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Preface

This thesis submitted for the degree Philosophiae Doctor (PhD). PhD project has been 

performed at Centre for Integrated Petroleum Research (CIPR), department of Chemistry, 

University of Bergen in the period from August 2006 to August 2009. The work was a 

part of PETROMAKS project “Enhanced oil recovery (EOR) for maximizing tail 

production”, which included studies of displacement mechanism for polymer flooding, 

surfactant flooding, microbial enhanced oil recovery (MEOR), foam injection , and water 

alternative gas (WAG) processes. The work has been financed by the Norwegian 

Research Council and the industry partner Total E&P, Norway and Total E&P, France.  

  

 

The main task in this thesis is to study sulfonated polyacrylamide polymers with a range 

of different sulfonation degree and molecular weight. The purpose was to build up 

knowledge about the rheological properties and adsorption/retention of studied polymers 

for high salinity and high temperature applications.  

 

This dissertation comprises two parts: 

 

Part one (introduction): This part consists of general information regarding to the 

physico-chemistry characterization of sulfonated polyacrylamide polymers, and states the 

objectives of this research. It starts with a general overview about polymer applications in 

oil industry, and followed by the viscosity and adsorption/retention study of polymers 

which must be well known before the application processes. Here all the main properties 

of the studied polymers will be discussed and after wards in the next part the results will 

be presented in different scientific papers. 

 

Part two (Papers): This part is consisted of three scientific papers; first one which is 

“Viscosity Study of the Salt Tolerant Polymers” Journal of applied polymer science, Vol 

117(3), pp 1551-1157. Second paper is about the adsorption and retention of the studied 

polymers, has been proceeding of 15th European symposium on improved oil recovery, 
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Paris, France, April 2009, and the third one which contains information about the 

viscosity and retention of the studied polymers at high temperature recently has been 

submitted to the journal of applied polymer science and reviewed in April 2010. 
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Abstract

Hydrolyzed polyacrylamide polymer (HPAM) as a feasible and effective viscosifier has 

been fully studied and used for polymer flooding processes in several oil field, e.g. 

Daqing oil field. It has been shown that Hydrolyzed polyacrylamide polymers (HPAM) 

may be a good choice for high temperature condition with no oxygen and no divalent 

ions presence. At high temperature and high salinity conditions, polymer may precipitates 

and loss their viscosyfing properties. Also adsorption and retention of polymer in porous 

medium may change rheological properties of polymers. Thus, the viscosyfing property 

of polymers is influenced by several important parameters, e.g. salinity, hardness, 

temperature, adsorption, retention, polymer structure, and etc.  

By replacing some of carboxylate group of HPAM with another monomer, e.g. sodium 

salt of acrylic acid and 2-acrylamido-2-methylpropane sulfonic acid (AMPS), effect of 

high salinity/hardness and temperature seems to be reduced specially for the samples with 

higher percentage of AMPS co-monomer.

The ultimate aim of this work is to develop an understanding of the sulfonated 

polyacrylamide copolymers with a range of different sulfonation and molecular weight at 

high salinity and high temperature conditions. Most of the work in this thesis deals with 

viscosity and adsorption/retention measurements of the sulfonated copolymers and 

HPAM.  

The factors which may affect the viscosity of the polymers and have been identified in 

this work as most likely influencing also adsorption and retention of the polymers are 

shear rate, polymer concentration, sulfonation degree, molecular weight, NaCl 

concentration, divalent ion concentration, and temperature.  
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Chapter 1 

Introduction
 

Oil production has three different stages; primary (production by natural reservoir 

energy), secondary (on the supply of external energy into the reservoir in the form of 

injecting fluids to increase reservoir pressure) and tertiary production (enhanced oil 

recovery methods increase the mobility of the oil in order to increase production). Over 

the lifetime of the oil field the pressure will fall, and at some point there will be 

insufficient underground pressure to lift the oil to the surface. In order to maintain the 

reservoir pressure, and sweep out oil in a more efficient way, water flooding as secondary 

oil production is a practical and effective way for many reservoir formations. A problem 

with water flooding is that in many cases oil has higher viscosity than water, and this 

however may lead to an unstable displacement. Increasing the viscosity of injected water 

by adding a polymer will improve sweep during water flooding process. It is necessary to 

study and evaluate the rheological properties of the polymers before implementation as 

polymer flooding (Sorbie, 1991). 

 

The fundamental understanding of water flooding and the principle of strengths and 

weaknesses of the method goes back to the 1950s. To solve the problem of unstable 

displacement during water flooding, polymer was suggested in the early 1960s.  

 

Polymers either biopolymers or synthetic polymers have several types of applications. 

Some of these applications are for oilfield, e.g. profile modification, drilling, and 

chemical flooding (Needham and Doe, 1987).  
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In polymer flooding process, a water soluble polymer either biopolymers or synthetic is 

added to injected water. Water/oil mobility ratio is the only mechanism to describe why 

using polymer can make water flooding more efficient. Both mobility ratio and its effect 

on diverting water from the swept zones to unswept zones will be described below.  

 

Mechanism description based on mobility ratio: In water flooding processes independent 

on heterogeneity, oil can not be swept uniformly. Mobility ratio is a key factor for areal 

sweep which defined for water flooding process as (Craig 1980): 

 

0( )
( )

rw or

w ro wi

k SM
k S

�
�

�           (1.1) 

 

Where; rwk  is relative permeability to water, rok  is relative permeability to oil, o� and 

w� are oil and water viscosity respectively. As eq. 1.1 shows, if M increases then 

recovered oil before water breaks through decreases. Added polymer will improve the 

mobility ratio both by increasing w� and in some cases by decreasing rwk , therefore there 

will be a potential to recover more oil especially for the reservoirs with high unswept oil. 

 

The effect of mobility ratio on diversion effect: The effect of polymer on improving areal 

sweep efficiency is more effective in homogeneous reservoirs, but true homogenous 

reservoirs rarely exist. Reservoirs contain heterogeneity in both areal and vertical profile. 

All these heterogeneities lead water entry into more permeable zones, and considerable 

part of the reservoir, low permeable zones, remains unswept. Injected polymer will build 

up flow resistance in the portions of the reservoir that are swept by flooded water, 

through the permeability reduction or viscosity increase which have been discussed 

earlier. This increased resistance will subsequently divert the injected water to the 

unswept or poorly swept areas, so that the oil trapped in that zone can be efficiently 

recovered (Needham and Doe, 1987). 
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Polymer used in oil production: Hydrolyzed polyacrylamide (HPAM) polymer which is 

partially hydrolyzed form of polyacrylamide (PAM) established as a mobility control 

agent with potential to improve water flooding process, described by Pye and Sandiford 

(1964), and Gogarty (1967). Both biopolymers, e.g. Xanthan, and synthetic polymer, e.g. 

HPAM, have been used for actual polymer flooding processes. Several polymer flooding 

projects have been carried out successfully, both technically and economically (Han, et 

al. 2006; and Dong, et al. 2008). 

 

Even though HPAM and Xanthan have been used for polymer flooding processes, they 

have specific limitations. For example HPAM has well known limitations at high 

temperature more than 70oC, and high salinity reservoirs with total dissolved solids 

(TDS) more than 40000 ppm (Moradi-Araghi et. al, 1987). Proceeding of amide group 

hydrolyses to form carboxylate group which is more severe at temperature higher than 

70oC, and in the presence of divalent ions, will result in polymer precipitation, and then 

reduce brine viscosity. The strong binding between the divalent ions and carboxylate 

group in HPAM, results in the polymer molecules to precipitate more and this will 

decrease the viscosyfing property of HPAM polymers.  

