
Computer-aided proofs and algorithms in
analysis

Dissertation for the degree of Philosophiae Doctor (PhD)

Ferenc A. Bartha

Department of Mathematics

University of Bergen

Norway

2013

CORE Metadata, citation and similar papers at core.ac.uk

Provided by NORA - Norwegian Open Research Archives

https://core.ac.uk/display/30925322?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Acknowledgements

First of all I would like to thank my main supervisor Warwick Tucker for always being
encouraging and positive with respect to my work and ideas. He gave me the freedom
to work on what I wanted, and at the same time guided me in the right directions. I
have met not just an excellent scientist but a friend in him. I would like to thank my
supervisor Hans Munthe-Kaas who supported me here in Bergen, and at last but not at
least, by inviting me to the MaGIC workshops, he got me on cross-country skis for the
first time in my life.

I would like to thank the other (former and current) members of the CAPA group in
Uppsala and Bergen who have always been helpful to me. I would also like to thank my
other co-authors Tibor Krisztin and Ábel Garab for the excellent work and cooperation,
Piotr Zgliczyński for his help not just in my projects but in other matters.

During my doctoral period I had the opportunity to visit the Department of Math-
ematics at the University of Uppsala numerous times, I thank the former and current
heads of the department in Bergen for making these leaves possible.

I would like to thank Erik, Alexander, Morten, Huiyan, Hilde Kristine, Henning, Ca-
rina, Christian and Dagfinn; and all the students, employees and staff of the department
for making my stay here pleasant.

Finally, I thank my family, my girlfriend, and my friends both in Bergen and at home,
for their love, support, and for being there when I needed.

This dissertation is submitted as a partial fulfillment of the requirements for the Degree of Philosphy (PhD) at the

Faculty of Mathematics and Natural Sciences, University of Bergen, Norway. In the preparation of this thesis I

used the LATEX template by Birkeland and Nepstad.

Financial support of my research has been granted by The Bergen Research Foundation (Bergens forskningsstif-

telse). Project title: “Computer-Aided Proofs in Mathematical Analysis.” Project number: 801458; and by The

Swedish Research Council (Vetenskapsrådet) award 2008-7510 for CAPA - Computer-aided proofs in analysis.

ii Acknowledgements

List of papers

A. Ferenc A. Bartha and Hans Z. Munthe-Kaas,
Computing of B-series by Automatic Differentiation

accepted for publication in Discrete and Continuous Dynamical Systems A – Special issue for the

65’th birthday of Arieh Iserles c© : 2013 Published by AIMS

B. Ferenc A. Bartha, Ábel Garab and Tibor Krisztin,
Local stability implies global stability for the 2-dimensional Ricker map

second revision (minor) submitted to Journal of Difference Equations and Applications

C. Ferenc A. Bartha and Ábel Garab,
Necessary and sufficient condition for the global stability of a delayed discrete-
time single neuron model

before submission

D. Ferenc A. Bartha and Warwick Tucker,
Fixed point of a destabilized Kuramoto-Sivashinsky equation

manuscript

List of papers that are not included in this thesis

E. Ferenc Bogár, Ferenc Bartha, Ferenc A. Bartha and Norman H. March,

Pauli potential from Heilmann-Lieb electron density obtained by summing hydrogenic closed-shell
densities over the entire bound-state spectrum

published in Phys. Rev. A 83, 014502 (2011)

The pre-copy-editing, author-produced manuscripts of Paper A that is accepted for publication, and of Paper B that

is under review process, are included in accordance with the copyright policies of the publishers

- AIMS - Discrete and Continuous Dynamical Systems A,

- Taylor & Francis - Journal of Difference Equations and Applications.

iv List of papers

Abstract

The computational power has increased dramatically since the appearance of the first
computers, making them a vital tool in the analysis of dynamical systems. We present
further applications of those two basic ideas, namely interval arithmetic and automatic
differentiation, that address the question of the reliability of the results and the difficulty
of calculating derivatives.

In general, the result of a numerical calculation will be influenced by errors, since
the set of the numbers represented by the machine is finite. This will inevitably lead
to round-off and truncation errors. This should not be considered as a problem, but
rather as the true nature of numerics. The notorious examples like evaluating 333.75y6+
x2(11x2y2 − y6 − 121y4 − 2)+ 5.5y8 + x/(2y) at (x,y) = (77617,33096) or plotting the
polynomial t6 − 6t5 + 15t4 − 20t3 + 15t2 − 6t + 1 in a small neighborhood of 1, still
result in unexpected outcomes, if one is unaware of the potential risks of the floating
point computations. We mention the failure of a Patriot missile on February 25, 1991
or the explosion of the unmanned space rocket Ariane 5 on June 4, 1996 as practical
examples of these potential risks becoming real.

Therefore in mathematical proofs, where the beauty of the argument is its unques-
tionable truth itself, the usage of computers must be handled with extreme care. One
technique, that is used to overcome these problems and make our computations rigor-
ous, is called interval arithmetic.

To calculate derivatives of a given function is often considered to be a hard problem,
since in general with increasing the order or the dimension, the complexity of the for-
mula of the derivative grows exponentially. The observation, that we do not need these
formulae in general, but only certain values of the derivatives, is crucial to understand
why automatic differentiation is so useful.

The structure of the thesis is as follows. In Part I we give an introduction to the
methods used in our papers. In Chapter 1 we get acquainted with the basic techniques,
interval arithmetic, interval analysis, floating point computations and automatic differ-
entiation. Chapter 2 gives an overview of the interaction between dynamical systems
and different representations of the data. In Chapter 3 we take on the basic concept of
automatic differentiation seen before, and present a method by Griewank et al. [17] to
compute higher order derivatives of multivariate functions that will be used in Paper A.
We go through the theory of graph representations in Chapter 4 by following the steps
of Hohmann and Dellnitz [12] and Galias [15]. This theory may be used in qualitative
analysis of maps. We give two applications in Paper B and Paper C. In addition, we
give the proof of correctness of the algorithm for enclosing non-wandering points in Pa-

vi Abstract

per B. In Chapter 5 we introduce the reader to the method of self-consistent bounds by
Zgliczyński and Mischaikow [44] and Zgliczyński [40, 42, 43] that may be used to an-
alyze a certain class of dissipative partial differential equations. An application of this
concept to a destabilized Kuramoto-Sivashinsky equation is given in Paper D. Chapter 6
gives a short overview of the results of the included papers.

Part II is the main scientific contribution of this thesis, consisting of the formerly
mentioned four papers.

Notations

N - the set of natural numbers 1,2, . . .

N0 - the set of nonnegative integers 0,1,2, . . .

Z - the set of integers

R - the set of real numbers

R
+ - the set of positive real numbers

R
+
0 - the set of nonnegative real numbers

C - the set of complex numbers

‖ · ‖ - the 2-norm on the corresponding space

B(x;r) - the open set {y : ‖x− y‖< r}

viii Notations

Contents

Acknowledgements i

List of papers iii

Abstract v

Notations vii

I Introduction 1

1 Preliminaries 3
1.1 Interval Arithmetic . 3

1.2 Interval Analysis . 5

1.3 Interval Arithmetic and floating-point numbers 6

1.4 Automatic Differentiation . 7

2 Dynamical systems and data structures 9
2.1 Data in finite dimension . 9

2.1.1 Interval Boxes . 9

2.1.2 Lohner-sets . 10

2.2 Data in infinite dimension . 11

2.3 Difference Equations and Maps . 11

2.3.1 Description of the Dynamical System 11

2.3.2 Propagation of enclosures . 13

2.4 Ordinary Differential Equations . 14

2.4.1 Description of the Dynamical System 14

2.4.2 The time-h map . 14

2.4.3 Rigorous time-h map . 15

2.4.4 Propagating doubletons . 16

2.5 Integration of a Differential Inclusion 16

3 Evaluating Multivariate Derivatives 19
3.1 Multi-indices and the seed matrix . 19

3.2 Higher order derivatives of polynomials 20

x CONTENTS

3.3 Higher order derivatives of smooth functions 21
3.4 Interpolating higher order derivatives 22
3.5 The coefficients γ(i, j) . 23

4 Graph representations of maps 25
4.1 Covers and graph representations . 25
4.2 Enclosure algorithms . 27
4.3 Convergence . 29
4.4 Fixed points, periodic orbits . 32
4.5 Inner enclosure of the basin of attraction 33
4.6 Topological transitivity and mixing . 34

5 The method of Self-consistent Bounds for PDEs 37
5.1 The method of Self-Consistent Bounds 37
5.2 Existence, classical and analytic solutions 40
5.3 Time integration . 41

6 Overview of the papers 43

Bibliography 47

II Papers 51

Paper A: Computing of B-series by Automatic Differentiation 53

Paper B: Local stability implies global stability for the 2-dimensional Ricker
map 67

Paper C: Necessary and sufficient condition for global stability 103

Paper D: Fixed point of a destabilized Kuramoto-Sivashinsky equation 127

Part I

Introduction

Chapter 1

Preliminaries

In this chapter we give a short introduction to the basic tools we will use. In order to
achieve rigorous results, we will base our computations on intervals. That results in the
so-called interval arithmetic that we discuss in Section 1.1. We take on this concept
in Section 1.2 and work with interval valued versions of the standard functions, this is
referred to as interval analysis. The endpoints of the intervals discussed here are real
numbers for simplicity. In an implementation we must use floating point numbers, the
round-off errors are controlled through using directed rounding modes of the computer.
We comment on these questions in Section 1.3. In the end, we introduce the concept of
automatic differentiation that we use to obtain higher order derivatives. This is discussed
in Section 1.4.

1.1 Interval Arithmetic

Interval Arithmetic (IA) is the first step towards rigorous computations; we give a basic
introduction here, the reader is referred to Moore [27], Alefeld [1] and Tucker [35, 36]
for further details.

Definition 1.1. The closed and bounded intervals of the real line are denoted by

IR= {x = [x, x̄] : −∞ < x ≤ x̄ < ∞}∪{ /0}.

x (x̄) is the lower (upper) endpoint of the interval x . If x = x̄, then we call it a thin
interval. The natural embedding of R into IR are the thin intervals and is given by

ι : R→ IR, r �→ r = [r,r].

We define the result of an arithmetic operation � on two intervals a and b as the
smallest interval containing all the numbers of the form a� b, where a ∈ a and b ∈ b .
It is easy to see that the set {a� b : a ∈ a,b ∈ b} is always an interval for +,−,× and
if 0 /∈ b , then it is an interval for ÷ as well. We can express the result interval from the

4 Preliminaries

endpoints of the operands as

a +b = [a+b, ā+ b̄],

a −b = [a− b̄, ā−b],

a ×b = [min(ab,ab̄, āb, āb̄),max(ab,ab̄, āb, āb̄)],

a ÷b = a × [1/b̄,1/b].

(1.1)

Definition 1.2. We define the mignitude and magnitude of an interval a ∈ IR as follows

mig(a) = min {|a| : a ∈ a},
mag(a) = max{|a| : a ∈ a}.

The absolute value is defined by

abs(a) = [mig(a),mag(a)].

We introduce the following metric on IR

d(a,b) = max{|a−b|, |ā− b̄|}.
The intervals are sets as well, so we have set theoretical operations and relations

a ∈ b if b ≤ a ≤ b̄; for the thin interval a , we define a ∈ b ⇔ a ∈ b ,
a ⊆ b if b ≤ a and ā ≤ b̄,

a ⊂ b if b < a and ā < b̄,

a ∩b =

{
/0 if ā < b or b̄ < a,
[max(a,b),min(ā, b̄)] otherwise.

The union of two intervals is not necessarily an interval. Since we want IR to be closed
for the operations, we will use the interval hull instead of the union

a �b = [min(a,b),max(ā, b̄)].

The partial ordering ≤ of the intervals is an extension of the standard ordering of R:

a ≤ b if ā ≤ b,
a < b if ā < b.

It is often useful to represent an interval not by the endpoints, but by the midpoint and
the radius

mid(a) =
a+ ā

2
,

rad(a) =
ā−a

2
,

symrad(a) = [−rad(a), rad(a)],

thus
a = mid(a)+ symrad(a) = mid(a)+ rad(a)× [−1,1].

1.2 Interval Analysis 5

1.2 Interval Analysis

We can do arithmetic with intervals, consequently we have rational functions of inter-
vals. We want to extend this and handle the standard functions of intervals as well. It
turns out that two properties – range inclusion and inclusion isotonicity – will charac-
terize the good interval functions. More details may be found, again, in Moore [27],
Alefeld [1] and Tucker [35, 36].

Definition 1.3. We say that the function F : DF ⊆ IR→ IR is an interval extension of
the real function f : R→ R if it satisfies for all x ∈DF that

{ f (x) : x ∈ x} ⊆ F(x) (range inclusion),

y ⊆ z ⊆ x ⇒ F(y)⊆ F(z) (inclusion isotonicity).

