
 
 
 

Variation in Malaria Transmission in 
Southern Ethiopia 

The impact of prevention strategies and a need for targeted intervention  
 
 

Eskindir Loha Shumbullo 
Dissertation for the degree of philosophiae doctor (PhD) 

University of Bergen, Norway 

2013



 
 

To 
 Serawit,  

Nahum and Hildana 



Variation in malaria transmission    I 
 

 
 

Acknowledgements 
I cannot find words to express my gratitude to my beloved wife – Serawit, who unreservedly 

devoted all what she had to help me in my journey to this success. Enat, you are a wonderful 

mother...sacrificing your job for the sake of our little angels – Nahum and Hildana. I love you 

so much! May God bless you abundantly and pave your way ahead. 

 

It is with immense gratitude that I acknowledge the support and help of my supervisor 

Professor Bernt Lindtjørn. I learned the value of responding promptly in academic 

communications – he is magnificent with that.  His thought provoking ideas and reflective 

understanding of concepts were outstanding. Without his guidance and consistent help, this 

thesis would not have been possible. I consider it an honour to work with him. 

 

I owe my deepest gratitude to Professor Halvor Sommerfelt, a great epidemiologist and 

teacher, for his recommendation to pursue this PhD. This followed a historic moment of 

solving a ‘puzzle’ of confounding in an Experimental Epidemiology course at UiB. It was not 

fortuitous rather overtake architected by the Almighty. 

 

I would like to acknowledge the Centre for International Health, University of Bergen for 

funding this study and involving me in the Ethiopian Malaria Prediction System research 

project. I wish also to thank Ingvild Hope, Borgny K. Lavik and Øyvind Mørkedal for their 

unreserved support in facilitating administrative issues. 

 

I share the credit of my work with the data collection supervisors – Kebede and Fitsum; their 

contribution to the quality of the data was enormous. I also thank the data collectors and the 

health extension worker at Chano Mille health post.  I am indebted to residents of Chano 

Mille Kebele, Kebele administrators, Arba Minch Zuria Woreda health officers and Gamo 

Gofa Zonal Health Department officials for their willingness and great support during the two 

years follow-up study. I would like to thank the Southern Nations and Nationalities and 

Peoples’ Regional Health Bureau for facilitating this study and providing retrospective data 

of malaria incidence. I am grateful to Yaliso, Atnafu and his wife Abiot for their contribution 

to establish a mini ‘lab’ at Chano Mille health post. I would also like to thank Torleif, Fekadu 



Eskindir Loha Shumbullo   II 
 

 
 

and Adugna for their collaboration and support. Specially, the contribution of Torleif was 

outstanding – it is great to work with him. 

 

Kebede and his wife Selam made my life easy in Arba Minch...your hospitality was 

exceptional, thank you so much! I would also like to thank Tekle and his wife Zertehun for 

their kindness. Tekle was able to create enjoyable working atmosphere at Arba Minch 

Hospital Training and Research Centre. I also wish to thank and appreciate Zinash – a 

hardworking and dependable data clerk. 

 

It gives me a great pleasure to thank Brook Asfaw and his family for their kindness while I 

was in London to take a course at London School of Hygiene and Tropical 

Medicine...unforgettable story. 

 

I would like to thank my mother Askale, sisters (Tewabech, Aster, Ayelech, Tadelech, Almaz 

and Meselech), brothers (Yosef and Dr. Mesfin) and all families. I wish also to thank W/ro 

Nigatua, Wondifraw, Ayalew, Endalkachew, Eleni, Wubbe, Negede and Niway. My special 

gratitude also goes to Menna Dandu and Paulos Munea. Their prayer, support and 

encouragement were remarkable. In the meantime, the jovial encouragement from Nebiyu 

and Misikir was incredible – thanks a lot! 

 

I wish to express my gratitude to my friends Endashaw, Taye, Wondu, Mesaria, Yohannes 

Mekonnen, Yohannes Fanta, Eshetu, Endrias, Yonas, Yaliso, Dr. Samson Gebremedhin, Dr. 

Degu, Dr. Daniel, Dr. Mitike, Dr. Alemnesh, Dr. Nigussie, Hanibal and his wife Yemisrach, 

Aklilu and his wife Tsion for their continuous encouragement and support. I would also like 

to thank my colleagues working at College of Medicine and Health Sciences, Hawassa 

University. 

 

Above all, to God be the glory! ...who answered me in the day of my distress, and was with 

me in the way which I went. 

 
  



Variation in malaria transmission    III 
 

 
 

Summary  
In Ethiopia, 60 per cent of the population is at risk of malaria. The transmission of the disease 

is unstable, and hence, the possibility of epidemics demanded continuous vigilance and 

preparedness of the health system. Meanwhile, the complexity of the transmission of the 

disease has become an impediment to retain the effectiveness of prevention and control 

strategies. Understanding factors that play role in disease transmission at different locations, 

the pattern of disease transmission, the impact of prevention and control strategies and 

challenges in control efforts were deemed crucial for the way forward.  

 

This thesis analysed the local variations in the link between potential determinants of 

transmission – meteorological factors and malaria incidence. For this, we used datasets from 

35 locations found in the Southern Nations and Nationalities People’s Region and registered 

within the period 1998 to 2007. The findings implied that the variability in the models to be 

principally attributed to regional differences, and a single model that fits all locations was not 

found. Although there is a biological link between meteorological factors and malaria 

transmission, the link is affected by local conditions and non-meteorological factors. 

 

With the understanding of a need to incorporate non-meteorological factors, in an attempt to 

predict disease incidence, a detailed investigation was carried out in Chano Mille Kebele –

one of the malarious Kebeles of Arba Minch Zuria district, Gamo Gofa zone, south Ethiopia.  

A prospective cohort study was conducted for two years with a weekly visit to each of 1,388 

households. The findings showed that rainfall increased and indoor residual spraying with 

Deltamethrin reduced falciparum malaria incidence. Higher disease incidence was observed 

among males, children 5–14 years old, insecticide-treated net non-users, the poor, and people 

who lived closer to vector breeding site. Meanwhile, we identified spatio-temporal clusters of 

high disease rates within a 2.4 sq.km area of the Kebele.  

 

Mass distribution of insecticide-treated nets neither showed community-wide benefit nor 

influenced the spatio-temporal clustering of malaria, though proved to be protective at the 

individual level. Further analysis on insecticide-treated nets showed that the proportion of 

insecticide-treated net use reached a maximum of 69 per cent despite a near universal 

coverage (98.4 per cent) was achieved. Sleeping under the insecticide-treated nets was 

influenced by gender, age and proximity to the vector breeding site. Factor compromising the 
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usable life of insecticide-treated nets and a lack of convenient space to hang more than one 

net were reported.  

 

The local variations in meteorology-malaria link, the heterogeneous risk carried by different 

population segments and the observed effect of prevention strategies may help to revisit the 

approaches towards malaria – for which I forwarded specific recommendations.     
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 Chapter I: Introduction 
 

 1.1. General overview 
Malaria is an ancient disease caused by parasites of the genus Plasmodium and transmitted by 

several species of female anopheline mosquitoes. The term ‘malaria’ originates from 

mal’aria (Italian) – signifying ‘bad air’ or miasmas arising from marshes. Cognizant of the 

burden of the disease in antiquity, several efforts have been made to understand the disease – 

notably, the detection of the Plasmodium parasite in the blood of infected humans in 1880,1 

as well as proof of the complete life cycle of malaria parasites in mosquitoes in 1897.2-3 

Among 200 Plasmodium species identified,1 P. falciparum, P. vivax, P. ovale, P. malariae 

and P. knowlesi are known to be responsible for human malaria,4-6 while mortality due to 

malaria is mostly attributed to infections with P. falciparum.4-5, 7 

 

1.2. Burden of malaria  

 

1.2.1. Global  

Malaria transmission exits in 99 countries throughout world,5 and the greater burden of the 

disease is carried by African countries.5, 8 According to the World Health Organization 

(WHO), the estimated cases of and deaths due to malaria in 2010 were 219 million and 

660,000, respectively,5 with malaria deaths steadily decreasing since 1980 in countries 

outside of Africa. However, inside Africa, malaria deaths in 2004 exceeded those reported 

in1980, and only a 30% (from 2004) reduction was observed in 2010, which was believed to 

be associated with the international donor-dependent massive intervention programmes 

launched after 2004.9 Despite the decline in the burden of malaria with the scaling-up of 

interventions,10 the fact that the estimated (uncertainty exists) number of malaria deaths in 

2010 exceeded that of 19809 calls for more efforts in the prevention and control of the disease 

in Africa.11 

 
1.2.2. Ethiopia 

According to the World Malaria Report of 2012, more than 60% of the Ethiopian population 

was at risk of malaria, and approximately 62% of all malaria cases were due to P. 

falciparum.5 Malaria prevalence has exhibited a decline since 2005, with the decline 
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attributed to the scale-up of malaria-related interventions.12-13 Nonetheless, according to the 

two consecutive national malaria indicator surveys, an ‘increase’ in malaria prevalence was 

observed in 2011 (1.3%) compared to 2007 (0.9%) in areas <2,000 metres above sea level.14 

 

1.3. The malaria vector 

Anopheles arabiensis, An. funestus, An. gambiae s.s., An. melas, An. merus, An. moucheti and 

An. nili have been reported as the dominant vector species in Africa. Among these, An. 

gambiae s.s. and An. arabiensis are the most efficient vectors in malaria transmission.15-16 

Small-, temporary-, clear-, sunlit- and shallow fresh water pools are necessary for the 

breeding of An. arabiensis – the dominant vector in Ethiopia.17-18 Moreover, temperature and 

moisture (measured as precipitation or humidity) are the key environmental determinants for 

the vector life cycle.19 

 

1.4. Life cycle of malaria parasite 

An infected female Anopheles mosquito inoculates sporozoites into a human host. The uptake 

of sporozoites subsequently initiates asexual reproduction, which gives rise to the formation 

of gametocytes to be ingested by the mosquito. The sexual reproduction taking place in the 

mosquito produces sporozoites ready for further inoculation into a human host – perpetuating 

the cycle unless interrupted [Figure 1].

 
Figure 1: Life cycle of malaria parasite (adapted from Targett GA20) 
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1.5. Factors favouring malaria transmission 
 

1.5.1. Climate/meteorology  

Minimum21-23 and maximum24-27 temperature and rainfall28-30 influence malaria transmission, 

whereas several studies have indicated that the effect of such meteorological conditions on 

malaria epidemiology to be subject-to local variations.27, 31-39 The use of climate to predict the 

burden of infectious diseases, including malaria, was of interest;40 however, future changes in 

temperature and precipitation may not necessarily result in an increase in malaria 

endemicity32, 41 – thereby indicating a need to consider other potential determinants. 

 

1.5.2. Environmental change 

Among others, environmental changes affecting the incidence of malaria include water 

control projects (reservoirs, irrigation canals and micro/macro dams), road construction, 

flooding, deforestation and the initiation of crop agriculture. Such either man-made or natural 

environmental alterations can result in favourable conditions for vector breeding and hence 

an increase in the risk of malaria.42-45 On the contrary, evidence showed that an increase in 

urbanization was coincident with a reduction in the global malaria burden.46 

 

1.5.3. Demographic and socio-economic factors; population movement 

Studies have indicated that factors including age, sex and socio-economic conditions all play 

a role in malaria epidemiology.47-54 Additionally, population movement to and from malaria-

endemic areas also affects the distribution of the disease.55-56 

                                                                                            

1.6. Economic and social impacts of malaria  

The attempts to measure the direct and indirect costs of malaria have revealed a major 

economic burden on households,57 as malaria epidemics usually coincide with planting and 

harvesting seasons, thus reducing labour productivity and in effect jeopardizing the 

household economy,58 with the effect being worse for those who are socially vulnerable.54 

Overall, evidence has shown that the burden of malaria is inversely related to a country’s 

economic growth.52, 59-60  

 

1.7. Malaria prevention and control: Historical perspectives 

The WHO’s global malaria eradication campaign (launched in 1955) formulated a plan to 

eradicate malaria in 10–15 years with the indoor residual spaying (IRS) of 
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dichlorodiphenyltrichloroethane (DDT).61 The prevention of breeding of vectors and 

measures against malaria parasites were also considered in the eradication package,62 which 

had taken lessons from earlier control efforts and lasted until 1969. Though it was not highly 

successful in African countries – due to inability of the health services to manage control 

programmes,63 consequently leading to technical difficulties to pursue eradication,64 it 

resulted in eliminating malaria from most of Europe and North America.65 The understanding 

that the eradication plan was impossible with a sole or similar strategy across the globe66 

demanded the development of new insights and tools to combat the disease starting in 1969.64 

In 1992, the recognition of malaria as a global priority was revitalized, which led to designing 

a global strategy67 for malaria control that employed four basic technical elements: 

 Providing early diagnosis and prompt treatment; 

 Planning and implementing selective and sustainable preventive measures, including 

vector control; 

 Early detection, containment and prevention of epidemics; 

 Strengthening local capacities in basic and applied research. 

 

The vector control measures included the use of insecticides, biological agents and 

environmental management, out of which more of an emphasis was given to indoor residual 

spraying. However, the selection of vector control measures should rely on expert 

judgment.67 

 

Subsequently, a global plan of action for the years from 1993 to 2000 was developed to guide 

the implementation of the global malaria control strategy, emphasizing the need to improve 

the involvement of both the public and private sectors, communities and individuals at risk of 

malaria.68  

 

The use of bed nets impregnated with long-acting insecticides (such as synthetic pyrethroids), 

known as insecticide-treated nets (ITNs), as a personal protection was considered a promising 

tool to combat malaria.68 Nevertheless, considering the observed low re-treatment practices 

of ITNs, the WHO prompted the use of long-lasting insecticidal nets (LLINs), which have 

been regarded as a major breakthrough in malaria prevention.69  
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Since malaria continues to be a major public health problem, and to help provide a 

coordinated global response to malaria – envisioning ‘a world free from the burden of 

malaria’, the roll back malaria (RBM) partnership was established in 1998.70  This was 

followed by the Abuja Declaration in 2000, which was made by the 44 malaria-affected 

African countries, who agreed to halve malaria mortality by the year 2010 and commit 

themselves to implementing the RBM strategies.71 In the meantime, the discovery of 

Artemisinin-based combination therapy (ACT) – “anti-resistance malaria medicine”, while 

resistant parasites to other anti-malarial drugs became rampant, reinforced the RBM’s fight 

against malaria.72 

 

The impact of unexpected malaria epidemics is huge in terms of morbidity and mortality in 

areas where malaria transmission is unstable and the larger segment of the population lacks 

immunity. This called for designing a mechanism to inform about the possibility of epidemics 

in advance, both in time and space. As a result, the Malaria Early Warning System (MEWS) 

was formulated in 2001 in order to salvage the lives of 110 million people in 23 countries.73  

Such a need for the early detection, containment and prevention of epidemics was also 

indicated in the global strategy for malaria control in 1993.67 The MEWS made use of the 

following three indicators:73 

 Vulnerability indicators, which include low immunity, malnutrition and population 

movement;  

 Transmission risk indicators, which include unusual increases in rainfall; 

 Early detection indicators such as malaria morbidity data, which were obtained from a 

health facility.  

 

Following a call by Bill and Melinda Gates,74  a Global Malaria Action Plan was endorsed in 

2008 with an “ambitious but achievable” goal, i.e. a near zero death from malaria by the year 

2015 and eradication in the long-term through progressive elimination wherever feasible. 

