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Abstract. This work addresses a class of multilabeling problems over aspatially continuous image domain,
where the data fidelity term can be any bounded function, not necessarily convex. Two total variation based regular-
ization terms are considered, the first favoring a linear relationship between the labels and the second independent
of the label values (Pott’s model). In the spatially discrete setting, Ishikawa [33] showed that the first of these label-
ing problems can be solved exactly by standard max-flow and min-cut algorithms over specially designed graphs.
We will propose a continuous analogue of Ishikawa’s graph construction [33] by formulating continuous max-flow
and min-cut models over a specially designed domain. These max-flow and min-cut models are equivalent under a
primal-dual perspective. They can be seen as exact convex relaxations of the original problem and can be used to
compute global solutions. Fast continuous max-flow based algorithms are proposed based on the max-flow models
whose efficiency and reliability can be validated by both standard optimization theories and experiments. In com-
parison to previous work [53, 52] on continuous generalization of Ishikawa’s construction, our approach differs in
the max-flow dual treatment which leads to the following mainadvantages: A new theoretical framework which
embeds the label order constraints implicitly and naturally results in optimal labeling functions taking values in any
predefined finite label set; A more general thresholding theorem which, under some conditions, allows to produce a
larger set of non-unique solutions to the original problem;Numerical experiments show the new max-flow algorithms
converge faster than the fast primal-dual algorithm of [53,52]. The speedup factor is especially significant at high
precisions. In the end, our dual formulation and algorithmsare extended to a recently proposed convex relaxation of
Pott’s model [50], thereby avoiding expensive iterative computations of projections without closed form solution.
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1. Introduction. Many problems in image processing and computer vision can bemod-
eled as energy minimization problems. In image restoration, such minimization problems
may be defined over a set of functions which indicate the gray value of the restored image
at each pixel. In image segmentation, the minimization problem can be defined over a set of
partitions of the image domain. More generally, such problems can be formulated in terms of
a labeling function. Examples include image denoising [41,57] where gray-scale values are
directly regarded as labels, image segmentation [13, 2, 14]for which each label represents
a region, two-view stereo reconstruction [40, 41] where discrete-valued depths are used as
labels, multi-view reconstruction [45] where inside and outside are simply indicated by two
labels (see [49] for a good reference to more applications).

Such optimization problems can be addressed by regarding the spatial image domain as
either discrete or continuous, leading to respectively variational problems or combinatorial
optimization problems. Typically, such problems are modeled as the minimization of an
energy which is compromised of a data fitting term and a regularization term. Often the most
desirable models are the most difficult to handle from an optimization perspective as they
may be non-convex in the continuous setting, or NP-hard in the discrete setting.

In the spatially discrete setting, many such optimization problem can be stated as a
Markov random field (MRF) over a discrete image graph. Many techniques have been pro-
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posed for solving such optimization problems, e.g. graph-cuts [30, 11, 33], message passing
[59, 38] and linear programming [42] etc. Graph-cut is an efficient technique which can
tackle many such combinatorial optimization problems in case they can be represented as
the minimum cut problem over a graph. Greig et al [30] were thefirst to observe that the
min-cut strategy can be applied to exactly solve binary labeling problems in computer vi-
sion. However, most labeling problems involving more than two labels are NP-hard, there-
fore only approximate graph cut algorithms are available, like [13]. However, for a particular
set of multilabeling problems with linearly ordered labelsand convex interaction penalties,
Ishikawa [33] showed that exact solutions can be obtained bygraph-cut, even if the data term
is not convex. Another exception, proposed in [6], is a discrete variant of the Chan-Vese
model [58] with 4 regions. Despite the efficiency of graph based approaches, their compu-
tation results are often rough and biased by the discrete grid, i.e. metrication errors [12, 37]
are introduced. Reducing such visual artifacts requires either considering more neighboring
nodes [12, 37] or applying high-order potentials [36, 34]. However, this either results in a
heavy memory load and high computation cost, or amounts to more complex algorithmic
schemes, e.g. QPBO [9, 39].

If the image domainΩ is regarded as continuous, the objective is an energy functional and
the minimization problem is a variational problem. Numerical solutions can be obtained by
instead discretizing and solving the corresponding Euler-Lagrange PDEs. Such a continuous
approach avoids the metrication errors, allows to produce results that are rotationally invariant
and allows for subgrid accuracy. If discrete label values are assumed, the image is partitioned
into several regions. Traditionally, the level set methods[48, 17] and phase field methods [35,
7] were used to approach such partitioning problems. The piecewise constant level set method
[46, 47] was later proposed, which assigns an integer label at each point of the image domain.
However, both the level set and phase field methods are based on minimization of nonconvex
energy functionals. Hence only local optimums can be obtained and the computation results
highly depend on the initialization.

1.1. Convex Relaxation Approaches for Pott’s model.On the other hand, in the pi-
oneer works of Strang [56] and Chan et. al. [18], it was realized that typical binary image
labeling problems in the spatially continuous setting could be formulated and exactly solved
by means of convex relaxations. Their approach allows to compute global minimizers of
the Pott’s model restricted to two phases. The continuous variant of the Potts model [54]
describes a partition of the continuous domainΩ into n disjoint subdomains{Ωi}ni=1 as the
minimum of a weighted sum of data fidelity and the length of thepartition boundaries

min
{Ωi}n

i=1

n
∑

i=1

∫

Ωi

ρ(i, x) dx+ α

n
∑

i=1

|∂Ωi| (1.1)

s.t. ∪n
i=1 Ωi = Ω , Ωk ∩Ωl = ∅ , ∀k 6= l ,

For instance, ifρ(i, x) = |I(x) − ci|2, then (1.1) corresponds to the piecewise constant
Mumford-Shah model of image segmentation. Restricted ton = 2, (1.1) can be written in
terms of the characteristic functionu of Ω1 and1− u of Ω2 as

min
u(x)∈{0,1}

∫

Ω

(1− u)ρ(2, x) dx+

∫

Ω

uρ(1, x) dx+ α

∫

Ω

|∇u| dx . (1.2)

It was shown in [18] that the non-convex binary constraintu(x) ∈ {0, 1} could be relaxed
and replaced by the convex constraintu(x) ∈ [0, 1]. Global and exact binary optimums could
be obtained by thresholding the result of the convex relaxedproblem at almost any level in

2



the interval[0, 1]. In [60], such a convex relaxation scheme was redefined undera novel
continuous max-flow/min-cut perspective and studied by an elegant variational theory.

Similar relaxation schemes have also been applied to a continuous version of Pott’s
model withn > 2 [63, 44, 50, 15]. Recently, [5, 61] investigated the equivalent dual model of
the convex relaxation formulation studied in [63, 44] and derived a simple and fast algorithm
in the entropy maximization style. A max flow interpretationof this dual model was given in
our recent paper [62], along with a new algorithm. However, as the underlying optimization
problem is NP-hard, these relaxations of the Pott’s model are not exact, i.e. their recon-
structed integer-valued solutions can generally only be accepted as suboptimal, even though
the experimental results are promising in terms of the totalenergy and quality. The relax-
ation [50, 15] is tightest, meaning it will most often resultin global minimums of the original
problem (1.1). On the other hand, it is more complicated than[63, 44], especially from a
computational perspective, because the number of side constraints grow quadratically inn.
Further, projections must be computed onto the feasible setevery iteration of the algorithm.
Since no closed form solution exist, the projections must becomputed by an iterative algo-
rithm, which slows down convergence. As part of this work, a significantly faster algorithm
for solving the relaxed problem [50, 15] is proposed.

In contrast to level set and phase field methods, the convex relaxation approach can yield
global solutions; fast algorithms can be designed by standard convex optimization theories.
In addition, experiments showed that lower energies could be achieved. Their results are
therefore expected to be closer to the global integer optimums of the original problem. In
contrast to the graph-based methods, the convex relaxationapproach yields subgrid accuracy,
because of the spatially continuous setting, and perfectlyavoid metrication errors due to
its crucial rotation invariance. In addition, the reduced numerical schemes can be easily
accelerated by multigrid or parallel implementation and require less memory.

1.2. Labeling with Linearly Ordered Labels. In this work, we will start by focusing
on image labeling problems of the form

min
u(x)∈{`1...`n}

∫

Ω

ρ(u(x), x) dx +

∫

Ω

C(x)|∇u(x)| dx , (1.3)

whereρ(u(x), x) is any bounded function, not necessarily convex inu. The last term of
(1.3) regularizes and is called the (weighted) total variation of u. The applications of (1.3)
are numerous. For instanceu may represent the gray value in image denoising. The problem
(1.3) can also model partitioning problems, like image segmentation, by the conventionu = i
in regionΩi and whereρ(u(x), x) is the data cost of assigningx to regionΩu. However, the
regularization term (1.3) does not correspond to the lengthterm in the more ideal Pott’s model
(1.1), because of its dependence on the size of the jumps ofu. On the other hand, such a linear
relationship on the size of the jump ofu may be an advantage in other applications, like
stereo reconstruction. The piecewise constant level set method [47] also has the form of (1.3)
if `1, ..., `n = 1, ..., n. In order to minimize the non-convex energy (1.3), is was proposed
to represent the integer constraints by polynomials and minimize the resulting non-convex
lagrangian functional to a local minima.

In the spatially discrete setting, Ishikawa [33] showed that such labeling problems could
be solved globally and exactly by computing the minimum cut over a specially designed
graph (see Sec. 2.2 for more details). [53, 52] generalized this result to the totally continuous
setting, where both the image domain and label values are continuous, by representing the
optimal labeling function as the discontinuity set of a binary function in a one-dimensional
higher space. Such a lifting approach is related to earlier mathematical theories of calibrations
and cartesian currents [10, 1]. Optimal labeling functionscould be obtained by applying the
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result of Chan et. al. in the higher dimensional space, i.e. first solve the relaxed binary
problem and then threshold the result. Recently, the lifting approach was generalized to
solve vector valued problems [29] in the totally discrete setting. The resulting relaxation
is not exact, therefore global solutions cannot in general be obtained. Since the underlying
minimization problem is NP-hard, global minimization is not feasible in general for such
problems.