Remark 1.4. If F is an interval extension of f , then so is x �→ F(x)+x −x .

Example 1.5. Some interval extensions:

xn =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
[(x)n,(x̄)n] if n ∈ Z

+ is odd,
[mig(x)n,mag(x)n] if n ∈ Z

+ is even,
[1,1] if n = 0,

[1/x̄,1/x]n if n ∈ Z
− and 0 /∈ x,

ex = [ex,ex̄].

Having interval extensions for the standard functions – arithmetic operations,
trigonometric functions, exponential, logarithmic functions, power function – we may
obtain interval extensions for finite combination of these – the so-called elementary
functions – simply by replacing every occurrence of the variable x with x . The obtained
interval valued function is called the natural extension, it is easy to show that it satisfies
the two required properties. As multiple interval extensions exist for a given function, it
is important to take care which one we choose. Obviously, we want the inclusion to be
as tight as possible. As a rule of thumb, we should go with that natural extension of f
(obtained from the formula for f) which has the minimal number of appearances of the
variable x.

Example 1.6. [−1,1]2 = [0,1], while [−1,1]× [−1,1] = [−1,1].

The reason for this phenomenon is that Interval Analysis is unable to distinguish be-
tween the operands and in fact, it handles every appearance of the same variable as an
independent one. This is called the dependency problem. If f is differentiable and we
have the interval extension F ′ of f ′, then using the mean value theorem we obtain

f (x)⊆ f (mid(x))+F ′(x)× rad(x) [−1,1]. (1.2)

We emphasize that f (mid(x)) is a point value. Formula (1.2) may result in a tighter
enclosure than just using the natural extension F(x).

6 Preliminaries

Remark 1.7. Naturally, we may consider higher order Taylor expansions of the function
f – usually centered at the midpoint of the interval x – and use Taylor’s theorem to
enclose the range of the function by calculating the Taylor coefficients and enclosing the
remainder.

Remark 1.8. It is straightforward to generalize these ideas to R
n and thus obtain the set of

n-dimensional interval boxes denoted by IR
n. The same concept, as we have presented

above, is used to obtain interval extensions of functions of the form f : Rn → R
m.

There are several freely available interval software. We list some, without attempting
to be comprehensive: the C++ libraries CAPD [10], Filib++ [22]; and INTLAB [32], the
interval toolbox for MATLAB.

1.3 Interval Arithmetic and floating-point numbers

A modern computer uses floating-point numbers in general. When evaluating an opera-
tion, the result is rounded to a certain floating-point number represented in the computer,
also called representable number or machine number. The set of these numbers is de-
noted by F. The rounding is described by the rounding mode, we list the most common
ones in Table 1.1.

Table 1.1: The standard rounding modes

Rounding mode Notation

Round to Zero ©
Round Up �
Round Down �
Round to Nearest �n

By default, the computations are carried out using �n. In order to calculate rigorously,
we shall keep switching between Round Up and Round Down. We have shown several
formulae in (1.1) that calculate the endpoints of the result of an operation. In an actual
implementation, we shall evaluate the lower endpoint using � and the upper endpoint
using �.

We use intervals with floating point endpoints in practice. The set of these intervals
is denoted by IF. As we have said before, the arithmetic is the same as for IR, but using
directed rounding modes:

a +b = [�(a+b),�(ā+ b̄)],

a −b = [�(a− b̄),�(ā−b)],

a ×b = [�(min(ab,ab̄, āb, āb̄)),�(max(ab,ab̄, āb, āb̄))],

a ÷b = a × [�(1/b̄),�(1/b)].

The difference between real interval arithmetic and floating-point interval arithmetic,
while being very important, is only a technical issue in our setting. We shall design our

1.4 Automatic Differentiation 7

algorithms to work with IR, assuming that they are represented by IF and the operations
are implemented using proper rounding modes by the interval software. The calculations
on the computer, carried out in this manner, are called rigorous calculations. We refer
to Tucker [36] for further reading.

1.4 Automatic Differentiation

The possibility of tighter inclusions or the numerical methods for differential equations
– that are usually based on Taylor expansions – undoubtedly serve as a motivation to
obtain derivatives of a function. It is well known that the complexity of the formulae
for the derivatives of a function f may increase exponentially, making it practically im-
possible to calculate (and store) them. Automatic Differentiation (AD) is an extremely
handy concept for calculating the value of a derivative at a point and not the formula it-
self. From a practical point of view, we usually evaluate the formulae at certain points
only, so we might as well obtain those values instead. The theory of AD distinguishes
between the so-called Forward Automatic Differentiation and Backward Automatic Dif-
ferentiation. In the forward mode we propagate tangents, while in the backward mode
we propagate gradients. The book of Griewank [16] discusses these topics in detail. In
addition, we refer to Moore [27] and Tucker [36].

As an example of the forward mode, consider the differentiable function f : R→ R,
x �→ f (x). The goal is to evaluate the derivative f ′(x) at several points. We will represent
every quantity during the calculation with a vector (q,q′), where q stands for the value
of f and q′ for the value of the derivative f ′. This implies representing the variable x at
x0 with (x0,1) and any constant c with (c,0). Consider the following arithmetic rules for
vectors of this kind:

(a,a′)± (b,b′) = (a±b,a′ ±b′),
(a,a′)× (b,b′) = (ab,a′b+ab′),

(a,a′)÷ (b,b′) = (a/b,(a′b−ab′)/b2).

(1.3)

Assume that f is a rational function and pick a point x0. Replace every constant and
every variable x in the formula for f with the vectors given above. If we evaluate this
expression following the rules (1.3), it is apparent that we obtain f (x0) in the first com-
ponent and in addition, we will automatically have f ′(x0) in the second. One may derive
the appropriate rules for the standard functions and thus obtain the potential to calculate
the derivative of any elementary function at a given point x0.

Similar rules can be given for the second and higher order derivatives (resulting in
a computation with higher dimensional vectors), but it gets rather tedious to write and
implement them. This is the time to get greedy and aim for derivatives of arbitrary high
order. Usually we encounter these quantities scaled, in the form of Taylor coefficients. It
turns out that the rules for propagating these coefficients are rather nice and simple. Let
(a)k and (b)k denote the k-th Taylor coefficient of a and b with respect to the variable x.

8 Preliminaries

The rules for arithmetic operations are the following:

(a±b)k = (a)k ± (b)k,

(a×b)k =
k

∑
i=0

(a)i(b)k−i,

(a÷b)k =
1

(b)0

(
(a)k −

k−1

∑
i=0

(a÷b)i(b)k−i

)
if (b)0 �= 0.

With some effort, one can derive similar rules for evaluating the standard functions, we
include these for exp, sin and cos as an example:

(ea)k =

⎧⎪⎨
⎪⎩

e(a)0 if k = 0,

1
k

k−1

∑
i=1

i(a)i(ea)k−i if k > 0,

(sina)k =

⎧⎪⎨
⎪⎩

sin(a)0 if k = 0,

1
k

k

∑
i=1

i(a)i(cosa)k−i if k > 0,

(cosa)k =

⎧⎪⎨
⎪⎩

cos(a)0 if k = 0,

−1
k

k

∑
i=1

i(a)i(sina)k−i if k > 0.

Note that in the implementation of an AD software, the trigonometric functions sin and
cos must be computed in parallel.

The previously mentioned C++ library CAPD [10] has built in Automatic Differentia-
tion capabilities as well. We recommend the FADBAD++ [3] library developed by Bendtsen
and Stauning for more general purposes.

Chapter 2

Dynamical systems and data structures

In this chapter, we study Difference Equations (DE), Ordinary Differential Equations
(ODE) and Differential Inclusions (DI). We adopt the concept that a Dynamical System
(DynSys) acts on a data that is represented in the form of a Dynamical Set (DynSet).

Thus, we start with studying different representations for the data. As we are work-
ing with rigorous numerics, it is ultimately given by a finite collection of intervals. We
discuss the representation of finite data in Section 2.1. In order to fight the wrapping-
effect, we favor the so-called Lohner-sets (see Lohner [24]), an overview of this concept
is given in Section 2.1.2. Another widely used technique is the so-called Taylor-models
that we will not discuss here, the reader is referred to Berz and Makino [26]. We com-
ment on representing infinite dimensional data in Section 2.2.

In Section 2.3 we analyze how a map acts on the represented data. The continuous
nature of an ODE is captured in the computer by using a certain timestep h and the
corresponding time-h map of the flow. We discuss in Section 2.4 how to place this into
the framework presented so far. Finally, we include a brief overview of the results for DIs
by Zgliczyński and Kapela [21] in Section 2.5. Similar theories have been established
for other type of dynamical systems such as Partial Differential Equations (PDE) and
Delay Differential Equations (DDE) as well. We shall give a short introduction to the
method of self-consistent bounds by Zgliczyński for dissipative PDEs in Chapter 5.

2.1 Data in finite dimension

2.1.1 Interval Boxes

Interval boxes are the higher dimensional analogues for intervals. X b ∈ IR
n is an interval

box enclosure of the set X ∈ R
n if Xi ⊆ (X b)i for every coordinate i = 1, . . . ,n. They

might be suitable in special cases, but in general they result in huge overestimation, due
to the so-called wrapping effect. The following example demonstrates this phenomenon.

Consider a 2-dimensional interval box and the map ρ , a rotation by π
4 in the plane.

After each rotation, the image of our set is enclosed in a box, therefore the area doubles
at least. This will lead to a blow-up eventually, even though ρ is volume-preserving.
The situation is depicted on Figure 2.1.

10 Dynamical systems and data structures

Figure 2.1: Rotation by π
4 on the plane.

It is vital to observe that the phenomenon is a consequence of the representation of the
set itself and not the way we evaluate ρ .

2.1.2 Lohner-sets

We may store our data as an interval box, together with a local coordinate system. Nu-
merous articles have been published on this topic, we refer to Lohner [24], Nedialkov et
al. [29], Mrozek and Zgliczyński [28], Zgliczyński and Wilczak [38] and Zgliczyński
[41].

One natural way to represent the set A ∈ R
n in such way is a parallelepiped. That is

X ⊆ X p = m+C · r,

where the vector m ∈ R
n represents the center of the set X , C ∈ IR

n×n and r ∈ IR
n.

Consider now our previous example about ρ , the rotation by π
4 , and the data represented

as a parallelepiped X p = m+C × r ⊆ R
2. It is easily shown that

ρ(X p) = ρ(m)+

((
cos π

4 sin π
4

− sin π
4 cos π

4

)
C

)
· r,

is an enclosure of ρ(X).
As a slight modification, we may require that the matrix C is in fact a thin, or-

thogonal matrix Q ∈ R
n×n; the resulting structure is called a cuboid. One may use the

QR-decomposition, in order to obtain such structure.

Finally, we present the doubleton

X d = m+C · r0 + r,

that turns out to be a rather good representation to use in many applications. The product
C · r0 is referred to as the linear part, with C ∈ R

n×n and r0 ∈ IR
n. The role of the last

term, the error part r , is to incorporate what remains after a computation. The set r is
represented as another standard enclosure, for example an interval vector in IR

n or the
product of an orthogonal matrix and an interval vector.

2.2 Data in infinite dimension 11

Remark 2.1. In a rigorous implementation, we do not use real or more precisely floating-
point values, but thin intervals representing these quantities. The way of dealing with
these changes is of rather technical nature and is not discussed here. The general idea
behind the representations is apparent using real values as well.

When solving ODEs, we might be interested in propagating and storing higher order
derivatives as we integrate the equations. Thus, the data will represent not only the
value (C0 information), but the Taylor-coefficients – or derivatives – up to order n. The
generalized version of doubletons is called Cn-set. For further details, see Zgliczyński
and Wilczak [38] and Zgliczyński [41].

2.2 Data in infinite dimension

In this Section we assume that our data is given as the infinite series (xk)
∞
k=0, where

xk ∈ R for all k ∈ N0. As an example think of the coefficients of a power- or Fourier
series. Let M ∈ N and assume that there exists an interval valued function FM : N→ IR

such that FM may be described by a finite number of parameters p1, . . . pn; moreover
xk ∈ FM(k) is satisfied for k ≥ M + 1. If X is an enclosure of {x1}× . . .×{xM}, then
we obtain the finite representation {X , p1, . . . , pn} for an enclosure of (xk)

∞
k=0. The first

M elements of the series are referred to as the finite part or main part, the remaining
elements form the tail.

As an example, assume that X b ∈ IR
n is an interval box enclosure of the vector

X = (x1, . . . ,xM) ∈ R
n and xk ∈ FM(k) = C

ks [−1,1] is satisfied for all k ≥ M + 1, with
the real parameters C > 0 and s ∈ R. Based on {X b,C,s}, we are able to enclose each
element of the series. We will encounter such objects in the method of self-consistent
bounds, discussed in Chapter 5.