Taking into account the regional differences in malaria epidemiology, the Global Malaria 

Action Plan made distinct strategies for Africa, the Americas, Asia-Pacific, the Middle East 

and Eurasia.75  

 

1.8. Existing strategies to combat malaria and the challenges 

The WHO recommendations5 for malaria prevention and control include:  
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 IRS with insecticides 

 ITNs 

 Larval control 

 Preventive chemotherapy 

 Diagnosis and treatment 

 

1.8.1. Indoor residual spraying with insecticides 

The effectiveness of IRS with insecticides (DDT) for malaria prevention and control in the 

pre-eradication era63 paved the way for IRS to be the prominent control measure during the 

‘eradication’ era,62 and in the process also becoming one of the most important tools in recent 

times.5, 75-76 However, rapidly developing resistant vectors to available insecticides jeopardize 

this strategy, thereby implying the need for the continuous monitoring of insecticide 

resistance to sustain the benefit of IRS.77-79  

 

1.8.2. Insecticide-treated nets/Long-lasting insecticidal nets 

As a physical barrier from the mosquito nuisance, the use of bed nets has existed for many 

years.80 The impregnation of a bed net with insecticides made it more effective as a result of 

the added actions of repelling and/or killing mosquitoes.81-83 The efficacy of this tool in 

preventing malaria is documented,84 and it is one of the three primary interventions for 

effective malaria control. Consequently, the scaling-up of this intervention was believed to 

have made a substantial contribution in achieving the United Nations Millennium 

Development Goals.85 However, recent evidence is mounting regarding the reduced 

effectiveness of this tool due to the development of insecticide resistance86-88 and factors 

related to its utilization.87, 89-95  

 

1.8.3. Combination of IRS and LLINs 

The WHO questions the financial sustainability (“while potentially being very effective”) of 

the broad deployment of IRS and LLINs in combination,5 although evidence is lacking 

regarding the added value of using both tools compared to the application of each strategy 

separately. A mathematical model showed the interaction of the effects of both methods, 

which may result in a reduced efficacy of the tools when compared to being used alone.96 

Recent data has shown contradictory evidence, i.e. the absence97 and presence98-100 of the 

benefit of combining the two strategies, although these studies utilized different 
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methodologies. The combined effect of IRS and LLINs remains a subject for further 

scrutiny.101-102 

 

1.8.4. Larval source management  

Larval habitat manipulation (temporary)/modification (long-lasting) and chemical and 

biological larviciding have all been used as larval source management strategies in certain 

countries.5 Unlike with IRS and LLINs, and despite the effectiveness of this strategy103-104 to 

the extent of it providing malaria extinction in some regions of the world,105 it was not taken 

as a core strategy to prevent and control malaria since its application was considered 

circumstantial, i.e. the larval habitat should be well-defined and relatively few.5, 106-107 

 

1.8.5. Preventive chemotherapy 

Preventive chemotherapy is recommended for pregnant women and infants in countries with 

a moderate-to-high/stable transmission of malaria. In addition, seasonal malaria 

chemoprevention for children 3–59 months old is recommended in areas with highly seasonal 

malaria transmission.5, 108-110 The preventive chemotherapy recommendations are: 

 Intermittent preventive treatment in pregnancy (IPTp) – providing Sulfadoxine-

Pyrimethamine at each scheduled ante-natal care visit (each dose to be given at least 

one month apart) starting early in second trimester.108 

 Intermittent preventive treatment in infants (IPTi) – providing three doses of 

Sulfadoxine-Pyrimethamine to infants along with the second and third Diphtheria-

Pertussis-Tetanus and Measles vaccines.109 

 Seasonal malaria chemoprevention (SMC) – providing Amodiaquine plus 

Sulfadoxine-Pyrimethamine, to a maximum of four doses, for children 3–59 months 

in areas where there is highly seasonal malaria transmission.110 

 

Preventive chemotherapy is not included in the package of malaria prevention in Ethiopia 

because of the country’s unstable malaria transmission, as well as the high level of resistance 

of P. falciparum to Sulfadoxine-Pyrimethamine.111 

 

1.8.6. Diagnosis and treatment  

Prompt diagnosis and treatment is required to reduce complications and death due to malaria.  
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The diagnosis of malaria entails:112 

 Clinical diagnosis: Considered to be less specific and results in over-treatment since it 

primarily considers fever or a history of fever. 

 Parasitological diagnosis: Performed with the help of light microscopy (gold standard) 

and rapid diagnostic tests (RDTs). Misclassification may arise in both methods, thus 

implying the need for strong quality assurance.113 

 

The WHO strongly recommended the use of Artemisinin-based combination therapy (ACT) 

for uncomplicated falciparum malaria, which includes Artemether plus Lumefantrine, 

Artesunate plus Amodiaquine, Artesunate plus Mefloquine and Artesunate plus Sulfadoxine-

Pyrimethamine, while for severe P. falciparum malaria intravenous Artesunate is the drug of 

choice. Chloroquine is effective against malaria infections caused by P. vivax, P. ovale and P. 

malariae species, and in areas where Chloroquine resistant P. vivax exists, ACTs (except 

Artesunate plus Sulfadoxine-Pyrimethamine) are recommended.112 Ethiopia adopted ACT 

(Artemether plus Lumefantrine) starting in 2004.5 

 

In light of the parasite resistance to monotherapies in most countries of the world, the change 

of regimen to ACTs was inevitable regardless of the countries’ inability to afford the new 

drugs.114-116 Despite the notion that malaria parasites are less likely to develop a resistance to 

ACTs117 and its proved efficacy,118-119 the recent development of resistance in some parts of 

the world calls for a concerted effort in the containment of resistance120 and new drug 

development.121-122 Unfortunately, the rampant circulation of counterfeit drugs in southeast 

Asia and sub-Saharan Africa complicates the problem, thereby highlighting the need for an 

urgent solution.121, 123-124 

 

1.9. Future aspects of malaria epidemiology: “Shrinking the malaria map”  
The reduction of the burden of malaria in high-transmission settings and the possible 

elimination in areas experiencing low transmission were believed to be realistic goals with 

the rapid scale-up of existing tools against malaria – given that these tools continued to be 

effective.125 For achieving the goals, however, a continuous programme reorientation in 

accordance with the disease burden, including a commitment at all levels, a health system 

strengthening and the development of new intervention tools, is essential. The programme 

reorientation extends from ‘control’ to ‘consolidation’ (a high and stable malaria transmission 
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set-up), ‘consolidation’ to ‘pre-elimination’, ‘pre-elimination’ to ‘elimination’ and 

‘elimination’ to the ‘prevention of reintroduction’.125-126  

 

Of 99 malaria-endemic countries, 67 are controlling- and 32 are eliminating malaria.127 

Malaria control refers to “reducing the disease burden to a level at which it is no longer a 

public health problem”, whereas elimination was defined as “interrupting local mosquito-

borne malaria transmission in a defined geographical area, that is, zero incidence of locally 

contracted cases, although imported cases will continue to occur. Continued intervention 

measures are required”.125  

 

Aiming at a regional elimination plus long-term global eradication, the Malaria Eradication 

Research Agenda (malERA) initiative was established in 2008 to come up with key research 

and development issues to support the global malaria action plan, which resulted in key 

research agendas including the need for new vector control approaches and vaccine 

development aiming at the interruption of transmission. A sustained commitment of all 

stakeholders and advancing the capacity of researchers from malaria-endemic countries were 

indicated as the way forward to change the dream to reality.128   

 

Ethiopia is in the control phase of malaria,5 and according to the Ethiopian National Malaria 

Strategic Plan (2010-2015), it is expected to achieve malaria elimination within specific 

geographical areas with historically low malaria transmission and a near zero malaria 

transmission in the remaining malarious areas of the country by 2015. Consequently, there is 

a plan to embark on malaria elimination in 2020 with an integrated community health 

approach.129  

 

1.10. Rationale for this study 

Predicting malaria epidemics, if possible, allows time for a preparation to employ preventive 

measures, in effect lessening the impact of the deadly disease.130-132 Several attempts have 

been made to predict malaria, mainly relying on the biological relationship between malaria 

transmission and meteorological/climatic conditions.21-26, 28-29, 133 Despite several studies 

documenting the existence of the link between malaria transmission and meteorological 

factors, inconsistencies exist – which could be attributable to the influence of local 

conditions.31-39 This implies that a prediction using meteorological/climatic factors may 
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provide false alarms or be unreliable. Therefore, understanding the local variations helps in 

the search for other potential determinants of malaria transmission to develop better 

predictive models. Hence, the use of empirical data to show the link between local 

meteorological factors and the incidence of malaria - to elucidate the local variations - was 

essential [Paper I]. Meanwhile, studying both the climatic and non-climatic determinants of 

malaria transmission addresses the limitation of models employing only meteorological 

factors for malaria prediction [Paper II].21-22, 34, 36, 41, 133-134   

 

A variability in the risk of malaria infection was observed within a micro-environment, thus 

making malaria a very local disease. This knowledge allows the interventions to hit the target 

– improving efficiency and effectiveness.135-141In Ethiopia, malaria transmission is mostly 

seasonal and unstable,129 with the seasonal nature of the disease leading to epidemic 

situations unless prevention and control efforts are in place. However, the responsiveness of 

both the seasonal nature and variability in risk among the population of the sub-groups to the 

previously available prevention and control tools should be known. This information helps to 

increase the awareness of the effectiveness of the interventions and guide policy making, with 

Papers II and III addressing these issues.  

 

One of the key strategies to prevent malaria transmission is the use of ITN,85 although 

enquiries have been posed against the effectiveness of this strategy.87, 142 The reported 

reasons that may contribute to the ‘failure’ of this intervention include problems related to 

consistent and proper use of ITNs due to several factors,89-95 in addition to the insecticide 

resistance issue. To advance the benefits of this strategy, investigating ITN utilization among 

people at risk of malaria is imperative [Paper IV].   
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Chapter II: Objectives 

2.1. General objective  

The overall aim of the thesis is to assess the variation in malaria transmission, practice and 

impact of malaria prevention tools in southern Ethiopia. 

 

2.2. Specific objectives 

1. To find out whether variations in rainfall and temperature can consistently predict 

falciparum malaria incidence at different locations [Paper I]; 

2. To assess the effect of local meteorological and environmental conditions, indoor 

residual spraying with insecticides and insecticide-treated nets use at the individual- 

and community levels, as well as socio-economic and other individual-level factors on 

the incidence of falciparum malaria [Paper II]; 

3. To assess the effect of mass insecticide-treated nets distribution and indoor residual 

spraying with insecticides on the spatio-temporal clustering of malaria [Paper III]; 

4. To characterize the pattern of- and assess the factors related to insecticide-treated net 

use [Paper IV].  
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Chapter III: Methods 

3.1. Study locations 

The study locations are found in the Southern Nations and Nationalities Peoples’ Region 

(SNNPR), which is one of the administrative regions of Ethiopia, with the total population of 

the region estimated to reach 16.5 million in 2010.143 Over 45 ethnic groups (56% of the 

more than 80 ethnic groups of Ethiopia) are indigenous to this region, which has 14 

administrative zones, 131 districts and 22 city administrations. There are 3,602 rural and 324 

urban Kebeles (a Kebele is the lowest administrative structure). Of the 110,931.9 sq.km area 

of the region, 57.4%, 34% and 8.6% are regarded as hot and semi-arid-, tropical sub-humid- 

and tropical humid agro-ecologic zones, respectively.  

 

Data from 33 health centres and two hospitals with 35 nearby meteorological stations 

(altitude ranging from 1,182 to 2,582 metres above sea level) were used in Paper I. In the 

meantime, the details of malaria epidemiology were also studied in the Chano Mille Kebele, 

the Arba Minch Zuria District and the Gamo Gofa Zone [Papers II, III and IV]. The Arba 

Minch Zuria District is one of the 54 malaria hot-spot districts in the region. Chano Mille 

Kebele is one of the 11 malarious Kebeles in the district, and is located 492km to the 

southwest of Addis Ababa at an altitude of 1,206 metres above sea level. The southeast 

boundary of the Kebele is Lake Abaya, which is surrounded by swampy areas. Moreover, 

many hoof prints from cattle and hippopotami in the swampy areas produce small, sunlit and 

shallow water bodies favourable for the malaria vector life cycle. The main source of income 

of the residents is agriculture (primarily maize, banana and mango), which is supported by an 

irrigation scheme (made from concrete) running from the west. Our first census in April 2009 

enumerated 7,038 residents (1,212 households) in a 2.4 sq.km area. The Kebele has one 

health post (run by a health extension worker) providing preventive services, in addition to 

diagnostic (with RDT kits) and curative (with Co-Artem) services for malaria. The health 

post is located at 6°6.666′ N and 37°35.775′ E, with Figure 2 showing the geographic 

coordinates of the study sites:                         
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Figure 2: Map of Ethiopia showing the geographic coordinates of the study locations 

 

3.2. Study design and data  
A retrospective study [Paper I] was conducted using historical data of the incidence of 

falciparum malaria and local meteorological variables from 35 locations, and data were 

collated from 42 locations. The minimum serial length required for a time series analysis is 

50,144 and this excluded datasets from five locations, while datasets from two locations were 

dropped due to missing data exceeding 15% of the total observations. The inclusion of 

meteorological variables was determined by the availability of records. Three meteorological 

stations recorded temperature, rainfall and relative humidity; 14 stations recorded 

temperature and rainfall, and the remaining 18 stations recorded only rainfall. Meteorological 

data were obtained from the southern branch office of the Ethiopian Meteorological Agency, 

Hawassa, and falciparum incidence data were obtained from the SNNP Regional Health 

Bureau, with both datasets spanning from 1998 to 2007. A total of 210,659 microscopically 

confirmed falciparum malaria cases were reported from the 33 health centres and two 

hospitals during the 10-year study period. 
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For Papers II, III and IV, a prospective open cohort study design was employed. Chano Mille 

Kebele was purposely because it was of interest to see malaria epidemiology in a more 

focused manner in the presence of an irrigation scheme and a nearby lake. All residents of the 

Kebele were included in the study and were followed weekly for two years (101 weeks) from 

April 2009 to April 2011. Each household was given an identification card with a number 

corresponding to a unique number printed on a metal plate, and posted on the main entrance 

of each house. Subsequently, the geographical coordinates of each house were recorded with 

a handheld GPS apparatus with an accuracy of ±5m.  

 

A census was conducted three times – at the beginning, in the middle (Week 50) and at the 

end of the study, and the total number of the study participants was 8,121 in 1,388 

households. We used both active and passive surveillance schemes, and each week, a data 

collector visited each household to collect data on ailments (fever, cough and diarrhoea) from 

the last seven days preceding the date of interview and wrote down the names of household 

members who slept under the ITN the night before the interview. The data collector also 

asked for any febrile case in the household at the time of the visit and when present, 

measured the axillary temperature – if it was ≥ 37.5 degree Celsius, the case was referred to 

the health post to be diagnosed and treated (active surveillance). A mechanism was also 

designed to cross-check whether the referred case went to the health post on the same day. In 

the meantime, residents were consistently advised to self-report (with an identification card) 

to the health post whenever they developed a fever between the weekly visits (passive 

surveillance). Blood samples were taken at the health post using the appropriate techniques. 

For the sake of treating the patient, RDT kits were used, and the laboratory technician 

(specifically hired for this research) prepared thick and thin blood films using WHO 

guidelines.145 Two senior laboratory technologists made microscopic examinations of 2,573 

blood slides collected from febrile cases, and when a discordant reading was found, a 

confirmation by a third reader was sought. All readers were unaware of each other’s readings. 

