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Introduction

Warming of the climate system is unequivocal, as is now evident from observations of
increases in global average air and sea temperatures (Solomon et al. 2007). The Intergov-
ernmental Panel on climate change, IPCC, further claims that this observed increase in
global average temperatures, with 90% certainty, is due to the observed increase in anthro-
pogenic greenhouse gas concentration. As the greenhouse gas which, in total, causes the
most radiative forcing1, CO2 is considered as the most important.

The global atmospheric concentration of CO2 has increased from pre-industrial value of
about 280 ppm (parts per million), to 379 ppm in 2005; todays atmospheric concentra-
tion exceeds by far the level of CO2 over the last 650,000 years (Solomon et al. 2007).
Measurements from ice cores in Antarctica shows that the level of CO2 concentration has
been quite steady at about 275-284 ppm. from around year 1000 and to the industrial
period (Etheridge et al. 1998). From the Mauna Loa observatory, at Hawaii, we have
continuous records of the atmospheric concentration since 1958. These records shows an
average annual increase of 1.4 ppm (Keeling and Whorf 2005).

The main source for the increased atmospheric concentration of CO2 over the last 50
years, results from emissions, due to use of fossil fuel. Most of these emissions come from
power plants (coal, gas and oil), refineries, and different types of petrochemical industry.
That is, emission from point sources. Thus, we can separate and capture the CO2 from
these emission sources.

Aquifers are geological formations in the ground; reservoirs containing water. Overlain
by an impermeable caprock, many of these aquifers are suitable for storage of CO2. Such
formations are found all over the world. The potential of CO2 storage in geological for-
mations, such as aquifers, are huge. Available evidence suggests that there is a worldwide
potential of storing at least 2000 Gt of CO2 in such formations (IPCC 2005). For the
purpose of stabilising the atmospheric concentration of CO2, geological storage could con-
tribute with 15-55%, until around 2100.

When injecting CO2 into an under-ground formation, such as an aquifer, we will be inter-

1The difference between incoming radiation energy and outgoing radiation energy, in which a positive
radiative forcing tends to warm the climate system.
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2 Introduction

ested in storing the CO2 for thousands of years. When considering millions of tons of CO2,
we are looking at a large scale problem, both in time and space. When reservoirs often has
irregular structure with variations on the scale of micrometers, numerical simulations will
be demanding.

In order to develop a model, which solves for the reservoir flow in a reasonable amount of
time, we will have to make some assumptions on the reservoir/aquifer. When we want to
solve for the flow on a reservoir scale (103 − 105 meters), we will further neglect some of
the effects on the pore scale (10−6 meters). By assuming that the phases are separated by
a sharp interface, Nordbotten and Celia (2006b) manage to carry out a similarity solution
for the injection of CO2 into a confined aquifer.

In this thesis, we will look at the stability for the model of Nordbotten and Celia (2006b).
In Chapter 1 we give a general presentation of reservoir mechanics. The concepts of di-
mensional analysis and self-similarity are treated in Chapter 2. Based upon the theory
from these two chapters, we can show the derivation of the analytical model of Nordbotten
and Celia (2006b) in Chapter 3. Stability is already proved for the case of high injection
rates (Nordbotten and Celia 2006b). In order to study the stability for for lower injection
rates, we consider linear stability in Chapter 4 and 5. By the linear analysis in Chapter
4 we impose a criterion on the linear stability. By numerical tools, we will further inves-
tigate this problem in Chapter 5. Here we will present the results, showing the region of
stability for both the linear stability, from Chapter 4, and the non-linear stability analysis
of Nordbotten and Celia (2006b). In Chapter 6 we summarise and conclude the thesis.



Chapter 1

Reservoir Mechanics

In reservoir mechanics we study the motion of fluids in porous media. A reservoir is a
porous geological structure, with fluids, gas or liquid, filling the void space. Some reser-
voirs are overlain by an impermeable cap rock, which acts as a seal (Hyne 1984). Such
formations are of special economical interest, since they may trap buoyant fluids like oil
and gas. A further application of these formations lies in the long term storage of green-
house gases.

In this chapter we will look at some of the general theory of reservoir mechanics. The
theory is based upon the book of Pettersen (1990). We will start by considering Darcy’s
law, and the basic reservoir and fluid parameters describing reservoir flow. Next, we intro-
duce the equation of continuity, which follows from mass conservation. We will consider
two-phase flow, and some of the effects due to the interaction between two phases1. Two
model equations, the saturation equation and the Buckley-Leverett equation, will then be
derived.

1.1 Darcy’s Law

1.1.1 Porous Media

Most reservoir rocks and formations are made by compression of minerals. These rocks
may be considered as solid, but in reality consist of a fine structure of pores and grains. We
will refer to such materials as porous media. The different porous media are characterised
by their porosity and permability. These rock parameters are discussed below.

The porosity, φ, of a material sample is the fraction of its total volume occupied by pores.
It is defined as

1A phase can be a composition of several components, and sometimes different fluids. In reservoir
mechanics we are usually dealing with the three fluids, oil, gas, and water, often referred to as three
phases. However, if the pressure is low enough, some oil will evaporate into gas, and we say that we have
a composition of gas in the oil phase.

3



4 Reservoir Mechanics

φ =
Vpores

Vtotal
, (1.1)

where Vtotal is the volume of the entire sample and Vpores is the volume of all the pores in
that sample.

In general, we distinguish between two types of porosity, absolute and effective. Equa-
tion (1.1) represents the absolute porosity, which is independent upon the connections of
the pores. For the effective porosity, φeff , we exchange Vpores in (1.1) by the volume of
interconnected pores. Since fluids only flow through interconnected pore channels, this
parameter provides more information about the amount of fluid able to flow through such
a medium. Thus, we will further be using this latter porosity, and for simplicity we denote
φeff by φ.

In a reservoir, the geometry of the pores is usually not known. This makes it difficult
to use a hydrodynamic formulation for reservoir flow. Instead we use Darcy’s Law2:

u = −K

µ
(∇p + ρgk) . (1.2)

This is an empirical law, and the permability K is an empirical parameter. Furthermore,
µ is the viscosity and ρ denotes the density of the fluid, p represents the pressure, and g
is here the gravitational constant. The last term in (1.2) represents the variation of the
hydrostatic pressure in the vertical direction, where k is the vertical unit vector pointing
upward.

1.1.2 The Parameters of Darcy’s Law

Since the diameter of the pores in reservoirs often are on the scale of micro meters (10−6m),
friction against the porewall will be a dominant factor for describing the flow. The viscosity
µ is a measure for the internal friction of a fluid, and thus inversely proportional to the
flow velocity u (see Equation (1.2)). Furthermore, µ is a scalar function depending on the
pressure.

2Henry Darcy was a French engineer, who conducted experiments with vertical water-flow through
different types of sand and rock formations, in order test Dutch dikes. He used a large cylindrical iron
pipe filled with sand, and measured the flow rate of water from a tap at the bottom, when water was
injected from the top. Mercury manometers were used for measuring the pressure, one above and one
below the sand column. The measurements was however expressed in terms of the heights of the water
column in equivalent water manometers. In 1856 he could present his results, showing that the waterflow
was proportional to the pressure difference measured by the water heights, and inversely proportional to
the height of the sand column (Hubbert 1956). The proportional constant was dependent upon the type
of porous medium used in the experiment. This law has later been tested with different types of fluids,
flowing not only vertical, but in various types of angles. It has been slightly modified, but is still known
as Darcy’s law.



1.2 The Equation of Continuity 5

The permability, K, is a parameter that represents the structure and geometry of the
pores in a porous medium. It is a rock parameter, and thus independent on which fluids
that flows through the porous medium. Generally, K, is a second order tensor defined by
Darcy’s law.

A reservoir associated with constant permability is denoted as homogeneous. Otherwise,
if the permability is spatial dependent, the reservoir is said to be heterogeneous. Further-
more, a permability field which is directional dependent is called anisotropic.

1.2 The Equation of Continuity

Consider an arbitrary fixed geometrical volume Ω inside a reservoir. The principle of mass
conservation says that the change of total mass inside this volume, must be balanced by the
flux of mass over the boundary, σ, and a possible source or sink term inside of Ω. Consider
that there is only one fluid flowing through the reservoir. The concentration of fluid inside
Ω will then be expressed by φρ, where φ is the porosity and ρ denotes the density of the
fluid. When u represents the velocity of the fluid flow, and Q denotes the source (or sink)
term, we get

∂

∂t

∫

Ω

(φρ) dΩ +

∫

σ

(ρu · n) dσ =

∫

Ω

QdΩ . (1.3)

In the second term of this equation, n denotes the normal vector. This vector is defined
everywhere on the boundary σ as the unit vector, which is perpendicular to the boundary,
and points out of Ω. By using Gauss formula, we can further convert the second integral
into a volume integral. Also, since the geometric volume Ω is said to be fixed, it will not
be time-dependent. Hence, we can put the time-derivative inside the integration in the
first term of (1.3). This implies,

∫

Ω

(

∂

∂t
(φρ) + ∇ · (ρu)

)

dΩ =

∫

Ω

QdΩ .

When we know that this relation holds for an arbitrary geometric volume Ω, we further
obtain the general equation of continuity,

∂

∂t
(φρ) + ∇ · (ρu) = Q . (1.4)

1.3 Two-Phase Flow

Let us now consider two phases flowing in the same porous medium. For simplicity, we
shall assume that the phases are immiscible.
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1.3.1 Model Equations for Two-Phase Flow

The saturation of fluid i, is denoted by Si, and defined as the fraction of pore space
occupied by fluid i. The presence of several fluids, will reduce the pore space, and thus the
permability for each of the fluids. In order to correct for this reduction of pore space, we
split the permability into one that is only dependent on the structure of the pore space,
K, and one that only depends on the saturation of the other fluids, kr,i(S). That is,

Ki(S) = K · kr,i(S) , where

i=2
∑

i=1

kr,i(S) ≤ 1 .

For simplicity we also introduce another parameter, the mobility

λi(S) =
kr,i(S)

µi

.

By including these new parameters into Darcy’s law (1.2) and the equation of continuity
(1.4), we can write the model equations for two-phase flow as follows:

∂

∂t
(φρiSi) + ∇ · (ρiui) = Q for i = 1, 2 , (1.5)

ui = −Kλi(∇pi + ρigk) for i = 1, 2 , (1.6)

S1 + S2 = 1 . (1.7)

1.3.2 The Saturation Equation

By combinding the equations, (1.5)-(1.7), we are able to derive the so-called saturation
equation. For simplicity, we will look at the case of one dimensional immiscible flow (see
Figure 1.1), and the following assumptions are made:

• one dimensional flow

• immiscible and incompressible fluids

• homogeneous reservoir

• constant viscosity

• constant porosity

• no source or sink terms (Q = 0)
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xk
θ

Figure 1.1: Two phase flow in one dimension x.

When adding the equation of continuity (1.5) for each of the incompressible fluids together,
and use relation (1.7), we get

∂

∂x
(u1 + u2) = 0 .

A flow pattern which satisfies this equation is said to be divergence free. This further leads
to the relation,

u = u1 + u2 , (1.8)

where u is a constant.

By rearranging (1.6) we can get an equation for the pressure,

∂pi

∂x
= − ui

kxλi

− ρigcos(θ) for i = 1, 2 . (1.9)

In this equation, kx is the constant permability in the direction of x, while θ is the angle
between the x-axis and the vertical axis, k, pointing upward (see Figure 1.1). We further
subtract the equations in (1.9) from each other, obtaining

∂

∂x
pcap =

u1

kxλ1
+ ρ1gcos(θ) − u2

kxλ2
− ρ2gcos(θ) . (1.10)

Here we have introduced the capillary pressure, pcap = p2 − p1. By relation (1.8), we can
express the velocity of the second phase by the velocity of the first phase; u2 = u − u1.
Substituting this expression into (1.10), we get

∂

∂x
pcap =

u1

kx

(

1

λ1
+

1

λ2

)

− u

kxλ2
− (ρ2 − ρ1)gcos(θ) .

