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Abstract

The differences in demographic and life-history processes between organisms living in the same population have important
consequences for ecological and evolutionary dynamics. Modern statistical and computational methods allow the
investigation of individual and shared (among homogeneous groups) determinants of the observed variation in growth. We
use an Empirical Bayes approach to estimate individual and shared variation in somatic growth using a von Bertalanffy
growth model with random effects. To illustrate the power and generality of the method, we consider two populations of
marble trout Salmo marmoratus living in Slovenian streams, where individually tagged fish have been sampled for more
than 15 years. We use year-of-birth cohort, population density during the first year of life, and individual random effects as
potential predictors of the von Bertalanffy growth function’s parameters k (rate of growth) and L? (asymptotic size). Our
results showed that size ranks were largely maintained throughout marble trout lifetime in both populations. According to
the Akaike Information Criterion (AIC), the best models showed different growth patterns for year-of-birth cohorts as well as
the existence of substantial individual variation in growth trajectories after accounting for the cohort effect. For both
populations, models including density during the first year of life showed that growth tended to decrease with increasing
population density early in life. Model validation showed that predictions of individual growth trajectories using the
random-effects model were more accurate than predictions based on mean size-at-age of fish.
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Introduction

A better understanding of growth will always be an important

problem in biology. Somatic growth is one the most important life-

history traits across taxa, since survival, sexual maturity, repro-

ductive success, movement and migration are frequently related to

growth and body size [1]. Variation in growth can thus have

substantial consequences for both ecological and evolutionary

dynamics [2–4].

Variation in growth can also affect the estimation of vital rates

and demographic traits, which may translate to incorrect

predictions of population dynamics [5–7]. However, the implica-

tions of including individual differences in growth in the study of

population processes are largely unexplored, in part because of the

computational challenges of estimating the determinants and the

extent of shared (i.e. among homogeneous groups) and individual

(i.e. after accounting for shared component) variation in growth

[5,8].

Determining how shared and individual variation in growth

emerges may also improve predictions of future growth and size of

individuals and populations, which is valuable for conservation

and management [9,10]. In addition, the ability to reliably predict

missing body size data is crucial when testing for size-dependent

survival and selection on body size. For instance, when estimating

the effects of size on survival, the Cormack-Jolly-Seber model

requires the size of individual to be known on the occasions when

the individual was alive but not sampled, or, alternatively, it

requires individual growth trajectories [11].

Thus, our understanding of growth dynamics and of its

consequence on population and evolutionary dynamics can greatly

benefit from the use of new computational approaches that are

able to tease apart the sources of growth variation. The accurate

estimation of parameters of growth models is particularly useful in

this regard, since it reduces the information provided by a

potentially long series of measurements to a few values that

summarize the most relevant process governing growth and can

then be used to tease apart individual and shared determinants of

growth variation [12].

Multiple processes contribute to the realized growth of

organisms, such as individual variation, size-selective mortality,
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annual and spatial variation in growth, intra- and inter-specific

competition. Understanding the nature and contribution of these

multiple sources of variation in growth faces a number of

methodological challenges. First, to simultaneously estimate shared

and individual contributions to the observed variation in growth

require longitudinal data. In fact, when data are cross-sectional, it

is rarely possible to separate variation in growth that emerges from

persistent differences among individuals from variation due to

stochastic processes [13]. Second, especially for mobile organisms,

it is seldom possible to obtain more than a few observations for an

individual throughout its lifetime (i.e. temporal data are often

sparse). Thus, data for a particular individual are unlikely to be

adequate for the estimation of parameters of the growth model for

that individual and additional information may be needed, such as

data of other individuals thought to be similar (i.e. ‘‘borrowing

strength’’ or ‘‘shrinkage’’ [14]). Models in which the estimate of

each effect is influenced by all members in a group are

alternatively called hierarchical, random-effects, multilevel, or

mixed models [14]. For consistency, in this paper we only use the

term random-effects model. Modeling and estimating random

effects also have the advantage of addressing the lack of

independence between repeated measurements of the same

individuals and of individuals in homogeneous groups [15]. In

addition, when using parametric growth models, parameter

estimates at the individual or shared level as well as their

correlation structure can lead to insights on the processes

governing the growth of individuals or group of individuals.

Third, since no organism can growth without bound, growth

models must at some point be non-linear [16,17] and the

estimation of model parameters is thus computationally demand-

ing. Generally, fast and reliable approaches are needed in order to

investigate multiple parameterizations of growth models. In this

work, we propose a stable, reliable, and fast parametric Empirical

Bayes (EB) approach [18–20] for estimating shared and individual

variation in somatic growth using longitudinal data and random-

effects models [8,10,21].

To illustrate the power and generality of our methods, we

consider long-term studies of two populations of marble trout

Salmo marmoratus living in Slovenian streams. Both populations

have been sampled annually for more than 15 years, and show

substantial differences within and among populations in the mean

growth of cohorts and in size-at-age of individuals. In [22], we

demonstrated that fast-growing marble trout allow population

recovery after massive mortality events, such as those caused by

floods and landslides, due to the positive influence of larger size-at-

age of fish on recruitment. In addition, because observed variation

in growth among individuals is heritable [23], there is potential for

the evolution of growth rates toward faster growth in populations

affected by massive mortality events [24,25].

However, how variation in growth in marble trout is

determined by shared and individual factors is unknown. Within

populations of the same species, persistent differences in growth

are commonly observed both among groups (e.g. year-of-birth

cohorts, families) and among individuals within groups. Cohort

effects are often induced early in life and have the potential to

strongly affect the performance of individuals throughout their

lifetime [26–29]. These early effects on lifetime growth may reflect

either constraints or adaptations [29], and are often ascribed to

climatic vagaries during early development that similarly affect the

whole cohort [30–32]. In marble trout as well as in other species,

population density during the early life stages also has substantial

effects on lifetime growth, in particular due a reduction in per-

capita food availability [33] or the occupation of spaces of low

profitability with increasing population density [34,35]. At the

population level or within more homogenous groups, among-

individual variation may emerge from differences in overall

genetic growth potential, metabolic rates, behavioral traits (e.g.

aggressiveness), occupation of sites of different profitability, or life-

history strategies (e.g. partition of energy to competing functions,

such as growth, storage, reproduction and maintenance) [36].

