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Abstract 

 

Objectives 

The main research objective of the four articles comprising this dissertation was to 

provide retrospective exposure information for a planned study on cancer in a cohort within 

Norway’s offshore petroleum industry. 

 

 

Methods 

Background information on possible exposure was obtained through company visits, 

including interviewing key personnel (n = 83) and collecting monitoring reports (n = 118) and 

other relevant documents (n = 329). The collected material was used to identify relevant 

carcinogens. Twenty-seven job categories were defined based on a previous questionnaire 

administered to present and former offshore employees in 1998. Descriptions of products 

containing known and suspected carcinogens, exposure sources and processes were extracted 

from the collected documentation and the interviews of key personnel (Article II). 

Exposure data on oil mist and oil vapour covered 37 drilling facilities and were analysed 

by descriptive statistics and by constructing linear mixed-effects models (Article I). 

A group of three university and five industry experts individually assessed the likelihood 

(unlikely, possible or probable) of exposure for combinations of 17 carcinogens, 27 job 

categories and four time periods (1970–1979, 1980–1989, 1990–1999 and 2000–2005). Each 

rater was to assess 1836 combinations based on summary documents on carcinogenic agents, 

which included descriptions of sources of exposure and products, descriptions of work 

processes carried out within the different job categories and monitoring data. Interrater 

agreement was calculated using Cohen’s kappa index and single and average score intraclass 

correlation coefficients. Differences in interrater agreement between the different time 

periods, raters, carcinogen class and amount of information provided were then studied 

(Article III). 

In subsequent plenary discussions, the experts agreed on exposed combinations. 

Agreement between the individual and the panel assessments was calculated using Cohen’s 

kappa index. Using the panel assessment as reference, sensitivity and specificity were 

estimated (Article IV). 
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Results 

This study indicated possible exposure to the following known and suspected 

carcinogenic agents, mixtures or exposure circumstances: benzene; mineral oil – inhalation 

exposure; mineral oil – skin exposure; crystalline silica; asbestos; refractory ceramic fibres; 

formaldehyde; tetrachloroethylene; trichloroethylene; welding; nickel compounds; 

chromium [VI]; lead; crude oil – skin exposure; diesel engine exhaust; dichloromethane; 

ionising radiation; and occupational exposure as a painter (Article II). Monitoring reports 

were obtained on seven agents: benzene, mineral oil mist and vapour, respirable and total 

dust, asbestos fibres, refractory ceramic fibres, formaldehyde and tetrachloroethylene (Article 

II). The arithmetic mean of 367 personal samples of benzene was 0.037 ppm (range: less than 

the limit of detection – 2.6 ppm). Asbestos fibres were detected (0.03 fibres/cm3) when 

asbestos-containing brake bands were used in drilling draw work in 1988. The personal 

exposure to formaldehyde in the process area ranged from 0.06 to 0.29 mg/m3. 

Samples of oil mist and oil vapour had been taken during the use of three generations of 

hydrocarbon base oils: diesel oils (1979–1984), low-aromatic mineral oils (1985–1997) and 

nonaromatic mineral oils (1998–2004). Sampling done before 1984 showed high exposure to 

diesel vapour (arithmetic mean = 1217 mg/m3). Downward time trends were indicated for 

both oil mist (6% per year) and oil vapour (8% per year) when the year of monitoring was 

introduced as a fixed effect in a linear mixed-effects model analysis. Rig type, technical 

control measures and mud temperature significantly determined exposure to oil mist. Rig 

type, type of base oil, viscosity of the base oil, work area, mud temperature and season 

significantly determined exposure to oil vapour. In these models major decreases in variability 

were found for the between-rig components (Article I). 

In the individual expert assessment overall, 336 (18%) of the 1836 combinations were 

denoted possible exposure, and 253 (14%) scored probable exposure. Stratified on the 17 

carcinogenic agents, the prevalence of probable exposure ranged from 3.8% for refractory 

ceramic fibres to 30% for crude oil. The overall mean kappa (κ) was 0.42; single score 

intraclass correlation coefficient was 0.62, and the average intraclass correlation coefficient 

was 0.93. Providing limited quantitative measurement data was associated with less 

agreement than for equally well-described carcinogens without sampling data. 

The eight experts assessed 1157 (63%) of the 1836 combinations in plenary, resulting in 

265 (14%) agreed exposed combinations. The agreement between the experts’ individual 

assessments and the panel assessment was κ = 0.53–0.74. The sensitivity was 0.55–0.86 and 
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specificity 0.91–0.97. For these parameters, there were no apparent differences between the 

university experts and the industry experts. 

 

 

Conclusions 

For defined job categories in Norway’s offshore petroleum industry this study describes 

possible exposure to known and suspected carcinogenic agents, mixtures or exposure 

circumstances. An expert panel agreed on probable exposure for 265 of 1836 possible 

combinations of 17 agents, 27 job categories and four time periods. Measurement data on 

seven agents are presented. Benzene and mineral oil mist and vapour were considered to have 

the best potential for development of quantitative estimates of exposure. 

Exposure to oil mist and oil vapour declined over time in the mud-handling areas of 

offshore drilling facilities. Exposure was associated with rig type, mud temperature, technical 

control measures, base oil, viscosity of the base oil, work area and season. 

The eight raters in the expert group seemed to have enough documentation on which to 

base their individual estimates. However, providing limited monitoring data leads to more 

incongruence among raters. The group was large enough to give reliable estimates. 

The experts’ individual ratings highly agreed with the succeeding panel assessment. The 

university experts and the industry experts’ assessments did not apparently differ. 
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1. Introduction 
This chapter presents the background of the study followed by an introduction to retrospective 

exposure assessment for studies of industry-specific cohorts. I describe the classification of 

carcinogenic agents and outline Norway’s offshore petroleum industry, highlighting the 

drilling area, and briefly introduce previously published studies of offshore exposure. 

 

1.1 Background 

In response to the increasing concern about cancer in Norway’s oil industry, Lærum et al. 

(1983) concluded in a review article that the risk of cancer in oil production and in exposure 

to oil products was not alarming but that more research and continuous control of hazardous 

substances were needed. Eide (1990) pursued this concern, questioning the possible long-term 

effects of exposure to low-aromatic oil-based drilling fluids. The recent media focus on 

exposure to chemicals offshore and a subsequent report from Norway’s Ministry of Labour 

and Social Inclusion on exposure to chemicals on Norway’s Continental Shelf in December 

2005 (Sjonfjell et al., 2005) have further strengthened the call for more research. 

In 1998, the Cancer Registry of Norway established a Norwegian offshore cohort 

including 27,986 former and current offshore workers who completed a questionnaire on job 

history, lifestyle and demographics (Strand & Andersen, 2001). The development of cancer in 

this cohort will be analysed in the years to come. To increase the power of the cancer study, 

the follow-up time of the cohort needs to be extended. Thus, the first cancer analysis is 

planned in 2010. 

The Norwegian offshore cohort is designed to be a prospective industry-specific cohort 

study in which the main health outcome will be cancer and cause-specific mortality. The main 

focus of the present study was to provide exposure information to support the cancer studies 

to be done in this cohort. For diseases with long latency time such as cancer, the past exposure 

and not the current exposure is of most interest (Nieuwenhuijsen, 2003). Historical exposure 

needs to be reconstructed or exposure assessed retrospectively; for the Norwegian offshore 

cohort, occupational exposure to carcinogens from 1970 until 2005 was assessed. 
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1.2 Retrospective assessment of occupational exposure in industry-

specific cohorts 

 

 

Definitions 

An industry-specific cohort includes all workers ever employed in one factory or 

manufacturing complex or workers from multiple plants operated by different companies but 

engaged in the same industrial processes (Checkoway et al., 2004). “Exposure” may be 

characterised as the presence of a substance or factor in the environment external to the 

subject that affects the subject’s health (Checkoway et al., 2004). In occupational 

epidemiology, exposure implies substances found in the occupational environment assessed to 

find possible associations with morbidity and/or mortality. Occupational exposure assessment 

is the study of the distribution and determinants of occupational substances or factors 

affecting human health (Nieuwenhuijsen, 2003). 

 

Table 1 presents a selection of studies from the medical database PubMed (2007) for 

industry-specific cohorts related to cancer mortality and morbidity.  
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Morbidity or mortality outcome 

Exposure is usually retrospectively assessed when health outcomes have a certain latency 

time, such as with cancer morbidity or mortality. This is the objective for all the studies listed 

in Table 1, except for the study of Park et al. (2002), which deals with mortality from lung 

disease other than cancer and onset of radiographic silicosis, and the studies by Tsai et al. 

(2004, 2005), which concern changes and effects to the blood and blood-forming organs, 

which might eventually be connected to development of leukaemia. 

 

 

Exposure information sources 

Retrospective exposure assessment for industry-specific cohorts requires researchers to 

have a good overview of processes, organisation, job titles and sometimes company culture 

within this industry. There are usually several ways to attain knowledge about an industry: 

peer-reviewed scientific literature, books, popular science publications, museum exhibitions, 

company Web sites and publications and annual reports from relevant authorities and 

companies. 

For many studies, the job titles are available from company employment records (Chen et 

al., 2006; Drummond et al., 2006; Friis et al., 1999; Meguellati-Hakkas et al., 2006; Satin et 

al., 2002; Schnatter et al., 1993). Sometimes job titles are identified through a questionnaire 

(Strand & Andersen, 2001). Identifying the tasks connected to each job title (back in time) is 

important. For each task, knowledge of hazardous chemicals and physical agents is vital as 

well as changes in process parameters such as technical changes and substitution of 

chemicals. Visiting the plants or facilities in question, preferably with walk-through surveys, 

is a good way to get an overview of job titles, tasks and processes (Stewart et al., 1991). 

Further, interviews (either structured or semistructured) or discussions with key personnel 

such as long-term workers, occupational physicians, occupational hygienists and site safety 

advisers are valuable for collecting specific information on job titles and tasks (Drummond et 

al., 2006; Hall et al., 2006; Lewis et al., 2000, 2003; Romundstad et al., 1999; Stewart et al., 

1991). Company survey reports, monitoring reports, chemical inventories, written job 

descriptions, process descriptions, flow diagrams, plant production records and other written 

items also often contain important information (Table 1) (Checkoway et al., 2004). 

If historical monitoring data are scarce, one option is to reconstruct the work area and 

perform new measurements. Laboratory studies have reconstructed historical exposure to 

measure exposure to man-made mineral fibres and the effects of changes in products, process, 
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and controls (Dodgson et al., 1987). However, to ensure validity, these measurements should 

be anchored in existing monitoring data. 

 

 

Exposure agents or surrogates 

The health outcomes of interest address the type of exposure data to seek (Checkoway et 

al., 2004). Specific chemical or physical agents might be of interest, such as asbestos 

(Meguellati-Hakkas et al., 2006), hexavalent chromium (Pastides et al., 1994; Proctor et al., 

2004) or benzene (Tsai et al., 2004; Wong et al., 1995). However, usually in occupational 

settings there is a mix of chemicals and physical agents, leading many studies to use exposure 

outcome such as “hydrocarbon solvents and fuels” (Drummond et al., 2006; Lewis et al., 

2000) and “exposure to finished petroleum products” (Schnatter et al., 1993). Job title (Lewis 

et al., 2000), job group (Drummond et al., 2006; Romundstad et al., 1998) or “ever worked” 

have also been used as surrogates of exposure (Friis et al., 1999; Schnatter et al., 1993). 

 

 

Exposure metrics 

The minimum level of assessing exposure for an industry cohort is comparing the health 

outcome for people who ever worked in the industry with a normal population (presuming 

that they never worked in the industry). Many exposure metrics have been used, such as job 

title (Meguellati-Hakkas et al., 2006; Proctor et al., 2004) substitution of chemicals 

(Drummond et al., 2006), a site such as a mine (Chen et al., 2006) or department (Grimsrud et 

al., 2000), employment before and after historical changes in process and work environment 

(Friis et al., 1999), tasks (Friis et al., 1999), duration of employment (Friis et al., 1999; Satin 

et al., 2002; Schnatter et al., 1993) or specific time periods (Friis et al., 1999; Grimsrud et al., 

2000). However, the main objective is usually to obtain knowledge of the association between 

exposure levels to hazardous agents and health outcome (often studying differences in health 

outcome and exposure for groups of workers) within the industry cohort. Quantitatively 

measuring personal exposure to contaminants through air monitoring, skin deposition or 

biomonitoring is considered the most valid way to assess occupational exposure in 

epidemiological studies (Teschke, 2003). Historical monitoring data, both personal and area 

samples, is important for estimating the intensity for specific tasks or job titles back in time. 

