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Abstract This paper is devoted to the optimization problem
of continuous multi-partitioning, or multi-labeling, which is
based on a convex relaxation of the continuous Potts model.
In contrast to previous efforts, which are tackling the opti-
mal labeling problem in a direct manner, we first propose a
novel dual model and then build up a corresponding duality-
based approach. By analyzing the dual formulation, suffi-
cient conditions are derived which show that the relaxation
is often exact, i.e. there exists optimal solutions that are also
globally optimal to the original nonconvex Potts model. In
order to deal with the nonsmooth dual problem, we develop
a smoothing method based on the log-sum exponential func-
tion and indicate that such a smoothing approach leads to a
novel smoothed primal-dual model and suggests labelings
with maximum entropy. Such a smoothing method for the
dual model also yields a new thresholding scheme to ob-
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tain approximate solutions. An expectation maximization
like algorithm is proposed based on the smoothed formula-
tion which is shown to be superior in efficiency compared to
earlier approaches from continuous optimization. Numerical
experiments also show that our method outperforms several
competitive approaches in various aspects, such as lower en-
ergies and better visual quality.
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1 Introduction

The multiphase partitioning problem, or multi-labeling
problem, is the problem of partitioning the image domain
into several regions according to some optimization crite-
rion. The term “multiphase problem” is often used in the
variational and PDE community. In the discrete optimization
community, such problems are often called “multi-labeling
problems” and are expressed as the assignment of a label l
at each point of the image domain chosen from a finite set of
real numbers {l1, . . . , ln}. Such problems appear extensively
in the areas of image processing and computer vision. They
are typically formulated as the minimization of an energy
function which mathematically encodes all the information
needed for the imaging and vision task. Lower energy so-
lutions are regarded as better posteriori estimates. In this
work we focus on the Potts model, which is a special case
of the labeling problem where the energy function does not
favor any particular ordering between the labels. The Potts
model can, for instance, model image segmentation prob-
lems where one wants to assign each pixel to a region by
minimizing a weighted sum of data fidelity and the lengths
of the boundaries of the regions. The piecewise constant
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Mumford-Shah model (Mumford and Shah 1989) is a spe-
cial case of the Potts model, if one assumes the “constants”
are fixed.
One can solve such labeling problems in the manner of

“discrete” or “continuous”, depending on the spatial de-
finition of l. When the labeling is defined on a discrete
grid, it reduces to a graphical model and its energy func-
tion is defined in terms of the “cost” of corresponding nodes
and edges of the graph, by the theory of Markov Random
Fields (see Li 2001; Paragios et al. 2005 for a good refer-
ence). The node cost often evaluates the fidelity of the given
data. The edge cost, often pairwise (Boykov et al. 2001;
Kolmogorov and Zabih 2004) or with high-order cliques
(Kohli et al. 2009), measures the regularities of the label as-
signments. In case of two labels such energy functions can
be efficiently and globally minimized by graph cuts (Greig
et al. 1989), provided they are submodular (Kolmogorov
and Zabih 2004). Exact global minimization is also pos-
sible in certain cases with multiple labels (Ishikawa 2003;
Bae and Tai 2009b). However, most problems with more
than two labels are NP-hard in the discrete context. There-
fore they can probably not be solved globally in polyno-
mial time. The Potts model is an important example of such
a NP-hard problem. Several approximation algorithms for
the Potts model exist, e.g. message passing (Wainwright
et al. 2002; Kolmogorov 2006), linear programming (Ko-
modakis and Tziritas 2007) etc. Most notable is the graph
cuts based alpha expansion and alpha-beta swap (Boykov
et al. 2001). Despite the efficiencies of these discrete ap-
proaches, their computation results are biased by the discrete
grid, therefore metrication errors are introduced. By consid-
ering more neighboring nodes, such visual artifacts can be
reduced (Boykov et al. 2006; Kolmogorov 2005). However,
this results in both a heavier memory load and a larger com-
putational cost. Figure 1 shows an example where the image
in (a) has been segmented into 10 regions by minimizing
the Potts energy. An approximate solution which is gener-
ated by graph cut based alpha expansion implemented with
an “8 neighborhood system” is shown in Fig. 1(b). In this
example, each color represents a distinct region. The Potts
model seeks to minimize the length the region boundaries.

Fig. 1 Segmentation into 10 regions by using Potts model. (a) Input,
(b) result graph cut-based alpha-expansion (Boykov et al. 2001) with
“8-neighborhood system”, (c) result our approach. The full image and
experiment is presented in Sect. 5

It is seen that horizontal, vertical and diagonal orientations
of the boundaries are favored. In addition, some artifacts
arise, because the energy is not minimized exactly: observe
the green patches along the intersection between the yellow
flower and blue sky.
On the other hand, the labeling problem can also be for-

mulated in the continuous setting, where the continuous do-
main � is divided into two or more subregions {�i}ni=1 by
minimizing certain energy functionals. To find a solution nu-
merically, the descent or ascent equations are discretized, in-
stead of solving a discrete problem directly. Such continuous
formulations are not biased by the grid, and can therefore
produce results that are rotationally invariant. For instance,
the Euclidean length of the boundaries of �i can be rep-
resented without considering infinitely large neighborhood
systems. The level set method (Osher and Sethian 1988)
is an elegant tool for simplifying these energy functionals,
such that numerical calculation can be easily implemented
(Chan and Vese 2001; Vese and Chan 2002). Fairly gen-
eral energy functionals, such as the continuous variant of
the Potts model, can be rewritten and minimized numeri-
cally by level sets. A variant of the level set method, the so-
called piecewise constant level set method (PCLSM) (Lie et
al. 2006a, 2006b), expresses the energy in terms of a label-
ing function, or piecewise constant function as the authors
called it. Unfortunately, the main disadvantage of both level
set methods is their potential of getting stuck in a possibly
inferior local minima because of their nonconvex formula-
tions.
Recently, it was realized that certain binary labeling prob-

lems in the spatially continuous setting can be solved in a
global fashion (Nikolova et al. 2006; Chan and Esedoglu
2005). The non-convex binary constraint of the labeling
function can be relaxed such that the minimization prob-
lem becomes convex. It was proved that thresholding the
solution of the relaxed problem at any value in [0,1] yields
a globally optimal solution to the original binary labeling
problem. Therefore fast and reliable algorithms based on
convex optimization theories can be applied, which have
been shown to be much faster than the level set method, see
e.g. (Bresson et al. 2007). Specialized implementations can
even be more efficient than graph cuts (Goldstein et al. 2009;
Klodt et al. 2008). Moreover, such convex optimization al-
gorithms consists mainly of floating point matrix and vector
arithmetic and is therefore highly suited for massive parallel
implementation on cpu. Combinatorial algorithms for graph
cuts have a much more serial nature which makes them dif-
ficult to implement on GPU.
Recently, similar convex formulations have also been

proposed for the continuous Potts model with more than
two labels (Zach et al. 2008; Lellmann et al. 2009; Pock et
al. 2009), by relaxing the integrability constraint of the la-
beling function. However, no proof exist that integer valued
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solutions exist to these relaxations. One can obtain approx-
imate integer-valued solutions by simple thresholdings. Ex-
periments show such approximations are much closer to the
exact global minimum than the local minima computed by
level sets. Some other relaxations closely related to (Zach et
al. 2008; Lellmann et al. 2009) have later been proposed in
(Brown et al. 2009, 2010).

