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Summary 
 
Immunotherapy of malignancies aims at activating the patient’s own immune system 

to fight the tumour affecting the patient. Even though the use of dendritic cells (DC) 

has shown promising results, the DC vaccination strategy needs improvement, as only 

few relevant clinical responses could be documented so far. Aim: In this study, the 

standard protocol to generate monocyte derived DC using GM-CSF and IL-4 was 

compared to the use of GM-CSF and IL-15. Methods: Monocytes were isolated by 

plastic adherence from peripheral blood mononuclear cells and cultured for 6 days 

with GM-CSF and either IL-4 (IL4-DC) or IL-15 (IL15-DC). A fraction of the IL4-

DC was stimulated with a cytokine cocktail, while a fraction of the IL15-DC was 

stimulated by adding TNF-α 24 hours before harvesting. The phenotypes of the four 

DC populations were determined using flow cytometry. Intracellular signalling 

pathways were investigated using phospho-specific antibodies in a Western blot. IL-

12 production was analysed in an ELISA. Migratory capacity was determined in a 

chemotaxis assay. Results: Monocytes cultured with GM-CSF and IL-15 developed a 

DC-like morphology. Phenotypic analyses revealed that both IL4-DC and IL15-DC 

had down-regulated CD14 expression and up-regulated CD1a expression, although 

IL15-DC to a lesser extent. IL15-DC showed an enhanced surface expression of co-

stimulatory molecules CD80 and CD86 whereas no difference was observed in 

surface expression of MHC class II and CD40. Upon stimulation, an up-regulation of 

the maturation marker CD83 and CD86 were observed on IL4-DC only. The IL15-DC 

had more phosphorylated JNK and ERK than IL4-DC whereas the phosphorylation 

level of p38 in both IL4-DC and IL15-DC were approximately the same. None of the 

cell populations produced IL-12 or showed chemotaxis towards CCL19. 

Conclusions: The generation of IL15-DC turned out to be more problematic 

compared to the generation of IL4-DC. The stimulatory activity of IL-15 on T-cell 

proliferation resulted in a high degree of contamination with T -cells in the IL15-DC 

cultures as I did not have a pure monocyte population to start with. This problem 

might be overcome by using either alternative monocyte isolation protocols or by 

reducing the culture period from 5-6 to 3-4 days. Because of the variation in the 

results of the experiments the data needs to be confirmed with this approach.  
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Abbreviations 
 
Abbreviation  Name Abbreviation Name 
Ag Antigen LC Langerhans cells 

APC 

 

Antigen presenting cells LPS Lipopolysaccharide 

APS Ammonium persulfate mAb Monoclonal antibody 

BSA Bovine serum albumin MHC Major 

histocompatibility 

complex 

CFDA SE Carboxyfluorescein 
diacetate succinimidyl ester 

MLR Mixed leukocyte 

reaction 

CFSE Carboxyfluorescein 
succinimidyl ester 

NAC Non adherent cells 

CTL Cytotoxic T-lymphocytes NK Natural killer  

DC 
 

Dendritic cells 
 

NKT Natural killer T-cells 

dH2O Distilled water PAMP Pathogen associated 
molecular patterns 

DMSO Dimethyl sulfoxide RT Room temperature 

EDTA Ethylenediaminetetraacetic 
acid 

SDS 
 
 

Sodium dodecyl Sulfate 
 

FBS 
 

Fetal bovine serum 
 

SSC Side scatter channel 

FSC Forward scatter channel TCR T-cell receptors  

GM-CSF 

 

Granulocyte macrophage 
colony stimulating factor 

TH cells T helper cells 

IFN-γ Interferon gamma TLR Toll-like receptors 

IL Interleukin TNF Tumour necrosis factor 

IL-1β Interleukin 1 beta TSLP 

 

Thymic stromal 
lymphopoietin 
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1. Introduction 

1.1 Immune system 

 

The human body is always exposed to pathogenic infectious agents and, yet, the body 

usually can resist the invasion of these agents. It is our immune system that protects 

us against these infectious agents. The immune system has two main branches, innate 

or non-specific immune system and adaptive or specific immune system. Vertebrates 

are the only organism having an adaptive immune system. The main function of the 

immune system is to distinguish between self and non-self antigen, which is a vital 

step in protecting our body from invading microbes or/and elimination of altered cells, 

e.g. tumour cells.  

 

1.1.1 Innate immunity  

 

Innate immunity is the first line of the host immune defence. In fact, innate immunity 

can eliminate and prevent infections of the host as well as initiate adaptive immune 

responses. The innate immunity mechanism acts immediately and mounts a response 

against the antigen. However, the innate immune system does not generate lasting 

protective immunity (1).  

The principle components of the innate immunity are (i) the anatomic barrier, e.g. 

epithelia of the internal and external surfaces of the body, (ii) blood proteins, e.g. the 

complement system, (iii) cellular barrier, e.g. the phagocytes that can engulf and 

digest invading microorganisms, and (iv) cytokines which are proteins, peptides or 

glycoproteins. If the innate immunity for one reason or another fails to get rid of the 

infection, the response of the adaptive immune system takes place. 

The innate immunity lacks specificity, but recognises foreign pathogens as it 

identifies structures that are common to groups of related microbes. Therefore, cells 

of the innate immune system use a variety of pathogen-associated molecular patterns 

(PAMP) recognition receptors to recognise the patterns shared between pathogens. 

One of the major classes of the pattern recognition receptors are the Toll-like 

receptors (TLR).  
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The innate immunity also does not induce immunological memory and therefore each 

time the innate immune system acts against microbes as it would the first time.   

The principle effector cells of the innate immunity are neutrophils, macrophages, 

endothelial cells, dendritic cells and natural killer cells.  

 

1.1.2 Adaptive immunity 
 

The adaptive immunity is characterised by having the so-called immunological 

memory. This is a distinctive feature of the specific immune system and is defined as 

the ability to remember an encounter with a foreign antigen for a period of time or 

whole lifetime. This can help fight re-infection with the same microorganism. 

Another important feature of the adaptive immune system is its specificity as it has a 

diverse repertoire of rearranged receptors (2). The adaptive immune system depends 

on innate immune cells that are able to present antigens and this function is mainly 

controlled by antigen-presenting cells (APC). There are three different main types of 

professional APC, namely macrophages, B-cells and dendritic cells. The main cells of 

the adaptive immune system are T- and B-lymphocytes. T-lymphocytes arise from 

bone marrow and migrate to and mature in thymus, and they are the mediator of 

cellular immunity. On the other hand, B-lymphocytes arise and have their early stage 

of maturation in bone marrow and are the mediator of humoral immunity. B-

lymphocytes are the immune cells that produce antibodies.  

After naïve T- and B-lymphocytes emerge from the thymus and bone marrow, 

respectively, they migrate into the secondary lymphoid organs where they can be 

activated by different antigens presented to them and thereafter proliferate and 

differentiate into effector and memory cells. The effector cells include CD4+ helper T-

cells, CD8+ cytotoxic T-cells and antibody-secreting B-cells.  
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1.1.3 Dendritic cells 

 

Dendritic cells (DC) are the most potent antigen presenting cells that possess the 

ability to stimulate naïve T-cells. The DC capture antigens and process the antigens 

into peptides as they mature during their journey from the peripheral tissue to the 

lymphatic organs where the T-lymphocytes can recognise these peptides on the major 

histocompatibility complex (MHC) molecules which is important for the initiation of 

the immune response (3, 4). DC are critical for the induction of T-cell responses 

resulting in cell-mediated immunity. The term DC comes from the shape and motility 

that DC exhibit. These cells are mobile, stellate in shape (Figure. 1.1) and these 

features facilitate the cells’ function (5).   

 

 

 

 
Figure 1.1. Dendritic cell presenting antigen to a lymphocyte. The process involves intimate contact 
between the two cells in which DC projections might facilitate this function. Lymphocyte is stimulated 
by DC in order to proliferate and differentiate into effector cell. From: www.bcrfund.org/ 
images/dendriticcellb.jpg (accessed 5th April 2009) 
 

 

Few DC are required to stimulate the response of T-lymphocytes; it is estimated that 

one DC is able to stimulate 100-3000 T-lymphocytes (5).  
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1.1.3.1 DC subsets 
 

The different DC subsets are presented herein for just simplification of the issue, 

although, in real situation the picture is very complicated and a clear distinction is not 

always the case. DC precursors develop in the bone marrow and then home to a large 

variety of tissues. DC are present almost everywhere in the body, but mainly they 

reside in the peripheral tissue, the secondary lymphoid organs, and circulating in 

blood (6). All DC subsets originate from haematopoietic stem cells (HSC). DC are 

divided into subsets according to certain surface markers, these subsets have common 

features i.e. the DC morphology, expression of high amount of MHC class II and co-

stimulatory molecules as well as T-cell stimulation (7). Recent studies have 

characterised the DC subsets as belonging to the myeloid or lymphoid lineage (8). 

The myeloid DC contain subtypes including Langerhans cells (LC), which are located 

in the epidermis, interstitial DC, monocyte-derived DC and blood DC. The blood DC 

contain two subsets, mDC1 that is characterised by BDCA1 (CD1c) expression and 

mDC2 which are positive for BDCA3 (CD141) (9). The myeloid precursors also give 

rise to monocytes which in turn can differentiate into DC (10). Monocytes are not a 

major source of DC in vivo in the steady state. However, during infection the 

monocytes can differentiate into DC and they are called monocyte-derived DC. 

Finally, plasmacytoid DC are derived from the lymphoid lineage (8). These cells are 

remarkable in their ability to secrete large amounts of type I interferon (11). 

