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A FAST CONTINUOUS MAX-FLOW APPROACH TO NON-CONVEX
MULTILABELING PROBLEMS

EGIL BAE*, JING YUANT, XUE-CHENG TAF, AND YURI BOYKOV§

Abstract. This work addresses a class of multilabeling problems ovgpadially continuous image domain,
where the data fidelity term can be any bounded function, ecéssarily convex. Two total variation based regular-
ization terms are considered, the first favoring a lineati@hship between the labels and the second independent
of the label values (Pott's model). In the spatially diseregtting, Ishikawa [33] showed that the first of these label-
ing problems can be solved exactly by standard max-flow amdaui algorithms over specially designed graphs.
We will propose a continuous analogue of Ishikawa’s graptstaction [33] by formulating continuous max-flow
and min-cut models over a specially designed domain. Theseflow and min-cut models are equivalent under a
primal-dual perspective. They can be seen as exact conlaxatiens of the original problem and can be used to
compute global solutions. Fast continuous max-flow basgakithms are proposed based on the max-flow models
whose efficiency and reliability can be validated by botmdgad optimization theories and experiments. In com-
parison to previous work [53, 52] on continuous generabrabf Ishikawa’s construction, our approach differs in
the max-flow dual treatment which leads to the following madlivantages: A new theoretical framework which
embeds the label order constraints implicitly and natynadbults in optimal labeling functions taking values in any
predefined finite label set; A more general thresholdingrémavhich, under some conditions, allows to produce a
larger set of non-unique solutions to the original probl&lumerical experiments show the new max-flow algorithms
converge faster than the fast primal-dual algorithm of (83, The speedup factor is especially significant at high
precisions. In the end, our dual formulation and algoritlaresextended to a recently proposed convex relaxation of
Pott's model [50], thereby avoiding expensive iterativenpatations of projections without closed form solution.
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1. Introduction. Many problems in image processing and computer vision candzk
eled as energy minimization problems. In image restorasoigh minimization problems
may be defined over a set of functions which indicate the gedwyevof the restored image
at each pixel. In image segmentation, the minimization f@mlcan be defined over a set of
partitions of the image domain. More generally, such pnoislean be formulated in terms of
a labeling function. Examples include image denoising B¥],where gray-scale values are
directly regarded as labels, image segmentation [13, 2fdt4khich each label represents
a region, two-view stereo reconstruction [40, 41] wheremie-valued depths are used as
labels, multi-view reconstruction [45] where inside andside are simply indicated by two
labels (see [49] for a good reference to more applications).

Such optimization problems can be addressed by regardingptitial image domain as
either discrete or continuous, leading to respectivelyatisnal problems or combinatorial
optimization problems. Typically, such problems are mededs the minimization of an
energy which is compromised of a data fitting term and a reguatgon term. Often the most
desirable models are the most difficult to handle from annoigtition perspective as they
may be non-convex in the continuous setting, or NP-harderdibcrete setting.

In the spatially discrete setting, many such optimizatioobfem can be stated as a
Markov random field (MRF) over a discrete image graph. Machmnéques have been pro-
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posed for solving such optimization problems, e.g. grapis-[30, 11, 33], message passing
[59, 38] and linear programming [42] etc. Graph-cut is anciffit technique which can
tackle many such combinatorial optimization problems igecthey can be represented as
the minimum cut problem over a graph. Greig et al [30] werefitst to observe that the
min-cut strategy can be applied to exactly solve binaryllageproblems in computer vi-
sion. However, most labeling problems involving more thao tabels are NP-hard, there-
fore only approximate graph cut algorithms are availalite,[l13]. However, for a particular
set of multilabeling problems with linearly ordered labated convex interaction penalties,
Ishikawa [33] showed that exact solutions can be obtainegtéyh-cut, even if the data term
is not convex. Another exception, proposed in [6], is a disewariant of the Chan-Vese
model [58] with 4 regions. Despite the efficiency of graphdshapproaches, their compu-
tation results are often rough and biased by the discrete iggi metrication errors [12, 37]
are introduced. Reducing such visual artifacts requirdg®econsidering more neighboring
nodes [12, 37] or applying high-order potentials [36, 34bwdver, this either results in a
heavy memory load and high computation cost, or amounts tiee momplex algorithmic
schemes, e.g. QPBO [9, 39].

If the image domaifi} is regarded as continuous, the objective is an energy fumaitand
the minimization problem is a variational problem. Numalisolutions can be obtained by
instead discretizing and solving the corresponding Euégrange PDEs. Such a continuous
approach avoids the metrication errors, allows to prodeselts that are rotationally invariant
and allows for subgrid accuracy. If discrete label valuessssumed, the image is partitioned
into several regions. Traditionally, the level set methd@s 17] and phase field methods [35,
7] were used to approach such partitioning problems. Theepiise constant level set method
[46, 47] was later proposed, which assigns an integer lategeh point of the image domain.
However, both the level set and phase field methods are basaéhamization of nonconvex
energy functionals. Hence only local optimums can be obthand the computation results
highly depend on the initialization.

1.1. Convex Relaxation Approaches for Pott’s modelOn the other hand, in the pi-
oneer works of Strang [56] and Chan et. al. [18], it was realithat typical binary image
labeling problems in the spatially continuous setting ddre formulated and exactly solved
by means of convex relaxations. Their approach allows toprdenglobal minimizers of
the Pott's model restricted to two phases. The continuotiamaof the Potts model [54]
describes a partition of the continuous dom@imto n disjoint subdomaingQ;}"_; as the
minimum of a weighted sum of data fidelity and the length offiagtition boundaries

min i,x)dr + « o0 1.1
RIS | ot >l LD
SLUM, Qi=Q, QN =0,Vk+£Il,

For instance, ifo(i,z) = |I(x) — c;|?, then (1.1) corresponds to the piecewise constant
Mumford-Shah model of image segmentation. Restricted te 2, (1.1) can be written in
terms of the characteristic functianof €2; and1 — « of Q; as

min /(1—u)p(2,x)dx—|—/ up(l,x) da:—i—oz/ |Vu| dz . (1.2)
u(2)e{0,1} Jo Q Q

It was shown in [18] that the non-convex binary constrait) € {0,1} could be relaxed
and replaced by the convex constraifit:) € [0, 1]. Global and exact binary optimums could
be obtained by thresholding the result of the convex relgpredlem at almost any level in
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the interval[0, 1]. In [60], such a convex relaxation scheme was redefined umcdeavel
continuous max-flow/min-cut perspective and studied bylegeat variational theory.

Similar relaxation schemes have also been applied to areenis version of Pott's
model withn > 2 [63, 44, 50, 15]. Recently, [5, 61] investigated the equnabual model of
the convex relaxation formulation studied in [63, 44] andw a simple and fast algorithm
in the entropy maximization style. A max flow interpretatmfrthis dual model was given in
our recent paper [62], along with a new algorithm. Howevethee underlying optimization
problem is NP-hard, these relaxations of the Pott's modelrat exact, i.e. their recon-
structed integer-valued solutions can generally only leepied as suboptimal, even though
the experimental results are promising in terms of the tetargy and quality. The relax-
ation [50, 15] is tightest, meaning it will most often resualglobal minimums of the original
problem (1.1). On the other hand, it is more complicated fit@y 44], especially from a
computational perspective, because the number of siddraorts grow quadratically im.
Further, projections must be computed onto the feasiblewasy iteration of the algorithm.
Since no closed form solution exist, the projections mustdraputed by an iterative algo-
rithm, which slows down convergence. As part of this workigm#icantly faster algorithm
for solving the relaxed problem [50, 15] is proposed.

In contrast to level set and phase field methods, the conleexation approach can yield
global solutions; fast algorithms can be designed by stahdanvex optimization theories.
In addition, experiments showed that lower energies coelédhieved. Their results are
therefore expected to be closer to the global integer optisnaf the original problem. In
contrast to the graph-based methods, the convex relaxaimoach yields subgrid accuracy,
because of the spatially continuous setting, and perfesttyd metrication errors due to
its crucial rotation invariance. In addition, the reduceadnerical schemes can be easily
accelerated by multigrid or parallel implementation argliee less memory.

1.2. Labeling with Linearly Ordered Labels. In this work, we will start by focusing
on image labeling problems of the form

min / p(u(z), z) dx +/ C(x)|Vu(z)|dz, (1.3)
u(z)e{tr...lp} Jq Q
wherep(u(z), x) is any bounded function, not necessarily convex.inThe last term of
(1.3) regularizes and is called the (weighted) total vamabf ». The applications of (1.3)
are numerous. For instanaemay represent the gray value in image denoising. The problem
(1.3) can also model partitioning problems, like image segtation, by the conventian= i
in region(); and wherep(u(z), z) is the data cost of assigningto region(2,,. However, the
regularization term (1.3) does not correspond to the letegth in the more ideal Pott’s model
(1.1), because of its dependence on the size of the jumps®h the other hand, such a linear
relationship on the size of the jump afmay be an advantage in other applications, like
stereo reconstruction. The piecewise constant level sttadg4 7] also has the form of (1.3)
if /1,...,4, = 1,...,n. In order to minimize the non-convex energy (1.3), is wagpsed
to represent the integer constraints by polynomials andmize the resulting non-convex
lagrangian functional to a local minima.