2.3 Difference Equations and Maps

2.3.1 Description of the Dynamical System

Consider the map
xk+1 = f (xk), k = 0,1, . . . (2.1)

where f : D f ⊆ R
n → R

n is a continuous function. Equation (2.1) is also referred to as

a Difference Equation (DE) or a discrete equation. Let f−1(x) = {y ∈D f : f (y) = x},

for x ∈R
n. For k ∈N0, f k denotes the k-fold composition of f , i.e., f k+1(x) = f (f k(x)),

and f 0(x) = x.

Definition 2.2. The forward orbit of the point x is

Γ+(x) := { f k(x) : k ∈ N}.
The backward orbit is

Γ−(x) := {y : ∃k ∈ N : f k(y) = x},
their union is the orbit of x, denoted by Γ(x).

12 Dynamical systems and data structures

Definition 2.3. The point x∗ ∈D f is called a fixed point of f if f (x∗) = x∗. The point
q ∈D f is a periodic point of f with minimal period m if f m(q) = q and for all 0 < k <

m : f k(q) �= q; q ∈D f is eventually periodic if it is not periodic, but there is a k0 such

that f k0(q) is periodic.

Besides fixed points and periodic orbits, we are interested in the following objects:

Definition 2.4. The set A ⊆D f is said to be forward invariant under f if

A = f (A),

backward invariant if

A = f−1(A) and ∀x ∈ A : f−1(x) �= /0,

invariant if it is both backward and forward invariant. An invariant set A is called at-
tracting set if there exists an open neighbourhood U⊆D f of A such that

(∀ open neighbourhood V ⊇ A) (∃M = M(V) ∈ N) such that ∀m ≥ M : f m(U)⊆V.

This neighbourhood U is called a fundamental neighbourhood of A. The basin of at-
traction of A is ∪k∈N0

f−k(U). If A is compact, invariant and has the whole domain
D f as a basin of attraction, then we call it the global attractor. The point q ∈ D f is a
non-wandering point of (2.1), if for every neighbourhood U of q and for all M ≥ 0, there
exists an integer m ≥ M such that f m(U ∩D f)∩U ∩D f �= /0.

Remark 2.5. For a more throughout introduction to maps, see Devaney [14].

We often restrict our analysis to a compact subset of the space, especially in the case of
computer-aided proofs. We shall utilize the concept of relative objects from Hohmann,
Dellnitz [12] and Galias [15]. In the following, let K be a compact subset of D f .

Definition 2.6. The invariant part of K is the largest invariant set contained in K, and is
denoted by Inv(f ;K). The non-wandering part of K is the subset of Inv(f ;K), formed
by the non-wandering points

NonW(f ;K) = {x ∈ Inv(f ;K) : x is non-wandering}.

Let A be the global attractor of (2.1). The global attractor relative to K is

AK = {x ∈A : f−k(x)∩K �= /0, for all k ≥ 0}.

The set of fixed points and periodic orbits in K are denoted by Fix(f ;K) and Per(f ;K),
respectively. In addition, Per≤m (f ;K) denotes the set of periodic points in K with a
period not larger than m.

Remark 2.7. It is obvious from the definition that AK ⊆A and AK is backward invariant.
AK is compact if f has a continuous inverse, since A is compact. However, AK is not
necessary invariant.

2.3 Difference Equations and Maps 13

It is not always true that AK = A∩K. See Figure 2.2, the periodic orbit x → y → z →
v → x and the fixed point q are parts of the global attractor A, but no points from the
periodic orbit will be part of AK , even though y,z ∈ K.

Figure 2.2: Global attractor relative to K.

2.3.2 Propagation of enclosures

Let X be a finite dimensional enclosure of the set X ⊂R
n and F : IRn → IR

n an interval
extension of the function f . We will enclose f (X) with taking into consideration the
representation of X and the smoothness of f . Since F is an interval extension, we have

f (X)⊆ F(X b).

Assume that f is a differentiable function and an interval extension of D f is given by
DF : IRn → IR

n×n. As we have seen in (1.2), we may use the mean value theorem to
show that

f (X)⊆ f (mid(X b))+DF(X b) · symrad(X b).

Using this, we obtain the enclosure formulae for parallelepiped and doubleton represen-
tations as follows.

1. For the parallelepiped representation X p = m+C · r , it holds that

f (X)⊆ f (m)+C ′ · r,

with C ′ = DF(X p) ·C .

2. Having the doubleton representation X d = m+C · r0 + r , we obtain

f (X)⊆ f (m)+C′ · r0 + r ′,

where C′ = mid(DF(X p) ·C); and r ′ is such that the result gives an enclosure.

Remark 2.8. The error part in a doubleton is, in principle, supposed to be smaller than
the linear part. If it becomes too large, it is advised to rearrange the representation based
on a particular reorganization policy. The reader is referred to the article by Mrozek and
Zgliczyński [28].

14 Dynamical systems and data structures

2.4 Ordinary Differential Equations

2.4.1 Description of the Dynamical System

We shall not discuss the standard terminology here, as we did for maps in Section 2.3,
since we shall work with the time-h map of an Ordinary Differential Equation (ODE) in
practice. For an introduction to the theory of ODEs, the reader is referred to Arnold [2],
Hirsch, Smale and Devaney [19] or Boyce and DiPrima [7].

Let f : Rn → R
n and consider the autonomous ODE

y′(t) = f (y(t)). (2.2)

If we couple equation (2.2) with the initial condition y(t0) = y0 ∈ R
n, we obtain{

y′(t) = f (y(t)),
y(t0) = y0,

(2.3)

an Initial Value Problem (IVP). As we know, if f is Lipschitz-continuous, then there
exists a unique solution locally for all initial conditions. We denote the solution of (2.3)
by yy0;t0(t). The function yy0;t0 is defined in a neighbourhood of t0, satisfies yy0;t0(t0) = y0

and y′y0;t0(t) = f (yy0;t0(t)).

2.4.2 The time-h map

For a given h > 0, we consider the time-h map ϕh corresponding to the ODE (2.2):

ϕh : (y0, t0) �→ (yy0;t0(h), t0 +h) = (yh, th).

The question is how to obtain the first component yh – we shall do this using the Taylor
method that is based on computing the Taylor expansion of the solution at time t0. Using
the notation from Section 1.4 and assuming that f is an analytic function gives us

yh =
∞

∑
i=0

(yy0;t0(t0))i hi.

We can list the first two Taylor coefficients of the solution at once

(yy0;t0(t0))0 = y0,

(yy0;t0(t0))1 = f (y0).

In order to obtain them up to an arbitrary order, we utilize that

1

(k+1)!

dk+1

dtk+1
yy0;t0(t)

∣∣∣∣
t=t0

=
1

k+1

(
1

k!

dk

dtk f (yy0;t0(t))
)∣∣∣∣

t=t0

,

therefore

(yy0;t0(t0))k+1 =
1

k+1
(f (yy0;t0(t0)))k.

2.4 Ordinary Differential Equations 15

Notice that in order to obtain the k-th Taylor coefficient of f (yy0;t0(t)), we need to know
the Taylor coefficients of order 0, . . . ,k of yy0;t0(t). Thus, in theory, we can calculate
(yy0;t0(t0))k up to an arbitrary order using a recursive procedure. With automatic dif-
ferentiation, this becomes possible in practice as well. The procedure may be highly
optimized by building a Directed Acyclic Graph (DAG) that represents the evaluation of
the function f . The vertices of the graph may be repeatedly filled up with the higher and
higher order Taylor coefficients of the (intermediate) quantities that they represent in the
evaluation of f . The reader is referred for a throughout analysis to Griewank [16] and
for an actual implementation to Bendtsen and Stauning [3].

2.4.3 Rigorous time-h map

Let h > 0 and assume that the (2.3) has a unique solution that exists for t ∈ [t0, t0 + h].
We obtain an enclosure – by using interval analysis – of the time-h map centered at
y0, by truncating the Taylor expansion at a given N ∈ N and adding the remainder to the
polynomial enclosure. Let φ N

h be an interval extension of this truncated Taylor expansion

N

∑
i=0

(yy0;t0(t0))i hi ∈ φ N
h (y0, t0). (2.4)

The remainder (yy0;t0(ξ))N+1 hN+1 contains an unknown ξ ∈ [0,h]. Thus, enclosing it
using intervals is straightforward:

(yy0;t0(ξ))N+1 hN+1 ∈ Remh;N+1 (y0, t0) = (yy0;t0([0,h]))N+1 hN+1. (2.5)

Formulae (2.4) and (2.5) result in the following enclosure of the time-h map:

yh ∈ φ N
h (y0, t0)+Remh;N+1 (y0, t0) . (2.6)

Observe that in order to compute (2.6), we need to establish that the solution does exist
and give an enclosure in advance for yy0;t0(t) on [t0, t0 +h] as well, since it is used when
we evaluate the remainder. This is called the a-priori enclosure of the solution and is
obtained by finding – through an iterative procedure – an interval box Y containing y0

such that
y0 +F(Y)h ⊂ int(Y) .

If we do not succeed in finding such box, then we abort the evaluation with an error
message or try to decrease the timestep h. For further details, the reader is referred to
Moore [27], Lohner [24] and Tucker [36].

Remark 2.9. Note that if we replace h by the interval [0,h] in formulae (2.4) and (2.6),
then we obtain a set that is an enclosure of the trajectory for t ∈ [t0, t0 +h]. This means
that for all t ∈ [0,h] the inclusion

yt ∈
N

∑
i=0

(yy0;t0(t0))i [0,h]i +(yy0;t0([0,h]))N+1 [0,h]N+1

is satisfied.

16 Dynamical systems and data structures

2.4.4 Propagating doubletons

If the data is represented as a doubleton, we need the rigorous Jacobi matrix Jacyφ N
h (y0, t0)

of φ N
h (y0, t) at t = t0. By using automatic differentiation in the space variable as well, this

may computed together with φ N
h (y0, t0). The value yh is then contained in the doubleton

yh ∈ ϕN
h (m, t0)+C′ · r0 + r ′,

where C′ = mid(Jacyφ N
h (y0, t0) ·C), and r ′ is such that the result gives an enclosure.

2.5 Integration of a Differential Inclusion

Consider the perturbed ordinary differential equation{
x′(t) = f (x(t),y(t)),
x(0) = x0,

(2.7)

where x0 ∈ R
n, the function f : Rn ×R

m → R
n is continuously differentiable and the

perturbation is given by y : R→ R
m. Equations of type (2.7) arise in various problems

such as in control theory or in the rigorous integration of dissipative PDEs. The follow-
ing Theorem by Zgliczyński and Kapela [21] describes how to obtain a rigorous solution
for (2.7). For the proof and a through introduction, see the paper referred above.

Theorem 2.10. Assume that t0, h ∈ R and h > 0. Let f : Rn1 ×R
n2 → R

n1 be a con-
tinuously differentiable function. For a fixed yc ∈ R

n2 and a bounded and continuous
function y : [t0, t0 +h]→ R

n2 consider

x′(t) = f (x(t),yc), x(t0) = x0, (2.8)

x′(t) = f (x(t),yc)+(f (x(t),y(t))− f (x(t),yc)), x(t0) = x0. (2.9)

Let x1,x2 : [t0, t0+h]→R
n1 be solutions of (2.8) and (2.9), respectively. We assume that

- Wy ⊂ R
n2 is a convex set such that y([t0, t0 +h])⊂Wy,

- W1 ⊂W2 ⊂ R
n1 are convex and compact sets such that for s ∈ [t0, t0 +h] the inclu-

sions x1(s) ∈W1 and x2(s) ∈W2 are satisfied.

Then for t ∈ [t0, t0 +h] the inequality (the subscript i denotes the i-th component)

|x1,i(t)− x2,i(t)| ≤
(∫ t

t0
eJ(t−s)Cds

)
i
, i = 1, . . . ,n1 (2.10)

holds, provided that C ∈ R
n1 and J ∈ R

n1×n1 satisfy the conditions

Ci ≥ sup{| fi(x,yc)− fi(x,y)|,x ∈W1,y ∈Wy}, i = 1, . . . ,n1, (2.11)

Ji j ≥

⎧⎨
⎩

sup ∂ fi
∂x j

(W2,Wy) if i = j,

sup
∣∣∣ ∂ fi

∂x j
(W2,Wy)

∣∣∣ if i �= j.
(2.12)

2.5 Integration of a Differential Inclusion 17

Remark 2.11. The sets W1, W2 and Wy are called a-priori enclosures. They are rough,
but rigorous estimates that we have to obtain in advance. This is a similar situation to
the one we have seen in the previous Section for integrating ODEs. As a matter of fact,
W1 is an a-priori enclosure for the ODE (2.8) in the sense of the discussion therein.

Assume now that we obtained these rough enclosures. We get the solution x1(t)
by rigorously integrating the corresponding ODE. Evaluating (2.11) and (2.12) using
rigorous computations, we immediately obtain good candidates for Ci and Ji j, thus we
may give an enclosure for x2(t) using (2.10).

