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Abstract

In this thesis we focus on subexponential algorithms for NP-hard graph problems: exact
and parameterized algorithms that have a truly subexponential running time behavior.
For input instances of size n we study exact algorithms with running time 2O(

√
n) and

parameterized algorithms with running time 2O(
√

k) ·nO(1) with parameter k, respectively.
We study a class of problems for which we design such algorithms for three different types
of graph classes: planar graphs, graphs of bounded genus, and H-minor-free graphs. We
distinguish between unconnected and connected problems, and discuss how to conceive
parameterized and exact algorithms for such problems.

We improve upon existing dynamic programming techniques used in algorithms solv-
ing those problems. We compare tree-decomposition and branch-decomposition based
dynamic programming algorithms and show how to unify both algorithms to one sin-
gle algorithm. Then we give a dynamic programming technique that reduces much
of the computation involved to fast matrix multiplication. In this manner, we obtain
branch-decomposition based algorithms on numerous problems, such as Vertex Cover

and Dominating Set. We also show how to exploit planarity for obtaining faster dy-
namic programming approaches, a) in connection with fast matrix multiplication and b)
for tree-decompositions.

Furthermore, we focus on connected problems in particular, and their relation to the
input graph structure. We state the basis for how the latter problems can be attacked
for graph classes that inherit the Catalan structure. Truly subexponential algorithms for
edge-subset problems such as k-Longest Path and Planar Graph TSP are derived
by employing the planar graph structure. Moreover, we investigate how to obtain truly
subexponential algorithms for torus-embedded graphs, bounded genus graph and H-
minor-free graphs, by first using planarization techniques, and then proving the Catalan
structure for the planarized instances.
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1 Introduction

1.1 Subexponential algorithms: on the border between P and NP

Algorithms have many applications. Every software program, every machine or robot
program is based on some algorithm, sophisticated or simple, involved or straightforward.
Most of the implemented algorithms have been only developed for the problem-specific
purpose and often in a non-optimal way. Though algorithmic problems form the heart
of computer science, they hardly come as mathematically precise questions. Whereas
the hardware and applications are developing with light-speed over the few last decades,
the theory of algorithms can barely keep up the pace. This has the result that the
gap between theory and application increases dramatically. For example, it is daily
practice to solve NP-hard problems efficiently even though from the theoretical point of
view it should not be possible! Exactly here, at the borderline between “efficient” and
“inefficient” algorithms, the subject of this work is settled.

A main tool for algorithms theory, serving as a language for algorithms, is graph theory.
A graph is a strictly algebraic object: a graph G is defined by a tuple of a set of vertices
V (G) and a set of edges E(G) ⊆ [V (G)]2. We can visualize the vertices of a graph as
a set of points with some connected by arcs–the edges. Most computational problems
can be expressed as graph problems. The advantage is obvious: graphs reveal the core
of the problem and help to find intuitive methods. For example, a navigation program
stores a road map as a graph with weighted edges. For calculating the distance between
two points, the program must solve the shortest path routine, which has its power from
a long line of research on algorithmic graph theory.

Illuminating different aspects of algorithmic graph theory, this work is focused on the
design and analysis of subexponential exact and parameterized algorithms for hard prob-
lems.

The widely believed conjecture is that exponential time algorithms are the best we
can hope for solving NP-hard problems exactly. But for many NP-hard problems arising
from logistics, molecular biology, networks etc., one can find algorithms that are useful
up to a practically remarkable input size. The idea is that the input always comes
with a certain structure. In logistics, for example, often the input obeys the euclidean
metric; in big networks there are always a few vertices that have big degree, the “server
nodes”; In molecular biology all the treated graphs have the structure of tree-like graphs
(molecules, genealogy) or chordal graphs (physical mapping of DNA). Thus, in the recent
years, it has become more and more popular to study algorithms that have a so-called
“subexponential” running time behavior. The goal is to exploit the structure of the
input graph in order to achieve an exponent in the running time that is sublinear, in



1 Introduction

our case a square root of the input size. In real-world and experimental instances the
algorithm runs even much faster than the theoretical bounds suggest [4].

This work is focused on two aspects for finding subexponential algorithms . The “theoretic
aspect” is where we focus on how to employ graph structures for solving problems with
two kinds of subexponential algorithms: parameterized and exact. In the “algorithmic
aspect” we examine and improve several dynamic programming techniques that can be
used to obtain fast and efficient algorithms solving various problems.

1.1.1 Theoretic aspects: parameterized and exact algorithms

Parameterized algorithms. The theory of fixed-parameter algorithms and parameter-
ized complexity has been thoroughly developed during the last two decades; see e.g.
the books [41, 45, 75]. Usually, parameterizing a problem on graphs is to consider its
input as a pair consisting of the graph G itself and a parameter k. Typical examples
of such parameters are the size of a vertex cover, the length of a path or the size of a
dominating set. Roughly speaking, a parameterized problem in graphs with parameter
k is fixed parameter tractable if there is an algorithm solving the problem in f(k) · nO(1)

steps for some function f that depends only on the parameter.

Many NP-complete graph problems turn out to be fixed parameter tractable when re-
stricted to the class of graphs of bounded treewidth (branchwidth). A common algo-
rithmic technique for problems, asking for the existence of vertex/edge subsets of size k
with certain properties, is based on branchwidth (treewidth) and involves the following
two ingredients: The first is a combinatorial proof that, if the branchwidth (treewidth)
of the input graph is at least f(k) (where f is some function of k), then the answer to
the problem is directly implied. The second is a g(w(G)) · nO(1) step dynamic program-
ming algorithm for the problem (here w(G) is the branchwidth (treewidth) of the input
graph G and g is a function only dependent on w(G)). Such an algorithm exists due to
Courcelle’s Theorem on the relation between monadic second-order logic (MSOL) and
treewidth (branchwidth) [26]. Monadic second-order logic is the extension of first-order
logic when allowing quantifiers over sets. The theorem says that problems that are ex-
pressed in MSOL can be solved in linear-time on a given tree-decomposition of constant
width. Though the theorem is a powerful classification tool, an efficient application
suffers from huge constants in g(w(G)), that is, g is an enormously growing exponential
function.However, for problems such as Dominating Set, there are cw(G) · nO(1) time
dynamic programming based algorithms with small constants c (see e.g. [92]).

While there is strong evidence that most of fixed-parameter algorithms cannot have a
running time of 2o(k) · nO(1) (see [61, 19, 45]), for planar graphs it is possible to design

subexponential parameterized algorithms with running times of the type 2O(
√

k) · nO(1)

(see [28, 19] for further lower bounds on planar graphs) as e.g., for Planar k-Vertex

Cover and Planar k-Dominating Set. For obtaining such a 2O(
√

k) · nO(1) step al-
gorithm, we further require that (a) f(k) = O(

√
k) and (b) g(k) = 2O(w(G)). For planar

graphs (and also for H-minor free graphs – see [34]) (a) can be proved systematically

2



1.1 Subexponential algorithms: on the border between P and NP

using the idea of Bidimensionality [33]. However, not an equally general theory exists
for (b).

Since the first paper in this area appeared [3], the study of fast subexponential algorithms
attracted a lot of attention. In fact, it not only offered a good ground for the development
of parameterized algorithms, but it also prompted combinatorial results, of independent
interest, on the structure of several parameters in sparse graph classes such as planar
graphs [2, 5, 6, 21, 30, 44, 49, 57, 63], bounded genus graphs [31, 47], graphs excluding
some single-crossing graph as a minor [38], apex-minor-free graphs [29] and H-minor-free
graphs [31, 34, 33].

k-Longest Path. The research on another type of parameterized problems is motivated
by the seminal result of Alon, Yuster, and Zwick in [10] that proved that a path of length
log n can be found in polynomial time, answering to a question by Papadimitriou and
Yannakakis in [76]. One of the open questions left in [10] was: “Is there a polynomial
time (deterministic or randomized) algorithm for deciding if a given graph G contains a

path of length, say, log2 n? ”. Of course, a 2O(
√

k) · nO(1) step algorithm for checking if a
graph contains a path of length k would resolve this question.

The bad news is that, for many combinatorial problems, a general algorithm of time
2O(

√
k) · nO(1) is missing. k-Longest Path is a typical example of such a problem.

Here the certificate of a solution should satisfy a global connectivity requirement. For
this reason, the dynamic programming algorithm must keep track of all the ways the
required path may traverse the corresponding separator of the decomposition, that is a
Ω(��) on the size � of the separator and therefore of the treewidth/branchwidth. The
same problem in designing dynamic programming algorithms appears for many other
combinatorial problems in NP whose solution certificates are restricted by global prop-
erties such as connectivity. Other examples of such problems are Longest Cycle,
Connected Dominating Set, Feedback Vertex Set, Hamiltonian Cycle and
Graph Metric TSP.

Exact algorithms. Very close related to parameterized algorithms are exact algorithms.
After the omnipresent conjecture that P unequals NP, we have the exponential time
hypothesis (ETH) by Impagliazzo et al [61]. A major question of exponential time com-
plexity is if 3-SAT is solvable in time 2o(n). ETH, the conjecture that it is not, can be
deduced for many other problems, such as that Independent Set is not solvable in
time 2o(n). For planar graphs (and other sparse graph classes) though, it is possible to
design subexponential algorithms of running time 2O(

√
n) for problems such as Planar

Independent Set, Planar Dominating Set [6, 48].

3



1 Introduction

1.1.2 Algorithmic aspects: dynamic programming.

Dynamic programming is a common tool for solving NP-hard problems. For our prob-
lems, we consider dynamic programming, which is a method for reducing the runtime of
algorithms exhibiting the properties of overlapping subproblems and optimal substruc-
ture. A standard approach for getting fast exact algorithms for computational problems
is to apply dynamic programming across subsets of the solution space. Famous ap-
plications of dynamic programming are, among others, Dijkstra’s algorithm Single

Source and Destination Shortest Path algorithm, Bellman-Ford algorithm, the
TSP problem, the Knapsack problem, Chain Matrix Multiplication and many
string algorithms including the Longest-Common Subsequence problem. See [25]
for an introduction to dynamic programming.

Tree- and branch-decompositions. The tree- (branch-) decomposition characterizes
how tree-like a graph is and provides the graph parameter treewidth (branchwidth) w(G)
as a measure of this tree-likeness. Although computing the treewidth (branchwidth) of
a graph is NP-complete in general, Bodlaender [15] gave a linear-time FPT for treewidth
being the parameter (and for branchwidth [17]). For planar graphs, the two notions have
yet a different status: whereas it is a long outstanding open problem if the treewidth of
planar graphs can be computed in polynomial time, Seymour and Thomas [89] proved
planar branchwidth being in P and gave an efficient constructive algorithm.

For parameterized problems, tree- (branch-)decomposition based algorithms typi-
cally rely on a dynamic programming strategy with the combinatorial explosion in the
runtime restricted to the small w(G) in the exponent.

Dynamic programming along either a branch-decomposition or a tree-decomposition
of a graph both share the property of traversing a tree bottom-up and combining tables
of solutions to problems on certain subgraphs that overlap in a bounded-size separator
of the original graph.

To be more concrete, the dynamic programming algorithms we are interested in
have a running time

cw(G) · nO(1),

where n is the cardinality of V (G) and c is a small constant. A major interest in improv-
ing such existing algorithms is to minimize c in the base. Telle and Proskurowski [92]
gave an algorithm based on tree-decompositions having width � that computes the Dom-

inating Set of a graph in time O(9w(G)) ·nO(1). Alber et al. [2] not only improved this
bound to O(4w(G)) · nO(1) by using several tricks, but also were the first to give a subex-
ponential fixed parameter algorithm for Planar Dominating Set.

Planarity and dynamic programming. Many exact algorithms for problems on planar
graphs, that are obtain by the Lipton-Tarjan planar separator theorem [71], usually

4



1.1 Subexponential algorithms: on the border between P and NP

have running time 2O(
√

n) or 2O(
√

n log n), however the constants hidden in big-Oh of the
exponent are a serious obstacle for practical implementation.

Recently there have been several papers [46, 22, 47, 48], showing that for planar
graphs or graphs of bounded genus the base of the exponent in the running time of
these algorithms could be improved by instead doing dynamic programming along a
branch decomposition of optimal branchwidth—both notions are closely related to tree
decomposition and treewidth. Fomin and Thilikos [46] significantly improved the result

of [2] for Planar k-Dominating Set to O(215.13
√

kk + n3) where k is the size of the
solution. The same authors [48] achieve small constants in the running time of a branch
decomposition based exact algorithms for Planar Independent Set and Planar

Dominating Set, namely O(23.182
√

n) and O(25.043
√

n), respectively.

Fast matrix multiplication. Numerous problems are solved by matrix multiplication,
e.g. see [59] for computing minimal triangulations, [69] for finding different types of
subgraphs as for example clique cut sets, and [25] for LUP-decompositions, computing
the determinant, matrix inversion and transitive closure, to only name a few.

However, for NP-hard problems the common approaches do not involve fast matrix
multiplication. Williams [97] established new connections between fast matrix multi-
plication and hard problems. He reduces the instances of the well-known problems
Max-2-SAT and Max-Cut to exponential size graphs dependent on some parameter
k, arguing that the optimum weight k-clique corresponds to an optimum solution to the
original problem instance.

The idea of applying fast matrix multiplication is basically to use the information
stored in the adjacency matrix of a graph in order to fast detect special subgraphs such
as shortest paths, small cliques—as in the previous example—or fixed sized induced
subgraphs. Uncommonly—as in [97]—we do not use the technique on a matrix repre-
sentation of the input graph directly. Instead, it facilitates a fast search in the solution
space. In the literature, there has been some approaches speeding up linear programming
using fast matrix multiplication, e.g. see [94].

1.1.3 Our contribution

In algorithms theory one has typically two aims: either classifying a problem according
two its complexity class, or improving upon the running time of existing algorithms.
In the first case, the landscape of complexity theory has become more subtle in the
recent decades. In the beginning the interest in a problem used to come to a halt as
soon as it was allocated to either P or NP. Since then, the measurements for tractable
and intractable have changed drastically (e.g. [52]), and one has started to incorporate
the structure of the input instances to find new classification methods and complexity
classes, such as for example the aforementioned FPT (e.g. [41]). Originally, the goal was
to prove the existence of a parameterized algorithm of running time f(k) · nO(1), and

5



1 Introduction

there was little interest in finding a tractable function f(k) for parameter k. In this work
we employ the structure of the input graphs, given by their topological embedding, in
order to classify the studied problems as truly subexponential. I.e., we give algorithms of
running time 2O(

√
n) and 2O(

√
k) · nO(1) exact and parameterized, respectively, improving

upon existing algorithms of running time 2O(
√

n log n) and 2O(
√

k log k) · nO(1).

The other goal in algorithms theory is to reduce the constant in the exponent of the
running time of existing algorithms. Traditionally, due to practical interest, the focus
has been on algorithms in P, e.g., improvement for O(n2) to O(n1.5). However, with
the increasing computational power, previously unfeasible problems, such as problems
with subexponential algorithms have become practically solvable up to remarkable input
sizes—by all means only if the corresponding constants were small enough (e.g. [4]).
This goal—the finding of small constants—we stress in the other part of this thesis. In
this line of research it turned out that for many such problems, dynamic programming
is currently the most efficient tool to provide small constants (used e.g. in [2, 49]).
We introduce new generic techniques that employ data structures, data representations
and input structures, with the one goal—to give algorithms with practically applicable
running time behavior.

Problems

After giving some notions in Section 1.2, we introduce the problems that are subject
to this work in Section 1.3. We classify them as vertex-subset problems and edge-subset
problems. Whereas, some of the vertex-subset problems we study, have been classified in
literature, e.g. as (σ, �)-problems [92], we give here a more general problem description,
that we extend to edge-subset problems.

Vertex- and edge-subset problems. Vertex-subset problems ask for a subset of graph
vertices as solution which has local properties. That is, for a subset of vertices one
can verify non-deterministically for each vertex and its neighborhood if the subset is
satisfying the problem as a (maybe non-optimal) solution. Edge-subset problems differ
not only by asking for an edge subset as solution but also by the global property they
own. We have to consider the entire subgraph induced by the edge subset for verifying
if it is a correct solution.

Parameterized and exact algorithms. To give a survey and background on the thesis
related works, we study general approaches for obtaining subexponential exact and pa-
rameterized algorithms for vertex- and edge-subset problems in Section 1.4 and we reveal
their relation with combinatorial results related to the Graph Minors project. All these
algorithms exploit the structure of graph classes that exclude some graph as a minor.
This was used to develop techniques as Bidimensionality theory for better bounding the
steps of dynamic programming when applied to minor closed graph classes.

6
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Tree Decomposition

Graph, Vertex/edge subset problem

Branch Decomposition

Dynamic programming

Solution

Semi-nice Tree Decomposition

tw ≤ α · bw tw > α · bw

Tree Decomposition Branch Decomposition

Dynamic programming

Semi-nice Tree Decomposition

Graph, Dominating Set

2min{2tw,2.38bw}

tw ≤ 1.19bw tw > 1.19bw

Figure 1.1: A single dynamic programming approach. α marks the trade-off parameter, de-

pending on the given problem, on which we decide the decomposition type to

transform. On the right, we have the example of Dominating Set with α = 1.16.

Techniques

Branchwidth and treewidth are connectivity parameters of graphs of high importance
in algorithm design. By dynamic programming along the associated branch- or tree-
decomposition one can solve most graph optimization problems in time linear in the
graph size and exponential in the parameter. If one of these parameters is bounded on
a class of graphs, then so is the other, but they can differ by a small constant factor and
this difference can be crucial for the resulting runtime.

Dynamic programming on tree-decompositions and branch-decompositions. In
Chapter 2, we improve the dynamic programming techniques on both decompositions.
After describing the common ways how fast dynamic programming algorithms on tree-
and on branch-decompositions are obtained, we introduce semi-nice tree-decompositions
and show that they combine the best of both branchwidth and treewidth. We first give
simple algorithms to transform a given tree-decomposition or branch-decomposition into
a semi-nice tree-decomposition. We then give a template for dynamic programming
along a semi-nice tree-decomposition for optimization problems over vertex subsets. See
Figure 1.1.

Dynamic programming and fast matrix multiplication. We give a new technique for
combining dynamic programming and matrix multiplication and apply this approach
to problems like Dominating Set and Vertex Cover for improving the best algo-
rithms on graphs of bounded branchwidth. We introduce the new dynamic programming
approach on branch decompositions. Instead of using tables, it stores the solutions in
matrices that are computed via distance product. Since distance product is not known
to have a fast matrix multiplication in general, we only consider unweighted and small
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1 Introduction

integer weighted problems with weights of size M = nO(1). Our approach is fully general.
It runs faster than the usual dynamic programming for any vertex subset problem on
graphs of bounded branchwidth.

We first introduce our idea by showing a straightforward way to solve Max Cut

on general graphs. We then extend this idea to dynamic programming to obtain a
technique on the Vertex Cover problem on graphs of branchwidth bw and show the
improvement from O(21.5bw) · nO(1) to O(M · 2ω

2
bw) · nO(1) where ω is the exponent of

fast matrix multiplication (currently ω < 2.376).

Next, we give the general technique and show how to apply it to several optimiza-
tion problems such as Dominating Set, whose existing algorithm we improve from
O(31.5bw) · nO(1) to O(M · 4bw) · nO(1).

Planarity and dynamic programming. We analyze the deep results of Seymour &
Thomas [89] and extract geometric properties of planar branch decompositions. Loosely
speaking, their results imply that for a graph G embedded on a sphere S0, some branch
decompositions can be seen as decompositions of S0 into discs (or sphere cuts). We
describe such geometric properties of so-called sphere-cut decompositions. Sphere-cut
decompositions seem to be an appropriate tool for solving a variety of planar graph
problems, because next to being computable in polynomial time, their geometric prop-
erties can be used to improve upon algorithmic techniques.

In combination with fast matrix multiplication, we show the significant improve-
ment of the constants of the runtime for the approach on planar graph problems. On
Planar Dominating Set we reduce the time to O(M · 20.793ω bw) · nO(1) and hence

an improvement of the fixed parameter algorithm in [46] to O(211.98
√

k) · nO(1) where k
is the size of the dominating set. For exact subexponential algorithms as on Planar

Independent Set and Planar Dominating Set, this means an improvement to
O(M · 21.06ω

√
n) and O(M · 21.679ω

√
n), respectively.

In contrast to branch-decompositions, tree-decompositions have been historically
the choice when solving NP-hard optimization and FPT problems with a dynamic pro-
gramming approach (see for example [13] for an overview). Although much is known
about the combinatorial structure of tree-decompositions (e.g., [14, 95]), only few results
are known to the author relating to the topology of tree-decompositions of planar graphs
(e.g., [18]). We give the first result which employs planarity obtained by the structure of
tree-decompositions for getting faster algorithms. Exploiting planarity, we improve fur-
ther upon the existing bounds and give a 3tw ·nO(1) algorithm for Planar Dominating

Set, representative for a number of improvements on results of [7]See Figure 1.2 for an
overview on the results on dynamic programming presented in this work.
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1.1 Subexponential algorithms: on the border between P and NP

Matrix multiplication (MM) −− Section 2.2.1 Dynammic Programming  (DP) −− Section 2.1

Planarity−− Section 2.3.1MM + DP −− Section 2.2.2

Planarity + MM + DP −− Section 2.3.2 Planarity +  DP −− Section 2.3.3 (and 3.2)

Figure 1.2: The connections between the different techniques on dynamic programming inves-

tigated in Chapter 2.

Structures

Connectivity and surfaces. Many separator results for topological graphs, especially
for planar embedded graphs base on the following fact: Separators have a structure
that cuts the surface into two or more pieces onto which the separated subgraphs are
embedded on. The celebrated and widely applied (e.g., in many divide-and-conquer
approaches) result of Lipton and Tarjan [71] finds in planar graphs a small sized sep-
arator. However, their result says nothing about the structure of the separator, it can
be any set of discrete points. Applying the idea of Miller for finding small simple cyclic
separators [73] in planar triangulations, one can find small separators whose vertices can
be connected by a closed curve in the plane intersecting the graph only in vertices, so-
called Jordan curves (e.g. see [11]). This permits to view collections of paths that may
pass through such a separator as non-crossing pairings of the vertices of a cycle (Sec-
tion 3.1). We consider sphere-cut decompositions of the input graph, whose separator
form Jordan curves, and observe that the number of ways a path traverses a separator
of the decomposition is linearly bounded by the Catalan number of the separator size .
We use such decompositions with the Catalan structure in Chapter 3 for improving
algorithms for edge subset problems. We also give the basis for finding such decompo-
sitions with the Catalan structure for solving edge subset problems on graphs of
bounded genus and H-minor-free graphs.

Planar graphs. In Section 3.2, we study a new framework for designing fast subexpo-
nential exact and parameterized algorithms on planar graphs for edge-subset problems.
The approach is based on geometric properties of planar branch decompositions ob-
tained by Seymour & Thomas, combined with refined techniques of dynamic program-
ming on planar graphs based on properties of non-crossing partitions. Compared to
divide-and-conquer algorithms, the main advantages of our method are a) it is a generic
method which allows to attack broad classes of problems; b) the obtained algorithms

9



1 Introduction

provide a better worst case analysis. To exemplify our approach we show how to ob-
tain an O(210.984

√
kn3/2 + n3) time algorithm solving k-Longest Path using above fast

matrix multiplication. We also show how our technique can be used to solve Planar

Graph TSP in time O(28.15
√

n). We also employ the structure of planar graphs in order
to obtain new combinatorial results on other widely studied problems, such as Hamil-

tonicity, Steiner Tree, Feedback Vertex Set and Max Leaf Tree. Thereby,
we are improving the runtime of the best formerly known algorithms by a logarithmic
factor in the exponent.

Graphs of bounded genus. Topological graph theory is an area of graph theory that
studies the embedding of graphs on surfaces, and graphs as topological spaces. Many
results, overall the separator theorem, can be extended from planar graphs to graphs of
higher genus [54], that are graphs embedded crossing-free on surfaces of higher genus.
However, this is not always a straightforward task. We investigate a general technique
to design fast subexponential algorithms for graphs of bounded genus for edge-subset
problems. Our algorithms are “fast” in the sense that they avoid the log k (log n)
overhead and also because the constants hidden in the big-Oh of the exponents are
reasonable. The technique we use is based on reduction of the bounded genus instances
of the problem to planar instances of a more general graph problem on planar graphs
where Catalan structure arguments are still possible. Such a reduction employs several
results from topological graph theory concerning graph structure and noncontractible
cycles of non-planar embeddings.

In Section 3.3, we first exemplify how to obtain a fast subexponential algorithm for
the Hamiltonian Cycle problem on torus-embedded graphs. These graphs already
inherit all “nasty” properties of non-planar graphs and all difficulties arising on surfaces
of higher genus appear for torus-embedded graphs. However, the case of torus-embedded
graphs is still sufficiently simple to exemplify the minimization technique used to ob-
tained reasonable constants in the exponent. Hereafter, we explain in Section 3.4 how
the results on torus-embedded graphs can be extended for any graphs embedded in a
surface of fixed genus.

H-minor-free graphs. The likely most important work in recent graph theory is the
Graph Minor Theory developed by Robertson and Seymour in a series of over 20 papers
spanning over 20 years. The core of the Graph Minor Theory is a structure theorem [85]
capturing the structure of all graphs excluding a fixed minor, also called H-minor-free
graphs. That is, the theorem says that every such graph can be decomposed into a collec-
tion of graphs, each of which can “almost” be embedded into a surface of bounded genus,
and combined in a tree-like structure. The structure theorem has been employed in order
to conceive polynomial time approximation schemes and subexponential algorithms for
problems restricted to a class of graphs with an excluded minor (see e.g. [55, 31, 34, 33]).
In Section 3.5,we study how to exploit this structure in a way that edge-subset problems
can be solved efficiently in subexponential running time on H-minor-free graphs. We
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1.2 Notions

devise a 2O(
√

k) · nO(1) step algorithm for the k-Longest Path problem on H-minor
free graphs, implying a polynomial-time algorithm for a log2 n-length path. This result
is tight, because, according to Dĕıneko, Klinz, and Woeginger [28], the existence of a

2o(
√

k) ·nO(1) step algorithm, even for planar graphs, would again violate the exponential
time hypothesis.

The main combinatorial result we use, concerns the existence of suitably structured
branch decompositions of H-minor free graphs. While the grid excluding part follows
directly from [34], the construction of this branch decomposition is quite involved. In
fact, it uses the factthat any H-minor free graph can roughly be obtained by identifying
in a tree-like way small cliques of a collection of components that are almost embed-
dable on bounded genus surfaces. A constructive polynomial time algorithm is to be
found in [36] (see also [27]). The main proof idea is based on a procedure of “almost”-
planarizing the graphs almost embeddable on the surface of bounded genus. However,
we require a planarizing set with certain topological properties, able to reduce the high
genus embeddings to planar ones where the planarizing vertices are cyclically arranged
in the plain. This makes it possible to use sphere cut decompositions with Catalan
structures. This decomposition is used to build a decomposition on the initial almost
embeddable graph. Then using the tree-like way these components are linked together,
we build a branch decomposition of the entire graph. The most technical part of the
proof is to prove that each step of this construction, from the almost planar case to the
entire graph, maintains the Catalan structure.

1.2 Notions

In this work, the main objects of our study are on the one hand graphs and sparse
graph classes, in particular, planar graphs, graphs of bounded genus, and H-minor-free
graphs. On the other hand, we also study graph related structures, such as branch
decompositions and tree decompositions. Throughout this work, we use the following
notions.

1.2.1 Graphs

If not otherwise stated, we deal with undirected graphs without loops and multiple edges.
A graph G is a tuple consisting of a vertex set V (G) and end edge set E(G) ⊆ [V (G)]2.
That is, the elements of E(G) are two-element subsets of V (G). We use n to denote the
size of the vertex set and m for the size of the edge set, respectively. The graph G′ is a
subgraph of graph G if V ′ ⊆ V (G) and E ′ ⊆ E(G). If E ′ = E(G)∩ [V ′]2, we also call G′

an induced subgraph of G and denote it by G[V ′].

For a vertex v ∈ V (G) we define the neighborhood N(v) = {u ∈ V (G) : ∃{u, v} ∈
E(G)} to be the set of vertices adjacent to v. We define the degree of vertex v by
|N(v)|. For a subset S ⊆ V (G) of the vertices of a graph G we let the neighborhood
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N(S) = {v �∈ S : ∃u ∈ S ∧ {u, v} ∈ E(G)} be the set of vertices not in S that are
adjacent to some vertex in S. A path between two vertices x1, x� ∈ V (G) is a collection
of vertices x1, . . . , x� ∈ V (G) such that {xi, xi+1} ∈ E(G) for all 1 ≤ i < � and xi �= xj

for all 1 ≤ i �= j ≤ �. A graph is connected if there exists a path between any two distinct
vertices v, w ∈ V (G). A maximal connected subgraph of a graph is called (connected)
component . A graph is a clique Kn if E(Kn) = [V (Kn)]2. We call Gn1,n2

a bipartite
graph if V (Gn1,n2

) can be partitioned into V1 and V2 with ni = |Vi| (i = 1, 2) such that
E(Gn1,n2

) ⊆ [V1 · V2]. Kn1,n2
is complete bipartite, if E(Kn1,n2

) = [V1 · V2]. A (r× r)-grid
Gr,r is the Cartesian product of two paths Pr of length r: Gr,r = Pr × Pr.

Graph separators. Given a connected graph G, a set of vertices S ⊂ V (G) is called
a separator if the subgraph induced by V (G) \ S has at least two components. S is
called an u, v-separator for two vertices u and v that are in different components of
G[V (G) \ S]. S is a minimal u, v-separator if no proper subset of S is a u, v-separator.
Finally, S is a minimal separator of G if there are two vertices u, v such that S is a
minimal u, v-separator. For a vertex subset A ⊆ V (G), we saturate A by adding edges
between every two non-adjacent vertices, and thus, turning A into a clique.

Graph operations. Given an edge e = {x, y} of a graph G, the graph G/e is obtained
from G by contracting the edge e; that is, to get G/e we identify the vertices x and y and
remove all loops and replace all multiple edges by simple edges. A graph H obtained by
a sequence of edge-contractions is said to be a contraction of G. H is a minor of G if H
is a subgraph of a contraction of G. We use the notation H � G (resp. H �c G) when
H is a minor (a contraction) of G. We say that a graph G is H-minor-free when it does
not contain H as a minor. We also say that a graph class G is H-minor-free (or, excludes
H as a minor) when all its members are H-minor-free. A very important graph class is
the class of planar graphs which has a famous purely combinatorial characterization due
to Kuratowski, namely the intersection of the K5-minor-free and K3,3-minor-free graph
classes.

1.2.2 Width parameters

The graph parameters treewidth and branchwidth have been introduced by Robertson
and Seymour in their seminal work on Graph Minors theory [81, 83] and since then
played an important role in both, graph theory and algorithm theory.

Tree-decompositions. Let G be a graph, T a tree, and let Z = (Zt)t∈T be a family of
vertex sets Zt ⊆ V (G), called bags , indexed by the nodes of T . The pair T = (T,Z) is
called a tree-decomposition of G if it satisfies the following three conditions:

• V (G) = ∪t∈T Zt,

• for every edge e ∈ E(G) there exists a t ∈ T such that both ends of e are in Zt,
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1.2 Notions

• Zt1 ∩ Zt3 ⊆ Zt2 whenever t2 is a vertex of the path connecting t1 and t3 in T .

The width tw(T ) of the tree-decomposition T = (T,Z) is the maximum size over all
bags minus one.

Branch-decompositions. A branch-decomposition (T, μ) of a graph G consists of an
ternary tree T (i.e. all internal vertices of degree three) and a bijection μ : L → E(G)
from the set L of leaves of T to the edge set of G. We define for every edge e of T the
middle set mid(e) ⊆ V (G) as follows: Let T1 and T2 be the two connected components of
T \{e}. Then let Gi be the graph induced by the edge set {μ(f) : f ∈ L∩V (Ti)} for i ∈
{1, 2}. The middle set is the intersection of the vertex sets of G1 and G2, i.e., mid(e) :=
V (G1)∩V (G2). Whenever we are more interested in the graph induced by the edges Ee,
that are all the preimages of the leaves of one of the connected components of T \ e, we
eventually denote mid(e) as the vertex set ∂Ee. The width bw of (T, μ) is the maximum
order of the middle sets over all edges of T , i.e., bw(T, μ) := max{|mid(e)| : e ∈ T}.

Tree- and branchwidth. For a graph G its treewidth tw(G) and branchwidth bw(G)
is the smallest width of any tree-decomposition and branch-decomposition of G respec-
tively. The pathwidth pw(G) is the smallest width of a tree-decomposition (T,Z) where
T is a path, a so-called path decomposition. The three graph parameters treewidth,
branchwidth and pathwidth were introduced by Robertson and Seymour as tools in their
seminal proof of the Graph Minors Theorem. The treewidth tw(G) and branchwidth
bw(G) of a graph G satisfy the relation [80]

bw(G) ≤ tw(G) + 1 ≤ 3

2
bw(G),

and thus whenever one of these parameters is bounded by some fixed constant on a class
of graphs, then so is the other. Note that it is well known that H � G or H �c G
implies both, bw(H) ≤ bw(G) as well as tw(H) ≤ tw(G).

See Figure 1.3 for an illustration of tree-decompositions and branch-decompositions.

Trunk decompositions. We introduce a new kind of decomposition for exclusive usage
in Section 3.5. If in the definition of a branch decomposition we further demand the
ternary tree T to be a caterpillar, then we define the notion of a trunk decomposition
and the parameter of the trunkwidth of a graph. For a longest path with edges e1, . . . , eq

of such a caterpillar, the sets Xi = mid(ei) form a linear ordering X = (X1, . . . , Xq). For
convenience, we will use ordered sets to denote a trunk decompositions and, in order to
include all vertices of G in the sets of X , we will often consider trunk decompositions
of Ĝ that is G with loops added to all its vertices (this operation cannot increase the
width by more than one). The trunkwidth of a graph G is either pw(G)− 1, pw(G), or
pw(G) + 1.
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Figure 1.3: The left diagram shows a graph with vertex and edge labels. In the middle, we

see a tree-decomposition of the graph on the left, and on the right a branch-

decomposition.

1.2.3 Chordal graphs

A chord in a cycle C of a graph G is an edge joining two non-consecutive vertices of C.
A graph H is called chordal if every cycle of length > 3 has a chord.

There exists an alternative characterization of chordal graphs:

Theorem 1.2.1. [40] A graph H is chordal if and only if every minimal separator of H
is a clique.

Minimal triangulations. A triangulation of a graph G is a chordal graph H with
V (H) = V (G) and E(G) ⊆ E(H). The edges of E(H) \ E(G) are called fill edges .
We say that H is a minimal triangulation of G if every graph G′ with V (G′) = V (G)
and E(G) ⊆ E(G′) ⊂ E(H) is not chordal. Note that a triangulation of a planar
graph may not be planar—not to confuse with the notion of “planar triangulation”
that asks for filling the facial cycles with chords. Consider the following algorithm
that triangulates G, known as the elimination game [78]. Repeatedly choose a vertex,
saturate its neighborhood, and delete it. Terminate when V (G) = ∅. The order in which
the vertices are deleted is called the elimination ordering α, and G+

α is the chordal graph
obtained by adding all saturating (fill) edges to G. Another way of triangulating a graph
G can be obtained by using a tree-decomposition of G.

If there is an ordering α such that no edges are added during the algorithm, i.e.
G = G+

α , we say that G has a perfect elimination ordering , short p.e.o..

Theorem 1.2.2. [51] A graph is chordal if and only if it has a perfect elimination
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Figure 1.4: Surface S3 is obtained from the sphere by adding three handles.

ordering.

1.2.4 Graphs on surfaces

A surface Σ is a connected, compact 2-manifold without boundary (we always consider
connected surfaces). We denote by S0 the sphere (x, y, z | x2 + y2 + z2 = 1) and by S1

the torus (x, y, z | z2 = 1/4− (
√

x2 + y2−1)2). A line in Σ is a subset homeomorphic to
[0, 1]. An O-arc is a subset of Σ homeomorphic to a circle. Let Δ be a closed disk and
the open disk int(Δ) its interior and bor(Δ) its boundary. Then Δ = int(Δ)∪bor(Δ).

Genus. Let Δ1 and Δ2 be two disjoint disks in Σ, and O1, O2 two disjoint O-arcs each
boundary of Δ1 and Δ2, respectively. We form a new surface Σ′ by deleting int(Δ1)
and int(Δ2) from Σ and identifying O1 with O2 such that the clockwise orientations
around O1 and O2 disagree. We say that we obtain Σ′ from Σ by adding a handle. If we
start with S0 and iteratively add h handles to it, we call the surface Sh that we obtain
orientable surface of genus h. If we identify O1 and O2 with agreeing orientations, we
obtain crosscraps. We call the surface Nh nonorientable if it is obtained from S0 by
adding h crosscraps. See Figure 1.4 for an illustration.

Euler genus. The Euler genus of a surface Σ is eg(Σ) = min{2g(Σ), g̃(Σ)} where g is
the orientable genus and g̃ the nonorientable genus of Σ. Whenever we talk about genus
and surfaces from now on, we mean Euler genus and orientable surfaces.

Graph embedding. Whenever we refer to a Σ-embedded graph G with vertex set
{v1, v2, . . . , vn}, we consider a 2-cell embedding of G in a surface Σ. That is a col-
lection Π = {π1, π2, . . . , πn} such that πi is a cyclic permutation of the edges incident
with vi for i = 1, 2, . . . , n. We say that the embedding Π′ = {π′

1, π
′
2, . . . , π

′
n} is the same
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Figure 1.5: The diagram shows a plane graph which is separated by a noose two parts.

as Π if π′
i = πi for i = 1, 2, . . . , n or π′

i = π−1
i for i = 1, 2, . . . , n. We call a S0-embedded

graph together with its embedding a plane graph.

To simplify notations we do not distinguish between a vertex of G and the point of Σ
used in the drawing to represent the vertex or between an edge and the line representing
it. We also consider G as the union of the points corresponding to its vertices and edges.
That way, a subgraph H of G can be seen as a graph H where H ⊆ G. We call by region
of G any connected component of (Σ \ E(G)) \ V (G). (Every region is an open set.) If
eg(Σ) is a constant, we call a Σ-embedded graph also a bounded genus graph .

Radial graphs. Given a Σ-embedded graph G, its radial graph (also known as vertex-
face graph) is defined as the the graph RG that has as vertex set the vertices and the
faces of G and where an edge exists if and only if it connects a face and a vertex incident
to it in G (RG is also a Σ-embedded graph).

Jordan curves / Nooses. A subset of Σ meeting the drawing only in vertices of G is
called G-normal . If an O-arc is G-normal then we call it noose or, eventually, (closed)
Jordan curve. The main differences between these two notions are that we sometimes
consider Jordan curves without a given graph, and that we allow Jordan curves to not
intersect with vertices at all. The length of a noose N is the number of its vertices
and we denote it by |N |. If int(Δ) is subset of a region of G, then bor(Δ) is a noose.
Two nooses are homotopic if there is a continuous deformation of one onto the other. A
noose is contractible if it is homotopic to a single point. Otherwise, it is noncontractible.
On a sphere S0, every noose N bounds two open discs Δ1, Δ2, i.e., Δ1 ∩ Δ2 = ∅ and
Δ1 ∪ Δ2 ∪ N = S0. See Figure 1.5 for an illustration.

Tight nooses. If the intersection of a noose with any region results into a connected
subset, then we call such a noose tight. Notice that each tight noose N in a Σ-embedded
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graph G, corresponds to some cycle C of its radial graph RG (notice that the length of
such a cycle is 2 · |N |). Also any cycle C of RG is a tight noose in G.

Shortest noncontractible nooses. As it was shown by Thomassen in [93] (see also
Theorem 4.3.2 of [74]) a shortest noncontractible cycle in a graph embedded on a surface
can be found in polynomial time. By Proposition 5.5.4 of [74] a noncontractible noose
of minimum size is always a tight noose, i.e. corresponds to a cycle of the radial graph.
Thus we have the following proposition.

Proposition 1.2.3. There exists a polynomial time algorithm that for a given Σ-embed-
ded graph G, where Σ �= S0, finds a noncontractible tight noose of minimum size.

Representativity. Representativity [82] is the measure how dense a graph is embedded
on a surface that is not a sphere. The representativity (or face-width) rep(G) of a graph
G embedded in surface Σ �= S0 is the smallest length of a noncontractible noose in Σ.
In other words, rep(G) is the smallest number k such that Σ contains a noncontractible
(non null-homotopic in Σ) closed curve that intersects G in k points. By Theorem 4.1
of [84], we have:

Lemma 1.2.4. Given a Σ-embedded graph G where Σ �= S0. Then

rep(G) ≤ bw(G).