In the spatially discrete setting, Ishikawa [33] showed thech labeling problems could
be solved globally and exactly by computing the minimum cwgtraa specially designed
graph (see Sec. 2.2 for more details). [53, 52] generaltzisae¢sult to the totally continuous
setting, where both the image domain and label values aréncmus, by representing the
optimal labeling function as the discontinuity set of a bynfunction in a one-dimensional
higher space. Such alifting approach is related to earleghematical theories of calibrations
and cartesian currents [10, 1]. Optimal labeling functioosld be obtained by applying the
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result of Chan et. al. in the higher dimensional space, it $olve the relaxed binary
problem and then threshold the result. Recently, the {ff@approach was generalized to
solve vector valued problems [29] in the totally discretttisg. The resulting relaxation

is not exact, therefore global solutions cannot in genezadlitained. Since the underlying
minimization problem is NP-hard, global minimization istrfeasible in general for such

problems.

1.3. Motivations and Contributions. We will interpret (1.3) as a continuous min-cut
problem and derive a continuous max-flow model based ondslals graph construction,
which is shown to be dual to an exact convex relaxation of)(1r3Section 4, the models are
extended to problems with continuous label values and casgre to [53, 52] show some
interesting differences between our relaxed problem aadetaxation of [53, 52]. However,
the main conceptual difference is our derivations of the 4ftax models, which are dual
formulations of the convex relaxed problem. These max-flommilations implicitly deal
with the constraints on the labeling function. By dualitgdiny a more general thresholding
scheme can be derived for producing a larger set of solut@ti® original non-convex prob-
lem from solutions of the relaxed problem than [53, 52]. Rermore, efficient algorithms
can be build up based on our max-flow formulations, which aesgnted in Section 6.

The max-flow dual formulation and algorithms are furthereexted to the tightest con-
vex relaxation of Pott's model [50] and will be presented @ttton 5. All constraints on the
labeling function are handled implicitly, and the algonitilavoids expensive iterative compu-
tations of projections of the dual variables without clofmuin solution as in [50].

For discrete graphs, it is well known that the minimum cutippeen is dual to the max-
imum flow problem by themax-flow and min-cut theoref@4]. Actually, the fastest graph
cut algorithms are based on maximizing flow instead of comguhe min-cut directly, e.g.
the Ford-Fulkerson algorithm [23] and the push-relabedadgm [28]. The minimal 'cut’ is
finally recovered along edges with 'saturated’ flows, i.ds@ppear at the flow-bottlenecked
edges [19, 41]. In contrast, max-flow models and algorithmthé spatially continuous set-
ting have been much less studied. Some work has appearedethlatith binary labeling
problem: Strang [56] was the first to formulate max-flow andmiit problems over a con-
tinuous domain; In [3], edge based max-flow and min-cut wasfated in which certain
interior and exterior points must be specified in advancestMelated to ours is the work
of Yuan et al [60, 61], which proposed a direct continuoud@mse of the typical discrete
max-flow and min-cut models that are used for solving binabeling problems in image
processing and computer vision. In contrast, most prewiaiks on labeling in the spatially
continuous setting, e.g. [63, 29, 53, 14] etc, tried to camthe energy minimization over the
labeling functions directly.

Motivated by Yuan et al [60] and Ishikawa [33], we interpr&t3) as a continuous min-
cut problem over a mixed continuous/discrete domain anid i a novel continuous max-
flow model in analogy with Ishikawa’s graph construction. r@uain contributions can be
summarized as follows

e We study a convex relaxation of the nonconvex labeling moi(1.3), the so-called
continuous min-cut modefo this end, we build up a novel max-flow formulation
overn linearly layered continuous image domains, which is in agglwith the
discrete graph construction of Ishikawa. Duality betwdengroposed continuous
max-flow model and its corresponding continuous min-cut ehéishown upon a
variational perspective.

e A thresholding scheme is derived for converting solutiohshe convex relaxed
problem into solutions of the non-convex problem (1.3). Einsome conditions,
this scheme allows to produce a larger set of non-uniqudisnkito the original
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problem than [53, 52].

e New continuous max-flow based algorithms are proposedr €ffeiency and con-
vergence can be verified by standard convex optimizatioariee The labeling
function is updated as an unconstrained lagrange multipéieh iteration, and does
not need to be projected back onto any feasible set. Nunhespariments show a
significantly faster convergence rate than the fast pridugll algorithm in Pock et.
al. [52, 53], especially at high precisions.

o A max-flow dual formulation of the convex relaxation of Petthodel [50] is pro-
posed as a direct extension of the continuous max-flow mad€llf3). An algo-
rithm is proposed which deals with all constraints on thelaly function implicitly
and avoids expensive iterative computations of projestisithout closed form so-
lution.

2. Related Works. To motivate works in the following sections, we first reviie
duality correspondence between max-flow and min-cut in gatialy continuous context
proposed by Yuan et al [60]. We then give a short review of tgly construction of Ishikawa
[33].

2.1. Max-Flow and Minimum s-t Cut. Given a graphG = (V, ) composed of the
vertex set) and the edge s&t C V x V. The vertex seV includes the nodes of a 2-D or
3-D image grid together with two terminal vertices: the ssurand the sink. The edge set
£ contains two types of edges: the spatial edges- (p, ¢) wherep, ¢ € V\{s,t}, and the
terminal edges or data edges:= (s, p) ande; = (p, t), wherep € V\{s,t}. We assign the
costC'(e) to each edge € &, which is assumed to be nonnegative, Ce) > 0.

An s-t cut assigns two disjoint partitions ®\ {s, ¢t} to the source and the sink re-
spectively, which divides the nodes Y { s, ¢} into two disjoint groupd’; andV;:

V=V.JV, VenVvi =0.

To each cut, an energy is defined as the sum of the ¢4gtsof edges € &, C &, with one
end point in,; and the other in);. The minimal s-t cut problem is to find such a partitign
of V with the minimal cut-energy:

Join, C(e). (2.1)
e€st

On the other hand, each edge & can be viewed as a pipe and its edge €v&t) can
be regarded as the capacity of this pipe. In this flow 'netwdhe max-flow problem is to
find the largest amount of flow allowed to pass from the sosrce

max > pav) (2.2)
veV\{s,t}
subject to the following flow constraints:

e Capacity of Spatial Flows: for each spatial edge, := (p,q) € £ wherep,q €
V\{s,t}, the spatial flowp(e,,) is undirected and constrained by:

_Cp(en) S p(en) S Cq(en)

whereCy(ey,), Cq(en) > 0. We study the special cagg,(e,,) = Cy(en) = C(en)
for simplicities, i.e.

Ip(en)| < Clen); (2.3)
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e Capacity of Source Flows;: for each edgés, v) € £ linking the terminals to the
nodev € V\{s, ¢}, the source flow,(v) is directed froms to v. Its capacityC;(v)
indicates that

0 < ps(v) < Cs(v); (2.4)

e Capacity of Sink Flows,: for each edgév, t) € £ linking the nodev € V\{s,t} to
the terminak, the sink flowp, (v) is directed fronmv to ¢. Its capacityC (v) indicates
that

0 < pi(v) < Ci(v); (2.5)

e Conservation of Flows:at each node € V\{s,t}, in-coming flows should be
balanced by out-going flows, i.e. all the flows passingvhich includes spatial
flows p(e,,) along spatial edges, aroundv, the source flow, (v) and the sink flow
p+(v), should be constrained by

(S plen)) —po(v) +pe(v) = 0. (2.6)

en€&

It is well known that the max-flow formulation (2.2) is equieat to the min-cut problem
(2.1), where the flows are saturated uniformly on the cut gdige. the total flow is bottle-
necked by the 'saturated pipes’. By the graph-cut termigiel when a flow(e) on the
edgee € £ reaches its corresponding capaditye), given in (2.3), (2.4) or (2.5), we call it
'saturated’; otherwise, 'unsaturated’.

2.1.1. Max-Flow and Min-Cut in Continuous Setting. In the recent studies of Yuan et
al [60], a direct analogue of the equivalence between theflomxmodel (2.2) and the min-
cut (2.1) model was discovered in the spatially continuougext. Given the continuous
image domairf) together with two terminals: the soureeand the sink which are linked
to each pixel of2. Three types of flows are defined at each pixet Q: the source flow
ps(x) directed from the sourceto x, the sink flowp;(z) directed fromz to the sinkt and
the spatial flowp(z) within the image plan€. In analogue with (2.3), (2.4) and (2.5), the
three flow fields are constrained by the capacitiesC; andC:

ps(x) S Cs(x)v pt(x) S Ct(x)v |p($)| S C(Z‘), Vrel. (27)

With the above notations, the flow conservation conditio®)2an be rewritten in the spa-
tially continuous setting as

pi(x) —ps(z) +divp(z) = 0, aexel (2.8)

where the divergencéiv p(x) evaluates the excess of the spatial flow around
The continuous max-flow problem can therefore be formulbtethaximizing the total

flow from the source:
sup / ps dx (2.9)
Ps,Pt,D JQ

subject to the flow constraints (2.7) and (2.8).
Yuan et al [60] proved that such a continuous max-flow forriioite(2.9) is equivalent
to the continuous minimurs-t cut problem proposed in [18, 14]:

min /(1—u)C5dx—|—/uCtdx+/ C(z) |Vul dz . (2.10)
Q Q Q

u(x)€0,1]
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FiG. 2.1.(a) Legal cut, (b) lllegal cut. Severed edges are depictedadted edges. The gray curve visualizes
the cut. Vertices interior to the curve belongsifpwhile vertices exterior to the curve belongsifa Severed edges
are illustrated as dotted arrows.