In this paper, we show how new computational methods for the

estimation of a parameter-rich non-linear growth function using

longitudinal data can shed light on the shared and individual

determinants of somatic growth in natural populations. Our aim is

to expand the toolkit available to biologists rather than proposing a

method globally superior to another, since the particular biological

problem should play an important role in selecting the tool. The

paper is organized as follows. First, we introduce the two

populations of marble trout that we used as a motivating example

and case study. We then present the Empirical Bayes approach to

parameter estimation as implemented in the module ADMB-RE

(Automatic Differentiation Model Builder - Random-Effects) of

the software ADMB [37] and apply the EB approach to the joint

estimation of shared and individual variation in growth from

longitudinal data using a parameter-rich von Bertalanffy growth

function. For the case study of marble trout, we introduce

environmental predictors of the von Bertalanffy growth function’s

parameters k (rate of growth) and L? (asymptotic size) such as

population density in the first year of fish life and year-of-birth

cohort, and test whether their inclusion, in addition to individual

random effects, improves model performance. We compare the

parameter estimates and resulting estimated growth trajectories for

two populations of marble trout living in different habitats and

showing different demographic traits, and highlight shared and

contrasting results between the two populations. We then test the

ability of the growth model to predict unobserved length-at-age of

individual fish. We discuss the life-history mechanisms that may

Author Summary

Somatic growth is a crucial determinant of ecological and
evolutionary dynamics, since larger organisms often have
higher survival and reproductive success. Size may be the
result of intrinsic (i.e. genetic), environmental (tempera-
ture, food), and social (competition with conspecifics)
factors and interaction between them. Knowing the
contribution of intrinsic, environmental, and social factors
will improve our understanding of individual population
dynamics, help conservation and management of endan-
gered species, and increase our ability to predict future
growth trajectories of individuals and populations. The
latter goal is also relevant for humans, since predicting
future growth of newborns may help identify early
pathologies that occur later in life. However, teasing apart
the contribution of individual and environmental factors
requires powerful and efficient statistical methods, as well
as biological insights and the use of longitudinal data. We
developed a novel statistical approach to estimate and
separate the contribution of intrinsic and environmental
factors to lifetime growth trajectories, and generate
hypotheses concerning the life-history strategies of
organisms. Using two fish populations as a case study,
we show that our method predicts future growth of
organisms with substantially greater accuracy than using
historical information on growth at the population level,
and help us identify year-class effects, probably associated
with climatic vagaries, as the most important environmen-
tal determinant of growth.

Estimation of Individual Variation in Growth
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generate the observed patterns of growth, as well as their

implications for population dynamics.

Materials and Methods

Ethics statement
All sampling work was approved by the Ministry of Agriculture,

Forestry and Food of Republic of Slovenia and the Fisheries

Research Institute of Slovenia. Original title of the Plan:

RIBISKO - GOJITVENI NACRT za TOLMINSKI RIBISKI

OKOLIS, razen Soce s pritoki od izvira do mosta v Cezsoco in

Krnskega jezera, za obdobje 2006–2011. Sampling was supervised

by the Tolmin Angling Association (Slovenia).

Case study
Our case study involves two populations (Gacnik and Zakojska)

of marble trout living in Slovenian streams [38]. These popula-

tions are part of a larger study involving 10 marble trout

populations [38]. We limit our discussion to two populations

showing contrasting demographic traits and characteristics of the

habitat to focus on the computational tools and the insights

generated by the estimation of the parameters of the growth

models.

Marble trout is a resident salmonid endemic in Northern Italy

and Slovenia that is now endangered due to widespread

hybridization with introduced brown trout and displacement by

alien rainbow trout. The populations of Gacnik and Zakojska were

established in stretches of fishless streams in 1996 (Zakojska) and

1998 (Gacnik) by stocking age-1 fish that were the progeny of

parents from relic genetically pure marble trout populations [39].

Trout in Gacnik and Zakojska are genetically different [39]. Fish

hatched in the streams for the first time in 1998 and in 2000 in

Zakojska and Gacnik, respectively. Those cohorts are the first

included in the analysis. The two populations were sampled

annually in June. The geomorphological characteristics of the two

streams are different: Zakojska is (mostly) a fragmented one-way

stream (i.e. trout can move downstream, but not upstream), while

Gacnik is a two-way stream, i.e. trout can move in either direction.

Fish were collected by electrofishing and measured for length

and weight to the nearest mm and g, respectively (fig. 1). If fish

were caught for the first time - or if the tag had been lost – and

they were longer than 110 mm they were tagged with Carlin tags

[40] and age was determined by reading scales. Marble trout

spawn in November–December and offspring emerge in April–

May. Underyearlings are smaller than 110 mm in June, thus trout

were tagged at age 1 or, in the case of small size, at age 2. Males

and females are morphologically indistinguishable at the time of

sampling. The probability of recapture was higher than 80% and

we did not find evidence of capture probability varying with age

and size for fish older than age 0 [41]. In addition, we found no

evidence of size-selective mortality in either stream [42]. The

movement of marble trout is limited, and the majority of marble

trout were sampled within the same 200 m reach throughout their

lifetime. Marble trout females achieve sexual maturity when longer

than 200 mm, usually at age 3 or older. The maximum observed

age for fish born in the streams was 12 and 9 years in Gacnik and

Zakojska, respectively. The last sampling occasion included in the

dataset was June 2012. In Gacnik the last cohort included was the

one born in 2010. Due to a flood that almost completely wiped out

the population in 2007 [38], the last cohort included for Zakojska

was the one born in 2008. Density of fish of age 1 and older

(number m22) was (mean6sd) 0.0560.04 in Zakojska from 1998

to 2012 and 0.1660.07 in Gacnik from 2000 to 2012. In total,

1 067 unique fish were included in the Zakojska dataset and 4 764

in the Gacnik dataset.

Empirical Bayes method for random-effects models
Empirical Bayes (EB) refers to a tradition in statistics where

the fixed effects and variance (or standard deviation) of a

random-effects model are estimated by maximum likelihood,

while estimates of random effects are based on Bayes formula

(e.g. [43,44]). Although random-effects models can be analyzed

using frequentist or Bayesian methods [45,46], the frequentist

point of view may have a number of advantages [44]. From a

computational perspective the maximum likelihood estimate is

relatively inexpensive to calculate and avoids difficulties

associated with judging convergence of MCMC samplers when

using a full Bayesian approach. Due to these advantages, EB has

increasingly been applied in the last few years in the biological

sciences in fields including genetics [47,48], disease screening

[49], and genomics [50]. Estimation of fixed effects and

variance parameters by maximum likelihood is in widespread

use in mixed model software packages, such as the R package

‘‘lme4’’ [51].

Mathematical notation. We denote fixed effects by Greek

letters (a,b,…), with s being reserved for standard deviations;

roman letters (u,v,…) are used for the random effects. We

describe a general three level model with individuals (indexed by

i) being nested within groups (index by j), which again are

nested within population. For computational reasons we only

allow random effects to occur at the individual level, although in

principle a full hierarchy of effects is possible. There exist

several general guidelines about which parameters in a

hierarchical model should be taken as random effects [14,52];

our considerations are mostly pragmatic, aimed at both

obtaining parameter estimates instrumental for understanding

the system investigated and facilitating rapid and stable

estimation of parameters.