1.1 Contributions and Organization

This paper builds on the work of Zach et al. (2008) and
Lellmann et al. (2009). We discuss the convex relaxed Potts
model under a primal-dual perspective. A novel dual model
is proposed, which formulates the convex relaxed prob-
lem in terms of the dual variables only and thereby avoids
the complex side constraint of the primal variable. This
contrasts with previous approaches which tackle the con-
strained optimization problem over the labeling function di-
rectly. The dual formulation also provides a new thresh-
olding scheme for obtaining binary primal solutions of the
relaxed problem which are also globally optimal to Potts
model, and an analytical tool to derive sufficient condi-
tions about when this is possible, i.e. for when the relax-
ation is exact. In order to deal with non-smoothness of
the resulting dual energy functional, a smoothed version
of the convex dual model is proposed. Such a smooth-
ing scheme for the dual model has some interesting con-
nections to the formulations of maximum entropy cluster-
ing algorithms (Rose 1998). A new algorithm derived from
the smoothed dual formulation is shown to be significantly
more efficient than the state of art works (Zach et al. 2008;
Lellmann et al. 2009). It is very simple and can be easily im-
plemented. Experiments demonstrate the algorithm for the
smoothed model may yield better binary approximations to
the original non-convex problem with lower energy in con-
nection with the new thresholding scheme. Numerical re-
sults are also compared extensively with the well-known al-
gorithms alpha expansion and alpha-beta swap from discrete
optimization, which show that our algorithm can produce re-
sults of equal or lower energy than these approaches. In ad-
dition our algorithm avoids the grid bias and yields results
that are rotationally invariant. For an example, see our re-
sult on the flower image in Fig. 1(c). In contrast to graph cut
based alpha expansion, the orientation of the boundaries are
not biased to certain direction and have a much smoother
and more natural appearance. In addition, artifacts, like the
green misclassifications along the transition between flower
and sky, are avoided. Further experiments show that the re-
sult produced by our approach has a lower energy for this
example. In contrast to graph cuts, our algorithm is also very
parallel friendly and can be easily implemented on GPU.
This paper is organized as follows: In Sect. 2 we intro-

duce the continuous Potts model and its convex relaxation.

Then we propose the primal, primal-dual and dual formula-
tions of the convex relaxed Potts model, which are equiv-
alent to each other. Analysis of the dual formulation are
given in Sect. 2.3 where sufficient conditions are derived
for when binary primal solutions can be recovered from a
dual solution. The smoothed models are presented in Sect. 3,
Sect. 3.2 reveals a connection to maximum entropy labeling
algorithms and error bounds of the smooth models are de-
rived in Sect. 3.3. The new algorithm presented in Sect. 4,
along with details on numerical implementation. Numerical
experiments and comparisons are presented in Sect. 5.
The sections are arranged in increasingly advanced order.

The most practically minded reader may find the first half of
each section most interesting and can alternatively follow
the order: Sects. 2 until (but excluding) 2.3, Sects. 3 until
(but excluding) 3.2, Sect. 4 and Sect. 5.

2 Continuous Potts Model and a Convex Relaxation
Approach

This work builds on the convex relaxation method of the
nonconvex Potts model (Zach et al. 2008; Lellmann et al.
2009). We develop a novel dual formulation of the relaxation
which simplifies the problem and leads to simpler compu-
tation. The dual formulation also allows to give a deeper
analysis of the relaxation. It is shown there exists optimal
solutions that are closely related to global optimums of the
original nonconvex Potts model, and which can be obtained
in a new thresholding framework.

2.1 Continuous Potts Model

The continuous variant of the Potts model (Potts 1952) par-
titions the continuous domain � into n disjoint subdomains
{�i}ni=1 by minimizing

min
{�i }ni=1

n∑
i=1

∫
�i

fi(x)dx + α

n∑
i=1

|∂�i |

s.t.
n⋃

i=1
�i = �, �k ∩ �l = ∅,∀k �= l,

(1)

where |∂�i | measures the lengths of the boundaries of the
disjoint subdomains �i , i = 1, . . . , n. The functions fi ,
i = 1, . . . , n, defined on � are given and evaluate the per-
formance of label assignment at each partition�i . The Potts
model was originally derived from statistical mechanics and
formulated in the spatially discrete setting. Here, we have
stated the corresponding definition in the continuous setting.
Obviously, the Potts model favors labelings with “tight”
or smooth boundaries. We will focus on image processing
problems, in which � is simply the image domain in N-D
(typically 2-D). In this case, the functions fi , i = 1, . . . , n,
typically depend on the values of the input image I .
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The Potts model has a close resemblance to the piecewise
constant Mumford-Shah model (Mumford and Shah 1989)

min
{�i }ni=1,c

n∑
i=1

∫
�i

|I − ci |βdx + α

n∑
i=1

|∂�i |

s.t.
n⋃

i=1
�i = �, �k ∩ �l = ∅, ∀k �= l,

(2)

where β = 1 or 2 and I is the input image. In fact, when
the constants c = {c1, . . . , cn} are fixed, the Mumford-Shah
model is a special case of the Potts model with fi = |I −
ci |β .
In order to compute the optimal partitions, let ui(x), i =

1, . . . , n, denote the characteristic functions of the disjoint
subdomains �i , i.e.

ui(x) = I�i
(x) :=

{
1, x ∈ �i,

0, x /∈ �i,
i = 1, . . . , n.

The boundary lengths of the disjoint subdomains are given
by

|∂�i | =
∫

�

|∇ui |dx, i = 1, . . . , n. (3)

The Potts model (1) can then be rewritten as

min
ui(x)∈{0,1}

n∑
i=1

∫
�

ui(x)fi(x)dx + α

n∑
i=1

∫
�

|∇ui |dx (4)

subject to

n∑
i=1

ui(x) = 1 ∀x ∈ �.

Obviously, the Potts model (4) is non-convex due to the
binary configuration of each function ui(x), ∀x ∈ �.

2.2 Convex Relaxation and Equivalent Models

We show the nonconvex Potts model (4) can be relaxed as
a convex minimization problem which we call the primal
model. We then give equivalent formulations of the relaxed
problem as a primal-dual model and a dual model. The dual
formulation deals with the simplex constraint implicitly and
provides a new framework for obtaining optimal binary so-
lutions of the primal problem.

2.2.1 Primal Model

The binary constraints of (4) were relaxed in (Zach et al.
2008), by minimizing ui(x) over the interval [0,1] instead.
This gives rise to the convex relaxed Potts model defined as

min
u∈S

EP (u) =
n∑

i=1

∫
�

ui(x)fi(x)dx + α

n∑
i=1

∫
�

|∇ui |dx (5)

where the simplex constraint �+ is defined as:

�+ =
{

u ∈ R
n

∣∣∣∣
n∑

i=1
ui = 1; ui ≥ 0, i = 1, . . . , n

}
(6)

and the set S is

S = {u : � 
→ R
N |u(x) ∈ �+ ∀x ∈ �}.

If the minimizer of (5) happens to be binary everywhere,
it is also a global minimizer of the original problem (4).
However, unlike the two label problem, if the computed
minimizer of (5) is not binary, there are no thresholding
scheme which can convert to a binary global minimizer
of (4). Even if such a binary minimizer exists, (5) may result
in nonbinary solutions due to non-uniqueness. Zach et al.
(2008) and Lellmann et al. (2009) proposed to use the indi-
cator function of the largest component ui as an approximate
binary solution, i.e. the thresholded solution ũ was selected
as

ũk(x) =
{
1 if k = argmaxi=1,...,n u∗

k ,

0 otherwise.
(7)

If the above maximizer is not unique, the convention of us-
ing the maximizer with smallest index was suggested.
In this paper, we call the continuous optimization prob-

lem (5) primal formulation or primal model and ui , i =
1, . . . , n, primal variables, in comparison to its equivalent
models discussed in later sections.
In addition to region based segmentation models like the

Mumford-Shah model, edge based models like the geodesic
active contour model (Kass et al. 1988) are powerful for
many image processing problems. It was shown in (Bresson
et al. 2007; Tao and Tai 2009) that combining regional and
edge information of the image has many advantages. How-
ever, they only studied two-phase problems. Using the for-
mulation outlined above, the combined model can be written
with multiple phases

min
ui(x)∈{0,1}

n∑
i=1

∫
�

{
ui(x)fi(x) + αg̃(x)|∇ui |

}
dx, (8)

subject to
∑n

i=1 ui(x) = 1. Likewise, its convex relaxed ver-
sion is

min
u∈S

n∑
i=1

∫
�

{
ui(x)fi(x) + αg̃(x)|∇ui |

}
dx, (9)

subject to (6). The function g̃(x) is often called an edge in-
dicator for problems like image segmentation. It takes small
values at locations of large gradients or edges in the image.
For a given image I , one possible choice is to take

g̃(x) = 1

c|∇Iσ (x)|2 + 1 ,
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where Iσ is a smoothed version of the input image I . There
are also other alternatives for g̃(x). If g̃(x) is chosen as the
identity function, (8) reduces to the Potts model (4), and (9)
corresponds to (5).
In this work, we discuss the convex relaxed Potts model

(5) and its generalized model (9) as the approach to contin-
uous multi-labelings and focus on (5), without loss of gen-
eralities.

