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ABSTRACT

Measurements of ocean microstructure are made in the turbulent Faroe Bank Channel overflow using

a turbulence instrument attached to an underwater glider. Dissipation rate of turbulent kinetic energy « is

measured using airfoil shear probes. A comparison is made between 152 profiles from dive and climb cycles of

the glider during a 1-week mission in June 2012 and 90 profiles collected from the ship using a vertical mi-

crostructure profiler (VMP). Approximately one-half of the profiles are collocated. For 96% of the dataset,

measurements are of high quality with no systematic differences between dives and climbs. The noise level is

less than 5 3 10211Wkg21, comparable to the best microstructure profilers. The shear probe data are con-

taminated and unreliable at the turning depth of the glider and for U/ut , 20, where U is the flow past the

sensor, ut5 («/N)1/2 is an estimate of the turbulent velocity scale, andN is the buoyancy frequency. Averaged

profiles of « from the VMP and the glider agree to better than a factor of 2 in the turbulent bottom layer of the

overflow plume, and beneath the stratified and sheared plume–ambient interface. The glider average values

are approximately a factor of 3 and 9 times larger than the VMP values in the layers defined by the isotherms

38–68 and 68–98C, respectively, corresponding to the upper part of the interface and above. The discrepancy is

attributed to a different sampling scheme and the intermittency of turbulence. The glider offers a noise-free

platform suitable for ocean microstructure measurements.

1. Introduction

Underwater gliders are extensively utilized for hydro-

graphic and biogeochemical observations in the interior

ocean (Davis et al. 2003; Rudnick et al. 2004; Beaird et al.

2012; L’Heveder et al. 2013). While the fundamental

concept is an infrastructure of coordinated, extended

deployments for near-real-time and feasible ocean mon-

itoring, underwater gliders (gliders) offer a platform for

intensive process studies. A complementary sampling

scheme to that of shipboard measurements improves the

spatial and temporal coverage during a research cruise. In

particular, the gliders provide an attractive low-noise

platform for turbulence measurements because of their

buoyancy-driven motion independent of propellers and

other mechanical vibration sources (Wolk et al. 2009).

Conventionally, ocean microstructure is measured by

loosely tethered vertical profilers equipped with shear

probes and/or fast thermistors, sampling the dissipation

subrange of the turbulence spectrum (Lueck et al. 2002).

Fluxes are then inferred from shear, conductivity, or

temperature variances resolved at dissipative scales. Re-

sults from a recent test flight of a glider carrying turbu-

lence sensors show that the shear probes are able to

resolve turbulent dissipation rates as low as those achieved

by the best free-fall microstructure profilers (Wolk et al.

2009). Encouraged by this result, we have incorporated

a glider program into our Faroe Bank Channel (FBC)

overflow mixing experiment, to sample dissipation rates

in the turbulent interface between the dense gravity

current and the ambient Atlantic water layer.

The Faroe Bank Channel, with a sill depth of 840m, is

one of the two main passages across the Greenland–

Scotland Ridge (GSR), where the deep and intermediate

water masses in the Nordic seas flow into the North

Atlantic. The bottom-attached overflow plume of dense,

cold water flowing out of the FBC is very turbulent with

a vertical structure composed of an approximately

100-m-thick turbulent bottom layer (BL) beneath a
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100-m-thick turbulent, sheared, and stratified interfacial

layer (IL) below ambient water (Fer et al. 2010). The

location and intensity of turbulent mixing of the over-

flow plume has an important impact on the ventilation

of deep ocean and the oceanic meridional heat trans-

port. An improved understanding and observation-based

parameterizations are needed to better represent en-

trainment and mixing in climate models for credible

projections (Legg et al. 2009). Despite its importance,

direct turbulence measurements in the region are scarce.

Using turbulence measurements from a tethered micro-

structure profiler, Fer et al. (2010) observed dissipation

rates of turbulent kinetic energy, «, reaching 1025Wkg21

in both the BL and the IL. The vigorous turbulence near

the bottom was due to stirring by the bottom shear stress,

estimated to be 2.1 6 0.2 Pa. The stress in the IL was

relatively weak; the enhanced mixing in the IL was at-

tributed to shear instabilities and breaking of internal

waves. Beaird et al. (2012) analyzed a large dataset from

Seaglider deployments over 3 years around the GSR,

and inferred dissipation from finescale vertical velocity

and density measurements. Their method was based on

a scaling of the turbulent kinetic energy (TKE) equa-

tion, and related the energy loss at viscous scales to the

energy in the larger energy-containing scales. Results

from one Seaglider coordinated with the microstructure

survey of Fer et al. (2010) agreed with the shipboard

measurements to within a factor of 2. A factor of 2 is

considered a good comparison for mixingmeasurements

that often cover several orders of magnitude (see, e.g.,

MacKinnon et al. 2013).

In this paper, we report on microstructure measure-

ments from a glider deployed in the FBC in early June

2012 and compare shear probe turbulence measure-

ments to more conventional shipboard measurements

from a loosely tethered microstructure profiler. Shear

probes are the best method for accurate turbulent en-

ergy dissipation measurements; all the other methods

either require numerous additional assumptions and/or

use measurements made at scales larger than the mi-

croscale. Dissipation measurements using the tempera-

ture gradient microstructure will be a topic for a separate

paper. The motivation in using the glider as a platform

is the potential for an increased spatial and temporal

coverage, supplementing the shipboard measurements.

Furthermore, if successful, future deployments using

multiple gliders equipped with turbulence sensors can

allow for efficient mapping of ocean mixing and con-

tribute to expanding the ocean microstructure datasets,

not only in overflow regions but globally.

Our study builds on the proof-of-concept study of

Wolk et al. (2009) by utilizing a deep glider in a more

realistic and challenging oceanographic setting, and a

thorough analysis including a comparison with shipboard

microstructure measurements. Our study adds to that of

Beaird et al. (2012) by utilizing another type of glider

and by making direct microstructure measurements us-

ing shear probes. Because the method of turbulence

measurements from a glider is not previously docu-

mented, emphasis is put on data processing description,

quality control, influence of flight behavior on mea-

surements, sources of noise, and comparison with the

vertical profiling. The glider and the turbulence package

are described in section 2, followed by a deployment

overview (section 3), and details of data processing for

the glider, the turbulence package, and the vertical mi-

crostructure profiler (section 4). Subsequently, results

are presented and discussed (section 5), including the

flight behavior of the glider, data screening and quality,

spectral description of the glider microstructure data,

comparisons with the vertical microstructure profiler,

and the intermittency of turbulence. An appendix de-

tails possible noise sources for the shear probes.

2. Glider and turbulence package

Gliders are autonomous underwater vehicles that

move vertically in the ocean by adjusting their buoyancy

and center of gravity. As the glider ascends or descends,

the wings and tail fin drive a forward motion by trans-

lating vertical velocity into horizontal velocity, leading

to a sawtooth pattern. The glider utilized in this study is

a 1000-m-rated Teledyne Webb Research (TWR) Slo-

cum electric glider (Jones et al. 2005), named Gn�a after

a goddess in Norse mythology. The glider was ballasted

in a laboratory tank with seawater with properties com-

parable to the deployment site.

During its flight, the glider makes adjustments in

heading, pitch, and roll. To adjust headings to predefined

way points, a rudder on the tail fin is activated when

necessary. The center battery is adjustable: it is moved

back and forth (servo control) to adjust pitch and ro-

tated to adjust roll. The recommended pitch angle for

the best endurance is6268, that is, vertical-to-horizontal
glide ratios of approximately 1:4.

The sensors on the glider include an integrated Sea-

Bird Electronics (SBE) conductivity–temperature–depth

(CTD) system (SBE-41, unpumped); an attitude sensor

measuring heading, pitch, and roll [tilt-compensated

three-axis compass module (TCM3), PNI Sensor Corpo-

ration]; a navigation pressure sensor (Micron Instruments,

MP50-2000), and an altimeter (AIRMAR Technology

Corporation, 100-m range). The unpumped CTD does

not degrade our measurements or affect our results be-

cause the salinity–temperature relation in the FaroeBank

Channel is tight, and the density variability is typically
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dominated by temperature. When at the surface, an air

bladder located in the aft inflates, exposing the global

positioning system (GPS) receiver and Iridium anten-

nas to air. Two-way communication is then established

through the Iridium satellite telemetry, or with a Free-

Wave 900-MHz radio, when the glider is within range of

the antenna.