18 Dynamical systems and data structures

Chapter 3

Evaluating Multivariate Derivatives

Let f : Rn → R be a sufficiently smooth function such that all appearing derivatives
exist and are continuous. Our goal in this Chapter is to evaluate certain higher order
derivatives of f . For this purpose, one may use higher order automatic differentiation
techniques for multivariate functions, the reader is referred to Berz [4] and Danis [11].
We shall present here a different approach by Griewank, Utke and Walther [17] and
Griewank [16]. We will rely on the techniques mentioned in the short introduction
to AD in Section 1.4. We obtain the sought values by interpolating from univariate,
directional Taylor coefficients. We have used the formulae presented in this Chapter in
Paper A in order to give a feasible way to compute elementary differentials and B-series
(see Butcher [8] and Hairer [18]).

First we introduce the notations for multi-indices and the seed matrix in Section 3.1.
Using these, we derive a closed formula for higher order derivatives of polynomials in
Section 3.2. We take on this and in Section 3.3, we obtain an expression for higher
order derivatives of smooth functions by interpolating from certain univariate Taylor
coefficients. In Section 3.4, we derive our final formula for interpolation. The number
of nonvanishing coefficients in this expression is discussed in Section 3.5.

3.1 Multi-indices and the seed matrix

Fix the integer p≥ 1 for the time being. We shall not denote explicitly that the dimension
of a quantity is dependent on p, it is rather straightforward to use the formulae with
different p-s later on.

Let i = (i1, . . . , ip) ∈ N
p
0 be a multi-index with the norm |i| defined as |i| = ∑p

r=1 ir.
The multi-indices i and j satisfy j ≤ i if the relation is satisfied componentwise. Conse-
quently, j < i is true if j ≤ i and j �= i stand. We denote by 0 and 1 the multi-indices that
contain only zeros or ones, respectively. Naturally, a multi-index is a real vector in R

p

as well, therefore we may use them in the standard algebraic operations.
Let sr ∈ R

n be a real vector for all r = 1, . . . , p. The S ∈ R
n×p matrix that has the

column vectors sj,

S =
[

s1; . . . ;sp
]

is called the seed matrix.

20 Evaluating Multivariate Derivatives

Our goal is to evaluate ∇d
S f (x), the d-th derivative tensor of f (x+Sz) with respect

to z at z = 0. This means that we have to obtain partial derivatives of the form

fi(x) =
∂ |i| f (x+ z1s1 + . . .+ zpsp)

∂ zi1
1 . . .∂ zip

p

∣∣∣∣∣
z=0

, (3.1)

where i ∈ N
p
0 is a multi-index with 1 ≤ |i| ≤ d.

3.2 Higher order derivatives of polynomials

Proposition 3.1. Let P be a polynomial of degree p or less, S ∈R
n×p a seed matrix and

z ∈ R
p a vector. It holds that

∂ pP(Sz)
∂ z1 . . .∂ zp

=
1

∑
i1=0

. . .
1

∑
ip=0

P(i1s1 + . . .+ ipsp)(−1)p−(i1+...+ip) = ∑
0≤i≤1

P(Si)(−1)p−|i|.

(3.2)

Proof. Since the left hand side is a constant, integrating it over the p-dimensional unit
cube doesn’t change its value, thus

∂ pP(Sz)
∂ z1 . . .∂ zp

=
∫ 1

0
. . .

∫ 1

0

∂ pP(Sz)
∂ z1 . . .∂ zp

dz1 . . .dzp.

By integrating with respect to zp, we obtain

∫ 1

0
. . .

∫ 1

0

∂ pP(Sz)
∂ z1 . . .∂ zp

dz1 . . .dzp =

∫ 1

0
. . .

∫ 1

0

∂ p−1P(s1z1 + . . .+ sp−1zp−1 +1 · sp)

∂ z1 . . .∂ zp−1
−

∂ p−1P(s1z1 + . . .+ sp−1zp−1 +0 · sp)

∂ z1 . . .∂ zp−1
dz1 . . .dzp−1.

As we continue to integrate the expression with respect to the other variables, we arrive
to the form on the right hand side of (3.2).

Remark 3.2. Observe that (3.2) implies that in order to obtain the mixed derivative with
respect to every zi, we only need to know the values of the polynomial at the corners of
the parallelepiped {Sz : 0 ≤ zi ≤ 1}.

Now let us consider multiple derivations with respect to each zi. More precisely,
given a multi-index i, we differentiate ir times with respect to zr for r = 1, . . . , p. The
analogue of (3.2) for a polynomial P of degree at most |i| is

∂ |i|P(Sz)

∂ zi1
1 . . .∂ zip

p

=
i1
∑

k1=0

. . .
ip

∑
kp=0

(
i1
k1

)
. . .

(
ip
kp

)
(−1)|i−k|P(Sk). (3.3)

3.3 Higher order derivatives of smooth functions 21

Substituting the binomial coefficient notation for multi-indices(
i
k

)
=

(
i1
k1

)
. . .

(
ip
kp

)
,

into (3.3), we obtain the following Lemma.

Lemma 3.3. Let S ∈R
n×p be a seed matrix, i ∈N

p
0 a multi-index and P a polynomial of

degree at most |i|. It holds that

∂ |i|P(Sz)
∂ zi1

1 . . .∂ zin
p
= ∑

0≤k≤i

(
i
k

)
(−1)|i−k|P(Sk).

3.3 Higher order derivatives of smooth functions

Let Fk(x;v) denote the k-th Taylor coefficient of the univariate function

fx;v : R→ R, t �→ f (x+ tv)

at t = 0 for the vectors x,v ∈ R
n. The Taylor expansion for fx;v is given by

fx;v(t) = f (x+ tv) = F0(x;v)+F1(x;v)t + . . .+Fk(x;v)tk + . . . ,

up to an order determined by the smoothness of f . By considering x as a constant and v
as a variable, the function

v �→ Fk(x;v) =
1

k!

dk

dtk f (x+ tv)
∣∣∣∣
t=0

is a polynomial of degree k for k ∈ N0. Moreover, this polynomial is homogeneous,
since Fk(x;rv) = rkFk(x;v) for r ∈ R and k ∈ N.

Let i ∈ N
p
0 be a multi-index, S ∈ R

n×p a seed matrix and let v = Sz, where now we
consider z ∈ R

p as the variable vector. In the Taylor expansion for fx;v of order |i|

f (x+Sz) = fx;v(1) =
k=|i|
∑
k=0

Fk(x;Sz)+Rem1;|i|+1 (fx;v,0) ,

the remainder is an infinite polynomial of z consisting of monomials of degree at least
|i|+1. Therefore

∂ |i| f (x+Sz)

∂ zi1
1 . . .∂ zip

p

∣∣∣∣∣
z=0

=
∂ |i|F|i|(x;Sz)

∂ zi1
1 . . .∂ zip

p

. (3.4)

Using Lemma 3.3, the homogeneity property and (3.4), we obtain the following.

Lemma 3.4. Let i ∈ N
p
0 be a multi-index, S ∈ R

n×p a seed matrix and let x ∈ R
n.

∂ |i| f (x+Sz)

∂ zi1
1 . . .∂ zip

p

∣∣∣∣∣
z=0

= ∑
0<k≤i

(
i
k

)
(−1)|i−k|F|i|(x;Sk).

22 Evaluating Multivariate Derivatives

3.4 Interpolating higher order derivatives

Lemma 3.4 provides a procedure to calculate fi(x) (recall the notation from (3.1))
through interpolation from univariate Taylor coefficients. Our goal in this Section is
to find the same value by using univariate Taylor coefficients in directions obtained as
Sj, where |j|= d. In order to achieve this, we have to analyze the term F|i|(x;Sk) on the
right hand side of Lemma 3.4.

Let k be a multi-index satisfying 0 < k ≤ i and m ∈ N. Using the homogeneity of
Fm, we get

Fm(x;Sk) =
(|k|

d

)m

Fm

(
x;S

(
d
|k|k

))
. (3.5)

Note that the vector z′ = d
|k|k ∈ R

p satisfies z′1 + . . .+ z′p = d.

Let us recall that Fm(x;Sz) is a polynomial of degree m in v = Sz, therefore it is

a polynomial of degree m in z as well. Note that

(
z
j

)
Fm(x;Sj) is a polynomial of

degree |j| in z. If we assume that z ∈ N
p
0 is a multi-index such that |z| = |j|, then the

expression

(
z
j

)
Fm(x;Sj) is nonzero if and only if z = j and in that case we obtain(

j
j

)
Fm(x;Sj) = Fm(x;Sj). These considerations lead to the formula

Fm(x;Sz) = ∑
|j|=d

(
z
j

)
Fm(x;Sj), (3.6)

where z ∈ R
p is an arbitrary real vector satisfying z1 + . . .+ zp = d and m ≤ d. To see

that (3.6) holds, note that both sides are polynomial in z and equality is satisfied if z = j
for all multi-indices |j|= d. As a consequence of (3.5) and (3.6), we obtain

F|i|(x;Sk) = ∑
|j|=d

(|k|
d

)|i|(dk/|k|
j

)
F|i| (x;Sj) , (3.7)

for all multi-indices k satisfying 0 < k ≤ i and 1 ≤ |i| ≤ d.
We define the quantities γ(i, j), where i ∈N

p
0 and j ∈N

p
0 are multi-indices, as follows

γ(i, j) = ∑
0<k≤i

(−1)|i−k|
(

i
k

)(|k|
|j|

)|i|(|j|k/|k|
j

)
. (3.8)

Lemma 3.4 together with (3.7) and (3.8) gives us the following Theorem.

Theorem 3.5. Fix d ∈N. Let f : Rn →R be at least d-times continuously differentiable
function at the point x ∈ R

n and S ∈ R
n×p be a seed matrix. Then for all multi-indices

i ∈N
p
0 with 1 ≤ |i| ≤ d, the partial derivative fi(x) =

∂ |i| f (x+z1s1+...+zpsp)

∂ z
i1
1 ...∂ z

ip
p

∣∣∣∣
z=0

is given by

∂ |i| f (x+ z1s1 + . . .+ zpsp)

∂ zi1
1 . . .∂ zip

p

∣∣∣∣∣
z=0

= ∑
|j|=d

γ(i, j)F|i|(x;Sj). (3.9)

3.5 The coefficients γ(i, j) 23

3.5 The coefficients γ(i, j)

It is also shown in Griewank, Utke and Walther [17] that for i, j ∈ N
p
0 , 1 ≤ |i| ≤ d and

|j|= d, the number of nonvanishing coefficients γ(i, j) �= 0 is less than or equal to

#(d, p) =
d

∑
m=1

(
p
m

)(
d
m

)(
m+d −1

d

)
,

Note that upon applying the formula (3.9) for different vectors x∈R
n, it is recommended

to precompute the values γ(i, j) in advance, possibly with higher accuracy.

24 Evaluating Multivariate Derivatives

Chapter 4

Graph representations of maps

Different directed graphs can be associated with a given map. These graphs reflect the
behavior of the map up to a given resolution. The vertices of these graphs are sets and
the edges correspond to transitions between them. We can derive properties of our dy-
namical system through the study of the graphs. These techniques appeared in many
articles, in both rigorous and non-rigorous computations, for example by Hohmann and
Dellnitz [12], Hohmann, Dellnitz, Junge and Rumpf [13], Galias [15], Luzzatto and Pi-
larczyk [25], and computations for the time evolution of a continuous system with a
given timestep by Wilczak [37], without attempting to be comprehensive. We summa-
rize the main algorithms and give a uniform framework in this Chapter. The procedure
for enclosing non-wandering points was described in [15] in a similar setting, however
without the proof of its correctness. This we give in Paper B together with an appli-
cation, proving a conjecture for the 2-dimensional Ricker map (see Ricker [31], Levin
and May [23]). In Paper C, we use the same method and give a necessary and sufficient
condition for global asymptotic stability of the fixed point of a certain class of delay
difference equations.

In Section 4.1 we introduce graph representations of maps. We discuss several en-
closure algorithms that use these representations in Section 4.2. We comment on their
convergence properties in Section 4.3. A more efficient scheme for enclosing fixed points
and an algorithm for the inner enclosure of the basin of attraction are given in Sections
4.4 and 4.5, respectively. In Section 4.6, we comment on the analysis of two topolog-
ical properties, transitivity and mixing. We finish this Chapter with an Appendix that
contains some simple and well known algorithms for directed graphs.

4.1 Covers and graph representations

Definition 4.1. S is called a cover of D ⊆ R
n if it is a collection of subsets of Rn such

that ∪s∈Ss ⊇D. We denote the closure of their union relative to D by

|S|= cl

(⋃
s∈S

s

)
∩D

26 Graph representations of maps

in the following. We define the diameter or outer resolution of the cover S by

R+(S) = diam(S) = sup
s∈S

diam(s),

where
diam(s) = sup

x,y∈s
‖x− y‖.