2.2.2 Primal-Dual Model

By using integration by parts, it is well known that the to-
tal variation term in (5) can equivalently be formulated as a
maximization problem

α

∫
�

|∇u|dx = max
p∈Cα

−
∫

�

∇u · pdx = max
p∈Cα

∫
�

udivpdx

(10)

in terms of the dual variable p over the convex set Cα de-
fined as

Cα := {p : � 
→ R
N ||p(x)|2 ≤ α ∀x ∈ �,p · n|∂� = 0},

(11)

where n is the normal vector of ∂�, see e.g. (Meyer 2001).
For the more general model (9), Cα is given by

Cα := {p : � 
→ R
N ||p|2 ≤ g̃, p · n|∂� = 0}. (12)

By inserting this expression, the primal problem (5) can
be identically formulated as

min
u
max
pi∈Cα

E(u,p) =
n∑

i=1

∫
�

ui(x)
(
fi(x) + divpi(x)

)
dx.

(13)

The variables pi i = 1, . . . , n are named as dual variables in
this paper. Therefore, the min-max problem (13) is called the
equivalent primal-dual formulation or primal-dual model
of (5), which can be optimized over both the primal vari-
ables ui and the dual variables pi .
Note that the min and max operators in the above primal-

dual model (13) can be interchanged

min
u∈S

max
pi∈Cα

E(u,p) = max
pi∈Cα

min
u∈S

E(u,p) (14)

because the conditions of the minimax theorem (see e.g.,
Ekeland and Téman 1999, Chap. 6, Proposition 2.4, also Fan
1953) are all satisfied. That is, Cα and �+ are convex, and
the energy function E(u,p) is linear in both variables u and
p, hence convex l.s.c. for fixed p and concave u.s.c. for fixed
u. This also implies the existence of at least one saddle point,
see Ekeland and Téman (1999).

2.2.3 Dual Model

We will now derive another equivalent formulation of (5) by
optimizing the primal-dual model (13) via the primal vari-
able (u1(x), . . . , un(x)) ∈ �+ at each position x ∈ �.
Observe that for any vector q = (q1, . . . , qn) ∈ R

n

min
(v1,...,vn)∈�+

n∑
i=1

viqi =min(q1, . . . , qn), (15)

Therefore, minimizing (13) over the primal variables
ui(x) i = 1, . . . , n, at each position x ∈ �, leads to

max
pi∈Cα

ED(p) :=
∫

�

{
min(f1+divp1, . . . , fn +divpn)

}
dx.

(16)

We call (16) the dual model of (9). ED(p) is called the dual
energy functional.
By regarding d(li , x) = fi(x) + divpi(x), x ∈ �, as the

proximity measure of labeling x as li , i = 1, . . . , n, the min-
imal distance indicates which label should be assigned to
x by the dual model (16). In this sense, the dual formula-
tion (16) can be viewed as a generalized center-based clus-
tering formulation (Teboulle 2007; Banerjee et al. 2004),
where fi(x) are the data and divpi(x) are the centroids.
In contrast to the classical clustering problem, the spatial
centroids are formally constrained to a convex set. More-
over, updating divpi(x) associated with (10) minimizes the
perimeter of the spatial partitions �i , i = 1, . . . , n, im-
plicitly! This gives a geometrical explanation of the dual
model (16) in the sense of minimal length clusterings.

2.2.4 Discussions and Comments

Now we have two equivalent optimization models, the
primal-dual model (13) and the dual model (16), to the
primal optimization problem (5). Clearly, the energy func-
tional EP (u) of the primal model (5) is given by maximiz-
ing E(u,p) of the primal-dual problem (13) over the dual
variable p first, i.e.

EP (u) := max
pi∈Cα

E(u,p).

Likewise, the energy functional ED(p) of the dual model
(16) is resulted by minimizing E(u,p) first over u, i.e.

ED(p) :=min
u∈S

E(u,p).

As a consequence, we always have

EP (u) ≥ E(u,p) ≥ ED(p). (17)
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Let (u∗,p∗) be optimal to the primal-dual model (13)), then
by (14) we have

EP (u∗) = E(u∗,p∗) = ED(p∗). (18)

Pairs (u∗,p∗) that satisfies (18) are called optimal primal-
dual pairs.
Moreover, the equivalences between these models im-

plies that we can also solve the convex relaxed Potts problem
(5) by optimizing its dual model (16). In fact, when the n

values (f1(x) + divp∗
1(x), . . . , fn(x) + divp∗

n(x)) at x ∈ �

have a unique minimum, an optimal primal variable u∗(x)

of minu(x)∈�+ E(u,p∗) at x can be uniquely recovered, in
view of (15), by

u∗
k(x) =

{
1 if k = argmini=1,...,n(fi(x) + divp∗

i (x)),

0 otherwise,

(19)

which is a binary indicator vector and exactly indicates the
optimal label function u∗ at position x. Such a binary u∗(x)

is globally optimal both to the convex relaxed Potts model
(5) and the nonconvex Potts model (4).
Based on the above consideration, we propose such a

duality-based approach by maximizing the dual functional
ED(p), in contrast to previous works which tackle the pri-
mal unknowns ui , i = 1, . . . , n, directly. Moreover, the dual
model (16) also provides a powerful tool to analyze the con-
nections between the global optimums of the non-convex
Potts model (4) and its relaxed version (5).

2.3 Global Optimums of Convex Relaxed Potts Model

The existence of a global binary optimum of the convex re-
laxed formulation (5), i.e. the exactness of (5), is still open.
However, we can show (5) is exact under specified condi-
tions. To do this, we first state the relationship between a
maximum p∗ of the dual model (16) and a minimum u∗ of
the primal model (5) as follows

Theorem 1 Given any maximum p∗ of the dual problem
(16). We will characterize primal variables u∗ for which
(u∗,p∗) is an optimal primal-dual pair of (13). If the n

values (f1(x) + divp∗
1(x), . . . , fn(x) + divp∗

n(x)), at some
x ∈ �, have a unique minimum, e.g. fk(x)+ divp∗

k (x), then
u∗(x) at x must be valued

u∗
k(x) = 1 and u∗

i (x) = 0, i �= k. (20)

If the n values (f1(x) + divp∗
1(x), . . . , fn(x) + divp∗

n(x))

at some x ∈ � have k > 1 minimums, e.g. fj (x)+ divp∗
j (x)

j ∈ T = {t1, . . . , tk}, then u∗(x) at x must satisfy

k∑
i=1

u∗
ti
(x) = 1 and u∗

j (x) = 0, j /∈ {t1, . . . , tk}. (21)

Proof Assume there exists a primal variable u∗ such that
(u∗,p∗) is an optimal primal-dual pair and u∗ does not
satisfy (20) and (21) for all x ∈ �. Let x ∈ � be a point
where (20) or (21) are violated, then for some ε ∈ (0,1],
u∗(x) satisfies∑
i∈T

u∗
i (x) = 1− ε,

∑
i∈{1,...,n}\T

u∗
i (x) = ε.