Cutting nooses. Suppose that C is an oriented cycle of a Σ-embedded graph G. Let
G′ be the graph obtained from G by replacing C with two copies of C such that all edges
on the left side of C incident to C are now incident to one copy of C and all edges on
the right side of C are incident with the other copy of C. We say that G′ is obtained
from G by cutting along C. See Figure 1.6 for an example of cutting. If we cut along a
noncontractible cycle of the radial graph of G, that is a noncontractible tight noose N
of G, we say that we cut along a noncontractible noose. We thus duplicate the vertices
of N . We call the copies NX and NY of N cut-nooses . Note that cut-nooses are not
necessarily tight (In other words, a cut-noose can enter and leave a region of G several
times.) We can see the operation of “cutting G along a non-contractible noose N” as
“sawing” the surface where G is embedded. This helps us to embed the resulting graph
to the surface(s) that result after adding to the sawed surface two disks, one for each
side of the splitting. We call these disks holes and we will treat them as closed disks.
Clearly, in the new embedding(s) the duplicated vertices will all lay on the borders of
these holes.

The following lemma is very useful in proofs by induction on the genus. The first
part of the lemma follows from Proposition 4.2.1 (corresponding to surface separating
cycle) and the second part follows from Lemma 4.2.4 (corresponding to non-separating
cycle) in [74].
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Figure 1.6: The left diagram shows grid graph embedded on a torus with two nonhomotopic

noncontractible cycles. On the right, we see the grid after cutting along one such

cycle. Note that this surface is a cylinder and the graph is now planar.

Proposition 1.2.5. Let G be a Σ-embedded graph where Σ �= S0 and let G′ be a graph
obtained from G by cutting along a noncontractible tight noose N on G. One of the
following holds

• G′ can be embedded in a surface with Euler genus strictly smaller than eg(Σ).

• G′ is the disjoint union of graphs G1 and G2 that can be embedded in surfaces Σ1 and
Σ2 such that eg(Σ) = eg(Σ1) + eg(Σ2) and eg(Σi) > 0, i = 1, 2.

Sphere-cut Decompositions. For a plane graph G, we define a sphere-cut decom-
position or sc-decomposition (T, μ, π) as a branch decomposition such that for every
edge e of T there exists a noose Oe bounding the two open discs Δ1 and Δ2 such
that Gi ⊆ Δi ∪ Oe, 1 ≤ i ≤ 2. Thus Oe meets G only in mid(e) and its length is
|mid(e)|. A clockwise traversal of Oe in the drawing of G defines the cyclic ordering π of
mid(e). We always assume that the vertices of every middle set mid(e) = V (G1)∩V (G2)
are enumerated according to π. See Figure 1.7 for an illustration of a sphere-cut decom-
position.

1.2.5 Matrix multiplication.

Two (n × n)-matrices can be multiplied using O(nω) algebraic operations, where the
naive matrix multiplication shows ω ≤ 3. The best upper bound on ω is currently
ω < 2.376 [24].

For rectangular matrix multiplication between two (n × p)- and (p × n)-matrices
B = (bij) and C = (cij) we differentiate between p ≤ n and p > n. For the case p ≤ n
Coppersmith [23] gives an O(n1.85 · p0.54) time algorithm (under the assumption that
ω = 2.376). If p > n , we get O( p

n
· n2.376 + p

n
· n2) by matrix splitting: Split each matrix

into p
n

many n × n matrices B1, . . . , B p

n
and C1, . . . , C p

n
and multiply each A� = B� · C�
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1.2 Notions
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Figure 1.7: The left diagram shows a graph which is separated by a noose two parts–

emphasized by the red labeling of the one part. On the right, a sc-decomposition,

whose labeled edge corresponds to the noose.

(for all 1 ≤ � ≤ p
n
). Sum up each entry a�

ij overall matrices A� to obtain the solution.

The distance product of two (n × n)-matrices B and C, denoted by B 	 C, is an
(n × n)-matrix A such that

(1.1) aij = min
1≤k≤n

{bik + ckj}, 1 ≤ i, j ≤ n.

The distance product of two (n × n)-matrices can be computed naively in time O(n3).
Zwick [99] describes a way of using fast matrix multiplication, and fast integer multi-
plication, to compute distance products of matrices whose elements are taken from the
set {−m, . . . , 0, . . . , m} The running time of the algorithm is Õ(m · nω). For distance

product of two (n×p)- and (p×n)-matrices with p > n we get Õ(p · (m ·nω−1)) again by
matrix splitting: Here we take the minimum of the entries a�

ij overall matrices A� with
1 ≤ � ≤ p

n
.

Another variant is the boolean matrix multiplication. The boolean matrix multipli-
cation of two boolean (n×n)-matrices B and C, i.e. with only 0,1-entries, is an boolean
(n × n)-matrix A such that

(1.2) aij =
∨

1≤k≤n

{bik ∧ ckj}, 1 ≤ i, j ≤ n.

The fastest algorithm simply uses fast matrix multiplication and sets aij = 1 if aij > 0.

1.2.6 Others

Quotient set. Given a set X and an equivalence relation ∼ on X. The quotient set of
X by ∼ is the set of all equivalence classes in X given ∼ and is denoted by X/ ∼.
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1 Introduction

1.3 Unconnected and connected graph problems

In this section, we introduce and classify the problems that are subject of the following
chapters. There are two main categories of problems, we are going to investigate. First,
we address in Subsection 1.3.1 vertex-subset problems with local property L , that are
graph optimization problems whose solution S is a subset of vertices and where the cor-
rectness of S can be verified by “locally” testing for neighborhood relationship satisfying
property L. This test can be done non-deterministically, i.e., for each vertex one can
independently verify L. Vertex-subset problems will be our main concern in Chapter 2,
where we introduce algorithmic techniques for solving them. Second, we introduce in
Subsection 1.3.2 edge-subset problems with global property G. Here, we search for a sub-
set S of edges that satisfy some “global” property, with some neighborhood relations
tested in a deterministic way. Note that some edge-subset problems can as well be for-
mulated as vertex-subset problems with global property G. In Chapter 3 we will study
how to deal with graph structures of sparse graph classes in order to employ them for
designing efficient algorithms for edge-subset problems.

(σ, �)-problems.

A general class of vertex-subset problems are parameterized by two subsets of natural
numbers σ and �. A subset of vertices S is a (σ, �)-set if for every v ∈ S we have
|N(v) ∩ S| ∈ σ and for every v �∈ S we have |N(v) ∩ S| ∈ � [92]. Some well-studied and
natural types of (σ, �)-sets are when σ is either all natural numbers, all positive numbers,
or {0}, and with � being either all positive numbers, or {1}. Some resulting problems
are Independent Set (σ = {0},� = N); Dominating Set (σ = N, � = N+); Perfect
Dominating Set (σ = N,� = {1}); Independent Dominating set (σ = {0},� = N+);
Perfect Code (σ = {0},� = {1}); Total Dominating set (σ = N+, � = N+); Total Perfect
Dominating set (σ = N+,� = {1}). For Perfect Code and Total Perfect Dominating set
it is NP-complete even to decide if a graph has any such set, for Independent Dominating
set it is NP-complete to find either a smallest or largest such set, while for the remaining
three problems it is NP-complete to find a smallest set.

There are many optimization problems that cannot by classified by (σ, �)-sets. Take
for example Vertex Cover. For every v ∈ S we have σ = N but for every v �∈ S we have
|N(v)∩S| = |N(v)|. In contrast to [92], our definition of vertex-subset problems extends
the notion of (σ, �)-sets to properties such as vertex-degree, even-numbered and odd-
numbered, and small numbers.

1.3.1 Vertex-subset problems

We define vertex-subset problems as follows:

Definition 1.3.1. We call a graph optimization problem a vertex-subset problem with
(local) property L = (L1,L2) or generalized (σ, �)-problem , if for a given graph G
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1.3 Unconnected and connected graph problems

• the solution is a subset S of V (G),

• for all v ∈ S, N(v) has property L1,

• for all v /∈ S, N(v) has property L2.

Every solution S has an integer value V(S). If S does not satisfy the previous
constraints, we set V(S) to +∞ for minimization problems and to −∞ for maximization
problems. The goal is to find an optimal solution V = minS⊆V (G) V(S) for a minimization
problem and V = maxS⊆V (G) V(S) for a maximization problem.

Prominent examples of vertex-subset problems are Independent Set, Vertex

Cover, and Dominating Set.

Independent Set: Find V = maxS⊆V (G) V(S), where

• V(S) is the cardinality of S;

• L1: no vertex is in S;

• L2: arbitrary, i.e., vertices are in S ∪ (V (G) \ S).

Vertex Cover: Find V = minS⊆V (G) V(S), where

• V(S) is the cardinality of S;

• L1: arbitrary;

• L2: all vertices are in S.

Dominating Set: Find V = minS⊆V (G) V(S), where

• V(S) is the cardinality of S;

• L1: arbitrary;

• L2: at least one vertex is in S.

In Chapter 2, we will see how these problem are solved optimally for graphs of
bounded treewidth by computing the solutions with dynamic programming.

1.3.2 Edge-subset problems

Above vertex-subset problems have another property in common. Given a subset S,
one can verify non-deterministically for every vertex separately if S is a legal solution
to the problem. That is, we have a “check-operator” that for every vertex v and its
neighborhood N(v) independently verifies if property L is violated or not. If for every
v we get an affirmative answer, then the overall solution is legal.
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We now consider a class of problems whose solution is an edge subset E ⊆ E(G)
and which (usually) has an additional “global” property of solution E and thus gives
the entire E as an input to the “check-operator”. As global property we consider here,
“connected” and “acyclic”.

Definition 1.3.2. We call a graph optimization problem an edge-subset problem with
(global) property G = (G1,G2,G3), if for a given graph G

• the solution is a subset E of E(G),

• for all e = {u, v} ∈ E, {u, v} has property G1,

• for all e = {u, v} /∈ E, {u, v} has property G2,

• E has property G3.

Every solution E has integer value V(E) and the goal is to find an optimal solu-
tion V = minE⊆E(G) V(E) for a minimization problem and V = maxE⊆E(G) V(E) for a
maximization problem. We also call such a problem connected problem.

We give some of the most important examples:

Longest Cycle: Find V = maxE⊆E(G) V(E), where

• V(E) is the cardinality of E;

• G1: each vertex has two incident edges in E;

• G2: each vertex has zero or two incident edges in E;

• G3: connected.

Hamiltonian Cycle: Find a E ⊆ E(G), where

• V(E) is the cardinality of E and V(E) = |V (G)|;
• G1: each vertex has two incident edges in E;

• G2: each vertex has two incident edges in E;

• G3: connected.

The problems Longest Path and Hamiltonian Path can be described with a
slight modification.

In the Metric graph TSP we are given a weighted graph G = (V,E) with weight
function w : E(G) → N and we ask for a shortest closed walk that visits all vertices of
G at least once. Equivalently, this is TSP with distance metric the shortest path metric
of G. Metric graph TSP can be formulated as the edge-subset problem Minimum

spanning Eulerian subgraph.
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1.3 Unconnected and connected graph problems

Minimum spanning Eulerian subgraph: Find V = minE⊆E(G) V(E),

• V(E) is the cardinality of E;

• G1: every vertex has an even, nonzero number of incident edges in E;

• G2: every vertex has an even, nonzero number of incident edges in E;

• G3: connected.

Other edge-subset problems that we consider, are for example Steiner Tree and
Minimum Cycle Cover.

Steiner Tree with vertex-subset X: Find V = minE⊆E(G) V(E), where

• V(E) is the cardinality of E;

• G1: arbitrary;

• G2: arbitrary, unless vertex in X, then it has at least one incident edge in E;

• G3: connected.

Minimum Cycle Cover: Find V = minE⊆E(G) V(E), where

• V(E) is the number of cycles formed by E;

• G1: each vertex has two incident edges in E;

• G2: each vertex has zero or two incident edges in E;

• G3: collection of cycles.

We can also consider vertex-subset problems with global property that are vertex-
subset problems according to Definition 1.3.1 with global properties of Definition 1.3.2.
The Connected Dominating Set problem on an input graph G asks for a minimum
dominating subset of vertices that induce a connected subgraph of G and can be for-
mulate Maximum Leaf Tree. Similar, we obtain Maximum Induced Forrest on
vertex-subset X from the Feedback Vertex Set problem with solution V (G) − X.

Maximum Leaf Tree: Find V = maxE⊆E(G) V(E), where

• V(E) is the number of vertices that are incident to exactly one edge of E;

• G1: at least one vertex has degree ≥ 2 (|V (G)| > 2);

• G2: every vertex has at least one incident edge in E;

• G3: connected and acyclic.

Maximum Induced Forrest: Find V = maxE⊆E(G) V(E), where

• V(E) is the number of trees formed by E;
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• G1: arbitrary;

• G2: at most one vertex has incident edges in E;

• G3: acyclic.

1.4 Parameterized problems

A parameter P is any function mapping graphs to nonnegative integers. The parameter-
ized problem associated with P asks, for some fixed k and a minimization problem (max-
imization problem), whether P (G) ≤ k (P (G) ≥ k) for a given graph G. We say that a
parameter P is closed under taking of minors/contractions (or, briefly, minor/contraction
closed) if for every graph H, H � G / H �c G implies that P (H) ≤ P (G).

Many subexponential parameterized graph algorithms [2, 38, 47, 49, 57, 63] are
associated with parameters P on graph classes G satisfying the following two conditions
for some constants α and β:

Λ For every graph G ∈ G, its branchwidth bw(G) ≤ α ·
√

P (G) + O(1)

Ω For every graph G ∈ G and given a branch-decomposition (T, μ) of G,
the value of P (G) can be computed in 2β·bw(T,μ)nO(1) steps.

Conditions Λ and Ω are essential due to the following generic result.

Theorem 1.4.1. Let P be a parameter and let G be a class of graphs such that Λ and

Ω hold for some constants α and β respectively. Then, given a branch-decomposition
(T, μ) where bw(T, μ) ≤ λ·bw(G) for a constant λ, the parameterized problem associated

with P can be solved in 2O(
√

k)nO(1) steps.

Proof. Given a branch-decomposition (T, μ) as above, one can solve the parameterized
problem associated with P as follows. If bw(T, μ) > λ · α ·

√
k, then the answer to

the associated parameterized problem with parameter k is ”NO” if it is a minimization
and ”YES” if it is a maximization problem. Else, by Ω , P (G) can be computed in

2λ·α·β·
√

knO(1) steps.

To apply Theorem 1.4.1, we need an algorithm that computes, in time t(n), a branch-
decomposition (T, μ) of any n-vertex graph G ∈ G such that bw(T, μ) ≤ λ·bw(G)+O(1).
Because of [89], t(n) = nO(1) and λ = 1 for planar graphs. For H-minor-free graphs (and
thus, for all graph classes considered here), t(n) = f(|H|) · nO(1) and λ ≤ f(|H|) for
some function f depending only on the size of H (see [37, 43]).

In this section we discuss how to obtain a general scheme of proving bounds required
by Λ and to extend parameterized algorithms to more general classes of graphs like
graphs of bounded genus and graphs excluding a minor (Section 1.4.1).
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1.4 Parameterized problems

In Chapter 2, we investigate the techniques used for such algorithms. We will
introduce them on the example of the following two vertex-subset problems, that we
define here as parameterized problems.

k-Vertex Cover. A vertex cover C of a graph is a set of vertices such that every edge
of G has at least one endpoint in C. The k-Vertex Cover problem is to decide, given
a graph G and a positive integer k, whether G has a vertex cover of size k. Let us note
that vertex cover is closed under taking minors, i.e. if a graph G has a vertex cover of
size k, then each of its minors has a vertex cover of size at most k.

k-Dominating set. A dominating set D of a graph G is a set of vertices such that
every vertex outside D is adjacent to a vertex of D. The k-Dominating Set problem
is to decide, given a graph G and a positive integer k, whether G has a dominating set of
size k. Let us note that the dominating set is not closed under taking minors. However,
it is closed under contraction of edges.

Given a branch-decomposition of G of width ≤ � both problems k-Vertex Cover

and k-Dominating Set can be solved in time 2O(�)nO(1). For the next problem, no
such an algorithm is known.

In Chapter 3 we prove that the running time of many dynamic programming al-
gorithms for edge-subset problems on planar graphs (and more general classes as well)

satisfies Ω . We take the following edge-subset problem as an example.

k-Longest path. The k-Longest Path problem is to decide, given a graph G and a
positive integer k, whether G contains a path of length k. This problem is closed under
the operation of taking minor but the best known algorithm solving this problem on a
graph of branchwidth ≤ � runs in time 2O(� log �)nO(1).

1.4.1 Bidimensionality

In this section we show how to obtain subexponential parameterized algorithms in the
case when condition Ω holds for general graphs. The main tool for this is Bidimension-
ality Theory developed in [29, 31, 34, 35, 38]. For a survey on Bidimensionality Theory
see [33].

Planar graphs. While the results of this subsection can be extended to wider graph
classes, we start from planar graphs where the general ideas are easier to explain. The
following theorem is the main ingredient for proving condition Λ .

Theorem 1.4.2 ([86]). Let � ≥ 1 be an integer. Every planar graph of branchwidth ≥ �
contains an (�/4 × �/4)-grid as a minor.

We start with Planar k-Vertex Cover as an example. Let G be a planar graph
of branchwidth ≥ �. Observe that given a (r × r)-grid H, the size of a vertex cover in
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1 Introduction

H is at least �r/2� · r (because of the existence of a matching of size �r/2� · r in H). By
Theorem 1.4.2, we have that G contains an (�/4× �/4)-grid as a minor. The size of any

vertex cover of this grid is at least �2/32. As such a grid is a minor of G, property Λ
holds for α = 4

√
2.

For the Planar k-Dominating Set problem, the arguments used above to prove
Λ for Planar k-Vertex Cover do not work. Since the problem is not minor-closed,
we cannot use Theorem 1.4.2 as above. However, since the parameter is closed under edge
contractions, we can use a partially triangulated (r × r)-grid which is any planar graph
obtained from the (r × r)-grid by adding some edges. For every partially triangulated

(r×r)-grid H, the size of a dominating set in H is at least (r−2)2

9
(every “inner” vertex of

H has a closed neighborhood of at most 9 vertices). Theorem 1.4.2 implies that a planar
graph G of branchwidth ≥ � can be contracted to a partially triangulated (�/4×�/4)-grid

which yields that Planar k-Dominating Set also satisfies Λ for α = 12.

These two examples induce the following idea: if the graph parameter is closed
under taking minors or contractions, the only thing needed for the proof of Λ is to
understand how this parameter behaves on a (partially triangulated) grid. This brings
us to the following definition.

Definition 1.4.3 ([31]). A parameter P is minor bidimensional with density δ if

1. P is closed under taking of minors, and

2. for the (r × r)-grid R, P (R) = (δr)2 + o((δr)2).

A parameter P is called contraction bidimensional with density δ if

1. P is closed under contractions,

2. for any partially triangulated (r × r)-grid R, P (R) = (δRr)2 + o((δRr)2), and

3. δ is the smallest δR among all partially triangulated (r × r)-grids.

In either case, P is called bidimensional. The density δ of P is the minimum of the two
possible densities (when both definitions are applicable), 0 < δ ≤ 1.

Intuitively, a parameter is bidimensional if its value depends on the area of a grid
and not on its width or height. By Theorem 1.4.2, we have the following.

Lemma 1.4.4. If P is a bidimensional parameter with density δ then P satisfies property
Λ for α = 4/δ, on planar graphs.

Many parameters are bidimensional. Some of them, like the number of vertices or
the number of edges, are not so much interesting from an algorithmic point of view. Of
course the already mentioned parameter vertex cover (dominating set) is minor (con-
traction) bidimensional (with densities 1/

√
2 for vertex cover and 1/9 for dominating

set). Other examples of bidimensional parameters are feedback vertex set with density
δ ∈ [1/2, 1/

√
2], minimum maximal matching with density δ ∈ [1/

√
8, 1/

√
2] and longest

path with density 1.
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1.4 Parameterized problems

By Lemma 1.4.4, Theorem 1.4.1 holds for every bidimensional parameter satisfying
Ω . Also, Theorem 1.4.1 can be applied not only to bidimensional parameters but to
parameters that are bounded by bidimensional parameters. For example, the clique-
transversal number of a graph G is the minimum number of vertices intersecting every
maximal clique of G. This parameter is not contraction-closed because an edge con-
traction may create a new maximal clique and cause the clique-transversal number to
increase. On the other hand, it is easy to see that this graph parameter always exceeds
the size of a minimum dominating set which yields Λ for this parameter.

Non-planar extensions and limitations. One of the natural approaches of extending
Lemma 1.4.4 from planar graphs to more general classes of graphs is via extending of
Theorem 1.4.2. To do this we have to treat separately minor closed and contraction
closed parameters.

The following extension of Theorem 1.4.2 holds for bounded genus graphs:

Theorem 1.4.5 ([31]). If G is a graph of Euler genus at most eg with branchwidth more
than r, then G contains a (r/4(eg + 1) × r/4(eg + 1))-grid as a minor.

Working analogously to the planar case, Theorem 1.4.5 implies the following.

Lemma 1.4.6. Let P be a minor bidimensional parameter with density δ. Then for any
graph G of Euler genus at most eg, property Λ holds for α = 4(eg + 1)/δ.

Next step is to consider graphs excluding a fixed graph H as a minor. The proof
extends Theorem 1.4.5 by making (nontrivial) use of the structural characterization of
H-minor-free graphs by Robertson and Seymour in [85].

Theorem 1.4.7 ([34]). If G is an H-minor-free graph with branchwidth more than r,
then G has the (Ω(r) × Ω(r))-grid as a minor (the hidden constants in the Ω notation
depend only on the size of H).

As before, Theorem 1.4.5 implies property Λ for all minor bidimensional parame-
ters for some α depending only on the excluded minor H.

For contraction-closed parameters, the landscape is different. In fact, each possible
extension of Lemma 1.4.6, requires a stronger version of bidimensionality. For this,
we can use the notion of a (r, q)-gridoid that is obtained from a partially triangulated
(r × r)-grid by adding at most q edges. (Note that every (r, q)-gridoid has genus ≤ q.)
The following extends Theorem 1.4.2 for graphs of bounded genus.

Theorem 1.4.8 ([31]). If a graph G of Euler genus at most eg excludes all (k −
12eg, eg)-gridoids as contractions, for some k ≥ 12eg, then G has branchwidth at most
4k(eg + 1).
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A parameter is genus-contraction bidimensional if a) it is contraction closed and
b) its value on every (r, O(1))-gridoid is Ω(r2) (here the hidden constants in the big-O
and the big-Ω notations depend only on the Euler genus). Then Theorem 1.4.8 implies

property Λ for all genus-contraction bidimensional parameters for some constant that
depends only on the Euler genus.

An apex graph is a graph obtained from a planar graph G by adding a vertex and
making it adjacent to some vertices of G. A graph class is apex-minor-free if it does not
contain a graph with some fixed apex graph as a minor. An (r, s)-augmented grid is an
(r × r)-grid with some additional edges such that each vertex is attached to at most s
vertices that in the original grid had degree 4. We say that a contraction closed parameter
P is apex-contraction bidimensional if a) it is closed under taking of contractions and
b) its value on every (r, O(1))-augmented grid is Ω(r2) (here the hidden constants in the
big-O and the big-Ω notations depend only on the excluded apex graph). According to

[29] and [34], every apex-contraction bidimensional parameter satisfies property Λ for
some constant that depends only on the excluded apex graph.

1.4.2 Exact algorithms

We also study problems where we ask for an optimal solution. A problem which does not
satisfy property Λ is Maximum Independent Set. We can also ask for an optimal
solution of Minimum Vertex Cover, Minimum Dominating Set, and Longest

Path. Another variant of the latter problem is the Hamiltonian Path, where one
asks if there exists a path of length n.

We are interested in finding subexponential exact algorithms for those problems.
Therefor, we study the graph classes G for which we have the following:

Ξ For every graph G ∈ G, its branchwidth bw(G) ≤ γ · √n + O(1)

Ω For every graph G ∈ G and given a branch-decomposition (T, μ) of G,
the solution can be computed in 2β·bw(T,μ)nO(1) steps.

For the class of planar graphs Property Ξ holds because of the following.

Proposition 1.4.9 ([50]). For any planar graph G, bw(G) ≤
√

4.5n ≤ 2.122
√

n.

Similar results, we obtain for the bounded-genus graph class and the H-minor-free
graph class:

We obtain the following result on the branchwidth of 2-cell-embedded graphs on the
surface Σ:

Lemma 1.4.10 ([47]). Given a Σ-embedded graph G where Σ �= S0, then bw(G) ≤
(
√

4.5 + 2 ·
√

2 · eg(Σ))
√

n.
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1.5 Improving dynamic programming on branch- and tree-decompositions

We have the following bound on the branchwidth of graphs excluding a fixed sized
minor:

Lemma 1.4.11 ([9]). For any fixed graph H, every H-minor-free graph G has branch-
width O(

√
n).

That exact vertex subset problems have Property Ω results from the previous sub-
section. How to construct such algorithms to be efficient, we will describe in Chapter 2.
How edge subset problems, exact and parameterized, satisfy Property Ω for the three
previous graph classes, is subject of Chapter 3.

1.5 Improving dynamic programming on branch- and
tree-decompositions

Dynamic programming is a useful tool for fast algorithms solving NP-hard problems.
In this chapter, we give an overview of known and new techniques and apply these
approaches to vertex-subset problems like k-Dominating Set and k-Vertex cover

for giving algorithms on graphs of bounded treewidth and branchwidth.

In Chapter 2 we study several techniques for accelerating the algorithms emerging
by the framework of Theorem 1.4.1.

Making algorithms faster. While proving properties Λ and Ω , it is natural to ask
for the best possible constants α and β, as this directly implies an exponential speed-up
of the corresponding algorithms. While, Bidimensionality Theory provides some general
estimation of α, in some cases, deep understanding of the parameter behavior can lead
to much better constants in Λ . For example, it holds that for Planar k-Vertex

Cover, α ≤ 3 (see [50]) and for Planar k-Dominating Set, α ≤ 6.364 (see [49]).
(Both bounds are based on the fact that planar graphs with n vertices have branchwidth
at most

√
4.5

√
n, see [50].) Similar results hold also for bounded genus graphs [47].

On the other hand, there are several ways to obtain faster dynamic programming
algorithms and to obtain better bounds for β in Ω . On branch-decompositions, a
typical approach to compute a solution of size k works as follows (for tree-decompositions
similarly):

– Root the branch decomposition (T, μ) of graph G picking any of the vertices of its tree
and apply dynamic programming on the middle sets, bottom up, from the leaves toward
the root.

– Each middle set mid(e) of (T, μ) represents the subgraph Ge of G induced by the
leaves below. Recall that the vertices of mid(e) are separators of G.

– In each step of the dynamic programming, all optimal solutions for a subproblem in
Ge are computed, subject to all possibilities of how mid(e) contributes to an overall
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solution for G. E.g., for Vertex Cover, there are up to 2bw(T,μ) subsets of mid(e)
that may constitute a vertex cover of G. Each subset is associated with an optimal
solution in Ge with respect to this subset.

– The partial solutions of a middle set are computed using those of the already processed
middle sets of the children and stored in an appropriate data structure.

– An optimal solution is computed at the root of T .

Encoding the middle sets in a refined way, may speed up the processing time sig-
nificantly. Though the same time is needed to scan all solutions assigned to a mid(e)
after introducing vertex states, there are some methods to accelerate the update of the
solutions of two middle sets to a parent middle set:

Using the right data structure: storing the solutions in a sorted list or hash-tables
compensates the time consuming search for compatible solutions and allows a fast com-
puting of the new solution. E.g., for k-Vertex Cover, the time to process two middle
sets is reduced from O(23·bw(T,μ)) (for each subset of the parent middle set, all pairs of
solutions of the two children are computed) to O(21.5·bw(T,μ)). In Section 2.2 matrices
are used as a data structure for dynamic programming, that are computed via distance
product. The novel technique is based on reducing much of the computation involved to
matrix multiplication. The approach is applied to obtain algorithms for various graph
problems and allows for example an updating even in time O(2

ω
2

bw(T,μ)) for k-Vertex

Cover (where ω is the fast matrix multiplication constant, actually ω < 2.376). Since
distance product is not known to have a fast matrix multiplication in general, we only
consider unweighted and small integer weighted problems with weights of size m = nO(1).

A compact encoding: assign as few as possible vertex states to the vertices and reduce
the number of processed solutions. Alber et al. [2], using the so-called “monotonicity
technique”, show that 3 vertex states are sufficient in order to encode a solution of k-
Dominating Set. A similar approach was used in [49] to obtain, for the same problem,
a O(31.5·bw(T,μ))-step updating process, that is improved in Section 2.2 to O(22·bw(T,μ)).

Employing graph structures: With a structural result, presented in Subsection 2.3.1,
we will see in Subsection 2.3.2, how one can improve the runtime further for dynamic
programming on branch decompositions whose middle sets inherit some structure of the
graph. Using such techniques, the update process for Planar k-Dominating Set is
done in time O(3

ω
2

bw(T,μ)) (see Section 2.2).

In Subsection 2.3.3, we investigate structural properties for tree-decompositions of
planar graphs that are used to improve upon the runtime of tree-decomposition based
dynamic program- ming approaches for several NP-hard planar graph problems. We give
as an example an algorithm for Planar k-Dominating Set of runtime 3tw · nO(1).
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1.5 Improving dynamic programming on branch- and tree-decompositions

Table 1.1 gives all results on algorithms for vertex-subset and edge-subset problems,
that are discussed in this thesis. First for general, then for planar graphs in dependency
on the parameters treewidth and branchwidth. Last but not least, we give the latest
results on parameterized and exact algorithms for some problems.
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1 Introduction

Table 1.1: Worst-case runtime in the upper part expressed also by treewidth tw and branch-

width bw of the input graph. The problems marked with ‘∗’ are the only one where

treewidth may be the better choice for some cut point tw ≤ α · bw with α = 1.19

and 1.05 (compare to Table 2.3 on Page 69). We refer to weighted and unweighted

problems, since for applying matrix multiplication we need low weights. Here, un-

weighted means : weights M = nO(1). The lower part gives a summary of the most

important improvements on exact and parameterized algorithms with parameter k.

Note that we use the fast matrix multiplication constant ω < 2.376.

Previous results New results
Dominating Set (DS) O(n2min{2 tw,2.38bw}) O(n22bw)

Vertex Cover
∗

(VC) O(n2tw) O(n2min{tw,1.19bw})
Independent DS O(n2min{2 tw,2.38bw}) O(n22bw)

Perfect Code
∗ O(n2min{2 tw,2.58bw}) O(n2min{2 tw,2.09bw})

Perfect DS
∗ O(n2min{2 tw,2.58bw}) O(n2min{2 tw,2.09bw})

Maximum 2-Packing
∗ O(n2min{2 tw,2.58bw}) O(n2min{2 tw,2.09bw})

Total DS O(n2min{2.58 tw,3bw}) O(n22.58bw)

Perfect Total DS O(n2min{2.58 tw,3.16bw}) O(n22.58bw)

weighted Planar DS O(n2min{2 tw,2.38bw}) O(n21.58 tw)

unweighted Planar DS O(n21.89bw) O(n2min{1.58 tw,1.89bw})
w Planar Independent DS O(n2min{2 tw,2.28bw}) O(n21.58 tw)

uw Planar Independent DS O(n21.89bw) O(n2min{1.58 tw,1.89bw})
w Planar Total DS O(n2min{2.58 tw,3bw}) O(n22 tw)

uw Planar Total DS O(n22.38bw) O(n2min{2 tw,2.38bw})
w Planar Perfect Total DS O(n2min{2.58 tw,3.16bw}) O(n2min{2.32 tw,3.16bw})
uw Planar Perfect Total DS O(n22.53bw) O(n2min{2.32 tw,2.53bw})
w Planar Longest Path 2O(bw log bw) · nO(1) O(n2min{2.58 tw,3.37bw})
uw Planar Longest Path 2O(bw log bw) · nO(1) O(n2min{2.58 tw,2.75bw})

Planar DS O(25.04
√

n) [50] O(23.99
√

n)

Planar VC O(23.18
√

n) [50] O(22.52
√

n)

w/uw Planar Longest Path O(22.29
√

n log n) [50] O(27.2
√

n)/O(25.83
√

n)

w/uw Planar Graph TSP 2O(
√

n log n) [72] O(29.86
√

n)/O(28.15
√

n)

w/uw Planar connected DS 2O(
√

n log n) [72] O(29.82
√

n)/O(28.11
√

n)

w/uw Planar Steiner Tree 2O(
√

n log n) [72] O(28.49
√

n)/O(27.16
√

n)

w/uw Plan Feedback Vertex Set 2O(
√

n log n) [72] O(29.26
√

n)/O(27.56
√

n)

Parameterized Planar DS O(215.13
√

kk + n3) [49] O(211.98
√

kk + n3)

Parameterized Planar VC O(25.67
√

kk + n3) [50] O(23.56
√

kk + n3)

w Param Plan Longest Path — O(213.6
√

kk + n3)

uw Param Plan Longest Path — O(210.94
√

kk + n3)
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2 Improving dynamic programming techniques

Tree-decompositions or branch-decompositions? The graph parameters treewidth,
branchwidth and pathwidth were introduced by Robertson and Seymour as tools in
their seminal proof of the Graph Minors Theorem. Recall that the treewidth tw(G) and
branchwidth bw(G) of a graph G satisfy the relation bw(G) ≤ tw(G) + 1 ≤ 3

2
bw(G),

and thus whenever one of these parameters is bounded by some fixed constant on a class
of graphs, then so is the other. Tree-decompositions have traditionally been the choice
when solving NP-hard graph problems by dynamic programming to give FPT algorithms
when parameterized by treewidth, see e.g. [13, 79] for overviews. Of the various algo-
rithmic templates suggested for this over the years the nice tree-decompositions [66] with
binary Join and unary Introduce and Forget operations are preferred for their simplicity
and have been widely used both for showing new results, for pedagogical purposes, and
in implementations. Tree-decompositions are in fact moving into the computer science
curriculum, e.g. twenty pages of a new textbook on Algorithm Design [65] is devoted to
this topic.

Recently there have been several papers [46, 32, 22, 48, 47] for these FPT algo-
rithms, instead doing the dynamic programming along a branch-decomposition of opti-
mal branchwidth. Dynamic programming along either a branch- or tree-decomposition
of a graph both share the property of traversing a tree bottom-up and combining solu-
tions to problems on certain subgraphs that overlap in a bounded-size separator of the
original graph. But there are also important differences, e.g. the subgraphs mentioned
above are for tree-decompositions usually induced by subsets of vertices and for branch-
decompositions by non-overlapping sets of edges. A natural question that arises is for
which graph classes either parameter, treewidth or branchwidth is the better choice? We
will see that in most situations the input graphs contain some graphs where branchwidth
is better and others where treewidth is better.

We will first introduce both dynamic programming techniques on the example of k-
Vertex Cover. Instead of giving two different dynamic programming approaches for
both notions, we introduce in Subsection 2.1.3 a third one the example of k-Dominating

Set, into which both decompositions can be formed into without loss of width.

2.1 Dynamic programming: tree-decompositions vs.
branch-decompositions

In Subsection 2.1.1 and 2.1.2 we describe how to do dynamic programming on tree-
decompositions and branch-decompositions, respectively, using k-Vertex Cover as
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2 Improving dynamic programming techniques

an example.

In particular, for a graph G with |V (G)| = n of treewidth tw (branchwidth bw),
we will see how the weighted k-Vertex Cover problem with positive node weights wv

for all v ∈ V (G) can be solved in time O(f(tw)) · nO(1) (O(f(bw)) · nO(1)) where f(·) is
an exponential time function only dependent on tw (bw).

2.1.1 Solving Vertex Cover on tree-decompositions

The algorithm is based on dynamic programming on a rooted tree-decomposition T =
(T,Z) of G. The vertex cover is computed by processing T in post-order from the leaves
to the root. For each bag Zt an optimal vertex cover intersects with some subset U of
Zt. Since Zt may have size up to tw, this may give 2tw possible subsets to consider. The
separation property of each bag Zt ensures that the problems in the different subtrees
can be solved independently.

We root T by arbitrarily choosing a node R. Each internal node t of T now has one
adjacent node on the path from t to R, called the parent node, and some adjacent nodes
toward the leaves, called the children nodes.

Let Tt be a subtree of T rooted at node t. Gt is the subgraph of G induced by all bags
of Tt. For a subset U of V (G) let w(U) denote the total weight of vertices in U . That is,
w(U) =

∑
u∈U wu. Define a set of subproblems for each subtree Tt. Each set corresponds

to a subset U ⊆ Zt that may represent the intersection of an optimal solution with V (Gt).
Thus, for each vertex cover U ⊆ Zt, we denote by Vt(U) the minimum weight of a vertex
cover S in Gt such that S ∩ Zt = U , that is w(S) = Vt(U). We set Vt(U) = +∞ if
U is not a vertex cover since U cannot be part of an optimal solution. There are 2|Zt|

possible subproblems associated with each node t of T . Since T has O(|V (G)|) edges,
there are in total at most 2tw · |V (G)| subproblems. The minimum weight vertex cover
is determined by taking the maximum over all subproblems associated with the root R.

For each node t the information needed to compute Vt(U) is already computed in
the values for the subtrees. For all children nodes s1, . . . , s�, we simply need to determine
the value of the minimum-weight vertex covers Ssi

of Gsi
(1 ≤ i ≤ �), subject to the

constraints that Ssi
∩ Zt = U ∩ Zsi

.

With vertex covers Usi
⊆ Zsi

(1 ≤ i ≤ �) that are not necessarily optimal, the value
Vt(U) is given as follows:

Vt(U) = w(U) + min {
�∑

i=1

Vsi
(Usi

) − w(Usi
∩ U) :

Usi
∩ Zt = U ∩ Zsi

}.(2.1)

The brute force approach computes for all 2|Zt| sets U associated with t the value
Vt(U) in time O(� · 2z) where z = maxi{|Zsi

|}.Hence, the total time spent on node t is
O(4tw · n).
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2.1 Dynamic programming: tree-decompositions vs. branch-decompositions

Tables. We will see now how this running time can be improved, namely by the use of
a more refined data structure. With a table, one has an object that allows to store all
sets U ⊆ Zt in an ordering such that the time used per node is reduced to O(2tw · n).

Each node t is assigned a table Tablet that is labeled with the sequence of vertices
Zt. When updating Tablet with Tablesi

, both tables are sorted by the intersecting
vertices Zt ∩Zsi

. For computing Vt(U), this allows to only process the part of the table
Tablesi

with Usi
∩ Zt = U ∩ Zsi

. Thus both tables get processed only once in total.

For achieving an efficient running time, one uses an adequate encoding of the table
entries. First define a coloring c : V (G) → {0, 1}: For a node t, each set U ⊆ Zt, if
v ∈ Zt \ U then c(v) = 0 else c(v) = 1. Then sort Tablesi

(1 ≤ i ≤ �) to get entries in
an increasing order in order to achieve a fast inquiry.

2.1.2 Solving Vertex Cover on branch-decompositions

On branch-decompositions the algorithm seems to be a bit more circumstantial due to
more structure. But as we will see at some point later, this structure is of great help to
achieve fast algorithms.

Now we introduce dynamic programming on a rooted branch-decomposition 〈T, μ〉
of G. As on tree-decompositions, the vertex cover is computed by processing T in post-
order from the leaves to the root. For each middle set mid(e) an optimal vertex cover
intersects with some subset U of mid(e). Since mid(e) may have size up to bw, this may
give 2bw possible subsets to consider. The separation property of mid(e) ensures that
the problems in the different subtrees can be solved independently.

We root T by arbitrarily choosing an edge e, and subdivide it by inserting a new
node s. Let e′, e′′ be the new edges and set mid(e′) = mid(e′′) = mid(e). Create a new
node root r, connect it to s and set mid({r, s}) = ∅. Each internal node v of T now
has one adjacent edge on the path from v to r, called the parent edge, and two adjacent
edges toward the leaves, called the children edges. To simplify matters, we call them the
left child and the right child .

Let Te be a subtree of T rooted at edge e. Ge is the subgraph of G induced by
all leaves of Te. For a subset U of V (G) let w(U) denote the total weight of nodes
in U . That is, w(U) =

∑
u∈U wu. Define a set of subproblems for each subtree Te.

Each set corresponds to a subset U ⊆ mid(e) that may represent the intersection of an
optimal solution with V (Ge). Thus, for each vertex cover U ⊆ mid(e), we denote by
Ve(U) the minimum weight of a vertex cover S in Ge such that S ∩ mid(e) = U , that
is w(S) = Ve(U). We set Ve(U) = +∞ if U is not a vertex cover since U cannot be
part of an optimal solution. There are 2|mid(e)| possible subproblems associated with
each edge e of T . Since T has O(|E(G)|) edges, there are in total at most 2bw · |E(G)|
subproblems. The minimum weight vertex cover is determined by taking the minimum
over all subproblems associated with the root r.