The glider is fitted with a neutrally buoyant, low-

power, self-contained turbulence instrument package

MicroRider-1000LP (MR), manufactured by Rockland

Scientific International. TheMR is attached to the top of

the glider (Fig. 1). It is powered by the glider’s battery

but stores data independently on a 16-GB compact flash

memory card. The vertical axis-to-axis separation be-

tween the glider and theMR is approximately 16 cm. All

turbulence sensors protrude horizontally, about 17 cm

from the nose of the glider, outside the region of flow

deformation. No probe guard is installed. The servo-

controlled battery positioning creates vibrations that

may affect the quality of turbulence measurements (Wolk

et al. 2009). In our deployment, we deactivated the servo

control by fixing the center battery pack position in or-

der to reduce the noise in turbulencemeasurements (see

section 3).

The MR is equipped with two airfoil velocity shear

probes (SPM-38), two fast-response thermistors (FP07),

a pressure transducer, a two-axis vibration sensor (a pair

of piezo-accelerometers), and a high-accuracy dual-axis

inclinometer (ADIS 16209, pitch and roll angles accurate

to 0.18). The MR also samples the signal plus signal de-

rivative on the thermistor and pressure transducer, and

the derivative for shear signals allowing high-resolution

measurements (Mudge and Lueck 1994). The sampling

rate is 512Hz on all turbulence channels (vibration,

shear, and temperature) and 64Hz for the other

channels (pitch, roll, and pressure).

A right-handed Cartesian coordinate system is used

throughout with x0 pointing forward along the major axis

of the instrument, y0 pointing to port, and z0 pointing
upward. Accordingly, pitch (u, rotation about the y0 axis)
is positive when the nose is down, and roll (f, rotation

about the x0 axis) is positive when the instrument rolls

port side up. Note that for nonzero values of pitch and

roll, the vertical axis is not aligned with the gravity, g. The

shear probes are mounted orthogonal to each other to

measure the ›w/›x0 and ›y/›x0 shear components. In the

following, for simplicity, we drop the primes and denote

all along-axis gradients (approximately along-path for

small angles of attack) with ›/›x.

3. Deployment

A research cruise was undertaken on board the Re-

search Vessel H�akon Mosby to study the mixing of the

FIG. 1. Illustrations to scale of the glider (Gn�a) equipped with the MR seen (a) head on, (b) from the side when

level, and (d) from the side during a climb. The coordinate system and various angles are defined in the text, and yaw

is c. (c) A close-up image of the sensors on the MR. Sensors 1 and 4 are FP07 thermistors, and sensors 2 and 3 are

SPM-38 turbulence-shear probes. Slot 5 is not in use and 6 is an LED on/off indicator. The letter P indicates the hole

for the pressure sensor, located behind the other sensors.
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FBC overflow. The field work was conducted between

26 May and 14 June 2012, including detailed mea-

surements of hydrography, microstructure, and cur-

rents. Full-depth hydrography and horizontal current

measurements were made from the ship’s CTD rosette

equipped with a SBE 911plus CTD and a lowered

acoustic Doppler current profiler system. Full-depth

vertical microstructure profiles were made by deploy-

ing the loosely tethered vertical microstructure profiler

VMP2000 (VMP, Rockland Scientific International).

Additionally, two TWR deep Slocum gliders were de-

ployed, each equipped with an SBE-41 CTD, and one

(Gn�a) equipped with the turbulence package MR (sec-

tion 2). In this paper, only the measurements from the

VMP and Gn�a are reported; turbulence measurements

from the glider are compared to the vertical microstruc-

ture profiler data.

The overflow plume at the measurement site is char-

acterized by energetic 3–4-day-period oscillations in

plume thickness (Darelius et al. 2011), reflected in the

thickness of the turbulent layer (Seim and Fer 2011) and

elevated sea level variability and eddy kinetic energy

(Høyer and Quadfasel 2001; Darelius et al. 2013). Dur-

ing the collection of data, and also in the following

analysis, care was taken to ensure that sufficient sam-

pling and averaging were made over several phases of

the oscillations. A stationmap is shown in Fig. 2 together

with the relative time of deployments of the VMP and

the glider. Studies utilizing the other datasets collected

during the cruise, describing the hydrographic composition,

FIG. 2. Location map and the deployment region. (a) Site relative to Norway (NO), Iceland (IC), and Greenland

(GR). Depths shallower than 500m are shaded gray to emphasize the GSR. (b) The region of the red rectangle from

(a) is enlarged. Isobaths near the Faroese Islands drawn at 100-m intervals from Smith and Sandwell (1997). Depths

shallower than 400m are masked in white. The saddle point (the3) near the right bottom of the rectangle, the FBC

overflow (arrow), and the borders (red rectangle) of the stationmap are indicated. (c)Deployment times of the glider

(blue) and the VMP (red). (d) Stationmap showing the VMP stations (red) and the position of the glider before each

dive (blue). Paler colors in (c) are used for the stations–dives outside the dashed box. Isobaths (400m and deeper, at

50-m intervals) are from the high-resolution bathymetry compiled by Simonsen et al. (2002). The area marked by the

dashed lines shows the region where a subset of VMP and the glider data are approximately collocated.

MAY 2014 FER ET AL . 1131



mesoscale variability, the turbulent structure, and dy-

namics of the overflow plume, are reported elsewhere

(e.g., Darelius et al. 2013; Ullgren et al. 2014).

TheVMP is equippedwith a pumped SBE conductivity–

temperature (C–T) system, and high-resolution sensors

for microconductivity (SBE7), temperature (FP07), air-

foil shear probes, and a three-axis accelerometer. The

turbulence sensors are located at the front of the in-

strument, protected by a probe guard. The VMP samples

the signal plus signal derivative on the thermistor, mi-

croconductivity, and pressure transducer, and derivative

for shear signals. The sampling rate is 512Hz for the

turbulence channels and 64Hz for the slow [C, T, pres-

sure (P)] channels. Data are transmitted in real time to

a shipboard data acquisition system. During the cruise,

the VMP was deployed using a hydraulic winch (Sytech

Research Ltd.) with a line-puller system, allowing the

instrument to fall freely with a nominal fall rate of about

0.6m s21. A total of 90 microstructure profiles were col-

lected between 31 May and 13 June from the surface to

approximately 10–30m above the seabed. Occasionally,

in 13 out of 90 casts, the VMP landed on the seabed; 45

casts were within the area identified in Fig. 2d, approxi-

mately collocated with the glider (with a mean horizontal

separation of 8 km).

Data were recovered from the glider after a mission

between 0030 UTC 5 June 2012 and 2000 UTC 11 June

2012. During the first dive, the servo-controlled battery

position is used to determine the positions needed

to maintain approximately 6268 pitch angles, recom-

mended for nominal endurance. Consequently, these

positions were fixed and the servo control deactivated to

avoid the noise that can be induced in the turbulence

measurements from small shifts in battery position. To

sample more frequently in the deep overflow plume,

a typical flight pattern included a full dive followed by

a climb to a turn depth of 450m, followed by a dive and

full climb (see Fig. 3a for a time series of pressure re-

cord). We shall refer to the full water column dives and

climbs as ‘‘full profiles,’’ and the near-bottom climb–

dive cycles with the turn depth of 450m as ‘‘half

profiles.’’ The maximum dive depth was set to 900- or

50-m height above the bottom detected by the altime-

ter. Both the glider and the MR recorded continuously.

In total, 93 dive-and-climb pairs (i.e., 186 profiles) were

made; 17 cycles toward the end of the mission were

shallow dives, to about 100m, to cope with encountered

navigation problems. The remaining 76 dive-and-climb

pairs are used in this paper, 36 of which were within the

area identified in Fig. 2d, approximately collocated with

the VMP stations. Of the 76 dive-and-climb pairs, 31

were half profiles. Typical flight properties of the glider,

averaged over the entire mission and separated into full

and half profiles of dives and climbs, are summarized in

Table 1; see also section 5a. The asymmetry in the path

angle and vertical velocity is not because of the MR but

because of overriding the servo control using fixed bat-

tery positions.

4. Data processing

a. Glider

The glider data are processed using the software

kindly provided by Dr. Gerd Krahmann (GEOMAR,

Germany). After converting the data to physical units,

a best guess of the glider’s position is made based on the

GPS fixes and the glider’s internal navigational calcu-

lations. The top and bottom turns are identified from

pressure, and the time series are separated into dive-

and-climb profiles. The CTD pressure sensor is found to

be more accurate than the navigation P sensor and in

good agreement with the MR P sensor, and is used

throughout. Time series of all variables from the glider

are interpolated to a common time at 1-s intervals.

The angle relative to the horizontal that the glider

ascends or descends is the glide angle,

g5 u1 sgn(a) , (1)

where u is the pitch angle and a is the angle of attack

(AOA); see Fig. 1 for an illustration. The pitch and

roll are measured by the glider’s navigation sensor and,

more accurately, by the inclinometer on the MR. The

glider speed through water, U, and AOA are crucial

parameters that must be estimated as accurately as

possible for high-quality dissipation rate measure-

ments (section 4b). Here we use a hydrodynamic flight

model summarized in Merckelbach et al. (2010) to

obtain U and AOA by optimizing three calibration pa-

rameters: the drag coefficient, glider volume, and hull

compressibility.