Estimating frequency, obtained by information given in interviews or in written reports or 

provided by expert assessment, together with knowledge of duration of employment and 
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intensity, gives the opportunity to estimate cumulative exposure, a common exposure metric 

(Chen et al., 2006; Drummond et al., 2006; Lewis et al., 2000, 2003; Meguellati-Hakkas et al., 

2006; Park et al., 2002; Wong et al., 1995). Sometimes health surveys provide access to 

historical biological measurements, which have been used to study association with 

haematological parameters (Tsai, 2004, 2005). 

Different approaches have been used to compensate for exposure information lacking for 

combinations of job titles and time periods. Expert judgement has been used to assign scale 

factors by which current, measured data are adjusted to approximate exposure in time periods 

for which no measurements are available (Hallock et al., 1994). Kriebel et al. (1988) 

performed simple arithmetic interpolation. More sophisticated statistical models are 

increasingly being used to make the best use of sparse exposure data. 

Some studies create statistical models of the historical exposure (Burstyn et al., 2003; 

Hall et al., 2006; Plato et al., 1997; Romundstad et al., 1999). For instance, Burstyn et al. 

(2003) made a data-driven exposure matrix for an international cohort within the European 

asphalt industry. 

When the quantity of historical personal exposure measurements is very sparse or absent, 

developing quantitative estimates might not be possible (Checkoway et al., 2004). To 

compensate for lack of data, several proxy measures of exposure have been used such as job–

exposure matrices, self-reported exposure assessment or expert assessment. Some studies 

combine elements of different methods (Teschke, 2003). Exposure potential might then be 

dichotomised (exposed versus nonexposed) or ranked in an ordinal fashion (such as high, 

moderate, low or none) (Checkoway et al., 2004). 

Intensity or frequency might be assessed by expert judgement and placed into 

semiquantitative indices of exposure (Meguellati-Hakkas et al., 2006; Schnatter et al., 1993). 

 

 

Validity aspects of retrospective exposure assessment: misclassification 

For studies that require retrospective exposure assessment, such as many cohort studies 

and essentially all case–control studies, collecting reliable and valid historical exposure data 

is a challenge (Teschke, 2003). There are usually many changes over time, for example in 

production processes, job titles and tasks carried out within a job title (Nieuwenhuijsen, 

2003). In the present study, offshore installations may have closed, data may have been lost 

due to change in position of key personnel (occupational hygienists etc), or data are archived 

in incompatible data systems or are otherwise inaccessible. 
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Personal exposure measurements spanning a complete hiring time period are rare in 

historical exposure data in industry-based studies. One exception is radiation-exposed 

workers who are monitored with personal dosimeters, but even these sources may suffer from 

incomplete or inaccurate monitoring data (Cardis & Esteve, 1991). Usually nonsystematic 

exposure monitoring has taken place to compare with limit values. Such measurement has 

often been performed in areas and/or by job titles considered to have the highest and least 

well-controlled exposure. Thus, data on less severely exposed job titles and tasks are less 

frequently monitored, which can be a severe limitation for overall study validity, as exposure 

will be misclassified. Not obtaining measurements during normal operations may lead to 

overestimation of exposure and increased non-differential exposure misclassification, which 

will tend to bias exposure estimates towards null. Quantitative data may suffer from 

measurement errors due to uncertainty of sample timing, duration and placement or to 

inadequate calibration of equipment. This might especially be the case when exposure 

fluctuates widely over short time periods. However, repeated sampling of personal or 

stationary measurements is rare, leading to difficulty in estimating the precision of the 

exposure estimates. 

Subgroups of workers may experience especially high exposure, either during special 

tasks or due to accidents such as spills and leaks. Inspection and accident reports may be 

valuable to identify these groups. However, the difference between routine and normal 

exposure versus unusual exposure is important in analysing data from such reports. 

Personal exposure may vary considerably between workers who have the same job title 

and carry out the same tasks. The underlying assumption of job grouping is that the defined 

categories have some degree of exposure homogeneity (Gamble et al., 1976). Sources of 

exposure level variability are numerous, including differences in specific tasks conducted for 

the same job title, proximity to exposure sources, variability in the use of protective 

equipment and idiosyncrasies of workers’ practices as they perform their duties (Burstyn & 

Teschke, 1999). 

Variation in exposure monitoring data might reflect sampling artefacts or biases. If biases 

are undetected, job groupings can be erroneous (Seixas & Checkoway, 1995). 

The use of expert assessment has increased in recent decades. Occupational hygienists, 

chemists, engineers and other professionals are regarded to understand occupational exposure 

better than workers do. However, the experts may not be familiar with the jobs and industries 

to be considered (Teschke et al., 2002); their background and the information provided may 



 

 

28 

 

influence how they assess exposure (Teschke et al., 1989). Hawkins & Evans (1989) showed 

that, without measurement data, experts tended to overestimate exposure. 
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1.3 Classification of carcinogens 

Hundreds of chemicals are capable of inducing cancer in humans or animals after 

prolonged or excessive exposure (Scorecard, 2007). Several countries and agencies list 

carcinogens. In the United States, the National Institute for Occupational Safety and Health 

(2007) publishes a list of occupational carcinogenic agents, currently 134 agents, and the 

National Toxicology Program (2007) lists carcinogens according to a two-category scale: 

“known to be a human carcinogen” (currently 54 agents) and “reasonably anticipated to be a 

human carcinogen” (currently 183 agents). In Norway, a working group initiated by the 

authorities has classified potential cancer-causing substances into three categories according 

to the present knowledge of association between exposure and cancer (Lovdata, 2007). Many 

such lists draw heavily on and adapt to the purposes of the International Agency for Research 

on Cancer (IARC) programme (Siemiatycki et al., 2004). IARC is part of the World Health 

Organization, and its mission is to coordinate and conduct research on the causes of human 

cancer and the mechanisms of carcinogenesis and to develop scientific strategies for 

controlling cancer (IARC, 2007b). Since 1972 the IARC has published 86 monographs on 

available research on many carcinogenic agents, mixtures and exposure circumstances. IARC 

classifies exposure into five categories according to the strength of the published scientific 

evidence for carcinogenicity (IARC, 2007a): 

• group 1: carcinogenic to humans (87); 

• group 2A: probably carcinogenic to humans (63); 

• group 2B: possibly carcinogenic to humans (234); 

• group 3: not classifiable as to carcinogenicity to humans (493); and 

• group 4: probably not carcinogenic to humans (1). 

 

This study used IARC’s classification of carcinogens. 
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1.4 The offshore petroleum industry 

Offshore oil and gas drilling and production are carried out worldwide, with operations in 

many countries, such as Canada, the United States, Venezuela, Brazil, Norway, United 

Kingdom, Nigeria, Angola, Azerbaijan, Iran, China and Australia (International Association 

of Oil & Gas Producers, 2007). 

In December 1969, a significant oil field was discovered on Norway’s Continental Shelf. 

In the following years a number of major discoveries were made, and today Norway is the 

world’s third largest oil and gas exporter. Oil and gas production is Norway’s largest industry, 

accounting for 21% of the gross domestic product (Ministry of Petroleum and Energy, 2005). 

 

 

Employees in the offshore petroleum industry 

About 6000 people are employed full time in offshore production and drilling operations 

at 48 oil and gas fields in Norway (Statistics Norway, 2005). In addition, several thousand 

workers have short-term engagements every year in maintaining, modifying and demolishing 

offshore installations. 

 
 

 
Figure 1. The oil platform Gullfaks A with its three main sections: the drilling area to the left with 

the characteristic derrick tower, in the middle; the process area; and, to the right, the white-coloured 
living accommodations with the helicopter deck on top. To the right a supply ship, and in the background 
a tanker is tanking oil. Photo: Statoil. 
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Offshore job categories 

Offshore oil and gas production platforms usually comprise three main sections: the 

drilling area, the process area and living accommodations. These are run by drilling crews, 

process operators and catering personnel, respectively. In addition, there are maintenance 

workers such as painters, insulators, welders, machinists and mechanics, and support 

functions such as deck crew, health and safety personnel and helicopter assistants. On most 

installations today the workers have 12-hour shifts for 14 days and have 28 days off. 

The following description of offshore work sections is based on information presented in 

Bøhmer et al. (2000), Schlumberger Limited (2007), Statoil (2007), Steinsvåg et al. (2005), 

Norwegian Petroleum Museum (2004) and Norwegian Oil Pioneer Club (2007). 

 

 

 

 
Figure 2. Norwegian oil companies have preferred building more easily removable production ships in the 
past decade due to smaller oil and gas fields and for environmental reasons. This picture shows an oil and 
condensate processing production and storage vessel: Åsgard A. Photo: Statoil. 
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1. Health, office and administration section 

 
Figure 3. Chief executive of Statoil, Helge Lund, visiting the Gullfaks A-platform on 10 July 2004. Right: 
platform manager Sisle Stjern. Photo: Statoil. 

 

An offshore installation can be viewed both as a factory and a hotel and needs several 

administrative job categories for management and operations. Due to development in 

technology, many engineering tasks and parts of the supervision of process and drilling 

operations are now performed onshore. This has reduced the number of job categories 

offshore. 

The platform manager is responsible for operations and the safety on the installation. 

The nurse and/or health, safety and environment coordinator prevent and treat injuries 

and diseases. 

The receptionist is in charge of booking helicopter seats and accommodation for 

everyone who arrives at an installation. 
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2. Drilling and well maintenance section 

 
Figure 4. Drill pipes. Photo: Statoil. 
 

Specialised drilling companies hired on contracts perform drilling operations. The drilling 

crew typically consists of roustabouts, roughnecks, motor workers, derrick employees, 

assistant drillers and drillers. 

The drilling section leader is in charge of 

the drilling crew. He or she supervises technical 

data, arranges engineers to assist special 

operations and can step in for all drilling 

operations if required. 

The driller manages the daily routines based 

on instructions from the drilling section leader. 

From the drilling cabin he or she operates all the 

equipment used during drilling. The computer-

driven drilling equipment (robots) performs 

many tasks previously performed by the 

roughneck, roustabout and the derrick. The 

driller also has a driller assistant. 

Figure 5. Driller cabin in the 1990s. Photo: 
Statoil. 
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Measure-while-drilling operators collect and evaluate data information from downhole 

geological logging measurements, which provide information on the azimuth and inclination 

of the well in addition to the type of rock, the fluids stored in this rock and the porosity of the 

rock. This information is used by the directional driller, measure-while-drilling operator and 

geologist, operating both onshore and offshore, who can guide – or geosteer – the drilling 

operation. These specialists often represent the operating company. In mature areas, 

geosteering may be used to keep a wellbore in a particular section of a reservoir to minimise 

gas or water breakthrough and maximise economic production of the well. This will also 

benefit the work environment in the mud-handling areas. This drilling technology, which 

improves drainage of oil and gas reservoirs, has developed since the late 1980s. 

 
Figure 6. The derrick employee, standing on the fingerboards in this view, moved pipe between the pipe 
racks and the wellbore during trips in and out of the hole. This job was physically demanding and 
required wearing a safety harness when up in the derrick. Today the operation of drill pipes has been 
automatised. Photo: Schlumberger Limited. 
 

In drilling, the drill bit eventually becomes dull or broken and less efficient and must be 

changed. This requires a round trip; removal of the drillstring from the wellbore and running 

it back in the whole. Due to improved quality and knowledge of the wear of the drill bit, 

together with new downhole geological monitoring technology, the number of drill bit 

changes has been reduced and therefore reduced the time needed to drill a well. 

The derrick employees worked on a monkeyboard (1 m2 platform), typically 26 m above 

the rig floor, during trips of the drillstring. They wore a special safety harness that enabled 

them to lean out from the monkeyboard to reach the drill pipe in the centre of the derrick, 

threw a line around the pipe and pulled it back into its storage location, called the 

fingerboards, until it was time to run the pipe back into the well. This used to be one of the 
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most demanding jobs of the rig crew. From the mid-1970s, 

mechanisation and automation of the tasks on the drill floor 

started, such as a mechanical pipe-handling system run by 

the derrick to handle the pipes in and out of the fingerboard 

when tripping. Today, modern drilling facilities have 

automated pipe-handling equipment, mainly handled by the 

driller. Another important task for the derrick employee is to 

mix the mud according to the instructions given by the mud 

engineers. The mud engineer is responsible for analysing the 

mud and for prescribing treatments to maintain the 

properties and chemistry of the mud within recommended 

limits. The mud engineer works closely with the derrick 

employee. 