1.3. Motivations and Contributions. We will interpret (1.3) as a continuous min-cut
problem and derive a continuous max-flow model based on Ishikawa’s graph construction,
which is shown to be dual to an exact convex relaxation of (1.3). In Section 4, the models are
extended to problems with continuous label values and comparisons to [53, 52] show some
interesting differences between our relaxed problem and the relaxation of [53, 52]. However,
the main conceptual difference is our derivations of the max-flow models, which are dual
formulations of the convex relaxed problem. These max-flow formulations implicitly deal
with the constraints on the labeling function. By duality theory a more general thresholding
scheme can be derived for producing a larger set of solutionsto the original non-convex prob-
lem from solutions of the relaxed problem than [53, 52]. Furthermore, efficient algorithms
can be build up based on our max-flow formulations, which are presented in Section 6.

The max-flow dual formulation and algorithms are further extended to the tightest con-
vex relaxation of Pott’s model [50] and will be presented in Section 5. All constraints on the
labeling function are handled implicitly, and the algorithm avoids expensive iterative compu-
tations of projections of the dual variables without closedform solution as in [50].

For discrete graphs, it is well known that the minimum cut problem is dual to the max-
imum flow problem by themax-flow and min-cut theorem[24]. Actually, the fastest graph
cut algorithms are based on maximizing flow instead of computing the min-cut directly, e.g.
the Ford-Fulkerson algorithm [23] and the push-relabel algorithm [28]. The minimal ’cut’ is
finally recovered along edges with ’saturated’ flows, i.e. cuts appear at the flow-bottlenecked
edges [19, 41]. In contrast, max-flow models and algorithms in the spatially continuous set-
ting have been much less studied. Some work has appeared thatdeal with binary labeling
problem: Strang [56] was the first to formulate max-flow and min-cut problems over a con-
tinuous domain; In [3], edge based max-flow and min-cut was formulated in which certain
interior and exterior points must be specified in advance; Most related to ours is the work
of Yuan et al [60, 61], which proposed a direct continuous analogue of the typical discrete
max-flow and min-cut models that are used for solving binary labeling problems in image
processing and computer vision. In contrast, most previousworks on labeling in the spatially
continuous setting, e.g. [63, 29, 53, 14] etc, tried to conduct the energy minimization over the
labeling functions directly.

Motivated by Yuan et al [60] and Ishikawa [33], we interpret (1.3) as a continuous min-
cut problem over a mixed continuous/discrete domain and build up a novel continuous max-
flow model in analogy with Ishikawa’s graph construction. Our main contributions can be
summarized as follows

• We study a convex relaxation of the nonconvex labeling problem (1.3), the so-called
continuous min-cut model. To this end, we build up a novel max-flow formulation
over n linearly layered continuous image domains, which is in analogy with the
discrete graph construction of Ishikawa. Duality between the proposed continuous
max-flow model and its corresponding continuous min-cut model is shown upon a
variational perspective.

• A thresholding scheme is derived for converting solutions of the convex relaxed
problem into solutions of the non-convex problem (1.3). Under some conditions,
this scheme allows to produce a larger set of non-unique solutions to the original
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problem than [53, 52].
• New continuous max-flow based algorithms are proposed. Their efficiency and con-

vergence can be verified by standard convex optimization theories. The labeling
function is updated as an unconstrained lagrange multiplier each iteration, and does
not need to be projected back onto any feasible set. Numerical experiments show a
significantly faster convergence rate than the fast primal-dual algorithm in Pock et.
al. [52, 53], especially at high precisions.

• A max-flow dual formulation of the convex relaxation of Pott’s model [50] is pro-
posed as a direct extension of the continuous max-flow model for (1.3). An algo-
rithm is proposed which deals with all constraints on the labeling function implicitly
and avoids expensive iterative computations of projections without closed form so-
lution.

2. Related Works. To motivate works in the following sections, we first revisitthe
duality correspondence between max-flow and min-cut in the spatially continuous context
proposed by Yuan et al [60]. We then give a short review of the graph construction of Ishikawa
[33].

2.1. Max-Flow and Minimum s-t Cut. Given a graphG = (V , E) composed of the
vertex setV and the edge setE ⊂ V × V . The vertex setV includes the nodes of a 2-D or
3-D image grid together with two terminal vertices: the sources and the sinkt. The edge set
E contains two types of edges: the spatial edgesen = (p, q) wherep, q ∈ V\{s, t}, and the
terminal edges or data edges:es = (s, p) andet = (p, t), wherep ∈ V\{s, t}. We assign the
costC(e) to each edgee ∈ E , which is assumed to be nonnegative, i.e.C(e) ≥ 0.

An s-t cut assigns two disjoint partitions ofV\{s, t} to the sources and the sinkt re-
spectively, which divides the nodes ofV\{s, t} into two disjoint groupsVs andVt:

V = Vs

⋃

Vt , Vs ∩ Vt = ∅ .

To each cut, an energy is defined as the sum of the costsC(e) of edgese ∈ Est ⊂ E , with one
end point inVs and the other inVt. The minimal s-t cut problem is to find such a partitionVs

of V with the minimal cut-energy:

min
Est⊂E

∑

e∈Est

C(e) . (2.1)

On the other hand, each edgee ∈ E can be viewed as a pipe and its edge costC(e) can
be regarded as the capacity of this pipe. In this flow ’network’, the max-flow problem is to
find the largest amount of flow allowed to pass from the sources:

max
ps

∑

v∈V\{s,t}

ps(v) (2.2)

subject to the following flow constraints:

• Capacity of Spatial Flowsp: for each spatial edgeen := (p, q) ∈ E wherep, q ∈
V\{s, t}, the spatial flowp(en) is undirected and constrained by:

−Cp(en) ≤ p(en) ≤ Cq(en)

whereCp(en), Cq(en) ≥ 0. We study the special caseCp(en) = Cq(en) = C(en)
for simplicities, i.e.

|p(en)| ≤ C(en) ; (2.3)
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• Capacity of Source Flowsps: for each edge(s, v) ∈ E linking the terminals to the
nodev ∈ V\{s, t}, the source flowps(v) is directed froms to v. Its capacityCs(v)
indicates that

0 ≤ ps(v) ≤ Cs(v) ; (2.4)

• Capacity of Sink Flowspt: for each edge(v, t) ∈ E linking the nodev ∈ V\{s, t} to
the terminalt, the sink flowpt(v) is directed fromv to t. Its capacityCt(v) indicates
that

0 ≤ pt(v) ≤ Ct(v) ; (2.5)

• Conservation of Flows:at each nodev ∈ V\{s, t}, in-coming flows should be
balanced by out-going flows, i.e. all the flows passingv, which includes spatial
flowsp(en) along spatial edgesen aroundv, the source flowps(v) and the sink flow
pt(v), should be constrained by

(

∑

en∈E

p(en)
)

− ps(v) + pt(v) = 0 . (2.6)

It is well known that the max-flow formulation (2.2) is equivalent to the min-cut problem
(2.1), where the flows are saturated uniformly on the cut edges, i.e. the total flow is bottle-
necked by the ’saturated pipes’. By the graph-cut terminologies, when a flowp(e) on the
edgee ∈ E reaches its corresponding capacityC(e), given in (2.3), (2.4) or (2.5), we call it
’saturated’; otherwise, ’unsaturated’.

2.1.1. Max-Flow and Min-Cut in Continuous Setting. In the recent studies of Yuan et
al [60], a direct analogue of the equivalence between the max-flow model (2.2) and the min-
cut (2.1) model was discovered in the spatially continuous context. Given the continuous
image domainΩ together with two terminals: the sources and the sinkt which are linked
to each pixel ofΩ. Three types of flows are defined at each pixelx ∈ Ω: the source flow
ps(x) directed from the sources to x, the sink flowpt(x) directed fromx to the sinkt and
the spatial flowp(x) within the image planeΩ. In analogue with (2.3), (2.4) and (2.5), the
three flow fields are constrained by the capacitiesCs, Ct andC:

ps(x) ≤ Cs(x) , pt(x) ≤ Ct(x) , |p(x)| ≤ C(x) ; ∀ x ∈ Ω . (2.7)

With the above notations, the flow conservation condition (2.6) can be rewritten in the spa-
tially continuous setting as

pt(x)− ps(x) + div p(x) = 0 , a.e.x ∈ Ω (2.8)

where the divergencediv p(x) evaluates the excess of the spatial flow aroundx.
The continuous max-flow problem can therefore be formulatedby maximizing the total

flow from the sources:

sup
ps,pt,p

∫

Ω

ps dx (2.9)

subject to the flow constraints (2.7) and (2.8).
Yuan et al [60] proved that such a continuous max-flow formulation (2.9) is equivalent

to the continuous minimums-t cut problem proposed in [18, 14]:

min
u(x)∈[0,1]

∫

Ω

(1− u)Cs dx+

∫

Ω

uCt dx+

∫

Ω

C(x) |∇u| dx . (2.10)
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(a) (b)

FIG. 2.1. (a) Legal cut, (b) Illegal cut. Severed edges are depicted asdotted edges. The gray curve visualizes
the cut. Vertices interior to the curve belongs toVs while vertices exterior to the curve belongs toVt. Severed edges
are illustrated as dotted arrows.

More specifically, the max-flow problem (2.9) and the min-cutproblem (2.10) are dual to each
other and the labeling functionu(x) works as a Lagrange multiplier to the flow conservation
condition (2.8). In addition, connections between the flow functionsps(x), pt(x), p(x) and
the labeling functionu(x) can be reinterpreted under an elegant variational perspective. An
efficient and reliable max-flow based algorithm could be derived and built up based on the
continuous max-flow model (2.9) [60].

2.2. Revisit Ishikawa’s Work. Ishikawa [33] studied image labeling problems which
can be generally formulated as:

min
u∈U

∑

v∈P

ρ(uv, v) + α
∑

(v,w)∈N

g(uv − uw) , (2.11)

whereP denotes a discrete image grid in 2-D or N-D andH ⊂ P × P is a neighborhood
system onP ; U = {u : P 7→ L} is the set of feasible labeling functions. The potential prior
g(x) of (2.11) is assumed to be convex andρ is any bounded function, but not necessarily
convex inu. It was shown that problems of the form (2.11) could be exactly optimized by
finding the min-cut on a specially constructed multi-layer graphG = (V , E), where each
layer corresponds to one label.