More specifically, the max-flow problem (2.9) and the minqmatblem (2.10) are dual to each
other and the labeling functian(x) works as a Lagrange multiplier to the flow conservation
condition (2.8). In addition, connections between the flawctionsp,(z), p:(z), p(z) and
the labeling function:(z) can be reinterpreted under an elegant variational peiigpe@tn
efficient and reliable max-flow based algorithm could bewaztiand built up based on the
continuous max-flow model (2.9) [60].

2.2. Revisit Ishikawa’s Work. Ishikawa [33] studied image labeling problems which
can be generally formulated as:

min Y puy,v) +a Y glus —uw), (2.11)
veEP (v,w)eN

whereP denotes a discrete image grid in 2-D or N-D eidC P x P is a neighborhood
system orP; U = {u: P — L} is the set of feasible labeling functions. The potentiabpri
g(z) of (2.11) is assumed to be convex gmis any bounded function, but not necessarily
convex inu. It was shown that problems of the form (2.11) could be eyamitimized by
finding the min-cut on a specially constructed multi-layesghG = (V, ), where each
layer corresponds to one label.

We adopt Ishikawa’s notations [33] in this chapter and mae=af the simplified graph
which uses: — 1 layers instead of. and avoids infinite capacities on the source edges [4],
see Fig. 2.1 for a simple 1-D example. The vertex)dand the edge set are defined as
follows:

YV =PxLU{st} ={upi|lveP;i=1,..,n—1}U{s,t} (2.12a)
E=EpUEcUEP (2.12b)
where the edge sétis composed of three types of edges
e Dataedgesp = {J,.p €p, Where

Eh = (8, up1) U{(Upistpiq1) [i=1,...,m =2} U (Uy p—1,t). (2.13)
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e Penalty edge&p = | J,.p £, Where
Eo6 = {(Up,it1,up4) | =1,...,n—2}. (2.14)
e Regularization edgeSy:
Er = {(Uv,i, Uwj) | (V,w) €H, 0,5 =1,...,n}, (2.15)
2.2.1. Anisotropic Total-Variation Regularized Labeling When a pairwise priog(u,—

Uy) = C(u, w) |u, — uy,| is given, (2.11) corresponds to an anisotropic total-v@meregu-
larized image labeling problem, i.e.
min Y p(uy,v) +a Y Clo,w) fuy — | (2.16)
veEP (v,w)eN
which is the discrete counterpart of the total-variatioadzhmutlilabeling problem (1.3).
We now define capacities on the edges such that the minimumnctite graph corre-
sponds to a minimizer of (2.16):

e Capacity of source flowghe directed flow, (v) along each edge from the source
to the nodey, ; of the first layer, i.e. the edds, u, 1), iS constrained by

p1(v) < p(l1,v), Vv € P; (2.17)

o Capacity of flows between layettste directed flovp; (v) along each edg@, i, Uy i+1)
from the nodey, ; of thei-th layer to the node,, ;4 of thei + 1-th layer is con-
strained by

pi(v) < pli,v), YweP i=1,..,n—2 (2.18)

e Capacity of sink flows:the directed flowp,,(v) along each edge from the node
uy n—1 Of the last layer to the sinkis constrained by

Pn(v) < p(ln,v), Vv € P; (2.19)
e Capacity of spatial flows at each layethe undirected flow; (v, w) of each edge
(v,w) € H atthe layeti,i = 1,...,n — 1, is constrained by

this actually amounts to the well-known anisotropic totatation regularizer;
e Conservation of flowsflow conservation means that in-coming flows should be
balanced by out-going flows at any node P of each layei = 1,....n — 1, i.e.

(> alv,w) —pi(v) +pira(v) = 0. (2.21)
(v,w)EH

Since there is no lower bound on the flows (2.17)-(2.19), tqgacity on the penalty edges
(2.14) is infinite. This implies that each edge in the §gtwhich links the source and sink
can only be cut once, i.e. illegal cuts as shown in Fig. 2.héwe infinite cost and are not
allowed.

The max-flow problem is to find the largest amount of flows adldwo pass from the
sources to sinkt, and can therefore be formulated as

max 1; p1(v) (2.22)

subject to the flow constraints (2.17), (2.18), (2.19), (2&nd (2.21).
Once the maximal flow is computed, a minimal cut can be extthathich corresponds
to a minimizer of the problem (2.16).



3. Continuous Max-Flow and Min-Cut Models. We now consider the labeling prob-
lem (1.3), i.e. the continuous counterpart of (2.11) speed to the classical total-variation
regularizer:

min/ plu(z), z) dx —|—/ C(x)|Vu(z)|dz, (3.1)
uel Jq Q

whereU = {u : Q — {f1,...0,}, st [,|Vu|dz < oo} is the set of all feasible
functions defined over the continuous image donfaip(u(x), =) is any uniformly bounded
function, not necessarily convex in the element.ofWe show (3.1) can be exactly solved
by generalizing the discrete max-flow and min-cut modelswdised in the last section to the
continuous setting.

3.1. Representations by Layer FunctionslLet S;, i = 1,...,n — 1, denote the:s — 1
upper levels set of the labeling functiafiz) € U such that

Si={zeQ: ulx)>4¥}. (3.2)

To ease exposition, we also defifig=  andS,, = 0.
The characteristic functions (x) of the upper level setS; i = 1,...,n — 1, also called
the layer functionn this work, are defined by:

)\i(x):{(l) :Izg%zﬁ L i=1,...,n—1. (3.3)

Likewise, we also defingq(z) = 1 and\,, (z) = 0, Vz € (2, as the characteristic functins of
the setSy andS,, respectively.
Sincel; < ... < ¢, we have

0=dp <...< A <X =1 (3.4)
and
f=8,C...C8 CSo=Q. (3.5)

Now we rewrite the optimization problem (3.1) in terms of thger functions);(x), i =
1,...,n — 1. Such a formulation has also been presented in [20] in theretis setting for
the more general (2.11). In [50] such a formulation was givethe continuous setting in
connection with a convex relaxation of Pott's model.

Observe that the subdomain@fwhereu(z) = ¢; is given byS;\S;_; and its character-
istic function isA;_1 (z) — A;(z). Any functionu(x) € U can therefore be written in terms
of \;(x),i=0,...,nas

n n—1
u(@) = > (Nic1(@) = (@)l = 6+ Z (@) (lizr — 4;) . (3.6)

i=1

The data term can written as

/Qp(u(x),x) dng /S L Pl da:z;/ﬂ(x\i_l(az)—/\i(x))p(&,x) dr . (3.7)

i—

By the coarea formula [27], for the functier{z) € U we also have

n—1
/QC(:U)|VU(;B)|dx = ;/Qci(xnwi(x)mx (3.8)
9
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FiG. 3.1.(a) lllustration of the max-flow problem defined over a mixestiette/continuous domain.

WhereCi(x) = (eiJrl — &)C(x), i1=1,...,n—1.
In view of (3.7) and (3.8), the problem (3.1) amounts to sedoc the optimal layer
functions); € {0,1},7=1,...,n — 1 which minimizes

A(r)e{m}z/ -1 (@) p(ti, ) dx*Z/C VA (2)] de (3.9)

subject to the monotonically nonincreasing constraint)(30nce the layer functions; ()
are computed, the labeling functiatiz) can be recovered by (3.6).

We focus on the case whef§{z) = «is constantand;; — ¢; = 1,: =1,...,n — 1.
Of course, the results can be easily extended to other moer g€’ (z) and/;, i =1,...,n
In this regard, (3.1) or (3.9) can be equally reformulated as

i (l;,z)d il d 3.10
W)EMZ/ 1(2) — M) p xx+a2/|vm (3.10)

subject to the order constraint (3.4). (3.10) is obviousigeonvex due to the binary setting
of \j(z) € {0,1},i=1,..,n— 1.

3.2. Convex Relaxed Modelslin the following parts of this section, we show that the
nonconvex optimization problem (3.10) can be globally ardcty solved via its convex
relaxed version:

Ai(g)lier[lm Z/ i1 ( (x))p(l;, z) dz + aZ/|V)\|dx (3.11)

st. 1= )\0(.23) > )\1( ) > ... > )\n_1($) > /\n(x) = 07 Ve € Q
{0,1},¢=1,...,n—1, are
1

where the binary constraints on the labeling functians:) €
n—1. In this work, we call (3.11)

relaxed by the convex constraintx) € [0,1],i =1,...
theprimal model

)

3.2.1. Continuous Max-Flow. Motivated by the discrete graph configuration (2.12a)
and (2.12b) in Sec. 2.2, — 1 copies of the image domain are placed in sequential order
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between two terminals: the sourg&nd the sink. This mixed continuous/discrete domain
can be defined as

Ox{l,n—1}U{s}U{t = {(z,9) |2 €Q i=1,.,n—1}U{s}U{t}. (3.12)

The continuous counterparts of edges, flows and capac#iesaw be defined (see Fig.
3.1 for an illustration)

¢ Inview of (2.13), the data edges are defined as follows: Foln ga (2, the source
sis linked to(x, 1) of the first layer by the edge functien(z); the points(z,i — 1)
and(z, ) in two sequential image layers,= 2...n — 1, are linked by the edge
functione;(z); at the last laye(x, n — 1) is linked to the sink by the edge function
en(x).

o Ateach edge;(x) a flow functionp; (x) is defined fori = 1...n and for allz € Q.
Mathematicallyp; : Q — Rfori=1,...,n.