A cover S2 is said to be finer than the cover S1 if

(∀s1 ∈ S1) (∃{s2,i, i ∈ I} ⊆ S2) such that
⋃
i∈I

s2,i = s1.

We denote this relation by S2 � S1. The inner resolution of a cover S is the following:

R−(S) = sup{r ≥ 0 : ∀x ∈D,∃s ∈ S : B(x;r)⊆ s}.

We mean by B(x;r) the open ball with radius r around x in the Euclidean-norm. A
cover S is essential if S\ s is not a cover anymore for all s ∈ S. The cover S is called an
open cover if all elements are open subsets of Rn. The cover P is called a partition if it
consists of closed sets such that |P| =D and ∀p1, p2 ∈ P : p1 ∩ p2 ⊆ bd(p1)∪ bd(p2),
where bd(p) is the boundary of the set p. Consequently, for a partition P the inner
resolution R−(P) is zero.

In the following we will always work with essential and finite covers that are open covers
or partitions. As a consequence, the supremum in the definition of the diameter R+(S)
becomes a maximum.

Definition 4.2. A directed graph G = G(V,E) is a pair of sets representing the vertices
V and the edges E, that is: E ⊆ V×V, and (u,v) ∈ E means that G has a directed edge
going from u to v. We say that v1 → v2 → . . .→ vk is a directed path if (vi,vi+1) ∈ E for
all i = 1, . . . ,k−1. If vk = v1, then it is a directed cycle. If the greatest common divisor
of the lengths of all the directed cycles in the graph is 1, then G is called aperiodic.

A directed graph G is strongly connected if for all u,v ∈ V, v �= u there is a directed
path from u to v and from v to u as well. The Strongly Connected Components (SCC) of
a directed graph G are its maximal strongly connected subgraphs. It is easy to see that u
and v are in the same SCC if and only if there is a directed cycle going through both u
and v. Every directed graph G can be decomposed into the union of strongly connected
components and directed paths between them. If we contract each SCC to a new vertex,
we obtain a directed acyclic graph, that is called the condensation of G.

Definition 4.3. Let f : D f ⊆ R
n → R

n, D⊆D f and S be a cover of D. We say that the
directed graph G(V,E) is a graph representation of f on D with respect to S, if there is
a ι : V→ S bijection such that the following implication is true for all u,v ∈ V:

f (ι(u)∩D)∩ ι(v)∩D �= /0 ⇒ (u,v) ∈ E,

and we denote it by G ∝ (f ,D,S).

4.2 Enclosure algorithms 27

Having a graph representation G of f on D with respect to S, we take the liberty to
handle the elements of the cover as vertices and vice versa, omitting the usage of ι . It
is important to emphasize that in general (u,v) ∈ E does not imply that f (u∩D)∩ v∩
D �= /0. If we have (u,v) ∈ E ⇔ f (u∩D)∩ v∩D �= /0, then we call G an exact graph
representation.

Example 4.4. In order to easily understand what a graph representation is, consider
a two-dimensional map and a compact set on the plane. Create a mesh on the set by
dividing into smaller parts, these are the vertices of G. We obtain the directed edges
by drawing an arrow from one set into another. An edge must be drawn if there is an
orbit corresponding to it. If only such edges are drawn, the representation is exact. See
Figure 4.1.

Figure 4.1: The edges starting from a vertex are induced by the function.

4.2 Enclosure algorithms

Instead of directly studying the map (2.1), we may derive conclusions through analyzing
different graph representations of f . Let K ⊆D f be a compact set, S a cover of K and G
a graph representation of f with respect to S. We summarize some trivial statements in
the following theorem.

Theorem 4.5. Let s ∈ S be an element of the cover. Then it holds that

a) if Fix(f ;K)∩ s �= /0, then (s,s) ∈ E,

b) if Per≤m (f ;K)∩ s �= /0, then there is a directed cycle in G that contains s and the
cycle is of length at most m,

c) if AK ∩ s �= /0, then there exists r ∈ S such that (r,s) ∈ E,

d) if Inv(f ;K)∩ s �= /0, then there are r, t ∈ S satisfying (r,s),(s, t) ∈ E.

These are immediate consequences of the definitions. Now we present a general algo-
rithm that will enclose the formerly mentioned objects, depending on the choice of the
property P. Assume that we have implemented the following functions already:

28 Graph representations of maps

1. Cover(K,δ0) returns a cover of the compact set K such that the a diameter of this
cover is not larger than δ0.

2. Transitions(V, f) returns the possible transitions, induced by f in D f , between
the elements of the cover V.

Algorithm 1 General enclosure algorithm

1: procedure GENERAL_ENCLOSURE_ALGORITHM(f ,K,δ0;P)

2: k ← 0

3: V0 ← Cover(K,δ0) � V0 is a cover of K, diam(V0)≤ δ0.

4: loop
5: Ek ← Transitions(Vk, f) � The possible transitions (extra edges may occur).

6: Gk ← GRAPH(Vk,Ek) � Gk ∝ (f , |Vk|,Vk)
7: ready ← TRUE

8: repeat
9: for all v ∈ Vk do

10: if v does not have property P then
11: remove v from Gk
12: ready ← FALSE

13: end if
14: end for
15: until ready

16: if STOP(k,Vk,εk) then
17: return Vk
18: else
19: δk+1 ← δk/2

20: Vk+1 ← Cover(|Vk|,δk+1) � Vk+1 is a cover of |Vk|, diam(Vk+1)≤ δk+1.

21: k ← k+1

22: end if
23: end loop
24: end procedure

We start the algorithm with the map f , the initial compact region K ⊆D f , the initial
maximal resolution δ0 and the property P. In line 3 we construct the initial cover of K,
then in lines 5 and 6 the corresponding graph representation. The cycle starting from
line 9 removes all the vertices from the graph that does not possess the property P.
This is then repeated until no more vertices can be removed – removing a vertex v can
make another vertex u loose the property P. We return the remaining elements of the
cover, if any, when a certain stopping condition is satisfied in line 16; for example if
δk < Δ, where Δ > 0 is a small positive number given in advance. Otherwise, we take
a cover with a smaller diameter of the remaining covered compact part of K and repeat
the process.

As a result, Algorithm 1 generates tighter and tighter enclosures of a certain object
depending on the property P. For example, if having the property P for a vertex v means

4.3 Convergence 29

that (v,v) ∈ E, then we get an enclosure of the fixed points. If P is given by v having
both in- and out-edges, then we get an enclosure of the invariant set.

We may use the same algorithm to enclose the non-wandering points with open cov-
ers and partitions. The appropriate property P shall be that v is in a directed cycle. The
proof of this statement for partitions can be found in Paper B. The proof for open covers
is analogous with the trivial part of the proof in Paper B, since every point is contained
in the interior of some cover element.

Remark 4.6. Though using the property P = ‘v is in a directed cycle‘ will result in an
enclosure of the non-wandering points, it is not guaranteed that every partition element
that contains a non-wandering point is kept.

Table 4.1 collects the discussed objects and the corresponding properties.

Table 4.1: Objects and corresponding properties.

i Object (Oi) Vertex property (Pi)

1 Fix(f ;K) (s,s) ∈ E

2 Per≤m (f ;K) there is a directed cycle in G containing s and of length at most m
3 AK there exists r ∈ S such that (r,s) ∈ E

4 Inv(f ;K) there are r, t ∈ S such that (r,s),(s, t) ∈ E

5 NonW(f ;K) s is in a directed cycle

4.3 Convergence

During the entire general algorithm, |Vk| is a closed, compact set. Suppose that we never
stop and let δk → 0. Then, |Vk| is a nested sequence of closed and compact sets, thus we
may define

V∞ =
⋂

k∈N0

|Vk|.

From Theorem 4.5, by using the notations of Table 4.1 and considering Vk given by
Algorithm 1, we obtain Theorem 4.7.

Theorem 4.7. If we apply the – non stopping – Algorithm 1 to K with Pi as a property,
then Oi ⊆ V∞.

Assume that we work with as exact graph representations as we can get; overestima-
tions due to the usage of intervals may occur (recall Sections 1.2 and 2.1.1). The natural
question is the following. Is it true that limk→∞Vk = Oi, that is V∞ = Oi, or not? We
shall show that for i = 1, . . . ,4, this is satisfied in the ideal case, when every graph repre-
sentation created during the Algorithm is exact. Thus, the subsequent enclosures of the
fixed points, periodic points, relative attractor or the invariant set are converging to the
corresponding object. We will establish this result through a series of lemmata.

Lemma 4.8. Let m ∈ Z
+ and ε > 0. There exists a 0 < δ = δ (ε,m) < ε such that for

all finite series of points x0,x1, . . . ,xm ∈ K satisfying xk+1 = f (xk), for all exact graph

30 Graph representations of maps

representations G ∝ (f ,K,S) with diam(S) < δ and for any series of cover elements
{s0, . . . ,sl} ⊆ S that satisfies

1. 0 ≤ l ≤ m

2. x0 ∈ s0,

3. if l > 1, then s0 → . . .→ sl is a directed path in G,

it is true that sk ⊆ B(xk;ε), for k = 0, . . . , l.

Proof. The case l = 0 is trivial. For l > 0 we proceed as follows. f is continuous on the
compact K, therefore it is uniformly continuous. We will prove the claim by induction,
consider that m = 1:

Fix ε > 0, there exists 0 < δ < ε
2 , such that if ‖x−y‖2 < δ , then ‖ f (x)− f (y)‖2 <

ε
2 ,

for any x,y∈K. Assume now that diam(S)< δ and x0,x1 ∈K, s0,s1 ∈ S are as described
above. We have x0 ∈ s0 ⊆ B(x0;δ)⊆ B(x0;ε) and

f (s0)⊆ B
(

x1;
ε
2

)
,

s1 ⊆ B(f (s0);δ) ,

therefore

s1 ⊆ B
(

x1;
ε
2
+δ

)
⊆ B(x1;ε) .

Now assume that the statement is true for 1 ≤ k ≤ m and consider it for m+ 1. Let
ε > 0 and obtain δ (ε,1) =: δ1 < ε . Now, by induction, we get

δ (δ1, l −1) =: δ2 < δ1 < ε.

It is easy to see that δ2 satisfies the requirements.

Remark 4.9. That means that any m-orbit of the system and any m-path in the graph,
where the first point of the orbit is contained in the first vertex of the path, are ‘ε-close‘
if the resolution is small enough.

Lemma 4.10. Let G ∝ (f ,K,S) be an exact representation and fix x ∈ K.

1. If f (x) /∈ K, then there exists a δ > 0 such that if diam(S)< δ , then for any s ∈ S
such that x ∈ s, there is no edge leaving s.

2. If f−1(x)∩K is empty, then there exists a δ > 0 such that if diam(S)< δ , then for
any s ∈ S such that x ∈ s, there is no edge incoming to s.

Proof. In the first case choose ε > 0 such that ‖ f (x)−K‖2 > ε . This is possible, since
K is compact and f is continuous. Now exists is a δ ∈ (0, ε

4) such that if ‖x− y‖2 < δ ,
then ‖ f (x)− f (y)‖2 <

ε
4 . Therefore

f (y) /∈ B
(

K;
ε
4

)
.

4.3 Convergence 31

This implies that if diam(S)< δ , then for any s ∈ S such that x ∈ s, the set f (s)∩ |S| is
empty. In other words, there is no outgoing edge from s.

In the second case, again because of the continuity of f , there exists an ε > 0 such
that f |K has no inverse in B(x;ε). If diam(S) < ε , then any s ∈ S such that x ∈ S, will
have no incoming edge, since every edge represents at least one real orbit because G is
an exact representation.

Lemma 4.11. If we work with exact representations and run our – non stopping – Algo-
rithm 1 with the property Pi and the compact set K, then we obtain V∞ =Oi, for i = 1,2.

Proof. It is enough to show it for i= 2, that is for periodic orbits. Let x∈K\Per≤m (f ;K)
and define

ε = min
{
‖ f k(x)− f j(x)‖2 : k �= j and k, j = 0, . . . ,m

}
.

Since x /∈ Per≤m (f ;K), ε is positive. By Lemma 4.8 we obtain a δ (ε
2 ,m) such that

if diam(S) < δ , then any path, starting from a vertex containing x and of length l not
greater than m, will follow the first l iterates of x, not being further than ε

2 from the actual
value in any step. This means that it cannot form a directed cycle through the starting
vertex. Thus, if diam(S) < δ , then every s ∈ S such that x ∈ s will be removed by our
algorithm, therefore x /∈ V∞.

Lemma 4.12. If we work with exact representations and run our – non stopping – Algo-
rithm 1 with the property P4 and the compact set K, then we obtain V∞ = O4.

Proof. Let x /∈ Inv(f ;K). This means that there exists k ∈ Z
+ such that

f k−1(x) ∈ K, but f k(x) /∈ K, or

f−k+1(x)∩K �= /0, but f−k(x)∩K = /0.