In quasi-steady flight, the balance of horizontal and

vertical forces acting on the glider can be written as

FB 2Fg2
rSwU

2

2
(CD

0
1CD

1
a2)

sin2g1 cos2g

sing
5 0.

(2)

This is Eq. (13) of Merckelbach et al. (2010) after cor-

recting for a sign error in the last term. In the flight

model formulations, we retain the convention of posi-

tive path and pitch angles when the glider points up, to

be consistent with Merckelbach et al. (2010), which

is also in accordance with the convention used by the

Slocum; however, we use the right-handed convention

when presenting the data. In Eq. (2),CD0
andCD1

are the
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coefficients determining the total (i.e., sum of drag from

both the hull and the wings) parasite drag and induced

drag, respectively. The quantity Sw is the wing surface

area; U is the glider velocity through water along the

glider path; and Fg 5 mgg is the force due to gravity,

where mg is the mass of the glider and g is the acceler-

ation due to gravity. The net buoyancy force FB is de-

fined as

FB5 grfVg[12 cP1aT(T2T0)]1DVbpg , (3)

where r is the in situ density, Vg is the glider volume at

atmospheric pressure, c is the compressibility of the hull,

P is the water pressure, aT is the coefficient of thermal

expansion, T is the water temperature, T0 is a reference

temperature, and DVbp is the buoyancy change resulting

from the buoyancy engine of the glider. The AOA is

obtained numerically from the expression

FIG. 3. Flight behavior data from an arbitrary sequence of dives and climbs. Time is refer-

enced to the start of the first dive at 0040 UTC 6 Jun 2012. Time series of (a) P and wp (gray)

inferred from the rate of change of P and wg (black) from the flight model, (b) T and U (gray),

(c) pitch and roll (gray), (d) AOA, (e) central battery position, and rudder angle on the tail fin

(gray). Data in (a)–(d) are measured by the MR, decimated to 4Hz for the display, and (e) are

measured by the glider. The P record shows the typical pattern with full dive and climbs in-

terrupted by ‘‘half’’ climbs and dives with a turn depth at 450m. The arrow and the thick

portion of the profile in (a) mark the dive used in Fig. 4.

TABLE 1. Flight statistics for dives and climbs for the entire

mission. Half dives and climbs refer to profiles with a turn depth of

450m. Statistics are the mean and 61 standard deviation.

Type AOA (8) Path angle (8) wg (cm s21) U (cm s21)

Dive, full 2.9 6 0.4 25.7 6 1.6 217 6 1 39 6 1

Dive, half 3.6 6 0.6 22.0 6 2.7 214 6 2 37 6 3

Climb, full 2.0 6 0.1 233.4 6 0.8 24 6 1 43 6 1

Climb, half 2.0 6 0.1 233.9 6 1.1 24 6 1 43 6 2
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a5
CD

0
1CD

1
a2

(aw 1 ah) tan(u1a)
, (4)

where ah and aw are the lift–slope coefficients for the

hull and wings, respectively. The reader is referred to

Merckelbach et al. (2010) for further details of the flight

model. We calibrate the parameters CD0
, c, and Vg by

minimizing a cost function relative to the vertical velocity

inferred from the rate of change of pressure wp using

a nonlinear least squares method. For the other param-

eters, we use the optimized values of CD1
5 2:88, aw 5

3.7 rad21, and ah 5 2.4 rad21 reported in Merckelbach

et al. (2010); Sw 5 0.1m2; mg ; 56.41kg; and use T, r,

P, u, and DVbp as measured by the glider. Optimization is

carried out in 1-day-long sets of full dives and climbs,

separately, resulting in 14 estimates for each parameter.

As expected, compressibility, c, and glider volume, Vg,

did not show any discernible difference between dives

and climbs (not shown). The drag coefficient, CD0
, for

dives were approximately 15% larger than the climbs

on average, with no trend in the short deployment pe-

riod. The average values (61 standard deviation) using

all data points are CD0
5 0:14(60:02), c 5 6.1(60.2) 3

10210 Pa21, and Vg 5 55(60.1) 3 1023m3. In the fol-

lowingwe use the average valueswhen applying the flight

model to infer speed through water U and the vertical

glider speed,

wg5U sin(u1a) . (5)

For a regular deep Slocumwithout anMR,Merckelbach

et al. (2010) obtained similar glider volume and com-

pressibility values but CD0
increased in time from about

0.09 to 0.12 through their 3-month deployment, pre-

sumably as a result of biofouling. The relatively large

value of the drag coefficient obtained here, CD0
5 0:14,

is consistent with a deep Slocum glider equipped with

an MR, giving a frontal area approximately 30% larger

than a regular glider.

b. MR

Before converting the raw data from the MR into

physical units, the pressure and thermistor channels re-

cording the signal plus signal derivative are deconvolved

to obtain high-resolution P and T records (Mudge

and Lueck 1994). The MR time stamp P and T are then

corrected against the glider data. An estimate of the

vertical velocity is inferred from the rate of change of the

high-resolution pressure record wp and smoothed using

a second-order Butterworth low-pass filter with a cutoff

frequency of 0.2Hz. Inclinometer data are low-pass fil-

tered using the same filter. The AOA is inferred from

the filtered pitch time series using Eq. (4). The glider

along-path velocity (relative motion between the glider

and the water)U and the vertical velocity of the glider are

obtained from Eqs. (2) and (5), respectively. Time series

of P, wg, wp, U, a, g, and u are then interpolated to the

fast channel sampling rate of 512Hz.

The shear probe voltage output is converted to shear

using the known electronic constants, the sensitivity of

the shear probe, and the flow past the sensors (see, e.g.,

Lueck et al. 2002). The time derivatives are converted to

spatial derivatives along the main axis of the instrument

(along x0), approximately equal to the along-path di-

rection for small AOA. The shear (along x0) is pro-

portional to the raw output times the speed squared, and

we use U that is inferred from the flight model.

The time series recorded by theMR are split into dive

and climb profile segments. A profile segment is detec-

ted, below 5-m depth, when the glider ascended or

descended with jwgj. 4 cm s21, for a duration of at least

60 s. The small values ofwg are normally associated with

maneuvers at the turn points from climb to dive near the

surface (or a predefined deeper level) or from dive to

climb near the end of a dive. At these turn points, the

AOA is large and flow past the sensors is nearly zero;

therefore, the shear probe data cannot be used. A deep

glider maneuvers slowly before it achieves a nominal

glide angle; hence, we excluded 20 s of the record at each

end of the detected profile segment. Occasionally, seg-

ments with jwgj , 4 cm s21 can be observed in a dive or

climb profile, particularly at the interfacial layer with

large shear. A dive or climb profile may thus consist of

several subsets (detected using the same algorithm), each

of which are processed separately to measure «, and then

merged together into a single dive or climb profile.

The time series of shear is used to calculate «. The

record from each shear probe is segmented into half-

overlapping 12-s-long portions for spectral analysis. A

fast Fourier transform (FFT) length corresponding to

4 s is chosen, and each 4-s segment is detrended and

Hanning windowed before calculating the spectra. The

shear probe signal coherent with the accelerometer data

(from the two-axis vibration sensor) is removed using

the method outlined in Goodman et al. (2006). The re-

moval of this signal is probably not necessary because

the gliders are ballasted very close to seawater density

(see discussion in section 5d). We calculate the dissipa-

tion rate using both the cleaned and the original shear

spectra for further inspection. The Goodman method is

based on the cross spectra between the shear probe and

the accelerometer, and for best results and statistical

significance, a record length several times greater than

the FFT length is advised. We use 12-s segments, that

is, 3 times the FFT length. The vibration sensor is not
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calibrated because a signal in physical units is not re-

quired for the Goodman algorithm.

The frequency domain shear spectra F( f) are con-

verted into along-path wavenumber k domain using

Taylor’s frozen turbulence hypothesis and the glider

speed, as F(k) 5 UF( f) and k 5 f/U. For a typical U ;
0.4m s21, the FFT length is equivalent to 1.6-m along-

path length and resolves the low wavenumber part of

the spectrum that is crucial for the roll off for low dis-

sipation rates. The wavenumber spectra are then cor-

rected for the shear probe’s limited spatial response with

a cutoff wavenumber of kc5 48 cpm, by dividingF(k) by

the transfer function H(k) 5 1/[1 1 (k/kc)2] (Macoun

and Lueck 2004). The dissipation rate of TKE for each

segment is calculated, assuming isotropic turbulence, by

integrating the wavenumber spectrum as

«j 5
15

2
n

�
›uj

›x

�2
5

15

2
n

ðk
u

k
l

F(k) dk , (6)

where j(51, 2) identifies the shear probe number (u1 5
w and u2 5 y), n is the kinematic viscosity that is a

function of the local water temperature, and the overbar

denotes averaging. The empirical model for the turbu-

lence spectrum determined byNasmyth (1970) is used to

set the lower (kl) and upper (ku) integration limits of the

spectrum and to correct for the variance in the un-

resolved portions of the spectrum. We use the accurate

curve fit for the Nasmyth spectrum given in Wolk et al.