¢ Inanalogue with the regularization edges (2.15), withicheémage layet = 1...n—
1, a spatial flow function is given by the vector figjd : 2 — R™, wherem is the
dimension of
). More specifically, we will optimize ovey; € (C>* ()™, i =1, ..., n.

As a generalization of the flow constraints (2.17) - (2.21thevdiscrete setting, we now
give constraints on the flow functiopg(x) andg; (x):

lgi(z)| < «, i=1...n—1, Vre (3.13)
pi(z) < p(l;,x), i=1l...n—1, Vre (3.14)
(divgi —pi + pis1)(z) =0, i=1...n—-1, aexcQ. (3.15)

Then, in analogue with Ishikawa’s max-flow model (2.22), wepmse acontinuous
max-flow modeby maximizing the total amount of source flow :

sup B (p, q) = / pi(x) da (3.16)
p,q Q

subject to the flow constraints (3.13), (3.14) and (3.15}hia work, we call (3.16) theual
model

3.2.2. Primal-Dual Model. Introduce the multiplier functiond;(z),i = 1...n — 1,
to each linear equality constraint of the flow conservationdition (3.15), we then get the
equivaleniprimal-dual modebf (3.16):

n—1
infsup  E(p,¢;A) = / {p1+ > Ai(divg; — pi +pi1) } doe (3.17)
Pyq Q el

subject to (3.13) and (3.14).
(3.17) can be rearranged and equally represented by

n n—1
infsup  E(p,¢;)) = Z/ (Aic1 — Ni)ps dz + Z/ i div g; da (3.18)
i=179 i=1 79

P,
st g(@)| <a,i=1...n—=1; pi(z) < pll,z),i=1...n.

1The notation a.e. stands for “for almost every”, which metaesconstraint (3.15) should hold in the integrable
and weak sense for evesrye €, expect possibly a subset of zero measure.

11



Note that for the primal-dual model (3.17), the conditiofithe minimax theorem (see
e.g., [21] Chapter 6, Proposition 2.4) are all satisfied:cthrestraints of flows are convex and
the energy functional is linear over both the dual variablgs:), i = 1...n — 1 and the
primal variableg;(x), i = 1...n, ¢i(z), i = 1...n — 1. This also implies the existence
of at least one saddle point, see [21]. It also follows thatrtiin and max operators of the
primal-dual formulation (3.17) or (3.18) can be interchang.e.

supinf E(p,q;\) = infsup E(p,q;A). (3.19)
pqg A A pg
Clearly, the optimization of (3.17) over the dual functionéz), i = 1...n — 1, leads back
to the primal max-flow model (3.16).

3.2.3. Continuous Min-Cut. Now we show that optimization of (3.17) over all flow
functionsp(z) andq(z), i.e. the righthand side of (3.19), leads to (3.11) as itsvedgntpri-
mal model Then by the fact that the primal-dual model (3.18) is edeiveto the continuous
max-flow problem (3.16), we have

ProPOSITION3.1. The continuous max-flow problg@16)and the continuous min-cut
problem(3.11)are dual problems.

The proofis based on the following observations:

We consider the optimization problem

fw) = sup v-w, (3.20)
w<C
wherev, w andC' are scalars. When < 0, w can be negative infinity in order to maximize
the valuev - w, i.e. f(v) = +oo. It can also be easily seen that

if v=0, thenw < Candf(v)=0,
if >0, thenw=Candf(v)=v-C
Therefore, we have in general

: if
so={ % fiZ (3.21)

By the facts (3.20) and (3.21), the functigitv) provides a prototype to maximize the
primal-dual model (3.18) over the flow functiopgx), i = 1...n, together with their con-
straintsp; (z) < p(¢;,x), i.e. (3.14).

For eachr € (), define

filz) = sup  (Ni—1(z) = Ai(@)pi(z), i=0...n.
pi(x)<p(ti,x)

In view of of (3.21), we have

filz) = { (Niz1(x) — A () p(ls, x) if Ai1(x) i iz(az) i=0,.n (3.22)

00 if \i—1(x) ()
On the other hand, it is well known that [27]
sup /)\diquw = a/ VA dx . (3.23)
la(z)|<a /@ Q

Insert (3.22) and (3.23) in the primal-dual model (3.18)] are then end up with the primal
model (3.11), together the constraints  (z) > A;(z) forallz € Qandi = 1, ..., n. Ifthese
constraints on optimal were not met, the primal-dual energy would be infinite, caditting
the existence of at least one saddle point. Prop. 3.1 isftrerproved.
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3.3. Exact and Global Optimums. The functionsi;(z), ¢ = 1,...,n — 1, of the
continuous min-cut model (3.11) are relaxed to take valnghé convex sef0, 1], which
is in contrast to the binary constraints of the nonconverfdation (3.10). Both the max-
flow problem (3.16) and relaxed problem (3.11) are conveitipation problems which can
be solved globally. Furthermore, the following propositehows that theontinuous min-cut
model(3.11) can be applied to produce global and exact optimurits ofiginal nonconvex
counterpart (3.10) through simple thresholdings.

PROPOSITION3 2. Let (p*,¢*; \*) be any optimal primal-dual pair 0{3.17) Let
{t;}7=! be a sequence such th®t< t1 <ty < ... < tyy < 1, let \oi(z) denote the
functlon oft; upper level set ok},

and define the level sets

Sti={x : A\ >t} (3.24)
If t; =ty = ... = t,, then the set of binary function§’ (z),i = 1,...,n — 1, is a global
optimum of the original nonconvex multi-labeling problérl0) Moreover, the cut given by
Mi(x),i=1,...,n— 1, has an energy equal to the max flow energ(8ii6) i.e.

BP0 = [ pi()ds = B
Q
In general, if for everyt such thatt;,_; < t
AE (@) # Nk (z),  aex e Sp\SE, (3.25)

then\*(z),i = 1,...,n — 1, is a global binary optimum of3.10)

Proof. Sincep},i = 1,...,nandg/, A\, i = 1,....,n — 1 is a global optimum of the
primal-dual problem (3.17), thesf, ¢} optimize the dual problem (3.16) and(x) optimizes
(3.12).

For simplification reasons, defing = 0 such thatS® = Q. Sincel; is increasing with
we must have

Shoshosko . DSy
Since the variables are optimal, the flow conservation d¢ard{3.15) must hold, i.e
divg; (z) — pj(x) +pj i (x) =0, aexecQ, i=1,.,n—1

The proof is given by induction. For alye {1, ...,n — 1} define the function

Z/Ll &,a:)da:—k/E Pry1( da:—|—o¢ZL

whereLSt is the length of the perimeter of the ﬁ’t We will prove E* = E (p*) for any
k € {1,...,n— 1} and start by considering= 1. By the formula (3.22), it is easy to see that

pi(x) = p(f1,z), forany pointz € Q\S]' = S{\SI
13



This, together with the fact that
pi(x) = p3(2) + divgi(z), aexe S

implies that the total max-flow energy defined in (3.16) camhien

B = [ pltayde s [ (i) +divei (@) de
Q\sf st

[ sttmdes [ ps@des [ diveids
o\sit sit s

1

=/ p(l, ) dx—i—/ p5(r)de + algn =
SEo\s s !

The last term follows from Prop 4 of [5], or from the fact tifaf - n)(z) = a atallz € 955
combined with the Gaussian theorem

/ divg; (z)dx = / qf -nds = 04|8SZ| . (3.26)
Assume now that* = ET(p*) for somek € {1,....,n — 2}, we will show this implies
Ek+1 EP( )
k-1
E? Z/ " lfl,;v)alx—i—/e’c 1p2(m)dw+aZLSm
L Sy i=1 ‘

Assume first,_; = t;. By the definition (3.24) it follows thak,_1(x) — Ap(z) > tr—1 —
ty = Oforallz € Sp*"\S;*. Therefore, by formula (3.22), for any pointe S;*-"\S;*
we must havey; (z) = p(ék, x). Combining this with the fact that

Pr(x) = pryq (v) +divgg(z), a.ex € Q

the above expression can be written

EF Z/ i1 p(ti, ) dx+/ek_1 " p(l, x) dx (3.27)
S \Sy,
k—1
+ /s“’“ Pry1(z) do +L5,f,k —|—OCZLS;“ _ gkl
g ' i=1

If t,_1 > ti, the same argument shows the above equality provided (BA83. Hence we
can conclude that alse™~! = E¥(p*). By noting from (3.22) that for al: € S’ we
must havey? (z) = p(£,, ), the total max flow energy defined in (3.16) can be written

EP(p*) = E"! :/ p(ly,z)dx + Z/ p(ti, x) dz (3.28)
Q\Stl LL 1I\S
n—1

—|—/t 1p(€n,x)dx+aZLS;,;
S =1
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By writing this expression in terms of the characteristindtjlons)\ﬁ’? of each regiorSf’?, we
get

n

Pp*) = Li(z) = iz i, x) dx an_l bi
BP0 =3 [ (N @) = N @) ol do + ;/ﬂm

=1

dx = EP(\Y)

which is exactly the primal model energy (3.11) of the setin&by functionsx‘;i. Therefore,
by duality between the max-flow problem (3.16) and the mitpcablem (3.11))\? must be
a global minimum of the min-cut problem (3.11) and therefts® a global minimum of the
original problem (3.10)1

This proposition establishes a strong primal-dual refediop between the max-flow
problem (3.16) and the original non-convex problem (3.83).solving the max-flow prob-
lem (3.16), a large set of non-unique optimums to the originablem can be obtained by
thresholding each?. In Section 6, such a max-flow algorithm is designed whichtzauased
to compute solutions of (3.10) very efficiently.