As a general example, we use a standard Generalized Linear

Mixed Model (GLMM) [15] to link the model parameters to fixed

and random effects, as well as to present the parameter estimation

algorithm. That is, consider a parameter g of a process (e.g.,

growth, survival, movement) for an individual i in group j (e.g.

cohort) as a function of a continuous predictor x (which may be

specific to individual i in group j), e.g. density of individuals. The

linear predictor of the process parameter g is

gij~a0za1
(j)za2xijzsuuij ð1Þ

where a0 is the intercept, a1
(j) is the group effect, a2 is a regression

parameter on the continuous variable xij, uij ,N(0,1) are

standardized individual random effects and su is the standard

deviation of the statistical distribution of the random effects. The

covariate term a2xij also yields individual variation, but of a

different type than that provided by the random effect.

When g is the parameter of a dynamic process (e.g. growth), the

random effect term suuij induces correlation among observations

made on the same individual, and su in effect becomes a

correlation parameter. Thus, the parameters to be estimated by

maximum likelihood are h~(a0,a1
(1),a1

(2), . . . ,a1
(J),a2,su) (i.e. the

population parameters), where J is the number of groups (e.g.

year-of-birth cohorts).

If f(data,uij;h) denotes the joint probability density of the data

and random effect for a given individual, we obtain the marginal

likelihood function by integration

Estimation of Individual Variation in Growth
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L(h)~P
i,j

ð
f (dataij ,uij ; h)duij ð2Þ

This formulation is computationally attractive because the

likelihood is a product over one-dimensional integrals. Had we

taken the a1
(j) as random effects, the need to integrate also over

a1
(j) would have yielded a joint integral over a1

(j),u1j ,u2j , . . .. In

presence of other parameters with a potential individual compo-

nent (i.e. g1, g2 etc.), each g has its own version of the linear

predictor (with random effects vij ,wij etc.). However, the marginal

likelihood in Eq. 2 is still computationally efficient, since each

integral is taken over a small number of random effects

uij ,vij ,wij , . . ..

The full suite of frequentist inference tools is valid for inference

about the population parameters (elements of h). As described

above, for the random effects the EB method applies Bayesian

principles. Given a maximum likelihood estimate of h, the estimate

of uij is the mean or mode of the posterior distribution. The latter

(used in ADMB-RE) is obtained by maximizing the integrand

f(dataij,uij;h) in Eq. 2 with respect to uij , with h fixed at its

maximum likelihood estimate. The ‘‘borrowing strength’’ aspect of

EB is that the standard normal prior placed on uij ‘‘pulls’’ its

estimate toward zero (the population value) to an extent that

depends on su, which is estimated from the full dataset.

Fitting non-linear random-effects models in ADMB-RE
ADMB is an open source statistical software package for fitting

non-linear statistical models [37,53]. ADMB can be used to fit

generic random-effects models with an EB approach using the

Laplace approximation (ADMB-RE [54]). ADMB is totally

flexible in model formulation, allowing any likelihood function

to be coded in C++. Coding in C++ allows also for a great

flexibility of functional forms to be used for model parameteriza-

tion. In terms of computing times, ADMB compares favorably to

other software and methods for the estimation of parameters of

highly-complex non-linear models [55] (see also text S2).

The gradient (i.e. the vector of partial derivatives of the

likelihood function with respect to model parameters) provides a

measure of convergence of the parameter estimation procedure in

ADMB. Although considerations of speed and model complexity

may motivate the use of a less strict convergence criterion, by

default ADMB stops when the maximum gradient component (i.e.

the largest of the partial derivatives of the likelihood function with

respect to model parameters) is ,1024. An explicit convergence

criterion allows the researcher to systematically move forward in

Figure 1. Number of recaptures for fish and observed growth trajectories. Frequency of number of capture/recaptures for fish (left column)
and observed individual growth trajectories (right column) for the populations of Gacnik (top row) and Zakojska (bottom row).
doi:10.1371/journal.pcbi.1003828.g001
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the analysis and thus potentially explore a large number of model

parameterizations.

Growth model
A broad range of models describing the physiology of growth

have been developed [56–62] and recent papers have summarized

non-linear growth models along with methods for parameter

estimation [16,17]. However, it has often been difficult, if not

impossible, to estimate parameters for many of the proposed

growth models using data on individual growth trajectories in

natural settings. Even in the presence of a large amount of data, a

highly parameterized model may be only weakly statistically

identifiable.

We use the growth model due to von Bertalanffy [59,63,64].

The von Bertalanffy growth function (vBGF) has been used to

model the growth of organisms across a wide range of taxa,

including fish [57,65], mammals [66,67], snakes [68], and birds

[69,70]. von Bertalanffy hypothesized that the growth of an

organism results from a dynamic balance between anabolic and

catabolic processes [59]. If W(t) denotes mass at time t, the von

Bertalanffy assumption is that anabolic factors are proportional to

surface area, which scales as W (t)2=3, and that catabolic factors

are proportional to mass. If a and b denote these scaling

parameters, then the rate of change of mass is

dW

dt
~aW (t)2=3{bW (t) ð3Þ

If we further assume that mass and length, L(t), are related by

W (t)~rL(t)3 with r corresponding to density, then elementary

calculus shows that [64]

dL

dt
~q{kL ð4Þ

where q~a=3r and k~b=3r.

The linear differential equation in Eq. 4 is readily solved by the

method of the integrating factor. Setting L?~
q

k
to be the

asymptotic size (obtained when we set the left-hand side of Eq. 4

equal to 0) and L(0)~L0 to be the initial size, two forms of the

solution are

L(t)~L?(1{e{kt)zL0e{kt ð5Þ

and

L(t)~L?(1{e{k(t{t0)) ð6Þ

where t0 is the hypothetical age at which length is equal to 0.

In light of Eq. 4, if L(t)wL?, the rate of growth is negative, so

that we can think of asymptotic size as the size only attained in the

limit of very long times. For a given value of asymptotic size, the

parameter k (in y21) describes how fast the individual or group of

individuals reaches the asymptotic size. In this work, we will use

the formulation of the vBGF of Eq. 6, which has 3 parameters: L‘,

k, and t0. Although the mechanistic definition of asymptotic size in

the vBGF introduces an explicit linear relationship on the log scale

between k and L‘ (i.e. log(L?)~log(q){log(k)), in this work we

do not explicitly introduce L‘ as equal to q
k
, but we let the

correlation between L‘ and k at the whole population and at

the individual level emerge from data, as it is commonly done

[71].