From Lemma 4.10 we know that if the diameter of the cover is small enough, every
vertex containing f k−1(x) is a sink in the first case or if we are in the second case, then
every vertex containing f−k+1(x) is a source. Therefore, these vertices will be removed
by Algorithm 1 after a finite number of steps. Suppose that this happens when the cover
is given as Vm.

Now we may repeat the argument for x, with the compact |Vm| taking the role of
K. We get a k′ < k such that analogous equations hold with k′ as above. We obtain by
induction that every box containing any iterate of x will be removed after a finite number
of steps, thus x /∈ V∞.

Let us turn our attention to the global attractor relative to K. The following argument
was presented by Hohmann and Dellnitz [12].

Lemma 4.13. If we work with exact representations and run our – non stopping – Algo-
rithm 1 with the property P3 and the compact set K, then the obtained set V∞ is backward
invariant in K, that is, for all x ∈ V∞ there exists y ∈ V∞ such that f (x) = y.

32 Graph representations of maps

Proof. If there exists k ∈ Z
+ such that f−k+1(x)∩K �= /0 but f k(x)∩K = /0, then, by a

similar argument as in Lemma 4.12, any vertex containing f−k+1(x) will be removed
when the resolution is small enough. Using induction, we obtain that in finite number of
steps, every vertex that contains a non-positive iterate of x will be removed as well. If
such k does not exist, then f−m(x)⊆ V∞, for all m ∈ N.

Lemma 4.14. Any set B that is backward invariant in K is contained in AK.

Proof. We have B ⊆ K and B ⊆ f (B), therefore

B ⊆ f k(B) (4.1)

for k ∈ Z
+. Let A be the global attractor of (2.1) and consider its fundamental neigh-

bourhood U from the definition. Recall that U satisfies⋃
k∈N

f−k(U) =D f .

Since K is compact, therefore there exists k0 ∈ N0 such that

B ⊆ K ⊆
⋃

0≤k≤k0

f−k(U).

This leads to f k0(B) ⊆ U. Equation (4.1) implies that B ⊆ f k0+k(B) ⊆ f k(U) for all
k ∈ N, thus

B ⊆
⋂
k∈N

f k(U) =A.

Together with the backward invariance in K, this implies that B ⊆AK .

We may summarize Theorem 4.7 and Lemmata 4.11, 4.12, 4.13, 4.14 as:

Theorem 4.15. If we work with exact representations and run our – non stopping –
Algorithm 1 with the property Pi and the compact set K, then for i = 1, . . . ,4, we obtain
V∞ = Oi.

4.4 Fixed points, periodic orbits

We have seen a convergent enclosure procedure for periodic orbits and fixed points. By
another approach, we transform the task of enclosing fixed points and periodic orbits
into enclosing the zeros of a certain function. The fixed point equation f (x) = x may
be reformulated as f (x)− x = 0 and finding a periodic orbit of period m is equivalent
to finding zeros of f m(x)− x. If we apply the bisection method for these reformulated
problems – see for example in Moore [27] or Tucker [36] – we obtain the same procedure
essentially that was described with graph representations. On the other hand, we may
apply superior zero-finding techniques such as the Newton-method or the Krawczyk-
method. These give faster convergence and the possibility to prove uniqueness. As seen

4.5 Inner enclosure of the basin of attraction 33

in Galias [15], we may gain additional speed by the following construction in the case
of periodic points.

Let the function F : (Rn)m → (Rn)m, z �→ F(z) be given as

Fk(x0,x2, . . . ,xm−1) = x(k+1) mod m − f (xk).

It is clear that a zero of F corresponds to an m-periodic orbit of f . Instead of using
the general Krawczyk-method, we modify it as follows. When we do the bisection, we
exploit that we are not really searching for a zero of a function in n×m dimension, but
for an n-dimensional periodic point. This is summarized in Algorithm 2.

Algorithm 2 Find periodic orbits

1: procedure FIND_PERIODIC_ORBITS(f ,x,m;V)

2: x0 ← x � We search for a periodic point in x.

3: for i = 1 to m−1 do
4: xi ← f (xi−1) � We find the orbit of x.

5: end for
6: z ← (x0, . . . ,xm−1) � The orbit is transformed into the new variable z.

7: if Krawczyk(z)F ⊂ z then � z contains a unique fixed point.

8: V ←V ∪{x}
9: return

10: else if Krawczyk(z)F ∩ z = /0 then � z contains no fixed point.

11: return
12: end if
13: divide x into {yi} � Otherwise we subdivide x ∈ R

n and not z ∈ R
n×m

14: for all i do
15: Find_Periodic_Orbits(f ,yi,m;Q,V) � The recursive call for the new regions.

16: end for
17: end procedure

Here Krawczyk(z)F is the Krawczyk operator corresponding to F applied to the set z

Krawczyk(z)F = ž−F(ž)DF(ž)−1 −
(
1−DF(z)DF(ž)−1

)
[−rad(z), rad(z)],

where ž ∈ z. We remark that ž is usually chosen to be the midpoint. Note that lines
7 to 16 give us the Krawczyk algorithm (see Galias [15]), the only difference is in the
subdivision.

The elements of V are sets, each of them contains exactly one zero of F , that is one
m-periodic point of f . Since every periodic point is a non-wandering point as well, we
may first use our procedure to enclose the non-wandering points in D and then use the
resulting enclosure as a starting set for our search.

4.5 Inner enclosure of the basin of attraction

Assume now that O is an attracting invariant set for (2.1) restricted to the compact K.
Thus, there exists a neighbourhood U such that O ⊆ U ⊆ K and U is contained in the

34 Graph representations of maps

basin of attraction of O. We want to find a – possibly – larger set B, that is still inside
the basin of attraction of O.

We will use the following algorithm from Galias [15]. We consider a cover of K
and the empty list W . We shall collect into W such elements that are inside the basin of
attraction of O. In practice, this means that a vertex is moved from the actual cover to
W if it is inside or mapped into U or the other elements of W . We refine our remaining
cover to have diameter half as before and repeat the procedure. Since in the beginning
W was empty, it will only contain sets that are inside the basin of attraction of O. Thus,
after each cycle, |W | is an inner enclosure for the basin of attraction of O. We stop the
iteration if a certain stopping condition is satisfied; for example δk < Δ, where Δ is a
small positive number given in advance.

Algorithm 3 Inner enclosure of the basin of attraction

1: procedure BASIN_OF_ATTRACTION(f ,K,δ0;U) � U is attracted by O.

2: k ← 0

3: W ← /0 � We collect the vertices in the basin of attraction into W .

4: V0 ← Cover(K,δ0) � V0 is a cover of K, diam(V0)≤ δ0.

5: loop
6: Ek ← Transitions(Vk ∪W, f) � The possible transitions (extra edges may occur).

7: Gk ← GRAPH(Vk ∪W,Ek) � Gk ∝ (f , |Vk ∪W |,Vk ∪W)
8: repeat
9: ready ← TRUE

10: for all v ∈ Vk do
11: if v ⊆U ∪|W | or f (v)⊆U ∪|W | then
12: move v from Vk to W � v is attracted by O.

13: ready ← FALSE

14: end if
15: end for
16: until ready � The remaining vertices are not attracted at this resolution.

17: if STOP(k,Vk,W,δk) then � Some stopping condition.

18: return W
19: end if
20: δk+1 ← δk/2

21: Vk+1 ← Cover(|Vk|,δk+1) � Vk+1 is a cover of |Vk|, diam(Vk+1)≤ δk+1.

22: k ← k+1

23: end loop
24: end procedure

4.6 Topological transitivity and mixing

We may analyze topological properties of maps using similar techniques as presented so
far. We give the definitions and a brief discussion on how to check if the map satisfies
these properties as seen in Luzzatto and Pilarczyk [25]. The corresponding simple and
well known algorithms are included as an Appendix after this Section.

4.6 Topological transitivity and mixing 35

Definition 4.16. The map f is called topologically transitive on D if for all open sets
U,V ⊆ D, there exists a k = k(U,V) ≥ 0 such that f k(U)∩V �= /0. The map is called
topologically mixing, if the k in the former definition is independent of V .

Remark 4.17. A map that is mixing, is transitive as well.

Consider graph representations of f on D with respect to various covers. We shall
formulate necessary conditions for the representations. If they are not satisfied, then the
map cannot possess the corresponding topological properties.

Theorem 4.18. Let G ∝ (f ,D,S). If f is topologically transitive on D, then G is a
strongly connected graph. If f is topologically mixing, then G is strongly connected and
aperiodic.

Proof. If f is transitive, then taking any s1,s2 ∈ S, there exists a k ∈N such that f k(s1)∩
s2 �= /0. Thus, G must contain a directed route from s1 to s2. Since these two vertices
were chosen arbitrarily, the graph is strongly connected.

If f is mixing, then for any s ∈ S, there is k ∈ N such that

(s∩D)⊆ (|S|∩D)⊆ f k(s)

holds. Since a mixing map is transitive, which in turn implies that G is strongly con-
nected, we obtain that this is true for f k+1(s) as well. In particular, this shows that there
are directed cycles of length k and k+1 through s, therefore G is aperiodic.

Appendix : Graph Algorithms
Tarjan’s Algorithm

In order to implement some of the methods presented in Chapter 4, we need algorithms
to find the strongly connected components and the period of a directed graph G. For the
first problem, we will use the Algorithm by Tarjan [34].

Algorithm 4 Tarjan’s algorithm / I

1: procedure TARJAN(G= (V,E)) � The main procedure.

2: global index ← 0 � This holds the lowest unused index.

3: global stack T ← empty � The stack T holds the visited but not categorized vertices.

4: for all v ∈ V do
5: if index of v is undefined then � We haven’t analyzed the vertex v yet.

6: Strong_Connect(G,v)

7: end if
8: end for
9: end procedure

This is the main routine, that goes through the vertices in a cycle and starts the pro-
cedure Strong_Connect(G,v) if it finds an unvisited vertex. We use the stack T to keep
track of the way we traverse the graph. The recursive procedure Strong_Connect is
called for each vertex exactly once and it visits each edge at most twice. Therefore

36 Graph representations of maps

the algorithm is very fast, it runs in linear time, meaning that the number of operations
required is of order O(|V|+ |E|). This is very important in large calculations.

Algorithm 5 Tarjan’s algorithm / II

1: procedure STRONG_CONNECT(G,v) � The recursive procedure.

2: v.index ← index � The index of v is the smallest unused index.

3: v.lowlink ← index � lowlink of v holds the lowest index in the SCC containing v.

4: index ← index +1

5: T .push(v) � We collect the visited vertices into T .

6: for all w such that (v,w) ∈ E do
7: if index of w is undefined then
8: Strong_Connect(G,w) � The recursive call with an unvisited neighbour.

9: v.lowlink ← min(v.lowlink,w.lowlink) � Updating the lowest index.

10: else if w ∈ T then � For a visited neighbour,

11: v.lowlink ← min(v.lowlink,w.index) � we just update the lowest index.

12: end if
13: end for
14: if v.lowlink = v.index then � v is the root for the current SCC.

15: Start registering a new SCC
16: repeat � We record the vertices contained in T and belong to this SCC.

17: w ← T.pop()
18: add w to the current SCC
19: until w = v
20: end if
21: end procedure

Period of a graph

Having established that G is strongly connected, we may consider finding its period.
The following function, Find_Period called with p = 0 and any vertex v with index 0,
does exactly this; returns the period of the graph. The reader is referred to Luzzatto and
Pilarczyk [25] and Jarvis [20].

Algorithm 6 Finding the period of G

function FIND_PERIOD(G,v, p)

for all w ∈ V : (v,w) ∈ E do
if index of w is undefined then � w is not visited.

w.index ← v.index+1

Find_Period(G,w, p) � A recursive call with an unvisited neighbour.

else � w is visited.

p ← GCD(p,w.index− v.index−1) � The greatest common divisor of the indices.

end if
end for
return p

end function

Chapter 5

The method of Self-consistent Bounds for PDEs

In this Chapter we give an introduction to the method of self-consistent bounds for
dissipative PDEs developed by Zgliczyński and Mischaikow [44] and Zgliczyński
[40, 42, 43]. We apply these techniques to a certain destabilized Kuramoto-Sivashinsky
equation (see Wittenberg [39]) in Paper D.

In Section 5.1 we introduce the concept of self-consistent bounds for a certain class
of dissipative PDEs. First we build up the proper setting to handle the problem. We
discuss the spaces, solutions, projections and coefficients involved. In the remaining part
of the Chapter we include certain results from the aforementioned papers. The reader is
referred to therein for the proofs. We obtain a solution of the PDE by integrating finite
dimensional Galerkin-projections, we comment on the properties of such solutions in
Section 5.2. For a fixed projection, we transform the equation to a differential inclusion,
this is discussed in Section 5.3.