4. Extension to Continuous Labelings.The above discussions on labeling within-
early ordered labels can be further extended to the caseevtherfeasible label values are
ranged in a continuous intervifl,i,, fmax), i-€. the total numben of labels goes to infin-
ity. We address such a continuous labeling problem by a algdtension of the continuous
max-flow model (3.16). To this end, we first propose a novel-fil@ax model, then derive
its equivalent min-cut formulation. Finally, we compare ftroposed models to Pock et. al.
[53] in details.

4.1. Max-Flow Model. In the continuous limit, as the number of labels goes to ityfini
the max-flow problem (3.16) with the flow constraints (3.{3)t5) turns into

sup / P(Urnin, ) dx 4.1)
Q

p,q

< a, Vz € Q, Yl e [énlilh émax] (42)
div, q(¢,z) — dep(l,z) = 0,

aez €, L€ [lnin,lmax). (4.3)

wherel € [fmin, {max] iS the set of feasible continuous-valued labels. The flovetionsp
andq are defined in the one dimensional higher spégg,, fmax] X Q.

4.2. Min-Cut Model. Let A(¢, ) be the multiplier function to the flow conservation
constraint (4.3). The primal-dual model can then be written

Zn\ax
sup inf / P(Urin, ) dx + / / {diveq(t,x) — Oy p(l, )} AN(¢,z) dxdl (4.4)
Q Q

pg A

‘gmin

subject to (4.2).
By using integration by parts ify the above formulation can be rearranged as

Lmax
sup inf / / {a |V Al + p(l, )0 A, ) } da dl
Q

pqg A Linin

+ / (]- - )\(gmirn x))p(‘gmina LC) + )\(‘gmaxv x)p(gmaxv LC) dx. (45)
Q

subject to (4.2).
15



Consequently, by maximizing w.r.t the flow functiomandgq, we obtain the continuous
min-cut model

‘gtnax
i VA 0,2)0 M0, ) dadl 4.6
i [ [ {a19a + plen)o @) do (4.6)

Zmin

subject to

8@ )\(Ev LC) S Oa )\(‘gminax) S 1 ) )\(‘gmaxax) 2 07 Vo € Qv Ve € [gmirngmax]~
4.7)
The leftmost constraint in (4.7) forces the functidf?, ) to be monotonically nonin-
creasing irv. It corresponds to the constraint (3.4) for discrete lalaéles.
Observe that by imposing infinite capacities on the sourdesark edges, i.ep(¢min, )
andp(4max, ) unbounded above, the constraints would instead become

O Al,x) <0, Almin,x) =1, Almax,2)=0, VreQ, VL€ [lnin,lmax-
(4.8)
Both (4.7) and (4.8) are equivalent in the continuous sgttin
In analogue with (3.6), the labeling functiaiiz) can finally be reconstructed from the
binary function\(¢, x) by

Lmax
u(zx) = Emin—k/ A, ) de.
Lrmin
4.3. Comparisons to Pock et al [53].In contrast, Pock et al [53] gave a different con-
tinuous formulation of Ishikawa’s construction, as the imiization problem over a binary
function in [¢min, {max] X

fnax
i x ) 4 ) . 4
A(e,g)lg{lo,l} / /Q {a|VaAl + p(l,2) |0 (¢, )| } dadl (4.9)

Lmin

subject to
)\(émim .23) =1, )\(gmax; J,‘) =0. (410)

In order to solve this non-convex binary problem, the refimxaapproach from [18] was
adopted in [53]. Minimization was instead carried out oVer tonvex sei(z, ¢) € [0,1],
then a globally optimal binary function could be obtainedthsesholding the result at any
level in[0, 1].

Some differences can be observed between our min-cut fationl(4.6), (4.7) and the
formulation (4.9), (4.10). First, the constraith\(¢, x) < 0 is not forced explicitly in [53].
However, it turns out the presence of the absolute valuednetmp(¢, x) |0, \(¢, x)| forces
this constraint to hold. Observe thapif¢, z) < 0 is negative, (4.9) is nonconvex and cannot
be solved globally, which is in contrast to our formulatigh€). In a more recent tech-
nical report of Pock et. al. [52], a more strict mathematbadivation resulted in a little
different formulation. In this formulation the integranéitbe energy functional is infinite
if 9¢\(¢,z) < 0, hence this constraint is forced to hold. Their derivatioely heavily
on results from the theory of calibrations [1] and cartesiarrents [25, 26]. Label values
ranged over the whole real life was assumed, which required to impose limits at infinity:
limgy 100 A4, z) = 0 @andlimg, — oo A(¢, z) = 1. Our simple derivations show that the prob-
lem can also be formulated as the convex max-flow problen) ¢f.tin-cut problem (4.6),
(4.7).
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By applying the dual formulation of total variation (3.23)e relaxed version of (4.9)
can also be written as a primal-dual saddle point problem

mlnsup/ Adiv g, (z, €) + OgpX dx (4.11)

subject to

/\(65 1‘) € [07 1]7 /\(Emin, 1‘) = 17 /\(Ema)mx) = O,VZ‘ S Q7 le [émimgmax]; (412)

|q(x,€)| S Oé, |p(l‘,€)| S p(l‘,g), \V/(],‘,g) S Q X [gminyémax] } (413)

The most important difference to our primal-dual formwat{4.4) is that\ is unconstrained
in our formulation (4.4). This allows to build up a very ef@éat algorithm in the augmented
lagrangian framework.

We eventually stick to a finite label value set in practiceditrectly leads to an approx-
imation of a continuously valued(x), since we always have that/, =) is monotonically
non-increasing i by (4.7), i.e. forz €

AMlmin, ) > .. > Mlmax, T) -

In practice, the model of [53, 52] also needs to be discrétinefind a numerical solution.
After discretization, the label space of course also besodiserete in (4.9). A fast primal-
dual algorithm was proposed in [52]. It consists of optimig{4.11) by taking ascent steps in
the dual variables and descent steps in the primal variétllessed by projections of all the
variables onto the nearest points of the feasible setdiitelauntil convergence. Lex” ¢"
andp” denote discrete counterparts)off andp, the algorithm consists of choosing two time
stepso, 7 and solving fork =1, ...

(A =T (W + 0V ((7", ")) (4.14)
(", p")*H =Tle, ((¢",p")" — T(div"(A")*1)) (4.15)
(a", ") =2(¢" p") " = (¢", ") (4.16)

whereL = {\" which satisfies (4.12)andC,, = {(g,p) which satisfies (4.13)andIl,IIc,

are projections ont& andC, respectively. The algorithm we present in the Section 6 is
instead based on our new max-flow formulation (4.1) and isvehim outperform the fast
primal-dual algorithm proposed in [52] in experiments.

5. Convex relaxation of Pott’s model. A convex relaxation of Pott's model was pre-
sented in [50, 15] based on the formulation (3.10). By wgt{8.10) with dual variables we
obtain

mmsup —Z/ i—1( (x)) p(l;, x) dz —1—042/)\ div ¢; dx (5.1)

subject to

A €{0,1}, i=1,..n, (5.2)

0=Xp < ... <A < o =1, (5.3)



and
lgil <a, i=1,..,n (5.4)

As stated in Section 1.2, (5.1) can be used to partition thegendomain into n regions
{3}, by Q; = {z € Qs.t.\i_1(z) — A\i(z) = 1}. The regularization term in (5.1) does
not correspond to the length term of the Pott's model due édittear dependence on the
size of the jumps. In [50, 15] it was observed that the Pottslel can be written as (5.1) by
constraining the dual variables to a smaller convex set

geCl ={g e (CQ)", i=1,..n,

st{Ve,e Q| q@)| <aV(ini)stl<ii<i,<n}}. (5.5)

=11

The problem (5.1) subject to (5.3), (5.2) and (5.5) is nonvex due to the binary constraints
(5.2). A convex relaxation was formulated by instead oping over);(z) € [0,1], i =
1,...,n. If the solution{\; }}-_,, is binary everywhere, it is also optimal to the Pott's pesbl
(5.3). It was observed in [50, 15] that this was most ofterctiee. The same fast primal-dual
algorithm was proposed for solving the problem, exceptiar differences:

e The primal variables also have to be projected onto the s8} €very iteration, in
addition to the sek;(z) € [0, 1].

e The dual variables have to be projected onto the set (5.8) tife ascent step ev-
ery iteration. No exact closed form solution exist for sucbomplex projection,
therefore an iterative algorithm must be applied, whictwslalown convergence
(Dyjkstra’s algorithm was suggested).