We can now write the expression for the velocity of phase 1:
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u1 =
λ1λ2

λ1 + λ2

(

kx

∂pcap

∂x
+

u

λ2

+ kx(ρ2 − ρ1)gcos(θ)

)

= uf(S) + kxλ2f(S)

(

ζ +
∂pcap

∂x

)

, (1.11)

where

f(S) =
λ1

λ1 + λ2
and ζ = (ρ2 − ρ1)gcos(θ) .

In the same way as for the velocity, we can use relation (1.7) and represent the saturation
of phase 2 by the saturation of phase 1; S2 = 1 − S1. Since we are solving for the velocity
of phase 1, we choose to let S represent the saturation of this phase. For simplicity we
introduce another function,

F (S) = f(S) + λ2f(S)
kx

u
ζ .

Substituting F (S) into (1.11), we get

u1 = uF (S) + kxλ2f(S)
d

dS
pcap(S)

∂S

∂x
.

Finally, by substituting this expression into the equation of continuity (1.5) for phase 1,
we obtain

∂S

∂t
+
u

φ

∂F (S)

∂x
+ kx

∂

∂x

(

λ2f(S)
d

dS
pcap(S)

∂S

∂x

)

= 0 , (1.12)

which is the saturation equation for two-phase flow in one dimension. The second term
in Equation (1.12) is often refered to as the advection term, while the last term often is
called the diffusion term, or the capillary term.

1.3.3 The Buckley-Leverett Equation

When dealing with high injection rates or large-scale problems (in x and t), the advection
term is often more dominant than the diffusion term. High injection rates, implies large
values of u, which is proportional to the magnitude of the advection term. Also, scaling
the dimension of x and t by a factor a > 1, implies reducing the magnitude of the terms
proportional to ∂

∂x
and ∂

∂t
by a factor a, and ∂2

∂x2 by a factor a2. Thus, in the case of a≫ 1,
the diffusion term will get small. Considering these cases, the saturation equation is often
approximated by the Buckley-Leverett equation,

∂S

∂t
+
u

φ

∂F (S)

∂x
= 0 . (1.13)
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In this equation we have neglected the effect of capillary forces. Equation (1.13) is a non-
linear hyperbolic equation, and may lead to discontinuous solutions or shock waves. To be
able to handle shocks we need to rewrite the equation in integral form and compute weak
solutions, see Evans (1998).

For the CO2 problem considered in this thesis, see Chapter 3, the length scale will be
of order 103 − 105 meters, and injection rates are high. Thus, we will neglect the capillary
term, and look for a Buckley-Leverett type of model equation.





Chapter 2

Similarity

In this chapter we will present the concept of dimensional analysis, similarity and self-
similar phenomena. Dimensional analysis provides a method for reducing the number of
governing parameters for a given physical problem. If the phenomenon we are investigating
has the feature of self-similarity, we can further simplify the problem by a coordinate
transformation.

2.1 Physical Quantities and their Units

If we want to make a model of a physical phenomenon, we need to know which physical
quantities are important for this phenomenon. A physical quantity is measureable and
can be measured due to a chosen system of units. A system of units consist of all the
fundamental units needed for the description of a phenomenon. For instance, if we want to
compute the average velocity of a moving car over a certain period of time, we will have to
consider the two quantities of length and time. If we choose the units for length and time
to be meters, m, and seconds, s, this will represent one system of units. In some cases it
may be more convenient to use larger units, like kilometers (1000 meter) and hours (3600
seconds) instead of meters and seconds. We will then be dealing with another system of
units. These two systems is however said to be of the same class of systems of units. All
systems of units that differ only in magnitude, but represents the same physical quantities,
belong to the same class. Hence, the two systems of units discussed above will both belong
to the class of all systems of units corresponding to these units:

unit of length = m/L ,

unit of time = s/T , (2.1)

where L and T are positive numbers which determine the magnitude of the units.

11



12 Similarity

2.2 Dimensions

When going from one system of units to another system of units within the same class, the
numerical values of the physical quantities will change according to some scaling factors
(see (2.1)). The function that determines these scaling factors are called the dimension
functions, or dimensions (Barenblatt 1996). If the numerical value of a quantity are iden-
tical in all systems of units within the same class, the quantity is denoted dimensionless.

Let us again consider the moving car. If the car has driven a distance, x, in a period
of time, t, the average velocity, v, of the car over that period of time, must be given by

v =
x

t
. (2.2)

Such a mathematical model of a physical problem must be independent of which system
of units, within the class of systems of units for this kind of phenomena (moving car), we
which to use. Since the sufficient variables for finding the average velocity are the distance,
x, and time, t, the units for these variables must satisfy Equation (2.1). Thus, the unit
for the average velocity, v, will have to satisfy (T/L)· m/s. If we compare the two systems
of units discussed above, one where L and T were equal to 1 and the other where we had
L=1/1000 and T=1/3600, we find that 1 m/s = 3.6 km/t.

If we change the unit of the spatial variable, x, keeping the units of the other two variables
fixed, we see that the numerical values of x and v will change, while the numerical value
of the time, t, remains unchanged. Thus, the dimension of the variable t is independent
upon the change in the unit of x. By only changing the unit of t, keeping the other units
fixed, we also observe that the dimension of x is independent upon the change in the unit
of t. Hence, we say that the two variables x and t are independent. The average velocity,
v, is denoted as a dependent variable.

The dimension of any physical quantity are given as a monomial. That is, a dimension can
only be represented by one unit and its scaling factor. When v is a dependent variable,
the dimension of v can be expressed as a product of the dimensions of the independent
variables. Furthermore, we are able to construct a dimensionless grouping of our variables,
by dividing v by the product of equal dimension. That is,

Π =
v

xt−1
= C , (2.3)

where C is a constant. A change in the units of any of the variables v, x or t will not
effect the numerical value of Π. Hence, it is dimensionless. Πp will also be a dimensionless
grouping, where p can be any non-zero, finite scalar. Rearanging Equation (2.3), we get
v = Cx

t
, which is of the same form as Equation (2.2), and is the only physical relationship

between these variables.



2.3 Dimensional Analysis 13

2.3 Dimensional Analysis

Let us now consider a more general case, where we want to determine a relationship,

x = f(y1, y2, . . . , yn) , (2.4)

from a certain physical phenomenon. Let us further assume that m of the variables, y, has
independent dimensions, while the other k = n−m variables have dimensions which can
be expressed as products of powers of the independent dimensions of the first m variables.
Thus, Buckingham’s Π-theorem says:

Theorem 2.3.1 (Buchingham’s Π-theorem) A physical relationship between some di-
mensional quantity and several dimensional governing parameters can be rewritten as a
relationship between some dimensionless parameter and several dimensionless products of
the governing parameters; the number of dimensionless products is equal to the total num-
ber of governing parameters minus the number of governing parameters with independent
dimensions.

We will show that Equation (2.4) can be expressed as a relation of k+1, rather than n+1
parameters.

We denote the m variables with independent dimensions by a1, a2, . . . , am and the other
k variables by b1, b2, . . . , bk. In order for Equation (2.4) to be valid in all systems of units
within the represented class, the dimensions and units on both sides have to be equal. This
means that a dimensionless parameter Π can be represented by some product of x and the
variables a. The dimension of each of the variables b can also be combined with some
product of powers of the dimensions of a, providing another k dimensionless variables. All
these can be written as follows:

Π =
x(a1, a2, . . . , am, b1, b2, . . . , bk)

ap1

1 · ap2

2 · · ·apm
m

, (2.5)

Πi =
bi

a
q1,i

1 · aq2,i

2 · · ·aqm,i
m

, for i = 1, 2, . . . , k , (2.6)

where the exponents pj and qj,i are some finite scalars satisfying the equation. You can
always use more than one variable bi in the expression for any of the dimensionless vari-
ables Πi. The dimensional analysis provides no method of choosing the best dimensional
variables, it only states that there exists k independent dimensionless variables. However,
by choosing the dimensionless variables as in (2.6), we can represent each variable bi by

bi = a
q1,i

1 · aq2,i

2 · · ·aqm,i

m · Πi , for i = 1, 2, . . . , k . (2.7)

Substituting (2.7) into (2.5), we can then express our dimensionless variable Π as,

Π = F (a1, a2, . . . , am,Π1,Π2, . . . ,Πk) . (2.8)
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It can further be shown that it is always possible to transform the system of units to an-
other system, within the same class, such that any of the variables, ai, with independent
dimensions can be changed by an arbitrary factor, while the rest of the variables with in-
dependent dimensions remains unchanged (Barenblatt 1996). The dimensionless variables
are not effected by the change of any of these variables ai. Hence, Π, from (2.8), will only
be a function of the other dimensionless variables, and so we obtain

x = f(a1, a2, . . . , am, b1, b2, . . . , bk)

= ap1

1 · ap2

2 · · · · apm

m · φ(Π1,Π2, . . . ,Πk) .

This shows that Equation (2.4) can be expressed by k + 1, rather than n + 1 variables.

2.4 Similarity

An engineer may want to test the carrying capacity of a bridge or the load capacity of a
boat. Such tests are often both difficult and costly to do in full scale, and in many cases
we would want these tests to be done before the bridge or boat is even built. By using the
principles of similarity, we can scale the dimensions of the bridge and the boat and con-
struct prototypes of these, in more convenient dimensions. By similarity transformations
we may preform tests on these prototypes, which are similar to what we would want to
test the bridge or boat for.

Two physical phenomena are said to be similar if they only differ in respect of numer-
ical values of the dimensional parameters, while the dimensionless parameters are identical
(Barenblatt 1996). In geometry, the angles are the dimensionless paremeters. Thus, if we
want to transform a triangle into a similar triangle of different magnitude, we must ensure
that the angles remain unchanged. Hence, every triangle with identical angles are similar.

Time-dependent phenomena are a bit more complicated to handle. Mathematical model-
ing of such phenomena often leads to partial differential equations, which can be difficult
to solve. A time dependent phenomenon is said to be self-similar if the spatial distribu-
tion of its properties at different times can be obtained from one another by a similarity
transformation (Barenblatt 1996).

Consider the solution, u(x, t), of a partial differential equation. We introduce a coordi-
nate transformation,

χ =
x

x0(t)
, (2.9)

where x0(t) is a time dependent scale function for x. If u(x, t) is self-similar, there will be
two scale functions x0(t) and v(t), so that the solution u(x, t) can be represented by,
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u(x, t) = v(t)w(χ) .

The coordinate transformation, (2.9), is then called a similarity transformation. Choosing
v(t) as a scale for the solution u(x, t), we can represent this scaled solution by w(χ). Thus,
we have transformed the time-dependent problem into a steady-state problem, for new
(self-similar) coordinates u(x,t)

v(t)
and χ. The partial differential equation is then reduced to

an ordinary differential equation.





Chapter 3

The Model

In this chapter we will present the mathematical model. This is the analytical model of
Nordbotten and Celia (2006b), for CO2 injection into deep saline aquifers. Based upon
the equations from Chapter 1, we will show the derivation of this model. By neglecting
capillary pressure, we will look for an equation of the same form as the Buckley-Leverett
equation (see (1.13)). By a similarity transformation, we further transform the model
from a partial differential equation to an ordinary differential equation. The stability of
the model equation, will be discussed in more detail in the next chapters.

3.1 Physical Interpretation

We consider injection of CO2 into a confined aquifer, bounded by an impermeable caprock
above and below. To facilitate analytical treatment, we approximate the porosity, perma-
bility and thickness of the aquifer as homogeneous. We are interested in injection from
a vertical well, and assume the CO2 to spread radially out from this well. We will not
consider stability in the angular coordinate, and assume that we have radial symmetry.
Furthermore we approximate the flux of CO2 out of the well (r = 0) to be constant in the
radial direction.

When these aquifers, typically are located around thousand meters below the ground,
they will contain saline water. We will, however, in the following refer to this resident fluid
as the water phase. For simplicity we neglect all chemical processes at the interface, and
assume that the two phases, CO2 and water, are immiscible. An extention for miscible flow
has been done by Nordbotten and Celia (2006b). We will also approximate both fluids to
be incompressible and the viscosity of both fluids to be constant.

Some of the saline water will not be able to move while CO2 is injected, and remains
as residual saturation in the region of the CO2 phase. We will further be referring to the
region of CO2, as the region consisting of CO2 and residual water. Since the porosity and
the permeability are approximated as homogeneous, we assume the residual saturation of

17
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water to be evenly distributed within this region of CO2.