(2002). The Nasmyth form indicates that 90% of the

variance is resolved by integrating to 0.5kK, where kK 5
(2p)21(«/n3)1/4 is the Kolmogorov wavenumber [in cy-

cles per meter (cpm)]. An initial estimate of « is made

by integrating in the normalized wavenumber range

0.015 , k/kK , 0.05, and then iteratively adjusting the

integration band (widening for large «, or narrowing for

small «, but keeping kl greater than 1 cpm and ku less

than 40 cpm). Finally, the dissipation rate in the segment

is calculated as the average of the values from both

probes if they agree towithin a factor of 4, or theminimum

of the two otherwise (spikes can occur because of, e.g.,

hitting plankton). For each segment, two average values of

« are obtained: one before and one after cleaning the shear

spectrum using the Goodman method. Statistics of in-

tegration band limits, correction factor for the unresolved

variance, and original and cleaned dissipation rates are

given in Table 2. The average correction for the un-

resolved variance of shear, using the Nasmyth’s form, is

a factor of 2.On average, the removal of the shear variance

correlated with the accelerometer signal results in a re-

duction in dissipation measurements by a factor of 1.8.

c. VMP

The processing of the shear probe data from the mi-

crostructure profiler, VMP, follows established methods,

and is similar to the processing of the MR data. The

profiles of « were calculated using the isotropic relation

[Eq. (6)], but for the vertical wavenumber kz spectrum

and using the shear components ›u/›z and ›y/›z. The

VMP is stable in the water column as a result of its mass,

and sinks typically to within a few degrees from the

vertical, at an approximately constant speed of 0.6m s21.

Average (plus or minus one standard deviation) sink

velocity over all profiles was 0.61 (60.03) m s21, and the

assumed frozen turbulence hypothesis typically holds

(mean flow past the sensors is larger than the velocity

scale of the turbulent eddies). The VMP is equipped with

a three-axis accelerometer vibration sensor, and all three

components are utilized to obtain clean shear spectra

(Goodman et al. 2006). The correction for the shear

probe response, selection of the integration band, cor-

rection for the unresolved variance, and averaging over

the two probes are as described for the MR (section 4b).

Profiles of « are obtained from the shear spectra using

half-overlapping 6-s segments, using an FFT length of 2 s

(corresponding to about 1.2m), and produced as 2-m

vertical averages to a noise level of 10210Wkg21.

TABLE 2. Statistics related to the dissipation rate calculations. Statistics are the 2.5, 50, and 97.5 percentiles, mean, and the maximum

likelihood estimator (mle) of the mean from a lognormal distribution. Here, kl and ku are the lower and upper wavenumber integration

limits, corr is the correction for the unresolved variance, ut is the turbulent velocity scale,R is the ratio of speed through water and ut, and

«d is the ‘‘dirty’’ estimate of « before removing the signal correlated with the accelerometer.

2.5% 50% 97.5% Mean mle

kl (cpm) 0.6 0.6 0.7 0.6 —

ku (cpm) 2.5 10.9 40.5 15.6 —

corr (2) 1.6 1.8 2.9 2.0 —

ut (cm s21) 0.01 0.1 1.7 0.3 0.3

R (2) 24 280 2995 591 638

«d (Wkg21) 4.0 3 10211 5.9 3 1029 8.6 3 1027 9.7 3 1028 2.0 3 1027

« (Wkg21) 3.0 3 10211 3.7 3 1029 5.7 3 1027 6.3 3 1028 1.4 3 1027

«d/« (2) 0.9 1.6 4.2 1.8 1.8
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5. Results and discussion

a. Flight behavior

Time series of flight behavior data for a subset of

the mission are shown in Fig. 3. The dive–climb cycles

illustrate the pattern that samples the deep overflow

water more frequently than the ambient. The data pre-

sented are representative of the entire mission. The

fixed position of the center battery, nominally at 0.56 cm

during dives and at 20.085 cm during climbs, led to an

asymmetry with steeper ascents: pitch angles were ap-

proximately 228 and 2328 during dives and climbs, re-

spectively. The AOA was variable but typically small,

always less than 48, except near the turning points.

The water associated with the FBC overflow, typically

colder than 38C, and the stratified interface between the

plume and the ambient, typically between 38–68C, can be
seen in the deep portions of the profiles. All casts in

Fig. 3, except the profiles near elapsed time 10 and 13 h

with relatively shallow dives, sampled the plume and the

interfacial layer. Near the interface and into the plume,

the pitch and roll variance substantially increased. The

AOA was smaller for climbs than for dives (28 6 0.58
versus 38 6 0.58), and the AOA of the half dives fol-

lowing the turns at 450m was typically 0.58 larger. The
flight properties are representative of the entire mission;

see the statistics for the entire dataset (76 dive–climb

cycles), split into dives and climbs, and full and half

profiles in Table 1. The average along-path glider speed

was approximately constant (U ; 0.4m s21 to within

10%), independent of the type of the profile. Because of

the larger pitch angle in climbs, the glider attained larger

vertical velocities of about 0.24m s21. The flight prop-

erties are almost identical for full and half climbs. For

the dives, however, the half profiles have approximately

20% smaller wg and path angle, and about 0.78 larger
AOA, with larger variability (standard deviation is 50%

larger than the full dives).

The deepest dive, marked in Fig. 3a, is presented as

a pseudovertical profile in Fig. 4, that is, the sampling

along the slanted path is presented as profiles with re-

spect to pressure. The increased variability in wg and U,

and the elevated variance in pitch, roll, andAOA can be

observed as the glider penetrates the turbulent plume.

An estimate of the vertical velocity of water is wp 2 wg.

The profiles shown in Fig. 4a suggest low vertical wave-

number variability in the ambient, presumably associated

with internal waves, and high wavenumber variability in

the IL, due to entrainment and turbulent mixing.

While wg is obtained from the flight model, a simple

bandpass filtering of the wp time series can achieve a

comparable profile. Near the Luzon Strait, Rudnick et al.

(2013) obtained vertical velocity profiles using filtering

that compared very well to those obtained from a hydro-

dynamic flight model. In our dataset, representative

bandpass limits correspond to time scales of approxi-

mately 10 and 100 s, obtained from comparisons of fre-

quency spectra of wg and wp.

b. Microstructure data

Also presented in Fig. 4 are the temperature gradient

and shear measured by the thermistors and the shear

probes, all showing consistently quiescent portions in

the interior, and patches of water with elevated turbu-

lence, particularly in the bottom 150m but also in the

upper 200m, and between 550 and 700m. The profile is

an arbitrary deep dive, representative of the other pro-

files covering the overflow plume. The independent

measurements of temperature gradient and shear agree

in patterns, lending confidence in the quality of the

microstructure data. The high-resolution temperature

profile shows numerous inversions indicative of turbu-

lent overturns in the turbulent patches (Fig. 5), consis-

tent with the elevated vertical velocity variance at the

interface (Fig. 4a).

Indirect estimates of the dissipation rate, using the

proportionality of the Thorpe overturn scale and the

Ozmidov scale [Eq. (7)], are often made making use of

temperature, or when possible density, measurements.

Our calculations and analysis using the overturns are too

lengthy to report in the present paper and are the topic

for a future study. Overall, dissipation rates inferred

from the Thorpe scale analysis compare favorably with

the shear probe measurements reported here. Detailed

analysis is needed; however, our data suggest that the

gliders without turbulence probes can be used to infer

mixing in turbulent waters. The glider’s slanted path can

lead to errors in the measurements of overturns (Thorpe

2012; Smyth and Thorpe 2012). Thorpe (2012) concludes

that the error (an underestimate) of dissipation rate

associated with Kelvin–Helmholtz (KH) billows is likely

to be less than a factor of 2, and is greatest when the

billow aspect ratio is greatest and the glider inclination

angle is small. Transects at small inclination angles can

lead to detection of false overturns when gliding through

internal waves, and can give misleading estimates of the

scale of overturns. The direct numerical simulations

(Smyth and Thorpe 2012) suggest that the associated

bias could be reduced by profiling in the cross-stream

direction, and that uncertainties due to horizontal in-

termittency can be reduced by averaging over ensembles

on the order of 100.