 

During the study period, the government interventions were recorded. IRS with DDT was 

carried out in Week 7 (June 2009), the free distribution of LLINs was done during Week 48 

(March 2010) and IRS with Deltamethrin was done in Week 63 (July 2010). Post- 

intervention surveys (during weeks 23, 50 and 65) were done to measure coverage and the 
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practice of re-plastering the sprayed surfaces and to count the number of freely distributed 

LLINs to each household [Figure 3]. 

 
Figure 3: Timeline of major events of the Chano Mille study [Papers II, III and IV] 

3.3. Statistical analysis 

A time series analysis [Papers I and II] was carried out using an autoregressive 

integrated moving average (ARIMA) model.146 The non-seasonal (p,d,q) and seasonal 

(P,D,Q) ARIMA orders were interpreted. To make room for the predictor series, in 

addition to the univariate ARIMA, transfer function (TF) models144 were constructed.  

Likewise, with the ARIMA orders, there are both non-seasonal and seasonal TF 

orders: numerator, denominator and difference. We used an R squared coefficient of 

determination to assess the goodness of fit of the models. For a differenced data series, 

a stationary R squared was used. A Ljung-Box Q statistic was employed as a model 

diagnostic tool – models were accepted provided that the Ljung-Box Q statistic had a 

P value >0.05.  The Expert modeller method was applied in Paper I, and user-

specified/custom ARIMA and TF models were employed in Paper II. 
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A principal component analysis (PCA)147-148 was used to construct a wealth index 

using 15 socio-economic variables, including the main material of the floor, wall and 

roof [Paper II]. A generalized Poisson log-linear model was used to predict malaria 

episodes [Papers II and III], and to deal with over dispersion, a negative binomial 

probability distribution model was used to predict ITN use [Paper IV]. To take into 

account the repeated measurements (weekly data), a generalized estimating equation 

(GEE) was used with a logit link function to predict falciparum malaria [Paper II]. 

Additionally, pair-wise comparisons were also carried out for the different age 

categories [Papers II and IV]. 

 

SPSS 17 [Paper I] and PASW 18 [Papers II, III and IV] (Chicago, IL, USA) were used 

for data analysis. Statistical significance was set at a P value <0.05, and an incidence 

rate ratio (IRR) with a 95% confidence interval (CI) was reported. Next, a distance 

from each household to the identified malaria vector breeding place was calculated 

using the proximity analysis tool of ESRI ®ArcMapTM 9.3 (Redlands, CA, USA) 

[Papers II, III and IV]. To incorporate the number of households between a household 

and malaria vector breeding site (household count) into a generalized Poisson log-

linear model, we used R149 to make the count at different search angles. A search 

angle of 1° did not show multicollinearity with a variable “distance from the vector 

breeding site”, and was used in the multivariate model [Paper III]. 

 

For a spatial and space-time statistical analysis [Paper III], we used SatScan v9.1.1 

(http://www.satscan.org/). A discrete Poisson based model was applied, and we 

employed 9,999 Monte Carlo replications. A combination of standard Monte Carlo, 

sequential Monte Carlo and Gumbel approximations yielded P values,150 and a 

circular window with various spatial cluster size restrictions (50%, 35%, 25% and 

15%) was used – searching for areas of high rates.  

 

Table 1 presents a summary of major statistical methodologies employed in this 

thesis: 
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Table 1: Major statistical methods used for analysis 

Statistical Method Used Paper 
Autoregressive Integrated Moving Average; 
Transfer Function 

 Paper I (Serial length: 51–118) 
 Paper II (Serial length: 95) 

Generalized Estimation Equation  Paper II (N= 582,846) 

Generalized Poisson Log-linear  Paper II (N=8,121) 
 Paper III (N=8,121) 

Space-time: Discrete Poisson  Paper III (9,999 Monte Carlo 
replications) 

Negative Binominal Probability Distribution  Paper IV (N=8,121) 
Principal Component Analysis   Paper II 

Descriptive statistics 

 Paper I 
 Paper II 
 Paper III 
 Paper IV 

 

3.4. Ethical considerations 

The Regional Health Research Ethics Review Committee of the SNNP Regional 

Health Bureau approved this research. Permission was sought from local 

administrators, while informed verbal consent was obtained from all participants. For 

minors, consent was obtained from caregivers or legal guardians. Using a national 

treatment guideline,151 malaria cases were treated immediately at the health post based 

on the RDT result. During the study period, Co-Artem was supplied by the 

government for the treatment of falciparum malaria, and Chloroquine was supplied by 

this research project for the treatment of vivax malaria.  
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Chapter IV: Results 

Paper I:  Model variation in predicting P. falciparum malaria incidence  

Thirty-five datasets qualified for the analysis, and time series modelling was carried out using 

TF models and univariate ARIMA when there was no significant predictor meteorological 

variable. Of the 35 models, five were discarded because of the significant value of Ljung-Box 

Q statistics. Past P. falciparum malaria incidence alone (17 locations) or when coupled with 

meteorological variables (four locations), was able to predict P. falciparum malaria incidence 

within statistical significance. All seasonal ARIMA orders were from locations at altitudes 

above 1,742 m. Monthly rainfall and minimum and maximum temperature was able to 

predict incidence at four, five and two locations, respectively. In contrast, relative humidity 

was not able to predict P. falciparum malaria incidence. The R squared values for the models 

ranged from 16% to 97%, with the exception of one model, which had a negative value. 

Furthermore, models with seasonal ARIMA orders were found to perform better.  

 

Meanwhile, the average rainfall data of 23 locations resulted in monthly rainfall being a 

significant predictor at a lag of four months coupled with an autoregressive order of 1 

(monthly rainfall was a significant predictor only in four locations when the datasets were 

analysed separately). The stationary R squared of this model was 67%. This model structure 

was applied to each of the 23 locations, but did not produce any significant results. 

 

The models for predicting P. falciparum malaria incidence varied from location to location, 

as well as among lagged effects, data transformation forms, ARIMA and TF orders. 

Variability in the models was principally attributed to regional differences, and a single 

model was not found that fit all locations. Lastly, past P. falciparum malaria incidence 

appeared to be a better predictor than meteorology. 

 

Paper II: Predictors of P. falciparum malaria incidence 

The potential effects of local meteorological and environmental conditions, IRS with 

insecticides, ITN use at individual and community levels and individual factors on P. 

falciparum malaria incidence were assessed.  

 

There were 317 microscopically confirmed falciparum malaria episodes over a period of two 

years, of which 29.3% occurred among temporary residents. The incidence density was 
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3.6/10,000 person-weeks of observation, and we observed a higher malaria incidence among 

males, children 5–14 years of age, ITNs non-users, the poor and people who lived closer to 

vector breeding sites. Rainfall increased and IRS with Deltamethrin reduced the falciparum 

incidence. Although ITNs prevented falciparum malaria for the users, we did not find that 

free mass ITNs distribution reduced falciparum malaria on a village level. 

 

Paper III: Effect of prevention tools on spatio-temporal clustering of malaria 

The total number of both types of malaria episodes analysed was 622, yielding 45.1 episodes 

per 1,000 persons per year; among these, episodes of P. falciparum and vivax infection 

numbered 316 (22.9 per 1,000 per year) and 306 (22.2 per 1,000 per year), respectively. IRS 

with DDT, and later with Deltamethrin and free mass distribution of ITNs, were carried out 

during the study period. There was space-time clustering of malaria episodes at a household 

level. The spatio-temporal clustering of malaria was not influenced by the free mass 

distribution of ITNs; however, the time span of the spatio-temporal clustering of malaria 

cases ended after IRS with Deltamethrin. The presence of clusters on the southeast edge of 

the village was consistent with the finding of an increasing risk of acquiring malaria infection 

for individuals who lived closer to the identified vector breeding site.  

 

Paper IV: Freely distributed bed net use 
The total number of ITNs available at the beginning of the study was 1,631 (1.68 ITNs per 

household). In Week 48, 3,099 new ITNs (PermaNet2.0) were freely distributed (2.3 ITNs 

per household), and the number of households who received at least one new ITN was 1,309 

(98.4%). The percentage of children <5 years and pregnant women not using ITNs exceeded 

that of other adults. The mean (range; standard deviation) ITN use fraction before and after 

mass distribution was 0.20 (0.15-0.27; 0.03) and 0.62 (0.47-0.69; 0.04), respectively. Before 

mass ITN distribution, the most frequent reason for not using ITN was having worn out the 

bed nets (most complained the bed nets were torn by rats), and after mass ITN distribution, 

there was a lack of convenient space to hang more than one ITN. Males, younger age groups 

(mainly 15–24 years) and those living away from the vector-breeding site were less likely to 

use ITNs. The ITN use fraction reached to a maximum of 69% despite a near universal 

coverage (98.4%) being achieved. 
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Interrater agreement  

The interrater agreement of microscopic readings of the first two readers was checked with 

Kappa statistics, and a better agreement was achieved in the readings of the vivax- than in the 

falciparum species, 0.87 versus 0.80, respectively [Table 2]. All of the discordant readings 

were confirmed by a third reader. 

 

Table 2: Interrater agreement for the readings of 2,573 microscopic slides 

 
Second reader 

P. falciparum P. vivax 
Positive Negative Total Positive Negative Total 

First reader 
Positive 255 49 304 265 41 306 
Negative 59 2,210 2,269 31 2,236 2,267 

Total 314 2,259 2,573 296 2,277 2,573 
Kappa 0.80 0.87 

95% CI for Kappa 0.76–0.84 0.83–0.90 
Interpretation§ Good agreement  Very good agreement 

§Strength of agreement152: <0.2 = Poor, 0.21–0.40 = Fair, 0.41–0.60 = Moderate, 0.61–0.80 = Good, and 0.81–
1.00 = Very Good 
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Chapter V: Discussion  

5.1. Methodological discussion 

Study design 

A retrospective study [Paper I] is an efficient way of driving information. Nonetheless, a lack 

of full control over quality, completeness and potential confounders limits its use.153   

 

With the objective of measuring the incidence of malaria, we employed a prospective cohort 

study design [Papers II, III and IV]. The word cohort refers to a group of people, and a cohort 

study is defined as tracking people forward in time from exposure to outcome. The temporal 

sequence between the exposure and outcome is very clear, and it is also possible to provide a 

risk of developing the outcome if exposed to a factor of interest. It also gives a chance to 

document a change in exposure variables across time, though the costly nature of the study, 

an inability to minimize lost-to-follow up, being unsuitable for studying rare outcomes and 

having less control over confounders (than randomized controlled trials) are among the 

limitations.154-155 The longitudinal nature of the study design helped us to see the effects of 

preventive tools, and since the practice of ITN use changes overtime, it was possible to 

document these changes and introduce their lagged effects to the outcome of interest.  

 

Sample size 

The nature of the time series (seasonality, non-stationarity), the autoregressive and moving 

average orders, the presence of outliers and data transformation (differencing) determine the 

sample size in a time series modelling, which is referred to as the serial length. On some 

occasions, a sample size of less than 50 may provide adequate power, while in certain 

circumstances a sample size of even more than 150 may not do so. Therefore, as a general 

rule of thumb, a time series modelling should be applied if the serial length is greater than 50 

observations,144 which was the reason to drop five datasets since they did not qualify with this 

criterion. The minimum serial length we considered for modelling was 51, with the maximum 

being 118 (on monthly time scale). However, given the presence of retrospective data of a 

longer duration, we believe that we might have developed models that better captured 

important structures in the data such as seasonality.  Meanwhile, 16 (of 35) locations 

exhibited a bimodal rainfall pattern that could ‘double’ the serial length, hence improving the 

capability of the models to capture seasonality [Paper I].  Besides the need to have a longer 

serial length, modelling malaria may also be affected by the time scale employed, which is 
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primarily due to the frequent fluctuation of the exogenous series. Studies recommended using 

a shorter time scale, e.g. a week, to improve the sensitivity of the models to show the 

association between falciparum malaria and meteorology.22, 24, 26 This was addressed by the 

Chano Mille study, in which we measured both the exogenous and endogenous series on a 

weekly time scale [Paper II].  

 

We did not calculate a sample size in this thesis – we included all residents of Chano Mille as 

study participants, and a total of 8,121 individuals were followed for 101 weeks, thus 

yielding 627,172 person weeks of observation. We believe that this sample size was adequate 

enough, as it produced statistically significant results for most of the expected  predictors 

[Papers II, III and IV] – leaving no reason to do post-hoc power calculations.156-157 

 

In a SatScan, Monte Carlo replications are said to be the computer-simulated random 

replications of the data set under the null hypothesis assumption; and to ensure an adequate 

power of the test, the recommended number of Monte Carlo replications is 999.150 Though it 

was time consuming, we used 9,999 Monte Carlo replications to achieve more power in 

identifying areas of high malaria risk within the perimeter of the study location [Paper III]. 

 

Internal validity  

Internal validity refers to conclusions about the studied participant being true, and can be 

evaluated with regard to the role of selection bias, information bias and confounding.154 

Moreover, studies without adequate power may also result in a statistically non-significant 

output even if there exists a real effect – thereby compromising the internal validity. 

 

Selection bias 

Selection bias arises in the process of selecting the study subjects. We studied all residents in 

the Kebele [Paper II, III and IV], thus there was no selection bias. All of the residents 

voluntarily participated in the study for the entire period. However, there was no mechanism 

to include newcomers to the study area the moment that they joined the cohort; as a result, 

these newcomers were not followed for some of the time they spent in the study area. 

Considering the observed unexpected population movement, we did a census in the middle 

(Week 50) and at the end to update our denominator.  In addition, those newcomers 

enumerated at Week 50 were included in the study, which helped to incorporate potential risk 

factors of malaria transmission among the in-migrants. 
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Information bias  

Information bias refers to whether the information is gathered from the study subjects in the 

same way regardless of their exposure status,158 the presence of measurement error154 or both. 

In this thesis, a measurement error could arise while diagnosing, documenting and reporting 

falciparum malaria cases, documenting and reporting meteorological variables [Paper I], 

interviewing the study participants during census and weekly visits [Papers II, III and IV] and 

preparing and reading microscopic slides [Papers II and III].  

 

For Paper I, we relied on secondary data sources; hence, we admit that the quality of data 

obtained through the routine recording and reporting system in developing countries is of 

poor quality, mostly due to underreporting. We used only those cases with microscopically 

confirmed falciparum malaria, although observer error may lead to misdiagnosis. 

Nevertheless, we considered that the presence of basic elements in the data such as trend, 

seasonality and monthly variations would suffice for the modelling exercise. In addition, we 

strictly used the Ljung-Box Q statistics as a model diagnostics to accept or drop the model – 

that led to ignoring five models. This statistic provides an indication of whether the model 

was correctly specified with regard to the presence of structure in the observed series, which 

was not accounted for by the model.  

 

Publication bias arises when researchers tend to report only positive findings.153 In our case, 

publication bias is unlikely since we reported all types of models [Paper I], including models 

with a positive or negative result with regard to the relationship between the incidence of 

falciparum malaria and meteorological factors. Additionally, the reported models had an R 

squared coefficient of determination ranging from a negative value (worse than the baseline 

model) to as high as 0.97.  

 

Original data were collected for Papers II, III and IV, and we used a pre-tested (in the 

neighbouring Kebeles) data collection format for the census, as well as well-trained data 

collectors and supervisors. The weekly ITN use (the night before the interview) data was 

based on self-reporting. In the first four weeks of follow-up, we asked about ITN use with a 

‘Yes/No’ type of question; however, realizing that this approach was more predisposed to 

bias starting from week 5, we wrote down the names of the household members who slept 

under the bed net the night before the interview. This approach (asking whether an individual 

has slept under the bed net to measure ITN use), though used by others as well,90 could not be 
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free from bias. Even so, the fact that the maximum ITN use fraction (69%) not approaching 

the ITN coverage (98.4%) shows that social-desirability bias was less worrisome.  Observing 

household members while sleeping under the bed net in the middle of the night without prior 

notice may provide unbiased information, but is not ethically justified. 