We will not be considering the interface at the pore scale, but assume that there is a
transition zone, of finite length, separating the region of CO2 from the region of water (see
Figure 3.1). Furthermore, we will assume this zone to be thin compared to the region of
CO2, and thus approximate it by a sharp interface. That is, we allow for a discontinuity in
the pressure and the fluid parameters over the transition zone. We will refer to this zone
as the interface.

Based upon these approximations, we will derive an analytical model for the injection
process. This fluid flow system will be dominated by density forces and viscous forces.
Since CO2 is both less dense and less viscous than water, we expect the CO2 phase to flow
on top of the water phase, forming an fluid interface as shown in Figure 3.1. The equation
we get, is a nonlinear parabolic equation, with both a transport term and a diffusion term.
We will have transport of CO2 in the radial direction, balanced by a diffusion term caused
by gravity override. The equation will, however, degenerate to a first order transport equa-
tion at the vertical boundaries of the aquifer. Thus, the model looses its parabolic feature,
and will support finite propagation speed of disturbances. That is, the end point of the
CO2 phase, r0 (see Figure 3.1), will be bounded for t <∞.

Water

h(r,t)

H

z

r r r0H

CO2

Figure 3.1: The injection process.
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3.2 Modeling the Interface

Since we have radial symmetry, we only need to consider a two dimensional problem. We
then define h(r, t) to be the vertical distance from the top of the aquifer, to the interface
(see Figure 3.1). Hence, h(r, t) will be a function for the location of the interface.

Consider now Darcy’s law for fluid i. From Equation (1.6), we have

ui =

(

ur,i

uz,i

)

=

(

−krλi
∂pi

∂r

−kzλi

[

∂pi

∂z
− ρig

]

)

. (3.1)

Rearranging the vertical component of this equation, we get an expression for the derivative
of the pressure,

∂p

∂z
= − uz,i

kzλi

+ ρig .

We want to derive a relation for the pressure in the aquifer, and thus integrate the equation
from z = H to z = 0, obtaining

∫ z=0

z=H

∂p

∂z
dz = −

∫ z=h(r,t)

z=H

(

uz,w

kzλw

− ρwg

)

dz

− pcap −
∫ z=0

z=h(r,t)

(

uz,c

kzλc

− ρcg

)

dz . (3.2)

On the right-hand side, we have split the integral into one for the region of CO2 and one
for the region of water (see Figure 3.1), where the subscripts c and w denotes these regions,
CO2 and water, respectively. Also, since the pressure is allowed to be discontinuous over
the interface, we get a capillary term, pcap(r, t) = p(r, t, hw) − p(r, t, hc); where hi is the
point on the interface closest to the region of phase i. When representing the average flux
in the vertical direction, by qz(r, t), Equation (3.2) further implies

p(r, t, 0) − p(r, t, H) =

− pcap(r, t) +
qz,c(r, t)

kzλc

+
qz,w(r, t)

kzλw

− ρcgh(r, t) − ρwg(H − h(r, t)) .

Since the horizontal dimension is much greater than the vertical, we assume the flux in
the vertical direction to be small relative to the flux in the horizontal direction. Thus, we
neglect the terms proportional to qz, and get

p(r, t, 0) = p(r, t, H) − pcap(r, t) − ρcgh(r, t) − ρwg(H − h(r, t)) . (3.3)

Furthermore we have considered the CO2 phase above and the water phase below the
interface. Thus, we represent the pressure within each of these phases by, pc = p(r, t, 0)
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and pw = p(r, t, H), respectively. We choose the pressure in the water phase as our primary
variable for the pressure; pw = p. Hence, we can use relation (3.3) and get an expression
for the pressure in the CO2 phase,

pc = p− pcap − ρwgH + ∆ρgh(r, t), where ∆ρ = ρw − ρc .

By differentiate this expression with respect to r, we also obtain an expression for the
derivative of the pressure within the CO2 phase,

∂pc

∂r
=
∂p

∂r
− ∂pcap

∂r
+ ∆ρg

∂h(r, t)

∂r
.

This relation is of the same form as Equation (1.11). When considering large scales in x
and t, the dynamic pressure will be the dominant driving force for the radial flux of CO2.
Thus, we neglect the capillary term. By substituting for the pressure in Darcy’s law (3.1),
we then get

ur,c = −kλc

(

∂p

∂r
+ ∆ρg

∂h(r, t)

∂r

)

, (3.4a)

ur,w = −kλw

∂p

∂r
. (3.4b)

Since we have neglected the flux in the vertical direction, we have chosen to denote the
homogeneous permability in the radial direction, kr, by k, in the following.

Both phases must also satisfy the equation of continuity. By considering r > 0, we ne-
glect the source term (Q = 0). We integrate (1.5) in the vertical direction, obtaining one
equation for the region of CO2 and one for the region of water. That is,

1

r

∂

∂r
(rρcur,ch(r, t)) + φ(1 − Sres)

∂

∂t
(ρch(r, t)) = 0 , (3.5a)

1

r

∂

∂r
(rρwur,w(H − h(r, t))) + φ(1 − Sres)

∂

∂t
(ρw(H − h(r, t))) = 0 , (3.5b)

where we have used the divergence operator in cylindrical coordinates. The velocity ur,i is
given by (3.4a) and (3.4b). Substituting for the velocity, we rewrite (3.5a) and (3.5b) as

∂h(r, t)

∂t
=

1

φ(1 − Sres)

1

r

∂

∂r

(

kλcrh(r, t)

[

∂p

∂r
+ ∆ρg

∂h(r, t)

∂r

])

, (3.6a)

∂(H − h(r, t))

∂t
=

1

φ(1 − Sres)

1

r

∂

∂r

(

kλwr(H − h(r, t))
∂p

∂r

)

. (3.6b)

Here, we have also used the approximation of incompressible fluids. By combinding these
two equation, we can calculate for the pressure. Thus, we add Equation (3.6a) and (3.6b)
together;
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0 =
k

φ(1 − Sres)

1

r

[

∂

∂r

(

λcrh(r, t)
∂

∂r
(p+ ∆ρgh(r, t))

)

+
∂

∂r

(

λwr(H − h(r, t))
∂p

∂r

)]

.

The term kr/φ(1 − Sres)r is nonzero for r > 0, which implies

∂

∂r

[

λcrh(r, t)
∂

∂r
(p+ ∆ρgh(r, t)) + λwr(H − h(r, t))

∂p

∂r

]

= 0 .

This equation, we can integrate with respect to r:

λcrh(r, t)
∂

∂r
(p+ ∆ρgh(r, t)) + λwr(H − h(r, t))

∂p

∂r
= C . (3.7)

From the principle of mass-conservation and the condition that CO2 is injected at a con-
stant rate of flux, Qwell, we can determine C. The equation of continuity, (1.3), is valid
for an arbitrary geometric volume Ω. For a fixed time t, we let Ω represent a cylinder of
radius r. By evaluating (3.7) at r > r0, where we have h(r > r0, t) = 0 (see Figure 3.1),
we obtain

C = −Qwell

2πk
, where Qwell = −2πrHkλw

∂p

∂r
.

Here we have used the Darcy velocity in the radial direction, in the expression for Qwell.
Substituting for C back into (3.7), we get

∂p

∂r
= − [λch(r, t) + λw(H − h(r, t))]−1

[

λc∆ρgh(r, t)
∂h(r, t)

∂r
+
Qwell

2πrk

]

.

Finally, by putting this expression into (3.6b) we obtain the model equation for the interface
location h(r, t). That is,

∂h(r, t)

∂t
=

∆ρgkλw

φ(1 − Sres)r

∂

∂r

[

λcrh(r, t)(H − h(r, t))

λch(r, t) + λw(H − h(r, t))

∂h(r, t)

∂r

+
Qwell(H − h(r, t))

2π∆ρgk[λch(r, t) + λw(H − h(r, t))]

]

. (3.8)

3.3 Dimensionless Form

In order to simplify our mathematical model (3.8), we will transform it into dimensionless
form and reduce the number of parameters in the equation. Thus, we need to construct
new dimensionless parameters. Equation (3.8) is a relation for the interface location h(r, t),
and has a total of 10 parameters: h, r, t, φ, ∆ρ, k, λc, λw, g and Qwell, where h, r, t and ∆ρ
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have independent dimensions. Buckingham’s Π-theorem (2.3.1) then tells us that we can
rewrite the equation as a relationship of some dimensionless parameter (representing h)
and 6 dimensionless products of the governing parameters. That is, we can at least reduce
the number of parameters from 10 to 6. However, dependent on the equation, it might be
possible to reduce the number of parameters by more than 3. For the transformation of
Equation (3.8), we have chosen the following dimensionless parameters:

h′ ≡ h

H
, Γ ≡ 2π∆ρgkλwH

2

Qwell
, λ ≡ λc

λw

,

τ ≡ Qwellt

2πHφk(1 − Sres)
, η ≡ r√

k
. (3.9)

It turns out that we only need 5 dimensionless parameters. This is an consequence of the
form of the equation alone; the dimensional analysis only guarantees for a reduction of 3
parameters. The choice of these dimensionless parameters seems to be somewhat arbitrary.
As noted before, there are no methods for proving that one choice of dimensionless products
are better than another. However, it is important that the chosen dimensionless parameters
represent the physics of the problem. The interface location h, which we want to solve for,
is now being represented by the dimensionless parameter h′. But h′ is only the normalised
interface, taking values between 0 and 1, and will thus represent the same physics as h.
Furthermore, Γ will represent the relative importance of density forces (∆ρ) to viscous
forces (Qwell/λw). In our case ∆ρ = ρw − ρc > 0, which means that we will have Γ > 0.
The other dimensionless parameters are also chosen to represent some physical quantities:
λ is simply the mobility ratio, τ represents the time t and η is a scaled parameter for
the spatial variable r. These parameters will also be non-negative. By substituting the
dimensionless parameters into Equation (3.8), we obtain an equation for h′(η, τ):

∂h′

∂τ
=

1

η

∂

∂η

[

Γλh′(1 − h′)η

λh′ + (1 − h′)

∂h′

∂η
+

1 − h′

λh′ + (1 − h′)

]

. (3.10)

3.4 Self-Similar Transformation

When CO2 is injected into a homogeneous reservoir with radial symmetry, we expect the
CO2 to spread equally out in all directions normal to the well at each depth. Thus, the
volume of CO2 at time t, will be proportional to Hr(t)2. Since we also assume constant
injection rate Qwell and incompressible flow, the volume of CO2 divided by the time t must
be of constant value at all times. Thus, t will be proportional to r2. In dimensionless
variables (see (3.9)), this implies τ being proportional to η2.

The solution h′(η, τ) of Equation (3.10) represents the interface between the region of
water and CO2. The shape of this interface will in time change due to gravity forces. We
hypothesise that this injection process has the feature of self-similarity, and that Equation
(3.10) can be transformed to an ordinary differential equation by the transformation,
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χ = η2/τ . (3.11)

Transforming the derivatives in Equation (3.10) by this transformation, we get

∂h′(η, τ)

∂η
=

∂h′(χ, τ)

∂χ

∂χ

∂η
= 2

η

τ

∂h′(χ, τ)

∂χ
,

∂h′(η, τ)

∂τ
=

∂h′(χ, τ)

∂χ

∂χ

∂τ
+
∂h′(χ, τ)

∂τ
= −χ

τ

∂h′(χ, τ)

∂χ
+
∂h′(χ, τ)

∂τ
.