5.1 The method of Self-Consistent Bounds

The method is introduced in an abstract setting. Consider the following Hilbert space
of square- integrable functions H0 = L2(R×R

d). The elements of H0 are of the form
(t,x) �→ u(t,x), where the variables represent time and space, respectively. Assume that
I ⊂ Z

d and BH0
= {ξk(x)}k∈I is an orthonormal basis of H0. Consider the evolution

equation for u ∈H0 {
du
dt = F(u),
u(t0,x) = u0(x), u0 ∈H0,

(5.1)

where F : H0 →H0 is a differential operator. We require that F is of the following form

ut = Lu+N(u,Du, . . . ,Dru),

where L is a linear operator that is diagonal in BH0
, N is a polynomial, Dsu is the

collection of all s-th order spatial partial derivatives of u. We require in addition that the
eigenvalues of L, given by Lξk(x) = λkξk(x) for k ∈ I, are of the form

λk =−v(‖k‖)‖k‖p, (5.2)

38 The method of Self-consistent Bounds for PDEs

where p > r, v : R+
0 → R, and there exists k0 ∈ R

+ such that v(z) is positive, uniformly
bounded away from zero and from above for z > k0. Under a solution of (5.1) we
understand a differentiable function u : [0, tmax;u0

)×R
d →H0 that satisfies (5.1) for all

t ∈ [0, tmax;u0
). Note that expanding u in BH0

yields

u(t,x) = ∑
k∈I

uk(t)ξk(x),

thus we work with time-dependent coefficients, t �→ uk(t) ∈H, where H= l2(I). How-
ever, when it does not affect the understanding, we omit the variable t and simply write
uk. Note that H is a Hilbert space and H0

∼= H. Accordingly, we consider the opera-
tors F , L and N to act on H, identify u with its coefficient vector in the following. Thus,
instead of (5.1), we consider the evolution equation for u ∈H{

du
dt = F(u),
u(t0) = u0, u0 ∈H.

(5.3)

As one might expect, a solution of (5.3) is defined as a function u : [0, tmax;u0
)→H that

satisfies (5.3) for all t ∈ [0, tmax;u0
)

Let B= {ek}k∈I be the standard orthonormal basis of H. Converting equation (5.3)
onto H results in the infinite ladder of ODEs

duk

dt
= λkuk +Nk(u,Du, . . . ,Dru), k ∈ I, (5.4)

where Nk is the k-component of N.

Remark 5.1. Formula (5.2) implies that for ‖k‖ large enough, the term λkuk dominates
(5.4) , moreover λk is negative, thus the components of a solution are expected to decay
to zero at least at a polynomial speed.

Definition 5.2. Consider the decomposition of H into the direct sum of the mutually
orthogonal subspaces Hk ⊂H, again, indexed by I

H =⊕k∈IHk. (5.5)

Assume that for all k ∈ I there exist an l = l(k) ∈ N and basis vectors ek1
, . . . ,ekl such

that Hk = span{ek1
, . . . ,ekl} and let Hk,s = span{eks}. Assume in addition, that there is

an M > 0 such that dimHk = 1 for ‖k‖> M. Having these assumption fulfilled, we refer
to (5.5) as a block decomposition of H.

Remark 5.3. Note that these assumptions imply that dimHk is bounded uniformly.

In the following part of this Section, we assume that a block-decomposition H=⊕k∈IHk
is given. Let m ∈ N and Im = {k ∈ I : ‖k‖> m} and define the spaces

Xm =
⊕
k/∈Im

Hk,

Ym = X⊥
m .

5.1 The method of Self-Consistent Bounds 39

Note that H = Xm ⊕Ym. It is convenient to denote an element of Xm by x. This is not
the space variable in (5.1), due to moving to the coefficient space, that one is long gone,
this should not cause confusion. Consider the orthogonal projections Ak : H → Hk,
Ak,s : H→ Hk,s, Pm : H→ Xm and Qm : H→ Ym.

Definition 5.4. For an m∈N, the m-Galerkin projection of (5.4) is the finite dimensional
ODE

dx
dt

= PmF(x⊕0), (5.6)

where x ∈ Xm and 0 is the corresponding zero vector in Qm. We denote by ϕm(t,x), the
flow on Xm induced by (5.6).

The natural question is if we are able to analyze (5.3) through the Galerkin projec-
tions. Obviously, some consistency conditions needs to be fulfilled in order to do this.
This leads to the definition of self-consistent bounds.

Definition 5.5. Assume that PnF : Xn → Xn is a C1 function for all n ∈ N and let
0 < m ≤ M < ∞. Consider the structure

S =W ⊕ ∏
k∈Im

Bk,

where W ⊂ Xm and Bk ⊂ Hk for k ∈ Im are compact sets. Assume in addition, that M is
large enough to have dimHk = 1 for k ∈ IM.

Let us define the conditions C1, C2, C3 and C4 as follows.

C1 0 ∈ Bk for k ∈ IM.

C2 ∑k∈IM a2
k < ∞, where ak = maxa∈Bk ‖a‖ for k ∈ IM. This implies that S ⊂ H.

C3 u �→ F(u) is continuous on S and ∑k∈I f 2
k < ∞, where fk = maxu∈S ‖AkF(u)‖.

C4 For each k ∈ Im the set Bk is given either as an interval box ∏l(k)
s=1[ak,s,ak,s] or as

a closed l(k)-ball B(ck;rk) with rk > 0 and ck ∈ Hk. In addition, for u ∈ S and
k ∈ Im it holds that

- if Bk is given as a box, then

Ak,su = ak,s ⇒ Ak,sF(u)> 0,

Ak,su = ak,s ⇒ Ak,sF(u)< 0.

- if Bk is given as a sphere, then

Aku ∈ bdHkBk ⇒ 〈Aku− ck,AkF(u)〉< 0,

where bdHk gives the boundary relative to Hk.

40 The method of Self-consistent Bounds for PDEs

We say that the set S forms self-consistent bounds if the conditions C1, C2 and C3 are
satisfied. If C4 holds in addition, we speak about topologically self-consistent bounds.
We call W the main part and

T = ∏
k∈Im

Bk ⊂ Ym (5.7)

the tail. In addition we refer to ∏k∈IM Bk as the far-tail and to ∏k∈Im\IM Bk as the mid-
tail. Note that C4 means that the vector field points inwards on the boundary of the
tail.

In the remaining part of the Chapter, we include certain results from Zgliczyński [40,
42, 43]. The reader is referred to these papers for the proofs.

Lemma 5.6. Let W ⊕T form self-consistent bounds for (5.4). Then

- W ⊕T is a compact subset of H,

- limn→∞ PnF(u) = F(u) uniformly for u ∈W ⊕T .

The connection between solutions of the Galerkin projections and of the evolution equa-
tion (5.3) is described by Lemma 5.7.

Lemma 5.7. Let W ⊕T form self-consistent bounds for (5.4). Let mn ∈ N for all n ∈ N.
Assume that limn→∞ mn = ∞, and that υn : [t1, t2] → W ⊕ T is a solution of the mn-
Galerkin projection (5.6) for all n ∈ N.

There exists a subsequence (mni)
∞
i=0 such that limi→∞ υni = υ∗ : [t1, t2]→W ⊕T uni-

formly on [t1, t2] and υ∗ satisfies (5.3).

Let us recall that Remark 5.1 implies polynomial decay rate for the coefficients. Let
s0 = p+d +1 and consider tails that satisfy

Bk ⊆ C
‖k‖s [−1,1], (5.8)

for all k ∈ IM, with some C > 0 and s > s0. We say that such tail is a polynomial tail and
when we speak about its decay rate, we mean s. Note that if W ⊂ Xm is compact, then
W ⊕∏k∈Im Bk automatically satisfies conditions C1 and C2. It may be shown that C3 is
satisfied as well; therefore, we obtain self-consistent bounds.

5.2 Existence, classical and analytic solutions

The following theorem states that starting from self-consistent bounds with polynomial
tail and decay rate s, solutions exists for a certain time and they may be enclosed in
self-consistent bounds with polynomial tail. Moreover, the enclosing tail has the same
decay rate as the initial bounds. This is crucial for the method to work in practice.
Furthermore, the block-decomposition will allow us to establish qualitative properties
of the solutions.

5.3 Time integration 41

Theorem 5.8. Let Z0 ⊕T0 form self-consistent bounds with polynomial tail and decay
rate s for (5.4). Then there exist h > 0, n0 ∈ N, and W ⊕T self-consistent bounds with
polynomial tail for (5.4) such that for all n > n0 and initial condition x ∈ Pn(Z0 ⊕T0) it
holds that

ϕn([0,h],x)⊂W ⊕T.

Moreover, T has the same decay rate as T0.

Heuristically, a block-decomposition is σ -smooth if it may be lifted back to H0 and
the norms of the partial derivatives of the lift at u ∈ Hk are bounded by a function of
the form R‖k‖σ‖u‖ for all k ∈ I. We will not include the rather technical definition as
a whole but we remark that the Fourier decomposition of L2([0,2π],Rd) is a σ -smooth
decomposition for all σ .

According to the following theorem, having a sufficiently smooth decomposition will
imply that the solutions we obtain through the method are classical and analytic solu-
tions.

Theorem 5.9. Let υ : [t1, t2] → W ⊕ T , where W ⊕ T are self-consistent bounds with
polynomial tail and decay rate s for (5.4). Assume that υ is a solution of (5.4) and that
the decomposition H =⊕k∈IHk is s-smooth. Then υ is a classical solution of (5.1) and
it is analytic for all t ∈ (t1, t2].

5.3 Time integration

Assume that we have self-consistent bounds with polynomial tail Z0 ⊕T0 for (5.4), en-
closing the solution x(t)⊕ T (t) at time t0. We may obtain an enclosure after time h
that is of the same structure. By considering the tail to be constant Tc, we obtain the
m-dimensional ODE

dx
dt

= PmF(x(t)⊕Tc),

x(t0) = Z0,

where x ∈ Xm. By including the perturbation caused by the tail, this becomes the differ-
ential inclusion

dx
dt

∈ PmF(x(t)⊕Tc)+(PmF(x(t)⊕T (t))−PmF(x(t)⊕Tc)) ,

x(t0) = Z0.
(5.9)

In order to use the theory described in Section 2.5, we need to obtain a rough enclosure
for the whole trajectory in advance. This is referred to as the generation of a-priori
bounds. Once more, the reader is referred to Zgliczyński [43] for a detailed analysis.

42 The method of Self-consistent Bounds for PDEs

Chapter 6

Overview of the papers

Paper A:
Computing of B-series by Automatic Differentiation
Ferenc A. Bartha and Hans Z. Munthe-Kaas

We consider a B-series, named after John C. Butcher, that is a fundamental tool for
the study of certain numerical integration methods [8, 18] for the ordinary differential
equation y′ = f (y). A B-series is traditionally given by the infinite sum

B f (β) = ∑
t∈T

h|t|

σ(t)
β (t)F f (t),

where T denotes the set of rooted trees, σ(t) ∈ Z is the tree symmetry function, |t|
denotes the number of nodes in t, h > 0 is the timestep of the numerical integrator and
β : T → R is a given function. The terms F f (t) are called elementary differentials and
are defined recursively as certain higher order partial derivatives of f . We study this
recursion and the isomorphisms of rooted trees. We provide an algorithm for computing
the elementary differentials for all rooted trees in Td , that is for all rooted trees with at
most d nodes. We use Automatic Differentiation to evaluate the higher order derivatives
defining the elementary differentials. In particular, we follow the method of Griewank
et al. [17] and propagate univariate Taylor series in certain directions, as we have seen
in Chapter 3.

Paper B:
Local stability implies global stability for the 2-dimensional Ricker map
Ferenc A. Bartha, Ábel Garab and Tibor Krisztin

In this paper we consider the delay difference equation xk+1 = xkeα−xk−d , where α is
a positive parameter and d is a nonnegative integer. The case d = 0 was introduced
by W.E. Ricker in 1954 as a population model [31]. For the delayed version d ≥ 1 of
the equation S. Levin and R. May conjectured in 1976 [23] that local stability of the
nontrivial equilibrium implies its global stability. We consider d = 1 and introduce the

44 Overview of the papers

equivalent two-dimensional map

F : R2 → R
2, F(x,y) = Fα,m(x,y) = (y,my−αϕ(x)).

In this case (α,α) is locally stable given α ∈ (0,1) and at α = 1 a Neimark–Sacker
bifurcation occurs. We prove the conjecture for d = 1 by showing that the fixed point
(α,α) is globally asymptotically stable for α ∈ (0,1], that is even for the bifurcation
parameter α = 1.

The proof consists of the following three major steps:

1. The construction of S(α), a compact, attracting, invariant, trapping region around
the fixed point.

2. The construction of N(α), a neighbourhood of the fixed point that is contained in
the basin of attraction of (α,α).

3. Showing that any orbit starting from S(α) eventually enters the neighbourhood
N(α), thus it is attracted by the fixed point.