 

We employed standard procedures to prepare microscopic slides,145 and two experienced 

laboratory technologists read the slides independently [see Table 2 under results], while 

microscopic slides with discordant readings were checked by a third reader. In Papers II and 

III, a malaria case is defined as an individual with microscopically confirmed malaria 

parasites by at least two experienced laboratory technologists. 

 

An edge effect results in a biased risk estimate, which has been a concern in spatio-temporal 

analyses given that the clusters are observed at the perimeter of the study location and the 

absence of data on the adjacent area.159-161 In Paper III, we reported that malaria cases were 

clustered at the edge of the village. However, the adjacent area was also part of the Kebele 

with no residential houses – an agricultural land extending to the shore of the Lake Abaya, 

which could rule out the existence of an edge effect.161-162  

 

Confounding  

Confounding is a blurring or mixing of effects, as the researcher measures the effect of a third 

hidden factor - a confounder - while attempting to establish an association between the 

exposure and the outcome. Therefore, it is required to control for potential confounders using 

the available statistical methodologies,154, 158 and we used multivariate techniques to address 

this issue. For instance, the effect of meteorological factors was controlled for preventive 

measures and lagged falciparum incidence [Paper II]. In addition, the effect of preventive 

measures was controlled for socio-demographic and economic characteristics, proximity to 

the vector breeding site [Paper II and III] and the number of households between a household 

and the vector breeding site [Paper III]. Moreover, the effect of gender was controlled for age 

and distance from vector breeding site in the study of factors associated with ITN use [Paper 

IV]. 

 
Chance 

Statistical significance tests are designed to rule out the role of chance. A P value cut-off 

point <0.05 and a 95% CI that does not cross a null hypothesis value are used to make 
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statistical decisions – rejecting the null hypothesis. The 95% CI is said to be more 

informative since it holds the effect size,163-164 and that the width of the interval also signifies 

the power of the test.157 Our data consistently revealed statistical significance while 

employing different statistical models, e.g. a Poisson log-linear and generalized estimating 

equation with a logit link function. The existence of space-time malaria clusters (with high 

risk) on the side of the vector breeding site was confirmed by an increasing risk (with 

different analyses approaches) in malaria incidence for the households near the vector 

breeding site. We did separate analyses for P. falciparum [Papers I, II and III], P. vivax and 

for both species [Paper III], and we also did pair-wise comparisons for different age 

categories [Papers II and IV]. 

 

External validity 

External validity refers to the generalizability of the research findings to the people outside 

the study area.154 We considered only those locations with available datasets (long enough to 

exercise time series modelling) of malaria incidence and meteorological factors, which did 

limit us to select locations randomly, hence compromising generalizability. However, we 

included qualified datasets of varying altitude ranging between 1,182 and 2,582 metres above 

sea level with the intention of showing how models could differ across locations, thereby 

questioning the use of general predictive models [Paper I].  

 

For the sake of detail scrutiny on malaria epidemiology in the presence of irrigation schemes, 

a nearby lake and routine prevention practices, we carried out a study in Chano Mille Kebele 

for two years [Papers II, III and IV]. Chano Mille is a resettlement area where residential 

houses are built close to each other; however, the way of living is typical of rural areas in 

southern Ethiopia. The data from this Kebele could reflect the malaria transmission dynamics 

in similar setups, and the findings on the use and impact of prevention strategies could help 

shed light on the existing challenges in malaria prevention and control efforts. 

 

5.2. Discussion of main findings 

Forecasting or the early detection of epidemics lessens the impact of malaria epidemics, 

primarily in regions where there is a low or unstable transmission, including the country 

where this study was conducted: Ethiopia. And such a justification led to the establishment in 

2001 of MEWS, which uses three main groups of indicators (vulnerability, transmission risk 
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and early detection), and was expected to greatly support the public health system to better 

prevent (and control) deadly epidemics.73 However, the effectiveness of MEWS is governed 

by the availability of quality data, robust modelling strategies and functional health system. 

Transmission risk indicators, including the use of unusually high rainfall to predict malaria 

epidemics, were not always successful – thus exhibiting local and temporal variations.27, 31-39 

This questioned the use of general or regionally based predictive models, and implied a need 

for a continuous effort to add a piece of information to the existing knowledge base.32  

 

We attempted to show the local variations in the link between falciparum malaria incidence 

and meteorological factors using historical data from different locations of varying altitude, 

and also their averaged effect. The models we reported showed the presence of a link 

between malaria incidence and meteorological factors, though not in the majority of the 

locations, thus imposing a shift of emphasis to other potential risk factors. It is worth noting 

that the biologically driven link of meteorological factors and malaria incidence165-166 may 

not always be direct or predictable.167 Although they were limited by providing a shorter lead 

time,73 our models favoured the role of early detection (rather than meteorology) since 21 of 

30 models revealed the significance of the lagged effect of falciparum malaria incidence. 

 

Using only meteorological factors, the prediction of malaria incidence exhibited inconsistent 

results. This implied the need to consider other determinants, including prevention and 

control measures, as well as socio-demographic and economic factors.34, 36, 41, 134 The effect of 

local meteorological factors was evaluated by controlling for malaria prevention and control 

interventions and also past disease incidence, while we also investigated the net effects of 

environmental factor (the proximity of each household to the malaria vector breeding site), 

socio-demographic and economic factors (age, sex, education of the household head and 

wealth index) and the practice of sleeping under ITN using different statistical modelling 

strategies. 

 

The vector breeding site was identified in the perimeter of the study site at the shore of Lake 

Ababa. This extensive swampy area – while serving as a grazing field, also nurtures the 

deadliest mosquitoes. The impact increases during the rainy season due to overflow (and later 

contraction) of the lake, hence resulting in an extended effect of rainfall on malaria 

epidemiology. The proximity of the household to the identified vector breeding site was the 

strongest risk factor for malaria in the study area, and in all approaches of analysis the effect 
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was consistent. This implies the need to consider larval source management as equally (even 

more) as the other routinely practiced prevention tools - ITN and IRS - in such locations.  

 

Studies reported that housing structure is an important determining factor for malaria 

transmission that needs to be considered in malaria prevention and control efforts.168-171 We 

did not analyse the effect of housing structures separately; however, we incorporated the 

housing structure while constructing a composite wealth index – three of the 15 variables 

used to construct the wealth index were of the housing structure. Our findings showed an 

inverse relationship between wealth index and malaria incidence, thus implying that those 

who lived in the impoverished houses had more of a risk of malaria infection controlling for 

other factors.  

 

Studies have shown that the risk of malaria infection varied according to gender. Some 

studies have reported more of a risk among males than females,50, 172 but a review of earlier 

studies reported the risk being equal for both genders.51 Our study revealed that females had a 

lower risk of malaria infection with the falciparum species (with no significant difference for 

the vivax species). Furthermore, ITN use among females consistently exceeded that of males 

for the entire study period with statistical significance. Even so, the fact that we observed less 

a risk of malaria among females being controlled for other factors, including ITN use, 

implied the need to look for further explanation.  

 

In regions with stable malaria transmission, children less than five years of age (and pregnant 

women) suffer more from malaria infection than the other population segments,51 which may 

be due to an acquired immunity to Plasmodium parasites.173-176  It was difficult to categorize 

the study area under “stable malaria transmission” since we observed seasonality, though we 

observed a higher incidence of malaria among the younger age group. The seasonal nature of 

malaria transmission in the study area may not allow for a continuous exposure to the 

parasite, yet still might have offered some immunity to the older population,175 but we did not 

measure this. The disparity in ITN utilization among different age categories may play a role 

in the different incidence rate ratios for different age categories, e.g. children aged 5–14 years 

were the least of the ITN users [Paper IV] and suffered more from malaria [Papers II and III]. 

In addition, the observed age shift with regard to the risk of malaria infection after mass ITN 

distribution and before IRS with Deltamethrin (a greater risk was observed in the lesser ITN 
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using age group between 15–24 years old than the risk observed before the distribution) 

substantiated this finding [Paper II].  

 

The population movement both to and from the study site was unexpectedly high, and the 

inability to characterize temporary in-migrants was unfortunate. Nonetheless, a higher 

incidence of malaria was observed among these temporary residents, which implied a need to 

consider the role of population movement on malaria epidemiology in such studies. This is 

because the in-migrants may have a role in malaria transmission given that their original 

domicile is less malarious and that their practice of prevention strategies is low.55 

 

A disparity was observed between ITN coverage and use, and different determinants of ITN 

use were also identified. The residents of Chano Mille living closer to the identified vector 

breeding site reported a higher use of ITN, and this may imply that the presence of nuisance 

mosquitoes, the risk perception or both were motivating factors for sleeping under ITNs. The 

older residents used ITNs more frequently than the younger ones despite the high malaria risk 

carried by the latter group – which may be due to a less frequent use of ITN, a lack of 

acquired immunity or both. Such disproportions in ITN use and a higher malaria risk among 

the younger population may bring the advocacy of “ITN use by the vulnerable” back to the 

table for such localities. Meanwhile, the inability to hang more than one ITN due to the 

absence of a convenient space in the house reflected that calculations of ITN coverage - the 

number distributed over the total population - were unrealistic. It also implies a waste of 

resources, the need to do a prior assessment of the housing structure and post-distribution 

‘hang-up’ campaigns.177-178 As most residents of the study site reported, the presence of 

rodents may compromise the usable of life of LLINs – three years in field conditions,85 which 

requires attention. 

 

Our results showed that sleeping under an ITN was protective at the individual level; 

nevertheless, it was incapable of protecting the community at large, and the simple logic of 

claiming that a considerable proportion of the community receives protection through ITNs 

(e.g. 35%–65% ITN coverage), thus protecting the community at large,179 could not work. 

This may be explained by the inherent nature of the ITNs – a balance between the excito-

repellency versus the insecticidal properties. If excito-repellency wins out, then ITNs will act 

as a risk factor for the non-users.142, 180 The different statistical models we used consistently 

showed that following the mass distribution of ITNs, there was no significant impact on 
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malaria epidemiology in the study area. Therefore, we suggest that the expected community-

wide benefits of ITNs can be achieved if and only if the insecticidal effect of ITNs surpassed 

the excito-repellency, with a fairly high rate of not only ITN coverage, but also of consistent 

use.  

 

The study period was long enough to evaluate the effectiveness of different strategies 

employed to prevent and control malaria, and it was evident that IRS was more effective than 

ITN mass distribution in terms of providing a community-wide benefit. However, the 

effectiveness of IRS was a function of the insecticide resistance level since IRS with DDT 

was not as effective as IRS with Deltamethrin. This finding was consistent with the report 

from the same study site (and period), which demonstrated a greater efficacy of Deltamethrin 

compared to DDT, 47% versus 10%, respectively.18 Even so, the fact that the IRS with 

Deltamethrin (the same insecticide was used to coat the ITNs – PermaNet2.0181) reduced the 

transmission of malaria indicated the effectiveness of the strategy, rather than the efficacy of 

the insecticide per se.  

 

We observed malaria to be a very local disease, such that significant risk differences within a 

small area characterize its transmission. A segment of a 2.4 sq.km area of the study site 

carried a significantly greater risk, and it was found near the identified vector breeding site. 

Such an area was described as a “hot-spot”182 – a proof of heterogeneity in the risk of malaria 

transmission within a micro-environment. Identifying such a place may be an advantage so as 

to organize meagre resources for a focused, efficient and effective utilization.135, 140, 183-185 In 

the meantime, we observed that the increased risk in the identified “hot-spot” was aborted by 

IRS with Deltamethrin, but not by the mass distribution of ITNs. 

 

The burden of malaria in Chano Mille was almost equally shared by the two Plasmodium 

species – vivax and falciparum. However, we had expected falciparum malaria to dominate, 

whereas others reported a greater proportion of vivax malaria in some locations in the 

country.186 This implies the need to duly consider both species while deploying rapid 

diagnostic tests and antimalarial drugs in similar locations. An emphasis was sought to avert 

the neglect of vivax malaria187 since there may not be significant gains to be achieved if 

strategies target only the falciparum species in areas where a significant contribution of the 

vivax malaria is documented. We had to provide Chloroquine for vivax malaria during the 

entire study period, but recently Chloroquine has been available at the health post level. 
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5.3. Implications for policy 

Malaria epidemics threaten the health system by imposing immense financial and logistic 

constraints, and deaths due to malaria are common during epidemics. While a near zero death 

rate due to malaria is envisaged by the year 2015, the importance of a malaria early warning 

system that informs about the occurrence of epidemics in advance is unquestionable. Still, the 

application of meteorological factors in an early warning system should take local variations 

into consideration, while using past disease incidence as an early detection indicator may be 

helpful. 

 

The choice of malaria prevention strategies should be tailored to the pattern of malaria 

transmission in the specific setups. There is also a need to evaluate the cost-effectiveness of 

different strategies in different scenarios, as the move towards ‘blanket coverage’ by 

interventions such as LLINs may not guarantee future success. In our case, the mass 

distribution of LLINs did not prove significant gains. In addition, there is a need to opt for 

other strategies such as larval source management. Such a focused move may address the 

very local nature of the disease, and targeting the ‘hot-spots’ may become an essential part of 

prevention and control efforts than a ‘one-size-fits-all’ approach. A particular locality may be 

labelled as a ‘hot-spot’ or ‘malaria risk’ area, but may have a ‘hot-spot’ or what is sometimes 

called a ‘micro-cluster’ within itself. Hence, the interchangeable use of the terms ‘malaria 

risk’, ‘hot-spot’, ‘cluster’ and ‘micro-cluster’ should be revisited. In this thesis, we 

considered ‘hot-spots’ to refer to groups of households that have an increased risk of malaria 

infection within a malaria risk area. 

 

The observed disparity in LLINs’ coverage (98.4%) and use (maximum 69%) implies that the 

health system may not need to rely on the number of LLINs distributed, while there is also a 

need to establish a mechanism by which the continuous monitoring of the use of LLINs by 

the beneficiaries is practiced. Differences in the risk of malaria infection were attributable to 

different levels of ITN use among the study participants (among other factors), as adults 24 

years and above were favoured more than the younger population and pregnant women. 

Equity in use may need to be addressed to enhance the effectiveness of this strategy. 

Additionally, factors compromising the expected usable life of the LLINs under field 

conditions should be addressed; otherwise, the functionality of the LLINs may not go with 

the distribution schedule. 
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Despite the lower level of efficacy of Deltamethrin,18 IRS with Deltamethrin significantly 

reduced the malaria burden in the study area. The fact that IRS (unlike the ITNs) provides 

protection to all members of a household compels us to opt for this strategy if the continuous 

and consistent use of ITN by all members of the household cannot be assured. 

  



Eskindir Loha Shumbullo   32 
 

 
 

Chapter VI: Conclusions and Recommendations  

6.1. Conclusions 

 Linked with meteorological data, the models of P. falciparum malaria incidence 

revealed local variations and that a single model was not found that fit all locations. 

Past P. falciparum malaria incidence was a superior predictor than meteorology, and 

there is also a need for the inclusion of non-meteorological factors in malaria 

modelling. 

 

 The malaria incidence rate was higher among males, children 5–14 years of age, ITNs 

non-users, the poor and people who lived closer to vector breeding sites. Rainfall 

increased, and IRS with Deltamethrin reduced falciparum incidence. ITNs provided 

personal protection, but free mass ITNs distribution did not reduce the malaria 

burden. 