 

1.1.3.2 Antigen capturing, processing and presentation by DC 

 
DC are the sentinels of immune system and they are the link of the innate immunity to 

the adaptive immunity. The immature DC are present in the peripheral tissues where 

they can capture antigens, e.g. bacteria and virus. Immature DC use several pathways 

in order to capture antigens. These pathways are (i) macropinocytosis in which the 

cell membrane forms a pocket and pinches off into the cell to form a vesicle that 

travels into the cytosol and fuses with either endosomes or lysosomes and releases its 

content, (ii) receptor-mediated endocytosis through C-type lectin receptors or Fcγ 

receptor type I and II (12, 13), and (iii) phagocytosis in which the cell changes its 
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shape by sending out projections which are called pseudopodia. These pseudopodia 

will surround the antigen and form an intracellular vesicle.    

When DC undergo the maturation process, the DC morphology will start to change. 

For example, the expression of receptors that are responsible for the phagocytic and 

endocytic process will be down-regulated (13). In addition, the co-stimulatory 

molecules CD40, CD80 and CD86 will be up-regulated, the MHC II compartment 

will start to change and the MHC class II-peptide complex will be translocated to the 

cell surface (14). Moreover, chemokine receptors, e.g. CCR7 that regulate DC 

trafficking will be up-regulated. Furthermore, the change of DC morphology will be 

associated with the secretion of chemokines that are responsible for the attraction of 

different effectors of the immune system as well as the secretion of cytokines such as 

IL-12 (15, 16). These maturation markers and the secretion of chemokines and 

cytokines will allow the optimal interaction between the DC and the T-cells.  

There are several factors that play a role in the induction and maturation of DC. These 

include (i) inflammatory cytokines e.g. tumour necrosis factor (TNF-α), interleukin 

(IL)-1, IL-6 and prostaglandin E2 (PGE2), (ii) pathogen-related molecules e.g. 

bacterial DNA, lipopolysaccharide (LPS) and double stranded RNA, (iii) antigen-

antibody complexes and (iv) the ligation of CD40 on DC by its ligand CD40L (13, 

17).  

The antigen that is captured by the immature DC will be processed and presented on 

the MHC molecules. Intracellular antigen that is in the cytosol of DC will bind to the 

MHC class Ι molecules and be presented to the CD8+ cytotoxic T-lymphocytes (CTL). 

However, antigens that have been captured and internalized into the endocytic 

pathway will bind to MHC class ΙI molecules and subsequently be presented to the 

CD4+T helper cells (TH). This in turn give help to other cells such as B-lymphocytes 

to start responding against these antigens (5, 18).  

When the DC present a peptide to a T-cell, the latter will induce a response called 

cellular immune response and that include both CD4+TH cells and CD8+ CTL (19). 

The T-cells need to recognise three signals in order to proliferate and differentiate into 

TH cells and CTL. The first signal in this process is the binding of MHC- peptide 

complexes to the T-cell receptors (TCR) and the second signal is the binding of the 

appropriate co-stimulatory receptor CD28 on the T-cells to the co-stimulatory ligands 
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CD80 or CD86 on the APC. A third signal delivered from the APC will determine the 

differentiation of T-cells into effector cells, e.g. the secretion of IL-12 from APC will 

differentiate the CD4+ T-cells into TH1 effector cells (Figure 1.2). The DC is not 

restricted to T-lymphocytes but can also activate B-lymphocytes (20, 21), natural 

killer (NK) cells (22), and natural killer T (NKT) cells (23). 

The immune system should recognise dangerous foreign antigens but should also be 

able to discriminate between self and non-self antigens to avoid autoimmunity. The 

DC are of critical importance in inducing T-cell tolerance. As it was mentioned above 

the T-cells need three signals in order to be activated, and if only signal 1 (binding of 

MHC- peptide complexes to the TCR) is delivered, this will cause T-cell inactivation 

leading to tolerance. Thus, DC have a great role in the contrast states of immunity and 

tolerance (5, 13). 

 

 

 
 
Figure 1.2. Three signals should be delivered from the DC in order to differentiate the T-cells 
into effector cells. Toll-like receptors (TLR) sense the presence of infection through recognition of 
PAMP (pathogen-associated molecular patterns). Recognition of PAMP by TLR expressed on DC will 
lead to the up-regulation of the MHC II molecules that present the antigenic peptide to the T-cells 
(signal 1) and the up-regulation of the co-stimulatory molecules CD80 and CD86 (signal 2). TLR also 
induce expression of cytokines, such as IL-12 (signal 3), and trigger many other events associated with 
DC maturation. All of the three signals lead to the activation of T-cells and the secretion of IL-12 
contributes to the differentiation of activated T-cells into T helper (TH)1 effector cells. From: Ruslan 
Medzhitov, 2001 (24). 
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1.1.3.3 Ex-vivo generation of DC 

 
There are several sources from which we can generate DC ex vivo, e.g. from CD34+ 

haematopoietic progenitors or from monocytes isolated from blood. It is known that 

the combination of the cytokines granulocyte macrophage colony-stimulating factor 

(GM-CSF) with IL-4 will allow the differentiation of monocytes into DC (IL4-DC) 

and it is a standard protocol of ex-vivo generation of DC. In order to induce the IL4-

DC maturation, a cytokine cocktail composed of IL-6, TNF-α, IL-1β, and PGE2 is one 

of the acknowledged protocols and is regarded as a gold standard. (25). Finding the 

DC subset(s) that can make the optimal vaccines is a very critical step in order to 

improve DC-based vaccines. Much work has been done trying to test different 

cytokines or stimuli to the monocyte cultures in order to influence their differentiation 

ex vivo into DC with different phenotypes. For example, adding GM-CSF with IL-15 

to the monocytes will skew the differentiation of the monocytes into IL15-DC (Figure 

1.3) (26). Moreover, in the course of monocyte activation with, for example, GM-CSF, 

the monocytes can differentiate into different types of DC according to the different 

cytokines that will be added such as TNF (TNF-DC) (27), IFN-α (IFN-α-DC) (28) 

and thymic stromal lymphopoietin (TSLP-DC) (29) (Figure 1.3).  
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Figure 1.3. Subtypes of monocyte-derived DC. Activated monocytes with e.g. either GM-CSF, IL-3 
or FLT3L can differentiate into different DC subtypes after encounter with different cytokines such as 
IL-4 (IL4-DC), IL-15 (IL15-DC), TNF (TNF-DC), TSLP (TSLP-DC) and IFN-α (IFN-α-DC). These 
DC subtypes will differentiate the lymphocytes into immune effectors with different functions, leading 
to varied immune responses. From: Banchereau and Palucka, 2005 (30). 
 

 

1.1.4 Tumour immunology  

 

Cancer is a group of diseases that are characterised by the unregulated and 

uncontrolled cell proliferation. Altered cells arise on a regular basis but a vigilant 

immune system can eliminate them before they become harmful. Cells that evade 

immunosurveillance will develop into tumours, benign or malignant. Tumours vary in 

their immunogenicity, and even tumours with antigens that can be recognised by the 

host immune system can evade elimination. Cancer cells can use many mechanisms in 

order to evade T-cell responses, either to avoid being recognised by T-cells or trying 

to disable the effector T-cells (31). Moreover, the tumour may not display any danger 

signals that can activate the DC or other immune system components that be capable 

of acting against the tumour. 

An example of how the tumour cells avoid being recognised by T-cells, is the absence 

of MHC class I expression due to the mutations of the β2-microglobulin gene, or the 

down-regulation of MHC class I expression (32, 33). It was shown that many tumours 

progressed due to their suppression of the DC functions by IL-10, transforming 

growth factor-β (TGF-β) or vascular endothelial growth factor (VEGF) (34, 35). 

Another example is the signal transducer and activator of transcription (STAT) 3 that 

is activated in several tumour cases leading to the inhibition of DC maturation (36). 

Furthermore, the tumour microenvironment can induce immune tolerance as IL-10 is 

able to convert the DC function toward the induction of T-cell anergy (37).  

 

1.1.5 Immunotherapy  

 

Immunotherapy seeks to harness and enhance the patients’ own immune system 

against diseases including cancer. It is known that both chemotherapy and 
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radiotherapy usually lead to undesirable side effects and most of these side effects are 

the consequence of the cell damage brought by the chemotherapy agents or irradiation. 

These side effects constitute serious drawbacks of chemotherapy and radiotherapy. 

Initial studies using DC-based vaccinations have proven its safety and shown that it is 

well tolerated by patients. Certain cytokines and antibodies can be used as 

immunotherapy as well as vaccines. Transferring the immune effectors cells (T-cells) 

or proteins (antibodies) is called passive immunization, whereas active immunization 

is the ability to stimulate the patient’s own immune effector cells, e.g. DC-based 

vaccination (17). Vaccines intend to induce specific, non-toxic and long-lasting 

immune responses to prevent the infections and/or ameliorate the symptoms of the 

diseases vaccinated against (7). The same principle can be applied to vaccines against 

cancer. In the following section only immunotherapy concerning cancer will be 

discussed.  

Many studies were conducted and others are still going on after it had been shown in 

murine studies that the immune system can recognise and elicit potent anti-tumour 

immunity (38, 39). It is documented that ex-vivo generated DC that had been loaded 

with tumour antigens in mouse have the ability to induce protective (prophylactic 

vaccines) and therapeutic (therapeutic vaccines) anti-tumour immunity (40). It is 

shown also that the ex-vivo generated DC have the ability to induce therapeutic anti-

tumour immunity in humans (17). For the purpose of vaccination, the ex-vivo-

generated DC can be loaded or pulsed with specific tumour antigen(s) and then 

reintroduced back into the patient in order to stimulate the patient’s own immune 

system (Figure 1.4). 

To improve DC-based immunotherapy there are questions that need to be addressed. 