 

Recently, Seright et. al, (2009) have shown that HPAM still can be used in enhanced oil 

recovery processes at elevated temperature, e.g. 120oC, with no oxygen and divalent ions 

present. To obtain such a oxygen free condition there may be some proposed ideas; first 

to use recycled produced water to make polymer solutions, because the most reservoirs 

environment are reducing environments and produced water is almost oxygen free. 

Second, during the polymer flooding process surface facilities must be regularly 

controlled to prevent oxygen leakage development. Sometimes oxygen scavengers and 

antioxidants also may be used (Shupe 1981; Wellington 1983). All these concerns show 

that oxidation is an important mechanism which may affect polymer solution stability in 

terms of viscosity at elevated temperatures. 
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In the other side the effect of dissolved oxygen on polymer solution viscosity by itself is 

not critical (Muller 1981). However oxygen with many other substances, e.g. metals 

(especially ferrous iron), free radicals generating chemicals (like potassium persulfate),  

high or low pH and etc, caused substantial chemical degradation of polyacrylamide 

polymers (Knight 1973; Shupe 1981; Muller 1981).  

 

Xanthan also has been used in classical polymer flooding. In contrast to HPAM, Xanthan 

gum is a rigid double helix polysaccharide which is not easily shear degraded, and also is 

more salt and divalent ions tolerable. However, the main problems of using biopolymers 

are biodegradation and injectivity problems (Moorhouse et. al, 1977; Seright and Henrici 

1990; and Ryles 1988). 

 

The other specific limitation which may change polymer rheological properties is 

adsorption and retention. The physical interaction (electrostatic attraction and van der 

Waal’s dipole-dipole interaction (Baijal, 1981)) between the polymers molecules and the 

solid surface of porous medium will result in the adsorption of some polymer molecules 

on the rock surface. In addition to the adsorption there is also some mechanical 

entrapment of the polymer macromolecules in some of the narrow pore throat in porous 

medium.  
 

The retention which is a general term and defined as the summation of adsorption and 

mechanical entrapment is a common problem of all polymers in porous medium. Loss of 

polymer due to retention causes lower viscosity of fluid. High adsorption level on the 

rock surface, and tendency to shear degradation at high flow rate also are also some other 

disadvantages of HPAM (Zaitoun and Potie 1983; and Ryles 1988). 
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To meet requirement in high temperature and high salinity reservoirs with synthetic 

polymers, the structure of HPAM has to be modified. Several modifications have been 

introduced, e.g. hydrophobically associating polymers, different copolymers of  
                                                   
 
polyacrylamide with anionic and cationic co-monomers, etc. Some of these modifications 

are to replace carboxylate group in HPAM with another monomers, e.g. sodium salt of 

acrylic acid and 2-acrylamido-2-methylpropane sulfonic acid (AMPS).  

 

The specific objectives of this research project are to: 

 

� To measure the rheological properties of PAMS and HPAM solutions, such as: 

steady-shear viscosity and viscosity behavior as functions of shear rate; polymer 

concentration; salinity, including divalent ion effects; polymer molecular weight; 

sulfonation degree; temperature; anti oxidant concentration. 

 

� To measure transport of various PAMS and HPAM solutions in sandstones, in 

terms of adsorption and inaccessible pore volume with different process variables: 

sulfonation degree, polymer molecular weight, and salinity. This is done with a 

series of laboratory core flood experiments. 

 

Three scientific papers have been extracted from this work and in the papers different 

results of the sulfonated polyacrylamide polymers properties have been elaborated. The 

first paper, discuss results of the viscosity study of the studied polymers. The effect of 

shear rate, salt, hardness and polymer concentration, at ambient temperature on the 

viscosity stability has been presented. In the second paper, results of the static adsorption 

and dynamics retention at ambient temperature have been discussed. The third paper 

includes the stability in terms of viscosity, of the studied polymers exposed for 1 year at 

80oC. The dynamic retention of these polymers at 80oC also was tested.  
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Chapter 2 

Polymer Properties 
 

This chapter will shortly introduce several main polymer properties. Viscosity of polymer 

solutions and the effect of some parameters, e.g. temperature, shear rate, divalent (MgCl2, 

CaCl2) and monovalent (NaCl) ions on the polymer solution viscosity will be discussed.   

2.1 Polymer structure 

A polymer is composed of many simple, repeating structural units of similar or different 

type of molecules which called monomers. A polymer may consist of hundreds to a 

millions of these repeating units with three different structures which are; linear, 

branched and network as shown in Figure 2.1.  

 

 

 

 

 

 

 

 

 

Figure 2.1. General schematic of different polymer structures  

 

For example hydrophobically associative polyacrylamide polymers are a kind of grafted 

copolymers and contain a small or large amount of hydrophobic group which has been  
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linked directly to the polymer molecule structure. In aqueous solution hydrophobic group 

of these polymer tends to associate together to minimize their exposure to the aqueous 

solution. This is some how similar to the micelle formation of a surface active agents 

(surfactant) above its critical micellar concentration, and as a result of this association, 

solution viscosity increases (Taylor and Nasr-El-Din 1995; Shulz et. al, 1987; Lacik and 

Selb 1995; Candau et. al, 1996; Uemura et. al, 1995). 

 

2.2  Polyelectrolyte  

Polyelectrolyte is a group of polymers which may have one or several electrolyte groups 

in their repeating unit (monomer). HPAM and sulfonated polyacrylamide polymers are 

polyelectrolyte and simply anionic, i.e. they have negative charges on the carboxylate 

group and sulfonic acid group respectively, and this make polymers water soluble,(Fig. 

2.2 A and B).  

 

 

 

 

 

 

 

A)                                                                    B)  

Figure 2.2. Molecular structure A) HPAM, and B) sulfonated polyacrylamide polymers 

 

The polyelectrolyte properties are similar to both electrolyte and polymer solutions 

(Bueche 1962; Baeurle and Nogovitsin, 2007). In water solvent they have the same 

property as other polymers, but in aqueous solvent their electrolyte groups surrounded by 

the solvent counter ions. The effect of counter ions on the polyelectrolyte solution will 

create some limitation for their viscosyfing properties. 
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HPAM as a polyelectrolyte, develop high viscosity in fresh water, because its molecules 

are very flexible, this property is known as random coil in polymer chemistry (Sorbie, 

1990). Since HPAM molecules are more flexible, then it makes them more sensitive to 

salt ions compare to other studied polyelectrolyte, e.g. sulfonated polyacrylamide 

polymers. 

 

HPAM like other polyelectrolyte solutions in the presence of salt ions will react and coil 

up after a certain amount of salt concentration. As showed in Figure 2.2(B), the 

sulfonated polyacrylamide polymers also belong to polyelectrolyte which contains a 

small hydrophobic group with a length of only 1 Carbon atom. This short chain 

hydrophobic group may affect the viscosyfing properties of these polymers especially for 

the polymer with the lowest sulfonation degree, e.g. 5 mole %, which is more 

hydrophobic than the other sulfonated polymers. All the studied polymers in this work 

with their characteristics are given in Table 2.1.  

 

Table 2.1. Polymers characteristics 
 

Polymer*              Molecular weight     Sulfonation degree  
                              (Million Dalton)             (Mole %) 
AN105                      6                                5 
AN113                      8                                13 
AN125VLM             2                                25 
AN125                      8                                25 
AN125VHM            12                               25 
AN132                      8                                32 
HPAM                      8                                 - 

 

*For all the studied polymers information about their molecular weight and sulfonation 

degree was supplied by the manufacturer, and they have not been verified. In the 

following part the effect of some parameters on the polyelectrolyte behavior will be 

discussed.  
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2.3  Fluid flow behaviour of polymer solution 

The term rheology is defined as the study of the deformation and flow of different fluids 

in response to surface forces (stress) (Bird, et al., 1960). The mathematical relationship 

between stress and deformation rate (strain rate) is constitutive equation. The Newtonian 

relationship between stress and strain rate is the simplest example of a rheological 

constitutive equation as: 

 

dVF A
dx

��              (2.1) 

 

Where; F is force which apply on the surface of the fluid, A is the contact area between 

two adjacent layers in the fluid, dV
dx

is the velocity gradient between the two layer, and μ 

which is a proportionality constant, is simply called fluid viscosity (Bird et. al, 1960).  