Substituting these into (3.10), we obtain

−χ∂h
′

∂χ
+ τ

∂h′

∂τ
= 2

∂

∂χ

[

1 − h′

1 + (λ− 1)h′

(

1 + 2Γλχh′
∂h′

∂χ

)]

, (3.12)

where h′ = h′(χ, τ). The differentiation on the right-hand side of Equation (3.12) can be
carried out to yield,

τ
∂h′

∂τ
− χ

∂h′

∂χ
= 2

[−[1 + (λ− 1)h′ + (1 − h′)(λ− 1)]∂h′

∂χ

[1 + (λ− 1)h′]2

(

1 + 2Γλχh′
∂h′

∂χ

)

+
2Γλ(1 − h′)

1 + (λ− 1)h′

(

h′
∂h′

∂χ
+ χ

(

∂h′

∂χ

)2

+ χh′
∂2h′

∂χ2

)

]

,

and rearranged as,

τ
∂h′

∂τ

(

∂h′

∂χ

)

−1

= χ− 2λ

[1 + (λ− 1)h′]2

(

1 + 2Γλχh′
∂h′

∂χ

)

+4Γλ
1 − h′

1 + (λ− 1)h′

[

h′ + χ
∂h′

∂χ
+ χh′

∂2h′

∂χ2

(

∂h′

∂χ

)

−1
]

. (3.13)

Here we have assumed that ∂h′

∂χ
6= 0. If (3.11) represents a similarity transformation, the

solution h′(χ, τ) will approach the asymptote of h′(χ). Thus, h′(χ, τ) can be represented
by h′(χ) for late times τ , and we need only to solve the following stationary equation:

0 = χ− 2λ

[1 + (λ− 1)h′]2

(

1 + 2Γλχh′
dh′

dχ

)

+ 4Γλ
1 − h′

1 + (λ− 1)h′

[

h′ + χ
dh′

dχ
+ χh′

d2h′

dχ2

(

dh′

dχ

)

−1
]

. (3.14)

The stationary solution h′(χ) is proved to be stable for small values of Γ (Nordbotten and
Celia 2006b). That is,
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h′(χ, τ) −→ h′(χ) as τ → ∞ , for Γ < Γc(λ). (3.15)

Thus, h′(χ) will be stable with respect to perturbations. The stability proof of Nordbotten
and Celia (2006b) is reproduced in Appendix B. There is however no discussion about
the magnitude of Γc(λ); Nordbotten and Celia (2006b) only states that there exists such a
positive value of Γ. Typical values of Γ, will be of order 10−2−102 (Bachu, Nordbotten, and
Celia 2004), dependent on both the aquifer (k and H), the injection rate (Qwell) and the
fluid parameters (ρ and λ). The fluid parameters will further depend on the temperature
and depth of the aquifer. The mobility ratio, λ, between CO2 and water, will typically be
5 − 25 (Nordbotten and Celia 2006a).

We will investigate the value of Γc, for different values of λ in Chapter 5. This analy-
sis shows that Γc(λ) will be of order 10−1, for values of λ > 5. In order to study the
stability for other values of Γ, we will focus on linear stability in the next chapter.



Chapter 4

Analysis

In this chapter we will study the linear stability of the time-dependent equation, given
by Equation (3.13). When considering a linearised solution of this equation, we impose a
criterion for the stability. This criterion will depend upon the solution of the stationary
equation (3.14). Thus, we first look at the properties of this equation.

4.1 Properties of the Stationary Equation

With a slight abuse of notation, we write the stationary equation (3.14) as

0 = χ− 2λ

[1 + (λ− 1)h0]2

(

1 + 2Γλχh0
dh0

dχ

)

+ 4Γλ
1 − h0

1 + (λ− 1)h0

[

h0 + χ
dh0

dχ
+ χh0

d2h0

dχ2

(

dh0

dχ

)

−1
]

, (4.1)

Here, h0 = h0(χ) is the steady-state solution, where χ is the self-similar variable given by
(3.11). The equation will further be valid in the interval χ ∈ 〈χ1, χ0〉, where the boundary
points are defined as:

χ0 = {χ : h0(χ) = 0} , (4.2)

χ1 = {χ : h0(χ) = 1} . (4.3)

Thus, we have a boundary-value problem. Since all the terms in (4.1) are non-zero and
bounded in the interval χ ∈ 〈χ1, χ0〉, the solution h0(χ) will be continuous within this inter-
val. Furthermore, the equation degenerates at the boundaries χ0 and χ1, where h0(χ0) = 0
and h0(χ1) = 1. Since we have assumed no leakage of CO2, we consider h0(χ) ∈ [0, 1] and
define h0(χ) = 1 for χ ≤ χ1, and h0(χ) = 0 for χ ≥ χ0 (see Figure 4.1).

Since Equation (4.1) degenerates at the boundary points, h0(χ) may not be smooth at
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Water

1

z/H

χ
1

χ
0

χ

CO2

h (χ)0

Figure 4.1: The interface location, h0(χ), between the region of CO2 and water, in self-
similar coordinates

these points. Hence, the derivative of h0(χ) is not in general defined at the boundaries.
However, by considering the limit from one side only, we can get an expression for the deriv-
ative at χ−

0 and χ+
1 . By substituting (4.2) and (4.3) into (4.1), Equation (4.1) degenerates

to a couple of first order equations. These are,

0 = χ0 − 2λ+ 4Γλχ0
dh0

dχ

∣

∣

∣

∣

χ=χ−

0

,

0 = χ1 −
2

λ
− 4Γχ1

dh0

dχ

∣

∣

∣

∣

χ=χ+
1

.

Hence, the derivative of h0(χ) at the boundaries can be written as:

dh0

dχ

∣

∣

∣

∣

χ=χ−

0

=
2λ− χ0

4Γλχ0
, (4.4a)

dh0

dχ

∣

∣

∣

∣

χ=χ+
1

=
λχ1 − 2

4Γλχ1
. (4.4b)

We now have two conditions for our boundary-value problem. Hence, we can find a unique
solution for Equation (4.1) in the interval χ ∈ 〈χ1, χ0〉. If one of the boundary points (χ0

or χ1) is known, it will be sufficient only to know the derivative at this boundary point;
the equation can then be solved uniquely. However, when the values of χ0 and χ1 are
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unknown, both conditions (4.4a) and (4.4b) are necessary.

By differentiating Equation (4.1), we are also able to find expressions for the second deriv-
ative of h0(χ) at the boundary points (see Appendix A for more details). From (A.2) and
(A.3) we get

d2h0

dχ2

∣

∣

∣

∣

χ−

0

= λ

(

dh0

dχ

∣

∣

∣

∣

χ−

0

)2

− 2Γ + λ− 1

2Γχ0

dh0

dχ

∣

∣

∣

∣

χ−

0

− 1

8Γλχ0

=
χ2

0 − 2χ0 + 2Γχ0 − 2λχ0 − 8Γλ+ 4λ

16Γ2λχ2
0

, (4.5a)

d2h0

dχ2

∣

∣

∣

∣

χ+
1

= −1

λ

(

dh0

dχ

∣

∣

∣

∣

χ+
1

)2

−
(

1

χ1
− λ− 1

2Γλ2χ1

)

dh0

dχ

∣

∣

∣

∣

χ+
1

+
1

8Γχ1

=
8Γλ2 − 2Γλ3χ1 − λ2χ2

1 + 2λ2χ1 + 2λχ1 − 4λ

16Γ2λ3χ2
1

. (4.5b)

4.1.1 Conservation of CO2

The boundary conditions (4.4a) and (4.4b) further lead to a condition on the volume
of CO2. By assuming ∂h′

∂τ
= 0 in Equation (3.12), this equation becomes equivalent to

Equation (4.1). That is,

−χdh0

dχ
= 2

d

dχ

[

1 − h0

1 + (λ− 1)h0

(

1 + 2Γλχh0
dh0

dχ

)]

. (4.6)

By integrating this equation from χ = 0 to χ = χ0, we get

−
∫ χ0

0

χ
dh0

dχ
dχ = 2

[

1 − h0

1 + (λ− 1)h0

(

1 + 2Γλχh0
dh0

dχ

)]
∣

∣

∣

∣

χ=χ1

χ=0

+ 2

[

1 − h0

1 + (λ− 1)h0

(

1 + 2Γλχh0
dh0

dχ

)]
∣

∣

∣

∣

χ=χ0

χ=χ1

.

Since the derivative is discontinuous in χ1, we have split the integration on the right-hand
side into to domains. When h′(χ) = 1 for χ ∈ 〈0, χ1], the first term on the right-hand side
is zero. Using integration by parts on the left-hand side of the equation, we further obtain

− χ0h0(χ0) +

∫ χ0

0

h0(χ)dχ = 2

[

1 − h0(χ0)

1 + (λ− 1)h0(χ0)

(

1 + 2Γλχ0h0(χ0)
dh0

dχ

∣

∣

∣

∣

χ0

)

− 1 − h0(χ1)

1 + (λ− 1)h0(χ1)

(

1 + 2Γλχ1h0(χ1)
dh0

dχ

∣

∣

∣

∣

χ1

)]

. (4.7)
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We consider dh0

dχ
to be bounded for χ ∈ 〈χ1, χ0〉. This will be proved for 0 < Γ < ∞ and

1 < λ <∞ in Section 4.1.2. By substituting (4.2) and (4.3) into Equation (4.7), we obtain
a dimensionless expression for the volume of CO2 inside the aquifer. That is,

∫ χ0

0

h0(χ)dχ = 2 . (4.8)

This is not an additional condition for the boundary-value problem, but a consequence of
the two boundary conditions (4.4a) and (4.4b). However, since we do not know the values
of χ0 and χ1, the value of the derivatives at these points are unknown as well. By replacing
condition (4.4b) with (4.8), we still have two condition for our boundary value problem,
in which will give us a unique solution. This will simplify the numerical implementation,
presented in the next chapter. The dimensionless formulation (4.8) is further equivalent
with the conservation of CO2,

∫ r0

0

φ(1 − Sres)2πrh(r, t)dr = Qwellt ,

where r0 is the point on r which corresponds to the dimensionless point χ0 (see Figure 3.1
and 4.1).

Furthermore, we can find a relation for the derivative of h0(χ), by integrating (3.12) from
0 to an arbitrary χ. That is,

−χh0 +

∫ χ

0

h0dχ = 2

[

1 − h0

1 + (λ− 1)h0

(

1 + 2Γλχh0
dh0

dχ

)]

.

By rearranging this equation, we get

1 + 2Γλχh0
dh0

dχ
=

1 + (λ− 1)h0

2(1 − h0)

[
∫ χ

0

h0dχ− χh0

]

. (4.9)

Since h0(χ) ∈ [0, 1], the integral in (4.9) will be smaller or equal to the value of χ. Also,
when dh0

dχ
≤ 0, the integral will be greater or equal to the value of χh0 (see Figure 4.1).

Using these inequalities in (4.9), we get the following inequality:

0 ≤ 1 + 2Γλχh0
dh0

dχ
≤ χ

2
[1 + (λ− 1)h0] .

4.1.2 The Slope of the Stationary Equation

For the derivation of Equation (3.13) and (3.14), from the previous chapter, we considered
the interface to be shaped by gravity override (see Figure 4.1), and assumed ∂h′

∂χ
< 0 for

χ1 < χ < χ0. The following Theorem shows that this assumption holds for Equation (4.6).

Theorem 4.1.1 Let 0 < Γ <∞ and 1 < λ <∞. When h0(χ) ∈ C1[χ1, χ0] is the solution
of (4.6), with boundary points defined by (4.2) and (4.3) (positive and finite), the derivative
of h0(χ) will be negative and bounded for all χ ∈ 〈χ1, χ0〉.
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proof. Consider Equation (4.6). By differentiating the right-hand side of Equation (4.6),
we obtain

4Γλ

(

χh0(1 − h0)

1 + (λ− 1)h0

)

d2h0

dχ2
+ ψ(χ)

dh0

dχ
= 0 , (4.10)

where

ψ(χ) = χ−
2λ
(

1 + 2Γλχ h0
dh0

dχ

)

[1 + (λ− 1)h0]2
+ 4Γλ

1 − h0

1 + (λ− 1)h0

(

h0 + χ
dh0

dχ

)

.

Assume that there is a point χ ∈ 〈χ1, χ0〉 where dh0

dχ
= 0. Then,

|ψ(χ)| =

∣

∣

∣

∣

χ− 2λ

[1 + (λ− 1)h0]2
+ 4Γλ

h0(1 − h0)

1 + (λ− 1)h0

∣

∣

∣

∣

<∞ ,

and from (4.10) we get

4Γλ

(

χh0(1 − h0)

1 + (λ− 1)h0

)

d2h0

dχ2
= 0 . (4.11)

This can only be satisfied if χ = χ0, χ = χ1 or d2h0

dχ2 = 0. When considering χ ∈ 〈χ0, χ1〉,
Equation (4.11) implies d2h0

dχ2 = 0. Thus, h0(χ) = C = constant. In order to fulfil (4.2) and

(4.3), h0(χ) will be discontinuous at one of the boundary points, and we have a contradic-
tion. Hence, dh0

dχ
6= 0 for all χ ∈ 〈χ0, χ1〉.