Let min2ndi∈{1,...,n}(ai) denote the second smallest component
of (a1, . . . , an), and denote I = {1, . . . , n} then∑
j∈T

u∗
j (x)(fj (x) + divp∗

j (x)) +
∑

i∈I\T
u∗

i (fi(x)

+ divp∗
i (x))

=
∑
j∈T

u∗
j (x)min

i∈I
(fi(x) + divp∗

i (x))

+
∑

i∈I\T
u∗

i (x)(fi(x)divp∗
i (x))

≥
∑
j∈T

u∗
j (x)min

i∈I
(fi(x) + divp∗

i (x))

+
∑

j∈I\T
u∗

j (x)
2nd
min
i∈I

(fi(x) + divp∗
i (x)),

= (1− ε)min
i∈I

(fi(x) + divp∗
i (x))

+ ε
2nd
min
i∈I

(fi(x) + divp∗
i (x))

=min
i∈I

(fi(x) + divp∗
i (x))

+ ε
( 2nd
min
i∈I

(fi(x) + divp∗
i (x))

−min
i∈I

(fi(x) + divp∗
i (x))

)
>min

i∈I
(fi(x) + divp∗

i (x)).

Therefore, integrating over all x ∈ �

E(u∗,p∗) =
n∑

i=1

∫
�

u∗
i (x)(fi(x) + divp∗

i (x))dx

>

∫
�

min
i∈I

(fi(x) + divp∗
i (x))dx = E(p∗),

a contradiction to the fact that (u∗,p∗) is an optimal primal-
dual pair of (13). �

Then it follows directly, from Theorem 1, that

Proposition 1 Let p∗ be one optimum of the dual prob-
lem (16). If the values (f1(x) + divp∗(x), . . . , fn(x) +
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divp∗(x)) have a unique minimum at all x in �, then the
primal variable u∗ given by (19) is a binary global optimum
to the primal problem (5) and to the original non-convex
Potts model (4).

Proof By Prop (1) any primal-dual pair must satisfy (20)
and (21). Since the primal variable u∗ given by (19) is the
only variable that satisfies these constraints for the given p∗,
it follows that (u∗,p∗) is an optimal primal-dual pair by the
existence of such a pair. Hence u∗ is an optimum of the pri-
mal problem (5).
That u∗ is also a global optimum of (4) follows from

the fact that the feasible set of the convex relaxed Potts
model (5) contains the feasible set of the nonconvex Potts
model (4). Therefore, any global binary optimum of the con-
vex relaxed Potts model, which is feasible in the nonconvex
Potts model (5), is also globally optimal to the nonconvex
Potts model. �

In the case where there are two minimums of (f1(x) +
divp∗

1(x), . . . , fn(x) + divp∗
n(x)) at some positions x ∈ �,

it is also possible to prove existence of a global optimum

Proposition 2 Let p∗ be one optimum of the dual prob-
lem (16). If the values (f1(x) + divp∗(x), . . . , fn(x) +
divp∗(x)) have at most two minimums at all x in �, then
there exists binary primal variables u∗ which are globally
optimal to the primal problem (5) and the original non-
convex problem (4).

The proof of Proposition 2 is given in the appendix. As a
corollary, this shows there always exists a global binary min-
imizer for two phase problems where n = 2. This corollary
is linked to the result of Nikolova et al. (2006) and Strang
(1983), who gave a different proof of existence of binary
minimizers for relaxed two phase problems.
Further analysis in the case the number of minimums is

greater than 2 at some positions x ∈ � will be subject of
future research.
In order to deal with non-differentiability of the dual en-

ergy functional (16), a smooth approximation functional
is introduced in the next section. This smooth model
tends to favor solutions where at each x ∈ �, (f1(x) +
divp∗

1(x), . . . , fn(x) + divp∗
n(x)) has a unique minimum.

Therefore, a binary primal solution can be recovered by the
scheme (19). Since there is an approximation between the
smooth and non-smooth models, one cannot guarantee the
obtained solutions are exact. Experiments show that such
solution may better (have lower energy) than simply solving
the relaxed primal problem exactly and then threshold the
result like (7).

3 Smoothed Models

In order to solve the optimal labeling problem (5) through
its nonsmooth dual model (16), we propose a smoothing
method in this section, which leads to the smoothed primal-
dual model and smoothed dual model, associated with (13)
and (16). The smoothed dual model also gives rise to a sim-
ple and efficient numerical algorithm which is proposed in
the following section.

3.1 Asymptotic Function and Smoothed Dual Model

We first introduce the asymptotic function in order to de-
rive the smoothing method. The asymptotic function g∞ of
a proper convex function g(u) is also a proper convex func-
tion, positively homogeneous and defined in an approxima-
tion way (Rockafellar 1970; Teboulle 2007) as

g∞(z) = lim
s→0+

{gs(z) := sg(s−1z)}.

For example,

g(u) =
√
1+ ‖u‖2, g∞(z) = ‖z‖;

and

g(u) = log
k∑

j=1
euj , g∞(z) = max

1≤j≤k
zj . (22)

We use an example to show the smoothing effects of
the Log-Sum exponential function (22) for the highly non-
smooth function max1≤j≤k zj . In Fig. 2, the nonsmooth
function f (x) = max(1 − x, x) is given in the first graph.
We use the Log-Sum exponential function (22) to approxi-
mate it by

fs(x) = s log(exp((1− x)/s) + exp(x/s)),

where s > 0. We see, by the two blue lines on the right
graph, that the approximation becomes better when s is cho-
sen smaller.
Likewise, we apply (22) to approximate the min function

in (16) by choosing a small parameter s > 0. In this way, the
nonsmooth optimization problem (16) can be approximated
by

max
pi∈Cα

ED
s>0(p) := −s

∫
�

{
log

n∑
i=1
exp

(−fi − divpi

s

)}
dx.

(23)

We call the new optimization problem (23) the smoothed
dual model in comparison to the original dual one (16).
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Fig. 2 The left graph, the black
and bold line, gives the function
f (x) =max(1− x, x), in the
interval x ∈ [0,1]. The right
graph shows the approximation
of f (x) by the Log-Sum
exponential function
fs(x) = s log(exp((1− x)/s) +
exp(x/s)) where s = 0.3: the
upper blue line, s = 0.05: the
lower blue line

3.2 Equivalent Smoothed Models and Maximum Entropy
Labelings

This section derives primal-dual and primal formulations of
the smoothed dual model and reveals an interesting relation-
ship to maximum entropy clustering algorithms. Actually, it
is well known that the smooth log-sum function has an iden-
tical expression (Rockafellar 1970):

Lemma 1 For any given μ ∈ �+ and h ∈ R
n,

log
n∑

i=1
μie

hi = max
u∈�+

{
〈u,h〉 −

n∑
i=1

ui log
ui

μi

}
.

Let μi = 1/n, i = 1 . . . n. By the results of Lemma 1, we
see that the smoothed dual model (23) is just equivalent to

max
pi∈Cα

min
u∈S

Es(u,p)

=
∫

�

{
n∑

i=1
ui(fi + divpi) + s

n∑
i=1

ui logui

}
dx. (24)

In view of the primal-dual model (13), the energy func-
tional in the optimization problem (24) is just the energy
functional of (13) plus an entropy-penalizing term. Such
entropy penalization provides a proper regularization or
smoothing of the original function. We, likewise, call the
optimization problem (24) the smoothed primal-dual model.
Correspondingly, optimizing the dual variables p in (24)

leads to the equivalent smoothed primal model:

min
u∈S

EP
s (u) =

∫
�

{
n∑

i=1
uifi +α|∇ui |+sui logui

}
dx. (25)

Clearly, the positive value s here works as a penaliza-
tion parameter. When s approaches 0, the optimization prob-
lem (24) approaches the original primal-dual problem (13)

and the smoothed primal model (25) approaches the non-
smooth version (5). At this, the smoothed primal-dual model
(24) shares the same formulation of the maximum entropy
clustering algorithms (Rose 1998). To this end, we also call
our smoothing approach given by (23) or (24) the method of
maximum entropy labelings.

3.3 Approximation Bounds of Smoothed Models

Some error bounds of the smoothed models are derived in
this section. In fact, the Log-Sum exponential function gives
the following approximation bound on the maximum func-
tion max1≤i≤k zi (Teboulle 2007).

Lemma 2 For each μ ∈ �+, the following inequalities
hold,

k∑
i=1

μizi ≤ log
k∑

i=1
μie

zi ≤ max
1≤i≤k

zi .

Moreover, for s > 0

k∑
i=1

μizi ≤ lim
s→0+

{
s log

k∑
i=1

μie
zi/s

}
≤ max
1≤i≤k

zi .