These are; the type of DC, the type of antigen(s) and their formulation, and the type of 

DC-activation signal as well as the route of injection (17). It was observed that 

distinct DC subsets would induce distinct types of immune response.  
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Figure 1.4. The principles of immunotherapy using DC-based vaccination. DC are generated from 
monocytes that were isolated from peripheral blood mononuclear cells. DC will then be loaded with 
specific tumour antigen followed by their injection to the patient in order to activate effector T-cells 
that can eliminate tumour cells. Modified from: 
www.ehealthandhealing.com/html/cancervaccines/cancervaccines.html. (accessed 20th April 2009) 
 

 

 

 

The route of injection is another important parameter that is unsolved and it is still 

unclear which route is optimal. Many injection routes have been tested, e.g. skin 

injections such as subcutaneous and intradermal injections, intravenous injections, 

injections into lymph nodes and intratumoural injections (41, 42). However, it has 

been shown that the subcutaneous injection is much less effective than intradermal 

and intranodal injections (43).  

It is known that a competent immune response is one that fulfils the following criteria 

(i) the ability to produce effector cells that are multifunctional, (ii) induce a broad 

range of effector cells that are specific for several types of tumour antigens, (iii) 

inhibit the tumour antigen-specific regulatory T-cell function and (iv) generate a 

tumour antigen-specific immune memory (17).  

DC-based vaccine taking into clinical trials and early studies showed that vaccines 
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using DC that were generated ex vivo from blood precursors result in a specific 

immune response in treating patients having tumour (44, 45). Recently, a phase III 

clinical trial also demonstrated a survival benefit in patients with metastatic hormone-

refractory prostate cancer treated with DC-based immunotherapy (46). In another 

randomized phase III trail, autologous peptide-loaded DC vaccination had to be 

prematurely closed. It was concluded that the DC-based vaccination was not more 

effective than DTIC chemotherapy in stage IV melanoma patients. However, they 

came out with future suggestions that might help for more effective vaccination (47).  

It has been observed that the outcomes of DC-based vaccination are variable. In many 

cases, a tumour-specific immune response was detected although the clinical benefit 

was limited (48, 49).  

Furthermore, an important factor that should be considered during the design of the 

DC-based vaccination is the ability of DC for migration. It was shown that less than 

1% of intradermally injected DC migrated rapidly to the regional lymphatics (50). In 

order to overcome this problem, previous studies tried to use different activation 

signals, e.g. PGE2 that can induce CCR7 expression; therefore increase the ability of 

DC to respond to CCL19 and CCL21 (51, 52). It is still a challenge to design vaccines 

that induce the optimal effective immune system by using DC-based vaccination, as 

the optimal type of DC that can be used for vaccination is not determined yet.  

                          

1.2 Aim of the study 
 

Immunotherapy of malignancies aims at activating the patient’s own immune system 

to fight the tumour affecting the patient. Even though the use of DC has shown 

promising results, the DC vaccination strategy needs improvement, as only few 

relevant clinical responses could be documented so far. In this study, the standard 

protocol to generate monocyte-derived DC using GM-CSF and IL-4 was compared to 

the use of GM-CSF and IL-15, which is thought to be better at inducing antigen-

specific cytotoxic T-lymphocyte differentiation in vivo.  
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2. Material  
 

2.1 Media and buffers 
 

Name Composition 

10x TBS 

 

1x Blotting buffer pH 8.3 

 

1x Running buffer 

 

 

0.1 M Tris pH 8.0 

1.4 M NaCl 

Running buffer without SDS 

20% Methanol 

0.1% SDS 

25 mM Tris 

192 mM Glycine 

1x TBST (0.5%) 

 

6x Lämmli buffer 

 

 

 

 

Blocking buffer 

 

FACS buffer 

PBS pH7.4 

1 x TBS 

0.5% Tween20 

375mM Tris HCl pH 6,8 

9 % SDS 

50% Glycerol 

9% β- Mercaptoethanol 

0,03% Bromphenolblue 

5% skimmed milk 

1x TBST (0.5%) 

0.5% BSA in PBS  

137mM NaCl 

2.7mM KCl  

 8.1mM Na2HPO4 

 1.5mM KH2PO4  

RIPA buffer 50 mM Tris pH7.4 

1% NP40 

0.25 % Sodium deoxycholate 

 150 mM NaCl 

 1mM EDTA 

 freshly added before use: 



Rania Al-Mahdi 

 15 

1X proteinase inhibitor complete ® 

1mM PMSF 

1mM Na-orthovanadate 

 1mM NaF 

RP10 RPMI 1640 with ultraglutamine 1 

 10% FBS 

50 units/ml Penicillin G sodium  

50 µg/ml streptomycin sulfate  

Stripping buffer 

 

 

Washing buffer 

2% SDS 

62.5 mM Tris/HCL pH 6.7 

100 mM β- Mercaptoethanol 

0.05% Tween-20 in PBS 

 

 

2.2 Cell culture plastic 
 

Name Company 

6-well plate Nunc, Denmark 

75cm2 flask Nunc, Denmark 

96-well plate Nunc, Denmark 

 

 

2.3 Softwares 
 

Name Company 

Flowjo Tree Star, Inc. 

Quantity one Bio-Rad, Hercules, California 
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2.4 Antibodies 
 

2.4.1 FACS antibodies 

 
Name                                         Clone Company 

CD14 FITC UCHM1 AbD Serotec, Oxford, UK 

CD1a PE NA1/34-HLK AbD Serotec, Oxford, UK 

CD38 APC 

CD4 APC 

AT13/5 

MEM-241 

AbD Serotec, Oxford, UK 

Immunotools, Germany 

CD40 FITC 

CD8 PE 

LOB7/6 

LT8 

AbD Serotec, Oxford, UK 

AbD Serotec, Oxford, UK 

CD80 APC MEM-233 Immunotools, Germany 

CD83 PE HB15e AbD Serotec, Oxford, UK 

CD86 FITC BU63 AbD Serotec, Oxford, UK 

CCR7 PE 150503 R&D system, USA 

HLA-DR APC HL-39 AbD Serotec, Oxford, UK 

 

2.4.2 Western blot antibodies 

Name                          Company 

AKT (Pan)(C67E7), Rabbit mAb                   Cell signalling, USA 

P38 MAP Kinase antibody 

P44/42 MAP Kinase, (137F5), Rabbit mAb 

 

phosho-AKT, (Ser473)(D9E), Rabbit mAb 

phosho-p38 MAPK, (Thr180/Tyr182), 

(3D7) Rabbit mAb 

Phospho-p44/42 MAP Kinase, 

(Thr202/tyr204), Rabbit mAb 

phospho- SAPK/JNK, (Thr183/Tyr185) 

 (81E11), Rabbit mAb 

SAPK/JNK, (56G8), Rabbit mAb 

 

Goat anti-rabbit (HRP) 

 

 

 

 

 

 

 

 

              

              Bio-Rad, Hercules, California      
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2.5 Reagents 
 
Name Company 
0.5M Tris-HCL buffer pH6.8 

1.5M Tris-HCL buffer pH8.8 

30%Acrylamide/Bis solution 

25x Proteinase inhibitor,complete EDTA free 

Albumin, bovine serum (BSA) 

Ammonium persulfate (APS) 

β-Mercaptoethanol 

CCL19 

Dimethyl sulfoxide (DMSO) 

Ethylenediaminetetraacetic acid (EDTA) 0.5M 

Glycine (Electrophoresis Purity Reagent) 

GM-CSF 

IL-1β 

IL-15 

IL-4 

IL-6 

Isopropanol prima 

Ionomycin 

Lymphoprep 

Pencillin/ strepotomycin  

PGE2 

Phorbol 12-myristate 13-acetate (PMA) 

Ponceau S 

Precision plus protein kaleidoscope standards                              

RPMI with Ultraglutamine 1 

Sodium dodecyl Sulfate (SDS) 

TNF-α  

Tris (Electrophoresis Purity Reagent) 

Tween20 

Bio-Rad, Hercules, California 

Bio-Rad, Hercules, California 

Bio-Rad, Hercules, California 

Roche, Germany 

Sigma, USA 

Bio-Rad, Hercules, California 

Sigma, USA 

Immunotools, Germany 

Sigma, UK 

Sigma, USA 

Bio-Rad, Hercules, California 

Immunotools, Germany 

Strathmann Biotec, Germany 

Immunotools, Germany 

Immunotools, Germany 

Immunotools, Germany 

Arcus, Oslo, Norway 

Sigma Aldrich, USA 

Axis- shield poc AS, Norway 

Invitrogen, USA 

Sigma Aldrich, USA 

Sigma Aldrich, USA 

Sigma Aldrich, USA 

Bio-Rad, Hercules, California 

BioWhttaker, Lonza, Belgium  

Bio-Rad, Hercules, California 

Immunotools, Germany 

Bio-Rad, Hercules, California 

Merck, Germany 
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2.6 Equipment 
 
Name Company 

Cabinet 

Cell counter CASY® 

Centrifuges 

 

 

ChemiDoc 

Flowcytometer, BDFACS Canto I 

Incubator 

Microscope 

Mini-PROTEAN 3 cell 

Mini-Trans-Blot Electrophoric Transfer 

Cell 

Nuair, biological safety cabinets  

Schärfe System GmbH, Germany 

- KUBOTA 8700, Tokyo, Japan 

- Thermo, Heraeus multifuge 1S-R, USA 

- Thermo, Heraeus Fresco 17, USA 

Bio-Rad, Hercules, California 

BD Biosciences, USA 

Forma Scientific, USA 

Leica, Germany 

Bio-Rad, Hercules, California 

Bio-Rad, Hercules, California 

 

Nitrocellulose trans-blot membrane 

(0.2µm 7x10 cm) 

Transwell® permeable supports 8 µm 

pore size 

Water bath 

Bio-Rad, Hercules, California 

 

Corning, NY, USA 

 

GFL, Germany 

 

2. 7 Kits 
 
Name        Company 

BCA protein Assay Kit     PIERCE, USA 

BD Compbeads 

CFSE (Vybrant™ CFDA SE, cell Tracer kit) 

    BD Biosciences, USA 

    Invitrogen, USA 

ELISA IL-12p70     BioLegend, USA 

Immuno-Star WesternC  Chemiluminescent 

kit 

    Bio-Rad, Hercules, California 

 

Materials that are not listed were either purchased from Bio-Rad, Sigma or Merck. 
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3. Methods 
 

3.1 Isolation of peripheral blood mononuclear cells (PBMC) from buffy coat 
 

Buffy coat was diluted ∼1:4 with phosphate buffered saline pH7.4 (PBS) at room 

temperature (RT). Approximately 33ml of the diluted buffy coat was carefully layered 

on top of 12ml lymphoprep. They were then centrifuged at 800g with no brake for 30 

minutes at 22°C. The PBMC were recovered from the plasma/lymphoprep interface 

and transferred into 50ml tubes. The PBMC were washed three times with cold PBS 

at 400g for 5 minutes at 4°C, suspended in RP10 medium and counted.  