 

The fluid viscosity is simply defined as the fluid resistance to shear (Bird, et al., 1960). 

Based on this simple definition it is possible to formulate fluid viscosity as: 

 

��� �            (2.2) 

 

Which � (Pa) is shear stress which implies on the fluid surface, � (Pa.s) is fluid viscosity 

and � (s-1) is shear rate. 

 

Generally as showed in equation 2.2, fluid may be classified as Newtonian or non-

Newtonian fluids. The viscosity of Newtonian fluids, e.g. water, is constant and it is not a 

function of shear rate. Polymer solution generally classified as non-Newtonian fluids, i.e. 

the viscosity changes with shear rate and it is not constant. This change in the viscosity as  
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a function of shear rate is different for different fluids as presented in Figure 2.3 (Bird, et 

al., 1960). 

 

 

 

 

 

 

 

 

Figure 2.3. Different type of fluids (classified based shear stress /shear rate relationship) 

 

In pseudo plastic fluids, known also as shear thinning, the viscosity deceases as shear rate 

increases, and vast majority of polymer solutions are shear thinning in their nature. Shear 

rate is not the only factor which can affect the viscosity of polymer solution, but there are 

several other parameters which may affect polymer viscosity behaviour, e.g. molecular 

weight, polymer concentration, and the nature of polymer and solvent. The target of this 

work is to evaluate the effect of all these parameters on the viscosity of studied polymers. 

 

2.4  Effect of polymer concentration and molecular weight on the viscosity  

For all polymers, higher the polymer molecular weight and concentrations gives a 

solution with higher viscosity. This is because the polymer concentration changes the 

interactions among polymer molecules, and the molecular weight directly affects the 

chain size. While polymer with higher molecular weight gives a solution with higher 

viscosity, however they are easily shear degradable (mechanical degradation). For 

example HPAM with high molecular weight is an effective viscosyfing polymer, but it is 

easily shear degradable.  
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To relate viscosity to the polymer concentration and molecular weight there are some 

other viscosity quantities, e.g. relative viscosity, specific viscosity, reduced viscosity 

which the definitions of these viscosity quantities are (Billmeyer, 1971; Rodriguez, 

1983): 

 

Relative viscosity (�r): is the ratio of the viscosity of a solution (�) to the viscosity of the 

solvent used (�s) 

 

r
s

��
�

�            (2.3) 

 

Specific viscosity (�sp): which is the relative viscosity of a polymer solution with a known 

concentration minus 1, and usually determined at low polymer concentration 

  

1sp r� �� �            (2.4)  

 

Reduced viscosity (�R): The ratio of the specific viscosity to the polymer solution 

concentration 

 

sp
R C

�
� �           (2.5) 

 

C is polymer concentration (here, unit used for polymer concentration is ppm). Specific 

viscosity expresses the incremental viscosity due to the presence of the polymer in the 

solution. Reduced viscosity is a measure of the specific capacity of the polymer to 

increase the relative viscosity, also known as viscosity number. Since the solution used 

for viscosity measurements will be non-ideal, i.e. the behavior is not predictable over a  
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wide range of concentrations and temperatures by the use of Raoult's law,  

therefore reduced viscosity will depend on polymer concentration. It will be useful to 

extrapolate reduced viscosity to zero concentration. The extrapolated reduced viscosity to 

zero is known as intrinsic viscosity, [�], and will be defined as: 

 

	 

0

lim sp

C C
�

�
�

�            (2.6)      

 

In which [�] is a property related to the polymer molecular size and polymer chain 

extension in solution. The dimension of intrinsic viscosity is reciprocal of the 

concentration dimension, ppm-1(Huggins 1942). 

 

Polymer solution for different polymer concentrations can be divided into three regimes; 

dilute(C< C*), transition (C=C*), and semi-dilute or concentrated (C>C*) regimes. C* 

which is critical overlap concentration at dilute regime can be calculated by using 

intrinsic viscosity as defined below (Gupta et al. 2005): 

 

	 

1*C
�

�           (2.7) 

 

In this work intrinsic viscosity was used to calculate critical overlap concentrations (C*) 

in dilute regimes. 

 

2.5  Effect of ions and pH on the viscosity   

To understand the effect of ions, monovalent and divalent, on the viscosity behavior of 

the polyelectrolyte solutions, the interaction of these ions with the charges on the polymer 

chain must be understood. 
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Molecules of polyelectrolyte in distilled water may be almost fully expanded due to the 

repulsion between the similar charged groups distributed along the polymer chain. In 

aqueous solvents because of positive mobile ions, the charges on the polymer chain are 

screened and degree of expansion decreases. Some theories also have been implemented 

to explain the effect of salt ions on the rheological behavior of polyelectrolyte solutions 

(Tanford, 1961; Flory, 1953).  

 

Here, salt ions divide into two categories; monovalent ions, e.g. Na+ or K+ and divalent 

ions, e.g. Ca2+ or Mg2+. HPAM molecules are more sensitive to divalent ions compare to 

monovalent ions. It has been generally accepted this is due to the strong binding between 

divalent ions and carboxylate group (COO-) (Lipton, 1974; Sandvik and Maerker, 1977; 

Szabo 1979; Zaitoun and Potie, 1983; Moradi et al., 1995; Martin and Calgon, 1995). 

After a certain divalent ions concentration HPAM will precipitate and this make HPAM 

unfavorable for EOR processes for high salinity/hardness condition (Figure 2.4). It must 

be mentioned, Temperature is another significant cause of viscosity reduction which it 

will be discussed later. 

 

 

 
 

Figure 2.4 Schematic of polymer precipitation with the presence of divalent ions  

 

The negatively charged carboxyl or AMPS groups in high pH conditions induce 

extension of the molecules through electrostatic repulsion among the groups, thereby 

increasing viscosity; conversely, low pH conditions cause the molecules to become 

coiled, resulting in low-viscosity Mungan (1969). 

 

With Ca2+ 
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2.6  Degradation processes and its effect on the viscosity 

Degradation refers to any processes which may break down polymer molecular 

structures. Therefore, to use polymers in enhanced oil recovery processes their properties 

must be stable and degradation must be prevented. Viscosity as the main polymer 

property may be degraded either chemically, mechanically or biologically (Sorbie 1980). 

Below a short description of each will be discussed: 

 

Mechanical degradation (also known as shear degradation): Mechanical degradation is 

short term degradation refer to the polymer molecular structure break down due to high 

shear rate and mechanical forces close to the wellbore. Noik and Audibert (1994) studied 

the mechanical degradation of one sulfonated polyacrylamide with 25 mole % 

sulfonation degree and HPAM. As results showed sulfonated polyacrylamide polymers 

due to the rigidity of sulfonate group have better resistance to mechanical degradation.  

 

Biological degradation: This refers to the microbial break down of the polymer 

molecular structure. Mostly this degradation mechanism may be considered for 

biopolymers. For synthetic polymers this type of degradation is not considerable. 

 

Chemical degradation: Break down of polymer macromolecular structure either short 

term, e.g. by oxidation in the presence of oxygen or long term, e.g. by hydrolysis and 

precipitation mechanisms. In this work, chemical degradation is the only degradation 

process which has been considered and mainly discussed during the project.  