Since dh0

dχ
6= 0 and h0(χ) ∈ C1[χ1, χ0], h0(χ) must be strictly decreasing or increasing

within this interval.

When the interface location h0(χ) is defined as the distance from the top of the aquifer,
through the CO2 phase, and down to the interface (see Figure 4.1), we have χ0 > χ1.
Otherwise the aquifer is initially fully saturated with CO2. From (4.2) and (4.3) we have
h0(χ0) < h0(χ1), which means that h0(χ) must be strictly decreasing. Hence, dh0

dχ
< 0 for

χ ∈ 〈χ1, χ0〉.

From (4.4a) and (4.4b) we further see that the derivative of h0(χ) is bounded at the
boundary points, χ0 and χ1. Thus, since h0(χ) is monotone for χ ∈ 〈χ1, χ0〉, dh0

dχ
will be

bounded for all χ ∈ 〈χ1, χ0〉.

�

4.1.3 The Special Case: Γ → 0

We will now consider the situation of high injection rate Qwell or small differences in density
(∆ρ → 0). It follows that Γ becomes so small that we can neglect the terms proportional
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Figure 4.2: The solution h0(χ) for the case of Γ → 0. Here I have used λ = 5.

to Γ. Thus, Γ is below Γc, and we have stability. Since we have stability, we consider
Equation (4.1) for h0(χ). By neglecting all the Γ-terms in Equation (4.1) we are left with,

χ =
2λ

[1 + (λ− 1)h0]2
. (4.12)

This equation can be inverted for h0(χ) to give:

h0(χ) =











1 for χ < 2
λ

q

2λ
χ
−1

λ−1
for 2

λ
< χ < 2λ

0 for χ > 2λ

(4.13)

By plotting h0(χ) as a function of χ, for λ > 1, we see from Figure 4.2 that it has the
same shape as the function in Figure 4.1. Here,

√
χ is choosen as the horizontal axis,

as it is proportional to the radial distance r (see 3.9). From Equation (4.13) we further
observe that h0(χ) approaches a vertical line at χ = 2, in the limit as the mobility ratio λ
approaches 1. That is, when having equal density and mobility, both fluids will flow with
equal velocities at every depth.

The derivative of h0(χ) can also be computed:
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dh0

dχ
=

√
2λ

λ− 1

d

dχ

(

χ−
1

2

)

= −
√
λ√

2(λ− 1)
χ−

3

2 for
2

λ
< χ < 2λ .

We observe that the derivative of h0 will be positive for all χ > 0, in the case of λ < 1. It
also has a singularity at λ = 1. Thus, Equation (4.13) dose not hold, and we will have to
solve Equation (4.1) for the case of λ ≤ 1.

4.2 Linear Stability

From the non-linear stability proof of Nordbotten and Celia (2006b) (see Appendix B),
we know that for small positive values of Γ (0 < Γ < Γc), the solution h0(χ) of Equation
(4.1) is stable. Thus, h′(χ, τ) will approach the asymptotic solution h0(χ), of (4.1), for
late times τ . In order to compare these two equations for other values of Γ, we choose to
linearise (3.13).

4.2.1 Linearisation

We express the solution h′(χ, τ) as a Taylor expansion with respect to time τ :

h′(χ, τ) = h0(χ) + εg(χ, τ) + O(ε2), where ε > 0 . (4.14)

Here, h0(χ) represents the solution of the stationary equation (4.1), while g(χ, τ) is an
arbitrary bounded function. When h′(χ, τ) must satisfy the conservation of CO2, we require

ε

∫

∞

0

g(χ, τ)dχ = 0 .

Thus, h′(χ, τ) from (4.14) represents a perturbation of h0(χ). We will further assume that
the parameter ε is small, and neglect all terms proportional to εp, where p ≥ 2. By ne-
glecting these terms, we are able to obtain a linearised equation for g(χ, τ).

We substitute (4.14) into the time-dependent equation (3.13) to obtain

ετ
∂g

∂τ

(

dh0

dχ
+ ε

∂g

∂χ

)

−1

= χ− α(χ, τ)

[1 + (λ− 1)(h0 + εg)]2

+
β(χ, τ)

1 + (λ− 1)(h0 + εg)
, (4.15)

where,



32 Analysis

α(χ, τ) = 2λ

[

1 + 2Γλχ(h0 + εg)

(

dh0

dχ
+ ε

∂g

∂χ

)]

,

β(χ, τ) = 4Γλ (1 − h0 − εg)

[

h0 + εg + χ

(

dh0

dχ
+ ε

∂g

∂χ

)

+ χ(h0 + εg)

(

d2h0

dχ2
+ ε

∂2g

∂χ2

)(

dh0

dχ
+ ε

∂g

∂χ

)

−1 ]

.

We do not want to have any terms inversely proportional to ε, and represent these terms
by their Taylor series:

f1(ε) ≡
(

dh0

dχ
+ ε

∂g

∂χ

)

−1

=

(

dh0

dχ

)

−1

−
∂g

∂χ
(

dh0

dχ

)2 ε , (4.16)

f2(ε) ≡ 1

[1 + (λ− 1)(h0 + εg)]2

=
1

[1 + (λ− 1)h0]2
− 2(λ− 1)g

[1 + (λ− 1)h0]3
ε , (4.17)

f3(ε) ≡ 1 − h0 − εg

1 + (λ− 1)(h0 + εg)

=
1 − h0

1 + (λ− 1)h0
− λg

[1 + (λ− 1)h0]2
ε . (4.18)

Again the higher order terms of ε are neglected. By substituting (4.16)-(4.18) back into
Equation (4.15), we get

ετ
∂g

∂τ

{

(

dh0

dχ

)

−1

− ε
∂g

∂χ

(

dh0

dχ

)

−2
}

=

χ− α(χ, τ)

{

1

[1 + (λ− 1)h0]2
− 2(λ− 1)g

[1 + (λ− 1)h0]3
ε

}

+ γ(χ, τ)

{

1 − h0

1 + (λ− 1)h0

− λg

[1 + (λ− 1)h0]2
ε

}

,

where,
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γ(χ, τ) = 4Γλ

[

h0 + εg + χ

(

dh0

dχ
+ ε

∂g

∂χ

)

+ χ(h0 + εg)

(

d2h0

dχ2
+ ε

∂2g

∂χ2

)

{

(

dh0

dχ

)

−1

− ε
∂g

∂χ

(

dh0

dχ

)

−2
}]

.

Now, all the nonlinear terms are of order ε2. When considering ε as small, we neglect
these terms and are left with a linear partial differential equation. Furthermore, all terms
proportional to ε0 constitute the right-hand side of (4.1). Thus, these terms add up to
zero, and we are only left with the terms proportional to ε. Multiplying both sides by ε−1,
we obtain a linear equation for g(χ, τ):

∂g

∂τ
=

4

τ

[

A(χ)
∂2g

∂χ2
+B(χ)

∂g

∂χ
+ C(χ)g

]

, (4.19)

where,

A(χ) =
Γλχ(1 − h0)h0

1 + (λ− 1)h0

, (4.20)

B(χ) = −
Γλ2χh0

dh0

dχ

[1 + (λ− 1)h0]2

+
Γλχ(1 − h0)

1 + (λ− 1)h0

[

dh0

dχ
− h0

d2h0

dχ2

(

dh0

dχ

)

−1
]

, (4.21)

C(χ) =
λ(λ− 1)dh0

dχ

[1 + (λ− 1)h0]3

[

1 + 2Γλχh0
dh0

dχ

]

− Γλ2

[1 + (λ− 1)h0]2

[

h0
dh0

dχ
+ 2χ

(

dh0

dχ

)2

+ χh0
d2h0

dχ2

]

+
Γλ(1 − h0)

1 + (λ− 1)h0

[

dh0

dχ
+ χ

d2h0

dχ2

]

. (4.22)

We want to show that the arbitrary perturbation g(χ, τ) in Equation (4.19) approaches
zero as τ → ∞. Thus, if we can show that

∂

∂τ
[max

χ
|g(χ, τ)|] < 0 ,

for all χ ∈ [χ1, χ0] and τ > 0, we have linear stability.
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Figure 4.3: h′(χ, τ) as a perturbation of h0(χ), at a fixed time τ . For illustration purpose,
we have chosen the perturbation ε, as quite large in this figure.

4.2.2 Stability Analysis

In Figure 4.3, the dotted line represents the perturbated solution h′(χ, τ) = h0(χ)+εg(χ, τ),
while the continuous line shows the stationary solution h0(χ). We define:

χm = {χ : |g(χm, τ)| ≥ |g(χ, τ)|} .
We are interested in how the arbitrary perturbation g(χ, τ) evolves in time. Evaluated in
χm, we want to show that

h′(χm, τ) = h0(χm) + εg(χm, τ) → h0(χm) , as τ → ∞ .

If we can show that |g(χm, τ)| is monotonically decreasing as τ → ∞, this expression will
be satisfied, and we will have linear stability.

Case 0 < h0(χm) < 1. Consider first that g(χ, τ) has a minimum or maximum at χm ∈
〈χ1, χ0〉. Thus, ∂g

∂χ
|χm

= 0. For the case of g(χm, τ) < 0, we will have ∂2g

∂χ2 |χm
> 0. Fur-

thermore (4.20) shows that A(χ) ≥ 0 for all Γ, λ and χ > 0. Thus, from (4.19) we
have

∂g

∂τ

∣

∣

∣

∣

χm

=
4ε

τ

[

A(χm)
∂2g

∂χ2

∣

∣

∣

∣

χm

+ C(χm)g(χm, τ)

]

> 0 for C(χm) < 0 .
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For the case of g(χm, τ) > 0, we have ∂2g

∂χ2 |χm
< 0. Thus,

∂g

∂τ

∣

∣

∣

∣

χm

< 0 for C(χm) < 0 .

Hence, we need to show that C(χm) < 0.

Case h0(χm) = 0. This is the case of χm = χ0. From Equation (4.20) and (4.21) we
have,

A(χ0) = 0 and B(χ0) = Γλχ0
dh0

dχ

∣

∣

∣

∣

χ−

0

< 0 .

Also, from (4.22), (4.4a) and (4.5a) we obtain,

C(χ0) = λ(λ− 1)
dh0

dχ

∣

∣

∣

∣

χ−

0

− 2Γλ2χ0

(

dh0

dχ

∣

∣

∣

∣

χ−

0

)2

+ Γλ

[

dh0

dχ

∣

∣

∣

∣

χ−

0

+ χ0
d2h0

dχ2

∣

∣

∣

∣

χ−

0

]

=
(λ− 1)(2λ− χ0)

4Γχ0

− 4λ2 − 4λχ0 + χ2
0

8Γχ0

+
2λ− χ0

4χ0

+
χ2

0 − 2χ0 + 2Γχ0 − 2λχ0 − 8Γλ+ 4λ

16Γχ0

=
1

16Γχ0

(8λ2 − 4λχ0 − 8λ+ 4χ0 − 8λ2 + 8λχ0 − 2χ2
0 + 8Γλ

− 4Γχ0 + χ2
0 − 2χ0 + 2Γχ0 − 2λχ0 − 8Γλ+ 4λ)

=
1

16Γχ0

(

2λχ0 − 4λ+ 2χ0 − χ2
0 − 2Γχ0

)

=
1

16Γχ0

[(2 − χ0)(χ0 − 2λ) − 2Γχ0] .

Since we have proved dh0

dχ
< 0 for χ ∈ 〈χ1, χ0〉, Equation (4.4a) implies χ0 > 2λ. Also,

from the volume condition (4.8), we have χ0 > 2. Thus, C(χ0) < 0. Furthermore, since
h0(χ, τ) ≥ 0, we must have g(χ0, τ) ≥ 0. This implies ∂g

∂χ
|χm

≥ 0. Hence, from Equation

(4.19) we obtain,

∂g

∂τ

∣

∣

∣

∣

χm

=
4ε

τ

[

B(χm)
∂g

∂χ

∣

∣

∣

∣

χm

+ C(χm)g(χm, τ)

]

< 0 ,

for all τ > 0.
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Case h0(χm) = 1. This is the case of g(χm, τ) having a minimum at the boundary χ1.
From (4.20) and (4.21) we get,

A(χ1) = 0 and B(χ1) = −Γχ1
dh0

dχ

∣

∣

∣

∣

χ+
1

> 0 .