We adopt Ishikawa’s notations [33] in this chapter and make use of the simplified graph
which usesn − 1 layers instead ofn and avoids infinite capacities on the source edges [4],
see Fig. 2.1 for a simple 1-D example. The vertex setV and the edge setE are defined as
follows:

V = P × L ∪ {s, t} = {uv,i | v ∈ P ; i = 1, ..., n− 1} ∪ {s, t} (2.12a)

E = ED ∪ EC ∪ EP (2.12b)

where the edge setE is composed of three types of edges
• Data edgesED =

⋃

v∈P Ev
D, where

Ev
D = (s, uv,1) ∪ {(uv,i, uv,i+1) | i = 1, . . . , n− 2} ∪ (uv,n−1, t) . (2.13)
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• Penalty edgesEP =
⋃

v∈P Ev
C , where

Ev
C = {(uv,i+1, uv,i) | i = 1, . . . , n− 2} . (2.14)

• Regularization edgesER:

ER = {(uv,i, uw,j) | (v, w) ∈ H , i, j = 1, ..., n} , (2.15)

2.2.1. Anisotropic Total-Variation Regularized Labeling. When a pairwise priorg(uv−
uw) = C(u,w) |uv − uw| is given, (2.11) corresponds to an anisotropic total-variation regu-
larized image labeling problem, i.e.

min
u∈U

∑

v∈P

ρ(uv, v) + α
∑

(v,w)∈N

C(v, w) |uv − uw| (2.16)

which is the discrete counterpart of the total-variation based mutlilabeling problem (1.3).
We now define capacities on the edges such that the minimum cuton the graph corre-

sponds to a minimizer of (2.16):

• Capacity of source flows:the directed flowp1(v) along each edge from the sources
to the nodeuv,1 of the first layer, i.e. the edge(s, uv,1), is constrained by

p1(v) ≤ ρ(`1, v) , ∀v ∈ P ; (2.17)

• Capacity of flows between layers:the directed flowpi(v) along each edge(uv,i, uv,i+1)
from the nodeuv,i of the i-th layer to the nodeuv,i+1 of the i + 1-th layer is con-
strained by

pi(v) ≤ ρ(`i, v) , ∀v ∈ P i = 1, ..., n− 2 (2.18)

• Capacity of sink flows:the directed flowpn(v) along each edge from the node
uv,n−1 of the last layer to the sinkt is constrained by

pn(v) ≤ ρ(`n, v) , ∀v ∈ P ; (2.19)

• Capacity of spatial flows at each layer:the undirected flowqi(v, w) of each edge
(v, w) ∈ H at the layeri, i = 1, . . . , n− 1, is constrained by

|qi(v, w)| ≤ C(v, w) ; (2.20)

this actually amounts to the well-known anisotropic total-variation regularizer;
• Conservation of flows:flow conservation means that in-coming flows should be

balanced by out-going flows at any nodev ∈ P of each layeri = 1, ..., n− 1 , i.e.
(

∑

(v,w)∈H

qi(v, w)
)

− pi(v) + pi+1(v) = 0 . (2.21)

Since there is no lower bound on the flows (2.17)-(2.19), the capacity on the penalty edges
(2.14) is infinite. This implies that each edge in the setEv

D which links the source and sink
can only be cut once, i.e. illegal cuts as shown in Fig. 2.1(b)have infinite cost and are not
allowed.

The max-flow problem is to find the largest amount of flows allowed to pass from the
sources to sinkt, and can therefore be formulated as

max
p,q

∑

v∈P

p1(v) (2.22)

subject to the flow constraints (2.17), (2.18), (2.19), (2.20) and (2.21).
Once the maximal flow is computed, a minimal cut can be extracted which corresponds

to a minimizer of the problem (2.16).
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3. Continuous Max-Flow and Min-Cut Models. We now consider the labeling prob-
lem (1.3), i.e. the continuous counterpart of (2.11) specialized to the classical total-variation
regularizer:

min
u∈U

∫

Ω

ρ(u(x), x) dx +

∫

Ω

C(x)|∇u(x)| dx , (3.1)

whereU = {u : Ω 7→ {`1, ..., `n}, s.t.
∫

Ω
|∇u| dx < ∞} is the set of all feasible

functions defined over the continuous image domainΩ. ρ(u(x), x) is any uniformly bounded
function, not necessarily convex in the element ofu. We show (3.1) can be exactly solved
by generalizing the discrete max-flow and min-cut models discussed in the last section to the
continuous setting.

3.1. Representations by Layer Functions.Let Si, i = 1, ..., n − 1, denote then − 1
upper levels set of the labeling functionu(x) ∈ U such that

Si = {x ∈ Ω : u(x) > `i} . (3.2)

To ease exposition, we also defineS0 = Ω andSn = ∅.
The characteristic functionsλi(x) of the upper level setsSi i = 1, ..., n− 1, also called

the layer functionin this work, are defined by:

λi(x) =

{

1 if u(x) > `i
0 if u(x) ≤ `i

, i = 1, . . . , n− 1 . (3.3)

Likewise, we also defineλ0(x) = 1 andλn(x) = 0, ∀x ∈ Ω, as the characteristic functins of
the setS0 andSn respectively.

Since`1 < . . . < `n we have

0 = λn ≤ . . . ≤ λ1 ≤ λ0 = 1 (3.4)

and

∅ = Sn ⊆ . . . ⊆ S1 ⊆ S0 = Ω. (3.5)

Now we rewrite the optimization problem (3.1) in terms of thelayer functionsλi(x), i =
1, ..., n − 1. Such a formulation has also been presented in [20] in the discrete setting for
the more general (2.11). In [50] such a formulation was givenin the continuous setting in
connection with a convex relaxation of Pott’s model.

Observe that the subdomain ofΩ whereu(x) = `i is given bySi\Si−1 and its character-
istic function isλi−1(x) − λi(x). Any functionu(x) ∈ U can therefore be written in terms
of λi(x), i = 0, ..., n as

u(x) =

n
∑

i=1

(λi−1(x) − λi(x))`i = `1 +

n−1
∑

i=1

λi(x)(`i+1 − `i) . (3.6)

The data term can written as
∫

Ω

ρ(u(x), x) dx =

n
∑

i=0

∫

Si−1\Si

ρ(`i, x) dx =

n
∑

i=0

∫

Ω

(λi−1(x)−λi(x)) ρ(`i, x) dx . (3.7)

By the coarea formula [27], for the functionu(x) ∈ U we also have

∫

Ω

C(x)|∇u(x)| dx =

n−1
∑

i=1

∫

Ω

Ci(x)|∇λi(x)| dx (3.8)
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FIG. 3.1.(a) Illustration of the max-flow problem defined over a mixed discrete/continuous domain.

whereCi(x) = (`i+1 − `i)C(x), i = 1, . . . , n− 1.
In view of (3.7) and (3.8), the problem (3.1) amounts to search for the optimal layer

functionsλi ∈ {0, 1}, i = 1, . . . , n− 1 which minimizes

min
λi(x)∈{0,1}

n
∑

i=1

∫

Ω

(λi−1(x) − λi(x)) ρ(`i, x) dx +

n−1
∑

i=1

∫

Ω

Ci(x)|∇λi(x)| dx (3.9)

subject to the monotonically nonincreasing constraint (3.4). Once the layer functionsλi(x)
are computed, the labeling functionu(x) can be recovered by (3.6).

We focus on the case whereC(x) = α is constant and̀i+1 − `i = 1, i = 1, ..., n − 1.
Of course, the results can be easily extended to other more generalC(x) and`i, i = 1, ..., n.
In this regard, (3.1) or (3.9) can be equally reformulated as

min
λi(x)∈{0,1}

n
∑

i=1

∫

Ω

(λi−1(x)− λi(x)) ρ(`i, x) dx + α
n−1
∑

i=1

∫

Ω

|∇λi| dx (3.10)

subject to the order constraint (3.4). (3.10) is obviously nonconvex due to the binary setting
of λi(x) ∈ {0, 1}, i = 1, ..., n− 1.

3.2. Convex Relaxed Models.In the following parts of this section, we show that the
nonconvex optimization problem (3.10) can be globally and exactly solved via its convex
relaxed version:

min
λi(x)∈[0,1]

ED(λ) =

n
∑

i=1

∫

Ω

(λi−1(x)− λi(x))ρ(`i, x) dx + α

n−1
∑

i=1

∫

Ω

|∇λi| dx (3.11)

s.t. 1 = λ0(x) ≥ λ1(x) ≥ . . . ≥ λn−1(x) ≥ λn(x) = 0 , ∀x ∈ Ω

where the binary constraints on the labeling functionsλi(x) ∈ {0, 1}, i = 1, . . . , n − 1, are
relaxed by the convex constraintsλi(x) ∈ [0, 1], i = 1, . . . , n−1. In this work, we call (3.11)
theprimal model.

3.2.1. Continuous Max-Flow. Motivated by the discrete graph configuration (2.12a)
and (2.12b) in Sec. 2.2,n − 1 copies of the image domainΩ are placed in sequential order
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between two terminals: the sources and the sinkt. This mixed continuous/discrete domain
can be defined as

Ω× {1, ..., n− 1} ∪ {s} ∪ {t} = {(x, i) | x ∈ Ω, i = 1, ..., n− 1} ∪ {s} ∪ {t} . (3.12)

The continuous counterparts of edges, flows and capacities can now be defined (see Fig.
3.1 for an illustration)

• In view of (2.13), the data edges are defined as follows: For eachx ∈ Ω, the source
s is linked to(x, 1) of the first layer by the edge functione1(x); the points(x, i− 1)
and(x, i) in two sequential image layers,i = 2 . . . n − 1, are linked by the edge
functionei(x); at the last layer(x, n− 1) is linked to the sinkt by the edge function
en(x).

• At each edgeei(x) a flow functionpi(x) is defined fori = 1 . . . n and for allx ∈ Ω.
Mathematically,pi : Ω 7→ R for i = 1, ..., n.

• In analogue with the regularization edges (2.15), within each image layeri = 1 . . . n−
1, a spatial flow function is given by the vector fieldqi : Ω 7→ R

m, wherem is the
dimension of
Ω. More specifically, we will optimize overqi ∈ (C∞(Ω))m, i = 1, ..., n.