For each edge e the information needed to compute Ve(U) is already computed in
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2 Improving dynamic programming techniques

the values for the subtrees. Since T is ternary, we have that a parent edge e has two
children edges f and g. For f and g, we simply need to determine the value of the
minimum-weight vertex covers Sf of Gf and Sg of Gg, subject to the constraints that
Sf ∩ mid(e) = U ∩ mid(f), Sg ∩ mid(e) = U ∩ mid(g) and Sf ∩ mid(g) = Sg ∩ mid(f).

With vertex covers Uf ⊆ mid(f) and Ug ⊆ mid(g) that are not necessarily optimal,
the value Ve(U) is given as follows:

Ve(U) = w(U) + min{ Vf (Uf ) − w(Uf ∩ U) + Vg(Ug) − w(Ug ∩ U) − w(Uf ∩ Ug \ U) :

Uf ∩ mid(e) = U ∩ mid(f),

Ug ∩ mid(e) = U ∩ mid(g),

Uf ∩ mid(g) = Ug ∩ mid(f)}.(2.2)

The brute force approach computes for all 2|mid(e)| sets U associated with e the value
Ve(U) in time O(2|mid(f)| · 2|mid(g)|). Hence, the total time spent on edge e is O(8bw).

Tables. A more sophisticated approach exploits properties of the middle sets and uses
tables as data structure. With a table, one has an object that allows to store all sets
U ⊆ mid(e) in an ordering such that the time used per edge is reduced to O(21.5bw).

By the definition of middle sets, a vertex has to be in at least two of three middle
sets of adjacent edges e, f, g. You may simply recall that a vertex has to be in all middle
sets along the path between two leaves of T .

For the sake of a refined analysis, we partition the middle sets of parent edge e and
left child f and right child g into four sets L,R, F, I as follows:

• Intersection vertices I := mid(e) ∩ mid(f) ∩ mid(g),

• Forget vertices F := mid(f) ∩ mid(g) \ I,

• Symmetric difference vertices L := mid(e)∩mid(f)\I and R := mid(e)∩mid(g)\I.

We thus can restate the constraints of Equation (2.2) for the computation of value
Ve(U). Weight w(U) is already contained in w(Uf ∪Ug) since mid(e) ⊆ mid(f)∪mid(g).
Hence, we can change the objective function:

Ve(U) = min{ Vf (Uf ) + Vg(Ug) − w(Uf ∩ Ug) :

Uf ∩ (I ∪ L) = U ∩ (I ∪ L),

Ug ∩ (I ∪ R) = U ∩ (I ∪ R),

Uf ∩ (I ∪ F ) = Ug ∩ (I ∪ F )}.(2.3)

Turning to tables, each edge e is assigned a table Tablee that is labeled with the
sequence of vertices mid(e). More precisely, the table is labeled with the concatenation
of three sequences out of {L,R, I, F}. Define the concatenation ’‖’ of two sequences
λ1 and λ2 as λ1‖λ2. Then, concerning parent edge e and left child f and right child g
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2.1 Dynamic programming: tree-decompositions vs. branch-decompositions

we obtain the labels: ’I‖L‖R’ for Tablee, ’I‖L‖F ’ for Tablef , and ’I‖R‖F ’ for Tableg.
Tablef contains all sets Uf with value Vf (Uf ) and analogously, Tableg contains all sets
Ug with value Vg(Ug).

For computing Ve(U) of each of the 2|I|+|L|+|R| entries of Tablee, we thus only have
to consider 2|F | sets Uf and Ug subject to the constraints of Equation (2.3). Since
mid(e)∪mid(f)∪mid(g) = I ∪L∪R∪F , we have that |I|+ |L|+ |R|+ |F | ≤ 1.5 ·bw.
Thus we spend in total time O(21.5bw) on each edge of T .

2.1.3 Solving Dominating Set on semi-nice tree decompositions

In this subsection we study how a single dynamic programming algorithm will suffice to
give a unified method of using both treewidth, branchwidth and pathwidth.

For this purpose we introduce semi-nice tree-decompositions that maintain much
of the simplicity of the nice tree-decompositions. However, the vertices of a Join are
partitioned into 3 sets D,E and F , and the binary Join operation treat vertices in each
set differently in order to improve runtime. Symmetric Difference vertices D are those
that appear in only one of the children, Forget vertices F are those for which all their
neighbors have already been considered, and Expensive vertices E are the rest (the formal
definitions follow later.) We first see how to transform a given branch-decomposition or
tree-decomposition into a semi-nice tree-decomposition. We then will see a template for
dynamic programming on semi-nice tree-decompositions for vertex-subset problems.

Semi-nice tree-decompositions

In this paragraph we define semi-nice tree-decompositions and give two algorithms trans-
forming a given branch- or tree-decomposition into a semi-nice tree-decomposition. A
tree-decomposition (T,X ) is semi-nice if T is a rooted binary tree with each non-leaf of
T being one of the following:

• Introduce node X with a single child C and C ⊂ X.

• Forget node X with a single child C and X ⊂ C.

• Join node X with two children B,C and X = B ∪ C.

For an Introduce node we call X \C the ’introduced vertices’ and for a Forget node
C \ X the ’forgotten vertices’. It follows by properties of a tree-decomposition that a
vertex can be introduced in several nodes but is forgotten in at most one node. One
defines nice tree-decompositions [66] identically to semi-nice tree-decompositions with
the following differences:
Join node has X = B = C,
Introduce has |X| = |C| + 1,
and Forget has |X| = |C| − 1.
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2 Improving dynamic programming techniques

ED D
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D
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Figure 2.1: Two Venn diagrams illustrating the children B,C of a Join node X = B ∪ C and

its partition D, E, F . On the right the parent A is a Forget node represented by

the part of B ∪C above the dashed line. On the left the parent A is not a Forget

node and we then have B ∪ C ⊂ A and F = ∅. In both cases what we call the

New edges go between B \ C and C \ B.

Partition of Join nodes. For a Join node X with children B,C and parent A (the root
node being its own parent) we define a partition of X = B ∪ C into 3 sets D, I, F :

• Expensive E = A ∩ B ∩ C

• Forgettable F = (B ∩ C) \ A

• Symmetric Difference D = L ∪ R, where L = (B \ C) and R = (C \ B)

D,E, F is a partition of X by definition. Note that if the parent A of X = B ∪ C
is an Introduce or Join node then B ∪ C ⊂ A and we get F = ∅. See Figure 2.1.

Sparse tree-decompositions. The Forgettable vertices are useful for any node whose
parent is a Forget node, and their definition for an Introduce or leaf node X with parent
A is simply F = X \A. We say that a neighbor u of a vertex v ∈ X has been considered
at node X of T if u ∈ X or if u ∈ X ′ for some descendant node X ′ of X. Clearly, if
X is a Forget node forgetting v then all neighbors of v must have been considered at
X. For fast dynamic programming we want sparse semi-nice tree-decompositions where
vertices are forgotten as soon as possible.

Definition 2.1.1. A semi-nice tree-decomposition is sparse if whenever a node X con-
taining a vertex v ∈ X has the property that all neighbors of v have been considered,
then the parent of X is a Forget node forgetting v.

Note that for a Join node with Forget parent A and children B,C of a sparse semi-
nice tree-decomposition every vertex in B \ A ∪ C has a neighbor in C \ A ∪ B and
vice-versa.

Lemma 2.1.2. Given a tree-decomposition (T,X ) of width k of a graph G with n ver-
tices, we can transform it in time O(k2n) into a sparse semi-nice tree-decomposition
(T ′,X ′) of width k minimizing the E-sets in the partition of each Join node.
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2.1 Dynamic programming: tree-decompositions vs. branch-decompositions

Proof. Choose an arbitrary node as a root and transform T into a binary tree as follows.
For each node X having parent A and d ≥ 3 children C1, C2, ..., Cd replace X by a
path of d − 1 nodes, each one with bag X, with one end-node of the path being a child
of A, another end-node of the path having child Cd and the remaining d − 1 children
distributed one to each node on the path. Process the tree bottom-up to find for each
vertex v ∈ V (G) a lowest node Xv at which all neighbors of v have been considered, and
remove v from any bag that is not a descendant of Xv. Then, for each node A with a
single child C such that both A\C and C \A are nonempty, subdivide the edge between
A and C by a Forget node X := C ∩A. Then, for each node A with two children B,C if
A \ (B ∪C) is nonempty make a new parent bag X := B ∪C for B and C and make A
the parent of X. Finally, for each node A with two children B,C if B \ A is nonempty
then subdivide the edge between A and B by a Forget node X := A ∩ B, and likewise
for C. The result is a sparse semi-nice tree-decomposition. With a Join node X having
parent A and d ≥ 2 children C1, C2, ..., Cd turning into a path, every new Join node Xi

has an expensive set Ei ⊆ A∩Ci ∩ (
⋃d

k=i−1 Ck). This keeps the resulting Expensive sets
E as small as possible when we choose the order of C1, C2, ..., Cd arbitrarily.

Figure 2.2 illustrates the transformation from a branch-decomposition to a semi-nice
tree-decomposition described in the following lemma.

Lemma 2.1.3. Given a branch-decomposition (T, μ) of a graph G with n vertices and m
edges we compute a sparse semi-nice tree-decomposition (T ′,X ) with O(n) nodes in
time O(m) such that for any bag X of T ′ we have some t ∈ V (T ) with incident edges
e, f, g such that X ⊆ mid(e) ∪ mid(f) ∪ mid(g) and if X is a Join node with partition
D,E, F then E ⊆ mid(e) ∩ mid(f) ∩ mid(g) and F ⊆ mid(f) ∩ mid(g) \ mid(e) and
D ⊆ mid(e) \ mid(f) ∩ mid(g).

Proof. The algorithm has 3 steps:

1) Transform branch-decomposition into a tree-decomposition on the same tree,

2) Transform tree-decomposition into a small tree-decomposition having O(n) nodes,

3) Transform tree-decomposition into a sparse semi-nice tree-decomposition.

Step 1) is well-known (see e.g. [46] for a correctness proof) and proceeds as follows:
an inner node t with incident edges e, f, g gets bag Xt = mid(e) ∪ mid(f) ∪ mid(g),
and a leaf node t is assigned a bag containing the two adjacent vertices making the
edge μ−1(t). Root the tree arbitrarily in a leaf. Assume inner node Xt has parent
A and children B,C on the end of its incident edges e, f, g, respectively. Note that by
construction Xt = mid(e)∪mid(f)∪mid(g), and Xt∩A = mid(e), Xt∩B = mid(f) and
Xt∩C = mid(g). Assume Xt ends up like this as a Join node after step 3). The partition
D,E, F for Xt is then by definition E = A∩B∩C = mid(e)∩mid(f)∩mid(g), and F =
B∩C \A = mid(f)∩mid(g)\mid(e), which implies also D = mid(e)\mid(f)∩mid(g),
in agreement with the statement in the lemma. In step 2) we iteratively contract any
edge between two nodes with at least one node of degree at most 2 whose bags X,C
satisfy C ⊆ X and leave the bag X on the contracted node. In step 3) we apply the
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Figure 2.2: On the upper left a 3 × 3 grid graph G. On the upper right an optimal branch-

decomposition with leaves labeled by edges of G as given by μ and the sets mid(e).

On the lower left a tree-decomposition formed in the first step of the algorithm

of section 2.1.3 with leaf-bags given by μ−1 and inner bags given by the union of

adjacent mid(e). All nodes outside the bold line are then removed. The edges

drawn in a dashed line are contracted and the emphasized bags absorbed by their

neighbors. On the lower right the resulting semi-nice tree-decomposition with new

nodes emphasized rectangular and arranged below arbitrary root node r.

40



2.1 Dynamic programming: tree-decompositions vs. branch-decompositions

algorithm from Paragraph 2.1.3 that transforms a tree-decomposition into a sparse semi-
nice tree-decomposition (T ′,X ). Steps 2) and 3) did not destroy the property that held
for all inner nodes after step 1), and for every node X of T ′ we can find an original node
t ∈ V (T ) with X ⊆ Xt.

Dynamic programming for vertex-subset problems

In this paragraph we give the algorithmic template for doing fast dynamic programming
on a semi-nice tree-decomposition (T,X ) of a graph G to solve an optimization problem
related to vertex subsets on G. The runtime will be given simply as a function of the
D,E, F partition of the Join bags, and X \F, F partition of the other bags. In the final
paragraph we will then express the runtime by pathwidth, branchwidth or treewidth
of the graph. We introduce the template by giving a detailed study of the algorithm
for Minimum Dominating Set , and then consider generalizations to various other
vertex-subset problems like Perfect Code ,2-Packings and (k, r)-center .

As usual, we compute in a bottom-up manner along the rooted tree T a table of
solutions for each node X of T . Let GX denote the subgraph of G induced by vertices
{v ∈ X or v ∈ X ′ : X ′ a descendant of X in T}. The table TableX at X will store
solutions to the optimization problem on GX indexed by the quotient set of all solutions
by a problem-specific equivalence relation. The solution to the problem on G is found
by an optimization over the table at the root of T . To develop a specific algorithm one
must define the tables involved and then show how to Initialize the table at a leaf node
of T , how to compute the tables of Introduce, Forget and Join nodes given that their
children tables are already computed, and finally how to do the optimization at the root.

Computing Minimum Dominating Set. We use the Minimum Dominating Set prob-
lem as an example, whose tables are described by the use of three so-called vertex states:

black: represented by 1, meaning the vertex is in the dominating set.

white: represented by 0, meaning the vertex has a neighbor in GX that is in the dominating
set.

gray: represented by 2, meaning the vertex has a neighbor in G that is in the dominating
set. We also call it a temporary state.

Theorem 2.1.4. Given a semi-nice tree-decomposition (T,X ) of a graph G on n vertices
we can solve in time O(n(max{4|E|3|D|+|F |}+max{|X|3|X\F |2|F |})) the Min Dominating
Set Problem on G with maximization over Join nodes of T with partition D,E, F and
over Initialization and Introduce nodes with bag X and Forgettable set F , respectively.

We prove Theorem 2.1.4 in what follows.
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2 Improving dynamic programming techniques

Legal vertex subsets. Each index s of TableX at a node X represents an assignment
of states to vertices in the bag X. For index s : X → {1, 0, 2} the vertex subset S of
GX is legal for s if:

• V (GX) \ X = (S ∪ N(S)) \ X

• {v ∈ X : s(v) = 1} = X ∩ S

• {v ∈ X : s(v) = 0} ⊆ X ∩ N(S)

• {v ∈ X : s(v) = 2} ⊆ X \ S

TableX(s) is defined as the cardinality of the smallest S legal for s, or we define
TableX(s) = ∞ if no S is legal for s.

Informally, the 4 constraints are that S is a dominating set of GX \X, that vertices
with state black are exactly X ∩ S, and that vertices with state white have a neighbor
in S, and that vertices with state gray are simply constrained not to be in S. Since
this last constraint is also a constraint on vertices with state white a subset S which
is legal for an index s is still legal for an index t where some vertex with state white
in s instead has state gray in t. This immediately implies the monotonicity property
TableX(t) ≤ TableX(s) for pairs of indices t and s where ∀v ∈ X either t(v) = s(v) or
t(v) = 2 and s(v) = 0.

Appropriate data structure. Let us also remark that the TableX data structure should
be an array. To simplify the update operations we should associate integers 0,1,2 with
each vertex state so that an index is a 3-ary string of length |X|. Moreover, the ordering
of vertices in the indices of TableX should respect the ordering in TableC for any child
node C of X and in case C is the only child of X then all vertices in the larger bag
should precede those in the smaller bag. We find this by computing a total order on
V (G) respecting the partial order given by the ancestor/descendant relationship of the
Forget nodes forgetting vertices v ∈ V (G).

Processing Forget nodes. The table TableX at a Forget node X will have 3|X| indices,
one for each of the possible assignments s : X → {1, 0, 2}. We assume a machine model
with words of length 3|X|, to avoid complexity issues related to fast array accesses.
Assume Forget node X has child C with TableC already computed. The correct value
for TableX(s) is the minimum of {TableC(s+)} over all indices s+ where s+(v) = s(v) if
v ∈ X and s+(v) ∈ {1, 0} otherwise. For this reason we call the state gray a Temporary
state. The Forget update operation takes time O(3|X|2|C\X|).

Note that the Forget update operation had no need for the indices of the table at
the child where a forgotten vertex in C \X had state gray. This observation allows us to
save some space and time for the Forgettable vertices of a bag having a Forget parent.

If X is a leaf node with Forgettable vertices F then TableX has only 3|X\F |2|F |

indices, in accordance with the above observation, and is computed in a brute-force
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manner. This takes time O(|X|3|X\F |2|F |), since for each index s we must check if
TableX(s) should be equal to the number of vertices in state black, or if there is a vertex
in state white with no neighbor in state black in which case TableX(s) = ∞.

Processing Introduce nodes. If X is an Introduce node with Forgettable vertices F
and child C then TableX has 3|X\F |2|F | indices and the correct value at TableX(s) is:

• ∞ if TableC(s) = ∞ or if ∃x ∈ X \ C with s(x) = 0 but no neighbor of x in state
black.

• TableC(s) + |{v ∈ X \ C : s(v) = 1}| otherwise

The Introduce update operation thus takes time O(|X|3|X\F |2|F |).

Processing Join nodes. The correct values for TableX at a Join node X with partition
D,E, F and children B,C are computed in four steps, where the last three steps account
for new adjacency’s that have not been considered in any child table (we call these ’new
edges’):

1 ∀s : TableX(s) = min{TableB(sb) + TableC(sc) − |B ∩ C ∩ {v : s(v) = 1}|} over
(sb, sc) such that triple (s, sb, sc) is necessary (see below).

2 New = {uv ∈ E(G) : u ∈ B \ C ∧ v ∈ C \ B}
3 ∀R ⊆ D : New(R) = {u ∈ D \ R : ∃v ∈ R ∧ uv ∈ New}
4 ∀s : TableX(s) = TableX(s′) where s′(v) = 0 if v ∈ D ∧ s(v) = 0 ∧ v ∈ New({u :

s(u) = 1}) and otherwise s′(v) = s(v).

We describe and count the necessary triples of indices (s, sb, sc) for the Join update
using the method of [46], by first considering the number of necessary vertex state triples
(s(v), sb(v), sc(v)) such that vertex state sb(v) and sc(v) in B and C respectively will
yield the vertex state s(v) in X:

• v ∈ B \ C ⊆ D: 3 triples (black,black,-), (white,white,-), (gray,gray,-)

• v ∈ C \ B ⊆ D: 3 triples (black,-,black), (white,-,white), (gray,-,gray)

• v ∈ F : 3 triples (black,black,black), (white,gray,white), (white,white,gray)

• v ∈ E: 4 triples (black,black,black), (white,gray,white), (white,white,gray),
(gray,gray,gray)

Lemma 2.1.5. The Join update just described for a node X with partition D,E, F is
correct and takes time O(3|D|+|F |4|E|).

Proof. For the timing, the number of necessary triples of indices (s, sb, sc) is the product
of the number of necessary vertex state triples (s(v), sb(v), sc(v)) for each vertex in D,E
and F , in total 3|D|+|F |4|E|. For a detailed proof we refer to [46]. The first step in
the computation of TableX therefore takes time O(3|D|+|F |4|E|). The remaining steps
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compute the New(S) sets and update TableX within the same time bound (to account
for the case |F ∪ E| = O(1), for each of the 2|F |3|D|+|E| indices s we compute in step 4
the index s′ using O(1) operations on words of length at most 3|X|.)

Let the set of new edges be New = {uv ∈ E(G) : u ∈ B\C∧v ∈ C\B} as in step 2 of
the Join. For correctness, assume TableB and TableC are correct and consider an index s
of TableX . We will first show that in case we had New = ∅ then step 1 already computes
the correct values. Let therefore S be the smallest vertex subset that is legal for the
index s in the graph GX \New, i.e. not accounting for the new edges. Let Sb = S ∩GB

and Sc = S ∩GC . Since GB ∩GC = B ∩C we have Sb ∩ Sc = S ∩B ∩C. Note that the
subsets Sb and Sc naturally designate indices sb and sc in TableB and TableC where all
vertices in Sb or Sc have state black, while the remaining have state gray in case they have
no neighbors in Sb or Sc and have state white otherwise. The triples s(v), sb(v), sc(v)
thus constructed from S, Sb, Sc are captured by the definition of necessary vertex state
triples, except for the possible triple (s(x) = 0, sb(x) = 0, sc(x) = 0). We define index
s′b of TableB by s′b(x) = 2 for vertices x in such a triple just defined and s′b(v) = sb(v)
for any other vertex. Note that (s(x) = 0, s′b(x) = 2, sc(x) = 0) is a necessary triple.
We then have that Sb and Sc are the smallest vertex subsets of GB and GC that are
legal in GX \ New for the resulting indices s′b and sc, by the assumption that S was
smallest for index s, and by the monotonicity property TableB(s′b) ≤ TableB(sb). Since
s, s′b, sc is a necessary triple, the first step of the algorithm will set TableX(s) to the
value TableB(s′b) + TableC(sc) − |B ∩ C ∩ {v : s(v) = 1}| = |Sb| + |Sc| − |Sb ∩ Sc| = |S|.

The last three steps will account for the edges in New. The only indices s for which
the set of legal subsets are not necessarily the same in GX \ New and GX are those
where there exists a new edge ux with s(u) = 1 and s(x) = 0. For such an index it is
possible that a set S is legal in GX but that the only neighbor x has in S is the new
neighbor u so that S is not legal in GX \ New. However, S is legal in GX \ New for
the index s′ where s′(x) = 2 for all x ∈ D with s(x) = 0 having a new neighbor u with
s(u) = 1, and s′(v) = s(v) otherwise. In case S was the smallest legal subset for s in
GX , the last step of the computation of TableX would therefore correctly set the value
of TableX(s) to TableX(s) = TableX(s′) = |S|.

Finally, at the root node R of T we compute the smallest dominating set of G by
the minimum of {TableR(s) : s(v) ∈ {1, 0}∀v ∈ R}. This takes time O(2R).

Correctness of the algorithm follows by induction on the tree-decomposition, in the
standard way for such dynamic programming algorithms.

For the timing we have the Join operation usually being the most expensive, al-
though there are graphs, e.g. when pathwidth=treewidth, for which the leaf Initializa-
tion or Introduce operations are the most expensive. However, the Forget and Root
optimization operations will never be the most expensive.

Lemma 2.1.5 completes the proof of Theorem 2.1.4. In Section 2.4, we give variations
for our algorithm for other domination-type problems.
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Runtime by branchwidth, treewidth or pathwidth

In this paragraph we assume that we are given a branch-decomposition of width bw
or a tree-decomposition of width tw and first transform these into a semi-nice tree-
decomposition by the algorithms of Paragraph 2.1.3. We then run any of the algorithms
described in Paragraph 2.1.3 to express the runtime to solve those problems as a function
of bw or tw. This runtime will match or improve the best results achieved by dynamic
programming directly on the branch- or tree-decompositions.

Theorem 2.1.6. We can solve Minimum Dominating set by dynamic programming on
a semi-nice tree-decomposition in time: O(23 log4 3bwn) = O(22.38 bwn) if given a branch-
decomposition (T, μ) of width bw; O(22 twn) if given a tree-decomposition of width tw;
O(21.58 pwn) if given a path-decomposition of width pw; and O(2min{1.58 pw,2 tw,2.38 bw})
if given all three. For other domination-type problems we get runtimes as in Table 2.3.

Proof. We argue in detail only for the Minimum Dominating Set problem, as the other
problems in Table 2.3 are handled by completely analogous arguments. Given a branch-
decomposition (T, μ) of width bw we first transform it into a sparse semi-nice tree-
decomposition (T ′,X ) by the algorithm of Lemma 2.1.3. We then apply the algo-
rithm of Theorem 2.1.4. Consider a Join node X with partition D,E, F . By Lemma
2.1.3 D,E, F is related to an inner node t ∈ V (T ) with incident edges e, f, g by
E ⊆ mid(e) ∩ mid(f) ∩ mid(g) and F ⊆ mid(f) ∩ mid(g) \ mid(e) and D ⊆ mid(e) \
mid(f) ∩ mid(g). From our definition of middle sets it is easy to see that a vertex
v ∈ mid(e)∪mid(f)∪mid(g) appears in at least two out of mid(e), mid(f) and mid(g).
From this follows the constraint |mid(e) ∪ mid(f) ∪ mid(g)| ≤ 1.5 bw which in addi-
tion to the constraints |mid(e)| ≤ bw, |mid(f)| ≤ bw, |mid(g)| ≤ bw gives us four
constraints altogether. The worst-case runtime of the Join update of Theorem 2.1.4
is found by taking these four constraints as the constraints of a linear program maxi-
mizing 3|D|+|F |4|E| ≤ 3|(mid(e)∪mid(f)∪mid(g))\(mid(e)∩mid(f)∩mid(g))|4|mid(e)∩mid(f)∩mid(g)|. The
solution is computed by using an ordinary LP-solver and turns out to occur when E = ∅
and |D|+|F | = 1.5bw, which corresponds to 31.5bw = 23 log4 3bw. Note that for Introduce
nodes we get the same worst-case bound.

If given a tree-decomposition of width tw we first transform it into a sparse semi-
nice tree-decomposition using Lemma 2.1.2. The worst-case occurs for a Join node
with tw +1 Expensive vertices, and Theorem 2.1.4 then gives runtime O(22 twn). Note
that when applying the algorithm of Lemma 2.1.2 to a path-decomposition of width pw
(which of course is also a tree-decomposition of width pw) the resulting sparse semi-nice
tree-decomposition will not have any Join nodes. The worst-case runtime then occurs for
an Introduce or Root-optimization node X with pw +1 vertices and empty Forgettable
set, and Theorem 2.1.4 then gives runtime O(pw 3pwn) = O(21.58 pwn).

For certain classes of graphs, e.g. grid graphs, pathwidth is indeed the best pa-
rameter for dynamic programming, since pw = bw−1 = tw. The runtime we get for
Minimum Dominating Set as a function of branchwidth bw is essentially the same as
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that achieved by the algorithm of [46] working directly on the branch-decomposition
(except that the runtime there is expressed with multiplicative factor m instead of our
n but we have m = O(n bw).)

2.2 Dynamic programming and fast matrix multiplication

The idea of applying fast matrix multiplication is basically to use the information stored
in the adjacency matrix of a graph in order to fast detect special subgraphs such as
shortest paths, small cliques—as in the previous example—or fixed sized induced sub-
graphs. Uncommonly we do not use the technique on the graph directly. Instead, it
facilitates a fast search in the solution space. In the literature, there has been some ap-
proaches speeding up linear programming using fast matrix multiplication, e.g. see [94].
For dynamic programming, we exhibit the properties of overlapping subproblems and
optimal substructure. We present a novel approach to fast computing these subsets by
applying the distance product on the structure of dynamic programming instead of the
graph itself.

2.2.1 How fast matrix multiplication improves algorithms

Fast matrix multiplication gives the currently fastest algorithms for some of the most
fundamental graph problems. The main algorithmic tool for solving the All Pair

Shortest Paths problem for both directed and undirected graphs with small and large
integer weights is to iteratively apply the min-plus product on the adjacency matrix of a
graph [88],[90],[8],[99]. Next to the min-plus product or distance product, another varia-
tion of matrix multiplication; the boolean matrix multiplication; is solved via fast matrix
multiplication. Boolean matrix multiplication is used to obtain the fastest algorithm for
Recognizing Triangle-Free Graphs [62]. Recently,Vassilevska and Williams [96]
applied the distance product to present the first truly sub-cubic algorithm for finding a
Maximum Node-Weighted Triangle in directed and undirected graphs.

The first application of fast matrix multiplication to NP-hard problems was given
by Williams [97],who reduced the instances of the well-known problems Max-2-SAT

and Max-Cut to Max Triangle on an exponential size graphs dependent on some
parameter k, arguing that the optimum weight k-clique corresponds to an optimum
solution to the original problem instance.

Max Cut & fast matrix multiplication

In [98], Williams reduces the problems Max-2-SAT and Max Cut to the problem
of Max Triangle, that is, finding a maximum weighted 3-clique in a large auxiliary
graph. In general, finding 3-cliques in an arbitrary graph G with n vertices can be done
in time O(nω): Multiply the adjacency matrix A twice with itself, if A3 has a non-zero
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entry on its main-diagonal, then G contains a 3-clique. The key for solving Max Cut

is to reduce the problem with the input graph on n vertices to Max Triangle on an
exponentially sized graph, i.e., on O(2

n
3 ) vertices and O(2

2n
3 ) edges. The problem is then

solved via distance product on some type of adjacency matrix of the auxiliary graph.

We will now show here a more straight forward way to solve Max Cut that does the
trick directly on matrices without making a detour to Max Triangle. Note that both
the idea behind it and the runtime are the same than in [98]. We state this alternative
technique here for it is the main key for our algorithm.

Max Cut. The Max Cut problem on a graph G is to find a cut of maximum car-
dinality, that is, a set X ⊂ V (G) that maximizes the number of edges between X and
V (G) \ X. Max Cut can be solved in runtime O(2n) by brute force trying all possible
subsets of V (G) and storing the maximum number of edges in the cut.

The following lemma is already stated in [98], the new part is the alternative proof:

Lemma 2.2.1. Max Cut on a graph with n vertices can be solved in time O(2ω n
3 ) with

ω < 2.376 the fast matrix multiplication factor.

Proof. Goal is to find the subset X with the optimal value V(X) to our problem instance.
We partition V (G) into three (roughly) equal sets V1, V2, V3. We consider all subsets
Xi,j ⊆ Vi ∪ Vj (1 ≤ i < j ≤ 3) and define V(Xi,j) := |{{u, v} ∈ E(G) | u ∈ Xi,j, w ∈
Vi ∪ Vj \ Xi,j}|.

We compute the value V(X) for an optimal solution X as follows:

V(X) = max{ V(X1,2) + V(X2,3) − |{{u, v} ∈ E(G) | u ∈ X2,3 ∩ V2, w ∈ V2 \ X2,3}| +
V(X1,3) − |{{u, v} ∈ E(G) | u ∈ X1,3 ∩ Vi, w ∈ Vi \ X1,3, (i = 1, 3)}| :

X1,2 ∩ V1 = X1,3 ∩ V1,

X1,2 ∩ V2 = X2,3 ∩ V2,

X1,3 ∩ V3 = X2,3 ∩ V3}.(2.4)

That is, we maximize the value V over all subsets X1,2, X1,3, X2,3 such that they
form an optimal solution X. When summing up the values V(X1,2)+V(X1,3)+V(X2,3),
we have to subtract the edges that are counted more than once.

We now use distance product to obtain the optimal solution to Max Cut. In order
to apply Equation (2.4) and not to count the edges several times, we slightly change the
values:

• V ′
(X1,2) := V(X1,2);

• V ′
(X2,3) := V(X2,3) − |{{u, v} ∈ E(G) | u ∈ X2,3 ∩ V2, w ∈ V2 \ X2,3}|;

• V ′
(X1,3) := V(X1,3) − |{{u, v} ∈ E(G) | u ∈ X1,3 ∩ Vi, w ∈ Vi \ X1,3, (i = 1, 3)}|.
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We have that

V(X) = max{V ′

(X1,2) + V ′

(X2,3) + V ′

(X1,3)}
under the constraints of Equation (2.4).

For 1 ≤ i < j ≤ 3, we create the 2
n
3 ×2

n
3 matrices Mi,j with rows the power set of Vi

and columns the power set of Vj. Each row r and column t specify entry mi,j
rt = −V ′

(Xr,t)
where Xr,t = Xr ∪ Xt for subsets Xr ⊆ Vi and Xt ⊆ Vj. Note that we negate the values
because we need to turn the problem into a minimization problem in order to apply the
distance product. Then, V(X) is the minimum entry of M1,3 + (M1,2 	 M2,3),i.e.,

V(X) = min
1≤r,t≤2

n
3

{m1,3
rt + m1,2,3

rt },

where

m1,2,3
rt := min

1≤s≤2
n
3

{m1,2
rs + m2,3

st }.

That is, we first apply distance product on two 2
n
3 × 2

n
3 matrices and then add the

resulting matrix to a third. Thus, the time we need is O(n · 2ω n
3 + 2

2n
3 ).

2.2.2 How distance product improves dynamic programming

We introduce a dynamic programming approach on branch-decompositions. Instead of
using tables, it stores the solutions in matrices that are computed via distance product.
Since distance product is not known to have a fast matrix multiplication in general,
we only consider unweighted and small integer weighted problems with weights of size
M = nO(1).

Matrices. We start again with the example of Vertex Cover and use the notions of
Subsection 2.1.2. In the remaining section we show how to use matrices instead of tables
as data structure for dynamic programming. Then we apply the distance product of two
matrices to compute the values V(U) for a subset U ⊆ mid(e) of the parent edge e in the
branch-decomposition. Recall also from Subsection 2.1.2 the definitions of intersection-,
forget-, and symmetric difference vertices I,F , and L,R, respectively. Reformulating
the constraints of Equation (2.3) in the computation of Ve(U) , we obtain:

Ve(U) = min{ Vf (Uf ) + Vg(Ug) − w(Uf ∩ Ug) :

U ∩ I = Uf ∩ I = Ug ∩ I,

Uf ∩ L = U ∩ L,

Ug ∩ R = U ∩ R,

Uf ∩ F = Ug ∩ F}.(2.5)
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With U ∩ I = Uf ∩ I = Ug ∩ I, one may observe that every vertex cover Se of Ge is
determined by the vertex covers Sf and Sg such that all three sets intersect in some
subset U I ⊆ I. From the previous subsection, we got the idea to not compute Ve(U)
for every subset U separately but to simultaneously calculate for each subset U I ⊆ I
the values Ve(U) for all U ⊆ mid(e) subject to the constraint that U ∩ I = U I . For
each of these sets U the values Ve(U) are stored in a matrix A. A row is labeled with
a subset UL ⊆ L and a column with a subset UR ⊆ R. The entry determined by row
UL and column UR is filled with Ve(U) for U subject to the constraints U ∩ L = UL,
U ∩ R = UR, and U ∩ I = U I .

We will show how matrix A is computed by the distance product of the two matrices
B and C assigned to the children edges f and g: For the left child f , a row of matrix B
is labeled with UL ⊆ L and a column with UF ⊆ F that appoint the entry Vf (Uf ) for Uf

subject to the constraints Uf ∩L = UL, Uf ∩F = UF and Uf ∩ I = U I . Analogously we
fill the matrix C for the right child with values for all vertex covers Ug with Ug ∩ I = U I .
Now we label a row with UF ⊆ F and a column with UR ⊆ R storing value Vg(Ug) for
Ug subject to the constraints Ug ∩ F = UF and Ug ∩ R = UR. Note that entries have
value ‘+∞’ if they are determined by two subsets where at least one set is not a vertex
cover.

Lemma 2.2.2. Given a vertex cover U I ⊆ I. For all vertex covers U ⊆ mid(e), Uf ⊆
mid(f) and Ug ⊆ mid(g) subject to the constraint U ∩ I = Uf ∩ I = Ug ∩ I = U I let the
matrices B and C have entries Vf (Uf ) and Vg(Ug). The entries Ve(U) of matrix A are
computed by the distance product A = B 	 C.

Proof. The rows and columns of A, B and C must be ordered that two equal subsets
stand at the same position, i.e., UL must be at the same position in either row of A and
B, UR in either column of A and C, and UF must be in the same position in the columns
of B as in the rows of C. Note that we set all entries with value ‘∞’ to

∑
v∈V (G) wv +1.

Now, the only obstacle from applying the distance product (Section 1.2.5 Equation (1.1))
for our needs, is the additional term w(Uf ∩Ug) in Equation (2.3). Since Uf and Ug only
intersect in U I and UF , we substitute entry Vg(Ug) in C for Vg(Ug) − |U I | − |UF | and
we get a new equation:

Ve(U) = min { Vf (Uf ) + (Vg(Ug) − |U I | − |UF |) :

U ∩ I = Uf ∩ I = Ug ∩ I = U I ,

Uf ∩ L = U ∩ L = UL,

Ug ∩ R = U ∩ R = UR,

Uf ∩ F = Ug ∩ F = UF}.(2.6)

Since we have for the worst case analysis that |L| = |R| due to symmetry reason, we
may assume that |UL| = |UR| and thus A is a square matrix. Every value Ve(U) in
matrix A can be calculated by the distance product of matrix B and C, i.e., by taking
the minimum over all sums of entries in row UL in B and column UR in C.
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Theorem 2.2.3. Dynamic programming for the Vertex Cover problem on weights
M = nO(1) on graphs of branchwidth bw takes time Õ(M · 2ω

2
·bw) with ω the exponent

of the fastest matrix multiplication.

Proof. For every U I we compute the distance product of B and C with absolute integer
values less than M . We show that, instead of a O(2|L|+|R|+|F |+|I|) running time, dynamic

programming takes time Õ(M · 2(ω−1)|L| · 2|F | · 2|I|). We need time O(2|I|) for considering
all subsets U I ⊆ I. Under the assumption that 2|F | ≥ 2|L| we get the running time
for rectangular matrix multiplication: Õ(M · 2|F |

2|L| · 2ω|L|). If 2|F | < 2|L| we simply get

Õ(M · 21.85|L| · 20.54|F |) (for ω = 2.376), so basically the same running time behavior. By
the definition of the sets L,R, I, F we obtain four constraints:

• |I| + |L| + |R| ≤ bw, since mid(e) = I ∪ L ∪ R,

• |I| + |L| + |F | ≤ bw, since mid(f) = I ∪ L ∪ F ,

• |I| + |R| + |F | ≤ bw, since mid(g) = I ∪ R ∪ F , and

• |I| + |L| + |R| + |F | ≤ 1.5 · bw, since mid(e) ∪ mid(f) ∪ mid(g) = I ∪ L ∪ R ∪ F .

When we maximize our objective function Õ(M ·2(ω−1)|L| ·2|F | ·2|I|) subject to these

constraints, we get the claimed running time of Õ(M · 2ω
2
·bw).

A general technique

Now we formulate the dynamic programming approach using distance product in a
more general way than in the previous section in order to apply it to the vertex-subset
problems we introduced in Subsection 1.3.1. In the literature these problems are often
called vertex-state problems. That is, we have given an alphabet λ of vertex-states
defined by the corresponding problem. E.g., for the considered Vertex Cover we
have that the vertices in the graph have two states relating to an vertex cover U : state
‘1’ means “element of U” and state ‘0’ means “not an element of U”. We define a
coloring c : V (G) → λ and assign for an edge e of the branch-decomposition 〈T, μ〉 a
color c to each vertex in mid(e). Given an ordering of mid(e), a sequence of vertex-states
forms a string Se ∈ λ|mid(e)|.

Encoding solutions as strings. Recall the definition of concatenating two strings S1

and S2 as S1‖S2. We then define the strings Sx(�) with � ∈ {L,R, F, I} of length |�| as
substrings of Sx with x ∈ {e, f, g} with e parent edge, f left child and g right child. We
set Se = Se(I)‖Se(L)‖Se(R), Sf = Sf (I)‖Sf (L)‖Sf (F ) and Sg = Sg(I)‖Sg(F )‖Sg(R).
We say that Se is formed by the strings Sf and Sg if Se(�), Sf (�) and Sg(�) suffice
some problem dependent constraints for some � ∈ {L,R, F, I}. For Vertex Cover

we had in the previous section that Se is formed by the strings Sf and Sg if Se(I) =
Sf (I) = Sg(I), Se(L) = Sf (L), Se(R) = Sg(R) and Sf (F ) = Sg(F ). For problems
as Dominating Set it is sufficient to mention that “formed” is differently defined,

50



2.2 Dynamic programming and fast matrix multiplication

as we saw in Subsection 2.1.3. With the common dynamic programming approach of
using tables, we get to proceed c

|L|
1 · c

|R|
1 · c

|F |
2 · c

|I|
3 update operations of polynomial

time where c1, c2 and c3 are small problem dependent constants. Actually, we consider
|λ||L| · |λ||F | · |λ||I| solutions of Gf and |λ||R| · |λ||F | · |λ||I| solutions of Gg to obtain
|λ||L| · |λ||R| · |λ||I| solutions of Ge. In every considered problem, we have c1 ≡ |λ|,
c2, c3 ≤ |λ|2 and c1 ≤ c2, c3.

Generating the matrices. We construct the matrices as follows: For the edges f and
g we fix a string Sf (I) ∈ λI and a string Sg(I) ∈ λI such that Sf (I) and Sg(I) form

a string Se(I) ∈ λI . We compute a matrix A with c
|L|
1 rows and c

|R|
1 columns and with

entries Ve(Se) for all strings Se that contain Se(I). That is, we label monotonically
increasing both the rows with strings Se(L) and the columns with strings Se(R) that
determine the entry Ve(Se) subject to the constraint Se = Se(I)‖Se(L)‖Se(R).