From (4.22), (4.4b) and (4.5b) we can get an expression for C(χ1):

C(χ1) =

(

λ− 1

λ2

)

dh0

dχ

∣

∣

∣

∣

χ+
1

+
2Γ(λ− 1)

λ
χ1

(

dh0

dχ

∣

∣

∣

∣

χ+
1

)2

−Γ





dh0

dχ

∣

∣

∣

∣

χ+
1

+ 2χ1

(

dh0

dχ

∣

∣

∣

∣

χ+
1

)2

+ χ1
d2h0

dχ2

∣

∣

∣

∣

χ+
1





=

(

λ− 1

λ2
− Γ

)

dh0

dχ

∣

∣

∣

∣

χ+
1

− 2Γχ1

λ

(

dh0

dχ

∣

∣

∣

∣

χ+
1

)2

− Γχ1
d2h0

dχ2

∣

∣

∣

∣

χ+
1

=

(

λ− 1

λ2
− Γ

)

dh0

dχ

∣

∣

∣

∣

χ+
1

− 2Γχ1

λ

(

dh0

dχ

∣

∣

∣

∣

χ+
1

)2

+
Γχ1

λ

(

dh0

dχ

∣

∣

∣

∣

χ+
1

)2

+

(

Γ − λ− 1

2λ2

)

dh0

dχ

∣

∣

∣

∣

χ+
1

− 1

8

= −Γχ1

λ

(

dh0

dχ

∣

∣

∣

∣

χ+
1

)2

+

(

λ− 1

2λ2

)

dh0

dχ

∣

∣

∣

∣

χ+
1

− 1

8

=

(

λ− 1

2λ2

)

dh0

dχ

∣

∣

∣

∣

χ+
1

−
(

λχ1 − 2

4λ2

)

dh0

dχ

∣

∣

∣

∣

χ+
1

− 1

8

=

(

2 − χ1

4λ

)

dh0

dχ

∣

∣

∣

∣

χ+
1

− 1

8
.

Since χ1 < χ0, the volume condition (4.8), requires χ1 ≤ 2. From Theorem 4.1.1 we have
dh0

dχ
< 0 for χ ∈ 〈χ1, χ0〉. Thus, C(χ1) < 0. Furthermore, when χm = χ1, g(χm, τ) has a

minimum at the left boundary point (see Figure 4.3). Thus, ∂g

∂χ
|χ+

1
≥ 0, and from (4.19)

we obtain,

∂g

∂τ

∣

∣

∣

∣

χm

=
4ε

τ

[

B(χm)
∂g

∂χ

∣

∣

∣

∣

χm

+ C(χm)g(χm, τ)

]

> 0 ,

for all τ > 0.
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4.3 Summary

By linearising the solution h′(χ, τ) = h0(χ) + εg(χ, τ), we were able to compare the two
equations, (3.14) and (3.13), from the previous chapter. From the linear analysis, we
carried out a linear second order partial differential equation for g(χ, τ), with coefficients

dependent upon the solution h0(χ) and dh0(χ)
dχ

, from the stationary equation.

When studying the stationary equation (4.1), we found expressions for the first and second
derivative of h0(χ), at the boundaries. We also proved that the first derivative of h0(χ) is
monotone and less than zero, for χ1 < χ < χ0. From these properties of the stationary
equation, we were able to carry out a criterion on the linear stability. That is, C(χ) < 0,
where C(χ) is given by (4.22). Furthermore, we showed that this criterion was satisfied on
the boundary.

Numerically, we can solve the stationary equation (4.1). Since the variable C(χ) is de-
pendent upon this solution h0(χ), and the first and second derivative of h0(χ), we can
solve for C(χ) numerically. We also derived an expression for the conservation of CO2 in
self-similar coordinates. This will become useful in the numerical implementation. The
numerical analysis is presented in the next chapter.





Chapter 5

Numerical Results

The stationary equation (4.1) discussed in the previous chapter can be solved numerically,

by means of for example a Runge-Kutta method. By solving for h0(χ), dh0

dχ
and d2h0

dχ2 , we

can compute the value of C(χ) and analyse the linear stability, discussed in the previous
chapter. By solving C(χ) for different values of Γ and λ we will investigate the region
of linear stability. We will also compute Γc for different values of λ, and find the region
of stability for the non-linear stability analysis of Nordbotten and Celia (2006b). When
solving the time-dependent equation numerically, we will further discuss the range of these
stability results.

5.1 The Runge-Kutta Method

We will consider the following initial value problem:

dy

dt
= f(t, y), y(t0) = y0 . (5.1)

Many numerical methods are developed, for solving these kind of problems. We will con-
sider the method of Runge-Kutta, which is a Taylor series method. The theory presented
in this chapter is based on (Cheney and Kincaid 2002).

The Taylor series is given by

y(t0 + ∆t) = y(t0) + ∆t
d

dt
y(t0) +

1

2
(∆t)2 d2

dt2
y(t0) + ... (5.2)

By using a finite part of this series, we can compute the needed number of derivatives of
f(t, y) and find an approximation to y(t0 + ∆t) from the initial value of y0. In the same
manner, we can compute y(t0 + i∆t) at step i. Thus, we can solve Equation (5.1) on a
finite interval I. The step length ∆t, need not be fixed. A Taylor series method that uses
n terms of the Taylor series, is said to be of order n. The local truncation error of this
method is then given by

39
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En =
1

(n + 1)!
(∆t)n+1 dn+1

dtn+1
y(t+ θ∆t), when 0 < θ < 1 .

A standard Taylor series method requires analytical expressions for f(t, y) and the deriva-
tives of f(t, y). However, for some expressions of f(t, y), possibly non-linear, the derivatives
of f(t, y) might be difficult to compute. The Runge-Kutta methods manage to avoid the
calculation of the derivatives of f(t, y).

Consider the differentiation of Equation (5.1),

d2y

dt2
=

∂f

∂t
+
∂f

∂y

dy

dt

=
∂f

∂t
+ f

∂f

∂y
.

By substituting this expression into (5.2), we obtain

y(t0 + ∆t) = y(t0) + ∆tf(t, y) +
1

2
(∆t)2[

∂

∂t
f(t, y) + f(t, y)

∂

∂y
f(t, y)] + O((∆t)3)

= y(t0) +
1

2
∆tf(t, y) +

1

2
∆tf(t+ ∆t, y + ∆tf(t, y)) + O((∆t)3) , (5.3)

where f(t + ∆t, y + ∆tf(t, y)) is given by its Taylor series. When neglecting the higher
order terms, this becomes a second order Runge-Kutta method. We see from Equation
(5.3), that we do not need to calculate any derivatives of f(t, y). Higher order Runge-Kutta
methods can be derived in the same manner. The fourth order Runge-Kutta method, also
called the classical Runge-Kutta method, is given by

y(t+ ∆t) = y(t) +
1

6
(F1 + 2F2 + 2F3 + F4) ,

where

F1 = ∆tf(t, y) ,

F2 = ∆tf(t+
1

2
∆t, y +

1

2
F1) ,

F3 = ∆tf(t+
1

2
∆t, y +

1

2
F2) ,

F4 = ∆tf(t+ ∆t, y + F3) .

This is the most frequently used Runge-Kutta method. Higher order methods are more
accurate, but also more expensive to use. The truncation error for this fourth order method
will be of order (∆t)5, since it only uses the first four terms of the Taylor series (5.2). It is
however difficult to derive an exact expression for this error.
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5.1.1 Adaptive Runge-Kutta Method

For efficiency, we do not want the step size ∆t to be too small. In order to choose a
reasonable value for this step size, we need a method which also solves for the error in
each step. An adaptive method adjusts the step size ∆t in every step, keeping the error
bounded within some specified interval.

In our numerical implementation in Matlab, we have used the function ode45. This is a
Runge-Kutta-Fehlberg method, which uses an additional fifth order Runge-Kutta method,
in order to calculate for the error in every step. The fifth order Runge-Kutta method uses
the same evaluation points as the fourth order method; a total of six evaluation points
(Hairer et al. 1987).

By solving the value of y(t + ∆t) twice, the method compares the two solutions, and
gets an estimate for the error. If the difference is small, we may choose to make the step
size ∆t larger for the next calculation. If the difference is larger than some tolerance, we
make the step size, ∆t, smaller, and recomputes y(t+ ∆t).

5.2 The Numerical Model

Equation (4.1) is a second order ordinary differential equation for h0(χ). By the transfor-
mation,

f1 = h0 and f2 =
dh0

dχ
, , (5.4)

we can transform the equation to a system of two first order equations. That is,

df1

dχ
= f2 , (5.5)

df2

dχ
=

(1 + (λ− 1)f1)f2

4Γλχf1(1 − f1)

[

2λ (1 + 2Γλχf1f2)

[1 + (λ− 1)f1]2

−χ− 4Γλ
1 − f1

1 + (λ− 1)f1
(f1 + χf2)

]

. (5.6)

These equations are on the same form as Equation (5.1), and can be solved by means of
Runge-Kutta methods, if we can specify some initial conditions.

We are interested in solving for h0 ∈ [0, 1]. Thus, from (5.4), (4.2) and (4.4a), the ini-
tial conditions should be,

f1(χ0) = 0 and f2(χ
−

0 ) =
dh0(χ

−

0 )

dχ
=

2λ− χ0

4Γλχ0
.
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However, Equation (4.1) degenerates at h0(χ0) = 0. Also, from (5.6), we see that df2

dχ
has a

singularity at this point. Hence, we will have to choose the initial condition for Equation
(5.5) at some neighbourhood χε, where

h0(χε) = ε . (5.7)

By use of the Taylor series, we can write

χε = χ0 + ε

(

dh0

dχ

∣

∣

∣

∣

χ−

0

)

−1

= χ0 +
4Γλχ0ε

2λ− χ0

.

Using the Taylor series again, we can also write the initial condition for Equation (5.6),

dh0

dχ

∣

∣

∣

∣

χε

=
dh0

dχ

∣

∣

∣

∣

χ−

0

+ (χε − χ0)
d2h0

dχ2

∣

∣

∣

∣

χ−

0

=
1

4Γλχ0

[

2λ− χ0 +
λε

2λ− χ0
(χ2

0 − 2χ0

+2Γχ0 − 2λχ0 − 8Γλ+ 4λ)

]

. (5.8)

Here the second derivative of h0(χ) is given by (4.5a). Now, we have two initial conditions,
(5.7) and (5.8). Thus, we can solve Equation (5.5) and (5.6) numerically by a Runge-Kutta
method.

The numerical implementation is done in Matlab, using the ode45 routine. When we
do not know the value of the point χ0, we will have to make a guess. For a given starting
value χ0, we can compute χε and dh0(χε)

dχ
and solve Equation (5.5) and (5.6) for chosen

values of Γ and λ. By integrating the solution from 0 to χ0, the solution must further
satisfy the conservation of CO2, given by (4.8). By an iterative solver, we choose new
starting points until we get a small enough error for the condition of (4.8).

5.3 Results

In Figure (5.1), we have plotted the solutions of h0(χ) for λ = 15 and Γ = 0.5, 2.5 and 10.
We see that more CO2 is flowing on top of the water phase in the case of Γ = 10, than in
the case of Γ = 2.5 and Γ = 0.5. The horizontal axis is here represented by

√
χ, where

χ =
η2

τ
=

2πr2Hφ(1 − Sres)

Qwellt
. (5.9)
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Figure 5.1: The three plots shows the spatial distribution of the CO2 phase, for the case
Γ = 0.5, 2.5 and 10, taken from the top. In all three plots we have used λ = 15. We see
that more CO2 is flowing on top of the water phase for Γ = 10, than for Γ = 0.5 and 2.5.