 

3.2 Ex-vivo generation of different dendritic cell (DC) populations 
 

Dendritic cell generation started with the plating of 1x108 PBMC in a 75cm2 cell 

culture flask. Monocytes were isolated from PBMC by plastic adherence during the 

one-hour incubation at 37°C, 5% CO2 in humidified atmosphere while the 

lymphocytes remained floating. The non-adherent cells (NAC) were then transferred 

into a 50ml tube. The attached monocytes were washed with PBS (RT) 2-3 times until 

all floating cells were removed. To differentiate the monocytes into different DC 

populations, monocytes were cultured in new RP10 medium, 100 ng/ml of GM-CSF 

and either 20 ng/ml of IL-4 or 200 ng/ml of IL-15 to differentiate into IL4-DC or 

IL15-DC, respectively. The cells were then incubated for 5-6 days in a humidified 

atmosphere, 5% CO2, at 37°C. The cytokines were replenished every 2-3 days. 24 

hours before harvesting the cells a fraction of IL4-DC was matured by adding a 

cytokine cocktail consisting of IL-6 (1 x 103 IU/ml), IL-1β (10 ng/ml), TNF-α (10 

ng/ml) and PGE2 (1µg/ml) (CYTO-DC), whereas a fraction of IL15-DC was 

stimulated by 10 ng/ml of TNF-α (IL15+ TNFα-DC). 
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3.3 Freezing the cells 
 

To freeze the non-adherent cells, 90% of FBS and 10% of dimethyl sulfoxide 

(DMSO) were added to the cells. The solution should be aliquoted within 2-3 minutes, 

once the cells had come in contact with the DMSO. Approximately 5x107 cells/ml 

were frozen. The cell suspension was then transferred into cryo tubes which were 

placed into an isopropanol containing freezing container. The isopropanol containing 

freezing container was then stored at -80°C. This provides a relatively constant rate of 

freezing (-1°C \ min), thus improving viability.  

 

3.4 Cell counting 
 

Cell counting was done by using an automated cell counter (CASY), in which the cell 

suspension was diluted in casytone buffer. In addition, cell counting was done 

manually under the microscope using a Neubauer chamber, and the cell suspension 

was diluted in PBS and trypan blue.  

 

3.5 Harvesting cells  
 

After the incubation of monocytes for 6 days with the appropriate cytokines, the cells 

had developed into IL4-DC, IL15-DC, mature IL4-DC (CYTO-DC) and IL15+ TNF-

α-DC. To harvest each population, the cell suspension was transferred into 50ml 

tubes and centrifuged at 400g for 5 minutes at 4°C. Immediately PBS with 2mM 

EDTA was added to the flasks to harvest the remaining adherent cells. After 

centrifugation, the supernatant was transferred into cryo tubes to be stored at -20°C 

and the remaining cells in the PBS with 2mM EDTA were transferred to the obtained 

pellet. The tube was then centrifuged at 400g for 5 minutes at 4°C. The supernatant 

was discarded; PBS was added twice and centrifuged at 400g for 5 minutes at 4°C for 

the washing steps. DC were then counted.  
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3.6 Immunostaining for Flow cytometry 
 

To analyse the phenotype of the dendritic cell subsets, all DC populations were 

immunostained and analysed by flow cytometry. 

For each staining, 1x105 cells were resuspended in 50µl FACS buffer and 2µl of FcR 

block per 1x105 cells was added to block the Fc receptors. The surface markers that 

were detected by specific antibodies were: CD14, CD1a, HLA-DR, CD80, CD86, 

CD83, CD40, CCR7 and CD38. The IgG isotype controls included were labelled with 

FITC, PE and APC, and were used as a negative control. Compensation beads were 

used for the compensation control. The cells were then incubated in the dark for 10 

minutes at RT. After incubation the cells were washed twice with FACS buffer at 

400g for 5 min at 4°C. Finally, the cells were resuspended in 175µl of FACS buffer 

and transferred into FACS tubes and analysed on a FACS Canto flow cytometer 

within one hour.  

 

3.7 Chemotaxis 
 

During maturation of DC, some surface markers are up-regulated. CCR7 is a 

chemokine receptor up-regulated upon DC maturation that is a prerequisite for DC 

migration towards the CC-chemokine ligand CCL19. We tested the ability of the 

different DC subsets to migrate towards CCL19 by adding 5x104 DC to a 8-µm pore-

size transwell plate in 80µl of RP10 medium. Each DC subset was tested against 

CCL19, as well as against the RP10 medium alone. The lower compartment therefore 

contained 235µl of RP10 either with or without 100 ng/ml CCL19, respectively. The 

cells were incubated for 18 hours in a humidified atmosphere, 5% CO2 at 37°C. The 

migrated cells were then harvested from the lower chamber and counted using a 

CASY cell counter.  
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3.8 Mixed leukocyte reaction (MLR) 
 

3.8.1 Thawing and harvesting non-adherent cells (NAC) 

 
The NAC vial was thawed in 37°C water bath until a small lump of ice remained. 

NAC were added to 9ml warm RP10 and centrifuged at 400g, 5 minutes at room 

temperature before being washed again in RP10. The pellet was then dissolved in 5ml 

warm RP10 and transferred into a 25cm2 cell culture flask. The NAC were incubated 

at 37°C, 5% CO2 humidify atmosphere over night. NAC were harvested into a 50ml 

tube and centrifuged at 400g for 5 minutes at room temperature. The cells were 

resuspended in 10ml RP10 medium and counted. 

 

3.8.2 Labelling the NAC with Carboxyfluorescein succinimidyl ester (CFSE) 

 
The NAC were resuspend in warm PBS/0.1% BSA at a final concentration of 1x106 

NAC / ml and 1µl of a 10µM stock carboxyfluorescein diacetate, succinimidyl ester 

(CFDA SE) solution was added. The cells were then incubated for 10 minutes at 37°C. 

The CFDA SE will be converted by the cell into CFSE. The cells retain the CFSE in 
the cytoplasm and with each cell division the fluorescence intensity of the CFSE will 
decrease by half.  
To quench the reaction, 5 times of ice-cold RP10 medium was added before the cells 

were incubated on ice for 5 minutes. The labelled NAC were washed 3 times at 400 g 

for 5 minutes at 4°C with 20ml RP10. The labelled NAC were then counted. They 

were resuspended at a concentration of 2x106/ml RP10 medium.  

 

3.8.3 Co-culture of DC and allogenic NAC  
 

After harvesting, each DC population was added into a 96-well cell-culture plate in 

duplicate i.e. 8 wells in total. Each well contained 5x104 DC in 100µl RP10 medium. 

2x105 of allogenic CFSE labelled NAC were added only to one well of each DC 

subset. DC without NAC were used as a negative control to detect proliferation of 
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lymphocytes that originated from the DC culture. Moreover, three wells of labelled 

NAC were prepared as a negative control to detect lymphocytes proliferation that was 

independent from allogenic DC co-culture. In addition three wells with unlabelled 

NAC were prepared to be used later for compensation in the FACS analysis. 

Furthermore, one well of labelled NAC was stimulated with Phorbol 12-myristate 13-

acetate (PMA; 25ng) and Ionomycin (1µg) as a positive control. RP10 medium was 

added to a final volume of 200µl in each well. The NAC and DC were co-cultured for 

6 days. The cells were then harvested, washed and stained with CD4 APC and CD8 

PE antibodies. Thereafter, the cells were analysed by flow cytometry as described in 

3.6. 

 

3.9 Protein lysis 
 

After harvesting, the DC were washed once with PBS. The supernatants then were 

discarded; RIPA (Radio-Immunoprecipitation Assay) buffer was added to the cells 

(approximately 100µl of RIPA buffer per million cells). The protein lysates were then 

incubated on ice for 5-10 minutes. After the incubation the protein lysates were 

centrifuged at 17000g for 5 minutes at 4°C. Each supernatant was transferred into a 

new tube and a 5µl aliquot was taken for the BCA protein assay to determine the 

protein concentration. Both tubes were stored at -80°C until used in further analysis. 

 

3.10 BCA Protein Assay 
 

To determine the protein concentration of the protein lysates, we used the 

bicinchoninic acid (BCA) protein assay. The standard was prepared by making a two-

fold serial dilution of 1.5 mg/ml bovine serum albumin (BSA) into seven 1.5-ml tubes, 

and using the RIPA buffer as a blank. 10µl of each standard were transferred into a 

96-well plate in duplicates, and 10µl of RIPA buffer were transferred in duplicate as a 

blank.  