How to do matrix multiplication. Using the distance product, we compute matrix
A from matrices B and C that are assigned to the child edges f and g, respectively.
Matrix B is labeled monotonically increasing row-wise with strings Sf (L) and column-

wise with strings Sf (F ). That is, B has c
|L|
1 rows and c

|F |
2 columns. A column labeled

with string Sf (F ) is duplicated depending on how often it contributes to forming the
strings Se ⊃ Se(I). The entry determined by Sf (L) and Sf (F ) consists of the value
Vf (Sf ) subject to Sf = Sf (I)‖Sf (L)‖Sf (F ).

Analogously, we compute for edge g the matrix C with c
|F |
2 rows and c

|R|
1 columns

and with entries Vg(Sg) for all strings Sg that contain Sg(I). We label the columns with
strings Sg(R) and rows with strings Sg(F ) with duplicates as for matrix B. However,
we do not sort the rows by increasing labels. We order the rows such that the strings
Sg(F ) and Sf (F ) match, where Sg(F ) is assigned to row k in C and Sf (F ) is assigned
to column k in B. I.e., for all Sf (L) and Sg(R) we have that Sf = Sf (I)‖Sf (L)‖Sf (F )
and Sg = Sg(I)‖Sg(F )‖Sg(R) form Se = Se(I)‖Se(L)‖Se(R). The entry determined
by Sg(F ) and Sg(R) consists of the value Vg(Sg) subject to Sg = Sg(I)‖Sg(F )‖Sg(R)
minus an overlap. The overlap is the contribution of the vertex-states of the vertices of
Sg(F )∩F and Sg(I)∩ I to Vg(Sg). That is, the part of the value that is contributed by
Sg(F )‖Sg(R) is not counted since it is already counted in Vf (Sf ).

Lemma 2.2.4. Consider fixed strings Se(I), Sf (I) and Sg(I) such that there exist so-
lutions Se ⊃ Se(I) formed by some Sf ⊃ Sf (I) and Sg ⊃ Sg(I). The values Vf (Sf )
and Vg(Sg) are stored in matrices B and C, respectively. Then the values Ve(Se) of all
possible solutions Se ⊃ Se(I) are computed by the distance product of B and C, and are
stored in matrix A = B 	 C.

Proof. For all pairs of strings Sf (L) and Sg(R) we compute all possible concatenations
Se(L)‖Se(R). In row i of B representing one string Sf (L), the values of every string Sf

are stored with fixed substrings Sf (L) and Sf (I), namely for all possible substrings Sf (F )
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2 Improving dynamic programming techniques

labeling the columns. Suppose Sf (L) is updated with string Sg(R) labeling column j
of C, i.e., Sf (L) and Sg(R) contribute to forming Se with substrings Se(L) and Se(R).
The values of every string Sg ⊃ Sg(I)‖Sg(R) are stored in that column. For solving a
minimization problem we look for the minimum overall possible pairings of Sf (L)‖Sf (F )
and Sg(F )‖Sg(R). By construction, a column k of B = (bij) is labeled with the string
that that matches the string labeling row k of C = (cij). Thus, the value Ve(Se) is stored
in matrix A at entry aij where

aij = min
k

{bik + ckj}, 1 ≤ i ≤ c
|L|
1 , 1 ≤ j ≤ c

|R|
1 , 1 ≤ k ≤ c

|F |
2 .

Hence A is the distance product of B and C.

The following theorem refers especially to all the problems enumerated in Table 2.1.

Theorem 2.2.5. Dynamic programming for solving vertex-state problems on weights M

on graphs of branchwidth bw takes time O(M ·max{c(ω−1)·bw

2

1 c
bw

2

2 , cbw
2 , cbw

3 }) with ω the
exponent of the fastest matrix multiplication and c1, c2 and c3 the number of algebraic
update operations for the sets {L,R}, F and I, respectively.

Proof. For each update step we compute for all possible pairings of Sf (I) and Sg(I) the
distance product of B and C with absolute integer values less than M . That is, instead
of a c

2·|L|
1 ·c|F |

2 ·c|I|3 running time, dynamic programming takes time O(M ·c(ω−1)|L|
1 ·c|F |

2 ·c|I|3 ).
Note that for the worst case analysis we have due to symmetry reason that |L| = |R|.
We need time c

|I|
3 for computing all possible pairings of Sf (I) and Sg(I). Under the

assumption that c
|F |
2 ≥ c

|L|
1 we get the running time for rectangular matrix multiplication:

O(M · c
|F |
2

c
|L|
1

· cω|L|
1 ). If c

|F |
2 < c

|L|
1 we simply get (M · c1.85|L|

1 · c0.54|F |
2 ) (for ω = 2.376), so

basically the same running time behavior.

For parent edge e and child edges f and g, a vertex v ∈ mid(e) ∪ mid(f) ∪ mid(g)
appears in at least two out of mid(e), mid(f) and mid(g). From this follows the constraint
|mid(e) ∪ mid(f) ∪ mid(g)| ≤ 1.5 bw which in addition to the constraints |mid(e)| ≤
bw, |mid(f)| ≤ bw, |mid(g)| ≤ bw gives us four constraints altogether: |L|+ |R|+ |I|+
|F | ≤ 1.5 bw, |L| + |R| + |I| ≤ bw, |L| + |I| + |F | ≤ bw, and |R| + |I| + |F | ≤ bw.

When we maximize our objective function O(M · c(ω−1)|L|
1 · c|F |

2 · c|I|3 ), we get above result
in dependency of the values of c1, c2 and c3.

Application of the technique

In this section, we show how one can apply the technique for several optimization prob-
lems such as Dominating Set and its variants in order to obtain fast algorithms.

For Dominating Set we have that c1 ≡ c2 = 3 and c3 = 4. The former running
time was O(31.5bw) · nO(1). We have Õ(M · max{3(ω−1)·bw

2 3
bw

2 , 3bw, 4bw}) = Õ(M · 4bw)
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2.3 Planarity and dynamic programming

Table 2.1: Worst-case runtime in the upper part expressed also by treewidth tw and branch-

width bw of the input graph. The problems marked with ‘∗’ are the only one where

treewidth may be the better choice for some cut point tw ≤ α · bw with α = 1.19

and 1.05 (compare to Table 2.3 on Page 69). Note that we use the fast matrix

multiplication constant ω < 2.376.

Previous results New results
Dominating Set O(n2min{2 tw,2.38bw}) O(n22bw)

Vertex Cover
∗ O(n2tw) O(n2min{tw,1.19bw})

Independent Dominating Set O(n2min{2 tw,2.38bw}) O(n22bw)

Perfect Code
∗ O(n2min{2 tw,2.58bw}) O(n2min{2 tw,2.09bw})

Perfect Dominating Set
∗ O(n2min{2 tw,2.58bw}) O(n2min{2 tw,2.09bw})

Maximum 2-Packing
∗ O(n2min{2 tw,2.58bw}) O(n2min{2 tw,2.09bw})

Total Dominating Set O(n2min{2.58 tw,3bw}) O(n22.58bw)

Perfect Total Dom Set O(n2min{2.58 tw,3.16bw}) O(n22.58bw)

for node weights M if we use a matrix multiplication algorithm with ω < 2.5 and thus
hide the factor ω.

Table 2.1 compares the results to Table 2.3 in Section 2.4. It illustrates that dynamic
programming is almost always better on branch-decompositions when using fast matrix
multiplication rather than dynamic programming on tree decompositions.

2.3 Planarity and dynamic programming

For planar embedded graphs, separators have a structure that cuts the surface into two
or more pieces onto which the separated subgraphs are embedded on. Miller [73] was
the first to describe how to find small simple cyclic separators in planar triangulations.
Applying those ideas, one can find small separators whose vertices can be connected
by a closed curve in the plane intersecting the graph only in vertices, so-called Jordan
curves (e.g. see [11]).

Tree-decompositions and branch-decompositions have been historically the choice
when solving NP-hard optimization and FPT problems with a dynamic programming
approach (see for example [13] for an overview). Although much is known about the
combinatorial structure of tree-decompositions (e.g., [14, 95]) and branch-decompositions
(e.g., [49]), few results are known relating to the topology of tree-decompositions or
branch-decompositions of planar graphs (e.g., [18, 35, 64].

2.3.1 Computing sphere-cut decompositions

The main idea to speed-up algorithms obtained by the branch-decomposition approach is
to exploit planarity for the three times: First in the upper bound on the branchwidth of a
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graph and second in the polynomial time algorithm for constructing an optimal branch-
decomposition. We present here how for the first time planarity is used in dynamic
programming on graphs of bounded branchwidth.

Our results are based on deep results of Seymour & Thomas [89] on geometric
properties of planar branch decompositions. Loosely speaking, their results imply that
for a graph G embedded on a sphere S0, some branch decompositions can be seen as
decompositions of S0 into discs (or sphere-cuts). We are the first describing such geo-
metric properties of so-called sphere-cut decompositions (see Section 1.2 for definition).
Sphere-cut decompositions seem to be an appropriate tool for solving a variety of planar
graph problems.

How to compute sphere-cut decompositions.

We first need to introduce a new notion:

A carving-decomposition 〈T, μ〉 is similar to a branch-decomposition, only with the
difference that μ is the bijection between the leaves of the tree and the vertex set of the
graph. For an edge e of T , the counterpart of the middle set, called the cut set cut(e),
contains the edges of the graph with end vertices in the leaves of both subtrees. The
counterpart of branchwidth is carvingwidth.

The following theorem provides us with the main technical tool. It follows almost
directly from the results of Seymour & Thomas [89] (see also [56]). Since this result
is not explicitly mentioned in [89], we provide some explanations below. Recall the
definition of a sc-decomposition (T, μ, π) in Section 1.2.

Theorem 2.3.1. Let G be a connected Σ-plane graph of branchwidth at most � without
vertices of degree one. There exists an sc-decomposition of G of width at most � and
such a branch-decomposition can be constructed in time O(n3).

Proof. Let G be a Σ-plane graph of branchwidth at most � and with minimal vertex
degree at least two. Then, I(G) is the simple bipartite graph with vertices V (G)∪E(G),
in which v ∈ V (G) is adjacent to e ∈ E(G) if and only if v is an endpoint of e in G.
The medial graph MG of G has vertex set E(G), and for every vertex v ∈ V (G) there is
a cycle Cv in MG with the following properties:

• The cycles Cv of MG are mutually edge-disjoint and have as union MG;

• For each v ∈ V (G), let the neighbors w1, . . . , wt of v in I(G) be enumerated
according to the cyclic order of the edges {v, w1}, . . . , {v, wt} in the drawing
of I(G); then Cv has vertex set {w1, . . . , wt} and wi−1 is adjacent to wi (1 ≤ i ≤ t),
where w0 means wt.

In a bond carving-decomposition of a graph, every cut set is a bond of the graph,
i.e., every cut set is a minimal cut. Seymour and Thomas [89, Theorems (5.1) and (7.2)]
show that a Σ-plane graph G without vertices of degree one is of branchwidth at most
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� if and only if MG has a bond carving-decomposition of width at most 2�. They also
show [89, Algorithm (9.1)] how to construct an optimal bond carving-decompositions of
the medial graph MG in time O(n4). A refinement of the algorithm in [56] gives running
time O(n3). A bond carving-decomposition 〈T, μ〉 of MG is also a branch-decomposition
of G (vertices of MG are the edges of G) and it can be shown (see the proof of (7.2) in
[89]) that for every edge e of T if the cut set cut(e) in MG is of size at most 2�, then
the middle set mid(e) in G is of size at most �. It is well known that the edge set of
a minimal cut forms a cycle in the dual graph. The dual graph of a medial graph MG

is the radial graph RG. In other words, RG is a bipartite graph with the bipartition
F (G) ∪ V (G). A vertex v ∈ V (G) is adjacent in RG to a vertex f ∈ F (G) if and only
if the vertex v is incident to the face f in the drawing of G. Therefore, a cycle in RG

forms a noose in G.

To summarize, for every edge e of T , cut(e) is a minimal cut in MG, thus cut(e)
forms a cycle in RG (and a noose Oe in G). Every vertex of MG is in one of the open
discs Δ1 and Δ2 bounded by Oe. Since Oe meets G only in vertices, we have that
Oe ∩V (G) = mid(e). Thus for every edge e of T and the two subgraphs G1 and G2 of G
formed by the leaves of the subtrees of T \{e}, Oe bounds the two open discs Δ1 and Δ2

such that Gi ⊆ Δi ∪ Oe, 1 ≤ i ≤ 2.

Finally, with a given bond carving-decomposition 〈T, μ〉 of the medial graph MG,
it is straightforward to construct a cycle in RG corresponding to cut(e), e ∈ E(T ), and
afterward to compute the ordering π of mid(e) in time linear in �.

2.3.2 Planarity and fast matrix multiplication

Root a given sc-decomposition (T, μ, π). A detailed method can be found in Subsec-
tion 2.1.2. Recall that for three neighboring edges of T , the edge closest to the root is
called parent edge eP and the two other edges, child edges eL and eR.

Let OL, OR, and OP be the nooses corresponding to edges eL, eR and eP , and let
ΔL, ΔR and ΔP be the discs bounded by these nooses. Due to the definition of branch-
decompositions, every vertex must appear in at least two of the three middle sets. We
partition the set (OL ∪OR ∪OP )∩V (G) into three sets accordingly to Subsection 2.1.2:

• Intersection vertices I := OL ∩ OR ∩ OP ∩ V (G),

• Forget vertices F := OL ∩ OR ∩ V (G) \ I,

• Symmetric difference vertices L := OP ∩OL∩V (G)\I and R := OP ∩OR∩V (G)\I.

See Figure 2.3 for an illustration of these notions. Observe that |I| ≤ 2, as the disc ΔP

contains the union of the discs ΔL and ΔR. This observation will prove to be crucial for
improving dynamic programming for planar graph problems.

With the nice property that |I| ≤ 2 for all middle sets, we achieve better run-
ning times for many discussed problems when we restrict them to planar graphs. The
following theorem is the counterpart to Theorem 2.2.5 for planarity:
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GP GR

GL

S1

S2

S3

s

OL

OR

OP

Figure 2.3: On the left we see the same graph G as in the last figure. The gray rhombus

and gray edges illustrate the radial graph RG. G is partitioned by the rectangle

vertices of S1, S2, S3 into GL in drawn-through edges, GR in dashed edges, and GP

in pointed edges. On the right the three nooses OL, OR and OP are marked. Note

that the nooses are induced by S1, S2, S3 and the highlighted gray edges on the

left hand. All three nooses here intersect in one intersection vertex s.

Theorem 2.3.2. Let ω be the exponent of the fastest matrix multiplication and c1 and
c2 the number of algebraic update operations for the sets {L,R} and F , respectively.
Then, dynamic programming for solving vertex-subset problems on weights M = nO(1)

on planar graphs of branchwidth bw takes time Õ(M · max{c(ω−1)·bw

2

1 c
bw

2

2 , cbw
2 }).

Thus, for Planar Dominating Set with node weights M , the runtime changes
from O(4bw) ·nO(1) to Õ(M · 31.188bw) = Õ(M · 3.688bw). This runtime is strictly better
than the actual runtime of the treewidth based technique of O(4tw) · nO(1) [2].

2.3.3 Dynamic programming on geometric tree-decompositions

We now study structural properties for tree-decompositions of planar graphs that are
used to improve upon the runtime of tree-decomposition based dynamic programming
approaches for several NP-hard planar graph problems.

Given any tree-decomposition as an input, we will see how to compute a geometric
tree-decomposition that has the same properties as a sc-decomposition. Employing
structural results on minimal graph separators for planar graphs, we create in polynomial
time a parallel tree-decomposition that is assigned by a set of pairwise parallel separators
that form pairwise non-crossing Jordan curves in the plane. In a second step, we show
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how to obtain a geometric tree-decomposition, that has a ternary tree and is assigned
Jordan curves that exhaustively decompose the plane into disks (one disk being the
infinite disk). In fact, geometric tree-decompositions have all the properties in common
with sc-decompositions, that are algorithmically exploited in [49] and in Chapter 3. A
similar approach is obtained for 3-connected planar graphs in the proof of self-duality
for planar treewidth by Bouchitté et al [18].

Tree-decompositions

Lemma 2.3.3. [16] Let T = (T,Z),Z = (Zt)t∈T be a tree-decomposition of G, and let
K ⊆ V (G) be a clique in G. Then there exists a node t ∈ T with K ⊆ Zt.

As a consequence, we can turn a graph G into another graph H ′ by saturating
the bags of a tree-decomposition, i.e., add an edge in G between any two non-adjacent
vertices that appear in a common bag. Automatically, we get that for every clique
K in H ′, there exists a bag Zt such that K = Zt. Note that the width of the tree-
decomposition is not changed by this operation. It is known (e.g. in [95]) that H ′ is
a triangulation of G, actually a so-called k-tree. Although there exist triangulations
that cannot be computed from G with the elimination game, van Leeuwen [95] describes
how to change a tree-decomposition in order to obtain the elimination ordering α and
thus G+

α = H ′. For finding a minimal triangulation H that is a super-graph of G and
a subgraph of G+

α , known as the minimal triangulation sandwich problem, there are
efficient O(nm) runtime algorithms. For a nice survey, we refer to [58].

Minimal separators and triangulations

We want to use triangulations for computing tree-decompositions with “nice” separating
properties. By Rose et al [87], we have also the following lemma:

Lemma 2.3.4. Let H be a minimal triangulation of G. Any minimal separator of H is
a minimal separator of G.

Before we give our new tree-decomposition algorithm, we are interested in an ad-
ditional property of minimal separators. Let SG be the set of all minimal separators
in G. Let S1, S2 ∈ SG. We say that S1 crosses S2, denoted by S1#S2, if there are
two connected components C,D ∈ G \ S2, such that S1 intersects both C and D. Note
that S1#S2 implies S2#S1. If S1 does not cross S2, we say that S1 is parallel to S2,
denoted by S1||S2. Note that “||” is an equivalence relation on a set of pairwise parallel
separators.

Theorem 2.3.5. [77] Let H be a minimal triangulation of G. Then, SH is a maximal
set of pairwise parallel minimal separators in G.
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Algorithm for a new tree-decomposition

Before we give the whole algorithm, we need some more definitions. For a graph G,
let K be the set of maximal cliques , that is, the cliques that have no superset in V (G)
that forms a clique in G. Let Kv be the set of all maximal cliques of G that contain
the vertex v ∈ V (G).For a chordal graph H we define a clique tree as a tree T = (K, E)
whose vertex set is the set of maximal cliques in H, and T [Kv] forms a connected subtree
for each vertex v ∈ V (H). Vice versa, if a graph H has a clique tree, then H is chordal
(see [53]). Even though finding all maximal cliques of a graph is NP-hard in general,
there exists a linear time modified algorithm of [91], that exploits the property of chordal
graphs having at most |V (H)| maximal cliques. By definition, a clique tree of H is also
a tree-decomposition of H (where the opposite is not necessarily true).

Due to [12], a clique tree of a chordal graph H is the maximum weight spanning tree
of the intersection graph of maximal cliques of H, and we obtain a linear time algorithm
computing the clique tree of a graph H. It follows immediately from Lemma 2.3.3 that
the treewidth of any chordal graph H equals the size of the largest clique. Let us define
an edge (Ci, Cj) in a clique tree T to be equivalent to the set of vertices Ci ∩ Cj of the
two cliques Ci, Cj in H which correspond to the endpoints of the edge in T . For us, the
most interesting property of clique trees is given by [60]:

Theorem 2.3.6. Given a chordal graph H and some clique tree T of H, a set of vertices
S is a minimal separator of H if and only if S = Ci ∩ Cj for an edge (Ci, Cj) in T .

We get our lemma following from Theorem 2.3.5 and Theorem 2.3.6:

Lemma 2.3.7. Given a clique tree T = (K, E) of a minimal triangulation H of a graph
G. Then, T is a tree-decomposition T of G, where tw(T ) = tw(H), and the set of all
edges (Ci, Cj) in T forms a maximal set of pairwise parallel minimal separators in G.

We call such a tree-decomposition of G parallel . We give the algorithm in Figure 3.5.

Algorithm TransfTD

Input: Graph G with tree-decomposition T = (T,Z),Z = (Zt)t∈T .
Output: Parallel tree-decomposition T ′ of G with tw(T ′) ≤ tw(T ).

Triangulation step: Saturate every bag Zt, t ∈ T to
obtain the chordal graph H ′, E(H ′) = E(G) ∪ F with fill edges F .

Minimal triangulation step: Compute a minimal triangulation H of G, E(H ′) = E(G) ∪ F ′, F ′ ⊆ F .
Clique tree step: Compute the clique tree of H, being simultaneously a tree-decomposition T ′ of G.

Figure 2.5: Algorithm TransfTD.

The worst case analysis for the runtime of TransfTD comes from the Minimal

triangulation step, that needs time O(nm) for an input graph G, (|V (G)| = n, |E(G)| =
m).
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Plane graphs and minimal separators

In the remainder of the paper, we consider 2-connected plane graphs G. Let V (J) ⊆
V (G) be the set vertices which are intersected by Jordan curve J . The Jordan curve
theorem (e.g. see [39]) states that a Jordan curve J on a sphere S0 divides the rest of S0

into two connected parts, namely into two open discs ΔJ and ΔJ , i.e., ΔJ ∪ΔJ ∪J = S0.
Hence, every Jordan curve J is a separator of a plane graph G if both ΔJ ∩G and ΔJ ∩G
are nonempty. Two Jordan curves J, J ′ then divide S0 into several regions. We define
V +

J,J ′ as the (possibly empty) subset of vertices of V (J ∩ J ′) that are incident to more
than two regions. For two Jordan curves J, J ′, we define JΔJ ′ to be the symmetric
difference of J and J ′, and V (JΔJ ′) = V (J ∪ J ′) \V (J ∩ J ′)∪V +

J,J ′ . Bouchitté et al [18]
use results of [42] to show the following:

Lemma 2.3.8. [18] Every minimal separator S of a 2-connected plane graph G forms
the vertices of a Jordan curve.

That is, in any crossing-free embedding of G in S0, one can find a Jordan curve
only intersecting with G in the vertices of S. Note that a minimal separator S is not
necessarily forming a unique Jordan curve. If an induced subgraph G′ of G (possibly
a single edge) has only two vertices u, v in common with S, and u, v are successive
vertices of the Jordan curve J , then G′ can be drawn on either side of J . This is the
only freedom we have to form a Jordan curve in G, since on both sides of J , there is
a connected subgraph of G that is adjacent to all vertices of J . We call two Jordan
curves J, J ′ equivalent if they share the same vertex set and intersect the vertices in the
same order. Two Jordan curves J, J ′ cross if J and J ′ are not equivalent and there are
vertices v, w ∈ V (J ′) such that v ∈ V (G) ∩ ΔJ and w ∈ V (G) ∩ ΔJ .

Lemma 2.3.9. Let S1, S2 be two minimal separators of a 2-connected plane graph G
and each Si forms a Jordan curve Ji, i = 1, 2. If S1||S2, then J1, J2 are non-crossing.
Vice versa, if two Jordan curves J1, J2 in G are non-crossing and ΔJi

∩ V (G) and
ΔJi

∩ V (G), (i = 1, 2) all are non-empty, then the vertex sets Si = V (Ji), (i = 1, 2) are
parallel separators.

We say that two non-crossing Jordan curves J1, J2 touch if they intersect in a non-
empty vertex set. Note that there may exist two edges e, f ∈ E(G) ∩ ΔJ1

such that
e ∈ E(G) ∩ ΔJ2

and f ∈ E(G) ∩ ΔJ2
.

Lemma 2.3.10. Let two non-crossing Jordan curves J1, J2 be formed by two parallel
separators S1, S2 of a 2-connected plane graph G. If J1 and J2 touch, and there exists a
Jordan curve J3 ⊆ J1ΔJ2 such that there are vertices of G on both sides of J3, then the
vertices of J3 form another separator S3 that is parallel to S1 and S2.

Proof. Let Gi, Gi be the subgraphs of G separated by Ji(i = 1, 2). Since the vertex set
V (J3) is a subset of V (J1) ∪ V (J2) we have that V (J3) ∩ (V (Gi) ∪ V (Gi) = ∅(i = 1, 2).
Hence S3 = V (J3) is parallel to both, Si = V (Ji)(i = 1, 2).
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If J1ΔJ2 forms exactly one Jordan curve J3 then we say that J1 touches J2 nicely .
Note that if J1 and J2 only touch in one vertex, the vertices of J1ΔJ2 may not form any
Jordan curve. The following lemma gives a property of “nicely touching”that we need
later on.

Lemma 2.3.11. If in a 2-connected plane graph G, two non-crossing Jordan curves J1

and J2 touch nicely, then |V +
J1,J2

| = |V (J1) ∩ V (J2) ∩ V (J1ΔJ2)| ≤ 2.

Jordan curves and geometric tree-decompositions

We now want to turn a parallel tree-decomposition T into a geometric tree-decomposition
T ′ = (T,Z),Z = (Zt)t∈T where T is a ternary tree and for every two adjacent edges
(Zr, Zs) and (Zr, Zt) in T , the minimal separators S1 = Zr ∩ Zs and S2 = Zr ∩ Zt form
two Jordan curves J1, J2 that touch each other nicely. Unfortunately, we cannot arbitrar-
ily connect two Jordan curves J, J ′ that we obtain from the parallel tree-decomposition
T —even if they touch nicely, since the symmetric difference of J, J ′ may have more
vertices than tw(T ). With carefully chosen arguments, one can deduce from [18] that
for 3-connected planar graphs parallel tree-decompositions are geometric. However, we
give a direct proof that enables us to find geometric tree-decompositions for all planar
graphs.

For a vertex set Z ⊆ V (G), we define the subset ∂Z ⊆ Z to be the vertices adjacent
in G to some vertices in V (G) \ Z. Let G be planar embedded, Z connected, and ∂Z
form a Jordan curve. We define ΔZ to be the closed disk, onto which Z is embedded
and ΔZ the open disk with the embedding of Z without the vertices of ∂Z. For a non-
leaf tree node X with degree d in a parallel tree-decomposition T , let Y1, . . . Yd be its
neighbors. Let TYi

be the subtree including Yi when removing the edge (Yi, X) from T .
We define GYi

⊆ G to be the subgraph induced by the vertices of all bags in TYi
. For

Yi, choose the Jordan curve Ji formed by the vertex set ∂Yi = Yi ∩ X to be the Jordan
curve that has all vertices of GYi

on one side and V (G) \ V (GYi
) on the other. For each

edge e with both endpoints being consecutive vertices of Ji we choose if e ∈ E(GYi
) or

if e ∈ E(G) \ E(GYi
).

We say that a set J of non-crossing Jordan curves is connected if for every partition
of J into two subsets J1,J2, there is at least one Jordan curve of J1 that touches a
Jordan curve of J2. A set J of Jordan curves is k-connected if for every partition of J
into two connected sets J1,J2, the Jordan curves of J1 touch the Jordan curves of J2

in at least k vertices. Note that if two Jordan curves touch nicely then they intersect in
at least two vertices.

Lemma 2.3.12. For every inner node X of a parallel tree-decomposition T of a 2-
connected plane graph, the collection JX of pairwise non-crossing Jordan curves formed
by ∂X is 2-connected.

Proof. We first show that JX is connected. Assume that JX is not connected, that is,
there is a partition of JX into J1,J2 such that J1 is connected but no Jordan curve
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of J1 touches any Jordan curve of J2. We have two cases: first assume that no vertex
of the Jordan curves of J1 is adjacent to any vertex in a Jordan curve of J2. Each
vertex of the Jordan curves of J1 is adjacent to some vertices in X0 := X \⋃d

k=1 Yk, for
the neighbors Y1, . . . , Yd of X. Hence, there is a Jordan curve J0 formed exclusively by
vertices in X0 such that J1 is on one side of J0 and J2 on the other. Suppose, there is a
pair of vertices u, v where u is a vertex of some Yi bounded by the Jordan curve Ji ∈ J1

and v is a vertex of some Yj bounded by the Jordan curve Jj ∈ J2. By Lemma 2.3.9, J0

is non-crossing Ji and Jj. Choose J0 minimal, i.e., no subset of V (J0) forms a Jordan
curve. Thus, V (J0) ⊆ X0 is a minimal u, v-separator that is parallel to the maximal SG

set of pairwise parallel minimal separators in G. That is contradicting the maximality
of SG. For the second case assume there are some edges EJ ⊆ E(X) between Jordan
curves in J1 and Jordan curves in J2. Then there is a closed curve CJ separating J1

from J2 touching some (or none) vertices of X0 and crossing the edges of EJ . Turn CJ

into a Jordan curve J1,2: for each crossed edge e, move the curve to one endpoint of e,
alternately to a vertex of J1 and a vertex of J2. Then, J1,2 is neither an element of J1

nor of J2, and with Lemma 2.3.9 and the same arguments as above, V (J1,2) is a minimal
separator parallel to SG what again is a contradiction to the maximality of SG.

Now we prove that JX is 2-connected. First note that G itself is 2-connected. Thus,
if J is only 1-connected, there must be a path (or edge) in X0 from some partition J1 to
J2, if J1 and J2 intersect only in one vertex. The proof is very similar to the first case,
so we only sketch it. The only difference is that we now assume that there is one vertex
w in the intersection of the Jordan curves of J1 with those of J2. As in both previous
cases, we find a minimal separator S. In the first case, S ⊆ X0 ∪ {w} and in the second
S ⊆ X0 ∪ {w} ∪ V (EJ) for the edges EJ with one endpoint in J1 and the other in J2.
Again, we obtain a contradiction since S is parallel to SG.

Lemma 2.3.13. Every bag X in a parallel tree-decomposition T can be decomposed into
X1, . . . , X� such that each vertex set ∂Xi forms a Jordan curve in G and

⋃�
i=1 ∂Xi = ∂X.

Proof. Let Y1, . . . , Yd be the neighbors of X. By Lemma 2.3.12, ∂X forms a 2-connected
set of Jordan curves, each bounding a disk inside which one of the subgraphs GYj

is
embedded onto. If we remove the disks ΔYj

for all 1 ≤ j ≤ d and the set of Jordan
curves JX from the sphere, we obtain a collection DX of � disjoint open disks each
bounded by a Jordan curve of JX . Note that � ≤ max{d, |X|}. Let Zi be the subgraph
in X ∩ Δi for such an open disk Δi ∈ DX for 1 ≤ i ≤ �. Then each Zi is either empty
or consisting only of edges or subgraphs of G and the closed disk Δi is bounded by a
Jordan curve Ji formed by a subset of ∂X. We set Xi = Zi∪V (Ji) with ∂Xi the vertices
of Ji.

Lemma 2.3.14. In a decomposition of the sphere S0 by a 2-connected collection J of
non-crossing Jordan curves, one can repeatedly find two Jordan curves J1, J2 ∈ J that
touch nicely, and substitute J1 and J2 by J1ΔJ2 in J .
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Proof. Removing J from S0 decomposes S0 into a collection D of open discs each
bounded by a Jordan curve in J . For each Δ1 ∈ D bounded by J1 ∈ J there is a
“neighboring” disk Δ2 ∈ D bounded by J2 ∈ J such that the intersection J1 ∩ J2 forms
a line of S0. Then, J1ΔJ2 bounds Δ1 ∪ Δ2. Replace, J1, J2 by J3 in J and continue
until |J | = 1, that is, we are left with one Jordan curve separating S0 into two open
disks.

We get that X1, . . . X� and GY1
, . . . , GYd

are embedded inside of closed disks each
bounded by a Jordan curve. Thus, the union D over all these disks together with the
Jordan curves JX fill the entire sphere S0 onto which G is embedded. Each subgraph em-
bedded onto Δ∪J for a disk Δ ∈ D and a Jordan curve J bounding Δ, forms either a bag
Xi or a subgraph GYj

. Define the collection of bags ZX = {X1, . . . X�, Y1, . . . , Yd}. In Fig-
ure 2.6, we give the algorithm TransfTD II for creating a geometric tree-decomposition
using the idea of Lemma 2.3.10.

Algorithm TransfTD II

Input: Graph G with parallel tree-decomposition T = (T,Z),Z = (Zt)t∈T .
Output: Geometric tree-decomposition T ′ of G with tw(T ′) ≤ tw(T ).

For each inner bag X with neighbors Y1, . . . , Yd {
Disconnection step: Replace X by X1, . . . X� (Lemma 2.3.13). Set ZX = {X1, . . . X�, Y1, . . . , Yd}.
Reconnection step: Until |ZX | = 1 {

Find two bags Zi and Zj in ZX such that Jordan curve JiΔJj

bounds a disk with Zi ∪ Zj (Lemma 2.3.14);
Set Zij = (ZiΔZj) ∪ (Zi ∩ Zj) and connect Zi and Zj to Zij ;
In ZX : substitute Zi and Zj by Zij . }}

Figure 2.6: Algorithm TransfTD II.

Since by Lemma 2.3.11, |V (∂Zi ∩ ∂Zj ∩ ∂Zij)| ≤ 2, we have that at most two
vertices in all three bags are contained in any other bag of ZX . Note that geometric
tree-decompositions have a lot in common with sphere-cut decompositions, namely that
both decompositions are assigned with vertex sets that form “sphere-cutting” Jordan
curves. For our new dynamic programming algorithm, we use much of the structure
results obtained in Subsection 2.3.1.

Jordan curves and dynamic programming

The following techniques improve the existing algorithm of Alber et al [2] for weighted
Planar Dominating Set. Their algorithm is based on dynamic programming on nice
tree-decompositions T and has the running time 4tw(T ) · nO(1). We prove the following
theorem by giving an algorithm of similar structure to the one in Subsection 2.1.3. Thus,
we give here only a sketch of the idea. Namely, to exploit the planar structure of the
nicely touching separators to improve upon the runtime.
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Theorem 2.3.15. Given a geometric tree-decomposition T = (T,Z),Z = (Zt)t∈T of
a planar graph G. Weighted Planar Dominating Set on G can be solved in time
3tw(T ) · nO(1).

Proof. We root T by arbitrarily choosing a node r as a root. Each internal node t of T
now has one adjacent node on the path from t to r, called the parent node, and two
adjacent nodes toward the leaves, called the children nodes. To simplify matters, we call
them the left child and the right child.

Let Tt be a subtree of T rooted at node t. Gt is the subgraph of G induced by all
bags of Tt. For a subset U of V (G) let w(U) denote the total weight of vertices in U .
That is, w(U) =

∑
u∈U wu. Define a set of subproblems for each subtree Tt.

Alber et al. [2] introduced the so-called “monotonicity”-property of domination-like
problems for their dynamic programming approach that we will use, too. For every node
t ∈ T , we use three colors for the vertices of bag Zt:

black: represented by 1, meaning the vertex is in the dominating set.

white: represented by 0, meaning the vertex has a neighbor in Gt that is in the dominating
set.

gray: represented by 2, meaning the vertex has a neighbor in G that is in the dominating
set.

For a bag Zt of cardinality �, we define a coloring c(Zt) to be a mapping of the
vertices Zt to an �-vector over the color-set {0, 1, 2} such that each vertex u ∈ Zt is
assigned a color, i.e., c(u) ∈ {0, 1, 2}. We further define the weight w(c(Zt)) to be
the minimum weight of the vertices of Gt in the minimum weight dominating set with
respect to the coloring c(Zt). If no such dominating set exists, we set w(c(Zt)) = +∞.
We store all colorings of Zt, and for two child nodes, we update each two colorings to
one of the parent node.

Before we describe the updating process of the bags, let us make the following
comments:

We defined the color “gray” according to the monotonicity property: for a vertex u
colored gray, we do not have (or store) the information if u is already dominated by a
vertex in Gt or if u still has to be dominated in G \Gt. Thus, a solution with a vertex v
colored white has at least the same the weight as the same solution with v colored gray.

By the definition of bags, for three adjacent nodes r, s, t, the vertices of ∂Zr have
to be in at least on of ∂Zs and ∂Zt. The reader may simply recall that the parent bag
is formed by the union of the vertices of two nicely touching Jordan curves.

For the sake of a refined analysis, we partition the bags of parent node r and left
child s and right child t into four sets L,R, F, I as follows:

• Intersection I := ∂Zr ∩ ∂Zs ∩ ∂Zt,

• Forget F := (Zs ∪ Zt) \ ∂Zr,
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• Symmetric difference L := ∂Zr ∩ ∂Zs \ I and R := ∂Zr ∩ ∂Zt \ I.

We define F ′ to be actually those vertices of F that are only in (∂Zs ∪ ∂Zt) \ ∂Zr.
The vertices of F \ F ′ do not exist in Zr and hence are irrelevant for the continuous
update process. We say that a coloring c(Zr) is formed by the colorings c1(Zs) and
c2(Zt) subject to the following rules:

(R1) For every vertex u ∈ L ∪ R : c(u) = c1(u) and c(u) = c2(u), respectively.

(R2) For every vertex u ∈ F ′ either c(u) = c1(u) = c2(u) = 1 or c(u) = 0∧c1(u), c2(u) ∈
{0, 2} ∧ c1(u) �= c2(u).

(R3) For every vertex u ∈ I c(u) ∈ {1, 2} ⇒ c(u) = c1(u) = c2(u) and c(u) = 0 ⇒
c1(u), c2(u) ∈ {0, 2} ∧ c1(u) �= c2(u).

We define Uc to be the vertices u ∈ Zs ∩ Zt for which c(u) = 1 and update the
weights by:

w(c(Zr)) = min{w(c1(Zs)) + w(c2(Zt)) − w(Uc)|c1, c2 forms c}
.

The number of steps by which w(c(Zr)) is computed for every possible coloring of Zr

is given by the number of ways a color c can be formed by the three rules (R1), (R2), (R3),
i.e.,

3|L|+|R| · 3|F ′| · 4|I|

steps.

By Lemma 2.3.11, |I| ≤ 2 and since |L|+|R|+|F | ≤ tw(T ), we need at most 3tw(T )·n
steps to compute all weights w(c(Zr)) that are usually stored in a table assigned to bag
Zr.

In [2], the worst case in the runtime for Planar Dominating Set is determined
by the number of vertices that are in the intersection of three adjacent bags r, s, t. Using
the notion of Subsection 2.1.2 for a geometric tree-decomposition, we partition the vertex
sets of three bags Zr, Zs, Zt into sets L,R, F, I, where Zr is adjacent to Zs, Zt. The sets
L,R, F represent the vertices that are in exactly two of the bags. Let us consider the
Intersection set I := ∂Zr ∩ ∂Zs ∩ ∂Zt. By Lemma 2.3.11, |I| ≤ 2. Thus, I is not any
more part of the runtime.

Summary of problems and solutions. In Section 2.2, we combined dynamic program-
ming with fast matrix multiplication to get 4bw · nO(1) and for Planar Dominating

Set even 3
ω
2

bw ·nO(1), where ω is the constant in the exponent of fast matrix multiplica-
tion (currently, ω ≤ 2.376). Exploiting planarity, we saw how to improve further upon
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the existing bounds and gave a 3tw · nO(1) algorithm for Planar Dominating Set,
representative for a number of improvements on results of the Tables 2.3 on Page 69
and 2.1 on Page 53 as shown in Table 2.2.

Table 2.2: Worst-case runtime expressed by treewidth tw and branchwidth bw of the input

graph. In Table 2.1 on Page 53, only those graph problems are improved upon,

which are unweighted or of small integer weights. Therefor, we state the improve-

ments independently for weighted and unweighted graph problems. The second

part of the table gives a summary of the most important improvements on exact

and parameterized algorithms with parameter k. In some calculations, the fast

matrix multiplication constant ω < 2.376 is hidden.

Previous results New results
weighted Planar Dominating Set O(n2min{2 tw,2.38bw}) O(n21.58 tw)

unweighted Planar DS —”— O(n2min{1.58 tw,1.89bw})
w Planar Independent DS O(n2min{2 tw,2.28bw}) O(n21.58 tw)

uw Planar Independent DS —”— O(n2min{1.58 tw,1.89bw})
w Planar Total DS O(n2min{2.58 tw,3bw}) O(n22 tw)

uw Planar Total DS —”— O(n2min{2 tw,2.38bw})
w Planar Perfect Total DS O(n2min{2.58 tw,3.16bw}) O(n2min{2.32 tw,3.16bw})
uw Planar Perfect Total DS —”— O(n2min{2.32 tw,2.53bw})

Planar Dominating Set O(25.04
√

n) [50] O(23.99
√

n)

Planar Vertex Cover O(23.18
√

n) [50] O(22.52
√

n)

Parameterized Planar DS O(215.13
√

kk + n3) [49] O(211.98
√

kk + n3)

Parameterized Planar VC O(25.67
√

kk + n3) [50] O(23.56
√

kk + n3)

2.4 Appendix

Other domination-type problems. For problems over vertex subsets having other
domination-type constraints we get slightly different runtimes. Those are the other
(σ, �)-problems that are mentioned in Section 1.3. The papers [1, 7] considers these con-
straints, and give dynamic programming algorithms on nice tree-decompositions that
take into account monotonicity properties to arrive at fast runtime.