As a generalization of the flow constraints (2.17) - (2.21) inthe discrete setting, we now
give constraints on the flow functionspi(x) andqi(x):

|qi(x)| ≤ α , i = 1 . . . n− 1, ∀x ∈ Ω; (3.13)

pi(x) ≤ ρ(`i, x) , i = 1 . . . n− 1, ∀x ∈ Ω; (3.14)
(

div qi − pi + pi+1

)

(x) = 0 , i = 1 . . . n− 1, a.e.x ∈ Ω . (3.15)

Then, in analogue with Ishikawa’s max-flow model (2.22), we propose acontinuous
max-flow modelby maximizing the total amount of source flow :

sup
p,q

EP (p, q) =

∫

Ω

p1(x) dx (3.16)

subject to the flow constraints (3.13), (3.14) and (3.15). Inthis work, we call (3.16) thedual
model.

3.2.2. Primal-Dual Model. Introduce the multiplier functionsλi(x), i = 1 . . . n − 1,
to each linear equality constraint of the flow conservation condition (3.15), we then get the
equivalentprimal-dual modelof (3.16):

inf
λ

sup
p,q

E(p, q;λ) =

∫

Ω

{

p1 +

n−1
∑

i=1

λi

(

div qi − pi + pi+1

)}

dx (3.17)

subject to (3.13) and (3.14).
(3.17) can be rearranged and equally represented by

inf
λ

sup
p,q

E(p, q;λ) =

n
∑

i=1

∫

Ω

(λi−1 − λi)pi dx +

n−1
∑

i=1

∫

Ω

λi div qi dx (3.18)

s.t. |qi(x)| ≤ α , i = 1 . . . n− 1 ; pi(x) ≤ ρ(`i, x) , i = 1 . . . n .

1The notation a.e. stands for ”for almost every”, which meansthe constraint (3.15) should hold in the integrable
and weak sense for everyx ∈ Ω, expect possibly a subset of zero measure.
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Note that for the primal-dual model (3.17), the conditions of the minimax theorem (see
e.g., [21] Chapter 6, Proposition 2.4) are all satisfied: theconstraints of flows are convex and
the energy functional is linear over both the dual variablesλi(x), i = 1 . . . n − 1 and the
primal variablespi(x), i = 1 . . . n, qi(x), i = 1 . . . n − 1. This also implies the existence
of at least one saddle point, see [21]. It also follows that the min and max operators of the
primal-dual formulation (3.17) or (3.18) can be interchanged, i.e.

sup
p,q

inf
λ

E(p, q;λ) = inf
λ

sup
p,q

E(p, q;λ) . (3.19)

Clearly, the optimization of (3.17) over the dual functionsλi(x), i = 1 . . . n− 1, leads back
to the primal max-flow model (3.16).

3.2.3. Continuous Min-Cut. Now we show that optimization of (3.17) over all flow
functionsp(x) andq(x), i.e. the righthand side of (3.19), leads to (3.11) as its equivalentpri-
mal model. Then by the fact that the primal-dual model (3.18) is equivalent to the continuous
max-flow problem (3.16), we have

PROPOSITION3.1. The continuous max-flow problem(3.16)and the continuous min-cut
problem(3.11)are dual problems.

The proof is based on the following observations:
We consider the optimization problem

f(v) = sup
w≤C

v · w , (3.20)

wherev, w andC are scalars. Whenv < 0, w can be negative infinity in order to maximize
the valuev · w, i.e. f(v) = +∞. It can also be easily seen that

{

if v = 0 , thenw ≤ C andf(v) = 0,
if v > 0 , thenw = C andf(v) = v · C

.

Therefore, we have in general

f(v) =

{

v · C if v ≥ 0
∞ if v < 0

(3.21)

By the facts (3.20) and (3.21), the functionf(v) provides a prototype to maximize the
primal-dual model (3.18) over the flow functionspi(x), i = 1 . . . n, together with their con-
straintspi(x) ≤ ρ(`i, x), i.e. (3.14).

For eachx ∈ Ω, define

fi(x) = sup
pi(x)≤ρ(`i,x)

(λi−1(x)− λi(x)) pi(x) , i = 0 . . . n .

In view of of (3.21), we have

fi(x) =

{

(λi−1(x)− λi(x)) ρ(`i, x) if λi−1(x) ≥ λi(x)
∞ if λi−1(x) < λi(x)

i = 0, ..., n (3.22)

On the other hand, it is well known that [27]

sup
|q(x)|≤α

∫

Ω

λdiv q dx = α

∫

Ω

|∇λ| dx . (3.23)

Insert (3.22) and (3.23) in the primal-dual model (3.18), and we then end up with the primal
model (3.11), together the constraintsλi−1(x) ≥ λi(x) for all x ∈ Ω andi = 1, ..., n. If these
constraints on optimalλ were not met, the primal-dual energy would be infinite, contradicting
the existence of at least one saddle point. Prop. 3.1 is therefore proved.
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3.3. Exact and Global Optimums. The functionsλi(x), i = 1, . . . , n − 1, of the
continuous min-cut model (3.11) are relaxed to take values in the convex set[0, 1], which
is in contrast to the binary constraints of the nonconvex formulation (3.10). Both the max-
flow problem (3.16) and relaxed problem (3.11) are convex optimization problems which can
be solved globally. Furthermore, the following proposition shows that thecontinuous min-cut
model(3.11) can be applied to produce global and exact optimums ofits original nonconvex
counterpart (3.10) through simple thresholdings.

PROPOSITION 3.2. Let (p∗, q∗;λ∗) be any optimal primal-dual pair of(3.17). Let
{ti}

n−1
i=1 be a sequence such that0 < t1 ≤ t2 ≤ ... ≤ tn−1 ≤ 1, let λti

i (x) denote the
function ofti upper level set ofλ∗

i , i.e.

λti
i (x) :=

{

1 , λ∗
i (x) ≥ ti

0 , λ∗
i (x) < ti

and define the level sets

Sti
i = {x : λ∗

i ≥ ti}. (3.24)

If t1 = t2 = ... = tn, then the set of binary functionsλti
i (x), i = 1, . . . , n − 1, is a global

optimum of the original nonconvex multi-labeling problem(3.10). Moreover, the cut given by
λti
i (x), i = 1, . . . , n− 1, has an energy equal to the max flow energy in(3.16), i.e.

ED(λt) =

∫

Ω

p∗1(x) dx = EP (p∗).

In general, if for everyk such thattk−1 < tk

λ
tk−1

k−1 (x) 6= λtk
k (x), a.e.x ∈ S

tk−1

k−1 \S
tk
k , (3.25)

thenλti
i (x), i = 1, . . . , n− 1, is a global binary optimum of(3.10).

Proof. Sincep∗i , i = 1, ..., n andq∗i , λ
∗
i , i = 1, ..., n − 1 is a global optimum of the

primal-dual problem (3.17), thenp∗i , q∗i optimize the dual problem (3.16) andλ∗
i (x) optimizes

(3.11).
For simplification reasons, definet0 = 0 such thatSt0

0 = Ω. Sinceli is increasing withi
we must have

St0
0 ⊇ St1

1 ⊇ St2
2 ⊇ ... ⊇ S

tn−1

n−1

Since the variables are optimal, the flow conservation condition (3.15) must hold, i.e

div q∗i (x) − p∗i (x) + p∗i+1(x) = 0 , a.e.x ∈ Ω, i = 1, ..., n− 1.

The proof is given by induction. For anyk ∈ {1, ..., n− 1} define the function

Ek =
k

∑

i=1

∫

S
`i−1

i−1
\S

ti
i

ρ(`i, x) dx +

∫

S
`k
k

p∗k+1(x) dx + α
k

∑

i=1

L
S

ti
i

whereL
S

ti
i

is the length of the perimeter of the setSti
i . We will proveEk = EP (p∗) for any

k ∈ {1, ..., n− 1} and start by consideringk = 1. By the formula (3.22), it is easy to see that

p∗1(x) = ρ(`1, x), for any point x ∈ Ω\St1
1 = St0

0 \St1
1

13



This, together with the fact that

p∗1(x) = p∗2(x) + div q∗1(x), a.e.x ∈ St1
1

implies that the total max-flow energy defined in (3.16) can bewritten

EP (p∗) =

∫

Ω\S
t1
1

ρ(`1, x) dx+

∫

S
t1
1

(

p∗2(x) + div q∗1(x)
)

dx

=

∫

Ω\S
t1
1

ρ(`1, x) dx+

∫

S
t1
1

p∗2(x) dx +

∫

S
t1
1

div q∗1(x) dx

=

∫

S
t0
0

\S
t1
1

ρ(`1, x) dx +

∫

S
t1
1

p∗2(x) dx + αL
S

t1
1

= E1

The last term follows from Prop 4 of [5], or from the fact that(q∗i ·n)(x) = α at allx ∈ ∂S`i
i

combined with the Gaussian theorem
∫

S
`i
i

div q∗i (x) dx =

∫

∂S
`i
i

q∗i · n ds = α
∣

∣∂S`
∣

∣ . (3.26)

Assume now thatEk = EP (p∗) for somek ∈ {1, ..., n − 2}, we will show this implies
Ek+1 = EP (p∗).

EP (p∗) = Ek =

k−1
∑

i=1

∫

S
`i−1

i−1
\S

ti
i

ρ(ti, x) dx+

∫

S
`k−1

k−1

p∗k(x) dx + α

k−1
∑

i=1

L
S

ti
i

Assume firsttk−1 = tk. By the definition (3.24) it follows thatλk−1(x) − λk(x) > tk−1 −
tk = 0 for all x ∈ Stk−1

k−1 \Stk
k . Therefore, by formula (3.22), for any pointx ∈ Stk−1

k−1 \Stk
k

we must havep∗k(x) = ρ(`k, x). Combining this with the fact that

p∗k(x) = p∗k+1(x) + div q∗k(x), a.e.x ∈ Ω

the above expression can be written

EP (p∗) = Ek =

k−1
∑

i=1

∫

S
`i−1

i−1
\S

ti
i

ρ(ti, x) dx+

∫

S
`k−1

k−1
\S

`k
k

ρ(`k, x) dx (3.27)

+

∫

S
`k
k

p∗k+1(x) dx + L
S

tk
k

+ α

k−1
∑

i=1

L
S

ti
i

= Ek+1.