The protein lysate of each DC population was diluted 1:5 with PBS. Thereafter, 10µl 

from each sample were transferred into the 96-well plate in duplicate.  
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50 parts of BCA reagent A was mixed with 1 part of BCA reagent B to prepare the 

working reagent. After that, 200µl of the working reagent was added to each well of 

the standards and samples. It was then incubated at 37°C for 30 minutes. Finally, the 

absorbance was measured at 595nm on a plate reader and the sample’s protein 

concentration was calculated based on the standard. 

 

3.11 SDS-PAGE 
 

The main idea of sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-

PAGE) is to separate the proteins according to their size. Using SDS will denature the 

proteins as well as it will apply a negative charge in proportion to their mass. The 

proteins will move then through the gel according to their sizes toward the positive 

pole after an electrical field is applied.  

 

3.11.1 Gel preparation 

 

The gel was consisting of two types of gels, the resolving gel and the stacking gel. 

To make 2 minigels of resolving gel, 10ml of 12% resolving gel was prepared as 

follows: 

dH2O 3.4ml 

30% Acrylamide/Bis 4.0ml 

1.5M Tris-HCL pH 8.8 2.5ml 

10% SDS 100µl 

10% APS 50µl 

TEMED 5µl 

  

The solution was mixed well and was transferred to each glass cassette. The resolving 

gel was then layered with isopropanol to even the surface. The gel surface was rinsed 

after its polymerisation. The polymerisation took approximately 15-30 minutes.  

For the two minigels of stacking gel, 5ml of 5% stacking gel was prepared as follows: 
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dH2O 2.85ml 

30% Acrylamide/Bis 0.85ml 

0.5M Tris-HCL pH 6.8 1.25ml 

10% SDS 50µl 

10% APS 25µl 

TEMED 5µl 

 

The stacking gel solution was poured on top of the resolving gel and the comb was 

inserted carefully. The gel was left to polymerise between 15-30 minutes. 

 

3.11.2 Sample loading 

 

The samples were prepared by adding 6x Lämmli buffer to 20µg of protein lysate of 

each DC population and denaturing them at 100°C for 5 minutes. The marker and the 

samples were then loaded into the wells of the gel. The electrophoresis was run at 

150V for approximately 1:15 hours or until the blue running front had left the gel.  

 

3.12 Western blot 
 

After the proteins were separated by SDS-PAGE, the proteins were transferred to a 

nitrocellulose membrane. The proteins were transferred from the gel to the 

nitrocellulose membrane with a current of 250mA for one hour. The nitrocellulose 

membrane was then washed with 1xTBST (0.5%) and the proteins were visualised by 

incubating the membrane in a Ponceau S solution. The membrane was washed with 

1xTBST (0.5%) until we got rid of the Ponceau S solution colour. The nitrocellulose 

membrane was then soaked in the blocking buffer for one hour to block the non-

specific binding of proteins. The proteins were then detected one by one using 

specific primary antibody and secondary enzyme labelled antibody. The proteins that 

were detected are: AKT, ERK, JNK, P38 and their phosphorylated forms. All the 

primary antibodies were diluted 1:1000 in 5% BSA in 1xTBST (0.5%). The 

incubation time was for the phospho-proteins over night at 4°C. For the non-phospho 
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proteins, it was one hour at room temperature. After incubation, the nitrocellulose 

membrane was washed 5 minutes with 1xTBST (0.5%), 4 times. The secondary 

antibody goat anti-rabbit HRP was diluted 1:1000, added and incubated for 1 hour. 

The nitrocellulose membrane was then washed 5 minutes with 1xTBST (0.5%) and it 

was repeated for 4 times. The fifth time of washing was with 1xTBS. For the 

detection of proteins, Immuno-Star WesternC Chemiluminescent kit was used and the 

proteins were then analysed by ChemiDoc. The band intensity was measured for both 

the phospho and non-phospho forms of each protein that I detected in the four DC 

populations. CYTO-DC bands for both phospho and non-phospho forms of the 

proteins were set to 100%. The ratio between the phospho proteins and the non-

phospho proteins was then calculated. The ratio of the phospho to the non-phospho 

protein of CYTO-DC was therefore 1. Other DC populations were then compared to 

CYTO-DC. 

 

3.12.1 Stripping of the membrane  

 

The antibodies were removed from the membrane by stripping in order to allow 

detection of other proteins of interest with similar size. The membrane was incubated 

30 minutes in stripping buffer at 60°C with shaking followed by 5 times of 5 minutes 

each time of washing with 1xTBST (0.5%). The membrane was then blocked for 1 

hour before proceeding with the detection of another protein on the membrane.   

 

3.13 Enzyme-linked immunosorbent assay (ELISA) 
 

The amount of the cytokine IL-12p70 production for each DC population was 

analysed using a commercially available ELISA. A monoclonal anti-human IL-12p70 

antibody was first coated on a 96-well plate and incubated overnight at 2-8°C and the 

plate was then washed with the washing buffer 0.05% Tween-20 in PBS for 4 times. 

For blocking, Assay Diluent was added, and incubated at room temperature for 1 hour, 

after that the plate was washed with washing buffer for 4 times. The standard was 

prepared by making six two-fold serial dilutions of a 1000 pg/ml human recombinant 



Rania Al-Mahdi 

 27 

IL-12p70 solution. The conditioned medium from CYTO-DC, IL15-DC and 

IL15+TNF-α-DC were diluted 1:100. The standard, the diluted and undiluted samples 

were then added to the appropriate wells in duplicates and incubated at room 

temperature for 2 hours, followed by 4 times washing with washing buffer. The 

detection antibody biotinylated anti-human IL-12 p40/p70 was added to the wells and 

incubated at room temperature for 1 hour, followed by 4 times washing with washing 

buffer. Avidin-horseradish peroxidase (HRP) conjugate was added to the wells and 

incubated for 30 minutes. The plate was then washed 5 times, 1 minute per wash, with 

washing buffer. After that 3,3’,5,5’ - tetramethylbenzidine (TMB) substrate solution 

was added to each well, and incubated in the dark for 15 minutes to produce a blue 

colour in proportion to the amount of IL-12 p70 that is present in the samples. Finally 

the stop solution 1M H2SO4 was added to each well to change the reaction colour 

from blue to yellow and the absorbance was read at 450nm.  
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4. Results 
 

4.1 IL15-DC have the morphology of DC 
 
 

In order to see the influence of IL-15 on the differentiation of monocytes into DC and 

compare such effect to the standard protocol using IL-4, the monocytes were cultured 

in RP10 medium supplemented with GM-CSF together with either IL-4 (IL4-DC) or 

IL-15 (IL15-DC). A fraction of the IL4-DC was incubated with the cytokine cocktail 

IL-6, IL-1β, TNF-α and PGE2 for 24 hours (CYTO-DC). A fraction of IL15-DC was 

stimulated with TNF-α for 24 hours (IL15+TNFα-DC). All four cell populations had 

the morphology of DC after 6 days of culturing. However, the size of IL15-DC was 

smaller than IL4-DC and that was detected using the automated cell counter CASY 

and flow cytometry (Figure 4.1).     

 

 

 

 
Figure 4.1. IL15-DC have a smaller size than IL4-DC. Monocytes were cultured with GM-CSF and 
IL-4 (IL4-DC) or IL-15 (IL15-DC) for 6 days. The figure shows the forward scatter channel (FSC) and 
the side scatter channel (SSC) of the IL4-DC (left panel) and the IL15-DC (right panel). The FSC of 
the IL15-DC showed that the IL15-DC cells are smaller than the IL4-DC cells. Both IL15-DC and IL4-
DC had the same FSC and SSC setting. The data of one representative experiment is shown. DC were 
gated using FSC/SSC.  
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4.2 IL15-DC express less DC marker CD1a than IL4-DC  
 

IL15-DC expressed approximately the same level of the monocyte/macrophage 

surface marker CD14 as IL4-DC. However, the DC surface maker CD1a was 

expressed more in the IL4-DC. CYTO-DC expressed less CD14 but more CD1a 

comparing to IL15-DC. The stimulated IL15-DC with TNF-α expressed 

approximately the same levels of both CD14 and CD1a as IL15-DC (Figure 4.2).  

 

 

 

 

 
Figure 4.2. IL15-DC express less DC marker CD1a than IL4-DC. Monocytes were cultured with 
GM-CSF and IL-4 (IL4-DC) for 6 days, and 24 hours before harvesting, a fraction of IL4-DC was 
stimulated with the cytokine cocktail IL-6, IL-1β, TNF-α and PGE2 (CYTO-DC). Monocytes were 
cultured with GM-CSF and IL-15 (IL15-DC) for 6 days and a fraction of IL15-DC was stimulated for 
24 hours with TNF-α. The figure shows 3 independent experiments and the median is indicated by a 
bar. Flow cytometry was used to determine the percentage of cells that expressed CD14 (A) and CD1a 
(B). IL15-DC expressed similar level of monocyte/macrophage marker CD14 and less DC marker 
CD1a compared to IL4-DC. CYTO-DC expressed less CD14 but more CD1a compared to IL15-DC. 
The stimulated IL15-DC with TNF-α expressed approximately the same levels of both CD14 and 
CD1a as IL15-DC. 
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4.3 IL15-DC express more maturation markers than IL4-DC 

 
The DC maturation markers CD83 and HLA-DR were expressed more on IL15-DC 

than IL4-DC. The CYTO-DC expressed higher levels of CD83 and HLA-DR than the 

other populations. The stimulated IL15-DC with TNF-α expressed similar levels of 

CD83 and HLA-DR as IL15-DC (Figure 4.3). However, the median fluorescence 

intensity (MFI) of HLA-DR was higher on IL15-DC than the CYTO-DC and IL4-DC 

(Figure 4.4). 