Perfect code. We now describe the dynamic programming algorithms on semi-nice
tree-decompositions tree-decomposition!semi-nice tree-decomposition for these problems,
whose results are summarized in Table 2.3. We start by Perfect code , which is not an
optimization problem, since any Perfect Code in a graph has the same size. However, it
is NP-complete to decide if an arbitrary graph has a Perfect Code [68]. We construct an
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algorithm using semi-nice tree-decompositions, using the same terminology and variables
as in the Dominating Set algorithm.

We use the 3 vertex states black, white and gray. For index s : X → {1, 0, 2} the
vertex subset S of GX is legal for s if: S is a perfect code of GX \ X (i.e. every vertex
v ∈ V (GX)\X has |N [v]∩S| = 1), vertices with state black are exactly X ∩S and they
have no neighbors with state black, vertices with state white have exactly one neighbor
in S \X, and vertices with state gray have zero neighbors in S \X. Note that gray and
white reflect only the number of dominating neighbors outside of the bag X. We sketch
the further differences with the Dominating set algorithm.

A table index s stores True if there exists any vertex subset legal for s, and False
otherwise. During Forget update we consider only indices in the child table TableC

where the forgotten vertices are either in state black, or in state white and none of its
neighbors in C are in state black, or in state gray and exactly one of its neighbors in
C are in state black. During Root-optimization at X we look for an index storing True
having the property that any vertex with state white has no neighbors in X with state
black, and any vertex with state gray has exactly one neighbor in X with state black.

During the Join update the following 4 triples are necessary for vertices E and
F : (black,black,black), (gray,gray,gray), (white,gray,white), (white,white,gray). The
triple (white,white,white) was not necessary for the dominating set problem because
of a monotonicity property between the white and gray states. We don’t need the
triple (white,white,white) since white reflects a dominating neighbor outside the bag
X and Perfect Code asks for only one dominating neighbor. For the vertices in D we
have 3 necessary triples, one for each vertex state. TableX(s) at a Join node X with
children B,C is the disjunction of conjunctions TableB(sb)∧TableC(sc) over all pairs of
indices (sb, sc) such that the triple (s, sb, sc) is a necessary triple of indices. Then, set
TableX(s) = False if for some new edge uv s(u) = s(v) = 1. The timing for the Join
for the Perfect Code problem is thus O(3|D|4|E|+|F |), by a proof similar to the one for
Lemma 2.1.5.

Total Dominating Set. We now turn to Total Dominating Set where the vertices
in the dominating set S also must have at least one neighbor in S. We use the 4 vertex
states black, white, blue, and gray, where the two latter are temporary states. For
index s : X → {1, 0, 1̂, 2} the vertex subset S of GX is legal for s if: S is a total
dominating set of GX \ X, vertices with state black or blue are exactly X ∩ S, and
vertices with state black or white have a neighbor in S. Note that vertices with state
blue and gray are simply constrained to be in S or not in S, respectively. Since these
are also constraints on vertices with state black and white, respectively, we have the
monotonicity property TableX(t) ≤ TableX(s) for pairs of indices t and s where ∀v ∈ X
either t(v) = s(v) or t(v) = 1̂ and s(v) = 1 or t(v) = 2 and s(v) = 0.

The algorithm is very similar to the Dominating Set algorithm, except that also
vertices in the dominating set have temporary state blue in addition to state black. Dur-
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ing the Join update there are 6 triples necessary for Expensive vertices: (gray,gray,gray),
(white,white,gray),(white,gray,white), (blue,blue,blue), (black,blue,black), and last but
not least (black,black,blue). The first three triples occur also in the dominating set
algorithm, while the argument that the three last triples for dominating vertices suffice
is that the monotonicity property holds also between the black and blue states. Thus 6
triples total and runtime O(6k) for a Join update if all vertices are Expensive. Note that
[7] incorrectly claims runtime O(5k), but this has been corrected to O(6k) in [1]. For
the vertices in D we get 4 triples simply because we have 4 vertex states, while for ver-
tices in F we get the 4 triples (white,white,gray),(white,gray,white) (black,black,blue),
(black,blue,black) since gray and blue are temporary states. The timing for the Join for
the Min Total Dominating set problem is thus O(4|D|+|F |6|E|).

Other variations. For Independent Dominating Set we get the same runtime as
Dominating Set, while for Perfect Dominating Set we get the same runtime as
Perfect Code. For Total Perfect Dominating Set we combine our solutions
for Perfect Dominating Set and Total Dominating Set for a runtime for Join
of O(4|D|5|F |6|E|).

See column Join in Table 2.3 for an overview of these results. The previous best
results for these problems [1, 7] correspond to our results when treating all vertices as
Expensive, so we have moved closer to the goal of λ|D|+|E|+|F | time for a problem with λ
vertex states. These algorithms can of course be extended also to more general (σ, �)-
sets. For example, if σ = {0, 1, ..., p} and � = {0, 1, ..., q} we are asking for a subset
S ⊆ V (G) such that S induces a subgraph of maximum degree at most p with each
vertex in V (G)\S having at most q neighbors in S. For this case we would use p+ q +2
vertex states and get runtime O((p + q + 2)|D|(s(p) + s(q))|E|+|F |), where s(i) is the
number of pairs of ordered non-negative integers summing to i. Thus, for the Maximum
2-Packing problem (also known as Max Strong Stable set), which is of this form with
p = 0 and q = 1, we get an O(3|D|4|E|+|F |) runtime for the Join operation.

The (k, r)-center problem. In the paper [32] the (k, r)-center problem is solved
by dynamic programming on a branch-decomposition. The problems asks whether an
input graph G has at most k vertices, called centers, such that every vertex is within
distance at most r from some center. We now describe an algorithm solving the (k, r)-
center problem on a semi-nice tree-decomposition by using as basis the algorithm
in [32] on branch-decompositions. In the following we mainly describe the algorithm
already given by [32], with the only addition to that algorithm being the handling
of new edges in the Join update below. The problem asks whether an input graph G
has ≤ k vertices, called centers, such that every vertex of G is within distance ≤ r from
some center. We first transform a given branch-decomposition into a semi-nice tree-
decomposition as described in Lemma 2.1.3. We can design a dynamic programming
algorithm on semi-nice tree-decompositions that needs 2r + 1 states with one state
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defining centers, r states defining a vertex ”having a center at distance i” for each
1 ≤ i ≤ r, and r temporary states defining a vertex that ”must get a center at distance
i” for each 1 ≤ i ≤ r (this center will be reachable by a path through a not-yet considered
neighbor.) These latter two types of states obey a monotonicity property similar to the
white and gray states. The resulting algorithm will have O((2r + 1)|D|+|F |(3r + 1)|E|)
time for updating Join nodes and O(|X|(r + 1)|F |(2r + 1)|X\F |) for Introduce nodes X
and O((r + 1)|C\X|(2r + 1)|X|) for Forget node X and child C. On a Join node X
with partition D,E, F consider the node t of the branch-decomposition guaranteed by
Lemma 2.1.3 that has E ⊆ mid(e)∩mid(f)∩mid(g) and F ⊆ mid(f)∩mid(g)\mid(e)
and D ⊆ mid(e) \ mid(f) ∩ mid(g). The first step of the Join update on node X
with partition D,E, F can be derived from the update described in [32] for sets X3 =
mid(e)∩mid(f)∩mid(g), X1 = mid(e)∩mid(f)\mid(g), X2 = mid(e)∩mid(g)\mid(f)
and X4 = mid(f) ∩ mid(g) \ mid(e). We then have to handle the new edges among
vertices in D, but we can do that without increase of the runtime. After step 1 we
have correct table entries for the graph GX \ New, as in the proof of Lemma 2.1.5. To
account for new edges we compute in step 2 and 3 New and New(R) for each R ⊆ D
as in the Min Dom set algorithm, and then in step 4 we update in a loop from i = 1..r
each index s by TableX(s) = TableX(s′) where s′ is defined by s′(u) =”must get a center
at distance i” for any u ∈ New(R) with s(u) =”having a center at distance i” and R
being the vertices in D whose state in s is either ”must get a center at distance i − 1”
or ”having a center at distance i − 1”. Together with a straightforward extension of
the update process on Introduce nodes and Forget nodes we obtain an algorithm on
semi-nice tree-decompositions matching the runtime O(2r +1)1.5 bw of [32] when given
a branch-decomposition of width bw.

See Table 2.3 for a summary of the results for each domination-type problem, ex-
pressed by tw and bw only, to not clutter the table, even though for each problem in
the table such a cutoff point could be computed for which pw is best.

For the (k, r)-center problem we get an algorithm with runtime O(2r + 1)1.5 bw,
matching the time achieved by [32] for an algorithm working directly on the branch-
decomposition by a similar argument as in Theorem 2.1.6.
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2.4 Appendix

Table 2.3: The number of vertex states λ and time for a Join operation with Expen-
sive vertices E, Forgettable vertices F and Symmetric Difference vertices D.
Worst-case runtime expressed also by treewidth tw and branchwidth bw of
the input graph, and the cutoff point at which treewidth is the better choice.
To not clutter the table, we leave out pathwidth pw, although for each prob-
lem there is a cutoff at which pathwidth would have been best.

λ Join Total time tw faster

Dominating Set 3 O(3|D|+|F |4|E|) O(n2min{2 tw,2.38bw}) tw ≤ 1.19bw

Independent DS 3 O(3|D|+|F |4|E|) O(n2min{2 tw,2.38bw}) tw ≤ 1.19bw

Perfect Code 3 O(3|D|4|E|+|F |) O(n2min{2 tw,2.58bw}) tw ≤ 1.29bw

Perfect DS 3 O(3|D|4|E|+|F |) O(n2min{2 tw,2.58bw}) tw ≤ 1.29bw

Max 2-Packing 3 O(3|D|4|E|+|F |) O(n2min{2 tw,2.58bw}) tw ≤ 1.29bw

Total DS 4 O(4|D|+|F |6|E|) O(n2min{2.58 tw,3bw}) tw ≤ 1.16bw

Perf Total DS 4 O(4|D|5|F |6|E|) O(n2min{2.58 tw,3.16bw}) tw ≤ 1.22bw
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2 Improving dynamic programming techniques

70



3 Employing structures for subexponential algorithms

All results of the previous chapter provide subexponential parameterized algorithms
when property Ω of Section 1.4 holds. However, there are many parameterized problems

for which there is no known algorithm providing property Ω in general. The typical
running times of dynamic programming algorithms for these problems are O(bw(G)!) ·
nO(1), O(bw(G)bw(G)) · nO(1), or even O(2bw(G)2) · nO(1). Examples of such problems
are k-Longest Path, k-Feedback Vertex Set, k-Connected Dominating Set,
and k-Graph TSP. Usually, these are problems in NP whose certificate verifications
involves some connectivity question. In this section, we show that for such problems one
can prove that Ω actually holds for the graph class that we are interested in. To do
this, one has to make further use of the structural properties of the class (again from
the Graph Minors Theory) that can vary from planar graphs to H-minor-free graphs.

In other words, we use the structure of the graph class not only for proving Λ (see

Section 1.4) but also for proving Ω .

3.1 Connectivity and surfaces

Vertex- and edge subset problems can be solved on graphs of bounded treewidth by
using dynamic programming techniques, as we saw in Chapter 2, though for edge subset
problems, there is an extra cost in computation due to the connectivity. For graphs
embedded on surfaces (as well as for graphs excluding some fixed sized minor), We will
see in the later sections of this chapter, that one can employ the Catalan structure of
the graph embedding and its decomposition to check solutions and partial solutions in
a more efficient way. The basic idea is that the solution consists of drawings of disjoint
components or paths of a plane graph. That is, if one visualizes components by polygons
and paths by arcs in the plane, they do not cross. In addition to this, we have that all
polygons or arcs are connected to a cycle which visualizes a noose of small length �.
Then the number of solutions stands in direct relation to the Catalan number of �, what
gives us a new upper bound.

3.1.1 Components and paths

Let G be a graph and let E ⊆ E(G) and S ⊆ V (G). We consider edge-subset problems,
whose solution consists of one or several connected components. In order to count the
number of states at each step of dynamic programming, we have to estimate the number
of collections of internally vertex-disjoint components on the induced subgraph G[E] of
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3 Employing structures for subexponential algorithms

G. We count those components which use edges from E, intersect with vertices of S
and own a problem specific property P. In particular, P defines the properties of the
components in G[E] that are necessary for a valid solution to the problem. We denote
the term “component C has property P” by C(P). P can give several properties and is
defined by property G of Section 1.3.2 of the respective edge-subset problem. It could
mean for example, that each component is acyclic, or that every vertex of a component
C in G[E] has an even number of adjacent vertices in C.

Definition 3.1.1. Let C be a collection of vertex-disjoint components C in G, E ⊆ E(G)
and S ⊆ V (G).

compG(E, S,P) := {C | ∀C ∈ C : E(C) ∩ E(G) ⊆ E ∧ C ∩ S �= ∅ ∧ C(P)}
is the set of all collections of components on set E intersecting with S and having property
P.

Let μ : C → C be a bijection. Define equivalence relation ′ ∼′ on compG(E, S,P):

For C1,C2 ∈ compG(E, S,P) : C1 ∼ C2, if ∀C1 ∈ C1, C2 ∈ C2 with μ(C1) = C2

we have that C1 ∩ S = C2 ∩ S.

Denote by
q-compG(E, S,P) := |compG(E, S,P)/ ∼ |

the cardinality of the quotient set of compG(E, S,P) by ∼.

If P := “arbitrary”, we simply use the shorter notion compG(E, S). Note that
compG(E, S) ⊆ compG(E, S,P) for any property P.

For edge-subset problems whose solution is a cycle or path, we have that PP :=
“every component is a path with both endpoints in S”.

Definition 3.1.2. For a collection of vertex-disjoint paths in G[E] with endpoints in S,
where E ⊆ E(G) and S ⊆ V (G), define

pathsG(E, S) := compG(E, S,PP )

and
q-pathsG(E, S) = |pathsG(E, S)/ ∼ |.

3.1.2 Catalan structures

Given a graph G and let S ⊆ V (G) be a separator of G. Let G1 and G2 be subgraphs
of G such that G1 ∪ G2 = G, V (G1) ∩ V (G2) = S and E(G1) ∩ E(G2) = ∅.

We say that S has Catalan structure if

q-compGi
(E(Gi), S) = 2O(|S|), for i = 1, 2.(3.1)
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Figure 3.1: The left diagram shows a non-crossing partition, the right a non-crossing matching.

Branch-decomposition with Catalan structure. The reason we define q-compG(E, S)
is because the number of states for e ∈ E(T ) is bounded by O(q-compGi

(E(Gi), mid(e))),
when applying dynamic programming on some middle set mid(e) of the branch decom-
position (T, μ).

Given a graph G and a branch decomposition (T, μ) of G, we say that (T, μ) has
Catalan structure if for every edge e ∈ E(T ) and any i ∈ {1, 2},

q-compGi
(E(Gi), mid(e)) = 2O(bw(T,μ)).(3.2)

3.1.3 Non-crossing matchings

To estimate q-compG(E, S) or q-pathsG(E, S) in a graph embedded onto a surface when
S is cyclic ordered, that is, when the vertices of S can be connected by a noose, we need
the following lemmas.

Non-crossing partitions. Non-crossing partitions give us the key to our later dy-
namic programming approach. A non-crossing partition (ncp) is a partition P (n) =
{P1, . . . , Pm} of the set S = {1, . . . , n} such that there are no numbers a < b < c < d
where a, c ∈ Pi, and b, d ∈ Pj with i �= j. A partition can be visualized by a circle with
n equidistant vertices on its border, where every set of the partition is represented by
the convex polygon with its elements as endpoints. A partition is non-crossing if these
polygons do not overlap. See the left diagram in Figure 3.1 for an example.

Non-crossing partitions were introduced by Kreweras [70], who showed that the
number of non-crossing partitions over n vertices is equal to the n-th Catalan number:

(3.3) CN(n) =
1

n + 1

(
2n

n

)
∼ 4n

√
πn

3

2

≈ 4n

Thus, for a graph G embedded onto a sphere S0 and a vertex set S with cardinality
�, that is connected by a noose, we have that
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3 Employing structures for subexponential algorithms

q-compG(E, S) = CN(�) = O(4�).

Non-crossing matchings.

Lemma 3.1.3. [70] Let P (n) = {P1, . . . , Pn
2
} be a partition of an ordered set S =

{x1, . . . , xn} into tuples, such that there are no elements xi < xj < xk < x� with {xi, xk}
and {xj, x�} in P (n). Let PS be the collection of all such partitions of S. Then,

|PS| = O(2n).

The partitions of Lemma 3.1.3 are called non-crossing matchings . A non-crossing
matching can be visualized by placing n vertices on a cycle , and connecting matching
vertices by arcs at one side of the cycle. See the right diagram in Figure 3.1 for an
example. In a graph G, each element P of pathsG(E, S)/ ∼ can be seen as set of arcs
with endpoints in S. If every P is a non-crossing matching, we say that the paths in
Pi ∈ pathsG(E, S) with P ∼ Pi are non-crossing and S has a Catalan structure.

Thus, for a graph G embedded onto a sphere S0 and a vertex set S with cardinality
�, that is connected by a noose, we have that

q-pathsG(E, S) = |PS| = O(2�).

(n, r)-non-crossing matchings. The following lemma gives an estimation on the non-
crossing matchings arising from the case that one has several cycles in the plane that
are connected by arcs. This will be needed for dynamic programming in Chapter 3
for the case of graphs of bounded genus. After planarizing the graph by cutting along
noncontractible nooses , the situation arises, that components and paths, respectively
have their endpoints in several such “cut-nooses”.

Lemma 3.1.4. Let r disjoint empty discs Δ1, . . . , Δr be embedded on the sphere S0 where
each disc is bounded by a cycle of at most n vertices. Let P be a set of arcs connecting
the vertices, such that P can be embedded onto S0 −{Δ1, . . . , Δr} without arcs crossing.
Let Pn,r be the collection of all such P . Then,

|Pn,r| ≤ rr−2 · n2r · 2rn.

Proof. We show how to reduce the counting of |Pn,r| to non-crossing matchings. Here
we deal with several open disks and our intention is to transform them into one single
disk in order to apply Lemma 3.1.3.

First lets assume r = 2. Choose a set P ∈ Pn,2. Assume two vertices x and y on
the boundary of two different disks Δ1 and Δ2 in being two endpoints of an arc {x, y}
in P . We observe that no other arc in P crosses {x, y} in the S0-embedding of P . So
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3.1 Connectivity and surfaces

we are able to ’cut’ the sphere S0 along {x, y} and, that way, create a “tunnel” between
Δ1 and Δ2 unifying them to a single disk and thus reduced the problem to counting
non-crossing matchings. That is, for obtaining a rough upper bound on |Pn,2|, one fixes
every pair of vertices x ∈ Δ1 and y ∈ Δ2 and we obtain

|Pn,2| = O(n2 · 22n).

The next difficulty is that all disks in Δ1, . . . , Δr are connected by arcs of P ∈ Pn,r

in an arbitrary way. We use a tree structure in order to cut the sphere along that
structure. Given such a tree structure, we create tunnels in order to connect the open
disks and to merge them to one disk.

Consider all ≤ nn−2 possible spanning trees on n vertices [20]. Here, we have a
spanning tree over r vertices, representing the r disks in Δ1, . . . , Δr. Then the boundary
of each disk has length ≤ n. Hence, there are O(n2) possible fixed arcs between the
boundaries of each two disks. Then we obtain a rough upper bound of n2r on the
number of possible fixed arcs between the disks in a given tree-structure. We obtain
rr−2 · n2r possibilities for above concatenation and tunneling of Δ1, . . . , Δr. We argue
that P has a Catalan structure when tunneling the disks in this way. Thus,

|Pn,r| ≤ rr−2 · n2r · 2rn.

We call an element of Pn,r a (n, r)-non-crossing matching. If for a graph G, each
element of pathsG(E, S)/ ∼ is a (n, r)-non-crossing matching then S has Catalan struc-
ture.

h-almost-(n, r)-non-crossing matchings. This lemma will also be needed for dynamic
programming in Chapter 3 for solving connected problems on H-minor-free graphs,
where we obtain an extended case of the bounded genus graph with additional h “areas
of non-planarity”, so-called vortices.

Lemma 3.1.5. Let r disjoint empty discs Δ1, . . . , Δr be embedded on the sphere S0 where
each disc is bounded by a cycle of at most n vertices. Let S0 −{Δ1, . . . , Δr} contain ≤ h
disjoint discs R1, . . . , Rh.

Let P be a set of arcs connecting the vertices of bor(Δ1), . . . ,bor(Δr), such that
P can be embedded onto S0 − {Δ1, . . . , Δr} with arcs crossing only inside R1, . . . , Rh

such that P ∩ Rj (1 ≤ j ≤ h) is a superposition of h non-crossing matchings. Then P
is a superposition of O((h + r)h) many (n, r)-non-crossing matchings. Let Ph

n,r be the
collection of all such P . Thus,

|Ph
n,r| ≤ (rr−2 · n2r · 2rn)(h+r)h

.
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3 Employing structures for subexponential algorithms

Proof. We observe that only h arcs of P ∩ Rj may cross mutually inside one of Rj

(1 ≤ j ≤ h), but since the entire arc α of P may enter and leave Rj arbitrarily often,
we may have more than h mutually crossings of P in Rj. However, we observe that α
then cuts the S0 − {Δ1, . . . , Δr} into several discs. It follows, together with the Helly
property of circular arcs, that there are roughly 3

2
h + r − 1 arcs that mutually cross in

Rj. We color the arcs of P such that no two arcs of the same color class cross. For arcs
crossing in one Rj we thus need up to 3

2
h + r − 1 colors.

Furthermore, we observe that two arcs of P may be assigned with the same color
in Rj but cross in another Ri, etc. Hence, we have a rough upper bound of (h + r)h

colors, that is every arc can be assigned by 3
2
h+ r− 1 colors per Rj and is thus assigned

by a h-vector of colors for all Rj (1 ≤ j ≤ h). With Lemma 3.1.4, we count for every
color class the number of (n, r)-non-crossing matchings and we get that the overall size
of Ph

n,r is bounded by (rr−2 · n2r · 2rn)(h+r)h

.

Both, Lemma 3.1.4 and Lemma 3.1.5 can be extended to non-crossing partitions
and thus give an upper bound on q-compG(E, S) on graphs of bounded genus and H-
minor-free graphs (that is h-almost embeddable graphs), respectively.

Planar graphs. In Section 3.2, we introduce a 2O(bw(T,μ,π))nO(1) algorithm for the k-
Planar Longest Path. One may use k-Longest path as an exemplar for other
problems of the same nature.

We will see in Section 3.2 that the application of dynamic programming on an sc-
decomposition (T, μ, π) is the 2O(bw(T,μ,π))nO(1) algorithm for proving property Ω for
planar graphs. By further improving the way the members of q-pathsGi

(E(Gi), mid(e))
are encoded during this procedure, one can bound the hidden constants in the big-O
notation on the exponent of this algorithm. For example, for Planar k-Longest

Path β ≤ 2.63. With analogous structures and arguments it follows that for Planar

k-Graph TSP β ≤ 3.84, for Planar k-Connected Dominating Set β ≤ 3.82, for
Planar k-Feedback Vertex Set β ≤ 3.56.

We also will give algorithms for the exact variants of these problems, and some
non-parameterized problems, such as Planar Hamiltonian Path, Minimum Cycle

Cover and Steiner Tree.

Bounded genus. In Section 3.3 and 3.4, the results on exact algorithms are general-
ized for graphs with genus one and bounded genus, respectively (now constants for each
problem depend also on the genus). This generalization requires a suitable “bounded
genus”-extension of the Catalan structure notion. We introduce two different approaches
to attack these problems. The idea behind the first approach is to planarize the graph
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3.2 Planar graphs

and reformulate the original problem on the planarized graph, that is, we get subex-
ponentially many subproblems each of which we solve with dynamic programming in
subexponential time.

The second approach is applied in Section 3.5 as part of a parameterized algorithm
for finding k-Longest Path on H-minor-free graphs.

Excluding a minor. The final step is to prove property Ω for H-minor-free graphs.
Let G be a graph class excluding some fixed graph H as a minor. In Section 3.5, we
will see that every graph G ∈ G with bw(G) ≤ � has an branch decomposition of width
O(�) with the Catalan structure and that such a decomposition can be constructed in
f(|H|) · nO(1) steps, where f is a function depending only on H.

We will give an algorithm constructing the claimed branch decomposition using a
structural characterization of H-minor-free graphs, given in [85]. Briefly, any H-minor-
free graph can be seen as the result of gluing together (identifying constant size cliques
and, possibly, removing some of their edges) graphs that, after the removal of some
constant number of vertices (called apices) can be “almost” embedded in a surface of
constant genus. Here, by “almost” we mean that we permit a constant number of
non-embedded parts (called vortices) that are “attached” around empty disks of the
embedded part and have a path-like structure of constant width. The algorithm has
several phases, each dealing with some level of this characterization, where an analogue
of sc-decomposition for planar graphs is used. The core of the correctness proof is based
on the fact that the structure of the embeddable parts of this characterization (along
with vortices) is “close enough” to be plane, so to roughly maintain the Catalan structure
property.

The algorithm implies Ω for k-Longest Path on H-minor-free graphs.

3.2 Planar graphs

In what follows, we give a 2O(bw(T,μ,π))nO(1) algorithm for the k-Planar Longest

Path. We use the k-Planar Longest path algorithm as a black box for algorithms
for other problems of the same nature.

3.2.1 k-Planar Longest Path

In Section 1.4, property Ω holds for edge subset problems (with global properties) on
planar graphs because of the following combinatorial result using Catalan structures and
non-crossing matchings of Section 3.1. In particular, it holds that every sc-decomposition
has the Catalan structures.

Theorem 3.2.1. Every planar graph has an optimal branch-decomposition with the
Catalan structure that can be constructed in polynomial time.
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3 Employing structures for subexponential algorithms

Proof. Compute a sc-decomposition (T, μ, π) as in Subsection 2.3.1 (constructed using
the polynomial algorithm in [89]). Let Oe be a noose meeting some middle set mid(e)
of (T, μ, π). Let us count in how many ways this noose can cut paths of G. Observe
that each path is cut into at most bw(T, μ, π) parts. Each such part is itself a path
whose endpoints are pairs of vertices in Oe. Notice also that, because of planarity, no
two such pairs can cross. By Lemma 3.1.3, counting the ways Oe can intersect paths
of G is equivalent to counting non-crossing matchings in a cycle (the noose) of length
bw(T, μ, π) which, in turn, is bounded by the Catalan number of bw(T, μ, π) that is
2O(bw(T,μ,π)).

The k-Planar Longest Path problem asks for a given planar graph G to find
a path of length at least a parameter k. One can also ask for the k-Planar Longest

Cycle, we will see how to solve in the same way.

Before we proceed, let us recall the notion of a minor in Section 1.2. Let us note
that if a graph H is a minor of G and G contains a path of length at least k, then so
does G.

Recall that according to Theorem 1.4.2, for a positive integer �, every planar graph
with no (� × �)-grid as a minor has branchwidth at most 4�.

The main result of the section is the following.

Theorem 3.2.2. For every planar graph G and any positive integer �, it is possible to
construct a time nO(1) algorithm that outputs one of the following:

1. A correct report that G contains a (� × �)-grid as a minor.

2. A branch-decomposition (T, τ) with the Catalan structure and of width O(�).

The algorithm works as follows: For a planar input graph G and parameter k, first
compute the branchwidth of G and the corresponding sc-decomposition (T, μ, π) by using
the algorithm of [89]. If the branchwidth of G is at least 4

√
k + 1 then by Theorem 1.4.2,

G contains a (
√

k + 1 ×
√

k + 1)-grid as a minor. Thus G contains a path of length at
least k, since every (

√
k×

√
k)-grid, k ≥ 2, contains a path of length at least k−1. If the

branchwidth of G is less than 4
√

k + 1, we use standard dynamic programming on the
sc-decomposition (T, μ, π) as described in Section 2.1. Since (T, μ, π) has the Catalan

structure, we can solve the problem in time 2O(
√

k) n + nO(1).

However, we are able to give a faster algorithm by using an efficient encoding and
techniques introduced in Section 2.2. In what follows, we will see a detailed description
of such encoding that we will reuse for several other edge-subset problems and prove the
following:

Theorem 3.2.3. k-Planar Longest Path is solvable in time O(210.984
√

kn3/2 + n3).
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3.2 Planar graphs

Encoding of Catalan structures

Here we study how sc-decompositions in combination with non-crossing matching can
be used to design subexponential algorithms.

Let us reformulate the k-Planar Longest Path problem in a different way: A
labeling H : E(G) → {0, 1} is k-long if the subgraph GH of G formed by the edges
with label ’1’ is a path of length at least k. Find a k-long labeling H that is a labeling
with

∑
e∈E(G) H(e) ≥ k. For an edge labeling H and a vertex v ∈ V (G) we define the

H-degree degH(v) of v as the sum of labels assigned to the edges incident to v. Let
(T, μ, π) be a sc-decomposition of G of width �. We root T as in Section 2.1 at a node r.

For every edge e of T the subtree toward the leaves is called the lower part and the
rest the residual part with regard to e. We call the subgraph Ge induced by the leaves
of the lower part of e the subgraph rooted at e. Let e be an edge of T and let Oe be the
corresponding noose in Σ. The noose Oe partitions Σ into two discs, one of which, Δe,
contains Ge.

Given a labeling P [e] : E(Ge) → {0, 1} for every edge in Ge, we define for every
vertex v in Ge the P [e]-degree degP[e](v) to be the sum of the labels on the edges incident
to v. Let GP[e] be the subgraph induced by the edges with label ’1’. We call P [e] a partial
k-long labeling if GP[e] satisfies the following properties:

• For every vertex v ∈ V (Ge) \ Oe, degP[e](v) ∈ {0, 2}.
• Every connected component of GP[e] has exactly two vertices in the noose Oe with

degP[e](v) = 1, all other vertices of GP[e] have degP[e](v) = 2.

Observe that GP[e] forms a collection of disjoint paths with endpoints in Oe, and
note that every partial k-long labeling of G{r,s} forms a k-long labeling.

Due to Section 3.1, define the set of all collections GP[e] as pathsGe
(E(Ge), V (Oe))

and because of sc-decompositions having Catalan structure, we get

q-pathsGe
(E(Ge), V (Oe)) = 2O(|V (Oe)|).

For a partial k-long labeling P [e] let P be a path of GP[e]. As the graph is planar,
no paths cross and we can reduce P to an arc in Δe with endpoints on the noose Oe. If
we do so for all paths, the endpoints of these arcs form a non-crossing matching.

Because Oe bounds the disc Δe and the graph GP[e] is in Δe, we can to scan the
vertices of V (P ) ∩ Oe according to the ordering π and mark with ’1[’ the first and with
’1]’ the last vertex of P on Oe. Mark the endpoints of all paths of GP[e] in such a way.
Then the obtained sequence with marks ’1[’ and ’1]’, decodes the complete information
on how the endpoints of V (GP[e]) hit Oe. With the given ordering π the ’1[’ and ’1]’
encode a non-crossing matching. The other vertices of V (GP[e]) ∩ Oe are the ’inner’
vertices of the paths and we mark them by ’2’. All vertices of Oe that are not in GP[e]

are marked by ’0’.

For an edge e of T and the corresponding noose Oe, the state of dynamic program-
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ming is specified by an ordered �-tuple �te := (v1, . . . , v�). Here, the variables v1, . . . , v�

correspond to the vertices of Oe ∩ V (G) taken according to the cyclic order π with an
arbitrary first vertex. This order is necessary for a well-defined encoding where the vari-
ables vi take one of the four values: 0, 1[, 1], 2. Hence, there are at most O(4�|V (G)|)
states. For every state, we compute a value We(v1, . . . , v�) that is the maximum length
over all partial k-long labelings P [e] encoded by v1, . . . , v�. If no such labeling exists we
have We(v1, . . . , v�) = −∞.

For an illustration of a partial k-long labeling see Figure 3.2.

1[ 1[ 1] 0 1]2

Figure 3.2: On the left we see a graph G partitioned by the rectangle vertices of Oe ∩ V (G)

into Ge in drawn-through edges and Ge in dashed edges. On the right subgraph

GH marks a k-long path. GH is partitioned by the vertices of Oe∩V (G) which are

labeled corresponding to two vertex-disjoint paths in Ge induced by the partial

k-long labeling P[e].

To compute an k-long labeling we perform dynamic programming over middle sets
mid(e) = O(e) ∩ V (G), starting at the leaves of T and working bottom-up toward
the root edge. The first step in processing the middle sets is to initialize the leaves
with values We(0, 0) = 0, and We(1[, 1]) = 1, depending on the edge of the graph
corresponding to the leaf be in a partial k-long labeling or not. Then, bottom-up,
update every pair of states of two child edges eL and eR to a state of the parent edge eP

assigning a finite value WP if the state corresponds to a feasible partial k-long labeling.

Let OL, OR, and OP be the nooses corresponding to edges eL, eR and eP , and let
ΔL, ΔR and ΔP be the discs bounded by these nooses. Recall from Subsection 2.3.2
how Intersection-, Forget and Symmetric difference vertices relate with the nooses OL,
OR, and OP .

We compute all valid assignments to the variables �tP = (v1, v2, . . . , vp) corresponding
to the vertices mid(eP ) from all possible valid assignments to the variables of �tL and �tR.
For a symbol x ∈ {0, 1[, 1], 2}, we denote by |x| its ’numerical’ part, e.g. |1[| = 1 .
We say that an assignment cP is formed by assignments cL and cR if for every vertex
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3.2 Planar graphs

v ∈ (OL ∪ OR ∪ OP ) ∩ V (G):

• v ∈ {L,R}: cP (v) = cL(v) if v ∈ OL ∩ V (G), and cP (v) = cR(v) otherwise.

• v ∈ F : |cL(v)| + |cR(v)| ∈ {0, 2}.
• v ∈ I: |cP (v)| = |cL(v)| + |cR(v)| ≤ 2.

We compute all �-tuples for mid(eP ) that can be formed by tuples corresponding
to mid(eL) and mid(eR) and check if the obtained assignment corresponds to a labeling
without cycles. For every encoding of �tP , we set WP = max{WP ,WL + WR}.

For the root edge {r, s} and its children e′ and e′′ note that (Oe′ ∪Oe′′)∩V (G) = F
and O{r,s} = ∅. Hence, for every v ∈ V (GP[{r,s}]) it must hold that degP[{r,s}](v) is two
(except for the two endpoints of the entire path), and that the labeling form a path of
length ≥ k. The k-long labeling of G results from max�t{r,s}

{Wr}.
Analyzing the algorithm, we obtain the following lemma.

Lemma 3.2.4. k-Planar Longest Path on a planar graph G with branchwidth �
can be solved in time O(23.404��n + n3).

Proof. By Theorem 2.3.1, an sc-decomposition 〈T, μ, π〉 of width at most � of G can be
found in O(n3).

For a worst-case scenario, assume we have three adjacent edges eP , eL, and eR of T
with |OL| = |OR| = |OP | = �. Without loss of generality we limit our analysis to
even values for �, and assume there are no intersection vertices. This can only occur if
|F | = |L ∩ OL| = |R ∩ OR| = �

2
.

By just checking every combination of �-tuples from OL and OR we obtain a bound
of O(�42�) for our algorithm.

Some further improvement is apparent, as for the vertices u ∈ F we want the sum of
the {0, 1[, 1], 2} assignments from both sides to be 0 or 2, i.e., |cL(u)| + |cR(u)| ∈ {0, 2}.

We start by giving an expression for Q(�,m): the number of �-tuples over � vertices
where the {1[, 1]} assignments for m vertices from F is fixed. The only freedom is thus
in the �/2 vertices in L ∩ OL and R ∩ OR, respectively:

(3.4) Q(�,m) =

�
2∑

i=0

(
�
2

i

)
2

�
2
−iM(i + m)

This expression is a summation over the number of 1[’s and 1]’s in L ∩ OL and

R∩OR, respectively. The term
( �

2

i

)
counts the possible locations for the 1[’s and 1]’s, the

2
�
2
−i counts the assignment of {0, 2} to the remaining �/2− i vertices, and the M(i+m)

term counts the non-crossing matchings over the 1[’s and 1]’s. As we are interested
in exponential behavior for large values of � we ignore if i + m is odd, and use that
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M(n) ≈ 2n:

(3.5) Q(�,m) = O(

�
2∑

i=0

(
�
2

i

)
2

�
2
−i2i+m) = O(2�+m)

We define C(�) as the number of possibilities of forming an �-tuple from OP . We sum
over i: the number of 1[’s and 1]’s in the assignment for F :

(3.6) C(�) =

�
2∑

i=0

(
�
2

i

)
3

�
2
−iQ(�, i)2 = O(

�
2∑

i=0

(
�
2

i

)
3

�
2
−i22�22i)

The term 3
�
2
−i counts the number of ways how the vertices of F are assigned with 0 and

2. The term 22i counts for F the number of ways vertices are assigned on both side by
symbols with numerical value one. Straightforward calculation yields:

(3.7) C(�) = O(3
�
2 · 4�

�
2∑

i=0

(
�
2

i

)
(
4

3
)i) = O(3

�
2 4�(

7

3
)

�
2 ) = O((4

√
7)�)

Since we can check in time linear in � if an assignment forms no cycle and the
number of edges in the tree of a branch-decomposition is O(n), we obtain an overall
running time of O((4

√
7)��n + n3) = O(23.404��n + n3).

Forbidding Cycles

We can further improve upon the previous bound by only forming encodings that do not
create a partial cycle. As cycles can only be formed at the vertices in F with numerical
part 1 in both OL and OR, we only consider these vertices. Note that the previous
postprocessing step uncovered forbidden solutions. Thus, this observation helps, so that
we replace the latter step by a preprocessing step and remove the states for the F -set
that are forbidden.

Lemma 3.2.5. k-Planar Longest Path on a planar graph G with branchwidth �
can be solved in time O(23.37��n + n3).

Proof. We would like to have an upper bound for the number of combinations from OL

and OR that do not induce a cycle. This bound could then be applied to the previous
analysis.

Let F have n vertices and be assigned by an ordered n-tuple of variables (v1, . . . , vn).
Each variable vi is a two-tuple (cL(vi), cR(vi)) of assignments cL, cR ∈ {1[, 1]} of vertex
vi such that |cL(vi)| + |cR(vi)| = 2. For example, suppose F has only two vertices
x and y. A cycle is formed if cL(x) = cR(x) = 1[ and cL(y) = cR(y) = 1]. That
is, ((1[, 1[), (1], 1])) encodes a cycle. Let B(n) be the set of all n-tuples over the first n
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3.2 Planar graphs

vertices of F not forming cycles: B(0) = ∅, B(1) = {((1[, 1[))}, B(2) = {((1[, 1[), (1[, 1[)),
((1[, 1[), (1], 1[)), ((1[, 1[), (1[, 1]))},etc. Exact counting of B(n) for all vertices of I is
complex, so we use a different approach. We have a natural upper bound |B(n)| ≤ zn

with z = 4 when we consider all possible n-tuples.

Assign each B(i) to one class: C1(i) contains all i-tuples of the form (. . . , (1[, 1[)),
and C2(i) contains all other i-tuples. We add every possible two-tuple to C1(i) and C2(i)
to obtain two new classes C1(i + 1) and C2(i + 1) of B(i + 1). Adding two-tuple (1], 1])
to items from C1(i) is forbidden, as this directly gives us a cycle. Addition of (1[, 1[)
to i-tuples of both, C1(i) and C2(i) gives us i + 1-tuples of class C1(i + 1). Addition of
(1[, 1]) or (1], 1[) to either class leads to i + 1-tuples of class C2(i + 1), or might lead to
infeasible encodings. Given these classes we create a 2 × 2 transition matrix A for the
transposed vectors of the class cardinalities (|C1(i)|, |C2(i)|)T and (|C1(i+1)|, |C2(i+1)|)T

such that (|C1(i + 1)|, |C2(i + 1)|)T ≤ A (|C1(i)|, |C2(i)|)T . For large n we have that
(|C1(n)|, |C2(n)|)T ≤ An (|C1(1)|, |C2(1)|)T ≈ znx1 where z is largest real eigenvalue of

A and x1 is an eigenvector. Thus, zn is a bound of |B(n)|. It follows that A =

(
1 1
2 3

)
.