Parameter estimation and individual variation. In the

vast majority of applications of the vBGF, L‘, k, and t0 have been

estimated at the population level (i.e. without accounting for

individual heterogeneity in growth) starting from cross-sectional

data, and interpreted as the growth parameters of an average

individual in the population (e.g. L‘ is the asymptotic size of an

average individual). That is, one collects a group of individuals at a

single time, measures their sizes and ages, and then estimates the

parameters of the vBGF growth function parameters at the

population (or groups within populations, e.g. cohorts) level using

standard non-linear regression techniques via maximum likelihood

or Bayesian methods ([72] and references therein). However, when

data include measurements on individuals that have been sampled

multiple times, failing to account for individual variation in growth

will lead to biased estimations of mean length-at-age [13,73].

Following [58] (although in [58] data were not longitudinal and

thus individual random effects were not included), we present a

formulation of the vBGF specific for longitudinal data where L‘, k,

and t0 may be allowed to be a function of shared predictors and

individual random effects. To improve the biological interpreta-

tion of the parameters of the vBGF, we treated t0 in Eq. 6 as a

population-level parameter (with no predictors), so that all

individuals are assumed to have a shared value. Since k and L‘

must be non-negative, it is natural to use a log-link function. In

addition, values far apart on the natural scale are often of the same

magnitude when log-transformed; this facilitates parameter

estimation and model convergence. We thus set

log k(ij)
� �

~a0za1
(j)za2xijzsuuij

log L(ij)
?

� �
~b0zb1

(j)zb2xijzsvvij

t
(ij)
0 ~c0

8>><
>>:

ð7Þ

where uij*N(0,1) and vij*N(0,1) are the standardized individ-

ual random effects, su and sv are the standard deviations of the

statistical distributions of the random effects, and the other

parameters are defined as in Eq. 1. The minimal model (i.e. with

no predictors and su,sv~0) only contains a0,b0,c0. The contin-

uous predictor xij in Eq. 7 (i.e. population density in our analyses,

but one may have different continuous predictors for L‘ and k)

does not need to enter linearly into the equation, i.e. any of the

terms b2xij and a2xij may be replaced by a more general function

h(xij;W), where W denotes a set of parameters to be estimated.

We thus assume that the observed length of individual i in group

j at age t is

Lij(t)~L(ij)
? (1{e

{k(ij)(t{t
(ij)
0

)
)z"ij ð8Þ

where eij is normally distributed with mean 0 and variance s2
" .

To focus on the EB method, we do not explicitly introduce

process stochasticity, so that the likelihood function is

P
J

j~1
P
nj

i~1
P
mij

l~1

1ffiffiffiffiffiffi
2p
p

s"
exp {

Lijl{L(tijl ; L
(ij)

? ,k(ij),t
(ij)
0 )

� �2

2s2
"

0
B@

1
CA ð9Þ

where nj is the number of individuals in group j, mij is the number

of observations from individual i of group j, l is an index that runs

over these observations, the observed length measurements for

individual i in group j are denoted by Lijl , while tijl is the age of the

individual when the l-th measurement is made. Predictors are

implicitly included via Eq. 8.

Estimation of Individual Variation in Growth
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According to Eq. 7, a positive correlation between L(ij)
? and k(ij)

(from now on we will refer to them as L‘ and k at the individual

level) indicates that size ranks tend to be maintained throughout

the lifetime of individuals, while a negative correlation indicates

that size ranks tend not to be maintained (fig. 2).

Statistical analysis
Selection of best growth model. To begin, we were

interested in the ability of the model with no predictors to

describe the data used to calibrate the model (i.e. hindcasting). We

checked the maximum gradient component to ensure that a

satisfactory optimum was reached, and used R2 and mean absolute

error (MAE) as measures of goodness of fit. Unless otherwise

noted, each model we tested included individual random effects

and intercept for L‘ and k.

We introduced predictors as fixed effects to test whether they

improved model performance. In particular, we included as

predictors (i) population density in the first year of life of the fish

(ind ha21) as a continuous variable (xij Eq. 7) [33], and (ii) cohort

as a group (i.e. categorical) variable (a1 and b1 in Eq. 7). All fish in

a cohort experience the same population density in the first year of

life, thus we can intuitively think of the cohort effect as including

other factors beyond early density affecting growth that are largely

shared by the cohort, such as temperature at emergence/first

stages of life (although the cohort effect is categorical, while the

density effect is continuous).

We treated predictors as fixed effects for two reasons. First,

introducing predictors as random effect is computationally more

demanding in ADMB than using fixed effects, in the sense that run

times for parameter estimation are substantially longer. This

drawback is greatest when thousands of individuals are included in

the dataset, as in the case of the marble trout population of

Gacnik. Second, treating a factor with just a few levels as random

factors may generate imprecise estimates of the associated

standard deviation [52].

For each population, we fitted models in which density- or

cohort effects were introduced in k or L‘. For simplicity and ease

of interpretation, in each model we introduced at most one

predictor for the two vBGF parameters (table 1). To guard against

inconsistent parameter estimates caused by likelihood functions

with multiple maxima, we started ADMB-RE from different initial

parameter values and checked for consistency of parameter

estimates.

We used the Akaike Information Criterion [74,75] to select

the best model, although we also tested consistency of AIC

ranking against the Bayesian Information Criterion (BIC) [76].

Following [58], we also tested whether a log transformation of

population density decreased AIC of models that had density as

predictor, but results were basically unaffected by the log

transformation.

We then investigated correlation between the EB estimates of

L? and k at the individual level and of cohort-specific mean L?

and k when cohort was a predictor of both L? and k (e.g.

following Eq. 7, k(j)~exp(a0za1
(j))). We used simulated data to

test whether a significant correlation may emerge as an artifact of

the algorithm for parameter estimation. Specifically, we simulated

growth data with a randomly drawn correlation r between L? and

k at the individual or cohort level and we then tested whether the

empirical correlation between estimates of L? and k at the

individual or cohort level obtained using the model fitting

procedure in ADMB-RE was equal (or very close) to r.

We also tested whether there were noticeable differences in

vBGF cohort-specific models when estimating parameters sepa-

rately for each cohort using a standard non-linear regression

routine with no random effects (nls function in R [77]) or using

ADMB-RE. We carried out this analysis in order to determine

whether the fitting of a random-effects model is recommended

even when only mean growth trajectories at the group level are

needed, thus in the case when the fitting of a standard non-linear

regression model may represent a theoretically viable procedure.

Predicting missing data. We tested the predictive ability of

the best vBGF model (after AIC selection) as follows. For each

population, we: (i) identified fish that were sampled more than 3

times; (ii) randomly sampled one third of them (validation sample);

(iii) deleted from the data set all observations except the first one

from each individual fish in the validation sample; (iv) estimated

the parameters of the vBGF for each individual including those in

the validation sample; and (v) predicted the missing observations.