We can formulate a "max-flow” dual problem of this relaxatioy instead constrain-
ing the flow field to the set (5.5). Consider the problem of maxzing (3.16) subject to
(3.14),(3.15) and (5.5). By following the same steps as ictiSe 3, we obtain the primal-
dual model

n—1
ir){fsup / {p1 + Z )\i(div qi — Di +pi+1)}dx (5.6)
P94 JQ i—1
subject to

Following the same arguments as in Section 3.2.3, by makigi®.6) forp we obtain (5.1)
subject to (5.5), (5.3) and; € [0,1],% = 1,...,n. Observe that all constraints dnare
handled implicitly in (5.6), (5.7), including the order araint (5.3). The algorithm in the
next section also avoids the iterative inexact projectifrte flow fields ontaC'”.

6. Max-Flow Algorithms.

6.1. Multiplier-Based Max-Flow Algorithm. As stated in the previous section, the
energy formulation (3.17) is just the lagrangian functiorfa3.16) and)\;, i = 1,...,n —
1, are the multiplier functions. To this end, we define its exdjye augmented lagrangian
functional as

n—1 n—1
. c .
Le(p,q,A) = /Qpl dx + Z /Q Ai(div g; +piv1 —pi) dz — 3 Z || div gi +pir1 —pill*,
i=1 i=1
(6.3)
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Algorithm 1 Multiplier-Based Maximal-Flow Algorithm |

Choose some starting values for, ¢! and\', let k. = 1 and startk—th iteration, which
includes the following steps, until convergence:

e Optimizegq;, i =1,...,n — 1, by fixing other variables
qurl = arg max L.(p",q, \F).
llall o <
= arg | rlrlla)<< —g Hdivqi(x) 4—pf’+1 —ph - )\f/cH2 . (6.1)
qll oo S

The above formulation can either be solved iteratively bya@holle’s projection
algorithm [16], or approximately in one step by (6.4).
e Optimizep; by fixing other variables
k+1

pii=arg  max  L.(p1,p5, ... 0%, q

k+1 )\k)
p1(2)<p(tr,x) ’

c k s k41 ko2
ar max dr — = — + div + A /c
8 1 () <o) /Q n 2 o= (2 )+ e

Optimization ofp; can be easily computed at eacle 2 pointwise;
e Optimizep;, i = 2, ...,n — 1 by fixing other variables

k+1 . k+1 k
b; = arg max Lc(pj<7j yPisPj>ir 4

k+1 )\k)
pi(2) <p(ti ) ’

= arg Rl phtl )\’?_1/CH2

c
max ——=||p; +divg’ ™ — p;
pi(@)<p(Li,x) 2 le + 41 Pi1

Ipi — (pkyy + divgh™) + M /e||”

C
2
which can also be easily computed at each 2 pointwise
e Optimizep,, by fixing other variables
p];,+1 = arg max LC(plf—i_la"'apitllvpnvqk+17)\k)
pn(l‘)Sp(fmI)

k+1 k+1

= arg P +diva, T —ppty — )\IZ,—l/CHQ ’

C
max — = ‘
pu(@)<p(tr1,x) 2

pkt! can be simply updated pointwise;
e Update multipliers\;,i =1,...,n—1, by
AL — NF e (div gttt — ptt 4 phi Dy

7 )

e Letk = k + 1 goto thek + 1-th iteration until converge.

wherec > 0.

An algorithm can be formulated, see Algorithm 1, for the cmmbus maximal flow prob-
lem (3.16) based on the alternating direction method ofiplidts [8], where each flow func-
tion is optimized independently and, i = 1,...,n — 1, is updated as a multiplier at each
iteration. A similar algorithm was presented for two labedlglems in [60, 61] and showed a
significantly faster convergence rate than previous stateecart work [14].

The flow functions;, « = 1, ..., n are optimized one component at a time, starting from
the source advancing one layer at a time to the sink. Conmeegef such algorithms is
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Algorithm 2 Multiplier-Based Maximal-Flow Algorithm Il

Choose some starting values fgr, ¢* and\', let k,i = 1 and startk—th iteration, which
includes the following steps, until convergence:
e Foreachlayei =1,...,n:
— Optimizep; by fixing other variables

k+1 k+1 k k vk
; = ar max L T DD ), g, A
Pi gi’)i(m)f/’(fnm) ((( I<t bi pJ>Z) 1 )

— Optimizeg;, by fixing other variables

@t o= arg max Le(( ) 4 AF) (6.2)

— Optimizep;, by fixing other variables

k k c
pitt i=arg  max  Le((phEpiplsi) g

k+1 )\k)
pi(2)<p(ls ) ’

e Update multipliers\;,i =1,...,n—1, by

ML= A\F — e (divg ™ - pft +pit)

e Letk =k + 1 goto thek + 1-th iteration until converge, sét= 1.

validated by classical optimization theories. Anotheiasirof this algorithm, see Algorithm
2, also optimizes the flow functiong along withp; one layer at a time and is more stable
with respect to the penalty parameteiT his algorithm is used in our experiments.

Some interesting things can be observed about these &lgarifThe constraints (3.3) on
the labeling functior\ are automatically satisfied, therefoxeloes not need to be projected
onto the feasible set. The penalty parameteontrols how fast the algorithm will conver-
gence as converge will be faster ascreases. In our experimentsan be set quite high
without altering the convergence or final result, ecg= 3. As a consequence, Algorithm
2 converges in a relatively few outer iterations, signifibatess than the fast primal-dual
algorithm of [52]. On the flip side our algorithm contains amadifficult subproblem (6.1)
which can be solved iteratively by Chambolle’s algorithrB][1Since the previous solution
is available as a good initialization, not many iteratiohthis algorithm is required, see the
experiment section for detail.

Instead of solving the subproblem (6.1) iteratively, arxam solution can be generated
by the linearization

gt =11, <qf + ¢V (div gF — Ff).) (6.4)

wherell, is the projection onto the convex €f, = {q |||l¢]l« < «}. There are extended
convergence theories for such alinearization, which watiestl and proved in [22] for closely
related problems. However, this approximation places smor restrictions on the penalty
parameter, which must be set lower to maintain convergence. For itgtan= 0.2 seems
to be a good choice.

6.2. Algorithm for convex relaxed Pott’s model. The convex relaxed Pott’s model in
(5) can be optimized by a small modification of Algorithm 1 orPhe flow fieldsg;, i =
1,...,n are instead optimized over the set (5.5). As stated in Sebtino closed form solution
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FIG. 7.1. (a) Ground truth, (b) input, (c) Rescaled labeling functioefore threshold, (d) Rescaled labeling
function after thresholding each; at 0.5.

exists for projecting a vectdp, ..., ¢,) € R™*"™ ontoCT. However, if all components but
one are fixed, the projection can be computed analyticallyeiGa vecto; € C*, define the
sets

Clp(q) = {q7 S (COO(Q))TH s.t. (ql7 "'7@i—1aQiaQi+17 "'7@"7:) € CP}7 1= 1) PR L (65)

This setCP () is just an intersection of sphereslt* of radiusa and different centers. For
anygq; € R™ the projection ont@’}(7) can be computed analytically, the details are given in
appendix A. Applied to the convex relaxed problem (5.6),0kithm 1 and 2 does not change
except the feasible set in the subproblem (6.1) of Alg 1 ang) (@f Alg 2 are replaced by
CP (¢t} q%,). i.e. subproblem (6.1) and (6.2) become

k+1 k k+1 k k
q " = arg max Le(p™, (6525 @iy @j~i), A7) - (6.6)
' GeCP(@Thaty)) T

To optimize (6.6) one may either apply the linearizatio)&o ¢; followed by a projection
onto CF (¢4} qui)), or an iterative ascent/project algorithmdgpwith projections onto

’ j<i>
1
CiP((CIjL ) CI;‘CZZ‘))-
The projection ont@? ((q;?j}, qul.)) can be computed exactly, but of course costs more

floating point evaluations than projections onto the simpé&C,,. The algorithm in the ap-
pendix has a worst case complexity®fn?) to find the projection exactly (in the worst case,
the euclidian distance betwegf points must be computed for 2D images). The algorithm is
applied for each of the labels, hence the total complexity of computing projedditor each
iteration isO(n?).

The primal-dual algorithm needs to project the vedigr, ..., ¢,) € R™*" onto C¥
during each iteration. Since no closed form solution existgas suggested in [15] to apply
Dyjkstra’s iterative algorithm to compute the projectiqggpeoximately. Each iteration of this
algorithm applied to the problem has a complexityxf:®). As far as we can see, one iter-
ation of Dyjkstra’s algorithm requires around the same neinds floating point evaluations
as our exact projection algorithm summed over each label.