As the largest real eigenvalue of A is 2 +
√

3, we have z ≤ 3.73205 and bound |B(n)| ≤
3.73205n.

Using these two classes eliminates all cycles over two consecutive vertices. By using
three classes we can also prevent larger cycles and obtain tighter bounds for z:

• C1(i) contains all i-tuples (. . . , (1[, 1[), x), where x can consist of zero or more
elements (1[, 1]), (1], 1[) or (1], 1[), (1[, 1]) after each other.

• C2(i) contains all i-tuples (. . . , (1[, 1[), x, y) where y represents (1[, 1]) or (1], 1[).

• C3(i) contains all other i-tuples.

Because we use three classes here, we can also prevents some cycles over more than
two consecutive vertices. We obtain a 3 × 3 transition matrix A such that (|C1(i +
1)|, |C2(i + 1)|, |C3(i + 1)|)T ≤ A (|C1(i)|, |C2(i)|, |C3(i)|)T of the form:

A =

⎛
⎝ 1 2 1

2 0 0
0 2 3

⎞
⎠

By calculating the largest real eigenvalue we obtain z ≤ 3.68133. This bound
is definitely not tight, it is possible to generalize this technique. We may take more
classes into consideration, but already concerning two classes improves our results only
incrementally. Computational research suggests that z is probably larger than 3.5. We
replace 22i in Equation (3.6) by the last calculated value zi to approximate the number
of k-Planar Longest Path:
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(3.8) C(�) = O(

�
2∑

i=0

(
�
2

i

)
3

�
2
−i4�zi) = O(23.37�)

Using fast matrix multiplication

For k-Planar Longest Path, we can also apply the distance product technique for
further runtime improvement.

Lemma 3.2.6. k-Planar Longest Path on a planar graph G with branchwidth �
can be solved in time O(22.746��n + n3).

Proof. By Equation (3.8), we get

Z := (
z

2
+ 1)

�
2 · 3 �

2

possible ways to update the states of F where z ≤ 3.68133. That is, we obtain two
matrices A,B, A with 4

�
2 rows and Z columns and B with Z rows and 4

�
2 columns. The

rows of A and the columns of B represent the ways L ∩ OL and R ∩ OR, respectively,
contribute to the solution. The Z columns of A and rows B are ordered such that column
i and row i form a valid assignment for all 1 ≤ i ≤ Z and we get

C := (−1) · ([(−1) · A] 	 [(−1) · B]),

the distance product of A and B with inverted signs for obtaining the maximum
over the entries. Other than for previous distance product applications, we do not need
to post-process matrix C, since the paths in ΔL and ΔR do not overlap.

By Theorem 2.2.5 in Section 2.2, we obtain an overall running time of O(4(ω−1) �
2 ·

6.68
�
2 ·�n+n3) = O(22.746��n+n3) for fast matrix multiplication constant ω < 2.376.

By Theorem 1.4.2 and Lemma 3.2.6 we achieve the running time O(210.984
√

kn3/2 +
n3)for k-Planar Longest Path. This completes the proof of Theorem 3.2.3.

3.2.2 Hamiltonian and Longest Path

One can apply the same techniques to obtain fast exact algorithms. The Planar

Longest Path problem is solved by first computing an sc-decomposition of optimal
width and than apply previous dynamic programming algorithm. The only difference is
that having process the whole tree T of sc-decomposition (T, μ, π), we are interested at
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value of the maximum entry of the root matrix rather than in a affirmative or rejecting
answer concerning a parameter k.

For the weighted Planar Hamiltonian Path problem we there is some extra
work. We are given a weighted Σ-plane graph G with weight function w : E(G) → N
and we ask for a path of minimum weight through all vertices of V (G). Again, we
use the formulation via labeling: A labeling H : E(G) → {0, 1} is Hamiltonian if
the subgraph GH of G formed by the edges with label ’1’ is a spanning path. Find a
Hamiltonian labeling H minimizing

∑
e∈E(G) H(e) · w(e). For an edge labeling H and a

vertex v ∈ V (G) we define the H-degree degH(v) of v as the sum of labels assigned to
the edges incident to v. The algorithm though is almost identical to that of Planar

Longest Path.

Only note, that if the weights become to large, we will not benefit from the matrix
multiplication approach. With the same encoding as for k-Planar Longest Path,
we restrict, in contrast, for every vertex v ∈ F that |cL(v)| + |cR(v)| = 2 in order to
prevent isolated vertices.Analysis is similar to that of Planar Longest Path, we get
a slightly better running time since we do not have to account for isolated vertices.

From Proposition 1.4.9 we get a bound on the planar branchwidth and, thus, the
following:

Theorem 3.2.7. Planar Longest Path (Cycle) is solvable in time O(25.827
√

n)
Planar Hamiltonian Path (Cycle) in time O(25.579

√
n) if the weights have size

nO(1) otherwise in time O(27.223
√

n) and O(26.903
√

n), respectively.

3.2.3 Planar Graph TSP

We consider an extended algorithm to the important problem Planar Graph TSP,
mainly to give an insight on how far-reaching the techniques and structural results are,
that we have introduced so far in the Section. Secondly, there are some nice technical
details to it too, that are worth to be studied. In the Planar Graph TSP we are given
a weighted Σ-plane graph G with weight function w : E(G) → N and we are asked for a
shortest closed walk that visits all vertices of G at least once. Equivalently, this is TSP
with distance metric the shortest path metric of G. We only sketch the algorithm for
Planar Graph TSP since it is very similar to the algorithm for Planar Longest

Path, and give a proof of the following:

Theorem 3.2.8. Planar Graph TSP is solvable in time O(28.15
√

n) if the weights
have size nO(1) otherwise in time O(29.859

√
n).

Instead of collections of disjoint paths we now deal with connected components
with even vertex degree for the vertices outside the nooses of the sc-decomposition. It
is easy to show that a shortest closed walk passes through each edge at most twice.
Thus every shortest closed walk in G corresponds to the minimum Eulerian subgraph in
the graph G′ obtained from G by adding to each edge a parallel edge. Every vertex of
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3 Employing structures for subexponential algorithms

an Eulerian graph is of even degree, which brings us to another equivalent formulation
of the problem. A labeling E : E(G) → {0, 1, 2} is Eulerian if the subgraph GE of G
formed by the edges with positive labels is a connected spanning subgraph and for every
vertex v ∈ V (G) the sum of labels assigned to edges incident to v is even. Thus Planar

Graph TSP is equivalent to Minimum spanning Eulerian subgraph that is, to
finding an Eulerian labeling E minimizing

∑
e∈E(G) E(e) · w(e). For a labeling E and

vertex v ∈ V (G) we define the E-degree degE(v) of v as the sum of labels assigned to the
edges incident to v.

Let G be a Σ-plane graph and let (T, μ, π) be a rooted sc-decomposition of G of width
�. We use the same definitions for Oe, Ge, and Δe. We call a labeling P [e] : E(Ge) →
{0, 1, 2} a partial Eulerian labeling if the subgraph GP[e] induced by the edges with
positive labels satisfies the following properties:

• Every connected component of GP[e] has a vertex in Oe.

• For every vertex v ∈ V (Ge)\Oe, the P [e]-degree degP[e](v) of v is even and positive.

The weight of a partial Eulerian labeling P [e] is
∑

f∈E(Ge)
P [e](f)·w(f). Note that every

partial Eulerian labeling of G{r,s} is also a Eulerian labeling.

As in Section 3.1, we define the set of all collections GP[e] as compGe
(E(Ge), V (Oe))

and because of sc-decompositions having Catalan structure, we get

q-compGe
(E(Ge), V (Oe)) = 4O(|V (Oe)|).

Again for obtaining a fast algorithm, we encode the information on which vertices
of the connected components of GP[e] of all possible partial Eulerian labelings P [e] hit
Oe ∩ V (G). Also for every vertex v ∈ Oe ∩ V (G) the information if degP[e](v) is either
0, or odd, or even and positive.

For a partial Eulerian labeling P [e] let C be a component of GP[e] with at least two
vertices in noose Oe. We scan the vertices of V (C)∩Oe according to the ordering π and
mark with index ’[’ the first and with ’]’ the last vertex of C on Oe. We also mark by
’�’ the other ’inner’ vertices of V (C) ∩ Oe. Finally we assign a numerical value.

If C has only one vertex in Oe, we mark this vertex by ’0’. This includes the case
|V (C)| = 1. Note that the connected components of GP[e] form a non-crossing partition
ncp. Thus, we can again decode the complete information on which vertices of each
connected component of V (GP[e]) hit Oe.

Thus every such state must be an algebraic term with the indices ’[’ being the
opening and ’]’ the closing bracket (with ’�’ and ’0’ representing a possible term inside
the brackets).

When encoding the parity of the vertex degrees, the following observation is useful:
In every graph the number of vertices with odd degree is even. Consider a compo-
nent C of GP[e]. There is an even number of vertices in C ∩ Oe with odd P [e]-degree.
Thus, we do not encode the parity of the degree of a vertex assigned by ’]’. The par-
ity is determined by the other vertices of the same component. The state of dynamic
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Oe

]

01[

2

1[

]

Figure 3.3: On the left we see a plane graph G— 3-connected and non-Hamiltonian—

partitioned by the rectangle vertices hit by the marked noose Oe into Ge in drawn-

through edges and Ge in dashed edges. To the right a subgraph GE with Eulerian

labeling E is marked. GE is partitioned by the vertices of Oe ∩ V (G) which are la-

beled corresponding to partial Eulerian labeling P[e] of Ge. Encoding the vertices

touched by Oe from the left to the right with 1[, 1[, 0, ], 2�, ], GP[e] consists of three

components C1, C2 and C3 with C1 ∩ Oe = {1[, 2�, ]}, C2 ∩ Oe = {0}, C3 ∩ Oe =

{1[, ]}. Here GP[e] has edges only labeled with 1.

programming is �te := (v1, . . . , v�) with variables v1, . . . , v� having one of the six val-
ues: 0, 1[, 1�, 2[, 2�, ]. Hence, there are at most O(6�|V (G)|) states. For every state,
we compute a value We(v1, . . . , v�) that is the minimum weight over all partial Eulerian
labelings P[e] encoded by (v1, . . . , v�):

• For every connected component C of GP[e] with |C ∩ Oe| ≥ 2 the first vertex of
C ∩ Oe in π is represented by 1[ or 2[ and the last vertex is represented by ]. All
other vertices of C ∩ Oe are represented by 1� or 2�. For every vertex v marked
by by 1[ or 1� the parity of degP[e](v) is even and for every vertex v marked by by
2[ or 2�, degP[e](v) is positive and even.

• For every connected component C of GP[e] with v = C ∩ Oe, v is represented by
0. (Note that since for every w ∈ V (Ge) \ Oe it holds that degP[e](w) is even so
must degP[e](v).)

• Every vertex v ∈ (V (Ge) ∩ Oe) \ GP[e] is marked by 0. (Note that the vertices of
the last two items can be treated in the same way in the dynamic programming.)

We put We = +∞ if no such labeling exists. For an illustration of a partial Eulerian
labeling see Figure 3.3. To compute an optimal Eulerian labeling we perform dynamic
programming over middle sets as in the previous section. The first step of processing
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the middle sets is to initialize the leaves corresponding to edges f ∈ E of the graph G
with values We(0, 0) = 0, We(1[, ]) = w(f), and We(2[, ]) = 2w(f). Then, bottom-up,
update every pair of states of two child edges eL and eR to a state of the parent edge eP

assigning a finite value WP if the state corresponds to a feasible partial Eulerian labeling.

We compute all valid assignments to the variables �tP = (v1, v2, . . . , vp) from all
possible valid assignments to the variables of �tL and �tR. We define the numerical value
| · | of ’]’ to be one if the sum of degP[e] over all vertices in the same component is odd,
and to be two if the sum is even.

For every vertex v ∈ (OL ∪ OR ∪ OP ) ∩ V (G) we consider the three cases:

• v ∈ {L,R}: cP (v) = cL(v) if v ∈ OL ∩ V (G), or cP (v) = cR(v) otherwise.

• v ∈ F : (|cL(v)| + |cR(v)|) mod 2 = 0 and |cL(v)| + |cR(v)| > 0.

• v ∈ I: |cP (v)| = 0 if |cL(v)|+|cR(v)| = 0, |cP (v)| = 1 if (|cL(v)|+|cR(v)|) mod 2 = 1,
else |cP (v)| = 2.

Note that for a vertex v ∈ OP ∩V (G) it is possible that |cP (v)| = 0 even if |cL(v)|+
|cR(v)| is even and positive since v might be the only intersection of a component
with OP . In order to verify that the encoding formed from two states of eL and eR cor-
responds to a labeling with each component touching OP , we use an auxiliary graph A
with V (A) = (OL ∪ OR) ∩ V (G) and {v, w} ∈ E(A) if v and w both are in one com-
ponent of GP[eL] and GP[eR], respectively. Every component of A must have a vertex

in OP ∩ V (G). For every encoding of �tP , we set WP = min{WP ,WL + WR}.
For the root edge {r, s} and its children e′ and e′′ note that (Oe′ ∪Oe′′)∩V (G) = F

and O{r,s} = ∅. Hence, for every v ∈ V (GP[{r,s}]) it must hold that degP[{r,s}](v) is
positive and even, and that the auxiliary graph A is connected. The optimal Eulerian
labeling of G results from min�t{r,s}

{Wr}.
Analyzing the algorithm, we obtain the following lemma.

Lemma 3.2.9. Planar Graph TSP on a graph G with branchwidth at most � can be
solved in time O(23.84��n + n3).

Proof. Assume three adjacent edges eP , eL, and eR of T with |OL| = |OR| = |OP | = �
and that there are no intersection vertices. Thus we have |F | = |L∩OL| = |R∩OR| = �

2
.

By just checking every combination of �-tuples from OL and OR we obtain a bound
of O(�62�) for our algorithm.

This bound can be improved by using the fact that for all vertices u ∈ F we want
the sum of the assignments to be even, i.e., (|cL(u)| + |cR(u)|) mod 2 = 0.

We define Q(�,m1,m2) as the number of �-tuples over � vertices of OL and OR,
respectively, where the {0, 1[, 1�, 2[, 2�, ]} assignments for vertices from F is fixed and
contains m1 vertices of odd P [e]-degree and m2 vertices of even P [e]-degree. The only
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freedom is thus in the �/2 vertices in L ∩ OL and R ∩ OR, respectively:

Q(�,m1,m2) = O(

�
2∑

i=0

�
2
−i∑

j=0

(
�
2

i

)(
�
2
− i

j

)
1

�
2
−i−j(

5

2
)i+m1(

5

2
)j+m2)

= O(6
�
2 (

5

2
)m1(

5

2
)m2)(3.9)

This expression is a summation over the number of vertices of odd and even P [e]-

degree in L ∩OL and R ∩OR, respectively. The terms
( �

2

i

)
and

( �
2
−i
j

)
count the possible

locations for the vertices of odd and even P [e]-degree, respectively, whereas (5
2
)i+m1 and

(5
2
)i+m2 count the number of those assignments. The 1

�
2
−i−j is left in the formula to

represent the assignment of P [e]-degree zero to the remaining �/2 − i − j vertices.

We define C(�) as the number of possibilities of forming an �-tuple from OP . We
sum over i and j: the number of vertices of odd and even P [e]-degree in the assignment
for F :

(3.10) C(�) =

�
2∑

i=0

�
2
−i∑

j=0

(
�
2

i

)(
�
2
− i

j

)
5

�
2
−i−jQ(�, i, j)2

The term 5
�
2
−i denotes the number of ways the vertices of F can be assigned from one

side with P [e]-degree zero and from the other side with even P [e]-degree. Straightforward
calculation yields:

C(�) = O(

�
2∑

i=0

i∑
j=0

(
�
2

i

)(
�
2
− i

j

)
5

�
2
−i−j6�(

5

2
)2i(

5

2
)2j)

= O((6
√

17.5)�)(3.11)

We obtain an overall running time of O(6�(35
2
)

�
2 �n).

Again we can further improve upon the previous bound by only forming encodings
that do not create several components. In contrast to cycles, the components can be
formed at the vertices in F with numerical part 1 and 2 in both OL and OR. But we only
consider vertices with even sum of the numerical part of the assignment. Thus, we look
separately at the classes of even P [e]-degree and odd P [e]-degree. Without loss of gen-
erality consider odd P [e]-degree: as in the previous section we want to exclude the case
((1[, 1[), (], ])). Again suppose the two classes: C1(i) contains all i-tuples (. . . , (1[, 1[)),
and C2(i) contains all other i-tuples. Adding (], ]) to i-tuples from C1(i) is forbidden, as
this will lead to a single component. Addition of (1[, 1[) to i-tuples of both, C1(i) and

C2(i) gives us the i + 1-tuples of class C1(i + 1). We obtain the matrix A =

(
1 1
5 21

4

)
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with largest eigenvalue z =
√

77+9
2

≤ 6.2097. We can insert z for both, the odd and the
even valued vertices separately in Equation (3.11):

C(�) = O(

�
2∑

i=0

i∑
j=0

(
�
2

i

)(
�
2
− i

j

)
5

�
2
−i−j6�zizj)

= O((6
√

17.4195)�)(3.12)

Using distance product, we improve for small weights the bound to

C(�) = O((6
ω−1

2

√
17.4195)�).

This completes the proof of Theorem 3.2.8.

3.2.4 Variants

In this section we will discuss results on other edge-subset problems on planar graphs.

Minimum Number Cycle Cover.

Minimum Number (Cost) Cycle Cover asks for a minimum number (cost) of
vertex disjoint cycles that cover the vertex set of the input graph. The algorithm can
be implemented as a variant of Planar Hamiltonian Cycle algorithm, with the
additional freedom of allowing cycles in the merging step. Thus the result from Equation
(3.7) can be used directly, leading to a running time of O(n

3

2 25.663
√

n) for weights of size
nO(1).

Problems with tree-like solutions.

The problem Connected Dominating Set asks for a minimum Dominating Set

that induces a connected subgraph. See [35] for a subexponential algorithm on graphs
of bounded outerplanarity. Connected Dominating Set can be formulated as Max

Leaf Problem where one asks for a spanning tree with the maximum number of leaves.

For the state of the vertices on the nooses we can use an encoding with symbols
00, 01, 10, 1[, 1�, 1]. The numerical part indicates whether (1) or not (0) a vertex is an
inner node of the solution spanning tree. The indices for the vertices labeled with a 1
encode to which connected component they belong, 10 is an isolated vertex that becomes
an inner node. The indices for the leaves 0 indicate if a vertex is connected (1) or not (0)
to any vertex marked as an inner node. Using our technique, we obtain for Connected

Dominating Set a running time of O(28.111
√

n) for weights of size nO(1).
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3.2 Planar graphs

Table 3.1: Worst-case runtime in the upper part expressed also by treewidth tw and branch-

width bw of the input graph. The lower part gives a summary of the most im-

portant improvements on exact and parameterized algorithms with parameter k

and compares the results with and without applying fast matrix multiplication for

unweighted and weighted problems, respectively. Note that we use the fast matrix

multiplication constant ω < 2.376.

Previous results New results
w Planar Hamiltonian Cycle — O(n2min{2.58 tw,3.31bw})
uw Planar Hamiltonian Cycle — O(n2min{2.58 tw,2.66bw})

w/uw Planar Hamiltonian Path O(22.29
√

n log n) [50] O(27.2
√

n)/O(25.83
√

n)

w/uw Planar Graph TSP 2O(
√

n log n) [72] O(29.86
√

n)/O(28.15
√

n)

w/uw Planar connected DS 2O(
√

n log n) [72] O(29.82
√

n)/O(28.11
√

n)

w/uw Planar Steiner Tree 2O(
√

n log n) [72] O(28.49
√

n)/O(27.16
√

n)

w/uw Plan Feedback Vertex Set 2O(
√

n log n) [72] O(29.26
√

n)/O(27.56
√

n)

Param Planar Longest Path — O(210.5
√

kk + n3)

The Steiner Tree of some subset X of the vertices of a planar graph G is a
minimum-weight connected subgraph of G that includes X. It is always a tree; thus, we
only encode connected subgraphs by using four symbols 0, [, ],�. Here, [, ],� mark the
first, the last and all other vertices of a component and 0 marks isolated vertices and
vertices that are the only intersection of a component and the noose. Note that every
vertex of X must be part of a component, whereas the vertices of V (G) \ X must not.
We obtain for Steiner Tree a running time of O(27.163872

√
n) for weights of size nO(1)

applying distance product.

In Feedback Vertex Set on an undirected planar graph G, one is asked to find
a set Y of vertices of minimum cardinality such that every cycle of G passes through
at least one vertex of Y . Feedback Vertex Set is equivalent to the problem: find
an induced forest F in G with vertex set V (F ) of maximum cardinality. It holds that
V (G) \ Y = V (F ). We are able to encode induced connected subgraphs with our
technique. We mark if a vertex is in V (F ) or not. Every edge of G is an edge in the
forest if its incident vertices are in V (F ). We can solve Feedback Vertex Set in
time O(29.264

√
n).

In the parameterized version of the problem, k-Feedback Vertex Set, we ask
if Y is of size at most parameter k. We improve the 2O(

√
k log k)nO(1) algorithm in [67]

to 2O(
√

k)nO(1) by using the bidimensionality of k-Feedback Vertex Set (see [31] for
more information). If a problem on graphs of bounded treewidth tw is solvable in time
2O(tw)nO(1) and its parameterized version with parameter k is bidimensional then it is
solvable in time 2O(

√
k)nO(1).

We summarize the results in Table 3.1.
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3 Employing structures for subexponential algorithms

3.3 Torus-embedded graphs

This section will extend the dynamic programming algorithm for Planar Longest

Path of Section 3.2 to the Hamiltonian Cycle problem on graphs embedded on a
torus. Since the resulting constants are pretty small, we give a detailed description on
how to use an efficient encoding for fast computation. We thereby reduce the torus-
related problem A to a collection of planar-graph problems A1, . . . , Aq, where A has a
solution if and only if there is a solution for one of A1, . . . , Aq. The torus case includes
the main ideas for extending to surfaces of higher genus. In Section 3.4 we will not
give an explicit encoding, since the constant are becoming too large. As part of the
algorithm for H-minor-free graphs, we give in Section 3.5 a parametrized algorithm for
the k-Longest Path problem on graph of bounded genus.

3.3.1 Hamiltonian Cycle

The idea behind solving the Hamiltonian Cycle problem on S1-embedded graphs is
to suitably modify the graph G in such a way that the new graph G′ is S0-embedded
(i.e. planar) and restate the problem to an equivalent problem on G′ that can be solved
by dynamic programming on a sc-decomposition of G′.

Planarization.

Let G be an S1-embedded graph (i.e. a graph embedded on the torus ). By Propo-
sition 1.2.3, it is possible to find in polynomial time a shortest noncontractible (tight)
noose N of G. Let G′ be the graph obtained by cutting along N on G. By Proposi-
tion 1.2.5, G′ is S0-embeddable.

Definition 3.3.1. A cut of a Hamiltonian cycle C in G along a tight noose N is the
set of disjoint paths in G′ resulting by cutting G along N .

Each cut-noose NX and NY borders an open disk ΔX and ΔY , respectively, with
ΔX ∪ ΔY = ∅. Let xi ∈ NX and yi ∈ NY be duplicated vertices of the same vertex in
N .

The following definition is very similar, in fact a restriction of the definition of paths
in Section 3.1.

Definition 3.3.2. A set of disjoint paths P in G′ is relaxed Hamiltonian if:

(P1) Every path has its endpoints in NX and NY .

(P2) Vertex xi is an endpoint of some path P if and only if yi is an endpoint of a path
P ′ �= P , unless |P| = 1.

(P3) For xi and yi: one is an inner vertex of a path if and only if the other is not in
any path.
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3.3 Torus-embedded graphs

ΔX

yjyj

xi xi

ΔY

Figure 3.4: Cut-nooses. In the left diagram, one equivalence class of relaxed Hamiltonian

sets is illustrated. All paths have endpoints in NX and NY . Fix one path with

endpoints xi and yi. In the right diagram we create a tunnel along this path. The

empty disks ΔX and ΔY are united to a single empty disk. Thus, we can order

the vertices bordering the disk to πXY .

(P4) Every vertex of G′ \ (NX ∪ NY ) is in some path.

For the case |P| = 1, P might as well consist of a single cycle. A cut of a Hamiltonian
cycle in G is a relaxed Hamiltonian set in G′, but not every relaxed Hamiltonian set in
G′ forms a Hamiltonian cycle in G. However, given a relaxed Hamiltonian set P one
can check in linear time (by identifying the corresponding vertices of NX and NY ) if P
is a cut of a Hamiltonian cycle in G.

Define the equivalence relation ∼ on the set HS(G′) of all relaxed Hamiltonian
sets in G′: for any two sets P1,P2 ∈ HS(G′), P1 ∼ P2 if for every path in Pi there
is a path in Pj with the same endpoints (1 ≤ i, j ≤ 2). Denote by HS(G′)/ ∼ the
quotient set of HS(G′) by ∼. Note that HS(G′) without property (P3) is a subset of
pathsG′(E(G′), NX ∪ NY ).

Lemma 3.3.3. Let G′ be a S0-embedded graph obtained from a S1-embedded graph G by
cutting along a tight noose N . Then |HS(G′)/ ∼ | is O(k2 23k), where k is the length of
N .

Proof. By Lemma 3.1.4 in Section 3.1, we have that q-pathsG′(E(G′), NX ∪ NY ) =
O(k2 22k). That is, we guess two vertices xi ∈ NX and yj ∈ NY being two fixed endpoints
of a path Pi,j in a relaxed Hamiltonian set P. We ’cut’ the sphere S0 along Pi,j and, that
way, create a “tunnel” between ΔX and ΔY unifying them to a single disk ΔXY . Take
the counter-clockwise order of the vertices of NX beginning with xi and concatenate NY

in clockwise order with yj the last vertex. We denote the new cyclic order by πXY (see
Figure 3.4 for an example) .

Note that we also include the case of those different equivalent sets of paths, where
NX and NY are not connected by any path. That is, each path has both endpoints
in either only NX or only NY . We now count HS(G′)/ ∼. Apparently, in a feasible
solution, if a vertex xh ∈ NX is an inner vertex of a path, then yh ∈ NY does not belong
to any path and vice versa. With (P3), there are two more possibilities for the pair of
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3 Employing structures for subexponential algorithms

vertices xh, yh to correlate with a path. With |NX | = |NY | = k, the overall upper bound
the quotient set of HS(G′) is O(k2 23k).

We call a candidate C of the quotient set HS(G′)/ ∼ to be a set of arcs with vertices
only in NX ∪NY representing a set of equivalent relaxed Hamiltonian sets. Thus for each
candidate we fix a path between NX and NY and define the order πXY . By making use
of dynamic programming on sc-decompositions we check for each candidate C if there
is a spanning subgraph of the planar graph G′ isomorphic to a relaxed Hamiltonian set
P ∼ C.

The algorithm

Instead of looking at the Hamiltonian cycle problem on G we solve the relaxed

Hamiltonian set problem on the S0-embedded graph G′ obtained from G: Given a
candidate C, i.e. a set of vertex tuples T = {(s1, t1), (s2, t2), . . . , (sk, tk)} with si, ti ∈
NX ∪ NY , i = 1, . . . , k and a vertex set I ⊂ NX ∪ NY . Does there exist a relaxed
Hamiltonian set P such that every (si, ti) marks the endpoints of a path and the vertices
of I are inner vertices of some paths?

Our algorithm works as follows: first encode the vertices of NX ∪NY according to C
by making use of the Catalan structure of C as it follows from the proof of Lemma 3.3.3.
We may encode the vertices si as the ’beginning’ and ti as the ’ending’ of a path of
C. Using order πXY , we ensure that the beginning is always connected to the next
free ending. This allows us to design a dynamic programming algorithm using a small
constant number of states. We call the encoding of the vertices of NX∪NY base encoding
to differ from the encoding of the sets of disjoint paths in the graph. We proceed with
dynamic programming over middle sets of a rooted sc-decomposition (T, μ, π) in order
to check whether G′ contains a relaxed Hamiltonian set P equivalent to candidate C.
As T is a rooted tree, this defines an orientation of its edges toward its root. Let e be
an edge of T and let Oe be the corresponding tight noose in S0. Recall that the tight
noose Oe partitions S0 into two discs which, in turn, induces a partition of the edges of
G into two sets. We define as Ge the graph induced by the edge set that corresponds
to the “lower side” of e it its orientation toward the root. All paths of P∩Ge start and
end in Oe and Ge ∩ (NX ∪ NY ). For each Ge, we encode the equivalence classes of sets
of disjoint paths with endpoints in Oe. From the leaves to the root for a parent edge
and its two children, we update the encodings of the parent middle set with those of the
children as described in Section 2.1. We obtain the algorithm in Figure 3.5.

Lemma 3.3.4. For a given a sc-decomposition (T, μ, π) of G′ of width � and a candidate
C = (T, I) the running time of one For-loop in the main step of HamilTor on C is
O(26.36� · |V (G′)|O(1)).

In the proof of the lemma we show how to apply the dynamic programming step of
HamilTor. We sketch only the main idea here and give the detailed algorithm in the
appendix of this chapter (Section 3.6).
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3.3 Torus-embedded graphs

Algorithm HamilTor

Input: S1-embedded graph G.
Output: Decision/Construction of the Hamiltonian cycle problem on G.

Preliminary Step: Cut G along a shortest noncontractible (tight) noose N and
output the S0-embedded graph G′ and the cut-nooses NX ,NY in G′.

Main step: For all candidates C ∈ HS(G′)/ ∼ {
If C is equivalent to a Hamiltonian cycle in G
when identifying the duplicated vertices in NX ,NY in G′{

Determine the pair of endpoints (s, t) that build the first and last vertex in πXY .
Generate a base encoding of the vertices of NX and NY , representing the candidate C.
Compute a rooted sc-decomposition (T, μ, π) of G′.
From the leaves to the root on each middle set Oe of T bordering Ge {

Do dynamic programming —
find all path collections of pathsGe

(E(Ge), V (Ge) ∩ [Oe ∪ (NX ∪ NY )])/ ∼
with respect to the base encoding of NX ,NY .}

If there exists a P ∈ pathsG′(E(G′), NX ∪ NY )/ ∼ with P ∼ C, then {
Reconstruct P from the root to the leaves of T and
output corresponding Hamiltonian cycle.} } }

Output “No Hamiltonian Cycle exists”.

Figure 3.5: Algorithm HamilTor.

For a dynamic programming step we need the information on how a tight noose Oe

and NX ∪ NY intersect in G′ and which parts of NX ∪ NY are a subset of the subgraph
Ge. Define the set of O-arcs X = (Ge\Oe)∩(NX∪NY ). Ge is bordered by Oe and X and
thus partitioned into several edge-disjoint components that we call partial components.
Each partial component is bordered by a noose that is the union of subsets of Oe and X .
Let us remark that this noose is not necessarily tight. The partial components intersect
pairwise only in vertices of X ∩Oe that we shall define as connectors (See Figure 3.10 in
Section 3.6). In each partial component we encode a collection of paths with endpoints
in the bordering noose using Catalan structures. The union of these collections over all
partial components must form a collection of paths in Ge with endpoints in Oe and in
X . We ensure that the encoding of the connectors of each two components fit. During
the dynamic programming we need to keep track of the base encoding of X . We do so
by only encoding the vertices of Oe without explicitly memorizing with which vertices
of X they form a path. With several technical tricks we can encode Oe such that two
paths with an endpoint in Oe and the other in X can be connected to a path of P only
if both endpoints in X are the endpoints of a common path in C.

Runtime analysis

To finish the estimation of the running time we need some combinatorial results.

Lemma 3.3.5. Let G be a S1-embedded graph on n vertices and G′ the planar graph
obtained by cutting along a noncontractible tight noose of G. Then bw(G′) ≤

√
4.5 ·√

n + 2.
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Proof. Let NX and NY be the cut-nooses in G′ bordering the empty disks ΔX and ΔY .
We will prove the lemma assuming that after cutting along a noncontractible tight noose
N of G, all edges with both ends in N are incident to NX (the general case is a slightly
more technical implementation of the same idea). We construct a new graph G∗ by
removing the vertices of NY from G′. Thus |V (G∗)| = |V (G)| = n. By Proposition 1.4.9
in Section 1.2, there is a sc-decomposition (T, μ, π) of G∗ of width at most

√
4.5 · √n.

ΔY is part of a region R of G∗ bordered by a closed walk C. The neighborhood of NY in
G′ is a subset of the vertices of C in G∗. Let EY be the set of edges in G′ incident to NY .
Note that E(G∗) ∪ EY = E(G′) and that EY induces a graph that is a subgraph that
can be seen as a union of stars whose centers lay on C (this is based on the assumption
that no edge has both ends in NY ). We construct a branch-decomposition of G′ from
(T, μ, π) by doing the following. For every edge x ∈ EY we choose edge y of C having
a common endpoint v with x and being the next edge of C in counter-clockwise order
incident to v. Let ey be the edge of T adjacent to the leaf of corresponding to y. We
subdivide ey by placing a new vertex on it and attach a new leaf corresponding to x. We
claim that the width of the new branch-decomposition (T ′, μ′) is at most the width of
(T, μ, π) plus two. For an edge y of C we may subdivide ey of T several times creating
a subtree Ty. But all the middle sets of the edges Ty have only one vertex in common,
namely the common endpoint v. The middle set connecting Ty to T may have up to two
more vertices that are, in order of appearance in πXY , the first and the last endpoints
of the considered edges of EY . Let E(C) be the edge set of C. Since (T, μ, π) is a
sc-decomposition, we have that for every e of E(T ), if the corresponding tight noose Oe

bordering G∗
e intersects region R bordered by C, then E(C) ∩ G∗

e induces a connected
subset of C. Note that in contrast Oe and C may intersect in single vertices only. Thus,
Oe and that subset intersect in only two vertices v, w. v and w each have at most one
adjacent vertex in NY that is connected to C \ G∗

e. Hence each middle set of T ′ has at
most two vertices more than the corresponding middle set of T .

Lemma 3.3.6. Let G be a S1-embedded graph on n vertices. Then rep(G) ≤
√

4.5 ·√
n + 2.

Proof. Let G′ be the S0-embedded graph obtained by cutting along a noncontractible
tight noose N of G. By Lemma 3.3.5, there is a sc-decomposition (T, μ, π) of G′ of width
at most

√
4.5 · √n + 2. We subdivide an arbitrary edge e of T into the edges e1,e2 and

root the tree at the new node r. Assume that for one of e1, e2, say e1, both cut-nooses
NX and NY are properly contained in Ge1

. We traverse the tree from e1 to the leaves.
We always branch toward a child edge e with middle set Oe such that NX ∪ NY ⊂ Ge.
At some point we reach an e with either a) Ge properly containing exactly one cut-noose
or b) Oe intersecting both cut-nooses or c) Ge properly containing one cut-noose and Oe

intersecting the other. In case c) we continue traversing from e toward the leafs always
branching toward the edge with c) until we reach an edge with either a) or b). In case
a), tight noose Oe forms a noncontractible tight noose in G, hence the length of Oe must
be at least the representativity of G. In case b), Oe is the union of two lines with the

shortest, say N1, of length at most |Oe|
2

. But both endpoints of N1 are connected in the
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S1-embedded graph G by a line N2 of N of length L with 0 ≤ L ≤ |N |
2

. N1 and N2 form a

noncontractible tight noose in G of length at most |Oe|
2

+ |N |
2

. Hence, |Oe| ≥ rep(G).

Putting all together we obtain the following theorem.

Theorem 3.3.7. Let G be a graph on n vertices embedded on a torus S1. The Hamil-

tonian cycle problem on G can be solved in time O(219.856
√

n · nO(1)).

Proof. We run the algorithm HamilTor on G. The algorithm terminates positively
when the dynamic programming is successful for some candidate of an equivalence class
of relaxed Hamiltonian sets and this candidate is a cut of a Hamiltonian cycle. By
Proposition 1.2.3, the Preliminary Step can be performed in polynomial time. Let k be
the minimum length of a noncontractible noose N , and let G′ be the graph obtained
from G by cutting along N . By Lemma 3.3.3, the number of all candidates of relaxed
Hamiltonian sets in G′ is O(23k) · nO(1). So the main step of the algorithm is called
O(23k) · nO(1) times. By Proposition 2.3.1, an optimal branch-decomposition of G′ of
width � can be constructed in polynomial time. By Lemma 3.3.4, dynamic programming
takes time O(26.36�) · nO(1). Thus the total running time of HamilTor is O(26.36� · 23k) ·
nO(1). By Lemma 3.3.6, k ≤

√
4.5 · √n + 2 and by Lemma 3.3.5, � ≤

√
4.5 · √n + 2, and

the theorem follows.

3.4 Graphs embedded on surfaces of bounded genus

Now we extend our algorithm to graphs of higher genus. For this, we use the following
kind of planarization: We apply Proposition 1.2.5 and cut iteratively along shortest
noncontractible nooses until we obtain a planar graph G′. If at some step G′ is the
disjoint union of two graphs G1 and G2, we apply Proposition 1.2.5 on G1 and G2

separately.

We examine how a shortest noncontractible noose affects the cut-nooses of previous
cuts:

Definition 3.4.1. Let K be a family of cycles in G. We say that K satisfies the 3-
path-condition if it has the following property. If x, y are vertices of G and P1, P2, P3

are internally disjoint paths joining x and y, and if two of the three cycles Ci,j = Pi∪Pj,
(1 ≤ i < j ≤ 3) are not in K, then also the third cycle is not in K.

Proposition 3.4.2. (Mohar and Thomassen [74]) The family of Σ-noncontractible cy-
cles of a Σ-embedded graph G satisfies the 3-path-condition.

Proposition 3.4.2 is useful to restrict the number of ways not only on how a shortest
noncontractible tight noose may intersect a face but as well on how it may intersect the
vertices incident to a face.
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Lemma 3.4.3. Let G be Σ-embedded and F a face of G bordered by V1 ⊆ V (G). Let
F := V1 ∪ F . Let Ns be a shortest noncontractible (tight) noose of G. Then one of the
following holds

1) Ns ∩ F = ∅.
2.1) Ns ∩ F = ∅ and |Ns ∩ V1| = 1.
2.2) Ns ∩ F = ∅, Ns ∩ V1 = {x, y}, and x and y are both incident to one more face

different than F which is intersected by Ns.
3) Ns ∩ F �= ∅ and |Ns ∩ V1| = 2.

Proof. Recall that Ns is tight i.e. it can be seen as a cycle in the radial graph RG. This
directly implies that if |Ns ∩ V1| = 1, then Ns ∩ F = ∅.

Suppose now that Ns ∩ V1 = {vi, vj} and Ns ∩ F = ∅. Suppose also that there
is no face as the one required in 2.2. Then the cycle Cs of RG corresponding to Ns is
partitioned into two paths P2 and P3, each with ends vi and vj and of length > 2. We
use the notation vF for the vertex of RG corresponding to the face F . Let also P1 =
(vi, vF , vj) and notice that the two cycles of RG defined by P1∪P3 and P1∪P2 have length
smaller than P2 ∪P3 = Cs and therefore they are contractible. By Proposition 3.4.2, Ns

is contractible—a contradiction.

For the sake of contradiction, we assume that |Ns ∩ V1| ≥ 3. Assume Ns intersects
V1 in vertices I = v1, . . . , vk, k ≥ 3, and with at most two vertices connected by the part
of the noose of Ns that intersects F . In the radial graph RG of G, Ns corresponds to the
shortest noncontractible cycle Cs. In RG each vertex of V1 is a neighbor of the vertex
vF .

We consider the two cases: Ns∩F �= ∅. That is, there exists a path {vi, vF , vj} ⊂ Cs

in RG with vi, vj ∈ I. Let vh be another vertex in I = V1 ∩Cs. Consider the three paths
in RG connecting vF and vh, namely P1 = (vF , vi, . . . , vh), P2 = (vF , vj, . . . , vh), and
P3 = (vF , vh). Notice also that the two cycles of RG defined by P1 ∪ P3 and P2 ∪ P3

have length smaller than P1 ∪ P2 = Cs and therefore they are contractible which is a
contradiction to Proposition 3.4.2.

In case Ns ∩ F = ∅, we choose vi, vj, vh ∈ I arbitrarily and the arguments of the
previous case imply that the path P1 ∪ P2 is contractible. We define now the paths
Q1 = (vi, . . . , vh, . . . , vj), Q2 = (vi, vF , vj), and Q3 = (vi, . . . , vj) between the vertices vi

and vj. As Q1 ∪Q2 = P1 ∪ P2, the cycle Q1 ∪Q2 of RG is contractible. The same holds
for the cycle Q2 ∪ Q3 as its length is less than the length of Q1 ∪ Q3 = Cs. Then again
Proposition 3.4.2 implies that Q1 ∪ Q3 = Cs is contractible, a contradiction.