Figure 2. Growth trajectories from simulated data with negative, positive and no correlation between L‘ and k. Growth trajectories
from simulated data according to Eq. 7 (no predictors, only intercept and individual random effects) with strong negative (left panel, Pearson’s r = 2
0.9), positive (middle panel, r = 0.6), and no correlation (right panel, r = 0) between L‘ and k at the individual level. For all three panels, L‘ = 330 mm,
k = 0.37 y21, t0 = 20.38 y, sv = 0.22, su = 0.22.
doi:10.1371/journal.pcbi.1003828.g002
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We compared the predictions of the vBGF to the predictions

given by the mean length-at-age of fish in the population,

including information given by predictors if included in the best

model (e.g. if cohort was included as predictor in the best model,

mean length-at-age of the fish cohort was used for prediction). We

used MAE and R2 of the 1:1 predicted-observed line as measures

of predictive ability. We tested the predictive abilities of the best

vBGF model using 20 random validation samples for each

population. In addition, we tested the predictive abilities of the

vBGF model without predictors.

Supplementary information and code
In Supporting Information we provide (i) tests of correlation

between individual and mean cohort-specific L? and k using

simulated datasets (fig. S1 and table S3), (ii) the mean estimate and

confidence intervals for parameters of the best models (table S2

and table S3), (iii) cohort-specific growth trajectories (fig. S2), (iv)

derivation of the correlation between parameters of the vBGF

under size-dependent mortality and description of potential

processes leading to a negative correlation between L? and k
(text S1), (v) confidence bands estimated using a MonteCarlo

algorithm (fig. S3), (vi) a comparison with JAGS and the nlme
function in R (text S2), (vii) results of a repeatability analysis of

body size throughout the lifetime [78,79] (text S3), and (viii) details

of the Empirical Bayes algorithm (text S4). All data and code used

for the analyses and to produce figures can be found in an online

repository at http://dx.doi.org/10.6084/m9.figshare.831432.

Results

The empirical growth trajectories showed substantial individual

variation in growth of marble trout in both populations (fig. 1). For

each age-class except age-1, the Zakojska marble trout population

had greater mean length than the Gacnik population (p,0.01 for

all age-specific t-tests, results provided in the online repository).

The mean length of age-1 fish was significantly greater in Gacnik

(Welch’s t-test: t = 5.28, df = 908.02, 95% CI = 2.13–4.66 mm, p,

0.01). Maximum length reached by a fish was 396 mm at age 8 in

Zakojska and 457 mm at age 12 in Gacnik.

Estimates of parameters
For each vBGF model we tested, we obtained convergence of

the algorithm for parameter estimation in ADMB, and the data

used for the estimation of the parameters were well predicted by

the models (for the model with no predictors except individual

random effects: Zakojska, R2 = 0.97, MAE = 9.58 mm; Gacnik,

R2 = 0.98, MAE = 6.82 mm).

We obtained consistent parameter estimates when starting

ADMB-RE from different initial parameter values. For each

model, the standard deviation of the probability distribution of

random effects was larger than 0. In the vBGF model with no

predictors for both L? and k, the two parameters at the individual

level were strongly and positively correlated (Zakojska; r = 0.79,

p,0.01; Gacnik, r = 0.85, p,0.01) (fig. 3). However, the correla-

tion was inflated by the almost perfect correlation of k and L? for

fish that were sampled just once (Zakojska; r = 0.97, p,0.01;

Gacnik, r = 0.99, p,0.01). Considering only fish that were

sampled more than 2 times, the correlation between k or L? at

the individual level remained positive and highly significant in

both populations, albeit weaker (Zakojska; r = 0.48, p,0.01;

Gacnik, r = 0.59, p,0.01). We also found a strong and positive

correlation within cohorts between k and L? at the individual

level in the models that included cohort as predictor in either or

both parameters (for the model with cohort as predictor for both k
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and L?, Zakojska [mean r across cohorts 6 sd] = 0.8660.11;

Gacnik = 0.8660.12). Tests on simulated data sets showed that

when individual trajectories are simulated with positive, negative

or no correlation r between k and L? at the individual level, the

estimated correlation between individual random effects estimated

with the EB method is very close to the true r (fig. S1). The CVs of

k and L? at the individual level for the vBGF model with no

predictors were 6% and 6% respectively in Gacnik and 2% and

9% respectively in Zakojska. When the model included cohort as

predictor for both k and L?, the range of cohort-specific CV of k
and L? at the individual level were 3–6% (k) and 4–7% (L?) for

Gacnik and 1–2% (k) and 3–13% (L?) for Zakojska. In the model

with no predictors, L? at the population level was greater in

Gacnik than in Zakojska, while the opposite was true for k (mean

and 95% confidence intervals, Gacnik: L‘ = 323.28 mm [318.54–

328.02], k = 0.24 y21 [0.23–0.25], t0 = 20.92 y [20. 97-(20.87)];

Zakojska: L‘ = 298.83 mm [289.83–307.82], k = 0.36 y21 [0.33–

0.39], t0 = 20.49 y [20.58-(20.41)]).

For both populations, k and L? tended to get smaller with

increasing density in the first year of life. The best model according

to AIC had cohort as predictor of both k and L? in both

populations (table 1, see table S1 and S2 for parameter estimates

for Zakojska and Gacnik, respectively). Cohort-specific mean k
and L? (i.e., with individual random effects uij and vij in Eq. 7 set

to 0) were negatively correlated (Zakojska; r = 20.81, p,0.01;

Gacnik, r = 20.87, p,0.01) (figs. 4 and S2). Simulations showed

that the estimated correlation between mean cohort-specific k and

L? is not an artifact of the parameter estimation procedure (table

S3).

Cohort-specific models with no random effects (i.e. param-

eters estimated using nls function in R) provided consistently

greater estimates of L? and smaller estimates of k than

random-effects models (fig. 5 and table 2), which showed that

ignoring autocorrelation among individual measures is likely

to upwardly bias estimates of asymptotic length at the group

level.

Figure 3. Distribution of estimates of individual random effects and correlation between L‘ and k. Distribution of estimates of individual
random effects (left column, u = random effect for k, v = random effect for L?) and plot of individual-level L? (mm) and k (y21) (right column) for the
populations of Zakojska (top row) and Gacnik (bottom row). For Zakojska: su = 0.06, sv = 0.11; for Gacnik, su = 0.10, sv = 0.09.
doi:10.1371/journal.pcbi.1003828.g003
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Prediction of lifetime growth trajectories
In the populations of Gacnik and Zakojska 450 and 62 fish

respectively have been sampled more than 3 times during their

lifetime. For both populations, the best vBGF model (i.e. model

including cohort and individual random effects as predictors for

both k and L?) fitted for the fish in the validation samples using

only the first observation (20% of 450 and 62 fish for Gacnik

and Zakojska, respectively) provided better prediction of the

missing observations than mean length-at-age of the respective

fish cohort (fig. 6, table 3). Finally, when we used no predictors

for either model parameter except the individual random

effects, the random-effects model provided better predictions

of the missing observations than population mean length-at-age

(table 3).