 

 There was a spatio-temporal clustering of malaria of both species, consequently 

showing that the risk of getting a malaria infection varied significantly within one 

village. The free mass distribution of ITNs did not influence the spatio-temporal 

clustering of malaria, although IRS might have eliminated malaria clustering. 

 

 The coverage of ITN was 98.4%, but the ITN use fraction did not go beyond 69%. 

Gender, age differences and distance from vector breeding site were associated with 

ITN use. A lack of convenient space to hang more than one ITN (for those receiving 

more than one) and factor compromising the usable life of ITNs were reported. 

6.2. Recommendations  

Operational 

 The mass distribution of ITNs should be accompanied with ‘hang-up’ campaigns, 

regular follow-up on utilization and measures to prolong the usable life of ITNs. 

 Education campaigns should emphasize an equity of ITN use within the household 

and, prioritize the vulnerable (younger and pregnant women) whenever it is not 

possible to hang more than one ITN in the house, in which one ITN could not 

accommodate all family members. 
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 The use of historical data to learn future trends of malaria transmission should be 

strengthened. 

 The identification of ‘hot-spots’ of malaria transmission should receive more 

attention, and the need of using alternative strategies such as larval source 

management should be assessed. 

 

For policy 

 The use of IRS for the prevention and control of malaria should be strengthened. 

 Mechanisms to narrow the gap between ITN coverage and utilization should be an 

integral part of mass distribution campaigns. 

 The choice of prevention and control strategies may benefit from prior and detail 

knowledge of local conditions. 

 The burden of vivax malaria should be duly considered. 

 

For research  

 The role of population movement in malaria transmission and its implications for 

prevention and control efforts should be studied. 

 Studies should assess the effectiveness of ITNs at a community level and the very 

reasons for not sleeping under the net while having one. 

 Data are required to inform the cost-effectiveness of targeted intervention on malaria 

‘hot-spot’ areas compared to the current universal coverage (of all malaria risk areas) 

approach. 

 Alternative ways of identifying malaria clustering activity (as an early detection) 

should be tried, e.g. a prospective analysis of  ‘alive’ clusters with available software 

packages using the incoming weekly data from the passive surveillance scheme. 

 Studies on the socio-economic impact of vivax malaria may enhance concerns about 

this Plasmodium species. 

 The economic and epidemiological advantage of a combination of strategies, e.g. ITN 

with IRS, should be studied.  
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Abstract
Background: Malaria transmission is complex and is believed to be associated with local climate changes. However, 

simple attempts to extrapolate malaria incidence rates from averaged regional meteorological conditions have proven 

unsuccessful. Therefore, the objective of this study was to determine if variations in specific meteorological factors are 

able to consistently predict P. falciparum malaria incidence at different locations in south Ethiopia.

Methods: Retrospective data from 42 locations were collected including P. falciparum malaria incidence for the period 

of 1998-2007 and meteorological variables such as monthly rainfall (all locations), temperature (17 locations), and 

relative humidity (three locations). Thirty-five data sets qualified for the analysis. Ljung-Box Q statistics was used for 

model diagnosis, and R squared or stationary R squared was taken as goodness of fit measure. Time series modelling 

was carried out using Transfer Function (TF) models and univariate auto-regressive integrated moving average (ARIMA) 

when there was no significant predictor meteorological variable.

Results: Of 35 models, five were discarded because of the significant value of Ljung-Box Q statistics. Past P. falciparum 

malaria incidence alone (17 locations) or when coupled with meteorological variables (four locations) was able to 

predict P. falciparum malaria incidence within statistical significance. All seasonal AIRMA orders were from locations at 

altitudes above 1742 m. Monthly rainfall, minimum and maximum temperature was able to predict incidence at four, 

five and two locations, respectively. In contrast, relative humidity was not able to predict P. falciparum malaria 

incidence. The R squared values for the models ranged from 16% to 97%, with the exception of one model which had 

a negative value. Models with seasonal ARIMA orders were found to perform better. However, the models for 

predicting P. falciparum malaria incidence varied from location to location, and among lagged effects, data 

transformation forms, ARIMA and TF orders.

Conclusions: This study describes P. falciparum malaria incidence models linked with meteorological data. Variability in 

the models was principally attributed to regional differences, and a single model was not found that fits all locations. 

Past P. falciparum malaria incidence appeared to be a superior predictor than meteorology. Future efforts in malaria 

modelling may benefit from inclusion of non-meteorological factors.

Background
Over 100 million people worldwide are affected by

malaria and P. falciparum malaria is responsible for

approximately one million deaths annually, with many of

those deaths occurring in children under the age of five

years. Unfortunately, 90% of the global malarial burden is

carried by sub-Saharan Africa [1,2]. Malaria transmission

is complex and not yet fully understood; the recent focus

of developed nations on global warming has spawned the

suspicion of a climate-malaria link.

The possible association of changes in temperatures to

variations in malaria epidemiology is merited by the well-

defined biological effects on life-cycle stages of the
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Anopheles insect transmission vector and the Plasmo-
dium malaria parasite [3]. For example, increasing of the

temperature to 31°C results in a shortened sporogonic

period of the Plasmodium parasite, an effect which differs

among the P. falciparum and P. vivax species. Higher

mean daily temperatures are not favourable for vector

survival since increased temperatures speed up develop-

ment of the aquatic stages of the vector's life cycle.

Many researchers, therefore, have proposed developing

improved tools to forecast malaria epidemics by using

variations in regional temperatures. These efforts have

resulted in the medical literature using vastly inconsistent

terminology to describe malaria risks, and to distinguish

between long-term forecasts, early warning and early

detection of epidemics.

Long-term epidemic forecasting is usually based on cli-

mate forecasting, and relies on such datasets as the El

Niño Southern Oscillation indices to predict epidemic

risk months in advance over large geographical areas.

Such a forecast allows time for the population to prepare

for a possible epidemic in the upcoming malaria season.

Malaria epidemic early warning is based on surveying

transmission risks to predict timing of an increase based

on abnormal rainfall or temperatures. Often, such risks

are influenced by population vulnerability, such as history

of low rates of malaria transmission. Such predictions of

malaria epidemics can provide lead times of weeks to

months.

The long-term and early warning approaches should,

however, be distinguished from epidemic early detection,

which involves noting the beginning of an unusual epi-

demic. As such, this surveillance approach is limited in

that is offers little lead time (days to weeks) for prepara-

tion and implementation of preventive measures. When

used in an effective manner, it is able to prevent sickness

and death.

The aim of this study was to examine if the spatio-tem-

poral distribution of surface temperature and rainfall are

useful factors to predict changes in malaria incidence, as

a malaria epidemic early warning strategy. This evalua-

tion was based on an assumption that the link between

climate and occurrence of malaria is constant and similar

for different regional settings.

Incorporating prediction and forecasting approaches,

however, calls for sound understanding of the complex

factors involved in malaria transmission. It has been sug-

gested that the major driving force of malaria transmis-

sion is climate [4-8]. However, the data has been largely

inconsistent as to exactly how climate influences malaria

transmission. In some geographic regions, the minimum

temperature has been shown as an important contribu-

tory factor for malaria transmission [6,7,9], while in oth-

ers the maximum temperature has been implicated [5,10-

12]. Onset of malaria epidemics often coincide with the

rainy season or significant rainfall [13,14], but this is not

always the case [9]. Inconsistent findings also exist in

studies focusing on the number of climate lags, both for

rainfall and temperature, associated with malaria epi-

demics [5-7]. Prediction strategies based on climate

information have been most accurate when considering

colder locations [6]; still, not all studies have been able to

confirm the utility of meteorological variables at varying

altitudes [7]. The effect of rainfall on transmission rates

has also been found to vary between urban and rural

areas [6], suggesting the presence of an additional

cofounding factor in one of both of these communities.

To date, many different models have been developed

based on the simple assumption that a defined set of cli-

matic variables influence malaria incidence; however, the

models have different statistical or mathematical forms,

incorporate different variables and lag combinations, and

demanded different forms of data transformation and

analysis [5-8]. This might reflect the complexity between

climatic variables and malaria transmission [15] while

striving to address biological plausibility. Unfortunately,

such biological approaches are able to describe malaria

transmission but are not powerful enough to yield reli-

able predictions of incidence [16]. This is also a limitation

that affects implementation of climate-based malaria

early warning and forecasting [17]. Attempts have been

made to improve the models using historical morbidity

and climatic variables [6-8,12].

Nonetheless, the impact of climate on malaria trans-

mission has yet to be firmly established. Thus, there

exists a need to consider local variations in climates in

order to fully understand the relationship between cli-

mate and malaria transmission [11,15,16,18-23]. Taking

the average of conditions across large geographic areas,

or even making similar assumptions stating the effects of

climatic variables to be constant across different locations

[7], might cause an underestimation of local variations

and disable a models accurate ability to predict malaria

incidence [16,17].

In addition to the incorporation of climatic causes,

some researchers have suggested building models that

consider non-climatic factors such as land use, popula-

tion movement, immunity, topography, parasite geno-

types, vector composition, drug resistance, vector control

measures and availability of healthcare services [6-

8,18,20,24]. The study presented herein did not include

non-meteorological data because of limited data avail-

ability; however, local variations were considered in the

link between malaria incidence and meteorological fac-

tors [10,18,20]. In areas such as the Ethiopian highlands

endemic malaria occurs at altitudes above 2100 m [25]. It

has been suggested that global warming will drive malaria

transmission at higher altitudes, mainly because of corre-

sponding changes in the distribution of the Anopheles
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vector [26]. However, the study period covered less than

10 years and, thus, was too brief to evaluate the potential

effects of global warming on vector distribution and on

malaria incidence. Therefore, the principal objective of

this study was to explore if variations of meteorological

factors are able to consistently predict P. falciparum
malaria incidence at different locations in south Ethiopia.

Methods
Data inputs and inclusion criteria

A total of 42 locations in the southern region of Ethiopia

were examined for data on varying serial length of P. falci-
parum malaria incidence during 1998-2007; available

data from local meteorology stations were also collected

for the analysis. The minimum serial length was set at 50

[27], resulting in five locations being excluded from fur-

ther analysis. To ensure against imputation effects on

model structure, the threshold of allowable missing data

was set at 15% of the total series; this criterion led to the

exclusion of two locations. The final number of locations

in this study was, therefore, 35.

Microscopically-confirmed P. falciparum malaria cases

only were considered in this study. The total number of

cases was 210 659 and covered a period of 6.7 years from

the 35 locations. The mean serial length was 80 months

(range: 51-118 months). The available meteorological

data included: monthly total rainfall in millimetres (all

locations), monthly average maximum, minimum and

average temperature in Celsius (17 locations) and

monthly average relative humidity as percentage (three

locations). While taking averaged rainfall data for each

month in the series, 19 locations exhibited a unimodal

rainfall pattern (which peaked from June to September)

and the remaining 16 locations exhibited a bimodal pat-

tern (peaks in February to April and August to October).

The bimodal rainfall pattern could 'double' the serial

length and, hence, improve the chance of observing any

link between P. falciparum malaria incidence and rainfall

pattern. The altitude of the meteorology stations ranged

from 1182-2582 m, and 14 locations were below 1750 m.

Figure 1 presents the coordinates of each location.

Data source

A health centre provides basic curative and preventive

health services for a population of about 25,000 people.

Each health centre is staffed by nurses and health officers,

and by trained laboratory technicians. The institutions

routinely performed thick and thin blood film examina-

tions for malaria parasites. Rapid diagnostic tests for

malaria were not used. Each month, all health institutions

reported suspected malaria cases and confirmed P. falci-
parum and P. vivax cases to the regional health authori-

ties.

Microscopically-confirmed P. falciparum malaria cases

(n = 210,659) were obtained from the reports made to the

Southern Nations and Nationalities Regional Health

Bureau from 33 health centres and from two district hos-

pitals.

The meteorological data used for analyses were

obtained from the Southern Branch office of the National

Meteorological Agency of Ethiopia. This agency operates

over 200 meteorological stations, with records spanning

15 to over 50 years. From the year 1970 onward, the pro-

portion of missing data is low [28]. In this study, meteoro-

logical data from 35 locations was used (Figure 1).

Missing data handling

The Box-Jenkins method [29] was used, hereafter

referred to as the Autoregressive integrated moving aver-

age (ARIMA). As this model requires discrete time series

data with no missing values, missing data replacement for

both dependent and independent series was carried out.

Missing values were replaced with the mean or the

median of the period in which the observation was miss-

ing. The mean was used for data of P. falciparum malaria

incidence, temperature and relative humidity. Since rain-

fall data was heavily skewed, the median was used to

replace the missing values of rainfall.

Assumptions

1. The underlying data of malaria transmission was 

assumed to be stochastic, whereby local variations 

and other unmeasured causes play important roles. 

Others have reported local variations in the associa-

tion between climate and malaria incidence 

Figure 1 Coordinates of the malaria affected locations of interest 

in south Ethiopia. A map of Ethiopia has been sub-divided into ad-

ministrative regions that include the Southern Nations and Nationali-

ties People's Region where we conducted this study.
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[15,16,18-22]. Therefore, building models for each 

location would remove crudeness of models and 

enable reliable forecasts. In addition, this might con-

tribute to our understanding of the impact of meteo-

rology with respect to varying altitudes.

2. The quality of data obtained through routine 

reporting in developing countries may be question-

able, mainly because of under-reporting. However, 

the data sets were assumed to hold the basic elements 

of malaria transmission like trend, seasonality or 

monthly variations, which could suffice for modelling 

exercise [12]. The need to use available data at the 

regional level, check whether these data could be used 

to model P. falciparum malaria incidence and assist 

malaria epidemic early warning was considered.

3. The meteorology station correctly captures climate 

data within a 10 km radius [Southern Branch office of 

National Meteorological Agency of Ethiopia, personal 

communication], and this matches to the service area 

coverage of the corresponding health centre. This 

assumption does not apply for the two district hospi-

tals since the service area coverage of a district hospi-

tal is beyond the 10 km radius [30].

4. In Ethiopia, malaria transmission is largely unstable 

[31] and, hence, the population has insignificant 

immunity, putting all age groups at equal risk of con-

tracting the disease. Therefore, demographic changes 

were assumed to have had minimal impact in malaria 

transmission during the study period. Meanwhile, 

there is lack of proper denominator for health facility-

based data in this country. As a result, the number of 

malaria cases was used instead of its fraction out of 

the total population.

Scope

This paper sought to unveil the local variations in the

predictive power of lagged effects of the number of past P.
falciparum malaria cases and climatic variables on inci-

dence of P. falciparum malaria. As model structures of

each location were presented, detail of each model, fore-

casting and validation were beyond the scope of this

research effort.

Data processing and analysis

SPSS version 17.0 Expert Modeler (Chicago, IL, USA)

was used to automatically determine the best-fitting

model. Malaria incidence was the dependent variable,

and all available climatic variables were fed into the

model as predictors. The Expert Modeler keeps the pre-

dictor series in the model only if it is significant. The

resultant model was checked for consistency by inserting

the model criteria set and significant predictor identified

by the Expert Modeler. To do this, custom ARIMA mod-

els were used and several logical combinations of criteria

to look for better models were considered. The best-fit-

ting model built by the Expert Modeler was subsequently

used. For the locations of Cheleklektu and Buee, a con-

stant value of 1 was added to the dependent series to

enable log transformation. Automatic detection of outli-

ers was made and the outliers were modelled accordingly,

thus trimming was not performed. The same procedure

was followed for all data sets.