Lemma 3.4.4. Given a Σ-embedded graph G where Σ �= S0, with n vertices. Let G(i)

be the Σ(i)-embedded graph obtained by iteratively cutting G i times along a shortest
noncontractible noose. Then rep(G(i)) ≤ (

√
4.5 + 2 ·

√
2 · eg(Σ))

√
n.
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Proof. Given graph G(i) embedded in surface Σ(i). By Proposition 1.2.5, eg(Σ(i)) ≤
eg(Σ)− i. We obtain graph G

(i)
del by removing all duplicated vertices from G(i) that have

been introduced by cutting along the nooses N (0), . . . , N (i−1). Since |V (G
(i)
del)| = |V (G)|

we have with Proposition 1.2.4 that rep(G
(i)
del) ≤ bw(G

(i)
del) ≤ (

√
4.5+2·

√
2 · eg(Σ(i)))

√
n.

Let N
(i)
del be a shortest noncontractible noose of G

(i)
del that we consider. Since N

(i)
del is

tight and there are at most i + 1 faces in G
(i)
del that formerly contained the removed

duplicated vertices of G(i), we obtain with Lemma 3.4.3 a noncontractible noose N (i)

in G(i) consisting of N
(i)
del and at most 2(i + 1) duplicated vertices of N (0), . . . , N (i−1).

Hence, rep(G(i)) ≤ rep(G
(i)
del) + 2(i + 1) ≤ (

√
4.5 + 2 ·

√
2 · eg(Σ(i)))

√
n + 2(i + 1) ≤

(
√

4.5 + 2 ·
√

2 · eg(Σ) − i)
√

n + 2(i + 1) ≤ (
√

4.5 + 2 ·
√

2 · eg(Σ))
√

n for n >> i.

We use Lemma 3.4.3 to extend the process of cutting along noncontractible tight
nooses such that we obtain a planar graph with a small number of disjoint cut-nooses of
small lengths. Let g ≤ eg(Σ) be the number of iterations needed to cut along shortest
noncontractible nooses such that they turn a Σ-embedded graph G into a planar graph
G′. However, these cut-nooses may not be disjoint. In our dynamic programming
approach we need pairwise disjoint cut-nooses. Thus, whenever we cut along a noose,
we manipulate the cut-nooses found so far. After g iterations, we obtain the set of cut-
nooses N that is a set of disjoint cut-nooses bounding empty open disks in the embedding
of G′. Let L(N) be the length of N as the sum over the lengths of all cut-nooses in N.

Proposition 3.4.5. It is possible to find, in polynomial time, a set of cut-nooses N that
contains at most 2g disjoint cut-nooses. Furthermore L(N) is at most 2g (

√
4.5 + 2 ·√

2 · eg(Σ))
√

n.

Proof. Let Ni be the set of disjoint cut-nooses after i cuts. Consider the cases of
Lemma 3.4.3 of how a shortest noncontractible (tight) noose Ns intersects a cut-noose
of Ni.

• Suppose Ns intersects with the empty disk Δj bounded by Nj ∈ Ni. Let P1 ∪P2 = Nj

be the two partial nooses of Nj determined by the intersection of Nj and Ns. When
we cut along Ns, we replace Ns by the contractible cut-nooses NX and NY . We replace
NX ∩ Δj by P1 and NY ∩ Δj by P2. In Ni we substitute Nj by NX and NY . Note that
Ns can intersect with several disjoint cut-nooses of Ni in this way. See upper diagrams
Figure 3.6 for an example.

• Suppose Ns intersects with Nj ∈ Ni in one vertex. One of the cut-nooses NX , NY

intersects with Nj in vertex v. Delete v from Nj and add NX , NY . to Ni. Also here Ns

can intersect with several disjoint cut-nooses of Ni in this way. See the middle diagrams
in Figure 3.6 for an example.

• Suppose Ns intersects with Nj ∈ Ni in two vertices x, y and Ns∩Δj = ∅ (corresponding
to special case 2.2) in Lemma 3.4.3). Since there is no vertex in the part of Ns between
x and y we are allowed to shift that part entirely inside of Δj. See the lower diagrams
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3 Employing structures for subexponential algorithms

Ns

Δj

Nj

P1

P2

P1

P2

NX

NY

Ns

Δj

Nj

v

Δj

Nj

v

NY

NX

Ns

Δj

Nj

x

y Ns

Δj

Nj

x

y

Figure 3.6: Making cut-nooses disjoint. The upper diagrams show how a noncontractible

tight noose Ns partitions Nj into two partial nooses P1 and P2. NX ∪ P1 and

NY ∪ P2 form new cut-nooses. The middle diagrams show how Ns touches Nj in

only one vertex v. Since Nj and NY intersect in v, we set Nj == Nj \ v. The

lower diagrams show how to shift the part of Ns between vertices x and y from

the outside of Δj into the inside.

100



3.4 Graphs embedded on surfaces of bounded genus

in Figure 3.6 for an example. Thus, we obtain the first case above that Ns intersects
with the empty disk Δj bounded by Nj ∈ Ni.

• Due to Lemma 3.4.4, the shortest noncontractible noose of any graph G(i) is bounded
by

√
4.5 + 2 ·

√
2 · eg(Σ))

√
n where n is the number of vertices in the original graph G.

Hence, L(N) ≤ 2g (
√

4.5 + 2 ·
√

2 · eg(Σ))
√

n.

We extend the definition of relaxed Hamiltonian sets from graphs embedded on a
torus to graphs embedded on higher genus, i.e. from two cut-nooses NX and NY to the
set of cut-nooses N. For each vertex v in the vertex set V (G) of graph G we define
the vertex set Dv that contains all duplicated vertices v1, . . . , vf of v in N along with v.
Set D =

⋃
v∈V (G) Dv.

Definition 3.4.6. A set of disjoint paths P in G′ is relaxed Hamiltonian if:

(P1) Every path has its endpoints in N.

(P2) If a vertex vi ∈ Dv ∈ D is an endpoint of path P , then there is one vj ∈ Dv that is
also an endpoint of a path P ′ �= P . All vh ∈ Dv \ {vi, vj} do not belong to any path.

(P3) vi ∈ Dv is an inner path vertex if and only if all vh ∈ Dv \{vi} are not in any path.

(P4) Every vertex of the residual part of G′ is in some path.

Again we define HS(G′) to be the set of all relaxed Hamiltonian sets of G′ and
HS(G′)/ ∼ to be the quotient set. Similar to torus-embedded graphs, we order the
vertices of N in a counterclockwise order πL depending on the fixed paths between the
cut-nooses of N:

Lemma 3.4.7. Let G′ be the planar graph after cutting along g ≤ eg(Σ) tight nooses of

G along with its set of disjoint cut-nooses N. |HS(G′)/ ∼ | = 2O(g·(log g+
√

eg(Σ)
√

n)).

Proof. We create one cut-noose out of all the cut-nooses of N by using ”tunnels”
as in the proof of Lemma 3.3.3 in the previous section. The difficulty here is that
the cut-nooses are connected by a relaxed Hamiltonian set in an arbitrary way. By
Lemma 3.1.4 in Section 3.1, we have with |N| = O(g) and L(N) = O(g

√
eg(Σ)

√
n)

that q-pathsG′(E(G′), V (G′) ∩ N) = 2O(g log g) · 2O(g log[g
√

eg(Σ)
√

n]) · 2O(g
√

eg(Σ)
√

n) =

2O(g·(log g+
√

eg(Σ)
√

n)). Since as in Lemma 3.3.3, |HS(G′)/ ∼ | only differs by the ad-
ditional case of property (P3) of Definition 3.4.6, we have cardinality |HS(G′)/ ∼ | =
O∗(q-pathsG′(E(G′), V (G′) ∩ N)).

We use the tree structure, we obtain from the proof of Lemma 3.1.4, in order to
cut the sphere along that structure. Given such a tree structure, we create tunnels in
order to connect open disks and to merge them to one disk. Let C be a candidate of
HS(G′)/ ∼. Define graph H such that each cut-noose Ni ∈ N in G′ corresponds to a
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N1
N2

N3

N4

N5

1.

2.

3.

4.

5.

6.

7. 8.

Figure 3.7: Tree structure for fixing paths. The left diagram shows a candidate connecting

five cut-nooses N1, . . . , N5 by paths. In the right diagram, the fixed paths are

emphasized dashed. The nooses are connected by tunnels along these fixed paths.

The order πL of the vertices is illustrated by the labeled dotted and directed lines.

vertex i in V (H). Two vertices i, j of H are adjacent if there is a path between vertices
of Ni and Nj in C. Let F be a spanning forest of H. For every pair of adjacent vertices
i, j in F fix a path in G′ between two arbitrary vertices vi

x ∈ Ni and vj
y ∈ Nj. Walk

along a tree by starting and ending in a node r and visiting all nodes by always visiting
the next adjacent neighbor in counterclockwise order. A node is visited as many times
as many neighbors it has. In this way we create tunnels in G′ by ordering the vertices
of the cut-nooses: Starting with an ordered list L = {∅} and one cut-noose Ni and one
endpoint vi

x ∈ Ni of a fixed path. Take in counterclockwise order the vertices of Ni into
L that are between vi

x and the last vertex before the next endpoint vi
y ∈ Ni connected to

vj
z ∈ Nj in the fixed path Pi,j. Concatenate to L in counterclockwise order the vertices

of Nj after vj
z until the last vertex before the next endpoint of a fixed path. Repeat the

concatenation until one reaches again vi
x. Whenever an endpoint is visited for the second

time concatenate it to L, too. Create an ordered list LC for every component C in C
and concatenate LC to L. The order of L is then πL. See Figure 3.7 for an example.

Given the order πL of the vertices N for a candidate C. As in the previous subsec-
tion, we preprocess the graph G′ and fix the pairs of vertices of N that form a path for
candidate C.

Lemma 3.4.8. Let G′ be the planar graph after cutting along g ≤ eg(Σ) shortest non-
contractible nooses of G. For a given sc-decomposition (T, μ, π) of G′ of width � and
a candidate C the Relaxed Hamiltonian Set problem on G′ can be solved in time
2O(g2 log �) · 2O(�) · nO(1).

The dynamic programming approach of the previous section can be extended with-
out complicated encoding, which has the only purpose of giving better constants. We
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3.5 Graphs excluding a fixed-sized minor

give the detailed algorithm in Section 3.6, analyzing how the tight noose Oe can intersect
several cut-nooses and showing that V (Oe) still has Catalan structure.

Runtime analysis

Lemma 3.4.9. Let G be a Σ-embedded graph with n vertices and G′ the planar graph
obtained after cutting along g ≤ eg(Σ) tight nooses. Then, bw(G′) ≤

√
4.5 · √n + 2g.

Proof. We only give an idea of the proof, that is extending the proof of Lemma 3.3.5.
Here we delete temporarily all cut-nooses of N and construct a sc-decompositionof G′ of
width at most

√
4.5 · √n. Now we simply make use of the argument that a middle set

Oe intersects a cut-noose in at most two vertices for each cut-noose separately. Thus,
we obtain at most two vertices more for Oe per cut-noose that Oe intersects.

Lemmata 1.2.4, 3.4.7, 3.4.8 and 3.4.9 imply the following:

Theorem 3.4.10. Given a Σ-embedded graph G on n vertices and g ≤ eg(Σ). The
Hamiltonian cycle problem on G can be solved in time nO(g2) · 2O(g

√
g·n).

3.5 Graphs excluding a fixed-sized minor

We know extend our algorithm to a class of graphs that is including the previous ones,
the H-minor-free graphs, and show how to extend our notion of Catalan Structure to
it. The core of our algorithm is a structure theorem [85] capturing the structure of all
graphs excluding a fixed minor, also called H-minor-free graphs. That is, the theorem
says that every such graph can be decomposed into a collection of graphs, each of which
can “almost” be embedded into a surface of bounded genus, and combined in a tree-like
structure. We show at the example of k-Longest Path how to obtain a parametrized
algorithm of subexponential runtime. Note, that this algorithm can be reduced to the
problem on torus-embedded and other bounded-genus graphs.

3.5.1 A cornerstone theorem of Graph Minors.

Given two graphs G1 and G2 and two h-cliques Si ⊆ V (Gi), (i = 1, 2). We obtain
graph G by identifying S1 and S2 and deleting none, some or all clique-edges. Then,
G is called the h-clique-sum of the clique!h-clique-sum!clique-sum components G1 and
G2. Note that the clique-sum gives many graphs as output depending on the edges of
the clique that are deleted. According to Lemma 3.6.20 , given a graph G with branch-
decomposition (T, τ), for any clique with vertex set S there exists a node t ∈ T such
that S = mid({t, a})∪mid({t, b})∪mid({t, c}) where a, b, c are the neighbors of t in T .
We call such a vertex of T a clique node of S.
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3 Employing structures for subexponential algorithms

Let Σ be a surface. We denote as Σ−r the subspace of Σ obtained if we remove from
Σ the interiors of r disjoint closed disks (we will call them vortex disks). Clearly, the
boundary bor(Σ−r) of Σ−r is the union of r disjoint cycles. We say that G is h-almost
embeddable in Σ if there exists a set A ⊆ V (G) of vertices, called apices of G, where
|A| ≤ h and such that G − A is isomorphic to Gu ∪ G1 ∪ · · · ∪ Gr, r ≤ h in a way that
the following conditions are satisfied (the definition below is not the original one from
[85] but equivalent, slightly adapted for the purposes of our paper):

• There exists an embedding σ : Gu → Σ−r, r ≤ h such that only vertices of Gu are
mapped to points of the boundary of Σ−r, i.e. σ(Gu) ∩ bor(Σ−r) ⊆ V (G) (we call Gu

the underlying graph of G).
• The graphs G1, . . . , Gr are pairwise disjoint (called vortices of G). Moreover, for
i = 1, . . . , r, if Ei = E(Gi) ∩ E(Gu) and Bi = V (Gi) ∩ V (Gu) (we call Bi base set of
the vortex Gi and its vertices are the base vertices of Gi), then Ei = ∅ and σ(Bi) ⊆ Ci

where C1, . . . , Cr are the cycles of bor(Σ−r).
• for every i = 1, . . . r, there is a trunk decomposition Xi = (X i

1, . . . , X
i
qi
) of the vortex

Gi with width at most h and a subset Ji = {ji
1, . . . , j

i
|Bi|} ⊆ {1, . . . , qi} such that

∀k=1,...,|Bi| ui
k ∈ X i

ji
k

for some respectful ordering (ui
1, . . . , u

i
|Bi|) of Bi. (An ordering

(ui
1, . . . , u

i
|Bi|) is called respectful if the ordering (σ(ui

1), . . . , σ(ui
|Bi|)) follows the cyclic

ordering of the corresponding cycle of bor(Σ−r).) For every vertex ui
k ∈ Bi, we call X i

ji
k

overlying set of ui
j and we denote it by X(ui

j).

If in the above definition A = ∅, then we say that G is smoothly h-almost embeddable
in Σ. Moreover, if r = 0, then we just say that G is embeddable in Σ.

For reasons of uniformity, we will extend the notion of the overlying set of a vertex
in Bi to any other vertex v of the underlying graph Gu by defining its overlying set as
the set consisting only of v. For any U ⊆ V (Gu), the overlying set of U is defined by
the union of the overlying sets of all vertices in U and it is denoted as X(U).

We will strongly use the following structural theorem of Robertson and Seymour
(see [85],) characterizing H-minor-free graphs.

Proposition 3.5.1 ([85]). Let G be the graph class not containing a graph H as a
minor. Then there exists a constant h, depending only on H, such that any graph G ∈ G
is the (repeated) h-clique-sum of h-almost embeddable graphs (we call them clique-sum
components) in a surface Σ of genus at most h.

That is, beginning with an h-almost embeddable graph G, we repeatedly construct
the h-clique-sum of G with another h-almost embeddable graph.

3.5.2 k-Longest Path

Before we state the main result of this section, we need some notation especially for
the context of our algorithm. Given a graph H and a function f we use the notation
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3.5 Graphs excluding a fixed-sized minor

OH(f) to denote O(f) while emphasizing that the hidden constants in the big-O notation
depend exclusively on the size of H. We also define analogously the notation ΩH(f).

We change the definition of branch-decomposition having the Catalan structure
of Section 3.1.2 slightly for H-minor-free graphs. Given a graph G and a branch-
decomposition (T, τ) of G, we say that (T, τ) has the Catalan structure if

for any edge e ∈ E(T ), q-paths(Ee, ∂Ee) ≤ 2OH(|∂Ee|).

Our main result is the following.

Theorem 3.5.2. For any H-minor-free graph class G, the following holds:
For every graph G ∈ G and any positive integer w, it is possible to construct a time
OH(1) · nO(1) algorithm that outputs one of the following:

1. A correct report that G contains a (w × w)-grid as a minor.

2. A branch-decomposition (T, τ) with the Catalan structure and of width OH(w).

In what follows, we will give the description of the algorithm of Theorem 3.5.2 and we
will sketch the main arguments supporting its correctness. The full proof is lengthy and
complicated and all lemmata supporting its correctness can be found in Section 3.6.

1. Use the time OH(1) · nO(1) algorithm of [27] to decompose the input graph into a
collection C of clique-sum components as in Proposition 3.5.1. Every graph in C is a
egH-almost embeddable graph to some surface of genus ≤ egH where egH = OH(1).

2. For every Ga ∈ C, do

a. Let Gs be the graph Ga without the apex vertices A (i.e. Gs is smoothly egH-almost
embeddable in a surface of genus egH). Denote by Gs

u the underlying graph of Gs.

b. Set G
(1)
u ← Gs

u, G(1) ← Gs, and i ← 1.

c. Apply the following steps as long as G
(i)
u is non-planar.

i. Find a non-contractible noose N in G
(i)
u of minimum length, using the polynomial

time algorithm in [93].

ii. If |N | ≥ 2i−1f(H) · w then output “The input graph contains a (w × w)-grid as a
minor” and stop. The estimation of f(H) comes from the results in [34], presented
in Lemma 3.6.9. Along with Lemma 3.6.10 follows the correctness of this step.

Notice that, by minimality, N cannot intersect the interior of a hole or a vortex disk
Δ more than once and, for the same reason, it can intersect bor(Δ) in at most two
vertices. If int(Δ) ∩ N = ∅ and bor(Δ) ∩ N = {v, w}, again from minimality, v
and w should be successive in bor(Δ). In this case, we re-route this portion of N
so that it crosses the interior of Δ (see Figure 3.8).

iii. As long as N intersects some hole (initially the graph G(1) does not contain holes

but they will appear later in G(i)’s for i ≥ 2) or some vortex disk of G
(i)
u in only

one vertex v, update G(i) by removing v and the overlying set of all its relatives
(including X(v)) from G(1), . . . , G(i). To maintain the OH(1)-almost embeddability
of Ga, compensate this loss of vertices in the initial graph Gs = G(1), by moving in
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N
Δ

bor(Δ)

v
w N ′

Δ

bor(Δ)

v
w

Figure 3.8: Re-routing a noose.

A the overlying set of the relative of v in G(1) (as the number of vortex disks and
holes depends only on H, the updated apex set has again size depending on H).
Notice that after this update, all cut-nooses found so far, either remain intact or
they become smaller. The disks and vortices in G(1), . . . , G(i) may also be updated
as before and can only become smaller. We observe that after this step, if a noose
N intersects a hole or vortex disk Δ it also intersects its interior and therefore it
will split Δ into two parts Δ1 and Δ2.

iv. Cut G
(i)
u along N and call the two disks created by the corresponding cut of the

surface holes of the new embedding. We go through the same cut in order to “saw”
G(i) along N as follows: If the base set of a vortex is crossed by N then we also
split the vortex according to the two sides of the noose; this creates two vortices in
G(i+1). For this, consider a vortex Gv and a trunk decomposition X = (X1, . . . , Xq)
of Gv. Let also a, b be the vertices of the base set B of Gv that are intersected by
N and let a ∈ Xja

, b ∈ Xjb
, where w.l.o.g. we assume that a < b. When we split,

the one vortex is the subgraph of Gv induced by X1 ∪ · · · ∪ Xja
∪ Xjb

∪ · · · ∪ Xq

the other is the subgraph of Gv induced by Xja
∪ · · · ∪Xjb

(notice that the vertices
that are duplicated are those in Xja

and Xjb
). Let G(i+1) be the graph embedding

that is created that way and let G
(i+1)
u be its underlying graph . Recall that, from

the previous steps, a vortex disk or a hole Δ (if divided) is divided into two parts
Δ1 and Δ2 by N . That way, the splitting of a vortex in G(i) creates two vortices
in G(i+1). As the number of vortices in G(i) is OH(1), the same holds also for the
number of vortices in G(i+1). If N splits a hole of G(i+1), then the two new holes
Δ′

1, Δ
′
2, that the splitting creates in G(i+1), are augmented by the two parts Δ1 and

Δ2 of the old hole Δ (i.e. Δ′
j ← Δj ∪ Δ′

j, j = 1, 2).

v. i ← i + 1.

The loop of step 2.c. ends up with a planar graph G
(i)
u after OH(1) splittings because

the genus of G
(1)
u is OH(1) (each step creates a graph of lower Euler genus – see [74,

Propositions 4.2.1 and 4.2.4]). This implies that the number of holes or vortex disks

in each G
(i)
u remains OH(1). Therefore, G(i) is a smoothly OH(1)-almost embeddable

graph to the sphere. Also notice that the total length of the holes of G
(i)
u is upper

bounded by the sum of the lengths of the nooses we cut along, which is OH(w).

d. Set Gp ← G(i) and Gp
u ← G

(i)
u and compute an optimal sphere-cut decomposition

(T p
u , τ p

u) of Gp
u, using the polynomial algorithm from [89].

e. If bw(Gp
u) ≥ 2egH · f(H) · w = ΩH(w), then output “The input graph contains a
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3.5 Graphs excluding a fixed-sized minor

(w × w)-grid as a minor” and stop. This step is justified by Lemma 3.6.11.

f. Enhance (T p
u , τ p

u), so that the edges of the vortices of Gp are included to it, as follows:
Let Gv be a vortex of Gp with base set B = {u1, . . . , um} ordered in a respectful way
such that ∀k=1,...,muk ∈ mid(fjk

) where the ordering fj1 , . . . , fjm
contains the edges of

a longest path of the tree T ∗ of some trunk decomposition (T ∗, τ ∗) of Gv. Update
(T p

u , τ p
u) to a branch-decomposition (T̂ p

u , τ̂ p
u) of Ĝp (if the branchwidth of a graph is

more than 1, it does not change when we add loops). Let l1, . . . , lm be the leaves of
(T̂ p

u , τ̂ p
u) corresponding to the loops of the base vertices of Gv. We subdivide each fjk

in T ∗ and we identify the subdivision vertex with lk for any k = 1, . . . , m. We make
the resulting graph a ternary tree, by removing a minimum number of edges in T ∗ and
devolving their endpoints in the resulting forest. That way, we construct a branch-
decomposition of Ĝp

u ∪Gv which, after discarding the leaves mapped to loops, gives a
branch-decomposition of Gp

u ∪ Gv (see Figure 3.9). Applying this transformation for

u1X6 X11

X3 X13

τ̂ p
u

B B

T ∗

T̂ p
uT̂ p

u

u2 u3

u4 u4

u3
u2

τ̂ p
u

τ̂ p
u

τ̂ p
u

u1

Figure 3.9: The procedure of enhancing the branch-decomposition (T p
u , τ p

u) of Gp
u to a

branch-decomposition of Gp.

each vortex Gv of Gp, we construct a branch-decomposition of Gp. In Lemma 3.6.12,
we prove that this enhancement of the branch-decomposition of Gp

u can add OH(1)
vertices for each vertex in mid(e), e ∈ E(T p

u ), therefore, bw(Gp) = OH(bw(Gp
u)).

g. Notice that, while successively splitting Gs during the loop of step 2.c., all edges
remain topologically intact (only vertices may be duplicated). This establishes a
bijection between E(Gs) and E(Gp), which allows us to transform (T p, τ p) to a branch-
decomposition (T s, τ s) where T s = T p. At this point, we have to prove that if the
bounds of Theorem 3.5.2 holds for the graph Gp = G(i) (a graph that is smoothly
OH(1)-almost embeddable in the sphere), then they also hold for the graph Gs = G(1)

that is a smoothly OH(1)-almost embeddable in a surface of higher genus. We prove
that bw(Gs) = OH(bw(Gp)) with the help of Lemma 3.6.13.a (using induction).
However, what is far more complicated is to prove that (T s, τ s) has the Catalan
structure. For this, we first prove (using inductively Lemma 3.6.13.b) that for any
edge e of T s = T p, holds that

q-pathsGs(Ee, ∂Ee) ≤ q-pathsGp(Ee, ∂Ee ∪ De),(3.13)

where De is the set of all vertices of the holes of Gp that are endpoints of edges in
Ee. Intuitively, while splitting the graph Gs along non-contractible nooses, the split

107



3 Employing structures for subexponential algorithms

vertices in the nooses (i.e., the vertices in De) may separate paths counted in the
left side of Equation (3.13). Therefore, in order to count them, we have to count
equivalence classes of collections of internally vertex disjoint paths in the planar case
allowing their endpoints to be not only in ∂Ee but also in De. That way, we reduce the
problem of proving that (T s, τ s) has the Catalan structure, to the following problem:
find a bound for the number of equivalent classes of collections of vertex disjoint paths
whose endpoints may be a) vertices of the disk Δe bounding the edges Ee in the sphere-
cut decomposition (T p, τ p) of Gp

u, along with their overlying sets (all-together, these
ends are at most bw(Gp) = OH(w), because of Lemma 3.6.12) and b) vertices (and
their overlying sets) of 2·egH = OH(1) disjoint holes (created by cutting along nooses)
of total size ≤ egH · (2egH − 1) · f(H) · w = OH(w) (see the proof of Lemma 3.6.10).
Notice that these paths can be routed also via ≤ egH · 2i ≤ egH · 2egH = OH(1)
vortices (because, initially, Gs

u had egH vortices and, in the worst case, each noose
can split every vortex into two parts), each of unbounded size. Recall that the holes
and the vortex disks of Gp

u do not touch (i.e. they intersect but their interiors do
not) because of the simplification in Step 2.c.iii, however, they may have common
interiors. Finally, the boundary of Δe can touch any number of times a vortex disk or
a hole but can traverse it only once (recall that by the definition of sc-decompositions
bor(Δe) should be a tight noose). (For an example of the situation of the holes
and vortices around the disk bounding the edges Ee, see Figure 3.14.) Our target is
to relate q-pathsGp(Ee, ∂Ee ∪ De) to the classical Catalan structure of non-crossing
partitions on a cycle. As this proof is quite technical, it is stated subsequent to this
section (Lemma 3.6.14) and, here, we will give just a sketch. Our first two steps are
to “force” holes and vortex disks not to touch the boundary of Δe and to “force”
vortex disks not to intersect with holes or with bor(Δe). For each of these two steps,
we bound q-pathsGp(Ee, ∂Ee ∪ De) by its counterpart in a “normalized” instance of
the same counting problem (related to the original one by a “rooted minor” relation).
That way, the problem is reduced to counting equivalent classes of collections of
vertex disjoint paths with endpoints (recall that there are OH(w) such endpoints)
on the boundary of OH(1) disjoint holes (the disk taken if we remove from Δe all
holes that intersect it, is also considered as one of these holes). However, we still
do not have to count equivalent classes of non-crossing collections of paths because
of the presence of the vortices that may permit crossing paths. At that point, we
prove that no more than OH(β) paths can mutually cross, where β = OH(1) is the
number of vortices. Using this observation, we prove that each equivalent class is the
superposition of OH(1) equivalent classes of non-crossing collections of disjoint paths.
Because of this, the number of equivalent classes of collections of disjoint paths are
in total 2OH(w) and, that way, we bound q-pathsGp(Ee, ∂Ee ∪ De) as required.

h. Construct a branch-decomposition (T a, τa) of Ga by adding in (T s, τ s) the edges
incident to the apices of Ga. To do this, for every apex vertex a and for every
neighbor v, choose an arbitrary edge e of T s, such that v ∈ ∂Ee. Subdivide e and
add a new edge to the new node and set τ({a, v}) to be the new leaf. The proof that
bw(Ga) = OH(bw(Gs)) is easy, as Gs contains only OH(1) vertices more (Lemma
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3.5 Graphs excluding a fixed-sized minor

3.6.14). With more effort (and for the same reason) we prove that the Catalan
structure for Gs implies the Catalan structure for Ga (Lemma 3.6.19).

3. For any Ga ∈ C, merge the branch-decompositions constructed above according to the
way they are joined by clique sums and output the resulting branch-decomposition of
the input graph G. In particular, if (T a

1 , τa
1 ) and (T a

2 , τa
2 ) are two branch-decompositions

of two graphs Ga
1 and Ga

2 with cliques S1 and S2 respectively and |S1| = |S2|, we
construct a branch-decomposition (T ′, τ ′) of the graph G′, taken after a clique sum of
Ga

1 and Ga
2, as follows: Let ti be a clique-node of Si in (Ti, τi), i = 1, 2. Then, the

branch-decomposition (T ′, τ ′) of G′ is obtained by first subdividing an incident edge
eti , i = 1, 2 and then connecting the new nodes together. Secondly, remove each leaf l
of T ′ that corresponds to an edge that has a parallel edge or is deleted in the clique-sum
operation and finally contract an incident edge in T ′ of each degree-two node. We prove
(Lemma 3.6.23) that this merging does not harm neither the bounds for branchwidth
nor the Catalan structure of the obtained branch-decomposition and this finally holds
for the input graph G, justifying Theorem 3.5.2.

3.5.3 Algorithmic consequences

A first application of Theorem 3.5.2 is the following.

Corollary 3.5.3. The problem of checking whether there is a path of length k on H-
minor-free graphs can be solved in 2OH(

√
k) · nO(1) steps.

Proof. We apply the algorithm of Theorem 3.5.2 for w =
√

k. If it reports that G
contains a (

√
k ×

√
k)-grid, then G also contains a path of length k. If not, then the

algorithm outputs a branch-decomposition (T, τ) of width OH(
√

k), as in Theorem 3.5.2.
By applying dynamic programming on (T, τ) we have, for each e ∈ E(T ), to keep track
of all the ways the required path (or cycle) can cross mid(e) = ∂Ee. This is proportional
to q-pathsG(Ee, ∂Ee) (counting all ways these paths can be rooted through ∂Ee). As

q-pathsG(Ee, ∂Ee) = 2OH(
√

k) we have the claimed bounds.

Note, that for k = log2 n, Corollary 3.5.3 gives a polynomial time algorithm for
checking if a n-vertex graph has a path of length log2 n.

Other problems that can be solved in 2OH(
√

k) · nO(1) steps in H-minor-free graph
classes, applying simple modifications to our technique, are the standard parameter-
izations of Longest Cycle, Feedback Vertex Set, and Cycle/Path Cover

(parameterized either by the total length of the cycles/paths or the number of the cy-
cles/paths).

Moreover, combining Theorem 3.5.2, with the results in [38] we can derive time

2OH(
√

k) · nO(1) algorithms for problems emerging from contraction closed parameters for
apex-minor-free graph classes (a graph is an apex graph the removal of one of its vertices
creates a planar graph). The most prominent examples of such problems are Con-

nected Dominating Set and Max Leaf Tree. (The best previous algorithm for
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these problems for apex-minor-free graph classes was a 2OH(
√

k·log k) ·nO(1) step algorithm
given in [35].)

Our technique can also be used to design fast subexponential exact algorithms.
Notice that the branchwidth of any H-minor-free graph is at most OH(

√
n) [9]. The

algorithm of Theorem 3.5.2 will output a branch-decomposition of width OH(
√

n) that,
using an adequate definition of Catalan structure, can be used to derive 2OH(

√
n) step al-

gorithms for several problems. Consider for example Weighted Graph Metric TSP

(TSP with the shortest path metric of G as distance metric). We saw in Section 3.2.3
how to solve Graph Metric TSP on planar graphs.The basic idea is that any solu-
tion to Graph Metric TSP can be reduced to finding a minimum weight spanning
Eulerian subgraph. In this case, instead of having collections of paths pathsG(Ee, ∂Ee)
we deal with connected components, say compG(Ee, ∂Ee). Nevertheless, we can use the
Catalan structures argument and extend our counting results about q-pathsG(Ee, ∂Ee).
Apart from the problems that we have already mentioned above, 2OH(

√
n) step exact

algorithms can be designed for Steiner Tree, Maximum Full Degree Spanning

tree, and other types of spanning tree problems.

3.6 Appendix

3.6.1 Proof of Lemma 3.3.4

Preprocess G′. In a preprocessing step we delete all vertices of NX ∪ NY from G′

which do not belong to any path of the candidate C = (T, I). The other vertices in
NX ∪ NY are encoded by base values {[, ], S,�}. This base encoding depends on the
order πXY and is fixed throughout the phase of dynamic programming. Assume that
for the tuple (s, t) of T, s is marking the first vertex in πXY and t the last vertex. We
encode both s and t by ’S’. For every other tuple (si, ti) of T we encode si by ’[’ and
ti by ’]’ where πXY (si) < πXY (ti).The additional value ’S’ is important for a consistent
dynamic programming. It determines the “tunnel” created by the path with endpoints s
and t. As described in the proof of Lemma 3.3.3 the cut-nooses NX , NY and the tunnel
border one face that we treat as an outer face and so enables the base encoding. The
vertices of I simply are encoded by base value ’�’.

Constructing branch-decomposition. We use Theorem 2.3.1 to compute in polyno-
mial time a sc-decomposition (T, μ, π) of G′ of optimum width �. For dynamic program-
ming we root T at an arbitrary node r. We proceed as for dynamic programming in
Section 3.2. In the following, we often do not distinguish between mid(e) and Oe∩V (G).
We start at the leaves of T and work ’bottom-up’ processing the subgraphs rooted at
the edges up to the root edge. Consider the intersection of relaxed Hamiltonian set P
and subgraph Ge. All paths of P ∩ Ge start and end in Oe and Ge ∩ (NX ∪ NY ). For
a dynamic programming step we need the information on how a tight noose Oe and
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NX ∪NY intersect and which parts of NX ∪NY are a subset of the subgraph Ge. Define
the set of O-arcs X = (Ge \ Oe) ∩ (NX ∪ NY ).

In the dynamic programming approach we differentiate three phases. In Phase 1
no vertex of NX ∪ NY is contained in disk Δe bounded by Oe, thus X = ∅. Note that
in this phase (NX ∪ NY ) ∩ Oe is not necessary empty because Oe may touch NX ,NY in
common vertices. Hence all paths must start and end in Oe. At some step of dynamic
programming we arrive at Phase 2: X �= ∅ but neither V (NX) ⊆ X , nor V (NY ) ⊆ X .
This is when we connect the loose paths—i.e. paths with endpoints in Oe \ (NX ∪NY )—
to their predestinated endpoints in NX and NY . Finally, we arrive at the situation,
Phase 3, when either V (NX) ⊆ X ∨ V (NY ) ⊆ X , or V (NX) ⊆ X ∧ V (NY ) ⊆ X . The
situation that eventually occurs in Phase 3 is that a cut-noose is entirely part of Ge

but not intersecting Oe. We have to draw special attention to the fact that the relative
position of the cut-noose and Oe are not known. By working out some special cases, we
take care that the residual paths with one determined endpoint in NX and NY and the
other endpoint Oe \ (NX ∪ NY ) in are connected in the right way.

Proposition 3.6.1. Phase 1: Given an sc-decomposition (T, μ, π) of G′ of width � and
a candidate C = (T, I). The phase of dynamic programming with X = ∅ takes time
O(23.292�).

Every vertex of the subgraph Ge below Oe is part of one of the vertex-disjoint
paths P1, . . . , Pq of P∩Ge with endpoints in Oe. The state of dynamic programming is
specified by an ordered �-tuple �te := (v1, . . . , v�) with the variables v1, . . . , v� correspond-
ing to the vertices of Oe ∩ V (G). The variable set V has four values:V = {0, 1[, 1], 2}.
For edge e, we define the assignment ce : V (Oe) → V. For every state, we compute
a Boolean value Be(v1, . . . , v�) that is True if and only if P1, . . . , Pq have the follow-
ing properties: (A1) Every vertex of V (Ge) \ Oe is contained in one of the paths Pi,
1 ≤ i ≤ q.

(A2) Every Pi has both its endpoints in Oe ∩ V (G);

We obtain exactly the same algorithm as in Section 3.2 for Planar Hamiltonian

Cycle.

We count the total cost of forming an �-tuple from OP by summing over i: the
number of 1[’s and 1]’s in the assignments for I:

(3.14) C(�) =

�
2∑

i=0

(
�
2

i

)
2

�
2
−iQ(�, i)2 ≈ (4

√
6)� ≈ 23.292�

There is one restriction to the encoding of the vertices in Oe ∩ (NX ∪NY ): a vertex
with base value ’[’,’]’ or ’S’ cannot be assigned with ’2’ at any stage.

Proposition 3.6.2. Phase 2: The phase of dynamic programming with X �= ∅ and
V (NX) � X and V (NY ) � X takes time O(26.360�).
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Let us remind that X = (Ge \ Oe) ∩ (NX ∪ NY ). The difficulty of the second phase
lies in keeping track of the base encoding of the vertices in X . Thus, we do not want to
memorize explicitly with which endpoint in X a vertex of Oe forms a path. We apply
again the Catalan structures. The key to it is firstly that the vertices of Oe inherit the
base values of the sets T and I of candidate C.That is, if one vertex of Oe is paired with
a vertex assigned by ’[’ it must be paired in Ge with a vertex with value ’]’. Secondly, we
observe that the cut-nooses NX ∪NY and the tight noose Oe intersect in a characteristic
way: we show that we obtain a structure that allows us to encode paths in an easy way.
In other words we make use of the structure of the subgraph Ge bordered by NX ∪ NY

and Oe for synchronizing the encoding of T and I with the encoding of Oe. To do so, we
need some more definitions. We define a partial noose as a proper connected subset of
either the tight noose Oe or one of the cut-nooses NX , NY . A partial noose is bounded
by vertices or points of the intersection Oe∩ (NX ∪NY ). A partial component of a graph
is embedded on an open disk bounded by partial nooses. The vertices in the intersection
of two partial components are called connectors. In fact, Ge can be partitioned into
several partial components with no connector in three components. Each component is
bordered by partial nooses of NX ∪ NY and Oe.

Proposition 3.6.3. The subgraph Ge is the union of partial components C1, . . . , Cq

(q ≥ 1) such that for every i

Ci∩(
⋃q

r=1,r 
=i Cr) ⊆ Oe∩(NX∪NY ). Furthermore, for every i, j, h, Ci∩Cj∩Ch = ∅.

Proof. Recall that by definition a tight noose intersects a region exactly once. Hence
Oe intersects at most once the empty disks ΔX and ΔY that are bounded by NX and
NY . In this case, Oe and (NX ∪ NY ) can intersect in vertices or as well once or twice
the arc between to successive vertices in NX and NY , respectively. That is due to the
fact that NX and NY are cut-nooses and hence may have several arcs in one face. In
contrast, Oe and (NX ∪ NY ) can touch arbitrarily often, but only in vertices. In Phase
2, Δe ∩ (ΔX ∪ ΔY ) �= ∅. Hence, if one removes ΔX ∪ ΔY then Δe is partitioned into
several disks Δ1, . . . , Δq each bordered by the union of some partial nooses bounded by
vertices v of V (Oe) ∩ V (NX ∪ NY ) or some points μ of the crossing of the arcs between
two successive vertices of Oe and NX ∪NY . Since NX and NY do not intersect, we have
that v and μ, respectively, is an endpoint of at most four partial nooses. Hence, v is
neighboring at most two partial components and μ one.

See the left diagram of Figure 3.10 for an example.

Proposition 3.6.4. Each Ci is bordered by sets of partial nooses Ai and Bi with Ai ⊂
(NX ∪NY ) \Oe and Bi ⊂ Oe with

⋃k
i=1 Ai ∪Bi = Ge ∩ ((NX ∪NY )∪Oe) such that one

of the following hold:

1. |Ai| = |Bi| = 1 with Ai ⊂ NX or Ai ⊂ NY ,

2. |Ai| = |Bi| = 2 with Ai ⊂ NX and Ai ⊂ NY .

There is at most one partial component Ci with property 2.
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NX

NY

Oe

C2

C1

C3
C4

NX

NY

A2

A2
B2

B2

Oe

A1

B1

A3

B3 B4

A4

Figure 3.10: Partial components and partial nooses. The left diagram illustrates how Oe

and NX ,NY form the partial components C1, . . . , C4. Observe that C1, . . . , C4

only intersect in vertices whereas Oe and NX ,NY do not have to. In the right

diagram, each partial component is bounded by partial nooses. Only component

C2 has |A2| = |B2| = 2.