 

 
 

 
 
Figure 4.3. IL15-DC express more maturation markers than IL4-DC. Monocytes were cultured 
with GM-CSF and IL-4 (IL4-DC) for 6 days, and 24 hours before harvesting, a fraction of IL4-DC was 
stimulated with the cytokine cocktail IL-6, IL-1β, TNF-α and PGE2 (CYTO-DC). Monocytes were 
cultured with GM-CSF and IL-15 (IL15-DC) for 6 days and a fraction of IL15-DC was stimulated for 
24 hours with TNF-α. The figure shows 3 independent experiments and the median is indicated by a 
bar. Flow cytometry was used to determine the percentage of cells that expressed HLA-DR (A) and 
CD83 (B). IL15-DC expressed more maturation surface markers HLA-DR and CD83 than IL4-DC. 
CYTO-DC showed more expression of the maturation surface markers HLA-DR and CD83 than the 
other populations. The stimulated IL15-DC with TNF-α expressed similar levels of HLA-DR and 
CD83 as IL15-DC. 
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Figure 4.4. The median fluorescence intensities of CD40 and HLA-DR are higher for IL15-DC 
than IL4-DC and CYTO-DC. Monocytes were cultured with GM-CSF and IL-4 (IL4-DC) for 6 days, 
and 24 hours before harvesting, a fraction of IL4-DC was stimulated with the cytokine cocktail IL-6, 
IL-1β, TNF-α and PGE2 (CYTO-DC). Monocytes were cultured with GM-CSF and IL-15 (IL15-DC) 
for 6 days and a fraction of IL15-DC was stimulated for 24 hours with TNF-α. The figure shows 3 
independent experiments and the median is indicated by a bar. Flow cytometry was used to determine 
the median fluorescence intensity (MFI) of HLA-DR (A) and CD40 (B). The MFI of HLA-DR and 
CD40 were higher on the IL15-DC than both the IL4-DC and the CYTO-DC. The MFI of CD40 and 
HLA-DR on the stimulated IL15-DC with TNF-α was approximately the same as IL15-DC. 
 
 
 
 
The co-stimulatory molecules CD86 and CD80 were expressed more on IL15-DC 

than IL4-DC. The CYTO-DC expressed higher level of CD86, whereas CD80 was 

expressed more on IL15-DC. Adding TNF-α to the IL15-DC resulted in the up-

regulation of CD86. The IL15-DC expressed more CD80 than the stimulated IL15-

DC with TNF-α (Figure 4.5). All DC populations expressed approximately the same 

level of the co-stimulatory molecule CD40 (Figure 4.5), but the MFI of CD40 was 

higher on IL15-DC than both IL4-DC and CYTO-DC (Figure 4.4). The MFI of CD40 

on the stimulated IL15-DC with TNF-α was approximately the same as on IL15-DC 

(Figure 4.4). 
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Figure 4.5. IL15-DC express more CD80 whereas CYTO-DC express more CD86. Monocytes 
were cultured with GM-CSF and IL-4 (IL4-DC) for 6 days, and 24 hours before harvesting, a fraction 
of IL4-DC was stimulated with the cytokine cocktail IL-6, IL-1β, TNF-α and PGE2 (CYTO-DC). 
Monocytes were cultured with GM-CSF and IL-15 (IL15-DC) for 6 days and a fraction of IL15-DC 
was stimulated for 24 hours with TNF-α. The figure shows 3 independent experiments and the median 
is indicated by a bar. Flow cytometry was used to determine the percentage of cells that expressed 
CD86 (A), CD80 (B) and CD40 (C). CYTO-DC expressed the highest level of the co-stimulatory 
molecule CD86. IL15-DC expressed more CD80 than IL4-DC and CYTO-DC. The stimulated IL15-
DC with TNF-α showed more CD86 and less CD80 expressions than IL15-DC. All DC populations 
showed approximately the same expression of the co-stimulatory molecule CD40.  
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4.4 CYTO-DC express more CCR7 whereas IL15-DC express more CD38 
 

The migration marker CCR7 was expressed more on the CYTO-DC than the other 

DC populations. IL15-DC expressed approximately the same level of CCR7 as the 

un-stimulated IL4-DC (Figure 4.6). IL15-DC showed the highest expression of the 

migration marker CD38. The addition of cytokine cocktail to the IL4-DC resulted in 

the down-regulation of CD38. The stimulated IL15-DC with TNF-α expressed 

approximately similar levels of CCR7 and CD38 as IL15-DC (Figure 4.6).  

 

 

 
 
Figure 4.6. CYTO-DC express more CCR7 whereas IL15-DC express more CD38. Monocytes 
were cultured with GM-CSF and IL-4 (IL4-DC) for 6 days, and 24 hours before harvesting, a fraction 
of IL4-DC was stimulated with the cytokine cocktail IL-6, IL-1β, TNF-α and PGE2 (CYTO-DC). 
Monocytes were cultured with GM-CSF and IL-15 (IL15-DC) for 6 days and a fraction of IL15-DC 
was stimulated for 24 hours with TNF-α. The figure shows 3 independent experiments and the median 
is indicated by a bar. Flow cytometry was used to determine the percentage of cells that expressed 
CCR7 (A) and CD38 (B). CYTO-DC showed the highest expression of CCR7, and both IL15-DC and 
IL4-DC had approximately the same level of CCR7 expression. IL15-DC showed the highest 
expression of CD38. Stimulated IL4-DC with cytokine cocktail showed down-regulation of CD38. The 
stimulated IL15-DC with TNF-α expressed approximately similar levels of CCR7 and the CD38 as 
IL15-DC. 
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4.5 Analyses of MAPK and AKT signalling pathways  

 
The intracellular MAPK signalling pathways involved in DC maturation were 

investigated using phospho-specific antibodies in a Western blot. The stimulated 

IL15-DC with TNF-α had more phosphorylated ERK 42/44 (P-ERK) than the other 

DC populations. However, IL15-DC had similar levels of P-ERK as CYTO-DC. IL4-

DC showed less P-ERK than all DC populations (Figure 4.7). All DC populations had 

approximately the same ratio of phosphorylated p-38 (P-p38) to p38 (Figure 4.8). 

 
 

 
 
Figure 4.7. IL15-DC shows a similar level of P-ERK like CYTO-DC. Monocytes were cultured with 
GM-CSF and IL-4 (IL4-DC) for 6 days, and 24 hours before harvesting, a fraction of IL4-DC was 
stimulated with the cytokine cocktail IL-6, IL-1β, TNF-α and PGE2 (CYTO-DC). Monocytes were 
cultured with GM-CSF and IL-15 (IL15-DC) for 6 days and a fraction of IL15-DC was stimulated for 
24 hours with TNF-α. The phosphorylation of the protein kinase ERK42/44 was analysed using 
Western blot. (A) shows representative bands of ERK and P-ERK for each DC population. (B) shows 
the results of 3 independent experiments and the median is indicated by a bar. The intensity of the 
bands was measured and CYTO-DC was set to 100%. The ratio of the phospho to the non-phospho 
protein was then calculated. The ratio of the phospho to the non-phospho ERK of CYTO-DC is 
therefore 1. IL4-DC, IL15-DC and stimulated IL15-DC with TNF-α were compared to CYTO-DC. 
IL15-DC showed similar levels of P-ERK as CYTO-DC. IL4-DC had less P-ERK than all DC 
populations. The stimulated IL15-DC with TNF-α had the highest level of P-ERK. 
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Figure 4.8. All DC populations have approximately the same ratio of phosphorylated p-38 to p38. 
Monocytes were cultured with GM-CSF and IL-4 (IL4-DC) for 6 days, and 24 hours before harvesting, 
a fraction of IL4-DC was stimulated with the cytokine cocktail IL-6, IL-1β, TNF-α and PGE2 (CYTO-
DC). Monocytes were cultured with GM-CSF and IL-15 (IL15-DC) for 6 days and a fraction of IL15-
DC was stimulated for 24 hours with TNF-α. The phosphorylation of the protein kinase p38 was 
analysed using Western blot. (A) shows representative bands of p38 and P-p38 for each DC population. 
(B) shows the results of 3 independent experiments and the median is indicated by a bar. The intensity 
of the bands was measured and CYTO-DC was set to 100%. The ratio of the phospho to the non-
phospho protein was then calculated. The ratio of the phospho to the non-phospho p38 of CYTO-DC is 
therefore 1. IL4-DC, IL15-DC and stimulated IL15-DC with TNF-α were compared to CYTO-DC.  
 
 
 
 
 
The CYTO-DC had more P-JNK 46/54 than the other DC populations. IL15-DC had 

more P-JNK 46/54 than the IL4-DC. However, the stimulated IL15-DC with TNF-α 

had less P-JNK 46/54 than IL15-DC (Figure 4.9). The AKT signalling pathway was 

also investigated using Western blot. However, phosphorylated AKT protein kinase 

was not detected in any of the DC populations (data not shown).  
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Figure 4.9. CYTO-DC have the highest level of phosphorylated JNK 46/54 (P-JNK). Monocytes 
were cultured with GM-CSF and IL-4 (IL4-DC) for 6 days, and 24 hours before harvesting, a fraction 
of IL4-DC was stimulated with the cytokine cocktail IL-6, IL-1β, TNF-α and PGE2 (CYTO-DC). 
Monocytes were cultured with GM-CSF and IL-15 (IL15-DC) for 6 days and a fraction of IL15-DC 
was stimulated for 24 hours with TNF-α. The phosphorylation of the protein kinase JNK 46/54 was 
analysed using Western blot. (A) shows representative bands of JNK 46/54 and P-JNK 46/54 for each 
DC population. (B and C) show the results of 3 independent experiments and the median is indicated 
by a bar. The intensity of the bands was measured and CYTO-DC was set to 100%. The ratio of the 
phospho to the non-phospho protein was then calculated. The ratio of the phospho to the non-phospho 
JNK 46/54 of CYTO-DC is therefore 1. IL4-DC, IL15-DC and stimulated IL15-DC with TNF-α were 
compared to CYTO-DC. The stimulated IL15-DC with TNF-α had a lower level of P-JNK 46/54 than 
IL15-DC. IL15-DC had more P-JNK 46/54 than IL4-DC.  
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4.6 IL-12p70 is not present in the cell culture supernatants of the four DC 

populations 

 

The cell culture supernatants of the four DC populations were analysed by ELISA for 

the presence of IL-12p70. There was no IL-12 detected in the cell culture supernatants 

of IL4-DC, IL15-DC, CYTO-DC and IL15-DC with TNF-α.  