 

2.7  Polymer oxidation prevention mechanisms  

Oxygen is one of the well known chemical species which critically can impact the 

viscosity of polymer either HPAM or sulfonated co-polymers. As mentioned in the 

introduction, HPAM is more efficient viscosifier at anaerobic condition (with no oxygen 

present), and without divalent ions present. 
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HPAM is most commonly used for polymer flooding applications due to its low cost and 

good viscosyfing ability. Further, it has a molecular structure that allows for better 

injectivity into porous media too much effort has been to find a way to minimize the 

effect of divalent ions at high temperature on the viscosity of HPAM. 

 

One proposed idea was to make HPAM solutions at fresh water and then inject it into a 

reservoir with hard saline brine. Even though saline formation brine mix with the 

polymer solution and lower the polymer viscosity. But the injected polymer bank 

maintains its integrity during oil displacement in a reservoir with hard saline brine 

(Maitin 1992). Pope et. al, (1978) and Lake (1989) experiment results showed that, due to 

ion exchanges and reservoir rock properties divalent ions may release, therefore to avoid 

HPAM precipitation these concepts also must be well understood and controlled. For 

example one proposed idea to control this released divalent ions from clay minerals is to 

inject a solution with a fixed ratio of monovalent to divalent ions in the reservoir (Lake, 

1989). Also to maintain low divalent ions concentrations limit, it requires injecting low 

salinity water. With all above mentioned ideas HPAM still at high temperature with 

divalent ions present is unfavourable for EOR (polymer flooding) applications.  

 

2.8  Effect of antioxidants, reducing agents on the stability of the viscosity 

Alcohols can prevent oxidization of the polymer; because the alcohol can be easily 

oxidized and thereby as sacrificial agent protect the polymer against oxidization (Shupe 

1981; Wellington 1983; Ryles 1983). In this work Iso-Butyl-Alcohol (IBA) has been 

used.  

 

There are some other chemicals which may have the same effect as alcohol, e.g. thiourea, 

sodium hydrosulphite, formaldehyde, biocids and surfactants. For example formaldehyde 

may increase the polymer stability in terms of viscosity, but it depends on the source of 

formaldehyde preparation. The results of Shupe’s (1981) study on three different  
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formaldehyde samples showed that, a mixture of formaldehyde and methanol will be 

more effective than only formaldehyde. Also the mixture with higher formaldehyde  
                                                    
percentage was more effective in order to prevent oxidization of polymer, and the effect 

of formaldehyde alone also was better than the effect of methanol alone.  

 
The optimum concentration of formaldehyde in order to have a better effect on the 

stability of the viscosity was tested and it was in the range of 200 to 400 ppm. 

 

Thiourea as another chemical with a great effect on the polymer stability in terms of 

viscosity of polyacrylamide polymers has been tested (Schurs and McKennon, 1996). To 

optimize the results of using thiourea on the stability of the viscosity, concentration has 

an important role. Higher the concentration gives better stability results in terms of 

viscosity. The mixture of thiourea and other chemicals, e.g. IPA, can be more effective 

than the use of thiourea alone. For example a mixture of thiourea with a concentration of 

400 ppm, and IPA with a concentration of 800 ppm, is more efficient to prevent polymer 

oxidation and viscosity losses. It must be mentioned, unlike the formaldehyde which may 

be considered as a biocide, by using thiourea as an antioxidant additional biocids is also 

required in order to control bacterial growth and prevent biological degradation.  

 

2.9  Polymer hydrolysis and precipitation mechanisms  

At high temperature and high salinity concentrations, proceeding of the amide group 

hydrolysis makes these polymers unfavourable (Parker and Lezzi 1993). Degree of 

hydrolysis (�) defines as the fraction of the carboxyl residue (n) replacing acrylamide 

units (m) over the total number of the polymer macromolecule.  

 

As shown in Figure 2.2 (A), the degree of hydrolysis is defined as: 

 

mn
n
�

�             (2.8) 
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Degree of hydrolysis is important and can affect the physical properties of the polymers, 

e.g. polymer rheological properties (Davison and Mentzer, 1980), solution viscosity,  

polymer retention, flow resistance properties (Martin and Sherwood, 1975), and fluid 

flow behaviour (Lewandowska, 2006). 
                                    
 
It should be mentioned that for the sulfonated co-polymers in addition to the hydrolysis 

of amide groups, the AMPS co-monomer group also may hydrolyse at temperature higher 

than 100oC and pH 8 (Audibert, Argillier, 1995; Parker and Lezzi 1993). If pH decreases 

then the rate of hydrolysis will increase. For example at pH 6, the rate of hydrolysis is 5 

times faster than pH 8, and this is due to the net negative charge on the polymer which is 

higher at pH 8. Therefore direct affect of hydroxide ions on amide group is more difficult 

because of greater electrostatic repulsion (Parker and Lezzi 1993). Introducing AMPS co-

monomer group into the polyacrylamide polymer molecular structure showed raise in the 

stability limit in terms of viscosity of polyacrylamide at least up to 120oC. But for 

reservoir with temperature more than 120oC, AMPS co-monomers can not protect 

acrylamide against thermal hydrolysis (Moradi-Araghi et. al, 1987; Audibert, Argillier 

1995). 

 

It is good to know that Taylor and Nasr-El-Din (1994) generally reviewed all methods for 

the determination of degree of hydrolysis. These methods are mainly by using titration 

methods, e.g. coductometric (Dexter and Ryles, 1989), potentiometric (Jacovic and 

Zivojin 1973; Muller et. al, 1979) colloidal, spectroscopy methods, e.g. C13 Nuclear 

Magnetic Resonance (Gillet and Delpuech, 1980), infrared (Muller et. al, 1979), and 

Ultraviolet (UV) spectroscopy (Muller et. al, 1979). Here potentiometric titration was 

used to measure degree of hydrolysis. 
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Chapter 3 

Polymer Adsorption and Retention Mechanisms 
 

One of the most important properties which made polymer interested for EOR processes 

as mentioned earlier was their viscosyfing property. Another important parameter which 

may affect the feasibility study plan of a polymer flooding project is the retention and 

adsorption of polymer in porous medium. Adsorption and retention may be defined as the 

interaction between the polymer molecules and the porous medium which leads polymer 

to be retained or adsorbed (Sorbie, 1991). The adsorption and retention of polymer will 

affect both, polymer and porous medium properties. For example the viscosity of 

adsorbed polymer will be lower than the viscosity of the injected polymer. In the 

following sections more information of adsorption and retention will be presented.  

 

3.1  Polymer adsorption/retention mechanisms in porous media

Polymer adsorption is mainly physical interaction, e.g. electrostatic attraction due to the 

charges differences between the solid surface and polymer or Van der Waal’s dipole-

dipole interactions. Polymer retention is more general, and consists of three main 

mechanisms; polymer adsorption, mechanical entrapment and hydrodynamic retention as 

shown in Figure 3.1 (Sorbie, 1991). 
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Figure 3.1. General schematic of different polymer retention mechanisms in porous 

medium  

 

Adsorption mechanism which is the major part of retention will be discussed more 

afterwards, but mechanical entrapment happens when the polymer macromolecules 

trapped in narrow pore throat (Willhite and Dominguez, 1977). The hydrodynamic 

retention is not fully understood, but it was observed by the changes of polymer flow rate 

(Chauveteau and Kohler, 1974, Dominguez and Willhite, 1977). 

 

3.1.1  Polymer adsorption and adsorption isotherms 

In static adsorption measurements, the mineral sample is soaked in the polymer solution. 