Proof. Assume, there is a component Ci with two partial noose P 1
i , P 2

i ∈ Ai ∩ NX .
Consider a walk along Oe. P 1

i and P 2
i are on the same side of that walk. Therefore, Oe

must cross ΔX twice, in contradiction to being a tight nose. For the second part of
the proof, assume two components Ci and Cj with |Ai| = |Aj| = 2. Then there are four
partial nooses of Bi ∪ Bj ⊂ Oe that must be connectible to a tight noose Oe. That is
not possible without crossing ΔX and ΔY more than once.

See the right diagram of Figure 3.10 for an illustration.

In contrast to the first phase we encode the vertices for each component Ci of
Proposition 3.6.3 separately. The connectors, the vertices that are in two components
are encoded twice. A restriction to the encoding of the vertices in Oe ∩ (NX ∪NY ) is the
consideration of the base encoding, for example a vertex with base value ’[’ or ’]’ cannot
be assigned with ’2’ at any time.

We introduce new values for indicating a pairing with vertices of X = (Ge \ Oe) ∩
(NX ∪NY ). Proposition 3.6.4 guarantees that we can differentiate between three types
of partial components Ci. The ones without any vertex in X and the two that have
properties 1 and 2. For all three cases every vertex of V (Ci) \ Oe is contained in one
path.

1. V (Ci) ∩ V (X ) = ∅. (Component C1 in Figure 3.10).

- Every path has both endpoints in V (Ci) ∩ Oe.

- Every vertex of V (Ci)∩ (NX ∪NY ) with base value ’[’ or ’]’ is not to be an inner
vertex of a path.
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- We use the same encoding as in phase 1.

2. V (Ci) ∩ V (X ) �= ∅ and |Ai| = 1. (Components C3 and C4 in Figure 3.10).

- Every path has both endpoints in V (Ci) ∩ (Oe ∪ X ).

- A vertex of V (Ci) ∩ Oe that is paired with the other endpoint w in V (X ) is
encoded with the base value of w, that is, ’[’ or ’]’. Since |Ai| = 1 and the Catalan
structure is retained for the border vertices of Ci, it is possible to reconstruct the
order πXY in which the endpoints in X are. The base value ’�’ does not appear.
We introduce ’SX ’ and ’SY ’ for marking the connection to vertices in NX and NY

that have the base values ’S’. ’SX ’ and ’SY ’ appear at most once.

- For paths with both endpoints in V (Ci) ∩ Oe we use the same encoding as in
phase 1.

3. V (Ci) ∩ V (X ) �= ∅ and |Ai| = 2. (Component C2 in Figure 3.10).

- Every path has both endpoints in V (Ci) ∩ (Oe ∪ X ).

- As in the latter case we use the base encoding to encode the vertices of V (Ci)∩Oe,
too. Additionally, we introduce values ’]X ’,’[X ’,’]Y ’,’[Y ’ to mark each of the last
two vertices in order π that are endpoint of a path with other endpoint in NX and
NY , respectively. These values are used only once in an unique Ci and hence do
not play any role for the running time.

See Figure 3.11 for an example on the usage of encoding ’]X ’,’[X ’,’]Y ’,’[Y ’.

Additional special cases.

• Base value ’S’.

We omit here to consider the special cases that occur with base value ’S’. Recall
that ’S’ marks the fixed path Pi,j and the beginning and the end of order πXY .
It is easy to see that the encoding determines whether a vertex of V (Ci) ∩ Oe is
connected to a vertex before or after an endpoint of Pi,j. For example, suppose
both endpoints of Pi,j are in X ∪Oe and Pi,j ⊂ Ci. Then Pi,j separates Ci into two
parts which cannot be connected by a path, since neither NX ⊂ Ci nor NY ⊂ Ci.

• Right encoding of connector. Let c be a connector between two partial com-
ponents Ci,Cj. The two values of c must combine to the correct base value. If
base value of c is not ’�’, at least one of the two values in Ci or Cj must be ’0’
and none is ’2’.

• Path through several components. For every component Ci, a vertex v of the
tight noose Oe∩Ci can be paired to a connector with base value ’�’. Hence, v can
be an endpoint of a path with other endpoint in X in another component Cj. In
this case assign v with the corresponding base value.
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Nx

Oe

[

]X

[

0
[ ] ] [

0

]Y

1]

1[

0

[

[

[ ] [ [

Oe

Ny

Figure 3.11: Usage of ’]X ’,’[X ’,’]Y ’,’[Y ’. The diagram shows the partial component that is

bounded by four partial nooses. The vertices are clockwise ordered beginning in

the upper left corner. ’]X ’ on the right partial noose of Oe marks the last vertex

of Oe connected to NX . ’]Y ’ on the left partial noose of Oe marks the last vertex

connected to NY .
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Processing middle sets. The middle sets are processed exactly as described in the first
phase. In the first step every pair of states of two child edges eL and eR are updated to
a state of the parent edge eP . For a symbol of {[, ], SX , SY , ]X , [X , ]Y , [Y } the numerical
value is 1 and we form the vertex assignments as above. I.e., base values are treated
exactly as ’1[’ or ’1]’. With the only restriction if the assignments cL and cR of a vertex
v both are base values. The base value in OL must fit to the base value in OR, i.e., if
wlog cL(v) has value ’[’ then cR(v) must have ’]’, if wlog cL(v) = SX then cR(v) = SY . In
the second step, we do not only check forbidden cycles, but consistency of the encoding
regarding to the base values. With the help of an auxiliary graph consisting of GL and
GR together with the partial components, we check the following:

1. The base values of cL and cR are connected respecting πXY . For a vertex v of I
encoded by ’[’ and ’]’ in OL and OR, respectively, it must hold that the endpoint
with base value ’[’ must be in order πXY before the endpoint with ’]’.

2. The vertices of a partial component Ci of OP that are paired to a vertex of X ∩Ci

are assigned with the correct value of {[, ], SX , SY , ]X , [X , ]Y , [Y }. Note that new
connector vertices are generated, which must be encoded component-wise.

Running time. When counting the number of states, omit values {SX , SY , ]X , [X , ]Y , [Y }
since they are assigned to at most two vertices of OL and OR. Each connector is as-
signed with two values. The number of connectors can be in order size of a OL and
OR, respectively. The values of the vertices in the symmetric difference sets L,R are
transferred in time depending on the number of values {0, 1[, 1], 2, [, ]} and the number
of valid encoding of the connectors. There are 25 ways of encoding a connector correctly.
Apparently, if a vertex is a connector in OL then it is not in OR. To simplify matters,
assume that V (OL) are connectors and V (OR) are not. Then the update time for L,R
is O(25|L∩OL|6|R∩OR|). There are 45 possible assignments for vertices in F to sum up
to two. Thus, updating time for the F -set is O(45|F |). With analogous calculations as
before we get an overall running time 60.5�250.5�450.5� ≈ 26.36�.

Proposition 3.6.5. Phase 3: The phase of dynamic programming with X �= ∅ and
either V (NX) ⊆ X or V (NY ) ⊆ X or both takes time O(26.360�).

In the last phase at least one of both cut-nooses NX ,NY are subsets of V (Ge) \Oe.
The difficulty is apparently to encode the endpoint of a path with one endpoint in such
NX , NY . We consider two cases:

1. The fixed path Pi,j is crossing Oe.

If both NX and NY are in V (Ge) \ Oe we assume the first vertex v assigned by
’SX ’ in π and the other vertex w by ’SY ’. Use encoding with ’[X ’,’]X ’ to mark
the last vertex in the partial noose (v, w) ⊂ Oe connected to NX and ’[Y ’,’]Y ’ for
the last vertex in the partial noose (w, v) ⊂ Oe connected to NY . If wlog NX

crosses Oe we find a partial component Ci including NY . We mark two vertices
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with ’[X ’,’]X ’,’[Y ’,’]Y ’ in the same way , no matter if there is one or two of ’SX ’,’SY ’
in V (Ci) ∩ Oe.

2. Pi,j ⊂ Ge \ Oe.

One vertex in Oe is marked ’[X ’ or ’]X ’ to be the last vertex in π connected to NX

and one vertex by ’[Y ’ or ’]Y ’ to be the last connected to NX . If one of NX ,NY

cross Oe we again find a partial component Ci can be encoded in that way.

Since the new values ’[∗’,’]∗’ appear only twice per middle set, they do not affect
the running time. The algorithm works the same as in phase two, considering the two
latter cases.

3.6.2 Proof of Lemma 3.4.8

As in the previous subsection, we preprocess the graph G′ by deleting all vertices in N

that do not belong to any path in candidate C.

Dynamic programming follows the same ideas as in the previous subsection without
encoding and with slight changes caused by the extension of Propositions 3.6.3 and 3.6.4.
Due to Proposition 1.2.5 we can have the case that G′ consists of several components
G′

1, G
′
2, . . .. We simply do dynamic programming for each component separately.

Consider subgraph Ge bordered by tight noose Oe and Ne ⊂ N as the cut-nooses
intersecting Ge:

Proposition 3.6.6. The subgraph Ge is the union of partial components C1, . . . , Cq

(q ≥ 1) such that for every i

Ci ∩ (
⋃q

r=1,r 
=i Cr) ⊆ Oe ∩ Ne. Furthermore, for every i, j, h, Ci ∩ Cj ∩ Ch = ∅.

Proposition 3.6.7. Each Ci is bordered by partial nooses of Ai of tight nooses of Ne\Oe

and partial nooses of Bi ⊂ Oe with
⋃q

i=1 Ai ∪ Bi = Ge ∩ (Ne ∪ Oe) such that one of the
following hold:

1. |Ai| = |Bi| = 1 with Ai ⊂ NX for a tight noose NX ∈ Ne ,

2. |Ai| = |Bi| ≤ 2g with each partial noose of Ai part of a different tight noose of Ne.

For all partial components Ci, Cj with property 2: Ai contains at least one partial noose
that is part of a cut-noose of Ne that has no partial noose in Aj. There are at most 2g
components with property 2 and |⋃2g

i=1 Ai| ≤ 2g.

See Figure 3.12 for an illustration.

Because of the last statement of Proposition 3.6.7 the size of the union over all
Bi is also bounded by 2g. Hence, there are at most 4g2 vertices in Oe fixed endpoints
of paths with other end in a cut-noose and O((2g bw(G′))4g2

possibilities for assigning
these values to V (Oe).
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N1
N2

N3

N4

N5

C1

C2

C3

C4

Oe

Figure 3.12: Partial components with several cut-nooses. The diagram shows how

tight noose Oe intersects Ne = {N1, . . . , N4} and form the partial components

C1, . . . , C4. Observe that every partial noose of Ai (1 ≤ i ≤ 4) is of a different

cut-noose.

3.6.3 Proof of Theorem 3.5.2

Exit conditions for the algorithm

In this subsection, we give a lower bound on the branchwidth of the input graph G, that
is, we give two exit conditions on which the algorithm terminates and fulfills the first
part of Theorem 3.5.2, namely to give a certificate that G has large branchwidth. The
following lemma follows from Theorem 4.1 of [84].

Lemma 3.6.8. For any graph embeddable in a non planar surface, it holds that rep(G) ≤
bw(G).

The function f(H) in Step 2.c.ii of the algorithm is defined by the following lemma
that follows from [34, Lemmata 5,6, and 7].

Lemma 3.6.9. Let G be an H-minor-free graph and let Gs
u as in Step 2.a. Then, there

exists a function f(H) such that if bw(Gs
u) ≥ f(H) ·w, then G contains a (w ×w)-grid

as a minor.

The following lemma justifies the first terminating condition for the algorithm, de-
pending on the value of f(H) estimated in Lemma 3.6.9.

Lemma 3.6.10. If in the x-th application of Step 2.c.ii, |N | ≥ 2x−1f(H) · w, then

Gs
u = G

(1)
u has branchwidth at least f(H) · w.
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Proof. Let N1, . . . , Nx−1 be the nooses along which we cut the graphs G
(1)
u , . . . , G

(x−1)
u

in Step 2.c.iv toward creating G
(x)
u . We have that∑

j=1,...,x−1

|Nj| ≤
∑

j=1,...,x−1

2j−1f(H) · w = (2x−1 − 1)f(H) · w.

We also observe that Gj−1
u contains as a subgraph the graph taken from Gj

u if we remove
one copy by each of its |Nj−1| duplicated vertices. This implies that

bw(Gj−1
u ) ≥ bw(Gj

u) − |Nj−1|, j = 2, . . . , x.

Inductively, we have

bw(G1
u) ≥ bw(Gx

u) −
∑

j=1,...,x−1

|Nj| ≥ bw(Gx
u) − (2x−1 − 1)f(H) · w.

We set N = Nx. By Lemma 3.6.8, bw(Gx
u) ≥ rep(Gx

u) and rep(Gx
u) ≥ |Nx| ≥ 2x−1f(H)·

w. Thus, we conclude that bw(G1
u) ≥ f(H) · w.

N
Δ

bor(Δ)

v
w N ′

Δ

bor(Δ)

v
w

Figure 3.13: Re-routing a noose.

The following lemma justifies the first terminating condition for the algorithm, de-
pending on the value of f(H) and the genus γH .

Lemma 3.6.11. If in Step 2e, bw(Gp
u) ≥ 2γH−1f(H) · w, then Gs

u = G
(1)
u has branch-

width at least f(H) · w.

Proof. The proof is the same as the proof of Lemma 3.6.10 if we set x = i and with
deference that, in the end, we directly we have that G

(i)
u = Gp

u has branchwidth at least
2i−1f(H) · w. The result follows as the genus of Gs

u is bounded by γH and therefore
i ≤ γH .

Enhancing the branch-decomposition of Gp
u

In the following lemma, we state how to enhance the branch-decomposition of Gp
u by the

trunk decompositions of the vortices in order to obtain a branch-decomposition of Gp.
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3 Employing structures for subexponential algorithms

Lemma 3.6.12. Let (T p
u , τ p

u) be a branch-decomposition of Gp
u and let (T p, τ p) be the

branch-decomposition of Gp constructed in Step 2.f. Then the width of (T p, τ p) is bounded
by the width w of (T p

u , τ p
u) plus some constant that depends only on H.

Proof. By the construction of (T p, τ p), for any e ∈ E(T p), ∂Ee(G
p) ⊆ X(∂Ee(G

p
u)). As

the vertices of ∂Ee(G
p
u) are the vertices of some tight noose Ne of S0, and this noose

meets at most r ≤ h vortex disks we have that there are at most 2r ≤ 2h vertices
of ∂Ee(G

p
u) that are members of some base sets B. Therefore, for any e ∈ E(T p),

|∂Ee(G
p)| ≤ w + 2h2. We conclude that the width of (T p, τ p) is at most w + 2h2.

Toward Catalan structure

The whole subsection is devoted to proving why the branch-decomposition we con-
structed for a smoothly almost-embeddable graph has the Catalan structure. With the
following lemma, we can inductively show how we obtain a branch-decomposition with
the Catalan structure for a smoothly almost-embeddable graph to a higher surfaces from
the branch-decomposition of its planarized version.

Lemma 3.6.13. Let G,G′ be two almost-embeddable graphs created successively during
Step 2.c (i ≥ 2), let N be the noose along which Gu was cut toward constructing G′

u and
G′ and let N1 and N2 be the boundaries of the two holes of G′

u created after this splitting
during Step 2.c.iv. Let also (T ′, τ ′) be a branch-decomposition of G′ and let (T, τ) be the
branch-decomposition of G defined if T = T ′ and τ = τ ′◦σ where σ : E(T ) → E(T ′) is the
bijection pairing topologically equivalent edges in G and G′. For any e ∈ E(T ) = E(T ′),
the following hold:

a. |ωG(e)| ≤ |ωG′(σ(e))| + |X(N)|.
b. if S ⊆ V (Ee), the number |pathsG(Ee, ∂Ee ∪ S)| is bounded by

|pathsG′(σ(Ee), ∂σ(Ee) ∪ S ∪ X(N1 ∩ V (σ(Ee))) ∪ X(N2 ∩ V (σ(Ee))))|

Proof. To see |ωG(e)| ≤ |ωG′(e)|+ |X(N)|, it is enough to observe that the identification
of vertices in a graph may only add identified vertices in the border of an edge set and
that any overlying set is a separator.

The second relation follows from the fact that any path in G[Ee] connecting end-
points in ∂Ee ∪ S is the concatenation of a set of paths in G′[Ee] connecting endpoints
in ∂Ee∪S but also the vertices of cut-noose N1, N2 that are endpoints of Ee (along with
their overlying sets).

Fixing paths in smoothly h-almost embeddable graphs on the sphere. The remain-
der of this subsection is devoted to proving the following lemma:
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hole

hole
hole

hole

hole

vortex

vortex

vortex

vortex

vortex

hole

hole hole

vortex

the edges in Ee

Disk De containing

Figure 3.14: Vortices and holes around the disk Δe.

Lemma 3.6.14. Let Gp be a smoothly OH(1)-almost embeddable graph in the sphere and
let Δ1, . . . , Δr (r = OH(1)) be disjoint closed disks (holes) of the sphere whose interior
does not intersect the underlying graph Gp

u. Assume also that, if a vortex disk and a hole
intersect, then they have common interior points. Let Δe be a closed disk of the sphere
whose boundary is a tight noose touching Gp

u in vertex set ∂Ee. We denote as De the
set containing all points on the boundary of the disks Δ1, . . . , Δr that are endpoints of
edges in Gp

u ∩ Δe and as Ee the set of edges in Gp ∩ Δe. In Gp, let X(∂Ee ∪ De) be the
overlying set of vertex set ∂Ee ∪ De. If |X(∂Ee ∪ De)| = OH(w), then

q-pathsGp(Ee,X(∂Ee ∪ De)) = 2OH(w).

In the following and for an easier estimation on q-pathsGp(Ee,X(∂Ee ∪ De)), we
stepwise transform the graph in a way such that neither of the holes, the vortices and
∂Ee mutually intersect, by simultaneously nondecreasing the number of sets of paths.

Inverse edge contractions. From now on we will use the notation Ve for the vertex
set X(∂Ee ∪ De).

The operation of inverse edge contraction is defined by duplicating a vertex v and
connecting it to its duplicate v′ by a new edge. However, we have that v maintains all
its incident edges.

We say that two closed disks Δ1 and Δ2 touch if their interiors are disjoint and they
have common points that are vertices. These vertices are called touching vertices of the
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3 Employing structures for subexponential algorithms

closed disks Δ1 and Δ2.

In order to simplify the structure of the planar embedding of Gp we will apply a
series of inverse edge contractions to the touching vertices between the boundary of Δe

and the vortex disks and holes.

Also, we assume that if we apply inverse edge contraction on a base vertex v of a
vortex, v keeps all its incident edges and the duplicate of the respective boundary of
a hole and of Δe has degree one. This creates a new graph Gp∗ that contains Gp as a
minor and thus, each set of paths in Gp corresponds to a set of paths in Gp∗.

We obtain the following:

Lemma 3.6.15. Let Ee,Ve be as above. Then,

q-pathsGp(Ee,Ve) ≤ q-pathsGp∗(E∗
e ,V

∗
e).

Where E∗
e and Ve

∗ are the enhanced sets in Gp∗.

The red lines in the diagram in Figure 3.15 emphasize inverse edge contractions.

hole

hole

hole

hole

hole

vortex

vortex

vortex

vortex

vortex

hole

hole hole

vortex

the edges in Ee

Disk De containing

Figure 3.15: Vortices and holes not intersecting the disk Δe (first normalization).

Notice that each splitting creates duplicates some vertex of Ve. Therefore,

Lemma 3.6.16. |Ve
∗| ≤ 2|Ve|.

On the left of Figure 3.16, we have the now resulting graph of Figure 3.15 where
the gray part is Gp∗[Ee]. On the right, we only emphasize Gp∗[Ee] as the part where the
sets of pathsGp∗(E∗

e ,Ve
∗)/ ∼ should be drawn.
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Figure 3.16: Another way to see Figure 3.15.

Vortex pattern. In order to have a more uniform image on how paths cross a vortex,
we define the graph Rh,s so that

V (Rh,s) = V1 ∪ · · · ∪ Vs with |Vi| = h and

E(Rh,s) = {{xj, xk} | xj, xk ∈ Vi, 1 ≤ j �= k ≤ h, 1 ≤ i ≤ s}∪
{{xj, yj} | xj ∈ Vi−1 ∧ yj ∈ Vi, 1 ≤ j ≤ h, 1 ≤ i ≤ s}.

In Rh,s we also distinguish a subset S ⊆ V (Rh,s) containing exactly one vertex from
any Vi. We call the pair (Rh,s, S) a (h, s)-vortex pattern. See Figure 3.17 for an example
of a normalized vortex.

We now prove the following:

Lemma 3.6.17. Any vortex of a h-almost embeddable graph with base set B is a minor
of a (h, s)-vortex pattern (Rh,s, S) where the minor operations map bijectively the vertices
of S to the vertices in B in a way that the order of the vortex and the cyclic ordering of
S induced by the indices of its elements is respected. Rh,s has trunkwidth h.

Proof. We show how any vortex with trunk decomposition X = (X1, . . . , X|B|) of width
< h and base set B, is a minor of some (h, s)-vortex pattern (Rh,s, S) with V (Rh,s) =
V1 ∪ · · · ∪ Vs and |Vi| = h(1 ≤ i ≤ s). Choose s = |B| and set S = B. Start with the
vertices in X1: set V1 = X1 plus some additional vertices to make |V1| = h and make
G[V1] complete. Iteratively, set Vi = Xi \ Xi−1. Apply inverse edge contraction for all
vertices in Xi ∩ Xi−1 and add the new vertices to Vi. Again, add additional vertices to
make |Vi| = h. Make G[Vi] complete and add all missing edges between Vi and Vi−1 in
order to obtain a matching.
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V1
V2 V3

Vs

Vs−1

. . .

. . .

Rh,s

Figure 3.17: Normalizing vortices. An example of a (6, 14)-vortex pattern.

Using Lemma 3.6.17, we can replace Gp by a new graph Gp′ where any vortex of
Gp is replaced by a suitably chosen Rh,s. The bijection of the lemma indicates where to
stick the replacements to the underlying graph Gp

u. We adopt the same notions as for
vortices. I.e, we denote S as base set consisting of base vertices, etc.. In the remainder
of the paper we will refer to h-almost embeddable graphs as graphs with (h, s)-vortex
pattern instead of vortices, unless we clearly state differently and we will use the term
vortex for (h, s)-vortex pattern eventually.

Normalizing vortices. We can now apply one more transformation in order to have
all vortex disks inside Δe and no vortices intersecting holes. Assume that for any (h, s)-
vortex pattern we have that Vi and Vj are the two vertex sets of Rh,s ∩ ∂Ee (and Rh,s ∩
bor(Δ), Δ one of the holes Δ1, . . . , Δr, respectively.) We create 2h− 2 new vertex sets
V 1

i , . . . , V h−1
i and V 1

j , . . . , V h−1
j to obtain a new (h, s + 2h− 2)-vortex pattern. We then

apply inverse edge contraction on the base vertices of Vi and Vj and the new sets. This
transformation is show in the next figure.

Rh,s

Rh,s
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Again we can rename the graph before this new transformation Gp and the graph
produced Gp′ and prove the following using the fact the later contains the former as a
minor.

Lemma 3.6.18. Let Gp and Gp′ be as above. Then

q-pathsGp(Ee,Ve) ≤ q-pathsGp′(E ′
e,V

′
e).

Final setting. To have an idea of how Δe looks like after the previous transformation,
see the left part of the next figure. Clearly, the outer face can now be seen as a hole and
we redraw the whole embedding in a sphere as indicated by the second part of the same
figure. We will denote by Δ∂Ee

the new disc in the graph embedding that is bounded
by the union ∂Ee and some intersecting holes of Δ1, . . . , Δr.

vortex

vortex

vortex

vortex

vortex

vortex

vortex

vortex

vortex

vortex

In the current setting, we have a collection of holes in the sphere with � vertices
on their borders. We will now count q-pathsGp′(E ′

e,V
′
e) for the sets of vertex disjoint

paths pathsGp′(E ′
e,Ve

′) between these � vertices.

Tree structure for fixing paths Before we are ready to prove Lemma 3.6.14, namely
that

q-pathsGp(Ee,Ve) = 2OH(w),

we need the lemmas of Chapter 1.3.

We can apply Lemma 3.1.5 on h-almost-(n, r)-non-crossing matchings for Subsec-
tion 3.1.3 to our terminology:

We say two paths P1, P2 ∈ pathsGp(Ee,Ve) cross inside a (h, s)-vortex pattern
(Rh,s, S) if there is a vertex set Vi ∈ V (Rh,s,) that is used by P1 and P2.

125



3 Employing structures for subexponential algorithms

Each element of POH(1)
OH(w),OH(1) is an equivalence class of paths pathsGp(Ee,Ve)/ ∼

with OH(w) endpoints in Ve crossing inside OH(1) vortex patterns. Thus, we have
proved Lemma 3.6.14, namely that

q-pathsGp(Ee,Ve) = |POH(1)
OH(w),OH(1)| = 2OH(w).

Taming the apices

So far, we considered smoothly h-almost Σ- embeddable graphs Gs without apices. To
include the apices, we enhance the branch-decomposition (T s, τ s) of Gs of width OH(w)
so that each middle set contains at most all OH(1) apices. We construct an enhanced
branch-decomposition (T, τ) of a h-almost Σ- embeddable graph Ga as follows: For
every apex vertex α and for every neighbor v, choose an arbitrary edge e of T s, such
that v ∈ ∂Ee. Subdivide e and add a new edge to the new node and set τ({α, v}) to
be the new leaf. In this way, the enhanced branch-decomposition (T, τ) of Ga has width
OH(w) + OH(1). We obtain the following:

Lemma 3.6.19. Given a h-almost embeddable graph Ga and its smoothly h-almost em-
beddable graph Gs after removing the apices with branch-decomposition (T s, τ s) of width
OH(w). Then the enhanced branch-decomposition (T, τ) of Ga has width OH(w) and

q-pathsGa(Ee, ∂Ee) ≤ wOH(1) · q-pathsGs(Es
e , ∂Es

e).

Proof. For an edge e ∈ T , we observe: Any path in Ga[Ee] through an apex vertex
α passes exactly two neighbors of α. If Ga[Ee] does not contain any neighbor of any
α ∈ Ga[Ee] then q-pathsGa(Ee, ∂Ee) ≤ wOH(1) · q-pathsGs(Es

e , ∂Es
e). If Ga[Ee] contains

some neighbor, then α may be connected by a path to one or two vertices in ∂Es
e . I.e.,

any apex vertex can only contribute to one path P in Ga[Ee]. Thus, for one α we count
OH(w2) different possible endpoint of P in ∂Es

e , and for all OH(1) apices wOH(1).

Taming the clique-sums

Given a graph an H-minor-free graph G . By Proposition 3.5.1, G can be decomposed
in a tree-like way into several h-almost embeddable graphs by reversing the clique-sum
operation. That is, we obtain a collection C = {Ga

1, . . . , G
a
n} with each Ga

i being h-almost
embeddable graphs with up to n (possibly intersecting) h-cliques that contributed to the
clique-sum operation.

Lemma 3.6.20. Given a graph G with branch-decomposition (T, τ). For any k-clique
S in G, there are three adjacent edges e, f, g in T such that S ⊆ ∂Ee ∪ ∂Ef ∪ ∂Eg.
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Proof. Say, for node t incident to above e, f, g, ∂Et = ∂Ee∪∂Ef ∪∂Eg. We will prove the
lemma inductively. Let a 3-clique consist of the vertices u, v, w. In (T, τ), we consider
path Pu ∈ T to be the path between the leaves τ({u, v}) and τ({u,w}). By definition,
u ∈ ∂Ee for all e ∈ Pu. Let node t ∈ Pu be an endpoint of the path in T \Pu with other
endpoint τ({v, w}). Then, {u, v, w} ⊆ ∂Et. For an i ≤ k, let Si ⊂ S be an i-clique for
which there is a t ∈ T with Si ⊆ ∂Et. Let Ti ⊆ T be the tree induced by the paths
between the leaves corresponding to the edges of Si. Let z ∈ S \ Si and Tz ⊆ T be the
subtree induced by the paths connecting the leaves corresponding to edges between z
and Si. Then, we differ two cases: either t ∈ Ti ∩Tz or there is a path in Ti connecting t
and the closest node tz in Tz. In the first case, under the assumption that Si ⊆ ∂Et we
obtain that Si ∪ {z} ⊆ ∂Et. In the second case, since Si ⊆ ∂Et and each vertices of Si

is endpoint of some edge in a leaf of Tz, we get that Si ⊆ ∂Etz . By definition z ∈ ∂Etz

and we are done.

We define the node t incident to above edges e, f, g ∈ T as a k-clique-node.

Since for any edge e ∈ T for a branch-decomposition (T, τ), the vertex set ∂Ee

separates the graph into two parts, we obtain the following lemma:

Lemma 3.6.21. Given a graph G and a branch-decomposition (T, τ). For any edge e ∈
T if q-pathsG(Ee, ∂Ee) ≤ q and q-pathsG(Ee, ∂Ee) ≤ q then q-pathsG(E(G), ∂Ee) ≤
q2. For any three adjacent edges e1, e2, and e3 ∈ T , if q-pathsG(Eei

, ∂Eei
) ≤ q and

q-pathsG(Eei
, ∂Eei

) ≤ q for i = 1, 2, 3 then q-pathsG(E(G),
⋃

i=1,2,3 ∂Eei
) ≤ q3.

We now show how to construct the branch-decomposition of a h-clique-sum by
connecting the branch-decompositions of the two clique-sum components at some h-
clique-nodes that correspond to the involved h-clique: Let Ga

1 and Ga
2 be the two clique-

sum components with the cliques Si ⊆ V (Ga
i ), (i = 1, 2) together with the branch-

decompositions (T a
i , τa

i ) and a h-clique-node ti. Then, the branch-decomposition (T ′, τ ′)
of the clique-sum G′ is obtained by first subdividing an incident edge eti and connecting
the new nodes together. Secondly, remove each leaf l of T ′ that corresponds to an edge
that has a parallel edge or is deleted in the clique-sum operation, and finally contract
an incident edge in T ′ of each degree-two node.

Lemma 3.6.22. Let Ga
1 and Ga

2 have branch-decompositions (T a
1 , τa

1 ), (T a
2 , τa

2 ) with the
maximum width w and for all edges e ∈ T ′

1 ∪ T ′
2 let q-pathsG′(Ee, ∂Ee) ≤ q. The

previous construction of the branch-decomposition (T ′, τ ′) of the h-clique-sum G′ has
width ≤ w + h and for all edges e ∈ T ′ q-pathsG′(Ee, ∂Ee) ≤ q2.

Proof. For all e ∈ T ′, ∂Ee has the same cardinality as in T a
1 ∪ T a

2 . Only for the edges
eti , we have that ∂Ee

ti
⊆ ∂Eti . Hence, the width increases by at most h.

For any tree edge e ∈ T ′, let L be a set of leaves in the subtree inducing Ee

corresponding to the edges of the cliques Si in Ee. Then, for all τ ′({u, v}) ∈ L, both
endpoints u, v are vertices in ∂Ee.
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Let ti be in the subtree inducing Ee. Since in T a
i , q-pathsGa

i
(Ee, ∂Ee) ≤ q and

q-pathsGa
i
(Ee, ∂Ee) ≤ q, and also q-pathsGa

i
(Ee ∩ E(Si), ∂Ee ∩ Si) ≤ |L||L|, we have

that in T q-pathsG′(Ee, ∂Ee) ≤ q · |L||L| ≤ q2 for e �= et. With Lemma 3.6.21, and
since ∂Ee

ti
⊆ ∂Eti , we get q-pathsG′(Ee

ti
, ∂Ee

ti
) ≤ q2 and q-pathsG′(Ee

ti
, ∂Ee

ti
) ≤

q2.Deleting leaves from (T ′, τ ′) does neither increase the width nor increase the number
of path collections.

In this way, we construct the branch-decomposition (T, τ) of an H-minor-free graph
G out of the branch-decompositions (T a

1 , τa
1 ), . . . , (T a

n , τa
n) of ≤ 1.5 times the maximum

width OH(w) of the h-almost embeddable graphs Ga
1, . . . , G

a
n. Extending the same ar-

guments of the previous proof, we get the following lemma.

Lemma 3.6.23. Given above h-almost embeddable graphs Ga
1, . . . , G

a
n together with their

branch-decompositions (T a
1 , τa

1 ), . . . , (T a
n , τa

n) of maximum width OH(w) and a collection
S of h-cliques, each in one of G1, . . . , Gn. Then, the new branch-decomposition (T, τ)
of G has width OH(w) and for all edges e ∈ T , q-pathsG(Ee, ∂Ee) ≤ 2OH(w).

Proof. (Sketch) Let L be the set of leaves for one branch-decompositions (T a
j , τa

j ) de-
fined as above for all h-cliques of the h-clique-sum operation for Ga

j . Since the edges
corresponding to L contribute already to the sets of q-pathsG(Ee, ∂Ee) for all e ∈ T
with e �= etj+1 , we get that q-pathsG(Ee, ∂Ee) ≤ q2. With Lemma 3.6.21, and with
∂Ee

tj+1
⊆ ∂Etj+1 , q-pathsG(Ee

tj+1
, ∂Ee

tj+1
) ≤ q3.
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4 Conclusion

4.1 Brief summary of results

4.1.1 Dynamic programming

Fast matrix multiplication. We established a combination of dynamic programming
and fast matrix multiplication as an important tool for finding fast exact algorithms
for NP-hard problems. Even though the currently best constant ω < 2.376 of fast
matrix multiplication is of rather theoretical interest, there exist some practical sub-cubic
runtime algorithms that help improving the runtime for solving all mentioned problems.
An interesting side-effect of our technique is that any improvement on the constant ω
has a direct effect on the runtime behavior for solving the considered problems. E.g., for
Planar Dominating Set: under the assumption that ω = 2, we come to the point
where the constant in the computation is 3 what equals the number of vertex states,
which is the natural lower bound for dynamic programming. Currently, [96] have made
some conjecture on an improvement for distance product, which would enable us to
apply our approach to optimization problems with arbitrary weights.

It is easy to answer the question why our technique does not help for getting faster
tree decomposition based algorithms. The answer lies in the different parameter; even
though it can be practically an improvement, since tree decompositions can have the
same structure as branch decompositions (semi-nice tree decompositions), fast matrix
multiplication does not affect the theoretical worst case behavior. This is due to adjacent
bags possibly overlapping in all vertices.

Geometric decompositions. For the planar case we answered the following question
positively: can we change the structure of tree decompositions to compensate its dis-
advantage against sphere cut decompositions in matters of dynamic programming? We
described how Jordan curves and separators in plane graphs influence each other and we
got some tools for relating Jordan curves and tree-decompositions. Finally, we showed
how to compute geometric tree-decompositions and stated their influence on dynamic
programming approaches.

4.1.2 Graph structures

Planar graphs. We introduced a new algorithmic design technique based on geometric
properties of branch decompositions. Our technique can be also applied to construct
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2O(
√

n) · nO(1)-time algorithms for a variety of cycle, path, or tree subgraph problems in
planar graphs like Hamiltonian Path, Longest Path, and Connected Dominat-

ing Set, and Steiner Tree amongst others.

Bounded-genus graphs. We introduced a new approach for solving edge-subset prob-
lems on graphs of bounded genus. With some modifications this generic approach can be
used to design time 2O(

√
n) algorithms for many other problems including Σ-embedded

Graph TSP (TSP with the shortest path metric of a Σ-embedded graph as the distance
metric for TSP), Max Leaf Tree, and Steiner Tree.

Fixed minors. Similar results can be obtained for all problems examined in this sec-
tion on H-minor-free graphs. Since property Λ in Section 1.4 holds for minor/apex-
contraction bidimensional parameters on H-minor-free/apex-minor-free graphs, we have

an analogue of q-pathsG(Ee, ∂Ee) and we can design 2O(
√

k) · nO(1) step parameterized
algorithms for all problems examined in this section for H-minor-free/ apex-minor-free
graphs (here the hidden constant in the big-O notation in the exponent depends on the
size on the excluded minor).

4.2 Ongoing research and open problems

Connectivity problems. We have proved in Chapter 3 that for planar graphs, bounded-
genus graphs, and H-minor-free graphs problems like Hamiltonicity and Metric

graph TSP possess subexponential algorithms. However, we miss a formal classifi-
cation criterion (logical or combinatorial) for the problems that are amenable to this
approach. In Section 1.3.2, we gave a formal description of edge subset problems with
global properties, but we do not know at which properties our techniques collapse. An
interesting question is to find or disprove such criterion for connectivity problems, in
particular for NP-hard Planar Subgraph Isomorphism, that, given a fixed graph
H, asks if H is isomorphic to a subgraph of a planar input graph. Eppstein [42] showed
that Planar Subgraph Isomorphism problem with pattern of size k can be solved
in time 2O(

√
k log k)n. Can we get rid of the logarithmic factor in the exponent (maybe

in exchange to a higher polynomial degree)? Or differently formulated, can we prove a
classification criterion similar to that of ETH implying the non-existence of algorithms
of runtime 2o(

√
k log k) · nO(1) for some problems?

Parameterized problems. A natural question appears: until what point property Λ
in Section 1.4 can be satisfied for contraction-closed parameters (assuming a suitable
concept of bidimensionality)? As it was observed in [29], for some contraction-closed pa-
rameters, like Dominating Set , the branchwidth of an apex graph cannot be bounded
by any function of their values. Consequently, apex-free graph classes draw a natural
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combinatorial limit on the the above framework of obtaining subexponential parameter-
ized algorithms for contraction-closed parameters. (On the other side, this is not the
case for minor-closed parameters as indicated by Theorem 1.4.7.) However, it is still
possible to cross the frontier of apex-minor-free graphs for the dominating set problem
and some of its variants where subexponential parameterized algorithms exist, even for
H-minor-free graphs, as shown in [31]. These algorithms are based on a combination
of dynamic programming and the structural characterization of H-minor-free graphs
from [85].

Semi-nice tree-decompositions. It is our hope that future research will improve fur-
ther on the runtime analysis of dynamic programming on semi-nice tree-decompositions
of Section 2.1.3. For example, in a Join node X with parent A and partition D,E, F
the vertices in Z = D \ A will be forgotten in the parent node A. At present it is
not at all clear how to make us of this information, but it does raise the possibility of
a Join update with faster runtime for these vertices and a focus on what we may call
Z,D,E, F -partitions for Join nodes. Another issue is to get a better understanding of
when pathwidth, treewidth or branchwidth is best, possibly relating this also to other
graph parameters. Finally, it would be interesting, but probably difficult, to design
algorithms that find semi-nice tree-decompositions whose Join partitions D,E, F are
optimized to give the best worst-case runtime for a particular dynamic programming
algorithm. Note that a non-optimal tree-decomposition could in fact be better than an
optimal one. A focus on Join nodes with small Expensive sets should probably be the
primary issue.

Fast matrix multiplication. An interesting question arises for dynamic programming
in combination with fast matrix multiplication from Section 2.2. It comes to ones mind
that the intersection set I is not considered at all for matrix multiplication. Is there
anything to win for dynamic programming if we use 3-dimensional matrices as a data
structure? That is, if we have the third dimension labeled with Se(I)?

Geometric decompositions. A natural question to pose from Section 2.3 is: would it
be possible to solve Planar Dominating Set in time 2.99tw(T ) · nO(1) and Planar

Independent Set in 1.99tw(T ) · nO(1)? Though we cannot give a positive answer yet,
we have a formula that needs the property “well-balanced” separators in a geometric
tree-decomposition T : we assume that the three sets L,R, F are of equal cardinality for
every three adjacent bags. Since |L| + |R| + |F | ≤ tw, we thus have that |L|, |R|, |F | ≤
tw
3

. Applying the fast matrix multiplication method from 2.2 for example to Planar

Independent Set, this leads to a 2
ω
3

tw(T ) · nO(1) algorithm, where ω < 2.376. Does
every planar graph have a geometric tree-decomposition with well-balanced separators?

Evaluation of subexponential algorithms for edge subset problems on planar graphs.
The results of Cook & Seymour [22] on using branch decompositions to obtain high-
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4 Conclusion

quality tours for (general) TSP show that branch decomposition based algorithms run
much faster than their worst case time analysis would indicate. Together with the
author’s preliminary experience on the implementation of a similar algorithm technique
for solving Planar Vertex Cover in [4], we conjecture that sc-decomposition based
algorithms perform much faster in practice.
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[16] H. L. Bodlaender and R. H. Möhring, The pathwidth and treewidth of cographs,
SIAM Journal on Discrete Mathematics, 6 (1993), pp. 181–188.

[17] H. L. Bodlaender and D. M. Thilikos, Constructive linear time algorithms for
branchwidth, in Proceedings of the 24th International Colloquium on Automata, Lan-
guages and programming (ICALP 1997), vol. 1256 of LNCS, Springer, 1997, pp. 627–637.
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