 

4.7 No DC chemotaxis is detected in response to CCL19 
 

The ability of the four DC populations to migrate towards CCL19 was tested in order 

to determine whether the CCR7 is functioning. However, the four DC populations did 

not show any migratory ability towards CCL19.  

 

4.8 Lymphocytes co-cultured with CYTO-DC showed higher percentage of 

proliferation in a MLR 

 

To test the ability of DC to stimulate lymphocyte proliferation, a mixed leukocyte 

reaction (MLR) was set up. CFSE labelled allogenic lymphocytes (2×105) were co-

cultured with each DC population (5×104) for 6 days. CFSE is retained in the 

cytoplasm and with each round of cell division the fluorescence intensity of the CFSE 

will decrease by half. Lymphocytes that had been co-cultured with CYTO-DC 

showed the highest percentage of cell division as seen by reduction of CFSE positive 

cells. Lymphocytes that had been co-cultured with IL4-DC had a higher percentage of 

proliferation than both IL15-DC and the stimulated IL15-DC with TNF-α (Figure 

4.10). The lowest percentage of lymphocyte proliferation showed lymphocytes that 

had been co-cultured with the stimulated IL15-DC with TNF-α. For further analyses 

the CFSE labelled allogenic lymphocytes were stained with CD4 and CD8 antibodies. 

However, the cell counts were not high enough to be further analysed.  
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Figure 4.10. Lymphocytes co-cultured with CYTO-DC showed highest percentage of 
proliferation in a MLR. Monocytes were cultured with GM-CSF and IL-4 (IL4-DC) for 6 days, and 
24 hours before harvesting, a fraction of IL4-DC was stimulated with the cytokine cocktail IL-6, IL-1β, 
TNF-α and PGE2 (CYTO-DC). Monocytes were cultured with GM-CSF and IL-15 (IL15-DC) for 6 
days and a fraction of IL15-DC was stimulated for 24 hours with TNF-α. CFSE labelled allogenic 
lymphocytes (2×105) were co-cultured with each DC population (5×104) for 6 days. Flow cytometry 
was used to determine the percentage of lymphocyte proliferation. Lymphocytes were gated using 
FSC/SSC. The figure shows the percentage of lymphocyte proliferation after co-culturing allogenic 
lymphocytes with the indicated DC population. The negative control is CFSE labelled NAC without 
allogenic DC. Lymphocytes that had been co-cultured with IL4-DC had a higher percentage of 
proliferation than both IL15-DC and the stimulated IL15-DC with TNF-α. The lowest percentage of 
lymphocyte proliferation showed lymphocytes that had been co-cultured with the stimulated IL15-DC 
with TNF-α. 
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5. Discussion 
 

DC are the most potent antigen presenting cells that possess the ability to stimulate 

naïve T-cells. The DC maturation process represents a crucial step in the initiation of 

adaptive immune responses. DC maturation is accompanied by changes of their 

morphological, phenotypic, and functional properties. In order to clinically apply DC 

vaccine in cancer immunotherapy, choice of precursor cells, type of maturation 

stimuli involved in the development from immature to mature DC, and which DC 

subsets to be used, are yet to be optimised. 

In this study, I examined the phenotype, cytokine secretion, and T-cell stimulatory 

capacity of monocyte derived DC generated using GM-CSF and IL-15 (IL15-DC), 

and compared it to DC generated after the standard protocol using GM-CSF and IL-4 

(IL4-DC). 24 hours before harvesting, a fraction of IL15-DC was stimulated with 

TNF-α, while a fraction of IL4-DC was stimulated with a cytokine cocktail of IL-6, 

TNF-α, IL-1β and PGE2 (CYTO-DC). A previous study has shown that DC that were 

generated by using IL-15 were more efficient at T-cell induction as well as in priming 

cytotoxic T-lymphocytes, a process that may help to overcome the tumour escape 

mechanisms (53). However, in that study, LPS was used for stimulation. LPS is a 

good stimulant for the DC but it is questionable to put back DC that might have 

residual LPS to patients.  

The results show that IL15-DC have a more mature phenotype than IL4-DC. On the 

other hand, IL15-DC have a less mature phenotype than CYTO-DC.  

The results show that culturing monocytes for 5-6 days with GM-CSF and IL-15 led 

to their differentiation into cells that had the morphology and phenotypic properties of 

DC. After harvesting the IL15-DC, the cells were smaller in size than the IL4-DC.  

Monocyte-derived DC that are generated by adding GM-CSF and IL-4 are 

characterised by being CD14– CD1a+. CD14 is a monocyte/macrophage surface 

marker that is down-regulated upon differentiation of monocytes into DC. However, 

as shown in figure 4.2, all IL4-DC unexpectedly still expressed a relatively high 

amount of CD14. This could be attributed to non-specific binding of CD14 antibodies 

to Fc receptors. It could also be attributed to antibodies drying out, which could 

happen if a master mix of antibodies was not used. In my experiments, CD14 



                                                                                                                        IL15-DC                                                                                           

 40 

antibodies were the first antibodies to be pipetted to the wells. Other antibodies were 

then added one by one to the wells. So the probability of CD14 antibodies to be dry 

was high because of the time taken to add all other antibodies. The use of antibody 

master mix solved this particular problem, yet other problems still existed that were 

difficult to deal with because of time limitation. In figure 5.1 A, the CD14+ population 

in the IL4-DC looks as if it is caused by unspecific staining as both CD1a positive and 

CD1a negative cell populations have shifted towards being CD14+. Compared to that, 

a distinct CD14 positive CD1a negative population of the IL15-DC is shown in figure 

5.1 B.  

  

 
 

 
Figure 5.1 A distinct CD14+ cell population present in IL15-DC but not in IL4-DC. Monocytes 
were cultured with GM-CSF and IL-4 (IL4-DC) for 6 days. Monocytes were cultured with GM-CSF 
and IL-15 (IL15-DC) for 6 days. The figure shows a representative experiment of three experiments. 
Flow cytometry was used to determine the percentage of cells that expressed CD14 (X axis) and CD1a 
(Y axis). (A) Both CD1a positive and CD1a negative cell populations have shifted towards being 
CD14+ in the IL4-DC. (B) A distinct CD14 positive CD1a negative population is present in the IL15-
DC.  

 

 

Phenotypic analyses by flow cytometry showed that CYTO-DC expressed more 

HLA-DR, CD86, and CD83 than IL15-DC. However, the IL15-DC expressed more 
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maturation markers, i.e. HLA-DR, CD80, CD83, and CD86, than IL4-DC. The results 

show that the stimulated IL15-DC with TNF-α showed no difference from the non-

stimulated IL-15-DC in the expression of most of the surface markers except for the 

surface marker CD86 which was up-regulated. 

It is the mature DC and not the immature DC that can be utilized in vaccination 

against cancer. Taking this into consideration, it is very important that DC maturation 

markers are checked for their level of expression after DC are stimulated. Highly 

expressed maturation markers could be an indicator for a higher probability of good 

DC efficiency in T-cell activation. The co-stimulatory molecules CD80 and CD86 are 

responsible for delivering activation signals to the T-cells through the binding to 

CD28, the co-stimulatory receptor. This binding will deliver a potent co-stimulatory 

signal that leads to T-cell responses. These responses include the differentiation of 

naïve T-cells into effector and memory cells as well as production of cytokines such 

as IL-12. The CD83 molecule is another important DC maturation surface marker and 

it is thought that it plays an important role in the activation of certain immune 

responses (54).  

The results show that CD80 was higher expressed in the IL15-DC population than in 

the IL4-DC population, which is in line with a previous study (53). However, the 

same study also showed that CD86 was expressed more on IL4-DC than IL15-DC 

which is in contrast to our findings. In another study, IL15-DC showed a lower 

expression of CD80 and CD83, but a considerably high expression of CD86 (26). An 

explanation for the different results could be related to the use of different stimuli. In 

this study, the cytokine cocktail IL-6, TNF-α, IL-1β and PGE2 and TNF-α were used 

to stimulate IL4-DC and IL15-DC, respectively. In two previous studies, LPS was 

used to stimulate both IL4-DC and IL15-DC (26, 53). Other differences are that in the 

first study the monocytes were cultured for 3-4 days, i.e. less time than that used in 

this study, whereas in the second study, the lymphocytes and CD1a+ DC were 

depleted in order to get a pure monocyte population, i.e. a different purification 

protocol than that used in this study (26, 53).  

We speculated that the stimulation of IL15-DC with TNF-α might lead to the up-

regulation of the surface maturation markers. My results show, however, that CD80 

was down-regulated, CD83 was not changed, and CD86 was the only surface marker 
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that was up-regulated. Other studies showed that up-regulation of CD80, CD83 and 

CD86 occurred when IL15-DC were stimulated with LPS (26, 53).  