The proof is referred to (Teboulle 2007).
Then in view of Lemma 2, we have the approximation

bound of the smoothed dual model:

Proposition 3 For any s > 0, the smoothed dual model (23)
gives an approximation of (16), which has the bound:

0≤ ED(p) − ED
s>0(p) ≤ s logn|�|

where the functions ED(p) and ED
s>0(p) are the energy

functional of (16) and (23) respectively, |�| is the area of
the domain �.
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Proof Define the function Gs(x) as

Gs(x) := −s log

{
n∑

i=1
exp

(−fi(x) − divpi(x)

s

)}
,

i.e. the component function of (23) to be integrated.
Let μi = 1/n and zi = −(fi(x) + divpi(x)) for each

x ∈ �. By Lemma 2, we have

n∑
i=1

fi(x) + divpi(x)

n
≥ s logn + Gs(x)

≥ min
1≤i≤k

(fi(x) + divpi(x)).

Therefore,

min
1≤i≤k

(fi(x) + divpi(x)) − Gs(x) ≤ s logn,

and

ED(p) − ED
s>0(p) ≤ s logn|�|.

On the other hand, through Lemma 1 and (24), we have

Gs(x) = min
u∈�+

n∑
i=1

ui(fi + divpi) + s

n∑
i=1

ui logui.

Hence

0≤ −s

n∑
i=1

ui logui ≤ min
1≤i≤k

(fi(x) + divpi(x)) − Gs(x);

then

ED(p) − ED
s>0(p) ≥ 0. �

By Proposition 3, the approximation bound of the
smoothed model (23) depends on the smoothing parame-
ter s. Hence by choosing s small enough, the smoothed dual
model (23) solves the original nonsmooth dual model (16)
within an expected error bound.

4 Algorithm

The smooth energy function considered in the smoothed
dual model (23) allows to build up an efficient and simple
numerical scheme over the dual variables pi(x), i = 1 . . . n.
In order to maximize the energy functional (23), we propose
a projected gradient algorithm, see Algorithm 1, which con-
tains the same steps as the algorithms suggested in (Cham-
bolle 2004; Kiwiel 1995).
The twomain steps at each iteration can also be explained

as the Expectation Maximization (EM) steps:

Algorithm 1 Projection-based Algorithm
– Let δ > 0 be chosen as some suitable step-size and let

p0i , i = 1, . . . , n be chosen as any starting values (e.g. all
identically 0), set k = 0 then start;
– Compute

uk
i = e

−fi−divpk
i

s

∑n
i=1 e

−fi−divpk
i

s

, i = 1, . . . , n; (26)

– Update pk+1
i , i = 1, . . . , n by

pk+1
i = ProjCα

(pk
i + δ∇uk

i ), i = 1, . . . , n,

where ProjCα
is the projection operator to the convex

set Cα ;
– Let k = k + 1 and go to iteration k + 1 until conver-
gence.

– When convergence is achieved, the primal variable u is
recovered by

ul =
{
1 if l = argmini=1,...,n(fi + divpk

i ),

0 otherwise.

– Expectation Step, compute the conditional probabilities
by fixing the dual variables pk

i , i = 1 . . . n:

uk
i = e

−fi−divpk
i

s

∑n
i=1 e

−fi−divpk
i

s

, i = 1, . . . , n;

– Maximization Step, maximize the energy functional by
fixing uk

i , i = 1 . . . n:

pk+1
i = ProjCα

(pk
i + δ∇uk

i ), i = 1, . . . , n.

The above maximization step is implemented by the fol-
lowing projected descent steps:

– Gradient-Descent Step, compute

p̃k+1
i = pk

i + δ∇uk
i , i = 1, . . . , n

where ∇uk
i is the gradient of the energy functional of (23)

– Projection Step, compute the projection to the convex set
Cα :

pk+1
i = ProjCα

(p̃k+1
i ), i = 1, . . . , n.

This algorithm can also be seen as a forward-backward
splitting algorithm. Convergence proofs for such algorithms
have been established in (Combettes and Wajs 2005).
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4.1 Application to Image Segmentation

An important application of Potts model is image segmen-
tation into several regions. Our numerical experiments will
mainly focus on the application to image segmentation to
validate the new optimization method, since the results are
easily visualized and evaluated. Let I (x) be the image inten-
sity of the input image at x ∈ �. One possibility for the data
term is the Mumford-Shah/Chan-Vese functional. Given n

mean intensities ci ∈ R, i = 1, . . . , n, a data term can then
be constructed as

fi(x) = |I (x) − ci |θ , ∀x ∈ �. (27)

The complete algorithm for segmenting� into n regions�i ,
i = 1, . . . , n is given in Algorithm 2. The mean intensities
ci , i = 1, . . . , n are of course unknown in advance, but can
be estimated by some heuristic, e.g. the isodata algorithm
(Velasco 1980). The image domain � and differential oper-
ators div and ∇ are assumed to be discrete in practice. In our
experiments we apply the mimetic finite difference method,
the details are provided in the next section.

Algorithm 2 Image segmentation into n regions
– Let I be the input image, and estimate the mean inten-
sities ci , i = 1, . . . , n (e.g. by isodata algorithm (Velasco
1980))

– For each x ∈ � compute fi(x) = |I (x) − ci |β .
– Run Algorithm 1 until convergence
– For i = 1, . . . , n obtain region �i by

�i = {x ∈ �|ui(x) = 1}

4.2 Implementation

In this work, we apply the mimetic finite-difference method
(Hyman and Shashkov 1997a, 1997b) to build up the rele-
vant discretization scheme. The scheme is described in 2-D
for simplicity, but can also straight forwardly be generalized
to N-D. 2-D scalar fields and vector fields are given by their
discrete representations with the mimetic finite-difference
method and four types of discrete 2-D fields are summa-
rized on this 2-D grid to model various fields and mimic
continuous vector calculus in discrete settings. The defini-
tions of these four corresponding linear function spaces are
listed below, see also Fig. 3:

– HV : the space of scalar fields defined on cells: the value
of the scalar field is given at the center of each cell (see
the empty circles of Fig. 3).

Fig. 3 Definitions of finite-dimensional spaces of scalar fields, HV

and HP , and vector fields, HE and HS , on a 2-D square grid

– HP : the space of scalar fields defined on vertices: the
value of the scalar field is given at each vertex (see the
filled circles of Fig. 3);

– HE : the space of vector fields defined tangential to sides:
the value of the vector field is given at the center of each
side of cells and parallel to the hosting side (see the re-
lated sides of Fig. 3);

– HS : the space of vector fields defined normal to sides: the
value of the vector field is given at the center of each side
of cells and normal to the hosting side (see the related
sides of Fig. 3).

We will implement our numerical scheme mainly by ap-
plying the HV space for 2-D scalar fields and the HS space
for vector fields. By themimetic finite-difference method, the
inner product between two vectors u,v ∈ HV and p,q ∈ HS

are defined by

〈u,v〉HV
:=

∑
(α,β)

uα,βvα,β;

and

〈p,q〉HS
:=

∑
(α,β)

1

2
(pbqb + prpr + ptqt + plql)(α,β),

where (α,β) denotes one cell in the grid and (pb,pr,pt ,pl)

are the values of the vector field p at four sides of the cell
(α,β): bottom side, right side, top side and left side respec-
tively.
For u ∈ HV and p ∈ HS , the corresponding divergence

operator Div ∗ is the dual first-order differential operator
which maps any vector field in HS to a scalar field in HV ,
i.e. Div ∗ : HS → HV . It is simply defined by

(Div ∗p)(α,β) := pb + pr − pt − pl.

The gradient operator G
∗ is also a dual first-order differen-

tial operator which maps any scalar field in HV to a vector
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field in HS , i.e. G∗ : HV → HS . It is defined as

(G∗u)t(α,β) := u(α,β) − u(α,β−1),

(G∗u)b(α,β) := u(α,β+1) − u(α,β),

(G∗u)l(α,β) := u(α,β) − u(α−1,β),

(G∗u)r(α,β) := u(α+1,β) − u(α,β).

