 0 0 2 1 1 1 2 1 1 2 0 1
3 0 1 2 1 2 2 0 1 1 1 0 1 1 0 2 1

Table A.4: Right and left distribution for S4

HHH
HHHx

r 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 1 1 1 2 0 1 2 1 0 1 1 1 1 1 1
1 1 1 2 1 1 2 1 0 1 0 1 1 1 1 1 1
2 1 1 1 1 0 2 1 0 1 2 1 1 1 1 1 1
3 1 1 0 1 1 0 1 2 1 2 1 1 1 1 1 1
0 0 2 2 0 2 0 1 2 0 0 1 2 2 1 1 0
1 2 0 0 2 0 2 1 0 2 2 1 0 0 1 1 2
2 0 2 2 0 1 0 0 2 2 0 1 2 1 2 1 0
3 2 0 0 2 1 2 2 0 0 2 1 0 1 0 1 2

Table A.5: Right and left distribution for S5



Appendix A: Right and left distribution for each S-box 54

HHHH
HHx
r 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 1 1 1 1 1 1 1 0 2 1 1 2 0 1 1
1 1 1 1 1 2 0 2 1 1 2 1 1 0 1 0 1
2 1 1 1 1 1 1 1 1 2 0 1 1 0 2 1 1
3 1 1 1 1 0 2 0 1 1 0 1 1 2 1 2 1
0 0 1 2 0 1 1 1 1 1 2 2 0 2 0 0 2
1 2 1 0 2 1 1 1 1 1 0 0 2 0 2 2 0
2 0 0 2 2 1 2 0 0 1 2 1 0 2 0 1 2
3 2 2 0 0 1 0 2 2 1 0 1 2 0 2 1 0

Table A.6: Right and left distribution for S6

HHH
HHHx

r 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 1 1 1 1 1 2 1 1 2 1 1 1 0 0 1
1 1 2 1 1 1 1 1 0 1 1 1 1 0 2 2 0
2 1 1 1 1 1 1 0 1 1 0 1 1 1 2 2 1
3 1 0 1 1 1 1 1 2 1 1 1 1 2 0 0 2
0 2 1 1 0 2 0 0 1 1 1 1 2 0 2 1 1
1 0 1 1 2 0 2 2 1 1 1 1 0 2 0 1 1
2 0 2 0 1 2 0 1 2 1 0 1 2 1 2 1 0
3 2 0 2 1 0 2 1 0 1 2 1 0 1 0 1 2

Table A.7: Right and left distribution for S7

HHH
HHHx

r 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 0 0 1 1 2 1 1 1 1 2 1 1 1 1 1
1 1 1 1 1 1 0 2 1 1 2 1 0 1 1 1 1
2 1 2 2 1 1 0 1 1 1 1 0 1 1 1 1 1
3 1 1 1 1 1 2 0 1 1 0 1 2 1 1 1 1
0 0 2 1 1 2 0 1 1 2 0 1 1 0 2 0 2
1 2 0 1 1 0 2 1 1 0 2 1 1 2 0 2 0
2 0 2 2 0 2 0 0 2 1 1 1 1 1 1 2 0
3 2 0 0 2 0 2 2 0 1 1 1 1 1 1 0 2

Table A.8: Right and left distribution for S8
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Q distributions for each S-box

The following tables show the normalized Q distributions. That is, each entry is 26

times it’s original value to make it more readable.

HH
HHHHx y

r 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 1 0
0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0
0 2 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 1
0 3 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1
1 0 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 1 0 0 0 0 0 1 1 0 1 0 0 0
1 2 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0
1 3 0 0 0 0 0 1 1 0 1 0 0 1 0 0 0 0
2 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 1 0
2 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 1
2 2 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0
2 3 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0
3 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1
3 1 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0
3 2 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0
3 3 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0

Table B.1: Q distribution for S1
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HH
HHHHx y

r 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 1
0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1
0 2 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0
0 3 0 0 1 0 0 0 0 1 0 0 0 0 0 1 1 0
1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0
1 1 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0
1 2 1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0
1 3 1 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0
2 0 1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0
2 1 0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0
2 2 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0
2 3 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 1
3 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0
3 1 1 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0
3 2 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 1
3 3 0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0

Table B.2: Q distribution for S2

HH
HHHHx y

r 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1
0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0
0 2 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0
0 3 0 0 0 0 1 0 0 1 0 1 1 0 0 0 0 0
1 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0
1 1 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1
1 2 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0
1 3 0 1 0 0 0 0 0 0 1 0 0 1 0 0 1 0
2 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1 0 0
2 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0
2 2 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1
2 3 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0
3 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0
3 1 0 0 1 0 1 0 0 0 0 0 0 1 0 0 1 0
3 2 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0
3 3 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 1

Table B.3: Q distribution for S3
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HH
HHHHx y

r 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0
0 1 1 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0
0 2 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0
0 3 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 1
1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 0
1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0
1 2 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1
1 3 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0
2 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0
2 1 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0
2 2 1 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0
2 3 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1
3 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 1
3 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0
3 2 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0
3 3 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0

Table B.4: Q distribution for S4

HH
HHHHx y

r 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 0 0
0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 1 0
0 2 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0 0
0 3 0 1 0 0 0 0 0 1 0 0 0 1 1 0 0 0
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0
1 1 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 1
1 2 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1
1 3 1 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0
2 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0
2 1 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0
2 2 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0
2 3 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0
3 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1
3 1 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0
3 2 0 0 0 1 0 1 0 0 0 1 0 0 0 0 1 0
3 3 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1

Table B.5: Q distribution for S5
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HH
HHHHx y

r 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 0
0 1 0 0 0 0 1 0 0 1 0 1 1 0 0 0 0 0
0 2 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 1
0 3 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1
1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0
1 1 1 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0
1 2 0 0 0 0 1 0 0 1 0 0 0 1 0 1 0 0
1 3 0 1 0 0 0 0 0 0 1 0 0 1 0 0 1 0
2 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 1
2 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1
2 2 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0
2 3 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0
3 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0
3 1 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0
3 2 1 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0
3 3 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0

Table B.6: Q distribution for S6

HH
HHHHx y

r 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 1
0 1 0 1 0 0 1 0 0 0 0 0 0 1 0 1 0 0
0 2 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0
0 3 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0
1 0 0 0 0 1 0 1 1 0 0 1 0 0 0 0 0 0
1 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 1 0
1 2 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0
1 3 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1
2 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 0 0
2 1 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0
2 2 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0
2 3 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0
3 0 1 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0
3 1 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0
3 2 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1
3 3 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1

Table B.7: Q distribution for S7



Appendix B: Q distributions for each S-box 59

HH
HHHHx y

r 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0
0 1 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0
0 2 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1
0 3 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1
1 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0
1 1 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0
1 2 1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0
1 3 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0
2 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 1 0
2 1 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1 0
2 2 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0
2 3 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0
3 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
3 1 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 1
3 2 0 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0
3 3 1 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0

Table B.8: Q distribution for S8
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