A pair of 50-m vertical segments centered at 345 and

775m is extracted to present frequency and wavenumber

spectra representative of the average spectra in turbu-

lent and quiescent portions of the water column (Fig. 5).
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The upper segment is from the relatively quiescent am-

bient, and the deeper segment is from the turbulent

IL. In contrast to the quiescent segment with quasi-

homogeneous temperature profile, the energetic turbu-

lence in the IL ismanifest in the temperature profile. The

vertical extent of these segments is marked in Fig. 4e for

reference. The 50-m vertical scale is approximately 25

times the typical 2-m vertical stretch of data (12 s) over

which the dissipation profiles are calculated. Example

spectra using 12-s segments from the same record, cen-

tered at 345 and 775m, are shown in Fig. 6 to demonstrate

the quality of the shear probe data. These examples are

arbitrary and do not represent particularly good-quality

segments.

The shear spectra are noisy at high frequency and

wavenumber. From test dives of a shallow Slocum glider

equipped with a MR, Wolk et al. (2009) discussed vari-

ous vibrations at discrete frequencies. In the bulk of the

profile, after the turning points are removed, the main

source of vibration is the action of the glider’s rudder,

which controls the heading of the glider. The influence

of the rudder on shear probe measurements is presented

in detail in the appendix. Spectral analysis of segments

of data subsampled when the rudder was in action shows

peaks at high frequencies; however, this noise does not

influence the quality of the shear probemeasurements in

the wavenumber and frequency bands of interest.

It is typical in ocean microstructure measurements

that the shear spectra from short segments deviate from

the empirical curve of Nasmyth, but approach it when

averaged over relatively larger segments that are ho-

mogenous in turbulence intensity. The wavenumber

spectra of shear presented in both Fig. 5 (50-m segment)

and Fig. 6 (approximately 2-m segment) adhere to the

Nasmyth’s form. The empirical form for the quiescent

segment is for « 5 9 3 10210Wkg21 for the 50-m seg-

ment and for «5 33 10210Wkg21 for the 2-m segment,

which are well captured to a wavenumber of 10 cpm,

FIG. 4. Vertical profilesmeasured during the divemarked in Fig. 3a. Note that the sampling along the slanted path is displayed as profiles

as a function of pressure. (a) Temperature T, pressure-derived vertical velocity wp (gray), and vertical glider speed wg (black); (b) pitch

and roll (gray); (c) AOA and U (gray); (d) temperature gradients from the two thermistors; and (e) shear measured by the two probes.

Dashed lines in (e) delineate 50-m-long (vertical) segments for which the quiescent and energetic spectra of Fig. 5 are shown.
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suggesting that the noise level of the instrument is bet-

ter. The shear spectra obtained from the glider are

comparable to the high-quality spectra obtained from

vertical microstructure profilers.

c. Data selection

In this subsection we discuss the influence of flow dis-

tortion, applicability of Taylor’s frozen turbulence hy-

pothesis, and summarize our criteria for selection of data

segments for dissipation rate calculations.

Any in situ measurement of the velocity field will

suffer from flow distortion near the sensors and the

platform. Wyngaard et al. (1985) studied the possible

errors in velocity covariances measured ahead of axi-

symmetric bodies. They found that for an ellipsoid of

revolution with an aspect ratioL/D of 5:1, whereL is the

length and D is the diameter, measurements at a plane

0.5D ahead of the body, along the axis, led to fractional

errors on the order of 10%with weak dependence on the

small AOA. Errors in variances generally decreased

with distance from the axis of symmetry (note that the

MR is placed off axis to the glider). Osborn and Lueck

(1985) discussed the flow distortion effect on a 51-m-

long research submarine with an aspect ratio of ap-

proximately 9:1. Their instruments were mounted 0.88D

above the submarine hull (off axis). Potential flow cal-

culations indicated that at nil AOA, the reduction in the

mean flow past sensor was 5% at the level of the probes,

with a 9% decrease in the variance of ›w/›x and an 11%

increase in the variance of ›y/›x. Note that the oppos-

ing effect on the variance of orthogonal components of

shear approximately average out. Our measurements on

the glider with an aspect ratio of 8:1, at a plane 0.77D

ahead of the glider nose, and 0.72D off the glider axis,

FIG. 5. Temperature profiles and various spectra calculated for the two 50-m-long segments identified in Fig. 4. (top)Quiescent segment.

(bottom) Turbulent segment. (a),(d) Temperature profiles from thermistor 1; (b),(e) frequency spectra of acceleration measured by the

two-axis vibration sensor (arbitrary units) and of shear from probe 1; and (c),(f) slant wavenumber spectra for the original (black) and

cleaned (red) shear, and Nasmyth’s dissipation spectrum (gray). The FFT length is 10 s. The dissipation spectra are plotted for 93 10210

and 3 3 1026Wkg21 for the segments centered at 345 and 775m, respectively. Flight information (angles in 8 and velocity in cm s21):

quiescent segment, u5 206 0.2,f5 0.66 0.1, AOA5 2.96 0.02,wg52176 0.1,U5 406 0.1; turbulent segment, u5 186 2.1,f5 1.0

6 1.5, AOA 5 3.2 6 0.3, wg 5 216 6 1.4, U 5 40 6 1.3.
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above the glider hull, are comparable to the measure-

ments of Osborn and Lueck (1985). Overall, we conclude

that the effect of flow distortion is negligible compared to

other error sources.

When the velocity scale of the largest eddies is com-

parable to the glider speed, the applicability of the

Taylor’s hypothesis for frozen turbulence is not valid.

Furthermore, the glider flight behavior may be affected,

leading to large AOA, and contamination of flow may

occur due to recirculations from the wake of the instru-

ment. In the following, we estimate a turbulent velocity

scale, ut, and use the ratio R5U/ut to detect and exclude

the segments inconsistent with the assumptions of the

Taylor’s hypothesis.

A turbulent velocity scale can be inferred from the

measured dissipation rate using ut; («l)1/3 and substituting

for the turbulent length scale l the Ozmidov length, using

LO 5 («/N3)1/2 , (7)

giving

ut 5 («/N)1/2. (8)

The buoyancy frequency is

N(z)5 [2(g/r0)›su/›z]
1/2 , (9)

where r0 is a reference density and su(z) is the observed

potential density anomaly profile. The MR does not

measure the salinity and that measured by the glider

CTD sensor (unpumped) needs corrections. Because

the salinity–temperature relation in the Faroe Bank

Channel is precise, and for simplicity, we infer density

from the temperature profiles. All su and temperature

profiles from the ship’s CTD system are used to obtain

a third-order polynomial fit of su against T. Prior to

obtaining the fit, the data are averaged in 0.01 kgm23

wide bins of su. The difference in the fitted and the

FIG. 6. As in Fig. 5, but using 12-s-long data centered at 350m in the quiescent segment and at 775m in the turbulent segment. The FFT

length is 4 s. The segment length and the FFT length are identical to those used in calculating profiles of «. The vertical stretch of the record

is 2.2 and 1.9m, respectively, for the quiescent and turbulent segments. The Nasmyth spectra are plotted for 3.2 3 10210 and 2.6 3
1026Wkg21. Flight information is identical (to within 1 standard deviation) to the values for Fig. 5.
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original density profile varied to within 60.06 with an

rms error of 0.015 kgm23. The buoyancy frequency

calculated from 1-m average values using centered dif-

ferencing of sorted su profiles measured by the CTDand

inferred from T agreed to within an average fractional

error of 40%. In calculating N, the potential density is

inferred from the T profile measured by the glider after

averaging the T profile in 1-m vertical bins. The density

profile is then sorted into a stable profile and interpolated

to the glider depth. Using unsorted density profiles av-

eraged in 5-m vertical bins gives similar results.

For each segment where « is available, the ratio R 5
U/ut and the average flight properties (U, wg, g, AOA)

are calculated. Statistics of the inferred turbulent velocity

scale ut and the ratio R are given in Table 2. Scatter di-

agrams of chosen parameters are shown in Fig. 7. The

data points with small values of R, when Taylor’s hy-

pothesis may fail, are highlighted with paler colors.When

the glider speed relative to the water is not sufficiently

stronger than ut, the dissipation rate spuriously increases,

with segments associated with large AOA and small wg.

Note that in Fig. 7d, the values with small R (threshold

quantified below) that are associated with AOA ex-

ceeding 158 (see Fig. 7b) are excluded. Some dive seg-

ments with AOA . 58 exist even with R . 15.

A threshold for R to delineate high-quality data is

estimated by inspecting AOA and the ratio of dissipa-

tion rate measured by the two shear probes, averaged

in bins of R. In isotropic conditions and when the flow

distortion is negligible, agreement is expected between

the two shear probes mounted orthogonal to each other.

All other factors set equal (uncertainties in viscosity,

flow speed, assumption of isotropy, variance correction,

etc.), the typical uncertainty associated with shear probe

measurements and calibration errors is about 20% (see,

e.g., Moum et al. 1995).