The difference of polymer concentrations before and after mixing with rock sample is 

measured. The static adsorption onto the mineral surfaces is measured by the depletion 

method. The unit of retention level (�) is the mass of the polymer per unit mass of solid 

either in g/g or in �g/g.  It is more scientific to measure surface excess (�s) which is the 

mass of polymer per unit surface area of the solid. It should be mentioned that the solid 

surface is measured by gas adsorption using BET method (Gregg and Sing, 1982). Based 

on the above mentioned information for static adsorption measurement, the surface 

excess (�s), [mass/area], can be calculated as: 
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2 1( )C Cs V
A
�

� �           (3.1) 

 

Where; V is the volume of polymer solution with a known concentration of C1, the 

measured concentration of polymer after being adsorbed is C2, and A is the total surface 

area of the adsorbent. In this research silica specific surface area was 3.65 m2g-1, and 

kaolinite specific surface area was approximately 10.6 m2g-1, which were given by the 

supplier. 

 

Adsorption is the only mechanism which remove polymer from the solution and results in 

a significant viscosity reduction at high level of adsorption. Typically, the adsorption by 

bulk static method is much larger than that by dynamic flow conditions (Lakatos et al., 

1979). The presence of inaccessible pore volume and smaller specific surface area in 

dynamic methods reduces the actual rock surface area that is exposed to the polymer 

solution during flow. 

 

In the static adsorption measurement flocculation of the mineral particles by polymer 

bridging, is an important parameter which may affect the adsorption. The flocculation is a 

function of solid-liquid (S/L) ratio (Argillier et. al, 1996). By increasing S/L ratio for a 

polymer solution with known concentration, due to aggregation of mineral particles the 

available surface to the polymer decreases and then total adsorption decreases. In the 

other side, very low S/L ratio make it difficult to measure the adsorption amount 

accurately because of the small difference in initial and final concentration. Here based 

on the experiment results, an optimum S/L of 0.005 was chosen to get a compromise 

between accurate measurements and representative values for adsorption ratio.   

 

A general graph of adsorption isotherms of polyacrylamide polymers onto the silica 

mineral surface is shown in Figure 3.2. In the classical adsorption isotherms, plateau 

region is corresponded to the saturation of the mineral surface by the polymer chains 

(Fig. 3.2). 
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Figure 3.2. Adsorption isotherm of HPAM onto the silica mineral surface (Szabo 1975) 

In this work, for all studied polymers a classical type of adsorption isotherms was 

observed. The general conformation of adsorbed polymer molecules at a solid/liquid 

interface is shown in Figure 3.3.  

 

 

 

 

 

 

 

 

 

Figure 3.3. View of polymer molecules adsorption at a solid-liquid interface with tail, 
loops and trains (Sorbie, 1980). 
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As shown in Fig. 3.3, the adsorbed layer of polymers on the mineral surface consists of 

trains, loops and tails. 

 

3.1.2  Polymer retention  

Retention of polymer as mentioned before is mostly consists of polymer adsorption. 

Some times it may involve mechanical entrapment of polymer macromolecules in porous 

medium, and to some extent hydrodynamically trapped polymer molecules in stagnant 

zones (Fig 3.1). The reason for the entrapment of polymer molecules in porous medium is 

simply due to the size of polymer molecules which may be larger than the size of pore 

throat. Retention experiments are simply the injection of polymer with a known 

concentration and a tracer into the core or sand pack. In this research to compare the 

result with adsorption experiments, Berea sandstone which is mainly consisted of quartz 

sand with about 4 % clay mostly kaolinite was used. Here, to perform retention 

experiments,  2 pore volumes (PV) of the polymer with tracer (100 ppm LiNO3) solution 

was injected into the Berea sandstone core, followed by 3 pore volumes of the same the 

same salinity in order to wash out the polymer, while leaving the irreversibly-adsorbed 

polymer. Samples were collected in 4 ml intervals at the other end, and the polymer and 

tracer concentrations were measured. To measure the concentration of samples either in 

static or in dynamic experiments the starch triiodide method was used (Scoggins and 

Miller 1979). A complete material balance can then be obtained by calculating the 

difference between the mass of produced polymer and the amount of input polymer. By 

assuming that there is no viscous instability with chase-brine injection, because of the 

small core diameter (10 cm) and the relatively low polymer viscosity. 

 

To measure the tracer concentration inductively coupled plasma atomic emission 

spectrometry (ICP-AES) was used. Polymer concentrations alterations were found to 

affect the measurement, higher polymer concentrations led to a lower measured lithium 

concentration. Probably the changes in viscosity and/or surface properties affect the 

sample introduction system so that less sample is introduced with polymer present.  
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To solve this, the effluent samples were diluted 100 times with a 1 wt. % HNO3 solution, 

and an internal standard (1 ppm Yttrium) was used to correct the signal. 
                                            
 
Figure 3.4 shows a general effluent production of injecting a known pore volume of 

polymer solution with tracer post flushed by a known pore volume of solvent. Here, for 

all studied polymers the same effluent profiles as Fig. 3.4 were observed. 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. Experimental and modelled for effluent profile of injecting 2 PV of 50 ppm 

HPAM and 36Cl tracer in sandstone cores (Sorbie et. al. 1989) 

 

3.2  Main parameters governing adsorption and retention

 Several parameters, e.g. solvent property, temperature, type of solid surface, polymer 

properties for example sulfonation degree and molecular weight can affect adsorption and 

retention. In this work, the effect of all mentioned parameters has been investigated and 

results have been discussed in paper 2. 

 

3.2.1  Influence of solvent and solid properties on the adsorption

To study the effect of solvent on the adsorption two different solvents with the same ionic 

strength one with divalent ion and the other without divalent ions have been used. Ionic 

strength of the solvent measured as: 
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Where; Zi is the charge of ith ion, Ci is its molar concentration of ith ion. Based on Eq. 3.2, 

ionic strength of synthetic seawater with NaCl (25000 ppm), KCl (700 ppm) and divalent 

ions, Ca2+ (1700 ppm), Mg2+ (11000 ppm), is equivalent to the ionic strength of 5 wt. % 

NaCl solvent. Based on the flocculation power of monovalent and divalent ions (Na+ = 1, 

K+ = 1.8, Mg2+ = 27, and Ca2+ = 45, Rengasamy and Summer 1998), in the adsorption 

test on kaolinite surface the effect of flocculation for the studied polymers in 5 wt. % 

NaCl was less pronounced than SSW (Lu et al. 2002; Rashidi, et al. 2009). The main 

reasons are; cations have more charge screening ability than monovalent, also divalent 

ions may be more effective to act as a binding ion between the anionic surface sites of the 

mineral and AMPS or Carboxylate group in sulfonated polyacrylamide polymer or 

HPAM respectively (O’Gorman and Kitchener, 1974).  

 

As Figure 3.5 shows, in addition to ions, mineral soil texture also may affect the 

adsorption of polyacrylamide polymers. 

 

 

 

 

 

 

 

 

 

 

Figure 3.5. Influence of divalent ion concentrations for different soil texture on the 
polyacrylamide adsorption (Lu et al. 2002). 
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The same behaviour with slower trend compared to divalent ions is seen for monovalent 

and different soil textures, which is shown in Figure 3.6. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6. Influence of monovalent ion concentrations for different soil texture on the 

polyacrylamide adsorption (Lu et al. 2002). 

 

3.2.2 Influence of inaccessible pore volume on the polymer retention   

As mentioned before tracer is a chemical with almost no adsorption onto the mineral 

surface, and one important reason to inject tracer with polymer into the core is to better 

understand the principle of polymer transport behaviour in porous medium. One aspect of 

the effect of polymer molecular weight on the retention is due to the inaccessible pore 

volume, which is presented in Figure 3.7.  
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Figure 3.7. Effluent profiles of injected polymer and tracer (salt) with inaccessible pore 

volume (Dawson and Lantz, 1972). 