Now we will explain how to implement the two steps of
the algorithm: gradient step and projection step.

4.2.1 Gradient Step

At each iteration of the algorithm, given pi ∈ HS , fi ∈ HV ,
i = 1, . . . , n, we have

ωi(α,β) = exp −fi(α,β) − (Div ∗pi)(α,β)

s
, i = 1, . . . , n,

then

ρi(α,β) = ωi(α,β)∑n
i=1ωi(α,β)

, i = 1, . . . , n,

for each cell (α,β).
Therefore, the gradient of ρi i = 1, . . . , n is given by

di = G
∗ρi, i = 1, . . . , n, (28)

and

p̃i = pi + δdi, i = 1, . . . , n.

4.3 Projection Step

Recall the convex constraint set of the dual variables (11). In
the discrete setting, by the mimetic finite-difference method,
any vector field p ∈ Cλ, at each cell (α,β) should satisfy

�α,β(p) :=
√
1

2

(
(pb)2 + (pr)2 + (pt )2 + (pl)2

)
(α,β)

≤ λ.

The projection of any vector field p to the convex set Cλ

can be approximated by the following two steps:

– Define �̃(p) ∈ HV :

�̃α,β(p) :=
{

λ/�α,β(p) when �α,β(p) ≥ λ,

1 when �α,β(p) < λ,

and define the discrete vector field q ∈ HS :

qt
(α,β) := (�̃(α,β) + �̃(α,β−1))/2,

qb
(α,β) := (�̃(α,β+1) + �̃(α,β))/2,

ql
(α,β) := (�̃(α,β) + �̃(α−1,β))/2,

qr
(α,β) := (�̃(α+1,β) + �̃(α,β))/2;

– p̃ := ProjCλ
(p) ∈ HS is computed by:

p̃t
(α,β) := pt

(α,β)q
t
(α,β), p̃b

(α,β) := pb
(α,β)q

b
(α,β),

p̃l
(α,β) := pl

(α,β)q
l
(α,β), p̃r

(α,β) := pr
(α,β)q

r
(α,β).

4.3.1 Step to Compute u

When the algorithm converges to some optimal p∗
i i =

1, . . . , n, evaluate ul by

ul(α,β) =
{
1 if l = argmini=1,...,n(fi + Div ∗pi)(α,β),

0 otherwise.

5 Numerical Experiments

We demonstrate the performance of the smoothed dual
model by several experiments and compare with established
methods. Alpha expansion and alpha-beta swap (Boykov
et al. 2001) are widely considered state of the art for ap-
proximately minimizing the discrete version of (1) with
anisotropic total variation (TV) term. The method proposed
in this paper instead minimizes the more ideal energy func-
tional with isotropic TV term, i.e. the Euclidean length of
the boundaries. Because of this difference, energy compar-
ison is not straight forward. However, there exists a result
which allows to approximate the Euclidean curve length on
a discrete grid. This result is called the Cauchy-Crofton for-
mula and was specialized for computer vision problems in
Boykov and Kolmogorov (2003). In short, it gives a for-
mula for edge weights between neighboring grid points such
that the discrete boundary length converges to the Euclid-
ean boundary length as the mesh size goes to zero and
the number of neighbors goes to infinity. This result can
therefore be used to determine weights on regularization
edges in the discrete model, such that it correctly corre-
sponds to the continuous model. It is also used to com-
pute the final energy of the outputs produced by the dif-
ferent methods, i.e. it can be used to compare energy of
the thresholded solutions. Secondly, we evaluate quality
and efficiency with the approaches of (Zach et al. 2008;
Lellmann et al. 2009). Energy plots for all experiments can
be found in Fig. 10. The final energies of the different meth-
ods are plotted as a function of the regularization parameter
α. Some comparisons are also made to the very recent con-
vex relaxation approach (Pock et al. 2008b) for minimiz-
ing the isotropic variant of the energy functional, however
an extensive experimental comparison with this approach is
out of the scope of this paper. The relaxation (Pock et al.
2008b) can be shown to be tighter, but is more computation-
ally complex, especially when the number of labels is large.
In experiments where the correct solution is known, we

have also compared the percentage of misclassified pixels,
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Table 1 Percentage of misclassified pixels for experiment 1–4 (α-
expansion and α − β-swap implemented with 4 neighborhood system)

α-exp α − β-swap Lellmann et al. Dual

Experiment 1 8.89 6.12 – 5.51

Experiment 2 1.17 1.17 – 1.06

Experiment 3 7.42 15.72 12.30 11.72

Experiment 4 6.64 7.23 6.25 5.86

Table 1. The regularization parameter α has here been man-
ually selected for each method to minimize the percentage
of misclassified pixels. The implementation of the proposed
method is made in matlab and the implementations of alpha
expansion and alpha-beta swap are made in C++ (Boykov
et al. 2001). The input images in Figs. 4 and 9 was first used
by Pock et al. (2008a), and the input images in Figs. 7 and 8
was first used by Lellmann et al. (2009).

5.1 Qualitative Evaluation

Figure 4 presents the full experiments on the flower image 1
from the introduction. 10 phases/labels have been used, with
color data fidelity

fi =
3∑

j=1
|I − c

j
i |, i = 1, . . . ,10, (29)

where {ci}10i=1 are predefined color vectors. In Fig. 4(b)–(g)
a low regularization (α = 10) has been chosen. In Fig. 4(f)–
(e), a higher regularization (α = 40) is used. Alpha expan-
sion and alpha beta swap leads to metrication errors, which
is particularly visible with 4 neighbors and low regulariza-
tion (b) and 8 neighbors and high regularization (f). In addi-
tion artifacts are introduced as the energy is not minimized
exactly, see e.g. the transition between flower and sky. In
terms of energy, the smoothed dual model outperforms the
graph cut based approaches, see Fig. 10(a), especially when
α is large. The results in the introduction, Fig. 1, were gen-
erated with the largest α in the energy plot. In Fig. 4(c) a
comparison with the recent method of Pock et al. is made.
Their method seems to recover almost integer valued solu-
tions up to some blurring of the boundaries.
Some artificial examples are presented next in experi-

ment 1–4, Figs. 5–8. The leftmost gray scale image I is to
be classified into 4 classes by using the L1 norm in the data
fidelity term

fi = |I − ci |, i = 1, . . . ,4, (30)

where {ci}4i=1 are predefined real values. We observe that
in experiment 1, 2 and 4 the new method with s = 0.01 out-
performs alpha expansion and alpha-beta swap implemented

Fig. 4 (a) Input, (b) alpha expansion 4 neighbors, (c) alpha expansion
8 neighbors, (d) Pock et al. (e) dual model. (f)–(g): α = 40, (f) alpha
expansion 8 neighbors, (g) dual model

Fig. 5 Experiment 1: (a) Input, (b) ground truth, (c) alpha expansion,
(d) alpha-beta swap, (e) dual model. Size 100× 100

Fig. 6 Experiment 2: (a) Input, (b) ground truth, (c) alpha expansion,
(d) dual model. Size: 100× 100
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Fig. 7 Experiment 3: (a) Input, (b) ground truth, (c) alpha expansion,
(d) alpha-beta swap, (e) Lellmann et al., (f) dual model. Size: 32× 32

Fig. 8 Experiment 4: (a) Input, (b) ground truth, (c) alpha expansion,
(d) alpha-beta swap, (e) Lellmann et al., (f) dual model. Size: 32× 32