If tk−1 > tk, the same argument shows the above equality provided (3.25)holds. Hence, we
can conclude that alsoEn−1 = EP (p∗). By noting from (3.22) that for allx ∈ S

tn−1

n−1 we
must havep∗n(x) = ρ(`n, x), the total max flow energy defined in (3.16) can be written

EP (p∗) = En−1 =

∫

Ω\S
t1
1

ρ(`1, x) dx +

n−1
∑

i=2

∫

S
`i−1

i−1
\S

ti
i

ρ(ti, x) dx (3.28)

+

∫

S
tn−1

n−1

ρ(`n, x) dx + α

n−1
∑

i=1

L
S

ti
i
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By writing this expression in terms of the characteristic functionsλti
i of each regionSti

i , we
get

EP (p∗) =
n
∑

i=1

∫

Ω

(λ
`i−1

i−1 (x) − λti
i (x)) ρ(ti, x) dx + α

n−1
∑

i=1

∫

Ω

|∇λti
i | dx = ED(λ`)

which is exactly the primal model energy (3.11) of the set of binary functionsλti
i . Therefore,

by duality between the max-flow problem (3.16) and the min-cut problem (3.11),λti
i must be

a global minimum of the min-cut problem (3.11) and thereforealso a global minimum of the
original problem (3.10).

This proposition establishes a strong primal-dual relationship between the max-flow
problem (3.16) and the original non-convex problem (3.10).By solving the max-flow prob-
lem (3.16), a large set of non-unique optimums to the original problem can be obtained by
thresholding eachλ∗

i . In Section 6, such a max-flow algorithm is designed which canbe used
to compute solutions of (3.10) very efficiently.

4. Extension to Continuous Labelings.The above discussions on labeling withn lin-
early ordered labels can be further extended to the case where the feasible label values are
ranged in a continuous interval[`min, `max], i.e. the total numbern of labels goes to infin-
ity. We address such a continuous labeling problem by a natural extension of the continuous
max-flow model (3.16). To this end, we first propose a novel max-flow model, then derive
its equivalent min-cut formulation. Finally, we compare the proposed models to Pock et. al.
[53] in details.

4.1. Max-Flow Model. In the continuous limit, as the number of labels goes to infinity,
the max-flow problem (3.16) with the flow constraints (3.13)-(3.15) turns into

sup
p,q

∫

Ω

p(`min, x) dx (4.1)

s.t. p(`, x) ≤ ρ(`, x) , |q(`, x)| ≤ α, ∀x ∈ Ω, ∀` ∈ [`min, `max] (4.2)

divx q(`, x)− ∂` p(`, x) = 0 , a.e.x ∈ Ω, ` ∈ [`min, `max]. (4.3)

where` ∈ [`min, `max] is the set of feasible continuous-valued labels. The flow functionsp
andq are defined in the one dimensional higher space[`min, `max]× Ω.

4.2. Min-Cut Model. Let λ(`, x) be the multiplier function to the flow conservation
constraint (4.3). The primal-dual model can then be written

sup
p,q

inf
λ

∫

Ω

p(`min, x) dx+

∫ `max

`min

∫

Ω

{

divx q(`, x)− ∂` p(`, x)
}

λ(`, x) dx d` (4.4)

subject to (4.2).
By using integration by parts iǹ, the above formulation can be rearranged as

sup
p,q

inf
λ

∫ `max

`min

∫

Ω

{

α |∇xλ|+ p(`, x)∂`λ(`, x)
}

dx d`

+

∫

Ω

(1− λ(`min, x))p(`min, x) + λ(`max, x)p(`max, x) dx. (4.5)

subject to (4.2).
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Consequently, by maximizing w.r.t the flow functionsp andq, we obtain the continuous
min-cut model

min
λ(`,x)∈[0,1]

∫ `max

`min

∫

Ω

{

α |∇xλ| + ρ(`, x)∂` λ(`, x)
}

dxd` (4.6)

subject to

∂` λ(`, x) ≤ 0 , λ(`min, x) ≤ 1 , λ(`max, x) ≥ 0 , ∀x ∈ Ω, ∀` ∈ [`min, `max].
(4.7)

The leftmost constraint in (4.7) forces the functionλ(`, x) to be monotonically nonin-
creasing iǹ . It corresponds to the constraint (3.4) for discrete label values.

Observe that by imposing infinite capacities on the source and sink edges, i.e.p(`min, x)
andp(`max, x) unbounded above, the constraints would instead become

∂` λ(`, x) ≤ 0 , λ(`min, x) = 1 , λ(`max, x) = 0 , ∀x ∈ Ω, ∀` ∈ [`min, `max].
(4.8)

Both (4.7) and (4.8) are equivalent in the continuous setting.
In analogue with (3.6), the labeling functionu(x) can finally be reconstructed from the

binary functionλ(`, x) by

u(x) = `min +

∫ `max

`min

λ(`, x) d` .

4.3. Comparisons to Pock et al [53].In contrast, Pock et al [53] gave a different con-
tinuous formulation of Ishikawa’s construction, as the minimization problem over a binary
function in [`min, `max]× Ω

min
λ(`,x)∈{0,1}

∫ `max

`min

∫

Ω

{

α |∇xλ|+ ρ(`, x) |∂`λ(`, x)|
}

dxd` . (4.9)

subject to

λ(`min, x) = 1 , λ(`max, x) = 0 . (4.10)

In order to solve this non-convex binary problem, the relaxation approach from [18] was
adopted in [53]. Minimization was instead carried out over the convex setλ(x, `) ∈ [0, 1],
then a globally optimal binary function could be obtained bythresholding the result at any
level in [0, 1].

Some differences can be observed between our min-cut formulation (4.6), (4.7) and the
formulation (4.9), (4.10). First, the constraint∂`λ(`, x) ≤ 0 is not forced explicitly in [53].
However, it turns out the presence of the absolute value in the termρ(`, x) |∂`λ(`, x)| forces
this constraint to hold. Observe that ifρ(`, x) < 0 is negative, (4.9) is nonconvex and cannot
be solved globally, which is in contrast to our formulation (4.6). In a more recent tech-
nical report of Pock et. al. [52], a more strict mathematicalderivation resulted in a little
different formulation. In this formulation the integrand of the energy functional is infinite
if ∂`λ(`, x) ≤ 0, hence this constraint is forced to hold. Their derivationsrely heavily
on results from the theory of calibrations [1] and cartesiancurrents [25, 26]. Label values
ranged over the whole real lineR was assumed, which required to impose limits at infinity:
lim` 7→+∞ λ(`, x) = 0 andlim` 7→−∞ λ(`, x) = 1. Our simple derivations show that the prob-
lem can also be formulated as the convex max-flow problem (4.1) or min-cut problem (4.6),
(4.7).
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By applying the dual formulation of total variation (3.23),the relaxed version of (4.9)
can also be written as a primal-dual saddle point problem

min
λ

sup
q,p

∫

Ω

λdiv qx(x, `) + ∂`pλ dx (4.11)

subject to

λ(`, x) ∈ [0, 1], λ(`min, x) = 1 , λ(`max, x) = 0, ∀x ∈ Ω, ` ∈ [`min, `max], (4.12)

|q(x, `)| ≤ α, |p(x, `)| ≤ ρ(x, `), ∀(x, `) ∈ Ω× [`min, `max] }. (4.13)

The most important difference to our primal-dual formulation (4.4) is thatλ is unconstrained
in our formulation (4.4). This allows to build up a very efficient algorithm in the augmented
lagrangian framework.

We eventually stick to a finite label value set in practice. Itcorrectly leads to an approx-
imation of a continuously valuedu(x), since we always have thatλ(`, x) is monotonically
non-increasing iǹ by (4.7), i.e. forx ∈ Ω

λ(`min, x) ≥ . . . ≥ λ(`max, x) .

In practice, the model of [53, 52] also needs to be discretized to find a numerical solution.
After discretization, the label space of course also becomes discrete in (4.9). A fast primal-
dual algorithm was proposed in [52]. It consists of optimizing (4.11) by taking ascent steps in
the dual variables and descent steps in the primal variablesfollowed by projections of all the
variables onto the nearest points of the feasible sets iteratively until convergence. Letλh,qh

andph denote discrete counterparts ofλ,q andp, the algorithm consists of choosing two time
stepsσ, τ and solving fork = 1, ...

(λh)k+1 =ΠL((λ
h)k + σ∇h((q̄h, p̄h)k) (4.14)

(qh, ph)k+1 =ΠCα
((qh, ph)k − τ(divh(λh)k+1)) (4.15)

(q̄h, p̄h)k+1 =2(qh, ph)k+1 − (qh, ph)k (4.16)

whereL = {λh which satisfies (4.12)} andCα = {(q, p) which satisfies (4.13)} andΠL,ΠCα

are projections ontoL andCα respectively. The algorithm we present in the Section 6 is
instead based on our new max-flow formulation (4.1) and is shown to outperform the fast
primal-dual algorithm proposed in [52] in experiments.

5. Convex relaxation of Pott’s model. A convex relaxation of Pott’s model was pre-
sented in [50, 15] based on the formulation (3.10). By writing (3.10) with dual variables we
obtain

min
λ

sup
q

=
n
∑

i=1

∫

Ω

(λi−1(x) − λi(x)) ρ(`i, x) dx + α
n−1
∑

i=1

∫

Ω

λi div qi dx (5.1)

subject to

λi ∈ {0, 1}, i = 1, ..., n, (5.2)

0 = λn ≤ . . . ≤ λ1 ≤ λ0 = 1, (5.3)
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and

|qi| ≤ α, i = 1, ..., n (5.4)

As stated in Section 1.2, (5.1) can be used to partition the image domain into n regions
{Ωi}ni=1 by Ωi = {x ∈ Ω s.t.λi−1(x) − λi(x) = 1}. The regularization term in (5.1) does
not correspond to the length term of the Pott’s model due to the linear dependence on the
size of the jumps. In [50, 15] it was observed that the Pott’s model can be written as (5.1) by
constraining the dual variables to a smaller convex set

q ∈ CP =
{

qi ∈ (C∞(Ω))m, i = 1, ..., n,

s.t.{ ∀x,∈ Ω |
i2
∑

i=i1

qi(x)| ≤ α ∀ (i1, i2) s.t.1 ≤ i1 ≤ i2 ≤ n }
}

. (5.5)

The problem (5.1) subject to (5.3), (5.2) and (5.5) is non-convex due to the binary constraints
(5.2). A convex relaxation was formulated by instead optimizing overλi(x) ∈ [0, 1], i =
1, ..., n. If the solution{λi}ni=1, is binary everywhere, it is also optimal to the Pott’s problem
(5.3). It was observed in [50, 15] that this was most often thecase. The same fast primal-dual
algorithm was proposed for solving the problem, except for two differences:

• The primal variables also have to be projected onto the set (5.3) every iteration, in
addition to the setλi(x) ∈ [0, 1].