Discussion

The Empirical Bayes approach applied to the estimation of a

parameter-rich non-linear growth function including individ-

ual random effects provides a computationally efficient

methodology to estimate shared and individual variation in

growth. Other methods and routines can be applied to the

estimation of random-effects non-linear models of growth, for

instance the nlme function in R or BUGS/JAGS. However, as

we report in text S2 and in the online code, when dealing with

a large number of random effects, missing data, or ‘‘noisy’’

growth of individuals, some of those methods may take a very

long time to converge or fail to converge. By providing a

general template for fitting growth curves (i.e. not limited to

the von Bertalanffy growth function) with ADMB-RE, our goal

is to encourage and help researchers using more sophisticated

tools to obtain fast and reliable parameter estimates of non-

linear random-effects growth models using longitudinal or

back-calculated data.

We now discuss our results on the determinants of growth of

marble trout, as well as how the results obtained through the

application of the Empirical Bayes approach lead to hypotheses

on life-history strategies and on the interplay between genetic

and environmental determinants of some of marble trout life

histories.

Maintenance of size ranks and correlation between L‘

and k
As described above, we found a strong positive correlation

between L? and k at the individual level, as well as very high

repeatability of body size in both populations (text S3). These two

results concordantly indicate that size ranks are strongly main-

tained over time.

Two other studies investigated the correlation between the von

Bertalanffy growth function’s parameters L? and k at individual

level. Using a random-effects model implemented in BUGS,

Pilling et al. [80] found a strong negative correlation between L?

and k at the individual level in a sky emperor Lethrinus mahsena
population, but they did not discuss any potential processes

leading to the estimated negative correlation. In [81], Alós et al.

using a modified five-parameter von Bertalanffy growth function

implemented in BUGS found a positive correlation between L?

and two growth parameters (k0 and k1) at the individual level, but

they did not discuss the biological and ecological determinants of

the observed positive correlation among parameters of the growth

function. In text S1, we discuss the processes that may lead to a

negative correlation between L? and k and here focus on the

positive correlation.

At the population or group level, the correlation between L?

and k obtained from the Hessian estimated at maximum likelihood

estimates of the parameters is usually negative. This correlation

does not offer any biological insights, since it occurs because

different combinations of L? and k can basically provide the same

fit to the data, in particular when the range of ages is limited

[58,82,83]. In other words, by slightly increasing or decreasing L?

and k in opposite directions, the same likelihood is obtained.

Although it is possible to estimate the correlation between random

effects within ADMB-RE, this may lead to computational

instabilities and possibly to ambiguous interpretation of the

correlation parameter when other predictors are taken into

account (we provide the code in the online repository). Our

simulations confirmed that the observed positive correlation

between estimates of L? and k at the group level (cohort, as in

our case) and at the individual levels is not a statistical artifact.

Multiple non-exclusive and potentially interacting processes

may lead to the maintenance of size ranks throughout marble trout

Figure 4. Cohort-specific growth trajectories. Cohort-specific growth trajectories for the marble trout populations of Zakojska (panel a) and
Gacnik (b). The cohorts with the biggest and smallest body size at age 8 as predicted by the model were for Zakojska the 2006 and 2004 cohorts and
for Gacnik the 2000 and 2003 cohorts.
doi:10.1371/journal.pcbi.1003828.g004
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Figure 5. Prediction of mean cohort-specific growth with random-effects or non-linear least squares model. Prediction of mean cohort-
specific growth trajectories (i.e. individual random effects u and v = 0) using the von Bertalanffy growth function model with cohort as a categorical
predictor for both L? and k (solid line) and non-linear least-squares regression using the R function nls (dashed line) for the 2001 (a) and 2002 (b)
cohorts for the population of Gacnik, and 2001 (c) and 1999 (d) cohorts for the population of Zakojska. Estimates of model parameters are reported in
Table 3.
doi:10.1371/journal.pcbi.1003828.g005

Table 2. Parameters of the von Bertalanffy growth function model for two cohorts of Gacnik and Zakojska.

nls random-effects

Cohort L‘ (mm) k (y21) t0 (y) L‘ (mm) k (y21) t0 (y)

Gacnik 2001 370.34[350.91–394.93] 0.17[0.14–0.19] 21.70[21.95-(21.47)] 308.51[303.06–313.96] 0.29[0.27–0.30] 20.87[20.92-(20.83)]

Gacnik 2002 410.15[376.03–459.84] 0.12[0.10–0.15] 21.93[22.28-(21.62)] 318.87[312.38–325.36] 0.23[0.22–0.24] 20.87[20.92-(20.83)]

Zakojska 2001 539.61[424.46–870.87] 0.11[0.05–0.18] 21.27[21.85-(20.83)] 307.88 [293.64–322.12] 0.33[0.30–0.37] 20.48[20.57-(20.41)]

Zakojska 1999 373.55[335.65–434.51] 0.26[0.19–0.34] 20.62[20.95-(20.36)] 291.98[262.36–321.59] 1.27[1.18–1.36] 20.48[20.57-(20.41)]

Parameter estimates and 95% confidence intervals of the von Bertalanffy growth function model for two cohorts of Gacnik and Zakojska with individuals random effects
and cohort as predictors for both L? and k (random-effects model) and non-linear least squares regression separately for each cohort using the R function nls. 95%
confidence intervals of parameters estimates for the two models do not overlap for any of the von Bertalanffy growth function’s parameters.
doi:10.1371/journal.pcbi.1003828.t002
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lifetime. Specifically, we consider three potential processes: (i)
among-fish differences in genetic growth potential; (ii) habitat

heterogeneity; (iii) size-dependent piscivory.