The motor worker is responsible for maintenance and minor repair of the engines used in 

drilling operations. 

The roughneck usually performs semiskilled and unskilled manual labour on the drill 

floor or at the cellar deck (deck below the drill floor). 

The roughnecks clean and maintain the drill floor, earlier often using caustic soda or 

diesel. On the cellar deck, the roughnecks installed and made ready different types of 

equipment, including blowout preventers, and supported the riser. The roughnecks also mix 

mud and supervise the shale shakers. 

 

A roustabout may be part of the drilling 

contractor’s workforce or may be on 

location temporarily for special operations. 

Roustabouts are commonly hired to ensure 

that the skilled personnel that run an 

expensive drilling rig or facility are not 

distracted by peripheral tasks, such as 

cleaning up locations and threads, digging 

trenches and scraping and painting rig 

components. 

Figure 7. Roughnecks at Ocean 
Traveller, 1966. Photo: Norwegian 
Oil Pioneer Club. 

Figure 8. Operator surveying open shale shakers at 
Oseberg B, 2005. Photo: Hydro. 
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Casing is a steel pipe lowered into an open hole and cemented in place during the 

construction process to stabilise the wellbore. The casing forms a major structural component 

of the wellbore and serves several important functions: preventing the formation wall from 

caving into the wellbore, isolating the different formations to prevent the flow or cross-flow 

of formation fluids and providing a means of maintaining control of formation fluids and 

pressure as the well is drilled. The casing string provides a means of securing surface pressure 

control equipment and downhole production equipment, such as the drilling blowout 

preventer or production packer. The casing is available in a range of sizes and material grades. 

Special contractors deliver casing and employ casing operators to handle the pipes. However, 

this task is now automated. 

During drilling, production and well completion, cementing is required to permanently 

seal annular spaces between casing and borehole walls. Cement is also used to seal formations 

to prevent loss of drilling fluid and for setting kick-off plugs, plugging and abandonment. 

Dedicated cementers manage the cementing. 

A well service operator drills, tests and maintain production wells. The well service 

operator operates electric, pneumatic, hydraulic and engine-driven tools, machines and 

equipment. Several previous specific job titles may be called well service operator today: 

casing operator, cementer, wireline operator and snubber. 

 

 

3. Production and process section 

 

To produce oil and gas, a production string is 

put down the well. When oil and gas reach the 

surface, the temperature is rather high (60–80°C), 

and the pressure might be several hundred 

atmospheres. In the production area, the petroleum 

stream from the reservoir undergoes separation. Gas 

and water are separated from the oil phase. Sand 

and stone particles are also removed. Before 

transport to shore via pipelines or by tank ships, the 

oil is cooled, and the water vapour in the gas is 

dried by glycol before transport to shore through 

Figure 9. Oil sample, probably early 1980s. 
Photo: Norwegian Petroleum Museum. 
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pipelines. The process area is analogous to a refinery. The processes 

are enclosed, but sampling, maintenance, leaks, spill and repair may 

cause workers to be exposed to the petroleum stream. 

Process technicians 

supervise all steps in the 

upstream process: the oil and 

gas arrive at the platform, are 

processed and sent via 

pipelines or by tank ships to 

shore. They survey and regulate the production 

processes by using computers in the control room. The 

process technicians also survey the process area, where 

they sample oil and gas and look for leaks and spills. 

 
 

 

 

 

Roustabouts in the production area, together with the crane 

operator, are responsible for transporting and unloading material and 

equipment to and from the platform. The roustabouts also carry out 

unskilled manual labour such as cleaning and odd jobs. 

 

Laboratory engineers and technicians assess and analyse 

samples of petroleum from the process stream for composition, 

density, water, dew point, oil-in-water etc. In addition, production 

chemicals such as glycol are controlled, and cooling water is tested. 

They also analyse samples taken to monitor water and air spill. 

Figure 10. Process 
technician at Heidrun. 
Photo: Statoil. 

Figure 11. Process technicians in the 
control room in the 1970s. Photo: 
Norwegian Petroleum Museum. 

Figure 12. Crane operator 
at Gullfaks. Photo: 
Statoil. 

Figure 13. Sampling at 
Kvitebjørn. Photo: 
Statoil. 
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4. Maintenance, inspection, deck and construction section 

 
Figure 14. A selection of hard hats used by personnel from many companies and countries on Statfjord B. 
Photo: Statoil. 

 

Operating, maintaining and repairing offshore installations require crafts similar to those 

needed in most heavy industries. 

The engine mechanic repairs and maintains driving gear, aggregates, hydraulic, 

pneumatic and electric systems on mobile and stationary combustion engines and driving 

gear. From simple engine constructions previously used, the mechanic today must handle 

advanced electronic control systems. Other job titles with similar work: turbine operator, 

hydraulic technician and machinist. 

The industrial mechanic maintains mechanical machinery and 

equipment. 

Due to the high safety level achieved today, building of 

scaffolds has increased, and specialised contractors with scaffold 

crews are now responsible for this. Previously craft workers 

themselves assembled scaffolds. From the 1990s, the use of 

mountain climbers has replaced some of the most challenging 

scaffold building. Figure 15. Hydraulic 
system on Statfjord B. 
Photo: Statoil. 
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Insulators install and remove insulation where needed, 

especially in the production area. 

Electricians handle various kinds of current-carrying 

installations. 

Nondestructive testing operators inspect structures and welding 

seams in pipes and pressure tanks to control the quality of welding 

and to detect corrosion damages. If weaknesses are detected, welders 

and sheet metal workers repair them. Due to high fire hazard in the 

production areas, welding is reduced to a minimum, and separate 

areas – welding cabins – are used for minor welding tasks. 

 

  

 Every 2–3 years, the process area is shut down for about 14 

days and processing equipment is opened and cleaned before 

extensive maintenance work, including welding, is done. 

 

 

Roustabouts in this section are involved in unskilled manual labour such as corrosion 

scaling, scraping, painting, cleaning of bulkhead and deck, flushing and lubrication of cranes, 

lifeboat systems and jacking equipment. 

 

The helicopter guard assists helicopter pilots during landing and 

takeoff and is also in charge of fire preparedness. Roustabouts often 

perform these tasks. 

 

 

 

 

Dedicated storekeepers control and order the parts needed on a platform. 

An offshore installation has many electronic, pneumatic and hydraulic monitoring and 

control systems. Electric instrument technicians and mechanics maintain and repair this 

equipment. 

Figure 16. Mountain 
climber on Gullfaks A. 
Photo: Statoil. 

Figure 17. Welding on 
Heidrun. Photo: Statoil. 

Figure 18. Helicopter 
guard pointing the 
direction for new arrivals 
at Heidrun. Photo: 
Statoil. 
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Due to the rough weather conditions, salty seawater and wear and tear, the need for 

surface treatment is constant on an offshore installation. Painters and, to a lesser extent, sheet-

metal workers remove rust and carry out sandblasting and water-jetting before painting the 

surfaces. 

Radio engineers used to maintain contact between the rig and shore, supply ships, other 

installations and helicopters. Today few installations have dedicated radio engineers. 

 

 

5. Catering 

A catering crew is needed to keep an offshore installation tidy and clean and to provide 

food for all employees. Chefs prepare food day and night. Stewards assist in the kitchen, clean 

the accommodation rooms and do the laundry. On some installations catering employees 

operate laundry units; others have all laundry done onshore. 
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1.5 Previously reported exposure in the offshore petroleum industry 

The workers in the drilling crews may be exposed to drilling mud, either by inhaling 

aerosols and vapour or by skin contact (Davidson et al., 1988). The drilling mud is used for 

many purposes such as lubricating and cooling the drill stem and bit, providing pressure 

support in the well and transporting cuttings to the surface (Figure 19). The fluid is a complex 

mixture of water- or oil-based fluids and a large number of additives, depending on the 

system used (Hudgins, 1991). The water-based system is often used in the upper sections of a 

well, whereas oil-based mud is the only option in long or deep wells. The composition of 

these mud systems has varied considerably both in time and between suppliers (Health and 

Safety Executive, 2000a). A typical oil-based drilling fluid used on the United Kingdom’s 

sector of the North Sea comprises (by volume) 52% base oil, 30% water and additives such as 

weight materials (11%), emulsifiers (3%), brines (2%), pH increasers (1%) and viscosifiers 

(1%) (Health and Safety Executive, 2000a). The original oil-based drilling muds contained 

diesel as the base oil (Davidson et al., 1988). Diesel was phased out in the early 1980s and 

gradually replaced by petroleum-based oils with a reduced aromatic content (Health and 

Safety Executive, 2000a). 

Using oil-based mud systems may generate airborne hydrocarbon contaminants (oil mist 

and oil vapour) in the mud-handling areas (Davidson et al., 1988). The Norwegian Oil 

Industry Association (1996) assumes a potential for inhaling oil mist and oil vapour along the 

flow line from the top of the well to the separation equipment, which includes shale shakers, 

desanders, desilters, centrifuge and the mud pits (Figure 19). They specifically state that 

cleaning and changing screens on the shale shakers may lead to high exposure. Originally 

these areas were designed for water-based mud by being open, and the control of aerosols and 

vapour relied on general ventilation. 

Under such circumstances, personal exposure to total hydrocarbon compounds has been 

reported to be up to 450 mg/m3 during work at the shale shakers when drilling with oil-based 

mud (Davidson et al., 1988). At an installation with a higher level of enclosure of the mud 

systems, James et al. (2000) reported results from two personal samples in the shale shaker 

room to be 0.06 and 0.40 mg/m3 for oil mist and 3.2 and 35.0 mg/m3 for oil vapour. Published 

results from this working environment are scarce. 



 

 

42 

 

 

 
Figure 19. The drilling mud process. Base oil and additives are mixed in the mud pit. The mud leaves the 
pumps at high pressure, flows inside the drill stem, passes the nozzles of the drill bit, returns on the 
outside of the stem and transports rock cuttings to the platform surface. The solids and liquids are 
separated by vibrating screens and by other cleaning equipment. The mud returns to the mud pit and is 
recycled, while the cuttings and sand are crushed in slurrification units, blended with water and pumped 
to an old well for storage. 

 

Published results from systematic sampling of other hazardous agents than drilling mud 

on offshore installations are also scarce. A few studies have reported data on benzene 

exposure in the process area (Glass et al., 2000; Health and Safety Executive, 2000b; Kirkeleit 

et al., 2006) and dust levels in a shale shaker room (Hansen et al., 1991). Gardner (2003) 

reviewed various types of occupational exposure on offshore oil and gas installations, whereas 

other reports have provided overviews of chemicals used offshore (Cottle & Guidotti, 1990; 

Health and Safety Executive, 2000a; Hudgins, 1991). 
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2. Objectives 
 

The main research objective of the four articles in this dissertation was to provide 

retrospective exposure information for a planned study on cancer in a cohort within Norway’s 

offshore petroleum industry. 

 

This was to be done by: 

• identifying and describing exposure to selected known and suspected carcinogens for 

defined job categories from 1970 to 2005 (Article II); 

• presenting the consensus decisions on exposure to carcinogens for defined job 

categories in specific time periods made by an expert group (Article IV); 

• quantifying and identifying the determinants of personal exposure to oil mist and oil 

vapour when drilling with oil-based muds from 1979 to 2004 (Article I); 

• evaluating and identifying determinants of interrater agreement when an expert group 

assesses exposure (Article III); and 

• evaluating agreement between experts’ individual ratings and the following plenary 

expert assessments (Article IV). 
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3. Material and methods 
 

3.1 Organisation 

A University of Bergen research group comprising three researchers, two secretaries and 

a research fellow carried out this study between December 2002 and November 2005. An 

external advisory group included three occupational hygienists each representing different oil 

companies, one occupational hygienist from the petroleum authorities and the health, safety 

and environment manager of the Norwegian Oil Industry Association. 

 

 

3.2 Preparation for data collection 

In the Cancer Registry of Norway’s questionnaire from 1998, 27,986 replying offshore 

workers stated their entire work history including job titles, the respective installation and 

work section as well as leisure activities (Strand & Andersen, 2001). The inclusion criteria for 

that cohort were to have a Norwegian personal identification number and to have worked full 

or part time on an offshore oil or gas producing or drilling installation for at least 20 days 

within a 4-month period. About 60% of these offshore workers responded. Printouts of every 

possible version of the first and last job titles resulted in lists of thousands of occupations. 