TABLE 7.1
Percentage of misclassified pixels for stereo example

Graph Cut 4-neighbors Graph Cut 8-neighbors Pock et. al.| Proposed; | Proposed»
30.74 30.5 30.20 29.95 27.59
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FiG. 7.2. (a) Input image damaged by impulse noise; (b) reconstrutabeling function with non-convex
data term(7.3) before threshold, (c) labeling function after thresholglisach\; at 0.5, (d) reconstructed labeling
function with convex data ter@.1)and8 = 1.

FiG. 7.3.(a) Input, (b) Labeling function before threshold (c) Lahglfunction after thresholding eack; at0.5.

7. Numerical Experiments. In this work, we focus on applications of the model (1.3)
and (1.1) to image segmentation and stereo reconstrucG@mmparisons are made to the
discrete approach [33] and the approach proposed by Poak §3].

7.1. Image Segmentation.The discrete-valued labeling functiarfx) can be used to
partition the image inta regions by the conventiom = i in regioni. Hencep(u(z), z) is
the cost of assigning the poiatto regionu. One possibility for such a data term is

pli,x) = |I(z) — |, i=1,..,n (7.2)

wherel is the inputimage and, is the average intensity value of regibrThey are assumed
to be fixed in this work, although a simple updating schemeatsmbe constructed for finding
a local minimum with respect toas in [4]. Such a data term is convex fér> 1 and non-
convex forg < 1. The terma [, [Vu|dz is used to regularize. It does not penalize the
jump from each region to the next equally, like the more ideatt's model. However, for
relatively simple images and when the number of regionstisawlarge, it works quite well.
In addition, image segmentation is good for illustrativegmses of the method, since the
results are easily visualized. Figure 7.1, 7.4 and 7.3 sleswlts. For ease of visualization,
we have rescaled the labeling functiesuch that: takes the value; in regioni (instead of
the value)), i.e.

n—1
U =cy+ Z(CH_l — Ci))\: . (72)
=1
Subfigure (b) shows the resultingbefore thresholding eack!(x). As expected such a

solution may not be binary. Subfigure (c) shows the discraligad solution after thresholding
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FIG. 7.5.(a) Input, (b) segmentation with total variation regulag®mode(1.3) (after threshold), (c) segmen-
tation with convex relaxed Pott’s model (after thresholthe total variation regularized model results in misclassi
fications along the boundary between region 1 (darkest) agin 3 (brightest) and does not reconstruct the triple
junction properly.

each\’(z) according to Prop. 3.2. We also demonstrate image segritenteith a non-
convex data term. The ground truth image from Figure 7.14a)ldeen damaged by impulse
noise in Figure 7.2 (a). More specificallfg% of the pixels have been randomly selected
and given a random number betweeand255 (max gray value). For this type of noise, the
convex data terms does not perform well, as shown in Fig@rédj.where we have selected
(7.1) with 5 = 1. Instead the following non-convex data term can be used
. 0, ifi=argmin,|I(z)— ckl
pli,z) == { 1 else . (7.3)

This non-convex problem can be solved globally by our mettioalresult is shown in Figure
7.2 (b) before threshold and 7.2 (c) after thresholds.

We next apply our algorithm for the convex relaxed Pott's eladf [50] from section
6.2. The image in Figure (7.5) (a) has been segmented wittothkvariation regularized
model in (b) and convex relaxed Pott’'s model in (c). As we B&a] variation results in mis-

classifications along the boundary between region 1 (white)region 3 (dark) and cannot
reconstruct the triple junction properly.

7.2. Stereo reconstruction.We now consider stereo reconstruction with data from the
Tsukuba stereo set [55]. Given two color imadggand/y of a scene taken from horizontally
slightly different viewpoints, we would like to reconstitube depth map.. The quality of
the matching betweefy, and/y for a depth value: is measured by using the followingin
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FIG. 7.6. (a) Left input image, (b) ground truth, (c) non-integer d@o v = Z?:’ll A%, (d) Integer valued
solution after threshold, (e) Integer valued solutio er threshdld, (f) Graph cut 4 neighbors, (g) Graph cut
8 neighbors, (h) Pock et. al.
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FIG. 7.7.The solution\* may not be binary. (a) depicts; and figure (b) depicta\§ from the stereo example
in Figure 7.6

(@) (b)

Energy precision < 1073 Energy precision < 10~*
Fast primal-dual [52] Proposed 1] Proposed 2| Fast primal-dual [52] Proposed 1] Proposed 2
Brain 280 50 (x 5) 110 430 65 (x 5) 280
Figure 7.1| 295 35 (x 5) 115 640 65 (x 5) 290
Stereo 4055 550 (x 5) | 1070 14305 920 (x 5) | 3905
TABLE 7.2

Iteration counts for each experiment. Number of iteratitmseach an energy precision 80— and10—* are
shown. Proposed 1 stands for algorithm 2 where the subpmoigesolved by 5 iterations of Chambolle’s algorithm
each outer iteration (indicated by the number in the paresty). Proposed 2 stands for Algorithm 2 with the
subproblems solved inexactly in one step through the linaon (6.4).

the data term of (3.1)
3
plu,2) =Y 1] (&) = Il + (u,0)7)]. (7.4)
j=1

Herel’ (x) denotes the — th component of the color vectdz). The above data term (7.4)
is obviously highly non-convex. The term [, [Vu| dx is used to regularize. The strength
increases linearly with the size of the jumpeof This is reasonable in stereo reconstruction,
sinceu describes the "depth”, which is a physical entity arrangreeHrly in a third dimension
perpendicular to the image planes. Figure 7.6 shows resnlis standard example. We
have usedvr = 0.03 and scaled images betweemmnd1. As suggested in [55] we have set
n = 17 and used the discrete label 46t ..., 16}. This integer optimization problem over a
continuous domain can be formulated exactly with our apghio&olving (3.17) will result in
optimal functions\} that are not necessarily binary. In fact they are not expdoteée binary

in case the solution to the original problem is not uniquestased in Prop 3.2, a sequence of
optimal integer valued solutions can be obtained by thrieléig each\} at different levels

t; with 0 < t; < ... < ¢, < 1, provided (3.25) holds. In Figure 7.6(c), we depict such a
non-binary solution by plotting. = E?: Af. Observe thad} is not binary at locations
where a unique solution is not expected, such as the upgeraigner and underneath the
table. At such locations the data terms are weak. By varjieghreshold level, different
integer valued solutions can be obtained. For instance,ave bhosert; = 0.5 for all ¢

in Figure 7.6(d), which is called threshald. In Figure 7.6(e) we have chosen= 0.15
fori = 1,...,5and¢; = 0.5 fori = 6, ..., 16, called threshold? (one can check (3.25) is
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valid for £ = 6). This last threshold option allows to remove some of theclagsifications

in the background. In contrast, the approach of Pock et. ldhis the labeling function by
one single threshold of the optimal higher dimensionaldatbr function. Their result with
threshold level 0.5 (which is optimal in terms of misclassifpixels) is depicted in Figure
7.6(h). As we see in the figures and in Table 7.1, our approemifuges a solution of less
misclassified pixels compared to the ground truth, Figué€bj. Let us reiterate that both
approaches are global and converge to the same minimalygbetgur approach allows for
a larger set of non-unique solutions.

We also compare with graph cut using a neighborhood systefnaofd 8. Graph cut
produces a single non-unique solution which is shown in F&(fyand (g) with 4 and 8
neighbors respectively. As we see, such solutions suffen fnetrication artifacts because of
the discrete grid bias.

7.3. Evaluation of convergence.lteration counts for all experiments are presented in
Table 7.2. The two variants of Algorithm 2 are evaluated msfathe fast primal-dual method
of Pock et. al. [52]. The relative energy precision at iterat is given by

E' — E*

€= —f (7.5)
where £’ is the energy at iteratiohand E* is the final energy. A good estimate &f is
obtained by using a huge amount of iterations of each methd@ach experiment. The table
shows how many iterations are required to reach an energisie of 10—2 and10~*. Our
algorithms are implemented with a mimetic finite differerspatial discretization [32, 31].
In order to make the comparison as accurate as possiblegshprimal-dual algorithm [52]
is also implemented with such a mimetic finite differenceditization, although a slightly
different forward scheme for the gradient and backward meh®r the divergence was used
in [52].

The first variant of Algorithm 2 solves the subproblem (6té&jatively by Chambolle’s
algorithm [16]. Since the previous solution is availableaagood initialization, not many
iterations of this algorithm is required. In our experimgeri inner iterations was used each
time. Increasing the number of inner iterations beyond Shdidseem to have any impact on
the convergence rate in our experience.

The fast primal-dual method of [52] avoids the inner probldut as we see requires
significantly more iterations to reach the same energy pi@té. Our algorithm also re-
quires less total number of iterations (inner times outmaiions). The difference becomes
progressively clearer with higher energy precision. Fergstereo example, which is by far
most difficult computationally, our approach reached angnprecision ofe < 10~° after
1310 iterations,e < 10~° after1635 iterations and: < 10~7 after2340 iteration. The fast
primal-dual algorithm [52] failed to ever reach an energgqgsion of10—°> or lower within
our predetermined number of maximum iterations (20000) béleve this difference is due
to the fact that our approach avoids the iterative projestaf the labeling function and hence
progresses in the exact steepest descent direction egeation.