• The dual variables have to be projected onto the set (5.5) after the ascent step ev-
ery iteration. No exact closed form solution exist for such acomplex projection,
therefore an iterative algorithm must be applied, which slows down convergence
(Dyjkstra’s algorithm was suggested).

We can formulate a ”max-flow” dual problem of this relaxationby instead constrain-
ing the flow field to the set (5.5). Consider the problem of maximizing (3.16) subject to
(3.14),(3.15) and (5.5). By following the same steps as in Section 3, we obtain the primal-
dual model

inf
λ

sup
p,q

∫

Ω

{

p1 +

n−1
∑

i=1

λi

(

div qi − pi + pi+1

)}

dx (5.6)

subject to

pi(x) ≤ ρ(`i, x) , i = 1 . . . n, q ∈ CP . (5.7)

Following the same arguments as in Section 3.2.3, by maximizing (5.6) forp we obtain (5.1)
subject to (5.5), (5.3) andλi ∈ [0, 1], i = 1, ..., n. Observe that all constraints onλ are
handled implicitly in (5.6), (5.7), including the order constraint (5.3). The algorithm in the
next section also avoids the iterative inexact projectionsof the flow fields ontoCP .

6. Max-Flow Algorithms.

6.1. Multiplier-Based Max-Flow Algorithm. As stated in the previous section, the
energy formulation (3.17) is just the lagrangian functional of (3.16) andλi, i = 1, . . . , n −
1, are the multiplier functions. To this end, we define its respective augmented lagrangian
functional as

Lc(p, q, λ) :=

∫

Ω

p1 dx+

n−1
∑

i=1

∫

Ω

λi(div qi+ pi+1− pi) dx−
c

2

n−1
∑

i=1

‖ div qi+ pi+1− pi‖
2 ,

(6.3)
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Algorithm 1 Multiplier-Based Maximal-Flow Algorithm I

Choose some starting values forp1, q1 andλ1, let k = 1 and startk−th iteration, which
includes the following steps, until convergence:

• Optimizeqi, i = 1, . . . , n− 1, by fixing other variables

qk+1
i := arg max

‖q‖∞≤α
Lc(p

k, q, λk) .

:= arg max
‖q‖∞≤α

−
c

2

∥

∥div qi(x) + pki+1 − pki − λk
i /c

∥

∥

2
, , (6.1)

The above formulation can either be solved iteratively by Chambolle’s projection
algorithm [16], or approximately in one step by (6.4).

• Optimizep1 by fixing other variables

pk+1
1 := arg max

p1(x)≤ρ(`1,x)
Lc(p1, p

k
2 , ..., p

k
n, q

k+1, λk)

:= arg max
p1(x)≤ρ(`1,x)

∫

Ω

p1 dx−
c

2

∥

∥p1 − (pk2 + div qk+1
1 ) + λk

1/c
∥

∥

2

Optimization ofp1 can be easily computed at eachx ∈ Ω pointwise;
• Optimizepi, i = 2, ..., n− 1 by fixing other variables

pk+1
i := arg max

pi(x)≤ρ(`i,x)
Lc(p

k+1
j<i , pi, p

k
j>i, q

k+1, λk)

:= arg max
pi(x)≤ρ(`i,x)

−
c

2

∥

∥pi + div qk+1
i−1 − pk+1

i−1 − λk
i−1/c

∥

∥

2

−
c

2

∥

∥pi − (pki+1 + div qk+1
i ) + λk

i /c
∥

∥

2

which can also be easily computed at eachx ∈ Ω pointwise
• Optimizepn by fixing other variables

pk+1
n := arg max

pn(x)≤ρ(`n,x)
Lc(p

k+1
1 , ..., pk+1

n−1, pn, q
k+1, λk)

:= arg max
pn(x)≤ρ(`1,x)

−
c

2

∥

∥pn + div qk+1
n−1 − pk+1

n−1 − λk
n−1/c

∥

∥

2
,

pk+1
n can be simply updated pointwise;

• Update multipliersλi, i = 1, . . . , n− 1, by

λk+1
i = λk

i − c (div qk+1
i − pk+1

i + pk+1
i+1 ) ;

• Let k = k + 1 go to thek + 1-th iteration until converge.

wherec > 0.
An algorithm can be formulated, see Algorithm 1, for the continuous maximal flow prob-

lem (3.16) based on the alternating direction method of multipliers [8], where each flow func-
tion is optimized independently andλi, i = 1, . . . , n − 1, is updated as a multiplier at each
iteration. A similar algorithm was presented for two label problems in [60, 61] and showed a
significantly faster convergence rate than previous state of the art work [14].

The flow functionspi, i = 1, ..., n are optimized one component at a time, starting from
the source advancing one layer at a time to the sink. Convergence of such algorithms is
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Algorithm 2 Multiplier-Based Maximal-Flow Algorithm II

Choose some starting values forp1, q1 andλ1, let k, i = 1 and startk−th iteration, which
includes the following steps, until convergence:

• For each layeri = 1, ..., n:
– Optimizepi by fixing other variables

pk+1
i := arg max

pi(x)≤ρ(`i,x)
Lc((p

k+1
j<i , pi, p

k
j>i), q

k, λk)

– Optimizeqi, by fixing other variables

qk+1
i := arg max

‖q‖∞≤α
Lc((p

k+1
i≤j , p

k
i>j), qi, λ

k) (6.2)

– Optimizepi, by fixing other variables

pk+1
i := arg max

pi(x)≤ρ(`i,x)
Lc((p

k+1
j<i , pi, p

k
j>i), q

k+1, λk)

• Update multipliersλi, i = 1, . . . , n− 1, by

λk+1
i = λk

i − c (div qk+1
i − pk+1

i + pk+1
i+1 ) ;

• Let k = k + 1 go to thek + 1-th iteration until converge, seti = 1.

validated by classical optimization theories. Another variant of this algorithm, see Algorithm
2, also optimizes the flow functionsqi along withpi one layer at a time and is more stable
with respect to the penalty parameterc. This algorithm is used in our experiments.

Some interesting things can be observed about these algorithms. The constraints (3.3) on
the labeling functionλ are automatically satisfied, thereforeλ does not need to be projected
onto the feasible set. The penalty parameterc controls how fast the algorithm will conver-
gence as converge will be faster asc increases. In our experimentsc can be set quite high
without altering the convergence or final result, e.g.c = 3. As a consequence, Algorithm
2 converges in a relatively few outer iterations, significantly less than the fast primal-dual
algorithm of [52]. On the flip side our algorithm contains a more difficult subproblem (6.1)
which can be solved iteratively by Chambolle’s algorithm [16]. Since the previous solution
is available as a good initialization, not many iterations of this algorithm is required, see the
experiment section for detail.

Instead of solving the subproblem (6.1) iteratively, an inexact solution can be generated
by the linearization

qk+1
i = Πα

(

qki + c∇(div qki − F k
i ).

)

(6.4)

whereΠα is the projection onto the convex setCα = {q |‖q‖∞ ≤ α}. There are extended
convergence theories for such a linearization, which was studied and proved in [22] for closely
related problems. However, this approximation places somemore restrictions on the penalty
parameterc, which must be set lower to maintain convergence. For instancec = 0.2 seems
to be a good choice.

6.2. Algorithm for convex relaxed Pott’s model. The convex relaxed Pott’s model in
(5) can be optimized by a small modification of Algorithm 1 or 2. The flow fieldsqi, i =
1, ..., n are instead optimized over the set (5.5). As stated in Section 5, no closed form solution
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(a) (b) (c) (d)

FIG. 7.1. (a) Ground truth, (b) input, (c) Rescaled labeling functionbefore threshold, (d) Rescaled labeling
function after thresholding eachλi at 0.5.

exists for projecting a vector(q1, ..., qn) ∈ R
m×n ontoCP . However, if all components but

one are fixed, the projection can be computed analytically. Given a vector̄q ∈ CP , define the
sets

CP
i (q̄) = {qi ∈ (C∞(Ω))m s.t.(q̄1, ..., q̄i−1, qi, q̄i+1, ..., q̄n) ∈ CP }, i = 1, ..., n (6.5)

This setCP
i (q̄) is just an intersection of spheres inRm of radiusα and different centers. For

anyqi ∈ R
m the projection ontoCP

i (q̄) can be computed analytically, the details are given in
appendix A. Applied to the convex relaxed problem (5.6), Algorithm 1 and 2 does not change
except the feasible set in the subproblem (6.1) of Alg 1 and (6.2) of Alg 2 are replaced by
CP

i (qk+1
j<i , q

k
j≥i), i.e. subproblem (6.1) and (6.2) become

qk+1
i := arg max

qi∈CP
i
((qk+1

j<i
,qk

j≥i
))
Lc(p

k, (qk+1
j<i , qi, q

k
j>i), λ

k) . (6.6)

To optimize (6.6) one may either apply the linearization (6.4) to qi followed by a projection
ontoCP

i ((qk+1
j<i , q

k
j≥i)), or an iterative ascent/project algorithm inqi with projections onto

CP
i ((qk+1

j<i , q
k
j≥i)).

The projection ontoCP
i ((qk+1

j<i , q
k
j≥i)) can be computed exactly, but of course costs more

floating point evaluations than projections onto the simpler setCα. The algorithm in the ap-
pendix has a worst case complexity ofO(n2) to find the projection exactly (in the worst case,
the euclidian distance betweenn2 points must be computed for 2D images). The algorithm is
applied for each of then labels, hence the total complexity of computing projections for each
iteration isO(n3).

The primal-dual algorithm needs to project the vector(q1, ..., qn) ∈ R
m×n ontoCP

during each iteration. Since no closed form solution exists, it was suggested in [15] to apply
Dyjkstra’s iterative algorithm to compute the projection approximately. Each iteration of this
algorithm applied to the problem has a complexity ofO(n3). As far as we can see, one iter-
ation of Dyjkstra’s algorithm requires around the same number of floating point evaluations
as our exact projection algorithm summed over each label.