Prior to our study, a researcher from the Cancer Registry of Norway and an occupational 

hygienist representing the Norwegian Petroleum Directorate had regrouped the original job 

titles into 294 job titles. 

The University research group identified 29 known and suspected carcinogens in the 

industry from the lists of the IARC (2007a), the report of Strand & Andersen (2001) and from 

published literature on chemical exposure offshore. This study defined known carcinogens as 

agents, mixtures or occupational circumstances classified in IARC Groups 1, 2A and 2B. 

Suspected carcinogens are selected from Group 3. 
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3.3 Data collection 

Key personnel were interviewed and relevant documents collected during visits to oil and 

contractor companies selected from the list of members of the Norwegian Oil Industry 

Association and from the report on the establishment of the offshore cohort (Strand & 

Andersen, 2001). The companies were chosen to represent as many job titles as possible and 

to have employed the majority of participants in the cohort. 

Initially, heads of health and safety departments in 20 companies employing offshore 

workers were contacted by phone followed by an official enquiry sent by e-mail. Attached to 

the e-mail was a letter from the Norwegian Oil Industry Association requesting that the 

companies let a University research group of 2–4 people visit the company to carry out 

interviews and to collect data on exposure to radiation and chemicals with particular attention 

to carcinogens. Visits were made to oil companies (8), drilling companies (5), chemical 

suppliers (3), maintenance, modification and operation contractors (3) and a catering service 

supplier (1). In addition, one trade union, one employer’s association and three relevant 

authorities, the Norwegian Radiation Protection Authority, the Norwegian Petroleum 

Directorate and the Norwegian Pollution Control Authority, were visited in a similar manner. 

Everyone contacted agreed to the visits and interviews. 

 
 

Interviews 

The companies selected key informants, generally long-term workers, representing 

different job categories, and they were interviewed on the work processes, chemical products 

used and relevant exposure on offshore facilities. The 83 interviewees were from the drilling 

and well maintenance section (18); production and process (8); maintenance, inspection, deck 

and construction (24); catering (1); and health, office and administration (7) in addition to 

occupational hygienists (14) and occupational physicians (11). 

The 294 job titles regrouped from the Cancer Registry of Norway’s questionnaire and 

processes with associated possible exposure to carcinogens formed checklists used in 

interviewing the key personnel. The informants were also given the opportunity to outline 

issues of probable significance for the project. 
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A report was written after each visit and returned to the informants for feedback. Then 

the reports were evaluated in cooperation with the main contact in the respective companies 

and revised. 
 

 

Documents 

In addition to the 20 reports from the company visits, the background material included 

an April 2003 issue of an offshore chemical database including about 150 products containing 

carcinogenic compounds, 15 risk assessment reports, 118 sampling reports, 102 product data 

sheets and 191 other relevant documents. The research material was mainly based on 

information made accessible on the visiting day. When companies promised access to more 

exposure reports, the data collection process continued by 3–15 personal contacts with each 

company, either through phone (1–4), e-mail (2–12) or additional meetings with the main 

contact either at the company or at the University (0–1). The research group conducted 

archive searches in the Norwegian Petroleum Directorate and in one of the oil companies. In 

the other companies, the main contact provided relevant documents. 

 

 

3.4 Extraction of key information from interviews and documents 

Information on carcinogen exposure such as processes entailing exposure, job titles 

involved, technical changes significant for exposure, substitution of chemicals and products 

and exposure measurements was extracted from the data collected. Based on the available 

information, the 18 carcinogenic agents, mixtures or exposure situations assumed to be of 

greatest importance for personal exposure were selected to be presented in this study. 
 

 

Selected carcinogens 

The carcinogens selected were: benzene; mineral oil – inhalation exposure; mineral oil – 

skin exposure; crystalline silica; asbestos; refractory ceramic fibres; formaldehyde; 

tetrachloroethylene; trichloroethylene; welding; nickel compounds; chromium [VI]; lead; 

crude oil – skin exposure; diesel engine exhaust; dichloromethane; ionising radiation; and 
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occupational exposure as a painter. For crude oil and mineral oil, skin exposure is explicitly 

described since skin exposure might occur even when exposure through inhalation is 

negligible. 

 

 

Defined job categories 

Based on the information provided by the key informants and the data collected, the 

researchers grouped the 294 job titles from the offshore cohort into 27 job categories into five 

work sections according to similarity in job tasks and expected type of carcinogen exposure 

(Table 2). 

 

Table 2. A summary of sections and job categories (with abbreviations or short versions) 
based on a questionnaire survey among offshore workers in Norway from 1998 
 Section and job category 
 

Abbreviation or short version of 
job category 

Catering section  
Catering crew Catering 
Chefs Chef 

Drilling and well maintenance section  
Derrick employees Derrick 
Drill floor crew (roughnecks, roustabouts) Drill floor 
Drillers Driller 
Measure-while-drilling operators and mud loggers Measure-while-drilling and logger 
Mud engineers and shale shaker operators Mud 
Well service crew Well service 

Health, office and administration sections  
Health, office and administration personnel Health, office and admin. 

Maintenance, inspection, deck and construction section  
Deck crew Deck 
Electric instrument technicians Instrument 
Electricians Electrician 
Industrial cleaners Industrial cleaner 
Insulators Insulator 
Machinists Machinist 
Mechanics Mechanic 
Nondestructive testing inspector Nondestructive testing  
Painters Painter 
Plumbers, piping engineers and inspectors Piping 
Radio, tele-technicians and radio employees Radio 
Scaffold crew Scaffold 
Sheet metal workers Sheet metal 
Turbine operators and hydraulics technicians Turbine/hydraulics 
Welders Welder 

Production and process section  
Control room operators Control room 
Laboratory engineers and technicians Laboratory 
Process technicians Process 
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3.5 Individual expert assessment of exposure 

During a one-day session, eight experts individually assessed the likelihood of exposure 

(unlikely, possible or probable) to 17 carcinogens for 27 job categories and four time periods 

(1970–1979, 1980–1989, 1990–1999 and 2000–2005), resulting in 1836 combinations per 

rater. Prior to the expert rating, three-dimensional forms were prepared with one cell for each 

combination of carcinogen, job category and time period. The agents tetrachloroethylene and 

trichloroethylene given in Article II, which mainly represent metal degreasing, were merged 

before expert assessment into a “chlorinated hydrocarbons” category in Article III and Article 

IV, thus reducing the number of carcinogens from 18 to 17. 

Each member of the expert group scored the likelihood of exposure. The expert group 

comprised eight individuals: three occupational hygienists from the offshore industry, two 

occupational hygienists from consulting companies affiliated with the offshore industry and 

three university researchers with experience in offshore projects. 

To familiarise the experts with the methods of the assessment, they were handed the 

structure of the blank forms with instructions and guidance for completion 14 days before the 

meeting. Exposure was divided into three probability categories: 

 

• unlikely: it is unlikely that workers were exposed; 

• possible: it is possible that workers were exposed, but the probability is low; or 

less than 50% of the workers were probably exposed; and 

• probable: probably at least 50% of the workers were exposed. 

 

It was stressed that the most important task was to identify job categories with “probable 

exposure” and to avoid unexposed groups being denoted as probably exposed. 

“Exposure” is defined when exposure for the respective job categories exceeds the 

assumed background levels in the living quarters of offshore installations. 

Descriptions of products containing carcinogens, exposure sources and processes carried 

out within the different job categories were extracted from the documentation collected during 

the company visits and the interviews of key personnel and summarised for each selected 

carcinogen. Monitoring reports were found for seven agents (benzene, mineral oil mist and oil 

vapour, dust, asbestos fibres, refractory ceramic fibres, formaldehyde and 

tetrachloroethylene). 
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In the expert session, the method was first presented and discussed. Then the experts 

filled in their individual forms based both on the written background information for each 

carcinogen and their own competence and experience. For about every third agent, the expert 

group had a brief discussion to clear up any misunderstandings as to how to complete the 

form. 

 

 

3.6 Expert group panel assessment of exposure 

On the second day of the expert meeting, the raters assessed exposure in plenary. If at 

least one expert scored “probable exposure” for any combination of job category, carcinogen 

and time period during the individual assessment, a round-table discussion reached consensus 

on exposure. 

 

 

3.7 Data processing and statistical analysis 

 

Database on oil mist and oil vapour samples (Article I) 

A database containing information from the monitoring reports on oil mist and oil vapour 

was constructed in SPSS 12.0 for Windows (SPSS Inc., Chicago, IL, USA). This database 

comprised relevant information to characterise exposure to oil mist and vapour in the mud-

handling areas. The parameters entered were: rig name, type of rig, purpose of sampling, base 

oil, base oil characteristics (aromatic content and viscosity), work area, year and month, 

process parameters (well section, mud temperature, mud flow and well length) and sampling 

and analysis methods. 

Type of rig was divided into fixed or movable drilling facilities according to the practice 

of the Norwegian Petroleum Directorate (2007). A fixed facility is a generic term for all 

facilities placed on a field permanently, whereas movable facilities are not meant to be 

permanently placed on the field during its lifetime (Norwegian Petroleum Directorate, 2007). 

Occupational hygienists in this industry aim to gather samples during worst-case 

conditions. Drilling at the end of the 12.25-inch section is considered to produce the highest 

exposure to airborne contaminants because both mud flow and mud temperature are high. Due 

to rapid and unpredictable changes when drilling, departure delay due to bad weather or fully 
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booked helicopters, drilling in the subsequent, narrower 8.5-inch section may occur when 

occupational hygienists finally reach the platform to do sampling. The mud flow is lower in 

the 8.5-inch section, leading to less fluid passing the mud-handling area, which is expected to 

be associated with lower exposure. 

Detailed data on weather conditions were lacking in many of the reports collected. 

Splitting the months of the year into summer and winter seasons was therefore selected as a 

rough indicator of weather conditions. 

 

 

Data analysis of oil mist and oil vapour samples (Article I) 

All exposure data from 1979 to 2004 were stratified by sampling method and base oil and 

presented as arithmetic mean, geometric mean and their respective standard deviations. The 

frequency distributions of both oil mist and oil vapour exposure levels were skewed, and the 

estimated geometric standard deviations were <3 for most of the strata. In accordance with 

Hornung & Reed (1990), the measurements under the limit of detection (LOD) were set as 

LOD/20.5. Due to the skewed nature of oil mist and oil vapour exposure data, these variables 

were loge-transformed before statistical analysis. Differences in exposure levels between 

groups were analysed by t-tests and one-way analysis of variance. Correlations between 

continuous variables were evaluated using Pearson’s correlation coefficient. 

Categorical variables were dichotomised before analysis. Variables included in the 

exposure models were chosen based on a significance level of P < 0.20 in univariate analysis 

or on logical assessment of the potential determinants of exposure. Linear mixed-effects 

models were developed to model the time trend and to show the influence of different 

variables (P to enter <0.05) on personal exposure to oil mist or oil vapour. These models have 

the same general form as described by Rappaport et al. (2003). Since the data were 

imbalanced, the models were fitted using restricted maximum likelihood estimation. Only 86 

of 340 samples had worker identification, reflecting 1–6 repetitions of 16 workers, which was 

considered to be too few to use worker as a random effect in the mixed models. To account 

for repeated measurements taken from the same rig, the individual rig was viewed as a 

random effect. The potential determinants of exposure were set as fixed effects. 

SPSS 12.0 for Windows (SPSS Inc.) was used for all statistical analysis and figures for 

Article I. 
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Data processing and analysis of other sampling data (Article II) 

Data from sampling data collected on benzene, mineral oil mist and oil vapour, dust, 

asbestos, refractory ceramic fibres, formaldehyde and tetrachloroethylene were entered into 

SPSS databases and analysed by descriptive statistics (arithmetic mean and standard 

deviation, geometric mean and geometric standard deviation and range) using SPSS 13.0 for 

Windows (SPSS Inc.). Measurements below the LOD were treated according to Hornung & 

Reed (1990): that is, if less than 50% of the data are under the LOD and the geometric 

standard deviations are below 3.0, the measurements are set to the LOD/20.5, whereas if more 

than 45% of the data were below the LOD and the data are highly skewed (geometric standard 

deviation >3.0), the measurements were set to the LOD/2. 

 

 

Data processing and analysis of individual expert assessments (Article III) 

Data were analysed using SPSS 13.0 for Windows (SPSS Inc.). 

Unlikely, possible and probable exposure were entered into an SPSS database as the 

numbers 0, 1 and 2, respectively. Agreement parameters were grouped by carcinogen, rater 

background, IARC group, amount of information and time period. 