The ratio «1/«2 and the AOA averaged in unit bins of

R are shown in Fig. 8 for relatively small R where the

data quality starts degrading. For small values ofR during

dives, the MR is probably in the wake of the glider.

FIG. 7. Scatterplots of (a)U and (b) AOA against « and (c) « and (d) AOA against wg for dives (blue crosses) and

climbs (red circles). Paler colors mark the segments when Taylor’s hypothesis is suspect. In (d), only the segments

with R . 15 (dives) and R . 20 (climbs) are shown, and the dashed vertical line marks AOA 5 58.
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Approximately 34%and 3%ofR had values greater than

500 and less than 15, respectively (similar for both dives

and climbs). Typically, there are 60–180 dive or climb

data points in each bin for R . 5 and 10–50 data points

for smaller values of R. The mean expected from a log-

normal distribution is shown for «1/«2, together with

the 95% confidence levels (Baker and Gibson 1987),

whereas the average and one standard deviation are

shown for AOA. The two probes typically agree to

within 20% for large values of R, whereas there is sig-

nificant deviation for R # 15 in dives and for R # 20 in

climbs. The AOA also substantially increases when R,
10, more so for dives, and shear probemeasurements are

not reliable. Based on this analysis, we choose a thresh-

old ofR5 15 for dives andR5 20 for climbs. Setting the

threshold to R 5 15 for both dives and climbs does not

change our results (survey-averaged profiles and prob-

ability distribution functions).

In summary, a segment satisfying any of the conditions—

R# 15 for dives andR# 20 for climbs, AOA$ 58, jwgj,
0.04ms21, or jwgj . 0.5ms21—is flagged as bad. The

total number of segments, climbs and dives combined,

after data screening is about 67 700, shared as 61% dives

and 39% climbs. The total number of removed points is

about 3000—that is, about 4%—in approximately equal

proportions from dives and climbs. Of the removed

segments, about 85% are excluded because of the R

criterion alone. For reference, the total number of 2-m

averaged VMP data points is approximately 29 000.

d. Shear spectra

The shear spectra from the two example segments

were shown in Figs. 5 and 6, demonstrating the high

quality of the data and the ability of the glider to sample

ocean microstructure. Here, we present shear spectra

from the entire dataset, averaged in one decade bins of

« (Fig. 9). Thousands of spectra are averaged (except

the largest « bin with 895 segments), using only the

good-quality segments (section 5c) but also including

the shallow 100-m dive–climb cycles. The frequency spec-

tra approach a common noise floor at high frequencies.

The influence, on average, of cleaning the spectra with the

Goodman et al. (2006) method can be seen by comparing

the color curves with the gray curves in Fig. 9a. The most

variance removed associated with the accelerations is at

frequencies above 8Hz. The largest corrections are in the

FIG. 8. Influence of R on (a),(b) dissipation measurements and (c),(d) AOA. Ratios of dissipation rate from shear

probes 1(«1) and 2 («2) and the AOA for (a),(c) dives and (b),(d) climbs, respectively. Only values for R , 50 are

shown to emphasize the regime when the Taylor’s hypothesis breaks down. Data are averaged in unit bins of R, and

the gray shading indicates the 95% confidence intervals for the ratio «1/«2 and 1 standard deviation for AOA.Dashed

lines in (a),(b) indicate 620% agreement between the two shear probes.
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more energetic spectra, where the water is turbulent and

the glider experiences substantial accelerations and

rudder activity. The shear spectra are not contaminated

in the frequency and wavenumber range used in the

dissipation calculations. The cleaning of the shear spectra

with the Goodman method removes variance from the

low wavenumber of the spectra (see, e.g., Figs. 5 and 6).

Because the glider is so light in the water, its movements

at scales comparable to the glider size are likely related

to turbulent eddies. The removal of this variance can

lead to an underestimate of the actual turbulent dissi-

pation rate. The comparison in Table 2 shows that dis-

sipation measurements using the original spectra are,

on average, 80% larger than those calculated using the

cleaned spectra. The wavenumber spectra (Fig. 9b)

broadly follow the Nasmyth’s curve, evaluated for the

average « in each bin, at least to the wavenumber where

the spectrum starts to roll off. Note that even the least

energetic spectrum with « 5 53 10211Wkg21 has a mar-

ginally acceptable shape, suggesting a low noise floor for

dissipationmeasurements using shear probes from a glider.

The average wavenumber shear spectra and the

Nasmyth’s dissipation spectrum differ (see, e.g., Fig. 9b),

which is typical in ocean microstructure measurements.

In the glider dataset, the peak at the dissipation spec-

trum is smoothed and the roll off is less steep compared

to the Nasmyth’s spectrum. There is variability in the

speed used in calculating the wavenumber spectrum,

before obtaining the average spectrum, that can smear

out the spectral shape; however, this is not substantial

(the variability is less than 5%). The imperfect agreement

between the observed and the empirical spectra can partly

be attributed to the intermittency (section 5f). Nasmyth

(1970) observed, similar to our observations, a reduction in

the curvature in the transition region between the inertial

subrange and the dissipative subrange of measured spec-

tra, and also that the spectra rolled off less steeply rela-

tive to the universal curve. He proposed the intermittency

and the buoyancy effects (as the turbulence decays) to be

themost likely factors to account for the observed spectral

shapes. This is consistent with our dataset; also note that

the spectra roll off more gently for low «, which is typically

associated with small turbulent activity index and fossil

turbulence (section 5f). The agreement between the mea-

sured spectra and the empirical curve is better for the

50- and 2-m average spectra shown in Figs. 5 and 6,

respectively. This is not in conflict with the role of in-

termittency in contributing to the discrepancy between the

bin-averaged observed and empirical spectra. The 50- and

2-m spectra are from rather homogeneous (in turbulent

intensity) patches of turbulence and are sampled in rel-

atively short time, whereas the bin-averaged spectra

cover a factor of 10 variability in « and are sampled at

different times and locations throughout the field work.

FIG. 9. Shear spectra averaged in bins of «. Spectra are averaged in total from 6055, 16 452, 20 052, 17 379, 9058, and

895 segments within decadal bins between 10211 and 1025Wkg21. (a) Frequency spectra from shear probe 1. Al-

ternating black and red curves are the clean shear spectra after removing the parts of the signal coherent with the

accelerometers. The gray curves are the corresponding original shear spectra prior to cleaning. Average dissipation

rate (Wkg21) in each bin is indicated. (b) Wavenumber spectra averaged from both shear probes. Alternating black

and red curves correspond to the dissipation rates indicated in (a). The gray curves are the Nasmyth spectra for the

given « values.
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e. Comparison with VMP

A comparison between the glider-inferred dissipation

rate and that measured by the vertical profiler VMP is

attempted. Because of the inherent variability in the

FBC, the intermittent nature of turbulence, and the

separation between the ship and the glider, comparisons

are only possible in the average sense, as for example,

survey-averaged profiles (time and spatial averaging) and

histograms or probability distribution functions (pdfs).

Survey-averaged profiles are compared in two sets,

the entire survey and a subset of collocated profiles

(Fig. 2d), and using different vertical coordinates. Be-

cause the turbulent overflow plume is bottom attached

(Fer et al. 2010), and the thickness of the turbulent layer

varies on the scale of 3–4 days (Seim and Fer 2011),

we average with respect to 1) height above bottom;

2) the vertical distance from the 38C isotherm, z3C; and

3) isotherms. Similar averaging (1 and 2) was used in Fer

et al. (2010) and Beaird et al. (2012). Method 1 suc-

cessfully averages the turbulent bottom layer but smears

out the structure in the layer above; method 2 concen-

trates in the thick and turbulent IL—the 38C isotherm is

a good proxy for the depth of themaximum stratification

in IL; method 3 removes the influence of variability due

to, for example, internal waves. Average profiles are

shown in Fig. 10 for the VMP, for glider profiles sepa-

rated into dives only, climbs only, and dives and climbs

together.

There is no systematic difference between the average

profiles inferred from dives and climbs, and the average

of the two can be used to increase the statistical signifi-

cance. The profiles of « calculated from the VMP and

the glider agree in the turbulent BL and in the isotherms

colder than 58C; however, they differ by up to one order

of magnitude in the upper part of the IL (Fig. 10). When

the survey-averaged profiles are calculated using full-

depth dives and climbs only, the results in the IL are not

improved (Fig. 10e).When the subset of glider andVMP

data, which is collocated, is further restricted to the same

period between 5 and 8 June, the profiles show the

similar pattern but with a slightly larger variability (not

shown).