TABLE 7.1
Percentage of misclassified pixels for stereo example

Graph Cut 4-neighbors Graph Cut 8-neighbors Pock et. al. ProposedT1 ProposedT2

30.74 30.5 30.20 29.95 27.59
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(a) (b) (c) (d)

FIG. 7.2. (a) Input image damaged by impulse noise; (b) reconstructedlabeling function with non-convex
data term(7.3) before threshold, (c) labeling function after thresholding eachλi at 0.5, (d) reconstructed labeling
function with convex data term(7.1)andβ = 1.

(a) (b) (c)

FIG. 7.3.(a) Input, (b) Labeling function before threshold (c) Labeling function after thresholding eachλi at 0.5.

7. Numerical Experiments. In this work, we focus on applications of the model (1.3)
and (1.1) to image segmentation and stereo reconstruction.Comparisons are made to the
discrete approach [33] and the approach proposed by Pock et.al. [53].

7.1. Image Segmentation.The discrete-valued labeling functionu(x) can be used to
partition the image inton regions by the conventionu = i in regioni. Henceρ(u(x), x) is
the cost of assigning the pointx to regionu. One possibility for such a data term is

ρ(i, x) = |I(x)− ci|
β , i = 1, ..., n (7.1)

whereI is the input image andci is the average intensity value of regioni. They are assumed
to be fixed in this work, although a simple updating scheme canalso be constructed for finding
a local minimum with respect toc as in [4]. Such a data term is convex forβ ≥ 1 and non-
convex forβ < 1. The termα

∫

Ω
|∇u| dx is used to regularizeu. It does not penalize the

jump from each region to the next equally, like the more idealPott’s model. However, for
relatively simple images and when the number of regions is not too large, it works quite well.
In addition, image segmentation is good for illustrative purposes of the method, since the
results are easily visualized. Figure 7.1, 7.4 and 7.3 show results. For ease of visualization,
we have rescaled the labeling functionu such thatu takes the valueci in regioni (instead of
the valuei), i.e.

u = c1 +

n−1
∑

i=1

(ci+1 − ci)λ
∗
i . (7.2)

Subfigure (b) shows the resultingu before thresholding eachλ∗
i (x). As expected such a

solution may not be binary. Subfigure (c) shows the discrete valued solution after thresholding
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(a) (b) (c)

FIG. 7.4.(a) Input, (b) Labeling function before threshold (c) Labeling function after thresholding eachλi at 0.5.

(a) (b) (c)

FIG. 7.5.(a) Input, (b) segmentation with total variation regularized model(1.3)(after threshold), (c) segmen-
tation with convex relaxed Pott’s model (after threshold).The total variation regularized model results in misclassi-
fications along the boundary between region 1 (darkest) and region 3 (brightest) and does not reconstruct the triple
junction properly.

eachλ∗
i (x) according to Prop. 3.2. We also demonstrate image segmentation with a non-

convex data term. The ground truth image from Figure 7.1 (a) has been damaged by impulse
noise in Figure 7.2 (a). More specifically,70% of the pixels have been randomly selected
and given a random number between0 and255 (max gray value). For this type of noise, the
convex data terms does not perform well, as shown in Figure 7.2 (d) where we have selected
(7.1) withβ = 1. Instead the following non-convex data term can be used

ρ(i, x) :=

{

0 , if i = argmink |I(x)− ck|
1 , else

. (7.3)

This non-convex problem can be solved globally by our method, the result is shown in Figure
7.2 (b) before threshold and 7.2 (c) after thresholds.

We next apply our algorithm for the convex relaxed Pott’s model of [50] from section
6.2. The image in Figure (7.5) (a) has been segmented with thetotal variation regularized
model in (b) and convex relaxed Pott’s model in (c). As we see,total variation results in mis-
classifications along the boundary between region 1 (white)and region 3 (dark) and cannot
reconstruct the triple junction properly.

7.2. Stereo reconstruction.We now consider stereo reconstruction with data from the
Tsukuba stereo set [55]. Given two color imagesIL andIR of a scene taken from horizontally
slightly different viewpoints, we would like to reconstruct the depth mapu. The quality of
the matching betweenIL andIR for a depth valueu is measured by using the followingρ in
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 7.6. (a) Left input image, (b) ground truth, (c) non-integer solution u =
∑

n−1

i=1
λ∗
i

, (d) Integer valued
solution after thresholdT1, (e) Integer valued solution after thresholdT2, (f) Graph cut 4 neighbors, (g) Graph cut
8 neighbors, (h) Pock et. al.
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(a) (b)

FIG. 7.7.The solutionλ∗ may not be binary. (a) depictsλ∗
8

and figure (b) depictsλ∗
9

from the stereo example
in Figure 7.6

Energy precisionε < 10−3 Energy precisionε < 10−4

Fast primal-dual [52] Proposed 1 Proposed 2 Fast primal-dual [52] Proposed 1 Proposed 2
Brain 280 50 (× 5) 110 430 65 (× 5) 280
Figure 7.1 295 35 (× 5) 115 640 65 (× 5) 290
Stereo 4055 550 (× 5) 1070 14305 920 (× 5) 3905

TABLE 7.2
Iteration counts for each experiment. Number of iterationsto reach an energy precision of10−3 and10−4 are

shown. Proposed 1 stands for algorithm 2 where the subproblem is solved by 5 iterations of Chambolle’s algorithm
each outer iteration (indicated by the number in the parenthesis). Proposed 2 stands for Algorithm 2 with the
subproblems solved inexactly in one step through the linearization (6.4).

the data term of (3.1)

ρ(u, x) =

3
∑

j=1

|IjL(x)− IjR(x+ (u, 0)T )|. (7.4)

HereIj(x) denotes thej− th component of the color vectorI(x). The above data term (7.4)
is obviously highly non-convex. The termα

∫

Ω
|∇u| dx is used to regularizeu. The strength

increases linearly with the size of the jump ofu. This is reasonable in stereo reconstruction,
sinceu describes the ”depth”, which is a physical entity arranged linearly in a third dimension
perpendicular to the image planes. Figure 7.6 shows resultson a standard example. We
have usedα = 0.03 and scaled images between0 and1. As suggested in [55] we have set
n = 17 and used the discrete label set{0, ..., 16}. This integer optimization problem over a
continuous domain can be formulated exactly with our approach. Solving (3.17) will result in
optimal functionsλ∗

i that are not necessarily binary. In fact they are not expected to be binary
in case the solution to the original problem is not unique. Asstated in Prop 3.2, a sequence of
optimal integer valued solutions can be obtained by thresholding eachλ∗

i at different levels
ti with 0 < t1 ≤ ... ≤ tn ≤ 1, provided (3.25) holds. In Figure 7.6(c), we depict such a
non-binary solution by plottingu =

∑n−1
i=1 λ∗

i . Observe thatλ∗
i is not binary at locations

where a unique solution is not expected, such as the upper right corner and underneath the
table. At such locations the data terms are weak. By varying the threshold level, different
integer valued solutions can be obtained. For instance, we have chosenti = 0.5 for all i
in Figure 7.6(d), which is called thresholdT1. In Figure 7.6(e) we have chosenti = 0.15
for i = 1, ..., 5 andti = 0.5 for i = 6, ..., 16, called thresholdT2 (one can check (3.25) is
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valid for k = 6). This last threshold option allows to remove some of the misclassifications
in the background. In contrast, the approach of Pock et. al. obtains the labeling function by
one single threshold of the optimal higher dimensional indicator function. Their result with
threshold level 0.5 (which is optimal in terms of misclassified pixels) is depicted in Figure
7.6(h). As we see in the figures and in Table 7.1, our approach produces a solution of less
misclassified pixels compared to the ground truth, Figure 7.6(b). Let us reiterate that both
approaches are global and converge to the same minimal energy, but our approach allows for
a larger set of non-unique solutions.

We also compare with graph cut using a neighborhood system of4 and 8. Graph cut
produces a single non-unique solution which is shown in Fig 7.6(f) and (g) with 4 and 8
neighbors respectively. As we see, such solutions suffer from metrication artifacts because of
the discrete grid bias.

7.3. Evaluation of convergence.Iteration counts for all experiments are presented in
Table 7.2. The two variants of Algorithm 2 are evaluated against the fast primal-dual method
of Pock et. al. [52]. The relative energy precision at iteration i is given by

ε =
Ei − E∗

E∗
, (7.5)

whereEi is the energy at iterationi andE∗ is the final energy. A good estimate ofE∗ is
obtained by using a huge amount of iterations of each method and each experiment. The table
shows how many iterations are required to reach an energy precision of10−3 and10−4. Our
algorithms are implemented with a mimetic finite differencespatial discretization [32, 31].
In order to make the comparison as accurate as possible, the fast primal-dual algorithm [52]
is also implemented with such a mimetic finite difference discretization, although a slightly
different forward scheme for the gradient and backward scheme for the divergence was used
in [52].

The first variant of Algorithm 2 solves the subproblem (6.1) iteratively by Chambolle’s
algorithm [16]. Since the previous solution is available asa good initialization, not many
iterations of this algorithm is required. In our experiments, 5 inner iterations was used each
time. Increasing the number of inner iterations beyond 5 didnot seem to have any impact on
the convergence rate in our experience.

The fast primal-dual method of [52] avoids the inner problem, but as we see requires
significantly more iterations to reach the same energy precisions. Our algorithm also re-
quires less total number of iterations (inner times outer iterations). The difference becomes
progressively clearer with higher energy precision. For the stereo example, which is by far
most difficult computationally, our approach reached an energy precision ofε < 10−5 after
1310 iterations,ε < 10−6 after1635 iterations andε < 10−7 after2340 iteration. The fast
primal-dual algorithm [52] failed to ever reach an energy precision of10−5 or lower within
our predetermined number of maximum iterations (20000). Webelieve this difference is due
to the fact that our approach avoids the iterative projections of the labeling function and hence
progresses in the exact steepest descent direction every iteration.

The second variant of the Algorithm 2 instead computes an inexact solution to (6.1) by
the linearization (6.4) and hence avoids the inner iterations. However, the penalty parameter
c must be set lower to have convergence, hence more outer iterations are required. Overall it
converges a little faster than the first variant and outperforms the fast primal-dual algorithm
[52] for all the experiments.

Regarding the algorithm for Pott’s model in Section 6.2, to reach an energy precision of
10−4 on the image in Figure 7.7, 130 outer iterations were required (with 5 inner iterations
to solve subproblem (6.6)). In comparison, 120 outer iterations (with 5 inner iterations) were
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required for the total variational regularized model (1.3), indicating the number of iterations
in the convex relaxed Pott’s model does not significantly increase. This is in contrast to the
primal-dual algorithm of [50], where for each iteration thedual variableq must be projected
ontoCP by an iterative algorithm (e.g. Dijkstra’s algorithm), which is the bottle neck of the
overall algorithm.