 To investigate interrater agreement, Cohen’s kappa (κ) index (Fleiss, 1981) and 

intraclass correlation coefficients (Shrout & Fleiss, 1979) were calculated. 

One kappa value for each pair of raters was calculated, totally 28 pairs for eight raters. 

The kappa statistics are presented as the mean and range of kappa for the relevant rater pairs. 

If one of a pair of raters had not scored in all possible levels (unlikely, possibly or probably 

exposure), the kappa value could not be estimated. For example, if one rater in a pair had only 

used the categories “unlikely” and “possible” exposure in his or her assessments and the other 

had assessed all three categories, the kappa could not be estimated. The number of missing 

pairs is specified in the relevant table. 

The mean and range of the kappa values for the seven rater pairs corresponding to each 

rater were calculated to examine whether there were apparent differences in agreement 

regarding the years of experience of the rater. 

One-way analysis of variance was performed on the kappa values to detect significant 

differences between the subgroups within the categories of time periods, raters, IARC groups 

and amount of information, respectively. To investigate significant differences, Bonferroni 

post hoc tests were performed. 
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Intraclass correlation coefficients (ICC) were calculated using a two-way random 

analysis of variance by including a random effect for each set of eight rater’s score per 

combination and a random rater effect for each of the eight raters. This study presents the two 

ICC measures, single and average score ICC according to Shrout & Fleiss (1979) and 

McGraw & Wong (1996): that is, ICC (2,1) and ICC (2,8), respectively, whereas Teschke et 

al. (1989) use the denotations “individual ICC” and “group ICC”. The number “2” refers to 

cases 2 while 1 and 8 refers to the number of raters. The confidence intervals of the single 

score ICC were investigated to detect differences between the subgroups within the categories 

of time period, raters, IARC groups and amount of information, respectively. Applying ICC 

values assumes normally distributed residuals in the two-way analysis of variance (Altman, 

1991). This study used ICC despite these assumptions being violated. 

To examine whether there had been any trends throughout the day in the agreement 

among the raters during the filling of forms, the ICC (2,1) and ICC (2,8) were analysed for 

groups of three carcinogens corresponding to the order in which they were assessed. 

Pearson correlation coefficients were estimated to examine the correlations between the 

interrater reliability measures and the prevalence of possible and probable exposure. 

According to Altman (1991), investigated variables should preferably be normally distributed. 

Shapiro-Wilk W tests were therefore performed to test for normality. 

Comparing the subgroups within the categories carcinogen, time periods, raters, IARC 

groups and amount of information requires that the subgroups have homogeneous between-

combination variance. The mean square of between-combination (MScombination) and residual 

mean square (MSresidual) was obtained through two-way analysis of variance when estimating 

ICC. The numbers were used to calculate the between-combination variance (σ2
combination): 

k
MSMS residualncombinatio

ncombinatio
−

=2σ      (1)   

k = number of raters 

F-tests were conducted to test for significant differences in the between-combination 

variance. When these tests are conducted, it is assumed that the two populations under 

investigation are normally distributed (Altman, 1991). 
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Data processing and analysis of individual versus panel assessment (Article IV) 

The data were analysed using SPSS 13.0 for Windows (SPSS Inc.). 

To allow statistical comparison between individual and panel results, the original three 

exposure categories used in the individual assessments were dichotomised into exposed 

(“probable exposure”) and unexposed (“unlikely” and “possible exposure”). The agreement 

between individual and panel assessments was calculated using Cohen’s kappa index (κ) 

(Fleiss, 1981). The sensitivity and specificity (Altman, 1991) were calculated with the panel 

assessment as reference. 

To illustrate the effect of possible individual misclassification on relative risk, the 

individual sensitivity and specificity were used to estimate the potential attenuation of the 

“true” relative risk of cancer at different prevalence rates of exposure. The resulting observed 

relative risks were calculated according to Flegal et al. (1986), and the range of minimal 

number of cancer cases needed to detect the attenuated relative risks was estimated assuming 

a two-sided significance level of 5% and a power of 80% (Armstrong, 1987). 
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4. Summary of results 
 

4.1 Article I 

Samples of oil mist and oil vapour in the mud-handling areas of offshore drilling 

facilities operating on the Norwegian continental shelf had been taken during the use of three 

generations of hydrocarbon base oils: diesel oils (1979–1984), low-aromatic mineral oils 

(1985–1997) and nonaromatic mineral oils (1998–2004). Sampling done before 1984 showed 

high exposure to diesel vapour (arithmetic mean = 1217 mg/m3). When low-aromatic mineral 

oils were used, the exposure to oil mist and oil vapour was 4.3 mg/m3 and 36 mg/m3, and the 

respective arithmetic means for nonaromatic mineral oils were reduced to 0.54 mg/m3 and 16 

mg/m3. Downward time trends were indicated for both oil mist (6% per year) and oil vapour 

(8% per year) when the year of monitoring was introduced as a fixed effect in a linear mixed-

effects model analysis. Rig type, technical control measures and mud temperature 

significantly determined exposure to oil mist. Rig type, type of base oil, viscosity of the base 

oil, work area, mud temperature and season significantly determined exposure to oil vapour. 

In these models major decreases in variability were found for the between-rig components. 

 

 

4.2 Article II 

The study indicated possible exposure to 18 known and suspected carcinogenic agents, 

mixtures or exposure circumstances for 27 defined job categories. Monitoring reports were 

obtained on seven agents (benzene, mineral oil mist and vapour, respirable and total dust, 

asbestos fibres, refractory ceramic fibres, formaldehyde and tetrachloroethylene). The 

arithmetic mean of 367 personal samples of benzene was 0.037 ppm (range: less than the limit 

of detection – 2.6 ppm). Asbestos fibres were detected (0.03 fibres/cm3) when asbestos-

containing brake bands were used in drilling draw work in 1988. Personal samples of 

formaldehyde in the process area ranged from 0.06 to 0.29 mg/m3. Descriptions of products 

containing known and suspected carcinogens, exposure sources and processes were extracted 

from the collected documentation and the interviews of key personnel. 
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4.3 Article III 

In individual assessment by eight experts, 18% of the possible combinations of 

carcinogen, job category and time period were denoted as possible exposure, and 14% scored 

probable exposure. Stratified on the 17 carcinogenic agents, the probable exposure prevalence 

ranged from 3.8% for refractory ceramic fibres to 30% for crude oil. The overall mean kappa 

was 0.42; ICC (2,1) was 0.62 and ICC (2,8) 0.93. The university and the industry experts did 

not differ in agreement. Agreement was higher for IARC group 1 than for the three other 

IARC groups (2A, 2B and 3). Providing limited quantitative measurement data was associated 

with less agreement than for equally well-described carcinogens without monitoring data. 

 

 

4.4 Article IV 

Eight experts assessed 1157 (63%) of 1836 combinations in plenary, resulting in 265 

(14%) agreed exposed combinations. Chlorinated hydrocarbons, benzene and inhalation of 

mineral oils had the highest number of exposed job categories (n = 14, 9 and 10, 

respectively). The job categories classified as exposed to the highest numbers of carcinogens 

were the mechanics (n = 10), derrick employees (n = 6) and process technicians (n = 5). The 

agreement between the experts’ individual assessments and the panel assessment was 

κ = 0.53–0.74. The sensitivity was 0.55–0.86 and specificity 0.91–0.97. For these parameters, 

there were no apparent differences between the university experts and the industry experts. 
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5. General discussion 
Stewart et al. (1996): “Historical exposure assessment requires an opportunistic approach, 

taking advantage of what information is available and developing creative and innovative 

approaches to exploit that information.” 

 

Kauppinen (1996): “In the future occupation will probably be less accurate as a descriptor of 

exposure.” 

 

Exposure assessment is one of the key aspects in investigating the association between 

occupational exposure and the development of disease. 

To provide exposure data for a planned cohort study on cancer, this study aimed at 

quantifying and assessing the probability of exposure to selected known and suspected 

carcinogens in Norway’s offshore petroleum industry. In order to gather information about the 

industry and to get an overview of carcinogens used and specific milestones in processes and 

products in this industry, companies were visited, comprising interviews of key workers and 

collection of documents. The sampling data collected were put into databases for analysis. 

Due to the relatively large number of measurements done on oil mist and oil vapour in drilling 

areas, this database was considered sufficiently comprehensive to construct statistical models 

for exposure to oil mist and oil vapour in the time period 1989–2004 (Article I). The database 

supported estimates of time trends and determinants of exposure such as rig type, base oil and 

season. 

Descriptions of occupational exposure sources and products involving 18 carcinogens 

and suggested exposure for 27 defined job categories are based on the key information 

extracted from documents, monitoring reports and information from the interviews. Exposure 

measurements were not available for most agents in the time period considered (1970–2005). 

Thus, an expert team was used to assess the likelihood of exposure for combinations of 

carcinogen, job category and time period to provide surrogate measures of exposure. The 

experts were provided with the status of knowledge (Articles I and II), and after an initial 

individual filling of exposure matrices, a round-table discussion was carried out to agree on 

the combinations probably exposed. Since this is a disputed method, it was decided to 

evaluate the performance of the expert group by assessing interrater agreement and by 
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evaluating how the provided information influenced the agreement (Article III). The agreed 

results of the expert assessments were presented and the validity was evaluated (Article IV). 

 In this chapter, I place this dissertation into a broader context of methodological 

developments in retrospective exposure assessment. I evaluate the advantages and limitations 

of the methods used. I discuss the main results and indicate the limitations in the exposure 

assessment. Finally, I make suggestions for future studies. 

 

 

5.1 Methodological considerations 

 
 

Data collection 

 
Strategy chosen for collecting historical exposure information 

Because Norway’s Continental Shelf has many installations, getting access to all the 

workplaces was not feasible, and an assessment strategy involving walk-through surveys was 

not an option. The walk-through method is often used in retrospective exposure assessment 

studies where the industry locations are still present (Stewart et al., 1998). Instead the research 

group had to rely on close contact with key people in the industry to make company visits, 

including interviews of key personnel representing different job categories and collection of 

monitoring reports and other relevant documentation. The companies were chosen to 

represent as many job titles as possible and to have employed the majority of participants in 

the cohort. 

 

Interview structure 

The interviews were semistructured, free-flowing based on checklists of job titles and 

carcinogens. Stewart et al. (1998) changed to interviews of this character in their study when 

they realised that the informants’ recall did not follow the plan for structured interviews 

prepared prior to interviewing. Tielemans et al. (1999) suggest that this strategy might provide 

a more complete understanding of occupational exposure than self-administered job-specific 

questionnaires. 
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Representativeness of interviewees 

A drawback in this study was that a person representing the leadership of the company 

often assisted the informants, which might sometimes have led the interviewees to hold back 

information. Further, the companies themselves selected participants for these meetings. On 

the other hand, an independent set of interviewees was difficult to achieve both due to logistic 

constraints and the need for a close relationship with and overview of 20 companies. 

Fifteen of the 83 people interviewed had offshore experience from the 1970s, but detailed 

knowledge on exposure to carcinogens for this period was scarce. Hence, the assessments 

made for this decade might be less valid. 

 

Representativeness of the documents collected 

During the data collection, many companies claimed that retrospective data were filed in 

complicated archive systems or incompatible computer systems. This might have influenced 

the results. Another reason for not giving priority to archive searches might be that the top 

management of the companies in most cases was not sufficiently involved to allocate the 

health, safety and environment management enough resources to do complete archive 

searches. Although we do not expect to have a complete set of existing documentation from 

the industry, the documents provided on carcinogens are considered representative for the 

industry. 

Few sampling reports and other relevant documentation were found from the 1970s. As 

mentioned above, this might lead to less valid assessments for this decade. 

In particular, one aim has been to get access to as many monitoring reports on oil mist 

and oil vapour as possible. Article I included exposure data on oil mist and oil vapour from all 

the companies currently involved in drilling on Norway’s continental shelf. Most of the 

reports compiled are from the past decade. The reasons for the few reports from the 1980s and 

early 1990s are probably less sampling activity, less focus from the authorities, fewer results 

available due to inaccessible data systems and loss of company history because of retirement 

or key personnel changing positions. Prior to 1991, no results were accessible from movable 

drilling rigs. The number of exposure measurements increased from 1989 to 2004, 

presumably reflecting increased monitoring activity with time. However, some reports, 

especially from the earliest years, were not expected to be accessible during the collection 

process. The reports have varying amounts of information, and few provide detailed data on 

the design of the mud-handling areas, the ventilation system, the physiochemical 

characteristics of the base oils used and the detailed work tasks. Thus, the models presented in 
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this study are based on the rather coarse set of variables stated in most of the monitoring 

reports. 