Fig. 9 (a) Input, (b) Lellmann et al., (c) Pock et al., (d) Alpha expan-
sion (e) dual model

with 4 neighbors, both in terms of visual quality and num-
ber of misclassified pixels (Table 1). In experiment 3, alpha
expansion performs best. This is due to the fact that the cor-
rect solution only consists of horizontal boundaries, which
are favored by the anisotropic 4-neighborhood model. How-
ever, the proposed method outperforms alpha-beta swap and
the primal model for this example. In experiment 4, where
the boundaries are diagonal, the dual model performs best.
For energy plots, see Fig. 10, where we also have used 8
neighborhoods in the discrete models. In terms of energy,
our approach performs about equally well as alpha expan-
sion for these two examples. Observe also that our approach
can obtain solutions of lower energy than the approaches
(Zach et al. 2008; Lellmann et al. 2009). This is particularly
visible in Fig. 10(c).
The advantage of the smoothing is illustrated in the next

example, Fig. 9, where we want to recover a triple junction
by filling in the gray area. The data term is given by fi = 0
for i = 1,2,3 inside the gray disk, and by the color distance
(29) outside the gray disk. This is a typically difficult exam-
ple as the data term is equal for all labels. The global min-
imum of Potts model will fill in the gray area such that the
total length of the boundaries between the labels are min-
imized, i.e. the boundaries meet with 120 degree angles in
the center. In this example we expect that for the non-smooth
model (f1(x) + divp∗

1(x), . . . , f3(x) + divp∗
3)) does not

have a unique minimum for some points inside the gray area,
which makes it difficult to determine the label at such points.
However, for the smooth model a unique minimum can be
obtained at each point. The final result is shown in Fig. 9,
where we also compare with other methods. The difference

between the components of (f1(x)+divps
1(x), . . . , f3(x)+

divps
3)) is small near the center of the image, hence it is

difficult to verify whether the reconstructed solution is also
globally optimal to the original problem, although it can be
verified visually, since the global solution is known. As seen
in the following subfigures, the approach of Lellmann et al.
does not recover a binary solution. Alpha expansion yields
a binary, but incorrect result, Fig. 9(d). It can easily be seen
geometrically that this is a local optimum, i.e. no alpha ex-
pansion move can yield a result of lower energy. We also
compare with the convex relaxation of Pock et al. (2008a),
who first tested their method on this image. As can be seen,
they can almost recover the integer valued global minimum,
up to some blurring of the boundaries. After thresholding,
they are also able reconstruct the triple junction. Numerical
calculations for triple junctions have also been tested in Li
and Tai (2007) showing that the piecewise constant level set
method is able to produce 120 degrees for the junctions.
Figure 12(b) shows the result of 4 class segmentation of

a brain MRI image. One would like to classify the input im-
age in Fig. 12(a) into the classes: background, cerebrospinal
fluid, gray matter and white matter. For this example we
have used the Mumford-Shah model with L2 data term

fi = |I − ci |2, i = 1, . . . ,4.

In order to estimate the optimal constant values {ci}ni=1, we
alternate optimization with respect to {ci}ni=1 and the label-
ing function as described in more details in (Bae and Tai
2009a). This algorithm finds a local minimum with respect
the constant values. For energy plots, see Fig. 10.
The positive parameter s controls how well the dual

model is approximated. The lower s is the better the dual
model is approximated. We found that setting s = 0.01 or
s = 0.005 is sufficient and often optimal: setting s lower
does not seem to lower the energy of the binary result. This
indicates there is a certain benefit of the smoothing in con-
nection with the thresholding scheme. This benefit can also
be observed in the energy plots of Fig. 10: we can obtain bi-
nary solutions of lower energy than the approaches of Zach
et al. (2008), Lellmann et al. (2009).

5.2 Evaluation of Efficiency and Convergence

We will now compare the cpu time and convergence with
the approaches (Zach et al. 2008; Lellmann et al. 2009). In
order to deal with the simplex constraint in the primal opti-
mization problem (5), an alternating optimization approach
was used in (Zach et al. 2008) where one solve for k = 1, . . .

uk+1 = argminu E1(u)

=
n∑

i=1

∫
�

1

2τ
(ui − vk

i )
2 + |∇ui |dx, (31)
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Fig. 10 Energy plot as a
function of regularization
parameter α of binary solutions
obtained by each method. Red:
smoothed dual model, black
dotted: alpha expansion 8
neighbors, light blue: alpha
expansion 4 neighbors, green +:
alpha-beta swap 8 neighbors,
blue x: Zach et al. (2008).
(a) Flower, (b) brain (c)–(d)
Experiment 3 and 4. In all
experiments the smoothed dual
model (red) performs better than
or as good as competitive
approaches. (a) Is a typically
difficult example with a large
number of labels, where the
smoothed dual model clearly
performs best

Fig. 11 Convergence rate for
flower image. Solid: percentage
of misclassified pixels as a
function of the iteration count
for the smoothed dual model.
Dotted: percentage of
misclassified pixels as a
function of the outer iteration
count for the Douglas-Rachford
splitting approach

vk+1 = argminv∈S E2(v)

=
n∑

i=1

∫
�

1

2τ
(uk+1

i − vi)
2 + αfividx, (32)

Here τ is some small parameter. The second problems can
be optimized pointwise and has closed form solutions. How-
ever, the first subproblems are TV optimization problems,
and must be solved by some iterative technique such as
Chambolle’s algorithm (Chambolle 2004). In Lellmann et

al. (2009) a Douglas-Rachford splitting scheme was applied

to deal with the simplex constraint. After some derivations,

such a scheme can be written

uk = argminu
1

2

n∑
i=1

∫
�

(ui − (zk
i − τfi))

2dx,

+ (τα)

∫
�

|∇ui |dx (33)
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Table 2 Number of iterations to reach exact solution

Zach et al. Douglas Rachford Dual

Experiment 3 1178 (×30) 610 (×30) 481

Experiment 4 1504 (×30) 540 (×30) 425

wk = argminw∈S

1

2τ

∫
�

(w − (2uk − zk))2dx,

zk+1 = zk + wk − uk.

(34)

As we see, this scheme also involves a substep (33) where n

TVminimization problems need to be solved iteratively. The
second subproblems (34) have closed form solutions and can
be solved efficiently. In contrast to (31), (32), such a scheme
can be proved to convergence provided the subproblems are
solved exactly. As we see, both these schemes require one
outer loop and one inner loop. In contrast, the simplex con-
straint is inherent in our dual formulation, therefore only one
loop is enough. Furthermore, each iteration of this loop has
a computational cost approximately equal to one inner loop
iteration of (Zach et al. 2008; Lellmann et al. 2009). When
τ is low, the problem is solved with high accuracy, but more
iterations are required. Therefore, one could say τ plays the
same role as the smoothing parameter s in our approach.
When s is low, the relaxed problem is solved with higher ac-
curacy, but more iterations are required as the time step size
δ depends on s to have stability. Trial and error indicate that
this dependency is given by δ ≤ 1

2 s when images are scaled
between 0 and 1. The approaches (Lellmann et al. 2009;
Zach et al. 2008) require more parameters, like the outer
time step τ , inner time step, accuracy of solving inner prob-
lem etc. We have done our best to optimize these parameters
such that the algorithms converge as fast as possible.
Convergence is measured as the number of iterations re-

quired to reach the exact thresholded solutions. Since there
are finitely many possibilities for such thresholded solutions,
converge will occur in a finite number of steps. The exact so-
lutions are determined by running each method for 5000 it-
erations. The iteration counts for the experiments in Figs. 7
and 8 are shown in Table 2. Around 400 iterations are re-
quired for the smoothed dual model. The Douglas-Rachford
method requires slightly more outer iterations, but also con-
tains an inner loop for each such outer iteration. As indicated
in the parenthesis, the inner problems are solved approxi-
mately by 30 iterations of Chambolle’s algorithm. Overall
our approach is therefore significantly faster. The splitting
approach (31), (32) falls even further behind. The flower im-
age in Fig. 11 is larger (508× 336), hence such a pixel-wise
termination criterion is more strict. Figure 11 shows the per-
centage of incorrect pixels compared to the exact solution,
as a function of the iteration count for the dual model (solid)
and the outer iteration count of the Douglas-Rachford split-
ting approach (dotted). In this example the dual model also