 

As Fig. 3.7 shows, the tracer is produced later than the polymer, indicating that some of 

the pore volume is accessible to the tracer, but is inaccessible to the polymer 

macromolecules, similar polymer transport behaviour also was found by Lakatos and 

Lakatos-Szabo (1980). In the calculation and mathematical modeling of polymer flooding 

process this must be considered, and compensated. 
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Chapter 4

Main Results
 

4.1  Polymer characterization for EOR applications 

The main objective in this project is related to investigate sulfonated polyacrylamide 

polymers for applications especially to high salinity and high temperature applications 

(Figure 4.1). The laboratory testing includes viscosity measurement at ambient and high 

temperature, adsorption/retention, and core tests.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. Limitations of brine salinity (total dissolved solid, TDS) and reservoir 

temperature of conventional polymers and challenge for research and development. 
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So far a systematic study of the sulfonated polyacrylamide polymers regarding to their 

viscosity behaviour both at ambient and elevated temperature, salt and hardness 

tolerance, adsorption and retention at ambient and elevated temperature, has not been 

performed. In this thesis main focus was on the investigation of the effect of sulfonation 

degree, molecular weight and IBA concentration variations on the viscosity behaviour of 

these polymers. In this respect a comparison was made among the out coming results of 

the sulfonated polyacrylamide polymers with HPAM with the same molecular weight as 

sulfonated polyacrylamide polymers, e.g. 8 MDalton. In this chapter a summary of the 

main results which have already been presented in papers 1 to 3 will be discussed.   

4.2  Viscosity study of the polymers at ambient temperature 

Main studied rheological property of the sulfonated polyacrylamide and HPAM was 

polymer solution viscosity. Study of the effect of several parameters, e.g. shear rate, 

polymer concentration, salt concentration, the presence of divalent ions, redissolution of 

precipitated polymer are presented in Paper 1.  

 

Sulfonation degree may affect fluid flow behaviour and shear rate dependence of 

viscosity. At low polymer concentrations, e.g. less than 1000 ppm, the polymer solutions 

behave like Newtonian fluids i.e. the viscosity is shear-independent, within the range of 

shear rate studied. For higher polymer concentrations, however, the viscosity is found to 

decrease with shear rate as for pseudo-plastic (shear thinning) fluids (Paper 1). By 

increasing the sulfonation degree, shear rate dependence of viscosity decreases (Paper 1, 

Figure 3). This is due to the introduction of AMPS co-monomer unit in the hydrolyzed 

polyacrylamide molecular chain. AMPS co-monomer unit probably increase the rigidity 

of polymer molecule chain, and then will induce better resistant to shear (Ballard et. al, 

1988).  

 

As results show at a given NaCl-concentration, the critical overlap concentration, C*, is 

found to decrease as the sulfonation degree of the polymers increases (Table 3, Paper1).  
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This decrease can be explained by the increase in the charge density of the polymer chain 

resulting in more extended polymer molecules where fewer polymer molecules (or less 

concentration) are needed for interaction between the polymer chains.  

 

The effect of salt concentration on the viscosity of studied polymer is shown in Figure 

4.2.  

 

 

 

 

 

 

 

 

 

Figure 4.2. The viscosity of sulfonation polyacrylamide polymers, and HPAM with the 
same molecular weight, e.g. 8 MDalton, and different sulfonation degree, as a function of 
NaCl concentration, 5000 ppm polymer concentration, 100 s-1, 20oC  
 

As shown, generally for all polymers viscosity decreases as a function of salinity, this can 

be explained as screening of the charges on polymer chain by cations (Ait-Kadi, et. al, 

1987; and Chegas, et. al, 2004). Further as shown in Figure 4.2, at low NaCl 

concentration, e.g. less than 1 wt. %, the polymer with the highest sulfonation degree has 

highest viscosity. For NaCl concentrations above 3 wt. %, the polymer with the lowest 

sulfonation degree gives the highest viscosity, as was explained in section 2.2, this 

behavior must likely is due to more hydrophobicity of the polymer with the lowest 

sulfonation degree (McCormick et. al, 1993; and Uhl et. al, 1995).  Generally, when  
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AMPS co-monomer is introduced, polymer stability in terms of viscosity increases and 

this make sulfonated copolymer favorable for more high salinity applications. Also as 

expected the viscosity increases with increasing molecular weight. For all sulfonated 

polyacrylamide polymers except the one with the lowest molecular weight (Figure 7, 

Paper 1) the viscosity at 10 wt. % NaCl concentration is higher than HPAM.  

 

The effect of divalent ions on the viscosity losses of the studied polymers is also given in 

table 4.1.  

 

Table 4.1. Viscosity (mPa.s) for 5000 ppm sulfonated polyacrylamide polymers and 
HPAM, in two solvents with the same salinity, e.g. synthetic sea water and 5 wt. %                    

NaCl (Rashidi et. al, 2009) (Table IV, Paper 1). 

 

Compare to HPAM The effect of divalent ions on the viscosity losses is lower for 

sulfonated copolymers independent on sulfonation degree. As introduced in section 2.5, 

HPAM is more sensitive to divalent ions due to the strong binding between divalent ions 

and carboxylate group (COO-) (Lipton, 1974; Sandvik and Maerker, 1977; Szabo 1979; 

Zaitoun and Potie, 1983; Moradi et al., 1995; Martin and Calgon, 1995).  

 

As been discussed in section 2.5, in the presence of divalent ions especially Ca2+ more 

than a certain concentration, the polymer will precipitate and come out of the solution. 

The precipitation mechanism differs with NaCl present (Table V, Paper 1). Generally, 

solubility of HPAM in hard brine (with Ca2+) by adding NaCl to the solution will 

improve (Schwartz and Francois 1981, Zaitoun and Potie 1983). The same result was 

observed for PAMS copolymers, and higher NaCl concentration (20 wt. %) increase 

solubility of polymer more than at lower NaCl concentration. It can be seen that 

solubility of PAMS copolymers in hard brine (with Ca2+ and 15 wt. % NaCl) will 

Polymers                AN105       AN113       AN125   AN125VHM    AN132   HPAM     
5 wt. % NaCl              32.6            28.6           27.1        34.2               27.4        33.5 
 
Synthetic seawater      29.7           27.9           27.0        31.1               24.6        24.4 
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increase with sulfonation degree. In all cases viscosity was better maintained with 

divalent ions present at high salinity concentrations for PAMS copolymers than HPAM.  

 

4.3  Viscosity study of the polymers at 80oC

The influence of high temperature on the viscosity losses of the studied polymer was 

studied explicit and the results are presented in Paper 3. In this work, all test and 

measurements were performed under aerobic condition. These studied have been 

performed both, with and without added IBA, in which without IBA all the polymers 

more and less after 90 days loss their viscosity (Table III, Paper 3). It can be seen that an 

increase in IBA concentration (Figure 5, Paper 3), leads to increase polymer stability in 

terms of viscosity.  In 5 wt. % NaCl solvent, stability of viscosity by adding IBA levels 

off at 3 wt. % IBA concentration, but the highest IBA concentration(5 wt. %) is the best 

choice for achieving a maximum solution viscosity in solvent with divalent ions present 

(Figure 5, Paper 3). For all presented results a fixed IBA as an optimum concentration, 3 

wt. %, was chosen.   