According to the newspaper Dagbladet (Hansen, 2006), an oil company in Norway 

conducted an internal investigation of historical documentation of exposure to chemical 

hazards for its installations on Norway’s continental shelf. The article refers to an internal 

report describing 69 document titles, and 20 contained exposure measurements for the time 

period 1985–1995. For the subsequent decade 78 documents were found, of which 62 had 

monitoring data. Their investigation probably included more agents than the ones focused on 

in this study by counting agents not classified as carcinogens. Nevertheless, it confirms the 

impression of a low number of documents with chemical exposure data in Norway’s offshore 

petroleum industry. 

A complete overview of the offshore petroleum industry is difficult to attain since this 

includes numerous companies and installations. Presumably, this will result in less document 

retrieval than in other industry-specific cohort studies concentrating on fewer plants such as 

previous studies from the aluminium industry (Romundstad et al., 1999), the nickel industry 

(Grimsrud et al., 2000) and the rubber manufacturing industry (Vermeulen et al., 2000). 

 

 

Quantitative exposure information based on historical monitoring data 

When exposure is being assessed in occupational epidemiology, quantitative approaches 

are more useful for testing hypotheses and for developing dose–response relationships than 

qualitative approaches (Smith et al., 2005). Adding qualitative information to measurement 

data enables a more specific level of estimation (Stewart et al., 1996). 

We presented the quantitative data for mineral oil mist and oil vapour, benzene, dust, 

asbestos, refractory ceramic fibres, formaldehyde and tetrachloroethylene (Articles I and II) 

using arithmetic mean and geometric mean in addition to range. Since the personal samples 

are considered to be more representative for workers’ exposure than stationary samples, 

results from stationary sampling have not been stated, either because no such data were 

available (refractory ceramic fibres and tetrachloroethylene) or because the personal samples 

were considered to be sufficient to be representative for workers’ exposure (mineral oil mist 

and vapour and benzene). Data were stratified by department, job title, task, sampling time, 

chemical (such as type of base oil) or physical characteristics such as dust or fibres where 

appropriate. 
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The geometric mean is considered to be most representative for the average workers since 

it puts less weight on extreme values in a data set. The geometric mean and the range of the 

monitoring data for most of the agents given (Articles I and II) show that a few extreme 

measurements strongly influence arithmetic means. Such skewed distributions are common in 

exposure measurement data sets. However, some workers at times may experience high 

exposure compared with occupational exposure limits, such as for mineral oil mist and vapour 

exposure in the mud-handling areas and for benzene exposure for the deck job category. 

When a large fraction of a data set was below the limit of detection (LOD) for the 

analytical method used, we followed the recommendation by Hornung & Reed (1990) for 

estimating means. For the exposure to mineral oil mist and vapour, few measurements were 

below the LOD (except for oil vapour measurements in the turbine room), and we used the 

equation LOD/20.5. For benzene, asbestos and oil vapour measurements in the turbine room, 

we used the recommended equation LOD/2 since more than 45% of the measurements were 

below the limit of detection and/or there was a high level of variability (geometric standard 

deviation above 3.0). Benke et al. (2001) questions whether these are optimal approaches for 

treating measurements under the LOD in hygiene and epidemiology data sets. 

Due to the skewed distribution, we loge-transformed the monitoring data of oil mist and 

oil vapour when drilling (Article I) to get a distribution of the data closer to normal before 

performing statistical mixed-effects model analysis (Altman, 1991). We used the statistical 

models to characterise determinants of exposure when drilling and to examine whether there 

had been any time trend in exposure. Generalised linear mixed models (Breslow & Clayton, 

1993) are obtained from generalised linear models (McCullagh & Nelder, 1989) by 

incorporating random effects into the linear predictors. These models are useful for modelling 

the dependence among response variables inherent in longitudinal or repeated-measure 

studies (Pan & Lin, 2005) and for identifying predictors or determinants of exposure (Seixas 

& Checkoway, 1995). Linear mixed-effects models as described by Rappaport et al. (2003) 

allowed us to connect fixed effects such as year, rig type, base oil and mud temperature to the 

relevant installation by setting “rig” as a random variable. In doing this, we assumed that 

exposure to oil mist and oil vapour varied both between and within rigs. Studies of 

retrospective occupational exposure have used mixed-effect modelling since they allow more 

sophisticated analysis of the data set than ordinary linear regression models (Burstyn et al., 

2000). 

Seixas & Checkoway (1995) state that validity testing of statistical models is crucial. 

Burstyn et al. (2002) validated their models of exposure developed for a historical cohort 
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study of asphalt workers in western Europe against data from the United States, Italy and 

Germany that were not included in the original exposure models. Plato et al. (1997) 

constructed a matrix of multipliers to current levels of man-made vitreous fibres in Sweden’s 

prefabricated house industry to calculate historical exposure levels but stated that they could 

not validate the model due to lack of previous exposure measurements. The models in the 

present study might be validated against new measurement data on oil mist and oil vapour in 

drilling areas, either monitored after May 2004, newly found historical data or measurements 

performed in other countries. 

Occupational monitoring data might include systematic errors (biases) due to sampling or 

analytical method and equipment. Random error might occur because of errors by the assessor 

or laboratory analyst when handling sampling or analysis equipment or information errors in 

the report such as incorrect monitoring time or process parameters (temperature, department, 

weather conditions etc.). We could not estimate such errors in the data sets presented in 

Articles I and II. 

This study did not evaluate the use of personal protective equipment. The interviewees 

gave varying information on the type of personal protective equipment and whether or not it 

was used. We therefore decided not to take personal protective equipment into account. 

SSeeccttiioonn  55..33  provides more discussion on how limitations in historical monitoring data 

might influence the epidemiological analysis. 

 

 

Summary of findings from the data collection (Article II) 

Article II gives an overview of the university researchers’ findings and interpretation of 

the information collected through the company visits. The article describes carcinogens, 

carcinogen-containing products, exposure situation and sources, job categories and the 

researchers’ suggestions on possibly exposed job categories. This was used as background 

information for the expert assessment of exposure. Few studies describe the background 

information provided to expert panels in depth (Stewart et al., 1996). The approach and 

justification of the suggested exposed job categories have been explained but not in a 

conclusive manner. Stewart et al. (1996) say that researchers or investigators rarely describe 

this approach and suggest that researchers better describe how they identify and document the 

development of exposure groups. 

 

 



 

 

62 

 

Exposure assessment by the expert group 

When measurement data are missing from the workplace under investigation or from 

similar industry or analogous tasks, Stewart et al. (1996) recommend that quantitative 

estimates not be attempted. In the present study we decided to use a group of eight experts 

with knowledge of offshore occupational hygiene to assess the likelihood of exposure. 

The use of expert assessment has generally increased in recent decades. Occupational 

hygienists, chemists, engineers and other professionals are regarded to better understand 

occupational exposure than workers. However, experts may not be familiar with the specific 

jobs, workplaces and industries to be considered (Teschke et al., 2002), and their background 

may influence how they assess exposure (Teschke et al., 1989). 

Subjective approaches are less accurate and more open to criticism than estimates based 

on quantitative monitoring data. Nevertheless, when measurements are lacking, expert 

assessment (or judgement) is often used (Stewart et al., 1996). One strength of this study is 

that it describes the information provided to the experts (Articles I and II). Few studies 

describe how the exposure estimates were developed and the information on which the 

experts based their decision, judgement or assessment (Stewart et al., 1996). 

 

 

Methods for testing the reliability and validity of expert assessment 

Due to the subjective nature of the expert assessment, we decided to investigate the 

method further. 

We examined reliability to get a picture of how the group functioned, whether it was 

large enough and how the information provided to the experts influenced the agreement 

between them. According to Benke et al. (1997), the optimum number of experts and the 

relationships between independent and consensus estimates have rarely been examined. 

Reliability is synonymous with reproducibility: repeated testing of the same measurement 

(Checkoway et al., 2004). In this context, the eight experts’ assessment of the same exposure 

combination might be viewed as eight repeated measurements. Analysis of the consistency 

among raters (interrater reliability) might help in identifying characteristic rater trends 

(Checkoway et al., 2004). Common measures of reliability of exposure assessment by experts 

in case–control studies are percentage agreement, Cohen’s kappa index and intraclass 

correlation (Teschke et al., 2002). Van Tongeren et al. (2002) estimated kappa between raters 

in a population-based cohort study, whereas Roberts & McNamee (2005) focused on the 
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limitation of the single summary-weighted kappa coefficients and suggested a symmetrical 

matrix of kappa-type coefficients instead. 

A valid assessment has no systematic bias, but this is never achieved in retrospective 

exposure assessment. Validity indicates the discrepancy between measured and true values. 

Examining validity requires knowledge of the true exposure, and this is rarely, if ever, 

available. An alternative strategy is to choose a measure believed to be close to the truth and 

to define this as the gold standard against which other, cruder, measures are assessed for 

validity (Checkoway et al., 2004). Teschke et al. (2002) states that comparing expert 

assessment with measured data is a common way of validating expert assessment. This study 

estimated validity by comparing the individual assessment against the consensus made by the 

experts in a subsequent plenary discussion, defined as the gold standard. 

When the exposure variable is classified as exposed or nonexposed, as in the panel 

assessment in this study, non-differential misclassification would be expected to bias the ratio 

measures of association (that is, relative risk) toward the null value of 1.0 (Pearce et al., 

2006). 

 

 

Presentation of the results of the expert group consensus 

The job–exposure matrix approach including combinations of carcinogen, time period and job 

category (Article IV) can be viewed as the final result of the exposure assessment compiled 

by Articles I–IV that the Cancer Registry of Norway can use in their planned analysis of 

cancer development in the offshore cohort. The results in Article IV extend the information in 

Article II by including the time period. The assignment of job categories as being exposed in 

Article IV is expected to be more valid than the assignment the researchers suggested in 

Article II. 
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5.2 Main findings 

 
 

Consensus decisions on carcinogen exposure by an expert group (Article IV) 

Article IV presents the consensus decision by eight experts on exposure to 17 carcinogens 

for 27 defined job categories in four time periods (1970–1979, 1980–1989, 1990–1999 and 

2000–2005) by using a job–exposure matrix approach. Benzene and mineral oil were among 

the agents with the highest number of exposed job categories. In contrast, chlorinated 

hydrocarbons had the highest number of exposed job categories due to the use of metal 

degreasers, but very few measurements were performed (Article II). This study assessed most 

job categories as being exposed to several carcinogens. This is in accordance with other 

descriptions of occupational exposure in the offshore petroleum industry (Cottle & Guidotti, 

1990; Elliott & Grieve, 1987; Gardner, 2003; Grieve, 1988; Health and Safety Executive, 

2000b; Hudgins, 1991). 

 
 

Identifying and describing exposure to selected carcinogens (Article II) 

We collected documentation and interviewed key personnel to describe the products 

containing known and suspected carcinogens, exposure sources and processes and identified 

18 carcinogens and 27 job categories. The research group only got access to sampling data for 

seven relevant agents, indicating a more ad hoc sampling regimen. However, the quantitative 

data for benzene in the process section and mineral oil mist and vapour in the mud-handling 

area might be considered representative of the exposure sources and situations in question. 

The benzene samples in Article II had low geometric mean levels, in accordance with 

published data from this industry (Glass et al., 2000; Health and Safety Executive, 2000b; 

Kirkeleit et al., 2006). Nevertheless, the range for the process and deck categories indicated 

that some workers are exposed at times to benzene levels exceeding Norway’s occupational 

exposure limit. Due to lack of information, we could not identify the tasks associated with 

high benzene exposure. 

Turbine room workers had lower exposure to mineral oil than previously described for 

workers in the mud-handling areas (Davidson et al., 1988; Eide, 1990; James et al., 2000). 
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Within Norway’s offshore industry, the most striking exposure situation involving 

asbestos is presumably when asbestos was a constituent in dry powder used as a drilling mud 

additive before 1980. Esmen & Corn (1998) measured high levels of asbestos (range 0.39–1.9 

fibres per cm3) during analogous processes involving cutting sacks and pouring the asbestos-

containing content into a container. 

Spencer et al. (1999) found asbestos fibre release from the brake pads of overhead 

industrial cranes in the range of <0.005 to 0.011 fibres per cm3, which is lower than the results 

presented in Article II on asbestos fibres from brakes in drilling draw works. 