We see from (5.9) that
√
χ is proportional with r. Typical values for the spatial distribution

of the CO2 phase in an aquifer is further calculated in Table 5.1 below. Here r is the number
of meters, χ = 1 represents, for t1 = 24 hours and t2 = 1 year. The parameter H , denotes
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Sites H φ Qwell ρc k Γ r (m)
(m) (%) (Mt/y) (kg/m3) (mD) (1) t1 t2

Utsira 200 35 1 500 2000 70.68 4.99 95.37
Alberta 50 10 1 500 10 0.022 18.68 356.82

Table 5.1: The table shows geological data from two different aquifers. Here H denotes
the thickness, φ is the porosity, Qwell the injection rate, ρc the CO2 density and k the
horizontal permability, associated with each of the aquifers. The dimensionless parameter
Γ is also calculated in both cases. The spatial variable r, is computed from (5.9), when
χ = 1 and t = t1 = 24 hours and t2 = 1 year.

the thickness of the aquifer. In this table we have collected data for two different aquifers.
The Utsira formation, is located in the North Sea. Statoil is currently injecting 1 megaton
of CO2 per year, into this formation, approximately 1000 meters below the bottom of the
sea. The data for the Utsira formation is based on Lindeberg (2003). The other aquifer is
located in Alberta, Canada. As a possible storage site for CO2, much research has been
conducted for the purpose of collecting geological data for this aquifer. Here, we have
based our data on Nordbotten and Celia (2006a). While Utsira is a high-permeable sand
formation, the Alberta basin has both lower permability and porosity. The large difference
in Γ, is related to this large difference in the permability k, and the variation in thickness
H . The fluid parameters are chosen to be equal, in both aquifers. The value of these
fluid parameters are based upon the data from Nordbotten and Celia (2006a). Since these
values vary with both the temperature and the depth of the aquifer, we have chosen to use
some averaged values. We have used: ρc = 500 kg, ∆ρ = 600 kg and λw = 0.66 mPa/s.
Also, Sres = 0.5 and Qwell = 1 Mt/y, is used in both cases.

5.3.1 Non-Linear Stability

The non-linear stability analysis of Nordbotten and Celia (2006b) shows stability for Γ <
Γc(λ) (see Appendix B). That is, for

1 − Γ

[

4λ

1 + (λ− 1)h0

(

λh0

1 + (λ− 1)h0
− (1 − h0)

)

dh0

dχ

− 4λh0(1 − h0)

1 + (λ− 1)h0

(

dh0

dχ

)

−1
d2h0

dχ2

]

> 0 . (5.10)

When solving Equation (5.5) and (5.6) by a Runge-Kutta-Fehlberg method, using the

initial conditions of (5.7) and (5.8), we can find the values of h0,
dh0

dχ
and d2h0

dχ2 at χi ∈
〈χ1, χ0〉, for different values of Γ and λ. These, we can use in Equation (5.10) to compute
the values of Γc(λ) (see Figure 5.2).
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Figure 5.2: Γc as a function of λ. We have stability in the region below this curve.

5.3.2 Linear Stability

In the previous chapter we showed that the linearised solution, h′(χ, τ) = h0(χ)+ εg(χ, τ),
is stable for

C(χ) =
λ(λ− 1)dh0

dχ

[1 + (λ− 1)h0]3

[

1 + 2Γλχh0
dh0

dχ

]

− Γλ2

[1 + (λ− 1)h0]2

[

h0
dh0

dχ
+ 2χ

(

dh0

dχ

)2

+ χh0
d2h0

dχ2

]

+
Γλ(1 − h0)

1 + (λ− 1)h0

[

dh0

dχ
+ χ

d2h0

dχ2

]

< 0 . (5.11)

Our analysis shows that C(χ) < 0 on the boundaries, χ0 and χ1. For the case of χ1 <
χ < χ0, we were not able to prove inequality (5.11). Alternatively, we will evaluate C(χ)

numerically. By solving Equation (5.5) and (5.6) numerically, we can find h0(χi),
dh0(χi)

dχ

and d2h0(χi)
dχ2 for χi ∈ 〈χ1, χ0〉 and specified values of Γ and λ. When substituting these

results into (4.22), we also find the values for C(χi). We define

Cm = max
χ

C(χ) , for χ1 < χ < χ0 . (5.12)

In Figure 5.3 and Figure 5.4 we have plotted Cm as a function of Γ and λ. These numerical
results indicates that Cm and thus C(χ) is everywhere negative. Typical values for the
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Figure 5.3: Cm (max(C(χ))) as a function of Γ, when λ = 15.

Figure 5.4: Cm (max(C(χ))) as a function of λ, when Γ = 10.

mobility ratio, λ, lie between 5 and 25, dependent upon the depth of the aquifer and the
temperature of the fluids. The parameter Γ is a more complicated variable, since it depends
on several variables and parameters (see (3.9)). For some injection processes it may be of
order 10−2 (Nordbotten and Celia 2006a), and stay below Γc (from the non-linear stability
analysis). In other processes, like on Utsira (Table 5.1), Γ may be of order 102. In Figure
5.3 we plotted Γ on a logarithmic scale, while λ = 15 was held fixed. Also, in Figure 5.4
we plotted Cm as a function of the mobility ratio λ, where Γ = 10 was held fixed.

5.4 Numerical Solution of the Time-Dependent Equa-

tion

The time-dependent equation (3.13) is given by,

τ
∂h′

∂τ

(

∂h′

∂χ

)

−1

= χ− 2λ

[1 + (λ− 1)h′]2

(

1 + 2Γλχh′
∂h′

∂χ

)

+4Γλ
1 − h′

1 + (λ− 1)h′

[

h′ + χ
∂h′

∂χ
+ χh′

∂2h′

∂χ2

(

∂h′

∂χ

)

−1
]

, (5.13)
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where h′ = h′(χ, τ). This equation, we can solve numerically by means of a finite difference
method. By solving the non-linear time-dependent equation for different discretisations in
τ , we will look at the relative importance of the linear and non-linear terms of h′(χ, τ).

We assume the solution h′(χ, τ), to be monotone in 〈0, 1〉, where

∂h′

∂χ
< 0 for τ > 0 .

Thus, from the inverse function theorem, we can find an inverse function χ = χ(h′, τ)
(Apostol 1969). By substituting ∂h′

∂τ
= ∂h′

∂χ

∂χ

∂τ
on the left side of Equation (5.13), we can

write the equation as

∂χ

∂τ
=

1

τ
F

(

χ, h′,
∂h′

∂χ
,
∂2h′

∂χ2
; Γ, λ

)

, (5.14)

where F represents the right-hand side of Equation (5.13). By discretising Equation (5.14)
in h′ ∈ [0, 1] and τ , we get an explicit method, solving for χn,i+1:

χn,i+1 − χn,i

∆τ
=

1

τi
Fi,n

(

χ, h′,
∂h′

∂χ
,
∂2h′

∂χ2
; Γ, λ

)

. (5.15)

Thus, for an initial value χn,0, we can solve χn,i in time step i, for every h′n. For the
special case of Γ → 0, we have derived an analytical expression for the solution h0(χ)
of Equation (4.1). Since the derivative of h0(χ) is proved to be monotone for λ > 1 in
Theorem 4.1.1, there exists a unique inverse function. Thus, we use expression (4.12) as
the initial conditions for our numerical method. Hence, χn,0 is given by

χn,0 =
2λ

[1 + (λ− 1)h′n]2
. (5.16)

Now, we can solve (5.15) for different values of Γ > 0 and λ > 1. By choosing Γ < Γc(λ),
the stability analysis of Nordbotten and Celia (2006b) is ensured, and we expect the solu-
tion h′(χ, τ) to approach the steady-state solution h0(χ).

In Figure 5.5 we have solved Equation (5.15) for Γ = 0.2, λ = 5 and timestep ∆τ = 10−4.
From Figure 5.2 we see that this choice of Γ and λ is within the region of stability. Starting
at χn,0, given by (5.16), we see that the solution approaches the steady-state solution as
the number of timesteps increases. Hence, it is stable.

The timestep can be optimised. Since the right-hand side of (5.15) is scaled by τ−1,
we can optimise the timestep in every step i, such that the fraction ∆τ

τ
stays constant. By

starting at τ0 = 1, we thus get

τi = τi−1(1 + ∆τ) = (1 + ∆τ)i . (5.17)
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Figure 5.5: The solution h′(χ, τ), approaches the steady-state solution h0(χ), when Γ = 0.2
and λ = 5. Here we have used timestep ∆τ = 10−4.

Figure 5.6: We have investigated these four cases, marked at the figure. The left mark is
within the region of stability. Thus, we expect h′(χ, τ) to approach h′(χ) as τ → ∞. The
other marks are outside of this region, meaning that we have no information about the
stability of these cases.

Furthermore, we have tried to solve (5.15) for the case of (Γ, λ) = (0.4, 10), (0.6, 15) and
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(1, 20), marked in Figure 5.6. The left mark is here the case of Γ = 0.2 and λ = 5, which
we studied above, and solved for in Figure 5.5. These parameter values was taken within
the region of stability. The other three marks are outside of this region, in which case we
have no information about the stability.

For the case of (Γ, λ) = (0.4, 10), we are slightly outside of the region of stability (5.6).
When solving (5.15), with ∆τ = 10−4 (Figure 5.7(a)), we see that the solution still is stable.
However, by increasing the step size to ∆τ = 5 ·10−4, we see that we get an instability after
only 1000 timesteps. When increasing the step size by a factor 5, we have also lowered the
number of timesteps by a factor 5. The time-span will then be approximately the same,
using the recursive formula of (5.17).

Moving to (Γ, λ) = (0.6, 15), we get instability for ∆τ = 10−4 (see Figure 5.7(d)). When
choosing half the step size, the linear term gets more influence. Thus, we observe from
Figure 5.7(c) that we get stability. As the last example, we try to solve Equation (5.15),
for Γ = 1 and λ = 20. In this case we even get instability for ∆τ = 10−5.

These experiments indicate that the region of stability, for the non-linear stability analysis
of Nordbotten and Celia (2006b) could be extended. When choosing Γ = 0.6 and λ = 15,
Figure 5.7(c) showed that h′(χ, τ) approaches h0(χ) for Γ > 2 · Γc. As we continue to
increase the value of Γ, we have to choose smaller time steps ∆τ . Also, since the initial
condition is based upon the steady-state solution for the case of Γ = 0, the initial condition
moves farther away from the solution we are seeking. Thus, linear stability may not be
enough.
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(a) Stable solution. Γ = 0.4, λ = 10, ∆τ = 10−4.
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(b) Unstable solution. Γ = 0.4, λ = 10, ∆τ =
5 × 10−4.
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(c) Stable solution. Γ = 0.6, λ = 15, ∆τ = 5 ×
10−5.
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(d) Unstable solution. Γ = 0.6, λ = 15, ∆τ =
10−4.
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(e) Unstable solution. Γ = 1, λ = 20, ∆τ = 10−5.



Chapter 6

Summary and Conclusions

In this thesis, we have studied the stability of the analytical model of Nordbotten and
Celia (2006b) for injection of CO2 into confined aquifers. A derivation of this model was
given in Chapter 3. By using dimensional analysis, the model was transformed to dimen-
sionless form. The resulting PDE for the vertical interface location in dimensionless form,
h′(η, τ), depended on the two dimensionless parameters Γ and λ, defined in (3.9). Here η
represents dimensionless radial distance from the injection well, while τ is dimensionless
time. A coordinate transformation, χ = η2

τ
, was introduced to reduce the PDE to an ODE

for the similarity variable χ. However, in general this transformation will lead to another
non-linear PDE for h′ = h′(χ, τ). For the case of self-similarity, the solution to the new
problem should approach a steady-state solution h′ = h0(χ) for large times τ . In practice
this means that the steady-state solution should be stable with respect to perturbations.

In Chapter 4 and 5, the stability of this time-dependent equation was investigated, us-
ing analytical and numerical methods. The aim of this investigation was to determine a
parameter domain for Γ and λ, in which stability was ensured. In Nordbotten and Celia
(2006b) it was proved that the stationary solution was stable for Γ < Γc(λ). However, the
value of Γc turned out to be small, as compared to realistic values of Γ. Since Γ ∼ 1

Qwell

(see (3.9)), this shows that the problem becomes more stable for high injection rates.