Differences in genetic growth potential. Some fish may

have consistently greater growth performance either due to more

efficient resource acquisition, different endocrine regulation (e.g.

growth hormone – insulin-like growth factor I axis) [84] or

preferential allocation of energy to growth. Heritability (h2) is the

proportion of phenotypic variance explained by additive genetic

variance [85]. Although estimates of h2 for size-at-age for marble

trout are currently not available, the success of artificial selection

for improved growth traits in fish farms for salmonids (13%

increase in body size-at-age per generation in Atlantic salmon

[86,87]) as well as available empirical estimates of heritability of

Figure 6. Prediction of validation data using random-effects model or mean cohort-specific length-at-age empirical data. Example of
prediction of validation data for the population of Gacnik using the model with cohort as predictor for both L? and k (panel a, R2 = 0.76,
MAE = 19 mm) and mean cohort-specific length-at-age empirical data (b, R2 = 0.66, MAE = 22 mm). For the population of Zakojska, (c) model
predictions (R2 = 0.72, MAE = 24 mm), and (d) predictions using mean cohort-specific length-at-age empirical data (R2 = 0.36, MAE = 37 mm).
doi:10.1371/journal.pcbi.1003828.g006
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length-at-age in the wild (median h2 = 0.29) [23] confirm the

existence of substantial additive genetic variance for growth in

salmonids.

In [79], Letcher et al. found, for a population of brook trout

living in West Brook (MA, US), that most of the observed size

variation among fish derived from size differences at the juvenile

stage (age-0 fish), which they assumed were determined by

heritable differences in the timing of emergence. Since size

variation throughout the lifetime of brook trout was only

moderately influenced by subsequent size-dependent processes,

size ranks were largely maintained over time. Letcher et al. [79]

argued that the most likely mechanism for maintaining size ranks

in salmonids is the establishment of dominance hierarchies [88–

90], which may translate to the occupation of sites of different

profitability.

Repeatability sets an upper limit to heritability (but see [91]),

and a large difference between repeatability and heritability for a

trait may suggest that the trait is at least partially determined by

environmental (including trophic) conditions causing variation

mostly independent from genotypes. The very high estimates of

repeatability for length-at-age we found for both populations

(Gacnik: mean and 95% credible intervals = 0.75 [0.73–0.76];

Zakojska = 0.66 [0.62–0.70], see text S3) and the median estimate

of heritability for length-at-age in salmonids suggest that a large

amount of variation in individual growth trajectories is determined

by environmental factors, and this is likely to limit the evolution of

growth rates following episodes of massive mortality of marble

trout [22,24].

Habitat heterogeneity. A patchy distribution of resources

can potentially lead to the maintenance of size ranks throughout

fish lifetime. That is, due to abiotic (e.g. water velocity, turbidity,

size and location of shelter, micro-variation in temperature) and

biotic (e.g. availability and type of prey) factors, some portions of

the stream habitat are more profitable than others [34]. While it is

obvious that a greater abundance and energetic content of prey –

as well as optimal temperature [92] - increase the potential for

growth, slow currents decrease the energy expenditure for

maintaining position [93]. On the other hand, in the case of fish

that are mobile and can potentially explore or occupy different

parts of the stream, the positive correlation between L? and k due

to heterogeneous site profitability may or may not emerge.

However, marble trout living in Gacnik and Zakojska rarely

move more than two hundred meters throughout their lifetime

[94] and the existence of areas of different profitability can be

easily inferred by the consistent bigger size-at-age of fish occupying

the uppermost part of the stream (i.e. where a larger portion of

stream drift is available since no fish are present upstream) than of

fish living further downstream [94].

Size-dependent piscivory. In the presence of growth

variation among fish early in life, size-dependent piscivory [95]

may generate a positive feedback process on growth and body size-

at-age, in which fish growing faster early in life both (i) reach the

size threshold for piscivory and (ii) are able to eat larger prey

earlier than fish growing more slowly [96–98]. Marble trout are

cannibalistic in mountain streams, and preliminary isotopic

analyses indicate that the initiation of cannibalism is size

dependent and usually starts at age 3 years old.

Best models for the marble trout populations of Zakojska
and Gacnik

The best model for both populations included cohort as a

categorical predictor for both L? and k. Within each cohort we

found substantial individual variation as well as strong mainte-

nance of size ranks throughout marble trout lifetime (i.e. the

within-cohort correlation of L? and k at the individual level was

strongly positive). Models including only density in the first year of

life performed distinctly worse than the best model, but better than

the model with no predictors. This seems to suggest that other

factors, in addition to early density experienced by cohorts,

contribute to determine mean growth trajectories of cohorts. Apart

from climatic vagaries or particular trophic conditions affecting

cohorts in their early life stages, another possible explanation for

the emergence of cohort effect is high variance in reproductive

success (e.g. just a few fish contribute to the next generation),

which is common in salmonids [99,100], combined with (i) high

heritability of growth and/or (ii) heterogeneity in site profitability

accompanied by limited movement. The mean growth trajectory

of the cohort may thus signal in case of (i) the growth potential of

the small parental pool, or in case of (ii) the profitability of the

stream habitat where a large fraction of the cohort lived.

Cohort effects on growth were more pronounced in Zakojska

than in Gacnik. We found a strong negative correlation between

cohort-specific mean L? and k in both populations. Thus, some of

the mean growth trajectories of cohorts were crossing throughout

fish lifetime, but within cohorts size ranks were mostly maintained

over time. However, the cohort-specific growth trajectories in

Gacnik showed very little variation with the exception of a

particularly fast-growing cohort, while a richer variety of cohort-

specific mean growth trajectories were observed in Zakojska. This

may be in part related to the estimation of L? being particularly

sensitive to the presence in the dataset of older individuals [101].

In Zakojska, the dramatic reduction in population size after the

flood of 2007 accompanied by the natural thinning of cohorts over

time reduced the number of older individuals in the dataset, and

this may lead to less accurate predicted mean size of cohorts at

older ages. However, we observed the same strong negative

Table 3. Prediction of future growth trajectories.

Best model Model with no predictors

Population Model Cohort mean length Model Population mean length

R2 MAE R2 MAE R2 MAE R2 MAE

Zakojska 0.6360.08 29.8766.07 0.5160.10 34.2764.25 0.5860.09 31.6366.15 0.3660.14 38.8064.25

Gacnik 0.8060.02 17.6260.84 0.6460.04 23.6361.03 0.77v0.02 18.7860.85 0.5060.04 27.5461.43

Mean 6 sd of R2 and mean absolute error (MAE, mm) of predictions of validation data as provided by the vBGF model including cohort as predictor for both k and L?

at the individual level (best model) and by the vBGF model with no predictors for either parameter for 20 random validation samples. In both cases, we also report mean
6 sd of R2 and MAE of predictions with mean length-at-age of the respective cohort (for the model with cohort as predictor for both in k and L?) and of the population
as a whole (for the model with no predictors) for the same validation samples.
doi:10.1371/journal.pcbi.1003828.t003
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correlation even if only including cohorts born up to 2002 (fig. S2),

although the diversity of cohort-specific growth pattern was

noticeably smaller and comparable to the diversity observed in

Gacnik.