Two studies reported the migration of fibres within the same range as that found when 

refractory ceramic fibres were installed or removed by insulators (Cheng et al., 1992; Maxim 

et al., 1997), but van den Bergen et al. (1994) reported higher levels (range 9–50 fibres per 

cm3). 

In the period 1990–2000, all drilling facilities in Norwegian waters installed automatic 

sack-cutting machines for dry additives, which probably led to reduced levels of dust in mud-

mixing areas. Dust-causing dry drilling additives such as barite and bentonite contain 

crystalline silica. 

To our knowledge, results from dust exposure measurement in the shale shaker room on 

platforms in Norway have not been published. Hansen et al. (1991) measured airborne dust in 

the shale shaker room during an offshore drilling operation in Denmark’s part of the North 

Sea and found total dust varying from 0.04 to 1.41 mg/m3, with barium and silicon being the 

two most abundant elements. 

The petroleum industry has replaced and reduced the number of products containing 

carcinogens since the 1980s. One example is leaded grease used on drilling and casing pipe 

threads. The number of such products has been reduced over the years followed by strict 

restrictions internally in the oil companies in 1995 due to limited discharge permits. The 

biological uptake of lead among drilling offshore crews has not been examined, but studies 

indicate that leaded grease might be expected to be absorbed through the skin (Hine et al., 

1969; van Peteghem & de Vos, 1974). 

The exposure to occupational hazards in the working environment in the offshore 

petroleum industry has changed significantly since 1970. The cause has been increased focus 

on reducing the use of hazardous agents, both by the industry and by the relevant public 

authorities. The agents of concern today probably pose less risk than those in focus previously 

(such as asbestos). Activity in monitoring chemical and physical agents has increased in this 
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industry with time, especially since 1995. This is in accordance with the descriptions of 

practice in the United States (Stewart et al., 1996). 

 

 

Time trends in personal exposure to oil mist and oil vapour when drilling with oil-

based muds, 1979–2004 (Article I) 

Article I indicated that the exposure to oil mist and vapour decreased during recent 

decades but still some measurements were above the recommended limits. 

The extremely high exposure to diesel vapour in the earliest period of monitoring (1979–

1983), which we excluded from the statistical modelling, might be due to the lack of technical 

control measures in the mud-handling areas. At that time the drilling facilities were designed 

for water-based mud systems, which were probably expected not to cause harmful health 

effects. The reduction in exposure from 1979 to 2004 occurred as diesel was being replaced 

with low-aromatic and later nonaromatic base oils. The boiling point range for the diesel oils 

includes lower temperatures than the two subsequent generations of base oils. Generally, the 

vapour pressure decreases as the boiling point increases, indicating less evaporation of base 

oils with higher boiling points. This might partly explain the high oil vapour exposure when 

diesel base oils were used. Further, since diesel vapour was actively sampled on charcoal 

tubes during 12-hour shifts, we cannot exclude that some oil mist might also have been 

collected, resulting in overestimation of the diesel vapour exposure. 

Technical control measures to reduce exposure have mainly comprised constructing 

cabins for the operators and installing more efficient ventilation systems. Closing open fluid 

flow lines and mud pits has probably also made the working environment less contaminated. 

In addition, the purpose of the air-sampling reports has changed through time. Before 1999, 

sampling almost exclusively focused on testing compliance with limit values, whereas since 

then the largest fraction of air samples documented technical control measures carried out in 

the mud-handling areas. If the changes were successful, lower exposure would be expected, as 

indicated for oil mist in the mixed-effects model. However, the various types of control 

measures presumably have different relative effects on exposure. An increased focus from the 

public authorities in the past 7–8 years on documenting the exposure level as an important 

part of risk assessment might also have initiated the measurement of exposure on newer 

generations of rigs with lower exposure. 

The linear mixed-effects models indicate significant decline over time in exposure to oil 

mist and vapour from 1989 to 2004 of about 6% and 8% per year, respectively. These time 
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trends were mainly associated with decreases in between-rig variance, which might indicate 

that rigs with lower exposure were included rather than exposure being reduced over time 

within the respective rigs. This could be explained by the low number of years sampled for 

most rigs and also few repeated measurements, which were mostly taken within short time 

frames within the different rigs. Thus, the time trends might partly be functions of the rigs 

selected for sampling. These data represent about 50% of the fixed drilling facilities and 20% 

of the movable drilling rigs. We did not evaluate whether these rigs are representative for all 

the rigs operating in the time period investigated. Further, the time trend should be interpreted 

cautiously, especially for exposure to oil mist. This time trend seemed largely affected by the 

very high exposure concentrations measured in 1989 and 1992, whereas after 1992 the 

observed exposure to oil mist seems to be relatively independent of time. However, the 

magnitude of these time trends was in the same range as those reported for long-term 

exposure trends in other industries such as the asphalt industry (Burstyn et al., 2000), the 

carbon black industry (van Tongeren et al., 2000) and the rubber manufacturing industry 

(Vermeulen et al., 2000). 

 

 

Determinants of personal exposure to oil mist and oil vapour when drilling (Article I) 

The estimated exposure to oil mist and vapour on the movable drilling rigs was about 

twice as high as on fixed drilling facilities. This can be explained by older technologies with 

more open flow lines, less developed ventilation systems and more time being spent in the 

exposed areas. 

The models indicate that technical control measures prior to sampling have had the most 

effect on oil mist concentrations. Although the design of the shakers and mud pits has 

remained unchanged on most drilling facilities, ventilation of the mud-handling area has 

improved considerably on most rigs. 

In bivariate analysis, the mud temperature correlated both with mud flow and well length, 

but none of these parameters correlated unambiguously positively with oil mist or vapour. 

Most reports stated the mud temperature, and it was therefore chosen as a variable to enter 

into the exposure models. The multivariate exposure model agrees with this assumption by 

indicating that the mud temperature significantly predicts oil mist and vapour exposure, as 

exposure increases by 19% and 16%, respectively, for an increase in temperature of 10°C. 

The section of the well was not a significant determinant and was not included in the final 

models. 
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Exposure to oil vapour was significantly lower for drilling with nonaromatic base oil than 

with the previously used low-aromatic base oil. We have not determined whether this is due 

to the characteristics of the base oils such as evaporation or to other time-linked changes such 

as technical control measures or the introduction of newer rigs. 

Long and complicated high-temperature and high-pressure wells may require fine-tuned 

base oils with low viscosity. These low-viscosity base oils have a lower boiling point range 

and presumably a higher vapour pressure than those with normal viscosity. This might explain 

the increased oil vapour exposure in this study when low-viscosity base oil was used. 

Viscosity was not a significant determinant of oil mist, probably because it has little effect on 

the oil mist produced by mechanical agitation of the shakers. 

The workers in the slurrification unit had lower exposure to oil vapour than did workers 

in the other mud-handling areas. This might partly be because the temperature of the mud was 

reduced by the time it reached the slurrification unit. The temperature was not measured in 

these units, so we could not verify this. Few reports stated the actual time spent in the 

respective work areas and on the specific tasks, and we could not use this for further analysis. 

Oil vapour is generated by evaporation from the mud system, especially in the shale 

shaker area, where solids and liquids separate. Oil mist is presumably produced by a 

combination of aerosol formation by mechanical agitation of the shale shakers and the 

condensation of vaporised base oil. Depending on the equilibrium between the vapour and 

liquid phases, oil vapour produced by evaporation from oil mist might also contribute to the 

total vapour concentration. One reason for the increased oil vapour exposure during the 

summer season might be that the higher air temperatures shift the equilibrium between the 

phases towards increased vapour concentration. Less wind during summer might also 

contribute to higher exposure. Generation of oil mist appears to be independent of the 

seasonal effect. 

The between-rig components accounted for the major decreases in variability in the 

mixed models. This might be explained by the relatively small ranges of process conditions 

and the clusters of repeated measurements within a short time frame for most of the individual 

rigs. 

 

 

Interrater agreement (Article III) 

Eight raters individually estimated exposure to 17 carcinogens in the offshore petroleum 

industry. For the 1836 exposure combinations assessed per rater, an overall kappa of 0.42 and 
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a single score ICC of 0.62 indicated that the raters agreed on exposure estimates above 

chance. The lack of full agreement indicated that their subjective opinions influenced the 

decisions. The kappa values were in the upper range of comparable studies. In a study scoring 

the likelihood of exposure in three categories (unlikely (0), possible (1) and probable (2)), van 

Tongeren et al. (2002) found overall kappa values between the raters of 0.36 for 0 versus 1 or 

2 and 0.31 for 0 or 1 versus 2. The authors suggested that the poor agreement was due to lack 

of information on occupations and tasks. In a case–control study of brain tumours in which 

five experts assessed the presence or absence of exposure to 21 chemicals in 199 jobs, the 

kappa values for pairwise interrater agreement ranged from 0 to 0.6, with 0.2 as the median 

kappa (Benke et al., 1997). 

The overall average score for the ICC (2,8) of 0.93 indicates reliable mean estimates of 

exposure and that the study included enough raters. Reducing the number of raters from eight 

to five or to three only affected the average score ICC marginally. An ICC >0.81 is defined as 

nearly perfect agreement (Landis & Koch, 1977; Teschke et al., 1996). The raters seem to 

have received enough information to give reliable average mean assessments. However, the 

industry raters represented the industrial sector under investigation, indicating that the 

assumption of independence between the raters might be questioned. A certain common 

understanding of exposure among occupational hygienists in this industry is expected since 

they often work on similar topics to comply with working environment regulations or, at 

times, to deal with news headlines on chemical exposure. The occupational hygienists also 

arrange meetings to exchange and discuss mutual professional challenges, which might create 

a more homogeneous perception of exposure. The agreement between the university experts 

did not differ from that between the industry experts. In accordance with Teschke’s (2003) 

recommendations, this study aimed at providing the experts with measurement data, 

information about the properties of the carcinogens and detailed information about the 

workplace on which to base their likelihood estimates. 

The calculated kappa statistics and single score ICC provide a basis to conclude that 

providing limited quantitative data is associated with less agreement among raters than for 

equally well-described carcinogens without sampling data. ICC estimates for different groups 

might not be comparable if the difference in between-combination variance is great. Analysis 

of the between-combination variance for the three categories of amount of information gave 

similar results, and we therefore assumed that comparison is appropriate. Some studies have 

examined changes in interrater agreement when providing their experts with cycles of 

increasing amount of information. De Cock et al. (1996) provided information on pesticide 



 

 

70 

 

exposure among fruit workers to experts in three phases. The interrater agreement in ranking 

tasks by exposure did not change with increasing information. Stewart et al. (2000) evaluated 

experts’ assessments of formaldehyde exposure in manufacturing plants. Information on 

exposure was provided in six cycles of increasing amount of information, starting with job 

category and industry and then adding dates, department title and plant reports. The mean 

difference between the hygienists’ evaluations and a standard, more in-depth evaluation 

improved slightly with increasing information (kappa). When more quantitative information 

on captan exposure was given, the interrater agreement (kappa) decreased (de Cock et al., 

1996). However, according to Hawkins & Evans (1989), offering measurement data produces 

less biased expert estimates. They showed that, without measurement data, experts tend to 

overestimate exposure. When Post et al. (1991) gave measured data to occupational 

hygienists, their relative exposure ranking of jobs did not improve but their classification of 

jobs into quantitative exposure categories did, and agreement between the raters increased. 

Segnan et al. (1996) compared assessments by experts – at different stages – based on 

occupational histories (median ICC = 0.11), industry-specific questionnaires (median 

ICC = 0.21), lists of products used (median ICC = 0.65), and where available, exposure 

measurement data (median ICC = 0.51). In general, increasing the information on monitoring 

data decreased the agreement among the experts. The main reason for this is presumably the 

large inherent variability in individual measurement results (Kromhout et al., 1993). 

Kappa values were significantly higher for IARC Group 1 carcinogens than the other 

IARC groups. To the author’s knowledge, experts being more likely to agree on established 

carcinogens (IARC Group 1) than on less-established carcinogens has not been reported 

previously. 

 

 

Agreement between experts’ individual ratings and subsequent plenary expert 

assessment (Article IV) 

The agreement between the individual and the panel assessments in Article IV (κ = 0.53–

0.74) is considered to be acceptably above chance. The high specificity (0.91–0.97) and 

moderate sensitivity (0.55–0.86) indicate that the individual experts missed some exposure 

but did not produce many false-positive assessments by using panel assessment as reference. 

However, this is not unexpected due to the dependence between the individual and the panel 

assessment methods. Benke et al. (1997) found sensitivity and specificity within the ranges of 
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0.48–0.79 and 0.91–0.98, respectively, when exposure in 49 jobs was compared with 

exposure data. 