Goodness of fit

The R-squared measurement was used as an indicator of

goodness of fit for the models if there was no differenc-

ing. The R-squared coefficient of determination suggests

the proportion of variance of the dependent variable

explained by the model. The stationary R-squared was

used instead whenever the Expert Modeler considered

differencing. The stationary R-squared was used to cap-

ture trend or seasonality, which is the basis for differenc-

ing. The stationary R-squared and the ordinary R-

squared values were the same when there was no data

transformation to any form. It is noted that if the series

was log transformed without differencing, stationary R-

squared would overestimate the ordinary R-squared and

underestimate for the square root transformation.

Diagnostic statistics

The Ljung-Box Q statistic, also known as the modified

Box-Pierce statistic, was used to provide an indication of

whether the model was correctly specified. A significant

value less than 0.05 was considered to acknowledge the

presence of structure in the observed series which was

not accounted for by the model; therefore, we ignored the

model if it had significant value.

The residual autocorrelation function was expected to

agree with the white noise assumption. White noise, the

most common model of noise in time series analysis, is a

stationary time series or a stationary random process

with zero autocorrelation. In other words, in white noise

N(t) any pair of values N(t1) and N(t2) taken at different

moments t1 and t2 of time are not correlated; that is, the

correlation coefficient r(N(t1), N(t2)) is equal to null. The

SPSS 17.0 forecasting menu provides autocorrelations

that provides p values for each lagged noise residual

series using the Ljung-Box statistics. It was possible to see

which lagged noise residual was significantly autocorre-

lated. For each data set, autocorrelation of noise residuals

was carried out, and the results were consistent with that

of the model statistics table of Ljung-Box Q statistics.

The model

Since meteorological variables were used as predictors,

addition of the Transfer Function (TF) model to the basic

univariate ARIMA model was considered. Whenever the
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Expert Modeler dropped the predictor series, the model

was found to take on the univariate ARIMA form.

ARIMA orders

In ARIMA (p, d, q) (P, D, Q), the first parenthesis held the

non-seasonal autoregressive (p), differencing (d) and

moving average (q) orders. A non-seasonal autoregressive

order of 1 specified the value of the series in one time

period from the past to be used to predict the current

value. A first order differencing implied a linear trend in

the series. Meanwhile, moving average order of 2 speci-

fied the deviations from the mean value of the series from

each of the last two time periods to be considered when

predicting the current value. The second parenthesis held

their seasonal counterparts. For monthly data, the sea-

sonal order of 1 implied that the current value was

affected by the series value 12 periods prior to the current

one.

Transfer function orders

Numerator specified which previous values from the pre-

dictor series were to be used to predict the current value

of the dependent series.

Denominator specified how deviations from the series

mean, for previous values of the predictor series, were to

be used to predict the current value of the dependent

series.

Difference specified the order of differencing applied to

the predictor series before estimating the model

occurred.

The seasonal orders were built using the same strategy

as that for the ARIMA orders.

Delay

Setting a delay is known to cause the predictor's influence

to be delayed by the number of intervals specified. For

instance, a delay of 4 implies the value of the predictor at

time t does not affect forecasts until four periods have

elapsed (t + 4). A delay of 4 essentially equals lag of four

time periods.

See Additional file 1 for details of the model.

Data transformation

The ARIMA model is an analysis in the temporal domain

applied to stationary data series. Thus, the presence of

outliers, random walk, drift, trend, or changing variance

in the series might have resulted in nonstationarity. And

the stationarity of the series could be achieved when both

the mean and the variance remained constant over time.

For this, variance stabilizing transformations, like natural

log (LN) and square root (SQR), and detrending using

differencing were used when necessary. In addition, the

Expert Modeler was set to detect outliers (if any) and

model them automatically.

Results
Model inclusion and exclusion

Data from 35 locations were analysed using Time Series

modelling. Models of five locations were ignored because

of the significant results of the diagnostic statistics, the

Ljung-Box Q, including models built for the two hospital

locations.

Data description

We analysed 210 659 microscopically-confirmed P. falci-
parum malaria cases from 35 localities (Figure 1). During

the same period, these institutions also reported 112 354

microscopically-confirmed P. vivax malaria cases. The

ratio of P. falciparum to P. vivax malaria cases was 1.87 to

1.00.

The pattern of meteorological variables and P. falci-
parum malaria monthly cases was not uniform across the

locations, indicating local variations. Sequence charts

were generated for each of the 35 locations and for the

mean meteorological conditions of 23 (rainfall) and 14

locations (rainfall and temperature). The lagged effect of

rainfall on P. falciparum malaria incidence was more visi-

ble for the mean meteorological conditions (Additional

file 2).

Past Plasmodium falciparum malaria incidence

Of 30 models, 21 were based on lagged effect of incidence

data alone (17 locations) or coupled with meteorological

predictors (4 locations). Among those 21 models, 16 had

a non-seasonal AR order of 1 (13 locations) or 2 (3 loca-

tions). Three locations had both seasonal and non-sea-

sonal AR orders of 1. Two locations had only a seasonal

AR order of 1. Non-seasonal and seasonal first order dif-

ferencing was used for five and three locations, respec-

tively. Five locations had a non-seasonal MA order of

range 1-6, and there was no seasonal MA order. Seasonal

ARIMA orders were specified for six locations of altitude

1742 m or higher, constituting one-third of the locations

above this altitude (Additional file 3, Tables S1-S4).

Meteorological data

Rainfall data were available from all locations, however, it

was found to be a significant predictor for only four of the

locations (altitude: 1182, 1431, 1618 and 2054 m). A delay

of 2 months was significant for 2 of these. A delay of 2

months with numerator TF order of 0 refers to a 2

months lagged effect (Additional file 3, Table S1). Besides

the delay value of 2, including the numerator TF orders of

2, 1 and 0 was interpreted as the rainfall data correspond-

ing to the previous four, three and two months to predict

the current incidence. The denominator TF orders of 2

and 1 indicated that the model used the deviations of

rainfall data of the 4th and 3rd lagged months (delay 2)

from the series mean. One model specified numerator TF
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order of 2, 1 and 0 without setting a delay; that is, rainfall

data of the last two consecutive months coupled with the

current one were used to predict incidence (Additional

file 3, Table S2). A single location had 3 months lagged

effect of rainfall (Additional file 3, Table S4).

Minimum and maximum temperatures were available

for 17 of the locations. Minimum temperature was found

to be a significant predictor in five locations. Delays of 2,

4 and 5 months with numerator TF order 0 predicted

incidence in three locations (altitudes: 2582, 1220 and

2331 m). Of those, first order non-seasonal differencing

was required for the location with the lowest altitude

(1220 m). Incidence (two locations) and maximum tem-

perature (one location) were included in the models

(Additional file 3, Tables S1 and S4). For the remaining

two locations, numerator TF order of 0 without a delay

was specified; that is, the current value of the predictor

was used to determine the current incidence with no con-

tribution for forecasting. For one of the models, however,

it impacted incidence to achieve higher goodness of fit

statistics. The other model had the worst goodness of fit

statistic (negative value) of all models (Additional file 3,

Table S2).

Maximum temperature at a lag of 4 months coupled

with the deviations of a lag of 5 and 6 months from the

series mean predicted incidence at an altitude of 1221 m

(Additional file 3, Table S1). Meanwhile, coupled with

minimum temperature, the value at lag of 4 when added

to the lag of 2 months predicted incidence (Additional file

3, Table S4).

Only three locations had data available on relative

humidity, but none proved significant.

Goodness of fit of models

Except for one model which produced a negative value,

the range of the R-squared was 16-97%. Of 30 models, 20

had values greater than 50% and seven had values exceed-

ing 85%. The range for models with any of the seasonal

ARIMA orders was 60-97%. The models were reasonably

good for explaining the total variations of the data sets.

According to the Spearman's rho correlation coefficient,

there was no significant correlation between the R-

squared values and the serial length (r = 0.29) or the aver-

age incidence per month (r = -0.01).

Model similarities and variations

The model predicted incidence fairly well by its lagged

values in most locations. Models of seven locations were

similar with ARIMA (1, 0, 0) (0, 0, 0) with no transforma-

tion. Nevertheless, the other incidence models applied

different forms of transformation (LN, SQR or differenc-

ing) or incorporated different meteorological variables.

Some models did not contain incidence at any AR or MA

orders. Meanwhile, meteorological variables were signifi-

cant predictors for only seven of the locations without

any apparent reiteration in line with the altitude. For two

of the data sets, the Expert Modeler revealed the absence

of a significant predictor with reasonable goodness of fit

statistics. And for five of the data sets, the model did not

comply with the criterion of diagnostic statistics. In sum-

mary, the variations outweighed the similarities of the

models made for different locations for the given inci-

dence and meteorological data.

Mean meteorological conditions

It was not possible to engage all (thirty) data sets to evalu-

ate the utility of taking mean meteorological conditions

for prediction because aggregates of P. falciparum
malaria incidence of all data sets produced a serial length

of 29 (below 50). Therefore, the mean condition of 23

locations with a serial length of 62 was used. This

resulted in monthly rainfall being a significant predictor

at a lag of 4 months coupled with AR order of 1 (monthly

rainfall was a significant predictor only in four locations

when the data sets were analysed separately). This model

was applied to each of the 23 locations but did not pro-

duce any significant results. The mean condition of tem-

perature (for 14 locations) with or without rainfall was

also checked, but the diagnostic statistics disqualified the

model (Additional file 3, Table S4).

Discussion
Statistical modelling is used for understanding and pre-

diction of multifactorial based events; as such, reproduc-

ibility, biological plausibility and robustness govern the

applicability and effectiveness of each resultant model.

Malaria transmission is one such complex event as many

underlying causes have been associated with its fre-

quency and duration, including regional factors. The

Malaria Early Warning System (MEWS) has been estab-

lished to enable reliable predictions of P. falciparum
malaria epidemics using transmission risk indicators like

unusual increase in rainfall [32]. Nevertheless, producing

accurate predictions using climate data remains a chal-

lenge [15]. This study set forth to evaluate large popula-

tions affected by malaria and residing in widely variable

geographical areas; specifically, we considered local vari-

ations to determine their contribution and ability to limit

effective prediction of P. falciparum malaria incidence by

using statistical modelling methods. This strategy is

expected to also provide evidence to support the meteo-

rology-malaria link and to determine the validity of using

mean meteorological conditions to create a general pre-

dictive model.

The Ljung-Box Q provided the diagnostic statistics to

check the presence of structure in the observed series

which was not accounted for by the model. Five models

were ignored with significant values according to this
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diagnostic statistic, but the underlying reasons were not

immediately clear. It was likely that the only two data sets

that came from hospitals might not have properly coin-

cided with the station-specific climate data since the

catchment area of those hospitals was wider than that of

the meteorological stations. Thus, it remains to be seen

whether linking hospital data with wider catchment to

station-specific meteorological data would benefit evalu-

ations of the proposed meteorology-malaria link.

Malaria transmission is known to be associated with

gametocyte prevalence in a population [33]. The finding

that past P. falciparum malaria incidence often predicts

the current incidence may support this relationship. Like-

wise, the AR term in this study was found to be much

more important than the meteorological variables for

prediction of P. falciparum malaria. Other studies have

also shown that models using the previous month's inci-

dence for malaria prediction outweigh the impact of cli-

mate variables [6-8,12]. In this study, the MA order was

also used. Seasonal ARIMA orders were specified at

higher altitudes only, starting at 1742 m. This might

reflect the seasonal nature of malaria transmission in

these locations. However, two-thirds of the locations

above this altitude did not have seasonal ARIMA orders.

So, it was not possible to conclude that malaria was sea-

sonal at areas above the altitude of 1742 m, or that erratic

rainfall patterns or other unmeasured potentially con-

founding factors have eluded the seasonality.

As has been shown by others [34,35], this study con-

firms the biologically driven link of temperature and rain-

fall with malaria transmission. However, the link is

complex and sensitive to the effects of other factors, and

it remains to be seen whether direct and predictable rela-

tionships really exist [36]. This study suggests that tem-

perature and rainfall are significant predictors for only a

few of the locations examined. The absence of tempera-

ture data for 13 of the locations might have limited our

findings. A serial length above the minimum requirement

for the ARIMA models was used, but it might not have

had enough statistical power to yield significant values or

be long enough in duration to capture seasonality. Never-

theless, the rainfall pattern was bimodal in 16 out of 35

locations, offering a better chance to see the effect of

rainfall on P. falciparum incidence. Some researchers

have suggested the use of weekly data to model malaria

incidence [5,7,12]. Thus, the monthly morbidity and

meteorology data used in this study might not be sensi-

tive enough to reveal the association between meteorol-

ogy and P. falciparum malaria incidence.

Considering mean conditions or aggregated data might

disguise real effects [16,17]. This urges approaches of

modelling to specific locations at the expense 'all-fit-one'

or simple model. This study also examined the effect of

mean meteorological conditions and compared it with

the area-specific results. Meteorological variables, partic-

ularly rainfall, were able to predict P. falciparum malaria

incidence on a wider geographic scale. However, the local

variations seen in the link between P. falciparum malaria

incidence and meteorological factors have not allowed

such approaches of prediction. More importantly, if

malaria transmission cannot be explained by the meteo-

rology-malaria link, it is necessary to include non-cli-

matic factors like vector composition, vector control

measures and healthcare services in statistical modelling,

as is advocated by others [6-8,18,20,24,37].

Conclusions
This study shows that models of climate-malaria link var-

ied from place to place, and one model could not fit all

locations. In several locations, it was found that past P.
falciparum malaria incidence was a more robust predic-

tor than any of the meteorological variables. It is possible

that more accurate malaria modelling may require the

inclusion of non-climatic causes as well. Nonetheless, sta-

tistical time-series modelling to analyse meteorology-

malaria link appears to be a promising approach to pre-

dicting malaria incidence and merits further investiga-

tion.
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Predictors of Plasmodium falciparum Malaria Incidence in Chano Mille, South Ethiopia:

A Longitudinal Study

Eskindir Loha* and Bernt Lindtjørn

School of Public and Environmental Health, Hawassa University, Ethiopia; Centre for International Health, University of Bergen, Norway

Abstract. We assessed potential effects of local meteorological and environmental conditions, indoor residual spraying
with insecticides, insecticide-treated nets (ITNs) use at individual and community levels, and individual factors on Plasmo-
dium falciparummalaria incidence in a village in south Ethiopia. A cohort of 8,121 people was followed for 101 weeks with
active and passive surveillance. Among 317 microscopically confirmed P. falciparum malaria episodes, 29.3% occurred
among temporary residents. The incidence density was 3.6/10,000 person-weeks of observation. We observed higher
malaria incidence among males, children 5–14 years of age, ITNs non-users, the poor, and people who lived closer to
vector breeding places. Rainfall increased and indoor residual spraying with Deltamethrin reduced falciparum incidence.
Although ITNs prevented falciparum malaria for the users, we did not find that free mass ITNs distribution reduced
falciparum malaria on a village level.