 

Figure 4.3 shows the results of the effect of sulfonation degree for studied polymers at 

ambient and exposed at 80oC for 90 days.  
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Figure 4.3. The viscosity as a function of sulfonation degree at ambient temperature(5000 
ppm polymer concentration) and exposed 90 days at 80oC, for the polymers with the 
same molecular weight, e.g. 8 MD, with (3 wt. %) and without IBA, at SSW and 5 wt. % 
NaCl, and at 100 s-1. 
 
 
Figure 4.3, indicate that there is difference between the effect of sulfonation degree at 

ambient and 80oC, which may confirm the effect of temperature on the viscosity behavior 

of these polymer. As explained above at ambient temperature, the viscosity of polymer 

with lowest sulfonation degree is better maintained at high salt concentrations. The 

possible explanation was due to less charge density on polymer chain. While at high 

temperature high viscosity is achieved for the polymers with sulfonation degree more 

than 25 mole % in 5 wt. % NaCl solvent. As seen, with divalent ions present the 

difference in viscosity is not so big, but still we have an increase in viscosity particularly 

for the polymer with the highest sulfonation degree, AN132. 

 

Increase in sulfonation degree at high temperature may impact the viscosity behavior and 

shear rate dependence of polymers. At 80oC, the viscosity of HPAM solution decreases 

abruptly as function of aging time, but for the sulfonated polyacrylamide polymer with  



 33

                                                                                                                        CHAPTER 4. MIAN RESULTS      
                                                               

highest sulfonation degree, AN132, the viscosity is more and less independent of aging 

time within studied time scale (Figure 1, paper 3).  

                                                                                                                         
 
Also the viscosity behavior changes at high temperature from shear thinning, i.e. 

viscosity decreases when shear rate increases, to the Newtonian behavior, i.e. the 

viscosity is shear independent.  For HPAM it only takes 10 days to induce this transition 

in viscosity behavior, while for AN125 it takes about 7 months before we observe 

viscosity behavior changes towards Newtonian behavior (Figures 3 and 4, Paper 1). 

 

As introduced in section 2.5, polyacrylamide in hard brine will precipitate, and high 

temperature severe the effect of divalent ions on precipitation enhancement. In this work, 

at 3 wt. % IBA concentration, with divalent ions present, precipitation has been observed 

for HPAM after 3 months and similarly for the polymer with the lowest sulfonation 

degree (AN105) after 7 months at 80oC. No precipitation has been observed for the other 

sulfonated co-polymers even after a year exposed to 80oC in SSW. In 5 wt. % NaCl 

solvent, no precipitation was observed for all the sulfonated co-polymers, but HPAM was 

found to precipitate after 7 months. This means that precipitation is not a major cause for 

viscosity loss of PAMS co-polymers. Therefore the major reason for viscosity loss of 

PAMS co-polymers seems to be degree of hydrolysis. The degree of hydrolysis of the 

sulfonated copolymers is directly dependent on the sulfonation degree, and this is in line 

with the other author’s results for sulfonated polyacrylamide polymers (Ryles, 1988; 

Dexter and Ryles, 1989). The results confirmed that if sulfonation degree increases then 

the rate of hydrolysis decreases and levels off (Table IV, paper 3). 

 

Figure 4.4 shows the effect of molecular weight on the viscosity changes at ambient and 

exposed 90 days at 80oC for both 5 wt. % NaCl and SSW solvents.  
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Figure 4.4. The viscosity as a function of molecular weight for the polymers with the 
same sulfonation degree, 25 mole%, exposed 90 days at 80oC and ambient temperature,19 
at 5 wt. % NaCl and SSW, and at 100 s-1 shear rate (Figure 7, Paper 3). 
 

As shown in Fig. 4.4, the absolute value of the viscosity loss is higher for the polymer 

with higher molecular weight for both SSW and 5 wt. % NaCl with a larger effect at 

SSW solution. 

 

4.4  Adsorption and retention of the studied polymers

4.4.1  Adsorption study results  

The effect of main parameters on the adsorption and retention at ambient temperature 

was studied explicit and the results are presented in Paper 2. The effect of temperature on 

retention also was tested and results are given in paper 3.  

 

As been introduced in chapter 3, in this work for static adsorption experiments two 

powdered minerals, e.g. kaolinite and silica were used. Kaolinite is a type of clay with 

negative overall charge and positive charge at the edges and silica has only negative 

surface charges. Due to repulsion between the charges on the silica surface and polymer 

chain the adsorption on the silica mineral surface was very low (Figure 3, Paper 2). 
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Generally for all the sulfonated polyacrylamide polymers the adsorption is considerably 

lower than HPAM. To avoid particle coagulation in the static adsorption experiments 

either at SSW or 5 wt. % NaCl solvents, different solid/liquid ratios were tested and at the 

end 0.005 has been chosen (section 3.1.1, and Figures 1 and 2, Paper 2). 

 

The effect of sulfonation degree on the adsorption of polymers with the same molecular 

weight, 8 MDalton, and a range of sulfonation degree from 5 mole % to 32 mole % 

presented in Figure 4.5. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.5. Adsorption of sulfonated polyacrylamide polymers, and HPAM on kaolinite 
as a function of sulfonation degree, S/L 0.005, 20oC (Figure 5, Paper 2). 
 
 
As results show, the adsorption of the polymer with higher sulfonation degree was less 

than the other polymers. But due to the thickness of the adsorbed layer which is higher 

for the polymer with higher molecular weight (Hlady et al. 1982), the results showed that 

by increasing molecular weight the adsorption also increases (Figure 6, paper 2). This 

observation conforms to those of Lipatov et al. (1974) and Gramain et al. (1981). 

Gramain et al. (1981) interpreted that the polymers with higher molecular weight occupy 

a smaller fraction of segments anchored onto the surface, thereby leaving more areas for 

polymer adsorption. Other researchers (Lakatos et al., 1979; Lakatos et al., 1980) found a  
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higher adsorption level with increasing molecular weight of polymers, citing the reason 

of size contributions.  

 

 It is good to mention, for all calculations there were some sources of uncertainty both for 

polymer solution preparation and in concentration measurement. For this study the final 

amount of uncertainties is calculated using propagation of uncertainty (Figure 3, paper 2). 

 

4.4.2  Retention study results at ambient temperature  
  
Again as been discussed in chapter 3, retention at ambient and elevated temperature 

(80oC), was investigated by injecting 3 pore volume (PV) of the polymer with a tracer 

followed by 2 PV post flush of solvent into the Berea sandstone cores. The dimensions of 

the used cores were around 10 cm long and 3.7cm in diameter. The permeability and 

porosity were around 500-700 mD, and 20% respectively. 

  

As introduced in section 3.1, In addition to the adsorption which may be considered as 

the main retention mechanism of the studied polymers some other mechanisms, e.g. 

mechanical entrapment and constant shear rate of injecting polymer into the core also 

may affect the retention of these polymers. 

 

To explain above mentioned mechanism as Figure 4.6 shows, the dynamic retention for 

the polymer with higher molecular weight (AN125VHM) was less than the polymer with 

lower molecular weight (AN125VLM). Interpretation of the effluent production profiles 

of the tracer with polymer solution into the core showed that the tracer, with no 

adsorption, came out after the AN125VHM (Fig. 4.7). This means that AN125VLM is 

behaving more and less like the tracer which has access to most of the pores in the core 

(Figure 4.8). While some of the pore volumes were accessible for tracer, at the same time 

were inaccessible for AN125VHM macromolecules (Lakatos and Lakatos-Szabo, 1980). 

Thereby it is deviated more from the tracer effluent production profile. 
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Figure 4.6. Retention of sulfonated polyacrylamide polymers with the same sulfonation 
degree (25 mole %), and HPAM as a function of molecular weight, on Berea, 20oC 
(Figure 9, Paper 2). 
 