Experts with the strongest opinion might be expected to have a greater impact on the 

plenary discussions than others. However, considerable agreement on probable exposure in 

the individual assessments was obviously needed to obtain a consensus on exposure. In 

addition, the work experience of the expert was not systematically associated with the kappa 

value for the agreement between individual and panel assessments. 
 
 
 

5.3 Limitations in exposure assessment 

 

Potential misclassification of the exposure status of the workers within the Norwegian 

offshore cohort will result in information bias for the planned cohort study. Misclassification 

of exposure may mask the true risks of developing cancer due to occupational exposure 

(Kauppinen, 1996). Pearce et al. (2006) suggest that exposure assessment should be 

performed blinded: that is, without the assessors knowing health outcome, as we did in this 

study. When exposure assessment is blinded to health outcome, the misclassification will be 

nondifferential, that is, towards no difference between people with and without disease 

(Pearce et al., 2006). 

Articles I and II document well the background information provided to the experts. 

Lacking such information would reduce the credibility of the study (Stewart et al., 1996) and 

limit the interpretation of epidemiological studies (Stewart, 1999). 

 Stewart et al. (1996) also suggest that the accuracy and reliability of the estimates 

should be evaluated, where possible, to quantify the likely degree of misclassification and its 

effect on the estimated risk of disease, which is in accordance with Article IV. 

 

 

Misclassification of exposure due to limitations in historical quantitative monitoring 

data 

Historical monitoring data are usually sparse (Stewart et al., 1996). They might have 

been collected in a non-random order to determine compliance with regulatory standards, to 

evaluate control measures or to assess exposure levels during unusual conditions (leaks, spills 
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and process shut-downs). Such measurements focus on the people or departments most highly 

exposed and might thus be biased and not representative for the normal process conditions. 

According to the sampling reports on which Article I is based, the aim of most measurements 

was to cover worst-case conditions. The measurements presented in the models in Article I 

are all 2-hour samples and are not sampled subsequently to estimate full-shift exposure, 

although the conditions are constantly changing in the drilling areas. Thus, the 2-hour 

sampling strategy does not allow full-shift measurement assessment. 

Estimates of exposure based on worst-case sampling will probably be higher than the 

exposure found for normal or average conditions. If these levels are used in epidemiological 

studies, the exposure estimated for an increased risk of a disease will be higher than the actual 

or true level of exposure at which an association with disease can be detected (Stewart, 1999). 

The most frequently used exposure metric is 8-hour time-weighted averages (12 hours in 

the offshore industry), due to measurement of compliance with occupational exposure limits. 

However, both peak exposure and averages excluding peaks may be more appropriate for 

health outcome. Further, episodic events and time between events might be more important 

than daily average exposure (Stewart et al., 1999). 

 

 

Misclassification due to limitations in qualitative information 

The use and content of metal degreasers containing chlorinated hydrocarbons is 

uncertain. Some companies reported replacing trichloroethylene products as early as 1985. 

The informants seem to have applied the abbreviation TRI for both products containing 

trichloroethylene and products containing 1,1,1-trichloroethane, the latter being in IARC 

Group 3. The fact that these two solvents cannot be distinguished might lead to incorrect 

conclusions in the interpretation of any association between exposure to these compounds and 

any development of cancer in the planned cohort study. 

 

 

Misclassification due to heterogeneous exposure within job categories 

When we used job category as one of the exposure parameters we assumed equivalent 

exposure for everyone in this category. However, workers holding the same job may differ in 

exposure because of differences in individual work practices and microenvironments (Stewart 

et al., 1991). Exposure within a homogeneous exposure group may vary considerably, enough 

that the exposure–response relationship is impossible to find (Kauppinen, 1996). If more 
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detailed work descriptions had been obtained, the relatively broad job categories presented in 

Article II could have been refined, probably resulting in reduced risk of misclassification. 

The job categories were defined according to the information collected through the 

interviews. When exposure for different job titles was considered indistinguishable due to 

similarities in tasks they were grouped into the same job category, keeping in mind that, in the 

coming epidemiological studies, the specificity will be reduced when unexposed job titles are 

included in broader groups of exposed workers. 

 

 

Exposure to a mix of agents 

Many job categories in this study have been assessed as being exposed to several 

carcinogens (Article IV). For people exposed to a mix of agents, the agent causing the disease 

might not be clear (Stewart et al., 1996). The carcinogen category may also have several 

causative agents (Stewart et al., 1996). The group of chlorinated hydrocarbons in this study 

includes several compounds that might differ in cancer outcome, and workers’ exposure will 

vary according to specific compounds and the intensity of exposure. Thus, results connected 

to this category might be misleading and difficult to interpret. 

 

 

Lack of exposure information for lower-risk carcinogens 

This study includes carcinogens with established risk as well as less well-recognised 

agents. The indications for exposure combinations (Articles II and IV) might not be 

sufficiently refined to reveal any exposure–response association for the carcinogens with 

lower risks and weaker established carcinogenic effect, such as the IARC Group 2B agents. 

Historically, many high-risk carcinogenic agents such as asbestos have been identified. 

Detection of lower-risk carcinogens requires more control of misclassification: valid design, 

reliable methods in exposure assessment and careful control of confounding factors 

(Kauppinen, 1996). Excess risks can be observed for diseases with large relative risk despite 

severe misclassification. The impact of misclassification can be reduced if the exposure 

information is improved for agents with less hazardous impact (Stewart et al., 1996). 

IARC Group 3 carcinogens, however, are included in the study for the important role in 

exposure in the offshore petroleum industry, and the information concerning these agents 

might be used to generate hypotheses. 
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Quantitative estimates of exposure to benzene and mineral oil 

Benzene and mineral oil were among the agents with the highest number of exposed job 

categories. These carcinogens have the best potential for being estimated quantitatively such 

as cumulative exposure for the planned cohort study. The benzene exposure we reported was 

similar to that of other studies (Glass et al., 2000; Health and Safety Executive, 2000b; 

Kirkeleit et al., 2006) and might be used for the relevant job categories to estimate cumulative 

exposure. 

Estimating cumulative exposure to oil mist and oil vapour in the mud-handling areas 

during complete drilling of a well requires taking into account the variation in determinants of 

exposure in this time period. Every well drilled is continuously logged for parameters such as 

type of mud used, mud flow, section of well and mud temperature. A study of representative 

wells will yield a picture of the shifting process conditions associated with different sets of 

determinant values. These sets of determinant values could be used in the exposure models 

described here and serve as a basis for developing cumulative estimates for oil mist and oil 

vapour. 

However, relying on estimates of cumulative exposure might be wrong if peak exposure 

or episodic events are more important for developing cancer than daily average exposure 

(Stewart et al., 1996). 

The other sampling data are relatively fragmentary and should only be taken as indicating 

exposure for specific processes when the contaminant is present. 

 

 

 

5.4 Further research 

 
The results presented here can be used for classifying exposure in the planned cancer 

study of the cohort established. They might also form the basis for further development of 

exposure assessment, such as preparation of job-specific questionnaires for case–control 

studies. In nested case–control studies, more detailed information on companies, platforms 

and installations, job sites, job titles, processes, products and exposure levels can be collected 

through interviews or by reconstructing the work areas and subsequently measuring exposure. 

We validated the assessments by comparing experts’ individual answers with plenary 

assessments. A gold standard was not available, and the extent of misclassification should be 
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studied further by smaller-scale validation studies, ideally in a subgroup of the cohort, as 

Pearce et al. (2006) suggested. In this study, the individual experts highly agreed with the 

panel. The results should be validated further by comparing objective measures such as new 

sampling data on specific work processes, observational studies of work practice or analogous 

studies performed in the offshore petroleum industry in other parts of the world. 

Most occupations are exposed to more than one potential risk factor. Controlling for 

multiple types of exposure when the risk factors are highly correlated is difficult because 

separating their effects might be impossible. Pearce et al. (2006) suggest considering a priori 

the factors most likely to be associated with the health outcome of interest and limiting the 

analysis to the particular subset of relevant agents. 

Seixas & Checkoway (1995) encourage validation of statistical exposure models. In the 

present study (Article I), we suggest to validate data on oil mist and oil vapour in drilling 

areas against new measurement data monitored after May 2004, newly found historical data 

or measurements in other countries. 

Although the literature discusses the possible contribution of hydrocarbons and other 

agents from other sources such as drilling mud additives or drilled cuttings (Gardner, 2003; 

James et al., 2000) we did not consider this here. Further, the potential formation of hazardous 

substances such as polycyclic aromatic hydrocarbons in the drilling mud caused by the effect 

of high pressure and temperature in the wells needs to be investigated. 

Research on these determinants of exposure in drilling areas is scarce, implying that 

further studies are needed on evaluation of technical control measures, the characteristics of 

oil-based mud and process conditions. 

Benzene and mineral oil were among the agents with the highest number of exposed job 

categories. These carcinogens have the best potential for being estimated quantitatively such 

as cumulative exposure for the planned cohort study. 
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6. Study conclusions 
 

To provide exposure information for a planned cohort study on cancer in Norway’s 

offshore petroleum industry, this study identified and described exposure to known and 

suspected carcinogenic agents, mixtures or exposure circumstances for 27 defined job 

categories in 1970–2005 after interviewing key offshore workers and extracting information 

from collected documents (Article II). The following carcinogens were presented: benzene; 

mineral oil – inhalation exposure; mineral oil – skin exposure; crystalline silica; asbestos; 

refractory ceramic fibres; formaldehyde; tetrachloroethylene; trichloroethylene; welding; 

nickel compounds; chromium [VI]; lead; crude oil – skin exposure; diesel engine exhaust; 

dichloromethane; ionising radiation; and occupational exposure as a painter. Monitoring 

reports were obtained on seven agents: benzene, mineral oil mist and vapour, respirable and 

total dust, asbestos fibres, refractory ceramic fibres, formaldehyde and tetrachloroethylene. 

For the planned cohort study, exposure might be quantitatively estimated for benzene and 

mineral oil mist and vapour. The other sampling data are relatively fragmentary and should 

only be taken as indicating exposure for specific processes when the contaminant is present. 

Article I described the historical, personal exposure to airborne hydrocarbon 

contaminants in the form of oil mist and oil vapour in the mud-handling areas of offshore 

drilling facilities operating in Norwegian waters when drilling with oil-based muds. Although 

the exposure to air pollutants declined from 1979 to 2004, some measurements still exceed 

Norway’s occupational exposure limits. 

Linear mixed-effects models were created to identify time trends and significant 

determinants of exposure between 1989 and 2004 when the glass fibre filter and charcoal tube 

sampling method was used. The models showed a declining time trend for both oil mist (6%) 

and oil vapour (8%) (Article I). The type of rig, the mud temperature, technical control 

measures, type of base oil, viscosity of the base oil, work area and season of sampling appear 

to be associated with the exposure levels. Drilling crews on movable drilling rigs experience 

concentrations of oil mist and oil vapour twice those of workers at fixed drilling facilities. The 

concentrations of hydrocarbon air contaminants increase as the mud temperature increases 

and reach high concentrations compared with Norway’s occupational exposure limits, 

especially for oil mist.  
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In Article IV eight experts assessed 1157 (63%) of 1836 exposure combinations of 

carcinogens (n = 17), job categories (n = 27) and time periods (1970–1979, 1980–1989, 

1990–1999 and 2000–2005), resulting in 265 (14%) agreed exposed combinations. 

Chlorinated hydrocarbons, benzene and inhalation of mineral oils had the highest number of 

exposed job categories (n = 14, 9 and 10, respectively). The job categories classified as 

exposed to the highest numbers of carcinogens were the mechanics (n = 10), derrick 

employees (n = 6) and process technicians (n = 5). 

Interrater agreement was evaluated to study the method used for assessing exposure 

when using an expert group (Article III). The overall kappa and single score ICC indicate that 

the raters in this study agree on exposure estimates above the chance level. The interrater 

agreement is higher than that found in comparable studies. The average score ICC indicates 

very reliable mean estimates and implies that more than enough raters were used. The raters 

seemed to have been provided with enough documentation on which to base their estimates, 

but providing limited monitoring data leads to more incongruence among raters. Having real 

exposure data at hand with its inherent variability apparently makes estimating exposure in a 

rigid semiquantitative way more difficult. 

We studied the agreement between the experts’ individual ratings and the subsequent 

panel assessment and found this to be high (Article IV). The assessments of the three 

university experts and the five industry experts did not apparently differ. 
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