Fast-growing cohorts can play a key role in the persistence of

small fish populations. Since sexual maturity and egg production

in fish are generally size dependent [102], a higher proportion of

fish can reach sexual maturity at younger ages in a fast-growing

cohorts than in slow-growing ones. This may be crucial when

population size is low and the population is at risk of extinction

due to demographic stochasticity. In both Gacnik and Zakojska,

the fastest-growing cohorts experienced very low population

densities in the first two years of life. Further studies should test

whether at the individual or at the cohort level a trade-off between

growth and mortality can be observed [103], and whether fast-

growing cohorts had higher lifetime reproductive success than

slow-growing ones.

Prediction of growth trajectories
A sizable literature on prediction of future growth exists for

humans, especially in the context of early identification of

pathologies [104–107]. An approach similar to that presented in

our work for the estimation of lifetime growth trajectories given

only information on growth and size during the early stages of life

was proposed in [104] and [105]. In particular, in [104] Shohoji et

al estimated the lifetime growth of Japanese girls using measure-

ment up to the age of 6 years old. They first adapted to humans a

parametric model previously developed to model the growth in

weight of savannah baboons. Then, they tested the suitability of an

Empirical Bayes approach to estimate model parameters and

predict abnormal growth at later stages of life. They found that

classification of individuals into proper homogenous groups (i.e.

where the strength is borrowed from) was necessary in order to

obtain accurate predictions of lifetime growth. In [105], Berkey

found that there is a point beyond which the Empirical Bayes

method (but more in general any method) is no longer robust to

missing data, and found - as expected - that growth curve

parameters are especially sensitive to the end points of the growth

trajectories.

Given an appropriate growth model, the prediction of lifetime

growth trajectories from early measurements presents further

complications - as in our case - when dealing with organisms that

still grow after sexual maturity [108] and when homogenous

groups (i.e. cohorts) may include just a few individuals reaching

older ages. In addition, when using the vBGF model with both L?

and k function of cohort and individual random effects, the

estimation of cohort effects should be robust to the deletion from

the dataset of one-third of the individuals that have been sampled

more than 3 times, since the presence of only a few old individuals

in the dataset is likely to bias the estimation of L? [101].

Our results indicate that when strength is borrowed from other

individuals, parameters estimated on a single measurement can be

used to summarize the growth trajectory of marble trout living in

Zakojska and Gacnik and to impute missing observation for the

estimation of size-dependent survival. The best vBGF model

provided predictions of future growth trajectories in both

populations that were consistently (i.e. for all validation samples)

better than simply using the mean length-at-age of the fish cohort.

Clearly, other covariates presently not available or not included in

the model, such as sex or position in the stream, may help further

improve predictions of lifetime growth and size-at-age.

We found better predictions across validation samples for the

population of Gacnik than for the Zakojska population. This may

be due to a higher number of fish both overall and in each cohort

in Gacnik, less variability in growth at the whole population level

as well as among fish in the same cohort, as evidenced by the

much smaller coefficient of variation of L? and higher repeat-

ability of body size in Gacnik than in Zakojska, or a lower

plasticity of growth trajectories after the first year of life in Gacnik

than in Zakojska, which may be caused by more homogenous site

profitability in Gacnik.

In conclusion, in this work we have shown how the estimation of

parameters of a parameter-rich non-linear growth function using

longitudinal data can shed light on the shared and individual

determinants of somatic growth in natural populations. The

estimation method based on the Empirical Bayes approach is

readily applicable to different parameterizations of the von

Bertalanffy growth function or other growth models, and it

provides additional flexibility, speed and ease of use with respect to

other approaches [8]. In the case of more frequent sampling of

individuals [10], models with seasonal components may be used

and the inclusion of more fine-grained candidate predictors (such

as monthly temperature, flow, trophic conditions) when available

may be tested.

Supporting Information

Figure S1 Correlation between random effects. Correla-

tion between random effects u and v in the random-effect vBGF

model (see Eq. 7 in the main text). Points are the simulated data,

rR is the Pearson’s correlation on the simulated data, rE is the

estimated correlation of u and v estimated by the Empirical Bayes

method.

(PDF)

Figure S2 Cohort-specific growth trajectories. Cohort-

specific growth trajectories for the marble trout populations of

Zakojska for cohorts up to 2002 included.

(PDF)

Figure S3 Confidence bands for mean cohort-specific
growth trajectory. Confidence bands for mean cohort-specific

growth trajectory (i.e. random effects u and v = 0) using the von

Bertalanffy growth function model with cohort as a categorical

predictor for both L‘ and k (solid line) and non-linear least-squares

regression using the R function nls (dashed line) for the 1999

cohort of the Zakojska population (nls vBGF, mean and 95%

confidence interval: L‘ = 373.55 mm [335.65–434.51],

k = 0.26 y21 [0.19–0.34], t0 = 20.62 y [20.95-(20.36)]; random-

effect vBGF: L‘ = 291.98 mm [262.36–321.59], k = 1.27 y21

[1.18–1.36], t0 = 20.48 y [20.57-(20.41)]).

(PDF)

Table S1 Best model for Zakojska. Parameters (mean and

95% confidence interval) of the best von Bertalanffy model

according to AIC with L‘(mm) and k (y21) function of cohort for

the population of Zakojska. For all cohorts, t0 = 20.49 y [20.57-

(20.41)], su = 0.05[0.02–0.09], sv = 0.10[0.09–0.11].

(PDF)

Table S2 Best model for Gacnik. Parameters (mean and

95% confidence interval) of the best von Bertalanffy model

according to AIC with L‘(mm) and k (y21) function of cohort for

the population of Gacnik. For all cohorts, t0 = 20.87[20.92-

(20.82)], su = 0.09[0.08–0.10], sv = 0.079[0.075–0082].

(PDF)

Table S3 Correlation of cohort-specific and of individ-
ual L‘ and k. Pearson’s correlation between realized (i.e. not

from the Hessian matrix) estimates of cohort-specific and of

individual L‘(mm) and k (y21). We carried out 30 reproducible
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replicates. Coh.Sim = correlation between simulated cohort-specific

mean L‘ and k (individual random effects set to 0); Coh.

Est = correlation between cohort-specific mean L‘ and k estimated

by ADMB (individual random effects set to 0); Ind.Real = correlation

between simulated L‘ and k at the individual level; Ind.Sim = correla-

tion between L‘ and k at the individual level estimated by ADMB-RE.

(PDF)

Text S1 Processes leading to negative correlation
between L‘ and k and how size-dependent survival
generates a negative correlation between random ef-
fects.
(PDF)

Text S2 Comparison with JAGS and nlme function in R.
(PDF)

Text S3 Repeatability analysis.
(PDF)

Text S4 The Empirical Bayes algorithm.

(PDF)
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