INTRODUCTION

Malaria is a major public health problem in Ethiopia, and
in 2011 about two-thirds of the population was at risk of
malaria.1 Results of the 2007 national malaria indicator sur-
vey showed prevalence of 0.7% and 0.3% of Plasmodium

falciparum and Plasmodium vivax malaria, respectively2; the
dominant vector is Anopheles arabiensis. Indoor residual
spraying (IRS) with insecticides has been used since 1960,
and distribution of insecticide-treated nets (ITNs) to all age
groups and provision of free artemisinin-based combination
therapy were in use since 2004.1

In the southern part of the country, malaria remains the
leading cause of outpatient morbidity, admission, and death
comprising 27.6%, 28.7%, and 46.4%, respectively, in the year
2009/2010.3 In 2010/2011, 1,360,101 individuals received anti-
malarial drugs, and 490,729 were laboratory-confirmed cases.
In the same year, IRS with Deltamethrin was carried out in
1,129,158 houses covering a total of 3,850,808 residents, and
525,177 ITNs were distributed to 262,589 households. The esti-
mated coverage of ITNs was 95%,4 and this was greater than
the national average of 72%.5 Despite these interventions, a
more than expected number of malaria cases was reported
from some areas, but no mention was made on the possible
reasons for the increase.4

Understanding the multifaceted determinants of malaria
transmission is important. Many factors play a role in malaria
transmission including local meteorological conditions,6,7 pop-
ulation movement,8,9 age, sex, socio-economic factors,10–15 and
prevention and control measures.16–18

Some studies showed that IRS and ITNs prevent and control
malaria transmission using a varying scale of analyses for
model, time, and space.16–19 The simultaneous use of IRS
and ITNs might be beneficial.20,21 However, rising insecticide
resistance of vectors could hamper the effectiveness of such
insecticide-based interventions.22 In addition, a high percent-
age of ITNs ownership may not be a guarantee for a sustained
lower incidence of the disease caused by factors possibly linked
to lack of efficacy or lack of proper use.23–26

Although a comprehensive analytical approach to under-
standing malaria epidemiology may not be possible, investigat-
ing the roles of as many factors as possible might shed light on
prevention and control strategies. Therefore, our study aimed
to assess the effect of local meteorological and environmental
conditions, IRS, ITNs use at individual and community levels,
and socio-economic and other individual-level factors on fal-
ciparum malaria incidence in a village in south Ethiopia.

METHODS

Study setting. This study was carried out in rural Chano
Mille Kebele of Arba Minch Zuria district that is 492 km
south of Addis Ababa. The Kebele was selected purposely to
study malaria epidemiology and vector biology in detail.
Kebele is the smallest administrative region and each Kebele
had at least one government health post. A health post pro-
vides basic health services including malaria diagnosis using
rapid diagnostic test (RDT) kits and treatment with Co-Artem
(for falciparum malaria only), which is free. The research
project provided Chloroquine tablets (for vivax malaria). The
Kebele area was 2.4 sq km, and the health post was located at
6°6.666¢ N and 37°35.775¢ E. The altitude is 1,206 meters
above sea level. Almost all households had mango plantation
within their compound. Mango, banana, and maize were the
major cash crops. Geographical location and description of the
study area is shown in Figure 1.
Study design. This cohort study was carried out in col-

laboration with the village health post. The study covered
101 weeks, from April 2009 to April 2011. All residents in the
Kebele were taken as study subjects. Every household was
visited weekly looking for febrile cases. A febrile case was a
case whose axillary temperature was ³ 37.5°C. The active
surveillance team used to refer a febrile case to the health post
for diagnosis and treatment. At the end of each day there was
a cross-check whether that case had visited the health post. All
households were given a unique identification card with a
number corresponding to the unique number posted on a
metal plate on the main entrance of each house. Residents
were advised to come to the health post with the identification
card if they got febrile in the days between the weekly visits
(passive surveillance).

*Address correspondence to Eskindir Loha, School of Public and
Environmental Health, Hawassa University, Ethiopia. E-mail:
eskindir_loha@yahoo.com

450



Data. The geographic coordinates of all houses and vector
breeding places were recorded by using a handheld global
positioning system receiver with an accuracy of ± 5 m. Census
was done at the beginning, on Week 50, and at the end. In the
first census, 7,038 (1,212 households) individuals were regis-
tered, and the second census added 1,083 subjects—making
the total number of studied subjects 8,121 in 1,388 house-
holds. The average number of persons per household was
5.9. Figure 2 shows the study profile. The month in which the
study subjects came into or left the study area was recorded.
The month in which the study subjects left or moved to the
study area was considered to contribute 2 weeks to the total
number of weeks observed.

Blood samples were collected from all febrile cases using
World Health Organization (WHO) standard procedures27; a
single finger prick was used to take a blood sample for the
RDT and to prepare thick and thin blood films for microscopic
evaluation. The result of RDT was used to treat the febrile
case on the spot. The confirmations of at least two of the three
experienced readers were sought to label a study subject as a
malaria case. This work dealt with microscopically confirmed
(by at least two readers) malaria cases only.
Three major malaria-related interventions (IRS with DDT

and later with Deltamethrin and mass ITNs distribution) were
carried out by the government within the study period. The
brand of the ITNs was PermaNet2.0 (Vestergaard, Frandsen,

Figure 1. Map of Ethiopia, location of Chano Mille Kebele and coordinates (dots) of households subdivided into sub-Kebeles 1 (green),
2 (yellow), and 3 (red), 2009–2011.
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Switzerland). We did post-intervention surveys to record ITNs
and IRS coverage, and document replastering of the insecti-
cide sprayed surfaces in the houses. The efficacies of DDT and
Deltamethrin were assumed to be 10% and 50% (taken from
Massebo and colleagues, unpublished data of the same study
area) on the sprayed week and to decay over time at a constant
rate at each time step—becoming nil after 24 weeks and
18 weeks,21,28 respectively. The initial efficacy was multiplied
by the coverage minus the proportion of households that prac-
ticed replastering of the sprayed surface.
Starting from Week 5, we recorded each household mem-

ber who slept under the ITNs the night before the interview.
The main vector breeding place was identified by the

research team. We explored potential places within and sur-
rounding the Kebele and the place where we found larvae of
Anopheles species was the swampy area near the Lake Abaya.
There were several small water bodies created mainly by hoof-
prints of cattle and hippopotamus. Being on the shore of the
lake, these tend to dry slowly after the rainy season—producing
extended effect of rainfall. Overflow of the lake during the
rainy season followed by shrinkage resulted in more favorable
condition for vector breeding.
The meteorological data were obtained from the nearest

local meteorological station at Arba Minch University, which
was 6 km away from the study area.
Statistical analysis. Time-series modeling (auto-regressive

integrated moving average [ARIMA] with transfer function
[TF]) was carried out considering rainfall, temperature (mini-
mum and maximum), relative humidity, ITNs use fraction, and
IRS as potential predictors. The timescale was a week. The
ITNs use fraction and IRS was lagged by 2 weeks considering
the incubation period of falciparum malaria. The ITNs use
data were available from Week 5; therefore, the analysis
involved malaria incidence data starting from Week 7. This
made the serial length 95 weeks. The number of individuals
who slept under the net the night before the interview was
divided by the total population of the week as a denominator
to get the ITNs use fraction. The total population varied from
week to week based on the number of weeks each individual
has been observed. Cross-correlations were used to get infor-
mation about lag number of meteorological variables. The
maximum number of lags was set to be 16. Significant peaks
(peaks with a bar height beyond the upper or lower confidence

limit) in the cross-correlation function plot determined the lag
numbers for further analysis. Ljung-Box Q statistics was used
as model diagnostics (the P value should not be < 0.05 to accept
the model). The methodological details of ARIMA and TF
models were reported elsewhere.29

To construct a wealth index, principal component analysis
(PCA) was carried out using 15 socio-economic variables (see
Supplemental file for the details). Lessons to construct the
wealth index were taken from Vyas and Kumaranayake, and
Howe and colleagues.30,31 The total variance explained by the
first principal component and the corresponding Eigen value
was 20.35% and 3.05%, respectively, and this was comparable
with a previous study.12 A factor score derived from the first
principal component was used in further analysis as a wealth
index. Wealth index categorized into tertiles was used for
descriptive purposes.
A generalized Poisson log-linear model was built consider-

ing age, sex, wealth index, proximity to the identified vector
breeding place, total ITNs use, and education of the head of
the household as potential predictors of falciparum malaria
episodes for each study subject. The mean and the variance
of falciparum episodes were 0.03 and 0.032, respectively. The
number of weeks an individual had been observed was consid-
ered as a scale weight variable. Pearson c2 was used as scale
parameter method and robust estimator for the covariance
matrix. The parameter estimation method was hybrid with a
maximum Fisher scoring iteration of 1. Kernel was specified
for the log-likelihood function. Bivariate and multivariate ana-
lyses were carried out. The term used to build the model was
the main effects. The omnibus test was used to check perfor-
mance of each fitted model against the intercept-only model.
Because there was weekly active surveillance for cases, the

generalized estimating equation (GEE) was carried out to
allow for repeated measurements. The probability distribution
specified was binomial with logit link function with indepen-
dent working correlation matrix. Pearson c2 was used as the
scale parameter method and robust estimator for the covari-
ance matrix. The parameter estimation method was hybrid
with a maximum Fisher scoring iteration of 1. Kernel was
specified for the log quasi-likelihood function. The term used
to build the reported model was the main effects. Corrected
quasi-likelihood under independence model criterion was
compared for main and interaction effects but no model

Figure 2. Study profile: broken line indicates that follow-up on insecticide-treated nets (ITNs) use was not done, Chano Mille Kebele,
south Ethiopia, 2009–2011.
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improvement was achieved. The hypothesis test was based on
Wald c2. Wealth index, age, sex, proximity to the identified
vector breeding place, ITNs use, and education of the head of
the household were considered as predictors. Because data on
ITNs use at the individual level was collected fromWeek 5 and
net use lagged by 2 weeks; data on ITNs use and falciparum
malaria incidence ranged from Weeks 5 to 99 and Weeks 7 to
101, respectively, making the total number of weeks observed
95. The minimum and maximum number of observations per
individual was 2 and 95.
Pairwise comparisons of estimated marginal means for age

categories were done based on the original scale of dependent
variable. The adjustment method for multiple comparisons was
Sequential Sidak, which is a sequentially step-down rejective
Sidak procedure that is much less conservative in terms of
rejecting individual hypotheses but maintains the same overall
significance level.
PASW Statistics 18 (Chicago, IL) was used for the analyses.

Distance (in meters) from the vector breeding place was cal-
culated using the proximity analysis tool of ESRI ArcMap 9.3
(Redlands, CA). To calculate the incidence rate ratio (IRR)
with test-based confidence intervals (CI), we used Stata/IC 11.0
(College Station, TX).
Ethical approval. The Regional Health Research Ethics

Review Committee of the Southern Nations, Nationalities
and People’s Regional Health Bureau approved this research
project. Informed verbal consent was obtained from all study
participants. For minors, consent was obtained from their
caregivers or legal guardians. Patients were treated according
to National guidelines32 with antimalarial drugs immediately
based on their RDT results.

RESULTS

During the 101 weeks of follow-up, there were 2,573 micro-
scopically screened febrile episodes. Of these, 624 (24.3%)
were microscopically confirmed malaria episodes; falciparum
and vivax malaria accounted for 317 (50.8%) and 307 (49.2%)
episodes, respectively. The pattern of malaria occurrence over

the whole study period is shown in Figure 3. Descriptive sta-
tistics of meteorological variables and malaria episodes are
presented in Table 1.
Of 317 falciparum malaria episodes, 224 (70.7%) were

among registered residents and the rest 93 (29.3%) were tem-
porary residents or visitors. Among 93 temporary visitor cases,
67 were males; their mean (SD) age was 14.8 (6.9) years. Only
12 of 93 cases were later registered in the last two censuses.
Qualitative inquiry showed that most of the temporary resi-
dents or visitors were labor migrants such as house servants
and cattle shepherds from neighboring districts and zones.
Characteristics of registered residents by number of falciparum
malaria episodes are presented in Table 2.
The incidence of falciparum malaria among registered

subjects was 3.57/10,000 person-weeks of observation. As
compared with females, males had a 64% higher rate of
acquiring falciparum malaria. Likewise, the rate for the poor
was greater than the rich by 64%. Among all age categories,
children 5–14 years of age had higher IRR. The IRR was less
for sub-Kebeles 1 and 2, and for the weeks in which the total
rainfall was < 1.5 mm. Higher IRR was also documented in
the first year of the study and after free mass ITNs distribu-
tion but before IRS with Deltamethrin. There was no signifi-
cant difference in IRRs among different levels of education
of the household head (Table 3).

Figure 3. Sequence chart of Plasmodium falciparum, Plasmodium vivax, and total episodes over 101 weeks of observation, Chano Mille Kebele,
south Ethiopia, 2009–2011.

Table 1

Descriptive statistics of meteorological variables and malaria
episodes on weekly timescale, Chano Mille Kebele, south
Ethiopia, 2009–2011

Variables (N = 101) Minimum Maximum Mean (SD)

Minimum temperature ( °C) 14.2 20.7 18.1 (1.2)
Maximum temperature ( °C) 25.1 35.6 30.9 (2.1)
Total rainfall (mm) 0.0 147.5 15.7 (24.0)*
Relative humidity (%) 30.7 75.6 56.1 (11.0)
Plasmodium falciparum episodes 0 14 3.1 (3.4)*
Plasmodium vivax episodes 0 12 3.0 (2.9)*

*Median: 6.2 (total rainfall), 2 (Plasmodium falciparum episodes), and 2 (Plasmodium
vivax episodes).
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We also calculated the IRRs by stratifying the ITNs use
fraction into different age categories. This showed that before
mass ITNs distribution, children 5–14 years had significantly
higher IRR followed by under five children, but there was no
significant difference between age categories 15–24 and above
24 years. After free mass ITNs distribution, the IRRs of
< 5 and 5–14 years categories declined and there was a signif-
icant increase in IRR of 15–24 years category, whereas the
IRR of 5–14 years category was still the highest. Meanwhile,
after IRS with Deltamethrin (ITNs use fraction of 0.63), no
significant differences were observed in the IRRs of all age
categories (Table 4).
Regarding malaria-related interventions, IRS was car-

ried out in June 2009 (DDT)—Week 7 and July 2010
(Deltamethrin)—Week 63; and free ITNs were distributed to
all households in March 2010—Week 48. Post-intervention

surveys showed that the coverage of IRS with DDT and
Deltamethrin was 91% and 97.5%, respectively. The percent-
ages of households that practiced replastering of the sprayed
surfaces was 9.2 (DDT) and 3.2 (Deltamethrin). Meanwhile,
an average of 2.3 ITNs were given to each household (a house-
hold had an average of 5.9 persons).
Predictors of weekly number of falciparummalaria episodes.

Time series modeling with a serial length of 95 weeks was
carried out. The total number of falciparum malaria episodes
fromWeeks 7 to 101 was 295 including cases that did not exist
in the census register. The average number of episodes per
week was 3.1. The minimum, maximum, and mean ITNs use
fraction after mass distribution was 0.47, 0.69, and 0.61;
before mass distribution, these figures were 0.16, 0.24, and
0.2, respectively. The meteorological variable with a signifi-
cant peak from the cross-correlation function plot was rainfall

Table 2

Characteristics of registered residents by number of Plasmodium falciparum episodes, Chano Mille Kebele, south Ethiopia, 2009–2011

Variables (N = 8,121)

Plasmodium falciparum episodes

0 (N = 7,916) 1 (N = 188) 2 (N = 15) 3 (N = 2)

No. % No. % No. % No. %

Sex
Male 4,100 51.8 115 61.2 10 66.7 2 100.0
Female 3,816 48.2 73 38.8 5 33.3 0 0

Age in years*

< 5 1,033 13.0 30 16.0 3 20.0 1 50.0
5–14 2,075 26.2 91 48.4 8 53.3 1 50.0

15–24 2,279 28.8 38 20.2 4 26.7 0 0
> 24 2,529 31.9 29 15.4 0 0 0 0

Wealth index: mean (SD) 0.24 (0.98) 0.06 (0.89) −0.28 (0.85) −0.68 (1.49)
Distance (km) from vector breeding place: mean (SD) 2.49 (0.34) 2.22 (0.37) 2.09 (0.39) 1.95 (0.21)
ITNs used (total number of weeks): Median 30 39 40 63

*Mean (SD) for 0, 1, 2, and 3 episodes: 20.25 (15.41), 13.94 (11.29), 10.13 (5.57), and 4.79 (5.95) years, respectively.