To extend the analysis of Nordbotten and Celia (2006b), we considered a linear stabil-
ity analysis of the model equation in Chapter 4. When linearising the time-dependent
equation, a function C = C(χ) appeared in the new equation. We could then show linear
stability for the case of C(χ) < 0. However, we were only able to prove that C(χ) was
negative for the boundary points, defined by h0(χ) = 0 and h0(χ) = 1.

In Chapter 5 we investigated this problem further, using numerical tools. Numerical ex-
periments indicated that C(χ) should be negative for all values of Γ > 0 and λ > 1. In
addition to testing the linear stability numerically, we also investigated the time behaviour
of the full mathematical model numerically. From Chapter 4 we obtained an analytical so-
lution h0(χ), for the special case of Γ = 0. This expression was used as an initial condition

51



52 Summary and Conclusions

for the non-linear time-dependent problem. Numerically, we were able to show that the
solution to the time-dependent non-linear equation would approach the stationary solution
for Γ < 2 × Γc, where Γc is the value given by Nordbotten and Celia (2006b) (see (B.8)).
However, this results would depend on the size of the time step and various other factors.
Thus, no general conclusions can be made.

For small injection rates, Qwell, and conversely large Γ, density forces will be more domi-
nant, and a larger fraction of the injected CO2 will flow on top of the water phase. This
results in a steeper interface near the injection well (χ = 0), as shown in Figure 5.1. In our
numerical experiments, we observed oscillations in the computed solutions, in this case.
These appeared on the steeper part of the interface, when h′(χ, τ) → 1 (see Figure 5.7(b),
5.7(d) and 5.7(e)). Whether this is related to the stability of the model is not clear.



Appendix A

The Second Derivative of h0(χ)

We want to derive an expression for the second derivative of h0(χ) at the boundary, χ0

and χ1. The stationary equation, (4.1), degenerates at the boundary, where h0(χ0) = 0
and h0(χ1) = 1. Thus, we lose the second derivative term. When we want to derive an
expression for the second derivative at the boundary, we will have to differentiate the entire
equation first. That is,

1 +
4λ(λ− 1)dh0

dχ

[1 + (λ− 1)h0]3
− 4Γλ2

h0
dh0

dχ
+ χ

(

dh
dχ

)2

+ χh0
d2h0

dχ2

[1 + (λ− 1)h0]2

+ 8Γλ2(λ− 1)
χh0

(

dh0

dχ

)2

[1 + (λ− 1)h0]3
+ 4Γλ

(1 − h0)
dh0

dχ
− h0

dh0

dχ

[1 + (λ− 1)h0]
− 4Γλ(λ− 1)

h0(1 − h0)
dh0

dχ

[1 + (λ− 1)h0]2

+ 4Γλ
(1 − h0)

dh0

dχ
− χ

(

dh0

dχ

)2

+ χ(1 − h0)
d2h0

dχ2

[1 + (λ− 1)h0]
− 4Γλ(λ− 1)

χ(1 − h0)
(

dh0

dχ

)2

[1 + (λ− 1)h0]2

+ 4Γλ
(1 − h0)h0

d2h0

dχ2

(

dh0

dχ

)

−1

− χh0
d2h0

dχ2 + χ(1 − h0)
d2h0

dχ2 + χh0(1 − h0)
d3h0

dχ3

(

dh0

dχ

)

−1

[1 + (λ− 1)h0]

− 4Γλ
χh0(1 − h0)

(

d2h0

dχ2

)2 (
dh0

dχ

)

−2

[1 + (λ− 1)h0]
− 4Γλ(λ− 1)

χh0(1 − h0)
d2h0

dχ2

[1 + (λ− 1)h0]2
= 0 . (A.1)

Substituting h0(χ) = 0 in the equation above, we obtain

1 + 4λ(λ− 1)
dh0

dχ
− 4Γλ2χ

(

dh0

dχ

)2

+ 4Γλ
dh0

dχ
+ 4Γλ

dh0

dχ

− 4Γλχ

(

dh0

dχ

)2

+ 4Γλχ
d2h0

dχ2
− 4Γλ(λ− 1)χ

(

dh0

dχ

)2

+ 4Γλχ
d2h0

dχ2
= 0 ,
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which leads to the expression

d2h0

dχ2

∣

∣

∣

∣

h0=0

= λ

(

dh0

dχ

∣

∣

∣

∣

h0=0

)2

− 2Γ + λ− 1

2Γχ0

dh0

dχ

∣

∣

∣

∣

h0=0

− 1

8Γλχ0

. (A.2)

When substituting h0(χ) = 1 in Equation (A.1), we obtain

1 +
4(λ− 1)

λ2

dh0

dχ
− 4Γ

dh0

dχ
− 4Γχ1

(

dh0

dχ

)2

− 4Γχ1
d2h0

dχ2

+
8Γ(λ− 1)

λ
χ1

(

dh0

dχ

)2

− 4Γ
dh0

dχ
− 4Γχ1

(

dh0

dχ

)2

− 4Γχ1
d2h0

dχ2
= 0 .

This implies,

d2h0

dχ2

∣

∣

∣

∣

h0=1

= −1

λ

(

dh0

dχ

∣

∣

∣

∣

h0=1

)2

−
(

1

χ1

− λ− 1

2Γλ2χ1

)

dh0

dχ

∣

∣

∣

∣

h0=1

+
1

8Γχ1

. (A.3)



Appendix B

The Non-Linear Stability Analysis

We will here reproduce the non-linear stability proof of Nordbotten and Celia (2006b).
This shows that the solution h′(χ) of the stationary equation, (3.14), will be an interme-
diate asymptotic of the solution, h′(χ, τ) of (3.13). To ease the presentation, we will use
the notation h′(χ, τ) = h and h(χ) = h0.

We assume the interfaces h and h0 as monotone, such that for all χ and τ

∂h

∂χ
< 0 and

dh0

dχ
< 0 . (B.1)

Thus, we can use the inverse function theorem (Apostol 1969), and define the inverse
function

χ′(χ) = h−1(h0(χ)) .

This function will then relate χ′ to χ, as the values where, h(χ′) = h(χ). Further we define,

χm = {χ : |χ′(χm) − χm| ≥ |χ′(χ) − χ|} .

Then for 0 < h(χ′(χm)) < 1 and 0 < h0(χm) < 1, we will have the properties of:

dχ′

dχ
= 1 ,

∂h

∂χ

∣

∣

∣

∣

χ′(χm)

=
dh0

dχ

∣

∣

∣

∣

χm

,

sign

(

∂2h

∂χ2

∣

∣

∣

∣

χ′(χm)

− d2h0

d2χ2

∣

∣

∣

∣

χm

)

= −sign(χ′(χm) − χm) . (B.2)

By subtracting Equation (3.14) from Equation (3.13) we obtain
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τ
∂h

∂τ

∣

∣

∣

∣

χ′(χm)

(

dh0

dχ

∣

∣

∣

∣

χm

)

−1

= {χ′(χm) − χm}
(

1 − 4Γλ2h0(χm)

[1 + (λ− 1)h0(χm)]2
dh0

dχ

∣

∣

∣

∣

χm

+
4Γλ(1 − h0(χm))

1 + (λ− 1)h0(χm)

dh0

dχ

∣

∣

∣

∣

χm

)

+
4Γλh0(χm)(1 − h0(χm))

1 + (λ− 1)h0(χm)

(

dh0

dχ

∣

∣

∣

∣

χm

)

−1

×
{

χ′(χm)
∂2h

∂χ2

∣

∣

∣

∣

χ′(χm)

− χm

d2h0

dχ2

∣

∣

∣

∣

χm

}

.

This further implies

∂h

∂τ

∣

∣

∣

∣

χ′(χm)

(

dh0

dχ

∣

∣

∣

∣

χm

)

−1

=
c1
τ
{χ′(χm) − χm} +

c2
τ

{

∂2h

∂χ2

∣

∣

∣

∣

χ′(χm)

− d2h0

dχ2

∣

∣

∣

∣

χm

}

, (B.3)

where c1 and c2 are defined as

c1 = 1 − Γ

[

4λ

1 + (λ− 1)h0(χm)

(

λh0(χm)

1 + (λ− 1)h0(χm)
− (1 − h0(χm))

)

dh0

dχ

∣

∣

∣

∣

χm

− 4λh0(χm)(1 − h0(χm))

1 + (λ− 1)h0(χm)

(

dh0

dχ

∣

∣

∣

∣

χm

)

−1
d2h0

dχ2

∣

∣

∣

∣

χm

]

, (B.4a)

c2 = χ′(χm)
4Γλh0(χm)(1 − h0(χm))

1 + (λ− 1)h0(χm)

(

dh0

dχ

∣

∣

∣

∣

χm

)

−1

. (B.4b)

We will consider 0 < Γ < ∞ and 1 < λ < ∞. Thus, we see from (B.4a) that if dh0

dχ
and

d2h0

dχ2 are bounded, c1 > 0 when Γ < Γc. The value of Γc will further depend on λ, h0 and
dh0

dχ
. By assumption (B.1), we further see from (B.4b) that c2 < 0 for all positive values of

χ and χ′.

Considering Γ < Γc. From (B.3) we thus obtain

∂

∂τ
(χ′(χm) − χm) = −∂h

∂τ

∣

∣

∣

∣

χ′(χm)

(

dh0

dχ

∣

∣

∣

∣

χm

)

−1

= −c1
τ

(χ′(χm) − χm) − c2
τ

(

∂2h

∂χ2

∣

∣

∣

∣

χ′(χm)

− d2h0

dχ2

∣

∣

∣

∣

χm

)

. (B.5)
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This equation, together with the third property of (B.2), shows that the maximum differ-
ence between χ′ and χ will strictly decreasing, when χm is not at the boundary.

When χm is at the top boundary, we have h(χm) = 0. We again subtract Equation
(3.14) from Equation (3.13). This yields,

∂h

∂τ

∣

∣

∣

∣

χm

(

dh0

dχ

∣

∣

∣

∣

χm

)

−1

=
1

τ
(χ′(χm) − χm) +

4Γλ

τ

(

χ′(χm)
∂h

∂χ

∣

∣

∣

∣

χ′(χm)

− χm

dh0

dχ

∣

∣

∣

∣

χm

)

.

When χm is the local maximum at the top boundary, the derivative of h and h0 must
satisfy

sign

(

∂h

∂χ
− dh0

dχ

)

= sign(χ′(χm) − χm) .

Thus, the equivalent expression to (B.5), when considering χm at the top boundary is,

∂

∂τ
χ′(χm) > −1

τ

(

1 + 4Γλ
dh0

dχ

∣

∣

∣

∣

χm

)

[χ′(χm) − χm] when χ′(χm) < χm , (B.6a)

∂

∂τ
χ′(χm) < −1

τ

(

1 + 4Γλ
dh0

dχ

∣

∣

∣

∣

χm

)

[χ′(χm) − χm] when χ′(χm) > χm . (B.6b)

Considering χm as the local maximum at the bottom boundary, the derivative of h and h0

will have to satisfy

sign

(

∂h

∂χ
− dh0

dχ

)

= −sign(χ′(χm) − χm) ,

and we get

∂

∂τ
χ′(χm) > −1

τ

(

1 − 4Γλ
dh0

dχ

∣

∣

∣

∣

χm

)

[χ′(χm) − χm] when χ′(χm) < χm , (B.7a)

∂

∂τ
χ′(χm) < −1

τ

(

1 − 4Γλ
dh0

dχ

∣

∣

∣

∣

χm

)

[χ′(χm) − χm] when χ′(χm) > χm . (B.7b)

From (B.6a)-(B.6b) and (B.7a)-(B.7b), together with (B.5), we observe that |χ′ − χ| is
strictly decreasing for Γ < Γc. Thus, we have stability for the case of Γ < Γc. That is,
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1 − Γ

[

4λ

1 + (λ− 1)h0(χm)

(

λh0(χm)

1 + (λ− 1)h0(χm)
− (1 − h0(χm))

)

dh0

dχ

∣

∣

∣

∣

χm

− 4λh0(χm)(1 − h0(χm))

1 + (λ− 1)h0(χm)

(

dh0

dχ

∣

∣

∣

∣

χm

)

−1
d2h0

dχ2

∣

∣

∣

∣

χm

]

> 0 . (B.8)
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