The second variant of the Algorithm 2 instead computes axaictesolution to (6.1) by
the linearization (6.4) and hence avoids the inner itenatitiowever, the penalty parameter
¢ must be set lower to have convergence, hence more outdrdtesare required. Overall it
converges a little faster than the first variant and outperéathe fast primal-dual algorithm
[52] for all the experiments.

Regarding the algorithm for Pott’s model in Section 6.2 gaah an energy precision of
10~* on the image in Figure 7.7, 130 outer iterations were reguiéth 5 inner iterations
to solve subproblem (6.6)). In comparison, 120 outer itengt(with 5 inner iterations) were
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required for the total variational regularized model (liBdicating the number of iterations
in the convex relaxed Pott’s model does not significantlyease. This is in contrast to the
primal-dual algorithm of [50], where for each iteration theal variable; must be projected

ontoC* by an iterative algorithm (e.g. Dijkstra’s algorithm), whiis the bottle neck of the

overall algorithm.

Comparison to discrete graph cut [11] is more complex. Qgordhms are implemented
in matlab, in contrast to the optimized c++ discrete max-flowlementation of [11]. Our al-
gorithm consists mainly of floating point matrix and vectdttanetic and is therefore highly
suited for massive parallel implementation on GPU. Tradai max-flow algorithms have a
much more serial nature, which makes them more dependent effieient serial CPU. A
GPU implementation of the algorithm of Pock et. al. has alydaeen compared to discrete
graph cut in [53], showing a speed up factor of about 30. Innisar future, hardware im-
provements are also expected to be largely of the parafpelchsHence, we see our work as
more suited for the current and future generation of hardwar

8. Conclusions and Future topics.In this paper we proposed and investigated a novel
max-flow formulation of multilabeling problems over a cantous image domain. It is a di-
rect mapping of Ishikawa'’s graph-based configuration tegagially continuous setting. The
multilabeling problem was interpreted as a min-cut prohetrich we proved was dual to the
proposed continuous max-flow model. In addition, we derived and reliable multiplier-
based max-flow algorithms whose convergence can verifiedangdard optimization theo-
ries. Experiments showed that the algorithms outperfomettisting approach both in terms
of convergence rate and reliability. Due to the continuaus/ex formulation, the algorithm
can be more easily speeded up by multi-grid or parallel imgletation than graph-based
methods, and its memory requirement is not so high.

In comparison to [53] and its improvement [52], our continamnax-flow approach pre-
sented a new theoretical framework based on the max-flow fdwalulation of discrete-
valued constrained problems of the form (1.3); a new threlshg scheme could be derived
for producing a larger set of exact and global optimums; erpents showed that the max-
flow based algorithms converged significantly faster anderaocurately than the fast primal-
dual method proposed in [52]. The algorithm could also berek¢d to the convex relaxation
of Pott’s model [50], thereby avoiding expensive iteratrejections without closed form
solution. In a future work we will also extend this algoritlionthe convex relaxation of the
piecewise smooth Mumford-Shah model [51], speed up anddimethe projection algorithm
of Section A and compare extensively with [50, 51].

During the completion of this work, we discovered anothexact one step scheme for
solving the subproblem 6.1, which allows for larger stepsjzesulting in even faster conver-
gence. We plan to investigate this further and release anptiper on fast implementations
and more comparisons in the future. We also became aware iofudtaneous work [43]
which gives another algorithm for minimizing the energytie tonvex formulation of [52].
Comparison with this work will also be subject of future raisH.

Appendix A. Projection onto CF (7).

Observe that’? () is an intersection of spheres R™. The centers of the spheres
are denoteaﬁi for (k,5) € I = {(k,j) st.1 <k < i < j < n} and are defined as
q, = Zi:k:,[;ﬁz’ qe- LetS(c, ) denote the sphere of centee R™ and radiusy and define
Si(a) = S(gl, ). ThenCF (q) is

Cvzp(q_) = m;;_:11 Nj—it1 Si(a) (A.1)

To obtain an analytical expression for the projection afift(¢), observe first that
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FiG. A.1. (a) Projection ofg; onto C'(g). The projectionss}, ¢? and ¢? onto Sy (e), S2 () and Ss(c)
are not contained> (g), therefore the projection™ onto CF(¢) must lie on the intersection of the boundaries of
S1 (a), Sa (a) and Ss (a)

PROPOSITIONA.1. Letq = Tl (o) be the projection of; onto the spheres? (a).
Assume that for sonié, ) € I, ¢. € CF(g), theng’ = arg min i €O (@), (b yel 14— qllis
a projection ofg; ontoCF¥ (g).

Proof. Let (K, J) =argmin, . ;¢ q{ecf(q)mi — ¢i|. Assume there existsg@ with
¢ € Cf(q) and|g* — ai| < lak — ai|- Theng* € S§(a) and|¢* — ¢;| < Mgy (@i =
lgg — ql| a contradictiond

If ¢, ¢ CF(g) for all (k,j) € I, the projection onta”} (g) must necessarily lie on
the intersection of thboundarieof S,JC( ) as the next proposition shows. We focus on two
dimensional images iR? for simplicity, i.e.m = 2. In that case, intersectionsleéundaries
of S («) are just isolated points iR?. The boundaries o} (o) are denotedSy (a), i.e.

8Si(a) = {x e R™ s.t.|z — G| = a}. (A.2)

PROPOSITIONA.2. Assume]k ¢ CF(q) for all (k,j) € I. Denote the set of intersec-
tions

Q={zeR’stuze 85{; ()N 85%( ), for some(k’, ) # (k,j) € I}. (A.3)

Theanp(q)qz € Q.
Proof. Letg* = Hcp( 7% Observe that the projectioff must lie on the boundary

of the setC/’(7), thereforeq* € 95 () for some(k,j) € I, sayq* € 8S% (). Since
q* € S (o) it follows that|q* — ¢:| > |g7- — ail-

Assume that* ¢ Q. Consider the part of the circle C 957 («), which is the open
curve with end points ig* andgj. of minimum length (since there are two possibilities).
Sinceg* € CF(g) andgj. ¢ CF(q) it follows that there exists a poiigte s such thaj € Q
andg € CF(q). Then|g — ¢;| < |¢* — ¢:|, a contradiction tg* = =Ilor ()i
d

Whenm = 3 (3D images), ther®) is itself a set of circles iiR? (and isolated points).
The projection ontd@) can be computed analytically, but we omit the details.

In is not necessary to check the projection onto ev#rtyy) for (k, j) € I. As the next
result shows, it suffices to check the sphere with largedickai distance tay;.

PROPOSITIONA.3. Let (K, J) = arg maXy je/lai — @il If i = Mgy ()@ € CF (),
thengf, = Hor g If qi- ¢ CF(q), thenllgr gq: € Q
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Algorithm 3 Exact projection algorithm ont6’” (7)

o Compute(K, J) = arg maxy ;e;|¢ — Qi|
o if gf, = HS}’((a)qi € CF(g), then
0" =g/ ()

e else
(K,J)= arg ma)fk,j)e[k]i —qi|, (K',J") = arg ma)ﬁk,j)el\(K,Jﬂqi - 4il
q" = arg MiN o607 ()aC7, (a), (k)£ (K, 7)er 14— Gil-

Proof. Observe thalg; — ¢*| = |¢i — Heor ()il = maxgjer 6 — gy ()0l The
inequality follows sincey* € Sjk'(a) forall (k,j) € I. Let(K,J) = arg maX, ;e % — qjk'.
Then|g; —ILgs (o) = max( jer |qi—HSi(a)qi|. IfIlsy (a)ai € CF(g), then by the above
inequalityq” = Ilgs y¢;- This shows the first part of the propositionIlf .¢; ¢ Ccf(q),
then by the above inequaliﬁsi(a)qi ¢ CF(q)forall (k,j) € I, hence;* = Her g € Q.
d

Further simplifications can be made. We stick to 2D dimeraignoblems from now
on, i.e.m = 2. Itis not necessary to check every poingihe @, to find the one ik (q)
with smallest distance tg,. The centers of the diskS] («) are all assumed to be contained
in CF'(g) by the construction, i.e.

J
Y @eCl(@, Ykij)el (A4)
=k 00

which makes the calculation especially simple

PROPOSITIONA.4. Assumey,, ¢ CF(g) for all (i,j) € I and assumgA.4) holds.
Let (K, J) = arg may,, jerlq — @i and(K', J') = arg max,, ;e (k.9 — ¢i| (second
largest). If (K, J) is unique thery* € 953 (o) N 85@ («) for some(k’,j') € (K',J’), if
(K,.J) is not unique;* € 057 (o) N 8S7, (a) for somelk, §), (k', ') € (K, .J).

This observation reduces the number intersecting poiatsigeds to be checked. If both
the largest and second largest distance is uniqueg¢henSy. (a) N 35S, (o) which consists
of two points.

A simple algorithm can then be constructed for computing= Hcf@qi, see Alg. A.
There may be several ways to accelerate the algorithm. ttipeait is expected the boundary
of the setCY’(7) is compromised of only a few elements@s; (), so called active elements.
Furthermore, the set of active elemeﬁﬁi(a) are known when advancing from one layer to
the next, and does not need to be recalculated. The algowthutd only need to work with
this set of relevant? («).
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