Comparison to discrete graph cut [11] is more complex. Our algorithms are implemented
in matlab, in contrast to the optimized c++ discrete max-flowimplementation of [11]. Our al-
gorithm consists mainly of floating point matrix and vector arithmetic and is therefore highly
suited for massive parallel implementation on GPU. Traditional max-flow algorithms have a
much more serial nature, which makes them more dependent on an efficient serial CPU. A
GPU implementation of the algorithm of Pock et. al. has already been compared to discrete
graph cut in [53], showing a speed up factor of about 30. In thenear future, hardware im-
provements are also expected to be largely of the parallel aspect. Hence, we see our work as
more suited for the current and future generation of hardware.

8. Conclusions and Future topics.In this paper we proposed and investigated a novel
max-flow formulation of multilabeling problems over a continuous image domain. It is a di-
rect mapping of Ishikawa’s graph-based configuration to thespatially continuous setting. The
multilabeling problem was interpreted as a min-cut problem, which we proved was dual to the
proposed continuous max-flow model. In addition, we derivednew and reliable multiplier-
based max-flow algorithms whose convergence can verified by standard optimization theo-
ries. Experiments showed that the algorithms outperform the existing approach both in terms
of convergence rate and reliability. Due to the continuous convex formulation, the algorithm
can be more easily speeded up by multi-grid or parallel implementation than graph-based
methods, and its memory requirement is not so high.

In comparison to [53] and its improvement [52], our continuous max-flow approach pre-
sented a new theoretical framework based on the max-flow dualformulation of discrete-
valued constrained problems of the form (1.3); a new thresholding scheme could be derived
for producing a larger set of exact and global optimums; experiments showed that the max-
flow based algorithms converged significantly faster and more accurately than the fast primal-
dual method proposed in [52]. The algorithm could also be extended to the convex relaxation
of Pott’s model [50], thereby avoiding expensive iterativeprojections without closed form
solution. In a future work we will also extend this algorithmto the convex relaxation of the
piecewise smooth Mumford-Shah model [51], speed up and fine tune the projection algorithm
of Section A and compare extensively with [50, 51].

During the completion of this work, we discovered another inexact one step scheme for
solving the subproblem 6.1, which allows for larger step sizes, resulting in even faster conver-
gence. We plan to investigate this further and release another paper on fast implementations
and more comparisons in the future. We also became aware of a simultaneous work [43]
which gives another algorithm for minimizing the energy in the convex formulation of [52].
Comparison with this work will also be subject of future research.

Appendix A. Projection onto CP
i (q̄).

Observe thatCP
i (q̄) is an intersection of spheres inRm. The centers of the spheres

are denoted̄qjk for (k, j) ∈ I = {(k, j) s.t. 1 ≤ k < i < j ≤ n} and are defined as
q̄jk =

∑j
`=k,` 6=i q̄`. Let S(c, α) denote the sphere of centerc ∈ R

m and radiusα and define

Sj
k(α) = S(q̄jk, α). ThenCP

i (q̄) is

CP
i (q̄) = ∩i−1

k=1 ∩
n
j=i+1 S

j
k(α) (A.1)

To obtain an analytical expression for the projection ontoCP
i (q̄), observe first that
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(a)

FIG. A.1. (a) Projection ofqi ontoCP

i
(q). The projectionsq1

i
, q2

i
and q3

i
ontoS1(α), S2(α) andS3(α)

are not containedCP

i
(q), therefore the projectionq∗ ontoCP

i
(q) must lie on the intersection of the boundaries of

S1(α), S2(α) andS3(α).

PROPOSITIONA.1. Let qjk = Π
S

j

k
(α)qi be the projection ofqi onto the sphereSj

k(α).

Assume that for some(k, j) ∈ I, qjk ∈ CP
i (q̄), thenq∗i = arg min

q
j

k
∈CP

i
(q̄),(k,j)∈I

|qi − qjk| is

a projection ofqi ontoCP
i (q̄).

Proof. Let (K, J) = arg min(k,j)∈I s.t.qj
k
∈CP

i
(q̄)|q

j
k − qi|. Assume there exists aq∗ with

q∗ ∈ CP
i (q̄) and|q∗ − qi| < |qJK − qi|. Thenq∗ ∈ SJ

K(α) and|q∗ − qi| < ΠSJ
K
(α)qi =

|qJK − qi|, a contradiction.
If qjk /∈ CP

i (q̄) for all (k, j) ∈ I, the projection ontoCP
i (q̄) must necessarily lie on

the intersection of theboundariesof Sj
k(α) as the next proposition shows. We focus on two

dimensional images inR2 for simplicity, i.e.m = 2. In that case, intersections ofboundaries
of Sj

k(α) are just isolated points inR2. The boundaries ofSj
k(α) are denoted∂Sj

k(α), i.e.

∂Sj
k(α) = {x ∈ R

m s.t. |x− q̄jk| = α}. (A.2)

PROPOSITIONA.2. Assumeqjk /∈ CP
i (q̄) for all (k, j) ∈ I. Denote the set of intersec-

tions

Q =
{

x ∈ R
2 s.t.x ∈ ∂Sj′

k′(α) ∩ ∂Sj
k(α), for some(k′, j′) 6= (k, j) ∈ I

}

. (A.3)

ThenΠCP
i
(q̄)qi ∈ Q.

Proof. Let q∗ = ΠCP
i
(q̄)qi. Observe that the projectionq∗ must lie on the boundary

of the setCP
i (q̄), thereforeq∗ ∈ ∂Sj

k(α) for some(k, j) ∈ I, sayq∗ ∈ ∂SJ
K(α). Since

q∗ ∈ SJ
K(α) it follows that|q∗ − qi| > |qJK − qi|.

Assume thatq∗ /∈ Q. Consider the part of the circles ⊂ ∂SJ
K(α), which is the open

curve with end points inq∗ andqJK of minimum length (since there are two possibilities).
Sinceq∗ ∈ CP

i (q̄) andqJK /∈ CP
i (q̄) it follows that there exists a point̃q ∈ s such that̃q ∈ Q

andq̃ ∈ CP
i (q̄). Then|q̃ − qi| < |q∗ − qi|, a contradiction toq∗ = ΠCP

i
(q̄)qi.

Whenm = 3 (3D images), thenQ is itself a set of circles inR3 (and isolated points).
The projection ontoQ can be computed analytically, but we omit the details.

In is not necessary to check the projection onto everySj
k(α) for (k, j) ∈ I. As the next

result shows, it suffices to check the sphere with largest euclidian distance toqi.
PROPOSITIONA.3. Let (K, J) = arg max(k,j)∈I |qi − q̄jk|. If qJK = ΠSJ

K
(α)qi ∈ CP

i (q̄),

thenqJK = ΠCP
i
(q̄)qi. If qJK /∈ CP

i (q̄), thenΠCP
i
(q̄)qi ∈ Q
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Algorithm 3 Exact projection algorithm ontoCP
i (q̄)

• Compute(K, J) = arg max(k,j)∈I |qi − qjk|

• if qJK = ΠSJ
K
(α)qi ∈ CP

i (q̄), then
q∗ = ΠSJ

K
(α)qi

• else
(K, J) = arg max(k,j)∈I |q

j
k − qi|, (K ′, J ′) = arg max(k,j)∈I\(K,J)|q

j
k − qi|

q∗ = arg min
q∈∂CJ

K
(α)∩∂CJ′

K′(α), (k,j) 6=(K,J)∈I
|q − qi|.

Proof. Observe that|qi − q∗| = |qi − ΠCP
i
(q̄)qi| ≥ max(k,j)∈I |qi − Π

S
j

k
(α)qi|. The

inequality follows sinceq∗ ∈ Sj
k(α) for all (k, j) ∈ I. Let (K, J) = arg max(k,j)∈Iqi − q̄jk.

Then|qi−ΠSJ
K
(α)qi| = max(k,j)∈I |qi−Π

S
j

k
(α)qi|. If ΠSJ

K
(α)qi ∈ CP

i (q̄), then by the above

inequalityq∗ = ΠSJ
K
(α)qi. This shows the first part of the proposition. IfΠSJ

K
(α)qi /∈ CP

i (q̄),

then by the above inequalityΠ
S

j

k
(α)qi /∈ CP

i (q̄) for all (k, j) ∈ I, henceq∗ = ΠCP
i
(q̄)qi ∈ Q.

Further simplifications can be made. We stick to 2D dimensional problems from now
on, i.e.m = 2. It is not necessary to check every point inq∗ ∈ Q, to find the one inCP

i (q̄)

with smallest distance toqi. The centers of the disksSj
k(α) are all assumed to be contained

in CP
i (q̄) by the construction, i.e.

j
∑

`=k,` 6=i

q̄` ∈ CP
i (q̄), ∀(k, j) ∈ I, (A.4)

which makes the calculation especially simple
PROPOSITION A.4. Assumeqjk /∈ CP

i (q̄) for all (i, j) ∈ I and assume(A.4) holds.
Let (K, J) = arg max(k,j)∈I |q

j
k − qi| and(K ′, J ′) = arg max(k,j)∈I\(K,J)|q

j
k − qi| (second

largest). If(K, J) is unique thenq∗ ∈ ∂SJ
K(α) ∩ ∂Sj′

k′(α) for some(k′, j′) ∈ (K ′, J ′), if

(K, J) is not uniqueq∗ ∈ ∂Sj
k(α) ∩ ∂Sj′

k′(α) for some(k, j), (k′, j′) ∈ (K, J).
This observation reduces the number intersecting points that needs to be checked. If both

the largest and second largest distance is unique thenq∗ ∈ SJ
K(α)∩ ∂SJ′

K′(α) which consists
of two points.

A simple algorithm can then be constructed for computingq∗ = ΠCP
i
(q̄)qi, see Alg. A.

There may be several ways to accelerate the algorithm. In practice, it is expected the boundary
of the setCP

i (q̄) is compromised of only a few elements of∂Sj
k(α), so called active elements.

Furthermore, the set of active elements∂Sj
k(α) are known when advancing from one layer to

the next, and does not need to be recalculated. The algorithmwould only need to work with
this set of relevantCj

k(α).
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