The results show that the IL15-DC expressed more HLA-DR, i.e. MHC class II than 

IL4-DC, but yet less than that of CYTO-DC. When we examined the median 

fluorescence intensity (MFI) of the four populations, we found that the MFI of the 

IL15-DC was higher than both IL4-DC and CYTO-DC. MHC class II molecules are 

very important as they present antigens to CD4+ T-cells. In the current study, all DC 

populations showed the same expression level of CD40 but when it comes to the MFI 

it was found to be higher in the IL15-DC than in both the IL4-DC and the CYTO-DC. 

CD40 molecules are expressed on DC and are up-regulated during the process of DC 

maturation. CD40 functions as a trigger for the expression of the co-stimulatory 

molecules which are required for efficient T-cell activation. In addition to, the CD40 

ligation of DC has the capacity also to induce high level of IL-12 secretion (55).  

The results show that CCR7 was expressed more on CYTO-DC and approximately 

equally on both IL4-DC and IL15-DC. CCR7 is one of the necessary chemokine 

receptors for DC migration. However, all the four DC populations were generally 

considered to have low expression of CCR7, which was confirmed by the chemotaxis 

assay result. The four DC populations did not show any migratory ability towards 

CCL19 (data not shown). It has been shown previously that the migration of skin DC 

toward the lymph nodes is impaired in CCR7-deficient mice under inflammatory 

conditions (56).  

The surface marker CD38 was also analysed. The results show that CD38 was down-

regulated on CYTO-DC while there were no detectable differences between the 

stimulated IL15-DC with TNF-α and the non-matured IL15-DC. A previous study 

showed that CD38 could regulate adaptive immunity by controlling the migration of 

DC and DC precursors (57). Moreover, another study showed that the CD38 could 

up-regulate CD83 expression and IL-12 secretion (58). However, this is in contrast to 

my result. In my study IL15-DC expressed a high level of CD38 but low level of 

CD83. Moreover, IL15-DC did not produce IL-12 (data not shown). The presence of 

IL-12 in the cell culture supernatants of all the DC populations was analysed. The 

results show that IL-12 was not detected in the supernatants of any of these 

populations. It has been shown before that DC produce various amount of IL-12 
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depending on the stimulus used (59). In this study, it was expected that CYTO-DC 

might not produce IL-12 as previously documented (59). The IL-12 production by 

IL15-DC was assessed for the first time in this study.  

The phosphorylation of three distinct mitogen-activated protein kinase (MAPK) 

signalling cascades, including the extracellular signal-regulated kinase (ERK), p38, 

and the c-Jun N-terminal kinase (JNK) pathways were analysed in all DC populations 

by Western blotting. The results show that even after 24 hours of incubation of DC for 

stimulation, which is a long time for phosphorylation signalling analysis, the P-JNK 

in the CYTO-DC and the P-ERK in the stimulated IL15-DC with TNF-α were 

detected. The analysis of the signalling pathways stimulation after a shorter period of 

incubation was not feasible in this study because of time limitations. The cells were 

stimulated for 24 hours in order to be able to do phenotypic analyses (FACS), 

chemotaxis assays and MLR. Several reports have shown that the activation of the 

three MAPK pathways occurs during DC maturation (60-62). However, the number 

of pathways activated depends on the stimuli (60-62). This is also shown in our result 

in which the CYTO-DC had the highest levels of P-JNK46/54. However, the CYTO-

DC had not the highest levels regarding P-ERK42/44 and P-p38 expression.  

The JNK and p38 pathways are activated by stress-inducing agents whereas the ERK 

signalling cascade regulates cell proliferation and differentiation in response to 

mitogens and growth factors (63). The results show that IL15-DC had similar levels 

of P-ERK42/44 and P-p38 as that of CYTO-DC. However, the CYTO-DC had the 

highest level of P-JNK46/54. The MAPK signalling pathway has a role in the 

maturation of DC. A recent study demonstrated that the blockage of the p38 MAPK 

pathway could inhibit the up-regulation of CD40, CD80, CD86, CD83, and HLA-DR 

(64). The inhibition of JNK also resulted in decreased expression of CD80, CD86, 

CD83 and increased expression of MHC class II on LPS stimulated DC (65). In a 

previous study, ERK pathway inhibitors increased the expression of MHC class II 

complex and co-stimulatory molecules (66). It is difficult to draw a conclusion out of 

my result since the signalling pathway analysis was done after 24 hours of DC 

stimulation which is not ideal.  Therefore, further analyses in the future should be 

performed.  

In order to analyse the T-cell stimulatory capacity of the different DC populations, a 

MLR was performed. The result shows that the lymphocytes that had been co-
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cultured with allogenic CYTO-DC showed the highest percentage of lymphocyte 

proliferation. On the other hand, lymphocytes that had been co-cultured with IL4-DC 

had a higher percentage of proliferation than cells co-cultured with both IL15-DC and 

the stimulated IL15-DC with TNF-α. As this data was based on only one experiment, 

it needs to be confirmed in the future.  

It is known that the maturation of DC is crucial for the initiation of T-cells, and from 

our results we can conclude that the CYTO-DC are the more efficient cells in T-cell 

stimulation compared to IL15-DC.  

The variation in the results of the three experiments presented in this thesis regarding 

the expression levels of DC surface markers and signalling pathway analysis might be 

explained simply by donor related variations. It could be also because uneven 

distribution of the cytokines between cells. This could be either during the 

replenishing of the cytokines during generation of DC or during addition of the 

stimulating cytokines. In other words it could be that not all cells had received enough 

cytokines. Another explanation could be that the monocyte population was originally 

contaminated with lymphocytes, which can affect the analyses outcome of the IL15-

DC. Furthermore, the variation in the surface marker levels of expression could be 

because of adding improper amount of surface marker antibodies or long incubation 

of DC with the surface marker antibodies.  

A total of 21 experiments were performed in this study. However, due to different 

reasons, only 3 experiments could be presented in the current thesis. For example, in 5 

experiments, few cells were obtained of which 2 of them had a lot of thrombocytes. 

Another 3 experiments were omitted because CYTO-DC had very low CD83 

expression and in 5 experiments, the IL15-DC were lost after harvesting. Two 

experiments were omitted because of low HLA-DR expression in CYTO-DC and 

very high CD14 expression in IL4-DC, respectively, indicating that the generation of 

this cell population had not been successful. Finally, 3 experiments were taken away 

for other reasons. 

Although it is known that monocytes strongly stick to the plastic, the loss of 

monocytes during the washing steps after adherence was one of the major problems.  

Several experiments were stopped because of the low amount of cells still in the 

flasks after washing. It was also observed that cells like thrombocytes adhered to the 
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plastic instead of monocytes which resulted in low numbers of monocytes. Monocyte 

isolation from PBMC by adherence is a common procedure. About 10% of PBMC are 

plastic-adherent monocytes. However, monocyte isolation by adherence can be 

associated with a high degree of contamination with lymphocytes (67). In this study, 

it was observed that lymphocyte contamination was one of the main problems during 

sample preparation in three experiments. It was thought that this could be because of 

improper wash of the monocytes, a critical step in order get red of the lymphocytes to 

start with a pure monocyte population.  

Loss of IL15-DC during cell harvesting was another obstacle. In three out of five 

experiments, IL15-DC were present in the flasks and looked as a nice DC population. 

The proper number of IL15-DC was obtained and their viability was checked. 

However, during the FSC/SSC analyses of the flow cytometry no IL15-DC population 

was present. One explanation could be that IL15-DC were sticking strongly to the 96-

well plate during the staining procedures preceding flow cytometry. It appears that 

IL15-DC were very sensitive and might be subjected to death if a short delay occurred. 

Some experimental procedures took longer time than we anticipated. For example, 

IL15-DC were very sticky to the flasks which, therefore, required more time to 

harvest. Thus, the IL15-DC were subjected to longer time of EDTA treatment to 

detach sticky cells. The EDTA is a chelating agent that can reduce cell viability if it 

stayed for too long.  

Adding IL-15 to monocytes that are contaminated with lymphocytes will lead to the 

stimulation and proliferation of T-cells. It was observed that there was a colour 

change of the cell culture medium of the IL15-DC population in some experiments 

which might be related to the stimulation and proliferation of T-cells.  

The technical problems in the experiments can be overcome in the future by using 

alternative techniques of monocyte isolation. One of these techniques can be the 

elutriation technique. In this technique, the PBMC are isolated first from whole blood 

by Ficoll gradient then the PBMC are separated by an elutriation procedure. 

Monocytes can also be isolated from PBMC by using CD14 magnetic beads. This 

method is simple and reliable and purity of up to 98% is reported (68). However, the 

method is expensive. In addition, this technique leads to the loss of the CD14–

monocyte population. Another way of monocyte isolation from PBMC is by depletion 

of lymphocytes, i.e. T-, B-, and NK-cells. This technique is easy to use and yields a 
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high purity of monocytes but is even more expensive than positive selection of CD14+ 

cells. The elutriation technique is the most suitable technique to be used in 

immunotherapy.  

 

5.1 Conclusions and future perspectives 
 
The generation of IL15-DC turned out to be more problematic compared to the 

generation of IL4-DC. The stimulatory activity of IL-15 on T-cell proliferation 

resulted in a high degree of contamination with T-cells in the IL15-DC cultures as we 

did not have a pure monocyte population to start with. This problem can in future be 

overcome by using either alternative monocyte isolation protocols or by reducing the 

culture period from 5-6 to 3-4 days. It might also be worth trying different stimuli to 

induce the maturation of IL15-DC as the use of TNF-α did not result in a remarkable 

stimulation. Moreover, due to the variation in the results between the experiments, my 

data needs to be confirmed with this approach. 
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