Fig. 12 (a) Input, (b) alpha expansion 4 neighbors, (c) alpha expan-
sion 8 neighbors, (d) dual model. Size: 709× 591

outperforms the Douglas Rachford scheme in terms of outer
iterations. After 70 iterations, more than 99% of the pixels
have reached steady state. After 300 iterations more than
99.8% have reached steady state.
We should mention that some other work has appeared

recently, after this paper was submitted and made public as
a preprint, on optimization of the problem 5. In Yuan et al.
(2010), the dual model was interpreted as a continuous max-
imum flow problem. Another algorithm was derived which
was shown to converge faster than the approaches of Lell-
mann et al. (2009), Zach et al. (2008). Another variant of
the Douglas-Rachford algorithm was derived in Lellmann et
al. (2010), related to the Split Bregman method (Goldstein et
al. 2009), where the subproblems are instead Laplace equa-
tions, which are easier to solve than TV minimization prob-
lems.
Comparison with graph cut based alpha expansion and

alpha beta swap is more difficult. We have used the highly
optimized c++ implementation (Boykov et al. 2001; Boykov
and Kolmogorov 2001) of these methods, while the algo-
rithm for the dual model is implemented in a simple matlab
program. There has recently been much effort on compar-
ing continuous and discrete (graph cut) techniques in com-
puter vision, see e.g. (Klodt et al. 2008) for an extensive
discussion about two phase partitioning problems. Continu-
ous convex optimization techniques consist mainly of float-
ing point matrix/vector arithmetic, which is highly suited
for massive parallel implementation on GPU. In contrast,
combinatorial max-flow algorithms have a much more se-
rial nature. In this regard, continuous convex optimization
has been shown to be faster (Klodt et al. 2008). This is es-
pecially evident in 3D. The development of processor tech-
nology is expected to be largely of the parallel aspect in the
future. Hence we see our work as more suitable for current
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and future generations of hardware. Unfortunately, we don’t
have the resources to implement our method in such a par-
allel manner on GPU. We can mention that Zach et al. im-
plemented their algorithm on GPU and thereby claimed to
beat the graph cut based approaches in terms of efficiency
by a factor of 30. The cpu times for our simple matlab im-
plementation are as follows: For the 709× 591 brain image
convergence was reached in 1 minutes and 32 seconds for
our implementation. For the 32× 32 images in Figs. 7 and 8
convergence averaged around 2.5 seconds. For the 100×100
images in Figs. 5 and 6 convergence took 10.21 and 4.68
seconds respectively. Due to the extreme amount of noise
on these small images the regularization parameter must be
set very high, which increases cpu time compared to images
of the same size with lower noise level.

6 Conclusions

This paper proposed a novel duality-based approach for con-
tinuous multi-labeling problems based on a convex relax-
ation of Potts model. The dual model could be used to give
insight into the exactness of the relaxation. Sufficient con-
ditions were derived for when optimal solutions to the Potts
model could be obtained from a dual solution to the relaxed
model. Close connections between optimal labelings and
geometrical clustering of spatial points were also revealed.
We then suggested a smoothing method based on the log-
sum exponential function, so as to deal with the nonsmooth
dual problem, and indicated that such a smoothing approach
leads to a novel smoothed primal-dual model and suggests
labelings with maximum entropy. A new expectation max-
imization like algorithm was proposed based on smoothed
dual model which was shown to be superior in efficiency
compared to earlier approaches. Numerical experiments also
showed that our approach could outperform several compet-
itive approaches in various aspects, such as lower energies
and better visual quality.

Open Access This article is distributed under the terms of the Cre-
ative Commons Attribution Noncommercial License which permits
any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

Appendix: Proof of Proposition 2

Before we prove Proposition 2, we give the following result

Proposition 4 Given a bounded scalar field u defined on
�, we assume, without loss of generality, 0 ≤ u(x) ≤ 1
for all x ∈ �. If a vector field p∗ maximizes the integral∫
�

udivpdx over the convex set

Cα := {p||p(x)| ≤ α,pn = 0}, (35)

then for almost every level set uγ of u

uγ =
{
1, when u(x) ≥ γ ,

0, when u(x) < γ

with γ ∈ [0,1], p∗ also maximizes the integral
∫
�

uγ divpdx

over the convex set Cα and equals αLγ where Lγ is the
perimeter of the level set uγ .

Proof Denote the interval � = [0,1]. The coarea formula is
a powerful tool which says that∫

�

|∇u|dx =
∫

�

∫
�

|∇uγ |dxdγ. (36)

By applying this formula we can deduce∫
�

udivp∗dx =
∫

�

|∇u|dx =
∫

�

∫
�

|∇uγ |dxdγ

=
∫

�

(
max
p∈Cα

∫
�

uγ divpdx

)
dγ. (37)

By the fact that u(x) = ∫ u(x)

0 dγ = ∫
�

uγ (x)dγ for any
x ∈ �, we have∫

�

udivp∗dx =
∫

�

(∫
�

uγ (x)dγ

)
divp∗(x)dx

=
∫

�

∫
�

uγ divp∗dxdγ. (38)

Therefore, combining (37) and (38)

∫
�

∫
�

uγ divp∗dxdγ =
∫

�

(
max
p∈Cα

∫
�

uγ divpdx

)
dγ.

(39)

This equality (39) together with the fact that for any γ ∈
[0,1]∫

�

uγ divp∗dx ≤ max
p∈Cα

∫
�

uγ divpdx (40)

implies that∫
�

uγ divp∗dx = max
p∈Cα

∫
�

uγ divpdx

for almost every γ ∈ [0,1]. Clearly, the perimeter of the
level set uγ is given by

Lγ =
∫

�

|∇uγ |dx = max
p∈Cα

∫
�

uγ divpdx. �

Now we give the proof of Proposition 2.

Proof Denote by �k,j the set of points x ∈ � where k, j =
argmini (fi(x)+divp∗

i (x)). Then
⋃n

k,j=1,k �=j �k,j is the set
of points x where (fi(x) + divp∗

i (x)) has two minimums.
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Let ud be an optimal primal variable such that (ud,p∗) is
an optimal primal-dual pair. Consider one such non-empty
subdomain �k,j �= ∅. By Theorem 1

∀x ∈ �k,j , ud
k (x)+ud

j (x) = 1, ud
i (x) = 0, i �= k, j

and

ED(p∗) = E(ud,p∗) = EP (ud). (41)

Obviously, p∗
i maximizes the integral∫

�

ud
i (x)divp∗

i (x)dx, i = 1, . . . , n

over the convex set Cα (35).
Now we define ũ(x) = (ũ1(x), . . . , ũn(x)) as follows: let

ũi (x) = ud
i (x), ∀x ∈ �\�k,j , i �= j, k.

For ũj (x) and ũk(x), we choose any value γ ∈ (0,1) and
let

ũk(x) =
{
1, when ud

k (x) ≥ γ ,

0, when ud
k (x) < γ ,

∀x ∈ �k,j

and

ũk(x) = ud
k (x), x ∈ �\�k,j .

Then ũk is binary in �k,j . By such a configuration of ũk , let

ũj (x) = 1− ũk(x), ∀x ∈ �k,j

and

ũj (x) = ud
j (x), ∀x ∈ �\�k,j ,

which is also binary in �k,j .
Such a choice of ũi (x), i = 1, . . . , n doesn’t change the

total energy of (16), i.e.

E(ũ,p∗) =
n∑

i=1

∫
�

ũi(x)(fi(x) + divp∗
i (x))dx

=
∫

�

min
(
f1(x) + divp∗

1(x), . . . , fn(x)

+ divp∗
n(x)

)
dx

= ED(p∗). (42)

It remains to show that E(ũ,p∗) = E(ũ). By Proposi-
tion 4, p∗

k maximizes the integral
∫
�

ũk divpkdx over the
convex set Cα . By the fact

ud
j (x) = 1− ud

k (x), ũj (x) = 1− ũk(x), ∀x ∈ �k,j

then ũj (x) is the 1− γ level set of ud
j (x). Therefore p∗

j also
maximizes the integral

∫
�

ũj divpjdx over the convex set
Cα . By the above facts, the total energy (42) related to ũi is
actually EP (ũ), hence we have

EP (ũ) = E(ũ,p∗) = ED(p∗).

It follows that ũ is a minimum of the primal problem (5).
This process can be repeated for each nonempty subdomain
�k,j to construct a binary minimum of (5). �
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