The set S(α) is obtained using elementary calculations. We derive formulae for N(α)

both from the linearized equation and from the bifurcation normal form. Here we use
the help of Wolfram Mathematica to do certain symbolic calculations. Note that using
the normal form is crucial, as we get closer to α = 1, the size of the neighbourhood ob-
tained from the linearization goes to zero. After we have derived uniform expressions
for these sets, we use graph representations, as described in Chapter 4, based on rigor-
ous computations to establish our claim. We also give the proof of correctness of the
algorithm for enclosing non-wandering points, as it is relevant to our case.

Paper C:
Necessary and sufficient condition for the global stability of a delayed discrete-time sin-
gle neuron model
Ferenc A. Bartha and Ábel Garab

We study the global asymptotic stability of the trivial fixed point of the delay differ-
ence equation xn+1 = mxn −αϕ(xn−1), where (α,m) ∈ R

2 and ϕ is a real function that
satisfies 0 ≤ xϕ(x) ≤ x2 for all x ∈ R. Using elementary calculations, we show that
(α,m) ∈ (|m|−1,1/(1+ |m|))× (−1,1) is a sufficient condition for the global asymp-
totic stability of 0.

We consider the special sigmoid type feedback ϕ(x) = tanh(x), commonly used in
neural networks. We introduce the two-dimensional map

F : R2 → R
2, F(x,y) = Fα,m(x,y) = (y,my−αϕ(x))

and use the same techniques as in Paper B to investigate the global stability of the fixed
point. We prove that the condition (α,m)∈ [|m|−1,1]× [−1,1], (α,m) �= (0,−1),(0,1)
is necessary and sufficient for global asymptotic stability.

45

Paper D:
Fixed point of a destabilized Kuramoto-Sivashinsky equation
Ferenc A. Bartha and Warwick Tucker

Various forms of the Kuramoto-Sivashinsky equation have been considered in the liter-
ature. Instead of picking a special one, we work with ut + νuxxxx +βuxx + γuux = αu,
assuming one spatial dimension. Thus, by appropriate choices of parameters, one ob-
tains the most common members of the family of the KS-equations. For α > 0, the
equation is destabilized by αu. We will study the L-periodic stationary solutions of our
model, and as an example, we take the parameter values α = 0.5, β = 2, γ =−1, ν = 1
and L = 30. These choices are motivated by Zgliczyński [40, 44] and Wittenberg et al.
[30, 39]. In the last two papers referred, shock-like, odd, stationary solutions have been
observed numerically.

We will use the framework of self-consistent bounds by Zgliczyński [40, 42–44] to
validate the existence of a stationary solution of this kind. We put special emphasis on
the transformation of the equation in order to give a better understanding of the method.
An introduction to self-consistent bounds is given in Chapter 5.

46 Overview of the papers

Bibliography

[1] ALEFELD, G. Introduction to interval analysis. SIAM Rev. 53, 2 (2011), 380–381.
1.1, 1.2

[2] ARNOLD, V. I. Ordinary differential equations. Universitext. Springer-Verlag,
Berlin, 2006. Translated from the Russian by Roger Cooke, Second printing of the
1992 edition. 2.4.1

[3] BENDTSEN, C., AND STAUNING, O. FADBAD, a flexible C++ package for auto-
matic differentiation –- using the forward and backward methods. 1.4, 2.4.2

[4] BERZ, M. Algorithms for higher derivatives in many variables with applications
to beam physics. In Automatic differentiation of algorithms (Breckenridge, CO,
1991). SIAM, Philadelphia, PA, 1991, pp. 147–156. 3

[5] BIRKELAND, T., AND NEPSTAD, R. Pyprop. http://pyprop.googlecode.com.

[6] BOGÁR, F., BARTHA, F., BARTHA, F. A., AND MARCH, N. H. Pauli potential
from Heilmann-Lieb electron density obtained by summing hydrogenic closed-
shell densities over the entire bound-state spectrum. Phys. Rev. A 83 (Jan 2011),
014502, doi: 10.1103/PhysRevA.83.014502.

[7] BOYCE, W. E., AND DIPRIMA, R. C. Elementary differential equations and
boundary value problems. John Wiley & Sons Inc., New York, 1965. 2.4.1

[8] BUTCHER, J. An algebraic theory of integration methods. Math. Comp 26, 117
(1972), 79–106. 3, 6

[9] CAPA: COMPUTER-AIDED PROOFS IN ANALYSIS GROUP. http://www2.math.
uu.se/~warwick/CAPA/. University of Uppsala, University of Bergen.

[10] COMPUTER ASSISTED PROOFS IN DYNAMICS GROUP. CAPD Library. http:
//capd.ii.uj.edu.pl. a C++ package for rigorous numerics. 1.2, 1.4

[11] DANIS, A. PhD Thesis. Parameter estimation, set valued numerics – in prepara-
tion. Uppsala University (2012). 3

[12] DELLNITZ, M., AND HOHMANN, A. A subdivision algorithm for the computation
of unstable manifolds and global attractors. Numer. Math. 75, 3 (1997), 293–317,
doi: 10.1007/s002110050240. (document), 2.3.1, 4, 4.3

48 Bibliography

[13] DELLNITZ, M., HOHMANN, A., JUNGE, O., AND RUMPF, M. Explor-
ing invariant sets and invariant measures. Chaos 7, 2 (1997), 221–228, doi:
10.1063/1.166223. 4

[14] DEVANEY, R. L. An introduction to chaotic dynamical systems. Studies in Nonlin-
earity. Westview Press, Boulder, CO, 2003. Reprint of the second (1989) edition.
2.5

[15] GALIAS, Z. Rigorous investigation of the Ikeda map by means of interval arith-
metic. Nonlinearity 15, 6 (2002), 1759–1779, doi: 10.1088/0951-7715/15/6/304.
(document), 2.3.1, 4, 4.4, 4.4, 4.5

[16] GRIEWANK, A. Evaluating derivatives, vol. 19 of Frontiers in Applied Mathe-
matics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA,
2000. Principles and techniques of algorithmic differentiation. 1.4, 2.4.2, 3

[17] GRIEWANK, A., UTKE, J., AND WALTHER, A. Evaluating higher derivative ten-
sors by forward propagation of univariate Taylor series. Math. Comp. 69, 231
(2000), 1117–1130, doi: 10.1090/S0025-5718-00-01120-0. (document), 3, 3.5, 6

[18] HAIRER, E., LUBICH, C., AND WANNER, G. Geometric numerical integra-
tion: Structure-preserving algorithms for ordinary differential equations, vol. 31.
Springer, 2006. 3, 6

[19] HIRSCH, M. W., SMALE, S., AND DEVANEY, R. L. Differential equations, dy-
namical systems, and an introduction to chaos, second ed., vol. 60 of Pure and
Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam, 2004.
2.4.1

[20] JARVIS, J. P., AND SHIER, D. R. Graph-theoretic analysis of finite markov chains.
4.6

[21] KAPELA, T., AND ZGLICZYŃSKI, P. A Lohner-type algorithm for control systems
and ordinary differential inclusions. Discrete Contin. Dyn. Syst. Ser. B 11, 2 (2009),
365–385, doi: 10.3934/dcdsb.2009.11.365. 2, 2.5

[22] LERCH, M., TISCHLER, G., GUDENBERG, J. W. V., HOFSCHUSTER, W.,
AND KRÄMER, W. Filib++, a fast interval library supporting containment
computations. ACM Trans. Math. Softw. 32, 2 (June 2006), 299–324, doi:
10.1145/1141885.1141893. 1.2

[23] LEVIN, S. A., AND MAY, R. M. A note on difference-delay equations. Theoret.
Population Biology 9, 2 (1976), 178–187. 4, 6

[24] LOHNER, R. J. Enclosing the solutions of ordinary initial and boundary value
problems. In Computerarithmetic. Teubner, Stuttgart, 1987, pp. 255–286. 2, 2.1.2,
2.4.3

49

[25] LUZZATTO, S., AND PILARCZYK, P. Finite resolution dynamics. Found. Comput.
Math. 11, 2 (2011), 211–239, doi: 10.1007/s10208-010-9083-z. 4, 4.6, 4.6

[26] MAKINO, K., AND BERZ, M. Taylor models and other validated functional inclu-
sion methods. Int. J. Pure Appl. Math. 6, 3 (2003), 239–316. 2

[27] MOORE, R. E. Methods and applications of interval analysis, vol. 2 of SIAM
Studies in Applied Mathematics. Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, Pa., 1979. 1.1, 1.2, 1.4, 2.4.3, 4.4

[28] MROZEK, M., AND ZGLICZYŃSKI, P. Set arithmetic and the enclosing problem
in dynamics. Ann. Polon. Math. 74 (2000), 237–259. Dedicated to the memory of
Bogdan Ziemian. 2.1.2, 2.8

[29] NEDIALKOV, N. S., JACKSON, K. R., AND CORLISS, G. F. Validated solutions
of initial value problems for ordinary differential equations. Appl. Math. Comput.
105, 1 (1999), 21–68, doi: 10.1016/S0096-3003(98)10083-8. 2.1.2

[30] RADEMACHER, J. D. M., AND WITTENBERG, R. W. Viscous shocks in the desta-
bilized Kuramoto-Sivashinsky equation. Journal of Computational and Nonlinear
Dynamics 1, 4 (2006), 336–347, doi: 10.1115/1.2338656. 6

[31] RICKER, W. E. Stock and recruitment. Journal of the Fisheries Research Board
of Canada 11, 5 (1954), 559–623, doi: 10.1139/f54-039. 4, 6

[32] RUMP, S. INTLAB - INTerval LABoratory. In Developments in Reliable Comput-
ing, T. Csendes, Ed. Kluwer Academic Publishers, Dordrecht, 1999, pp. 77–104.
http://www.ti3.tu-harburg.de/rump/. 1.2

[33] SIEK, J. G., LEE, L.-Q., AND LUMSDAINE, A. The Boost Graph Library User
Guide and Reference Manual (With CD-ROM). 2002.

[34] TARJAN, R. Depth-first search and linear graph algorithms. SIAM Journal on
Computing 1, 2 (1972), 146–160, doi: 10.1137/0201010. 4.6

[35] TUCKER, W. A rigorous ODE solver and Smale’s 14th problem. Found. Comput.
Math. 2, 1 (2002), 53–117. 1.1, 1.2

[36] TUCKER, W. Validated numerics. Princeton University Press, Princeton, NJ, 2011.
A short introduction to rigorous computations. 1.1, 1.2, 1.3, 1.4, 2.4.3, 4.4

[37] WILCZAK, D. Uniformly hyperbolic attractor of the Smale-Williams type for a
Poincaré map in the Kuznetsov system. SIAM J. Appl. Dyn. Syst. 9, 4 (2010),
1263–1283, doi: 10.1137/100795176. With online multimedia enhancements. 4

[38] WILCZAK, D., AND ZGLICZYŃSKI, P. Cr-Lohner algorithm. Schedae Informati-
cae 20 (2011), 9–46. 2.1.2, 2.1.2

50 Bibliography

[39] WITTENBERG, R. W. Dissipativity, analyticity and viscous shocks in the
(de)stabilized Kuramoto–Sivashinsky equation. Physics Letters A 300, 4–5 (2002),
407 – 416, doi: 10.1016/S0375-9601(02)00861-7. 5, 6

[40] ZGLICZYŃSKI, P. Attracting fixed points for the Kuramoto-Sivashinsky equation:
a computer assisted proof. SIAM J. Appl. Dyn. Syst. 1, 2 (2002), 215–235 (elec-
tronic), doi: 10.1137/S111111110240176X. (document), 5, 5.1, 6

[41] ZGLICZYŃSKI, P. C1 Lohner algorithm. Found. Comput. Math. 2, 4 (2002), 429–
465, doi: 10.1007/s102080010025. 2.1.2, 2.1.2

[42] ZGLICZYŃSKI, P. Rigorous numerics for dissipative partial differential equations.
II. Periodic orbit for the Kuramoto-Sivashinsky PDE—a computer-assisted proof.
Found. Comput. Math. 4, 2 (2004), 157–185, doi: 10.1007/s10208-002-0080-8.
(document), 5, 5.1, 6

[43] ZGLICZYŃSKI, P. Rigorous numerics for dissipative PDEs III. An effective algo-
rithm for rigorous integration of dissipative PDEs. Topol. Methods Nonlinear Anal.
36, 2 (2010), 197–262. (document), 5, 5.1, 5.3

[44] ZGLICZYŃSKI, P., AND MISCHAIKOW, K. Rigorous numerics for partial differ-
ential equations: the Kuramoto-Sivashinsky equation. Found. Comput. Math. 1, 3
(2001), 255–288, doi: 10.1007/s10208-002-0080-8. (document), 5, 6

	Blank Page