The pdfs of dissipation ratemeasured by theVMP and

the glider are presented in Fig. 11 for subsets of the data

conditionally sampled in temperature, for waters below

the 38C isotherm, in the IL between 38 and 68C, and
higher above in the water column with T between 68
and 98C. The upper temperature threshold is imposed to

exclude the upper 50m or so, to avoid the possible in-

fluence of different surface forcing. The pdfs are consis-

tent with the results from the survey-averaged profiles.

Dissipation measurements from both instruments in

the cold layer show similar distributions but differ sub-

stantially in the warmer layers. Also shown in Fig. 11 are

the lognormal pdf, fitted (using nonlinear least squares

technique with the mean and standard deviation set as

free parameters in the lognormal distribution) to the

measured distribution curves using the bins between

1029 and 1026Wkg21. The bins are chosen to exclude

any influence of the noise level of the instruments and

contamination at large «. The mean value from the fit

and the maximum likelihood estimator (mle) from a

lognormal distribution (i.e., using the measured data

points, not the pdf curve) are summarized in Table 3.

The average mle and that obtained from the lognormal

fit in the restricted « band are approximately the same

for the VMP. On the other hand, for the glider, values

obtained from the fit to the pdf curve are almost a factor

of 2 larger than the mle values. This suggests substantial

contribution to the glider data with « , 1029Wkg21.

The pdf obtained for temperatures above 68C is broader

for the glider data, with a relatively large contribution

from the tails of the distribution, resulting in larger av-

erage values manifested in the profiles. The glider av-

erage values are approximately a factor of 3 and 9 times

larger than the VMP values in the layers defined by the

isotherms 38–68 and 68–98C, respectively.
A similar analysis was conducted for the subsets of

the data conditionally sampled for the turbulent activity

index, IA 5 «/nN2, for IA , 500, 500 # IA , 5000, and

5000 # IA. The results are presented in Fig. 12 and

Table 4. The analysis suggests that the main discrepancy

between the VMP and glider « values stems from sam-

pling in the waters with less energetic turbulence with

IA , 500. For larger IA, the pdfs are very similar; a two-

sample x2 test for discrete data rejects the null hy-

pothesis, at the 95% confidence level, that two samples

come from the same distribution; that is, it suggests that

the VMP and the glider data are drawn from the same

population. The average values of « are in excellent

agreement for the most energetic turbulence, and

they agree to within a factor of 2 for 500 # IA , 5000

(Table 4).

The agreement between theVMPand glider-measured

« is excellent in the bottom 100m and higher above

the plume, when averaged with respect to height above

bottom. When averaged in isothermal coordinates, the

agreement is excellent up to the 58C isotherm. There is,

however, significant difference, reaching up to one order

of magnitude, in the upper part of the IL and above,

particularly between the 68 and 88C isotherms. The

pattern in the survey-averaged profiles that shows the

largest discrepancy at 150–250m above bottom (or 20–

100m above the depth of z3C, or between the 68 and 88C
isotherms) is robust and not a result of the choice of
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averaging in space or time, or using dives or climbs, or

because of some outliers. Detailed analysis and inspec-

tion of the glider data suggest that the data are of high

quality and the measured « is reliable; we found no

convincing evidence to discard the glider measurements

where there is disagreement with the VMP data. The

discrepancy most likely arises from 1) the different

sampling—it is not clear that vertical, horizontal, or

slanted transects should produce similar turbulence

profiles; 2) intermittency of turbulence; and 3) the IL

with enhanced stratification and shear. Points 1 and 2

are general, whereas point 3 is more site and instrument

specific: in contrast to the vertical profiler, the glider

penetrates the thick IL slowly and moves horizontally,

sampling turbulent waters for a longer duration.

Previous studies that compared horizontal, sawtooth,

and vertical transects of oceanic turbulence similarly

showed large discrepancies between the different sam-

pling transects. Yamazaki et al. (1990) compared tur-

bulence measurements made from a submarine and a

FIG. 10. (a),(d) Survey-averaged profiles of « inferred from the VMP (gray) and the glider (dives only in blue; climbs only in orange;

dives and climbs in thick black); and for reference, the average T profile (red dashed, upper axis) from the glider; the average T profile

from the VMP is similar and not shown. (b),(e) As in (a),(d) but for « vs (z2 z3C). (c),(f) As in (a),(d) but for « vs T and without the red

temperature plots. (top) Averages over all stations and dive–climbs. (bottom) Averages over the collocated stations and dive–climbs

marked in Fig. 2d using the deep profiles only. Averaging is done (a),(d) with respect to height above seabed in 15-m-thick bins; (b),(e)

relative to the depth of the 38C isotherm in 15-m thick bins; and (c),(f) with respect to isotherms in 18C bins. The horizontal error bars,

placed arbitrarily, mark a factor of 2 in variability.
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vertical profiler. The submarine cycled repeatedly be-

tween 50- and 120-m depths, with a path angle of ap-

proximately 68 (i.e., less than the glider’s 208–358). They
explained the difference, of approximately a factor of 2,

between the average dissipation rates from the two

systems by the bimodal distribution of turbulence (ac-

tive and quiescent turbulence) and that the vertical

profiler preferentially sampled the active distribution.

We did not observe a bimodal distribution. Nasmyth

(1970) reported results from measurements using a

towed body equipped with microstructure sensors col-

lecting data approximately at constant depth and in

a cycling mode with ascent–descent angles of approxi-

mately 308, comparable to the glider. Both measure-

ments were centered at the same depth of about 210m,

away from the direct influence of surface forcing, at the

same site, but at different times. The average dissipation

rate from the cyclingmode was approximately one order

of magnitude larger than the value at constant depth,

similar to the largest discrepancy in our observations.

Ott et al. (2004) compared microstructure tempera-

ture measurements (Thorpe scale analysis only) from

a towed undulating platform with vertical microstruc-

ture profiler measurements. The probability density

functions of Thorpe scales indicated that those calcu-

lated from the vertical profiler were smaller in size. The

comparison remained inconclusive, and the disparity

was hypothesized to be attributed to natural variability.

The pitch angle (208–308) of the towed undulating plat-

form was comparable to our glider. Dissipation measure-

ments usingmicroconductivity sensors and fast thermistors

have been made using similar undulating platforms

(Dillon et al. 2003; Johnston et al. 2011).

f. Intermittency of turbulence

The intermittency of turbulence can be quantified

using the variance of the natural logarithm of a turbulent

variable, for example, for the dissipation rate, s2
ln«

(Gibson 1987). Using the 76 glider dive–climb cycles

and the 90 VMP profiles (section 3), s2
ln« and IA are

calculated. Figure 13a shows the intermittency factor

averaged in 18C bins. Typical intermittency factors

in nature vary between 3 and 7 (Gibson 1987). At tem-

peratures above 58C, where the discrepancy between the
VMP and the glider is observed, the intermittency factor

in the glider data is substantially larger than the VMP

data (Fig. 13a). In intermittent turbulence, an instru-

ment is more likely to sample the remnants (’’fossil’’) of

active patches (with small IA) than sampling active

(overturning) turbulence (Gibson 1987; Yamazaki et al.

1990). The dissipation measured by the VMP, at the

upper IL and above, is therefore relatively smaller than

FIG. 11. Pdfs of «, conditionally sampled from temperature classes (a) T , 38C, (b) 3 # T , 68C, and (c) 6# T ,
98C, using the collocated VMP (gray shading) and the glider (red solid line) datasets. Smooth curves are lognormal

distributions (VMP in gray; glider in red dashed) least squares curve fit to the pdfs in the range 1029 # « #

1026Wkg21. Total number of data points in each dataset is indicated.

TABLE 3. The mle of the mean from a lognormal distribution,

and mean of the lognormal distribution fit to the pdf of « (Wkg21).

Results are for data conditionally sampled for T.

Method T , 38C 3 # T , 68C 6 # T , 98C

VMP-mle 3.3 3 1027 9.8 3 1028 3.3 3 1029

VMP-fit 4.1 3 1027 1.3 3 1027 4.0 3 1029

Glider-mle 3.3 3 1027 2.4 3 1027 3.9 3 1028

Glider-fit 5.2 3 1027 4.1 3 1027 7.4 3 1028
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that measured by the glider. A pdf of the IA with values

less than 20, an approximate threshold for ‘‘fossil’’ tur-

bulence (Gibson 1987), with respect to temperature

supports this statement (Fig. 13b); that is, VMP sam-

ples relatively quiescent waters in temperature classes

of 58–78C.
In each depth bin relative to the 38C isotherm, the

number of data points n averaged is in the range of 200–

220 and 100–450 for the collocated VMP and glider

profiles, respectively. We can estimate the accuracy for

the expected value of « with 95% confidence for given

n and intermittency factor using Eq. (8) of Baker and

Gibson (1987); see also the discussion by Gregg et al.