 
 

 
 
 
 
 
 
 
 
 
 
Figure 4.7. Example of effluent production from injection 2 PV of AN125VHM in SSW, 
1000 ppm, retention on Berea at 20oC (Figure 7, Paper 2). 
 
 
 
 

Figure 4.8. Example of effluent production from injection of 2 PV of AN125VLM in 
SSW, 1000 ppm, retention on Berea at 20oC (Figure 8, Paper 2). 
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As the effluent profiles for two polymers with the highest and lowest molecular weight in 

Figures 4.7 and 4.8 shows, possibly due to entrapment of high molecular weight polymer 

molecules in the porous medium, the retention for the polymer with higher molecular 

weight is lower. 

The results of the sulfonation degree effect on the retention showed the same trend as it 

was for adsorption, this means that again the polymer with higher sulfonation degree is 

less retained in Berea sandstone cores (Figure 10, Paper 2). 

  

4.4.3  Retention study results at 80oC

As results show in Paper 3, a small increase of the adsorbed amount of injected polymer 

at high temperature in comparison with the adsorbed amount of injection at ambient 

temperature was observed. This is also inline with the results of Noik et. al, (1994) study 

for one sulfonated polyacrylamide polymer with 25 mole % sulfonation degree at two 

different temperatures, 90oC and 100oC. As Noik et. al, (1994) showed he retention of the 

studied sulfonated polyacrylamide at the above mentioned temperature was the same. 

Then temperature can not be a remarkable challenge for the sulfonated polyacrylamide 

polymers as results shows in Table 4.2. 

 

Table 4.2. The effect of temperature on retention of polymer in Berea Sandstone core at 
ambient and 80oC (Table V, Paper 3). 

Retention (μg/g) 

Polymers           AN105   AN113  AN125VLM   AN125   AN125VHM  AN132   HPAM

SSW at 20oC       111.5      58.7           39.0               --              3.2              16.5        124.2

SSW at 80oC       111.7      59.9           46.8               --             10.5             19.9        139.0 

 

4.5  Summary of main results  

Different sulfonated polyacrylamide polymers have been investigated to determine 

whether high temperature, high salinity and hardness have a significant effect on the 

viscosity stability, and adsorption/retention of these polymers during enhanced oil  
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recovery processes. The influence of several parameters has been investigated. The tasks 

were investigated by the means of viscosity and adsorption/retention measurements with 

modified Anton-Paar viscometer and other used apparatuses.  

                                         

 

   

 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.9. A general comparison between the sulfonated polyacrylamide polymers for 

their viscosity and retention in SSW and 5 wt. % NaCl, at ambient and 80oC. 

 

As general results show (Figure 4.9), for the sulfonated polyacrylamide polymers only 

minor reduction in viscosity by increase in sulfonation degree, but there was a substantial 

decrease in retention and adsorption and also the polymer viscosity is better maintained 

both in 5 wt. % NaCl and SSW solvent at high temperature. The results showed that high 

sulfonation degree is more favourable and should be further investigated for polymer 

flooding in moderate high salinity and high temperature reservoirs. In addition to increase 

in sulfonation degree, increasing molecular weight can further improve the viscosity.  
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Chapter 5

Concluding Remarks and Future Work  

5.1  Concluding remarks 

The influence of temperature, salinity/hardness on the viscosity and adsorption/retention 

of sulfonated polyacrylamide during enhanced oil recovery was investigated. Several 

factors have been identified as an influence on the viscosity and adsorption/retention of 

the studied polymers. These factors are listed here according to their assumed 

importance:  

 

1. Viscosity:

� Effect of shear rate and polymer concentration on viscosity: 

At low polymer concentration (<1000 ppm) sulfonated copolymers behave Newtonian, 

while at higher concentration they are shear thinning. Replacing some carboxylate groups 

in HPAM with AMPS co-monomers increases rigidity of the polymer molecules. For 

sulfonated copolymers higher sulfonation degree is more shear thinning (shear rate 10-

1000 s-1). Increase in mole % of the sulfonation degree, which is equivalent to increase in 

charge density on polymer chain will; decrease critical overlap concentration (C*) for a 

specific salt concentration.  
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� Effect of ions on viscosity:  

Sulfonated copolymers maintain viscosity from 1 wt. % NaCl up to 20 wt. % NaCl. At 

low salinity, e.g. less than 3 wt. % NaCl, the highest sulfonation degree gives highest 

viscosity, opposite trend was obtained at high salinity.  

Generally, strong binding between divalent ions and –COO- make HPAM molecules 

more sensitive to divalent ions. Replacing some of –COO- with sulfonated group in a 

polyacrylamide chain makes it less sensitive to divalent ions. The sulfonated copolymers 

with highest sulfonation degree are more soluble in mixed brine (with Ca2+) than the 

other sulfonated copolymers.  

 

� Effect of temperature on viscosity: 

Viscosity is maintained for test time up to 7 months at 80oC for polymers with 

sulfonation degree of more than 25 mole % in 5 wt. % NaCl solvent and using 3 wt. % 

IBA. With divalent ions present, similar trend in viscosity with relation to sulfonation 

degree is observed. 

 The presence of the antioxidant, IBA, can increase the thermal stability, in terms of 

viscosity, of sulfonated polyacrylamide polymers. Good results were obtained with 3 and 

5 wt. % IBA concentration in both 5 wt. % NaCl, and SSW solvents. 

At high temperature the presence of divalent ions leads to strong reduction of HPAM 

solution viscosity, but the viscosity is better maintained for PAMS copolymer. 

Precipitation has been observed for HPAM which precipitated after almost 3 months, and 

also for PAMS copolymer with the lowest sulfonation degree (5 mole %) which 

precipitated after 7 months aging at 80oC. 
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2. Adsorption and retention

� Effect of sulfonation degree  

Both adsorption and retention for the sulfonated polyacrylamide polymers are reduced 

with increasing sulfonation degree. Compared to HPAM a much lower retention is 

observed for the sulfonated co-polymers. 

 Retention was found to be relatively independent of temperature.  

 

� Effect of molecular weight  

Static adsorption increases for polymer with higher molecular weight.   

The retention for polymer with higher molecular weight is lower due to inaccessible 

pores for larger molecules. Like all other polymers increasing molecular weight can 

further improve the viscosity of PAMS co-polymers. 

 

Overall conclusion 

The results of the viscosity stability and the desorption/retention of  PAMS copolymer at 

high temperature, high salinity and hardness concentrations show, this group of polymers 

should be considered as an alternative to HPAM in more saline brine and at high 

temperature mobility control EOR processes. 

 

5.2  Suggestions for future study   

Some suggestions could be given for further work and they are as listed below: 

 

First of all since our purpose was to test the polymers under aerobic condition, then at 

this stage further experiment at high temperature under anaerobic condition, to measure 

and control dissolved oxygen at each time step, can be suggested.  This can be done by a  
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closed loop capillary viscometer. By this method two major problems will be prevented; 

first, the amount of dissolved oxygen and polymer oxidation is more under controlled, 

second, also evaporation of polymer solution at higher temperature during the viscosity 

measurement can be prevented.  

  
At this stage it is good to study the viscosity of the polymer solutions even at higher 

temperature, e.g. more than 100oC for the polymer with higher sulfonation degree.  

 

Another suggestion is to study the viscosity of some other polymers with the structure 

based on these sulfonated polyacrylamide polymers. For example, it could be useful to 

study a polymer with high sulfonation degree with increases molecular weight. Also to 

find out a sulfonated polyacrylamide polymer with more hydrophobic group, better 

solubility and better maintained viscosity at high temperature and high salinity.  
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