(1993) on the results of Baker and Gibson (1987). We

assume that s2
ln« is approximately 6 for T$ 38C (i.e., for

z 2 z3C $ 0) and 4 for colder water (see Fig. 13a), and

further assume, arbitrarily, that one-half of the data

points in each bin are independent, and take n5 100 for

the VMP and n 5 200 for the glider. We did not check

the lack of correlation between the samples in the av-

erage profiles; however, our vertical averaging length

scale of 15m is comparable to the minimum averaging

length of 10 and 15m required for uncorrelated sam-

pling found for the Patch Experiment (PATCHEX) and

PATCHEX north data, respectively (Gregg et al. 1993).

The expected value of « is then measured to approxi-

mately 62% and 97% accuracy for the glider, and 97%

and 161% for the VMP, below the IL and above the IL,

respectively. The relatively poor accuracy (large percent

values) for each instrument is because of the increase in

the intermittency factor. The values of «, however, vary

by four orders of magnitude and accuracy within a factor

of 2 is not unreasonable.

6. Summary

We measured the rate of dissipation of kinetic energy

« using a glider equipped with shear probes and using

a vertical microstructure profiler (VMP). The mea-

surements were made during the same cruise and sam-

pled the turbulent plume of the Faroe Bank Channel

overflow. A total of 76 dive–climb cycles from a 1-week

mission of the glider, and 90 vertical profiles from the

VMP were analyzed. Approximately one-half of the

dataset was collocated with an average horizontal sep-

aration of 8 km. Each instrument sampled sufficiently

over the dominant 3–4-day period variability at the site.

The glider velocity through water, the angle of attack,

and ascent and descent angles are obtained from a hy-

drodynamic flight model (Merckelbach et al. 2010).

After excluding the segments near the turning depth of

the glider, and when the flow past the sensor (U) was not

FIG. 12. As in Fig. 11, but conditionally sampled for the turbulent index IA: (a) IA , 500, (b) 500 # IA , 5000, and (c) 5000 # IA.

TABLE 4. As in Table 3, but for data conditionally sampled for IA.

Method IA , 500 500 # IA , 5000 5000 # IA

VMP-mle 1.4 3 1029 2.6 3 1028 2.7 3 1027

VMP-fit 1.4 3 1029 2.2 3 1028 2.8 3 1027

Glider mle 2.9 3 1029 4.7 3 1028 2.7 3 1027

Glider-fit 3.8 3 1029 6.5 3 1028 3.8 3 1027
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sufficiently greater than an estimate of the turbulent

velocity scale (ut), we were left with about 67 700 dissi-

pation measurements from the glider. The total number

of data points from the vertical profiler was 29 000.

The angle of attack (AOA) was sufficiently small, about

28–48 during dives and 18–28 during climbs, and allowed

for high-quality shear probe measurements. The glider

velocity through water was about 40 cm s21 with typical

ascent and descent angles of about 338 and 258, re-

spectively, from the horizontal.

The shear probe data were contaminated and unreli-

able for values of R 5 U/ut , 15; the dissipation rate

measurements from orthogonal probes differed bymore

than a factor of 10, and the AOA increased by one order

of magnitude. The measurements were of high quality

for the remaining data. The shape of the shear wave-

number spectra suggests that the lowest detection level

in «, ,5 3 10211Wkg21, is comparable to the best avail-

able vertical microstructure profilers. The effect of flow

distortion near the sensors and the effect of rudder action

in adjusting glider heading are both found to be negligible.

Averaged profiles of « from the VMP and the glider

agreed and differed in different parts of the water

column and the overflow plume. The agreement in av-

erage dissipation in the turbulent bottommost 100m, or

for layers with temperature colder than 38C (i.e., be-

neath the overflow plume interface), was better than

50%. Higher above, in the sheared and stratified in-

terfacial layer (IL) of the overflow plume, the glider data

substantially deviated from the VMP data, in average

profiles, layer average values, and the probability dis-

tribution functions. The glider average values were ap-

proximately a factor of 3 and 9 times larger than the

VMP values in the layers defined by 38–68 and 68–98C,
respectively. The vertical velocity and the speed of the

glider showed large variance as the glider ascended

and descended through the IL, and slowed down by

approximately 15%. Compared to the vertical profiler,

relatively slow mean vertical velocity and the slanted

path of the glider led to substantially more horizontal

sampling in the turbulent plume. We attribute the dis-

crepancy to the different sampling scheme and the in-

termittency of turbulence. The intermittency factor

calculated in temperature bins suggests that the glider

dataset is up to a factor of 2 more intermittent than the

VMP dataset in the IL. Despite large values of «, be-

cause of the strong stratification, the turbulent activity

index attains low values in the IL and above, and the

VMP transects are likely biased toward measuring

the ceasing, inactive turbulence. An examination of

the probability distribution functions of « conditionally

sampled for different ranges of the activity index shows

that the glider and the VMP datasets are drawn from the

same population, at 95% confidence, for the values of

the activity index larger than 500.

The glider offers a noise-free platform suitable for

ocean microstructure measurements. Our measure-

ments were collected from a site where the turbulent

swift flow challenges the glider flight behavior. Never-

theless, we found that the dissipation measurements

from the glider meet expectations and return data of

sufficient quality suitable for studies of both ocean

mixing processes and long-term monitoring and map-

ping of diapycnal mixing.
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FIG. 13. (a) Intermittency defined as the variance of log« calcu-

lated in unit bins of T. There are only 10 dive (and no climb) data

points from the glider for T , 08C; these are excluded. (b) Pdfs of

the turbulent activity index IA 5 «/nN2, conditionally sampled for

values, 20.Curves are for theVMP(red), the glider (dives and climbs

together, black), and dives only (blue) and climbs only (orange).
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APPENDIX

Noise Induced by the Rudder and
Light-Emitting Diode

The influence of the rudder activity on the accelera-

tion and shear probe data is illustrated using the dive

profile, and the quiescent and turbulent segment ex-

amples of Figs. 4 and 5. Times of substantial rudder

activity are detected as peaks of centered-first differ-

enced rudder angles . 0.38 s21. The time series of the

rudder angle and the time of peaks (red bullets) are

shown in Fig. A1a. The 50-m-thick quiescent and tur-

bulent segments are marked in the figure; note the lack

of rudder activity in the quiescent segment in contrast to

the turbulent segment.

To infer acceleration and shear spectra representative

of the times when the rudder is active, we extract 3-s-

long segments of data centered at the detected peaks.

In total, there are 110 peaks. The selected segments are

marked in red in Fig. A2b. Each time the rudder is ac-

tive, there is a clear signature on the ay data. Its influence

on the shear time series is masked by the high signal-to-

noise ratio. The frequency spectra are shown in Fig. A2

for all 110 segments in pale color. For reference, spectra

are also calculated for the entire 50-m segments of Fig. 5

(blue dashed: quiescent; thick blue: turbulent segment).

The acceleration in the direction along the axis of the

instrument ax is less energetic than ay, as expected (Wolk

et al. 2009). The ay spectra show a small peak centered

at 10Hz, of equal amplitude, for both the turbulent and

the quiescent segments. Because of the lack of rudder

activity in the quiescent, this peak is likely not due to the

rudder. The energetic segment shows additional peaks at

30, 60, 80, and 120Hz, clearly associated with the rudder;

the average spectrum (black) from the 110 instances of

substantial rudder activity shows identical peaks.

The low-frequency portion of the shear spectra, used

in dissipation rate calculations, is relatively uncon-

taminated by the rudder signature. The 110 segments

(gray curves in Fig. A2b) have varying levels of energy;

the energetic segments mask the peaks to as high as

80Hz. The least-, average-, and most-energetic shear

spectra are highlighted in black. Note that the spectrum

from the turbulent 50-m segment is comparable to the

most energetic curve, whereas the spectrum from the

quiescent segment is about a factor of 10 more energetic

than the spectrum with the minimum energy. The qui-

escent spectrum of Fig. 5a is one decade more energetic

than the low-energy shear spectra presented in Fig. A2b.

Finally, the light-emitting diode (LED) on the MR

induces spiking in the shear probe and temperature

gradient time series (for reasons unknown), which is

masked when the signal-to-noise ratio is high but is

FIG. A1. Time series illustrating the influence of the ruddermotion on the tail fin of the glider

and the LEDonMR. The time series is from the entire profile shown in Fig. 4. (a) Rudder angle

measured by the glider’s sensor. The red bullets mark the times of substantial rudder activity

detected as described in the text. (b) Acceleration (raw data in counts) in the transverse

y direction and (c) the shear probe signal recorded by probe 1. Shear data from probe 2 are very

similar. Acceleration in the x direction is relatively less energetic.
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visible in quiescent segments of the data (see the inset

in Fig. A1c). The LED blinks at 1-s intervals with the

purpose of alerting the user that the instrument is on

and acquiring data. This spiking has negligible, if any,

influence on our dissipation rate measurements.
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