Table 3

Characteristics of the study subjects, study year, total rainfall, and ITNs use fraction by incidence rate ratio (IRR) of Plasmodium falciparum
malaria, Chano Mille Kebele, south Ethiopia, 2009–2011*

Variables Person-weeks of observation

Plasmodium falciparum

Number of episodes Weekly incidence per 10,000 IRR (95% CI)

Sex
Male 319,559 141 4.41 1.64 (1.25–2.14)
Female 307,613 83 2.7 1

Age in years

< 5 88,556 39 4.4 3.23 (2.05–5.08)
5–14 182,875 110 6.02 4.41 (3.03–6.4)
15–24 143,306 46 3.21 2.35 (1.5–3.69)

> 24 212,435 29 1.37 1

Sub-Kebele
1 210,396 36 1.71 0.23 (0.17–0.33)
2 205,938 34 1.65 0.23 (0.16–0.32)
3 210,838 154 7.30 1

Wealth status
Poor 209,155 86 4.11 1.64 (1.14–2.37)
Medium 250,294 96 3.84 1.53 (1.07–2.2)
Rich 167,723 42 2.50 1

Education: head of household

No education 331,838 112 3.38 2.44 (0.36–16.41)
Primary 159,625 65 4.07 2.95 (0.45–19.35)
Secondary 128,474 46 3.58 2.59 (0.38–17.46)
Above secondary 7,235 1 1.38 1

Study year
1 328,656 142 4.32 1.57 (1.2–2.06)
2 298,516 82 2.75 1

Total rainfall in mm†
< 1.5 207,491 44 2.12 0.46 (0.33–0.66)
1.5–14.6 208,004 83 3.99 0.87 (0.65–1.17)

> 14.6 211,677 97 4.58 1

ITNs use fraction (average)
0.20‡ 269,935 106 3.93 2.76 (1.9–4.02)
0.56§ 97,011 71 7.32 5.15 (3.56–7.45)
0.63¶ 232,102 33 1.42 1

All subjects 627,172 224 3.57 NA

*ITNs = insecticide-treated nets; CI = confidence interval; NA = not applicable.
†Divided into tertiles.
‡Before free mass ITNs distribution (Weeks 5–47); data on ITNs use was not collected for Weeks 1–4.
§After free mass ITNs distribution and before indoor residual spraying (IRS) with Deltamethrin (Weeks 48–62).
¶After IRS with Deltamethrin (Weeks 63–101).
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(lag number 6). Minimum and maximum temperature and
relative humidity had no significant peaks to consider. The
ITNs use fraction and IRS with DDT and Deltamethrin were
lagged by 2 weeks. Total rainfall and IRS with Deltamethrin
significantly predicted the weekly number of falciparum
malaria episodes. However, ITNs use fraction was not signifi-
cant; and separate analyses using data before and after mass
ITNs distribution produced a similar result. Figure 4 shows the
pattern of the variables considered in the final model and the
ITNs use fraction. Table 5 shows the time-series model param-
eter values of the significant predictors with the specified
model structure and Figure 5 shows the performance of the
model prediction (based on “DDT + Deltamethrin” model).
Predictors of total number of falciparum malaria episodes

per individual. The total number of study subjects was 8,121,
of these 4,227 (52.1%) were males. The mean (SD) age was
20.08 (15.35) years.

From Weeks 7 to 101, there were 204 episodes of fal-
ciparum malaria, of which two subjects had three episodes,
11 had two episodes, and the rest had one episode.
The constructed generalized Poisson log-linear model

showed that those who were males, youngest (larger coeffi-
cient for age 5–14 years category), poorest and lived closer to
the vector breeding place being more at risk. Total number of
weeks in which study subjects had slept under ITNs and edu-
cation of the head of the household did not predict total
number of falciparum malaria episodes (Table 6). The
pairwise multiple comparisons for age showed the absence of
a significant difference between age category < 5 and 5–14 or
15–24 years categories. However, significant difference existed
between 5–14 and 15–24 years categories.
Predictors of falciparum malaria infection at individual

level: repeated measurements. The total number of subjects
was 8,071 and the number of measurements per subject ranged

Figure 4. Sequence chart of Plasmodium falciparum episodes, total rainfall (lagged by 6 weeks), indoor residual spraying (IRS) efficacy
(lagged by 2 weeks), and insecticide-treated nets (ITNs) use fraction (lagged by 2 weeks), Chano Mille Kebele, south Ethiopia, 2009–2011.

Table 4

ITNs use fraction and age categories by incidence rate ratio (IRR) of Plasmodium falciparummalaria, ChanoMille Kebele, south Ethiopia, 2009–2011*
Variables

Person-weeks of observation

Plasmodium falciparum

ITNs use fraction (mean) Age in years Number of episodes Weekly incidence per 10,000 IRR (95% CI)

0.2†

< 5 34,432 21 6.10 4.3 (2.28–8.11)
5–14 77,904 59 7.57 5.34 (3.13–9.13)
15–24 65,881 13 1.97 1.39 (0.65–2.99)

> 24 91,718 13 1.42 1

0.56‡

< 5 14,321 11 7.68 2.75 (1.18–6.4)
5–14 28,358 31 10.93 3.92 (1.97–7.79)
15–24 22,090 20 9.05 3.24 (1.54–6.82)

> 24 32,242 9 2.79 1

0.63§

< 5 36,475 5 1.37 1.81 (0.56–5.83)
5–14 68,863 13 1.89 2.49 (0.98–6.35)
15–24 47,525 9 1.89 2.5 (0.92–6.78)

> 24 79,239 6 0.76 1

*ITNs = insecticide-treated nets; CI = confidence interval.
†Before free mass ITNs distribution (Week 5–47); data on ITNs use was not collected for Weeks 1–4.
‡After free mass ITNs distribution and before IRS with Deltamethrin (Weeks 48–62).
§After IRS with Deltamethrin (Weeks 63–101).
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between 2 and 95. Although taking into account the repeated
measurements and the number of subjects, the total sample
size became 582,846. This GEE model involved a total of
199 falciparum malaria episodes based on the availability of
data on ITNs use for each individual. And to check for consis-
tency in prediction, the variables used to build generalized
Poisson log-linear model were considered.
The constructed GEE model showed those who were males,

youngest (larger coefficient for 5–14 years category), poorest,
and who lived closer to the vector breeding place being more
at risk. The ITNs use was protective. Education of the head of
the household was not significant (Table 7). The pairwise mul-
tiple comparisons for age showed that there was no significant
difference among the three younger age categories except
between 5–14 and 15–24 years.

DISCUSSION

The incidence of falciparum malaria was 3.57/10,000 person-
weeks of observation. Of all falciparummalaria episodes, 29.1%
were among temporary residents or visitors. Total rainfall, IRS
with Deltamethrin, nearness to vector breeding place, sex, age,

ITNs use at individual level (not at community level), and
wealth index were significant predictors of falciparum malaria.
The availability of both Co-Artem and Chloroquine moti-

vated the residents to seek treatment at the health post, and
the active search for cases facilitated prompt diagnosis and
treatment. The weekly timescale provided adequate serial
length for time-series modeling. The effect of local meteoro-
logical factors was evaluated controlling for malaria-related
interventions. Different statistical modeling strategies allowed
better scrutiny of the role of potential predictors of falciparum
malaria. In addition, this study evaluated the effect of ITNs use
at an individual level rather than the number of ITNs distrib-
uted. However, the data on ITNs use was based on self-report
and was collected once in a week. Meanwhile, the population
movement was more than expected, and there was no mecha-
nism in place to register newcomers the moment after they
arrived apart from the censuses conducted in the middle and
at the end. Therefore, some study subjects could not be
followed for some of the time they stayed in the study area.
The significant impact of rainfall at a lag of 6 weeks

(“shorter lag”) and the absence of effect of other meteorolog-
ical variables were consistent with the findings of a study con-
ducted in some districts of Ethiopia with comparable

Table 5

Time series modeling of weekly number of Plasmodium falciparum episodes, Chano Mille Kebele, south Ethiopia, 2009–2011*
Model structure Variables† Estimate P

ARIMA (0,1,5) (0,0,0)
Number of Plasmodium falciparum episodes q 1 0.887 < 0.001

5 −0.401 0.022
Total rainfall (lagged by 6 weeks)‡ TF order None 0.022 0.001

IRS efficacy (lagged by 2 weeks)
DDT + Deltamethrin§ TF order None −1.867 0.001
Deltamethrin alone¶ TF order None −1.400 0.008
DDT alonek TF order None −4.326 0.365

*ARIMA = auto-regressive integrated moving average; TF = transfer function; q = moving average order (both orders were significant in DDT alone and Deltamethrin alone models);
IRS = indoor residual spraying.
†Plasmodium falciparum incidence and total rainfall had first order of non-seasonal differencing.
‡The reported estimate and P value in the table was for the model incorporated “DDT + Deltamethrin.” Rainfall was significant while the model incorporated Deltamethrin alone

(estimate = 0.022 and P = 0.002) and DDT alone (estimate = 0.017 and P = 0.017).
§Ljung-Box Q P = 0.747, and Goodness of fit (Stationary R-squared) = 75.2%; “DDT + Deltamethrin” represents the model that incorporated both but does not mean that both were sprayed

together or their interaction term has been used.
¶Ljung-Box Q P = 0.282, and Goodness of fit (Stationary R-squared) = 71.8%.
kLjung-Box Q P = 0.368, and Goodness of fit (Stationary R-squared) = 70.6%.

Figure 5. Actual and model-predicted Plasmodium falciparum episodes over 95 weeks of observation, Chano Mille Kebele, south Ethiopia,
2009–2011.
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temperature and timescale.6 The reason behind the analysis of
local meteorological conditions in this work was to take into
account the confounding effect while making conclusions
about the impact of malaria prevention and control measures.
The ITNs use fraction and incidence of falciparum malaria

increased in the period between mass ITNs distribution and
IRS with Deltamethrin. We suggest that the episodes of
falciparum malaria were dependent on other factors like rain-
fall rather than the ITNs use. Time series modeling showed
that ITNs use fraction did not reduce incidence of falciparum
malaria. This could also be explained by qualitative evaluation
of Figure 4. After free mass ITNs distribution, the increase in
ITNs use did not reduce falciparum malaria before IRS with
Deltamethrin was introduced. Fifteen weeks is probably long
enough to evaluate the impact of ITNs use fraction. Although
the proportion of use by adults and children reached 35–65%,
a threshold recommended,19 the observed ITNs use might not
be sufficient to reduce falciparum malaria. A previous study
also showed that high ITNs ownership alone did not reduce
falciparum malaria.23

The generalized Poisson log-linear model also showed that
the study subjects were at risk of getting malaria infection
regardless of the number of nights they had spent under the
ITNs. This model did not consider the lag effect of ITNs use
because the total number of nights spent under ITNs was
obtained by cumulating the number of times that individuals

slept under ITNs and hence, could not guarantee protection
against falciparum malaria unless the ITNs were used consis-
tently. Therefore, the absence of a significant effect of total
number of nights spent under ITNs on episodes of falciparum
malaria might be related to inconsistent or improper use of
ITNs.33 Though both time-series and generalized Poisson log-
linear modeling showed some valuable information about
ITNs on the general picture of malaria epidemiology, both
modeling approaches used a crude way of assessing link
between ITNs and falciparum malaria infection. To compen-
sate this, we used modeling allowing for repeated measure-
ments and lagged effects, and it confirmed ITNs use at
individual level as protective. Therefore, this study confirms
that ITNs were protective at the individual level but did not
show community-wide benefit with the observed ITNs use
fraction. The absence of community-wide benefit suggests the
excito-repellent effect of ITNs might have outweighed the
insecticidal effect. This is because it is the insecticidal effect of
the ITNs that results in community-wide benefit, whereas the
excito-repellent effect increases the risk of infection among
non-users.34,35

The observed data of falciparum malaria episodes and the
simulated efficacy decay of DDT and Deltamethrin showed
that IRS with DDT did not reduce falciparum malaria
episodes, but IRS with Deltamethrin did. This suggests the
community-wide benefit of the IRS with Deltamethrin

Table 7

Predictors of Plasmodium falciparum malaria episodes: GEE model, Chano Mille Kebele, south Ethiopia, 2009–2011

Variable (N = 582,846)

Bivariate Multivariate

Coefficient Wald c2 P Coefficient Wald c2 P

Sex: male 0.532 11.65 0.001 0.497 10.48 0.001

Age in years*†
< 5 1.184 20.09 < 0.001 1.019 15.64 < 0.001
5–14 1.417 41.44 < 0.001 1.163 29.25 < 0.001
15–24 0.782 9.32 0.002 0.644 6.6 0.01

Wealth index −0.233 8.04 0.005 −0.155 4.11 0.043
Distance (meters) from vector breeding place −0.002 85.34 < 0.001 −0.002 83.32 < 0.001
ITNs user −0.584 13.36 < 0.001 −0.496 9.97 0.002

Education: head of household‡
No education −0.035 0.001 0.972

NAPrimary 0.112 0.015 0.903
Secondary −0.019 3.599E-4 0.985

*Reference category: > 24 years.
†Age as continuous variable had: bivariate (Coefficient = −0.038, Wald c2 = 37.31 and P < 0.001) and multivariate (Coefficient = −0.032, Wald c2 = 25.31 and P < 0.001).
‡Reference category: above secondary.
GEE = generalized estimating equation; ITNs = insecticide-treated nets; NA = not applicable.

Table 6

Predictors of total number of Plasmodium falciparum episodes per individual: generalized Poisson log-linear model, Chano Mille Kebele, south
Ethiopia, 2009–2011

Variable (N = 8,121)

Bivariate Multivariate

Coefficient Wald c2 P Coefficient Wald c2 P

Sex: Male 0.503 11.06 0.001 0.485 10.68 0.001

Age in years*†
< 5 1.215 21.77 < 0.001 1.117 19.47 < 0.001
5–14 1.463 46.28 < 0.001 1.343 39.98 < 0.001

15–24 0.742 8.72 0.003 0.747 9.09 0.003
Wealth index −0.271 11.91 0.001 −0.186 6.49 0.011
Distance (meters) from vector breeding place −0.002 87.12 < 0.001 −0.002 83.55 < 0.001
ITNs use: total number of weeks an individual slept under ITNs 1.913E-5‡ 7.52E-5 0.993 NA

Education: head of household‡§
No education 0.803 0.648 0.421

NAPrimary 0.980 0.957 0.328
Secondary 0.916 0.830 0.362

*Reference category: > 24 years.
†Age as continuous variable had: bivariate (Coefficient = −0.039, Wald c2 = 34.67, and P < 0.001) and multivariate (Coefficient = −0.035, Wald c2 = 29.59, and P < 0.001).
‡Omnibus test was not significant (the model did not outperform the intercept-only model).
§Reference category: above secondary.
ITNs = insecticide-treated nets; NA = not applicable.
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surpassed that of the ITNs (PermaNet2.036) though the ITNs
were coated with the same insecticide.
The greater risk among children 5–14 years of age and

male subjects was comparable to other findings.13,37 In gen-
eral, younger study subjects had higher incidence rates, and
this may be related to a lack of acquired immunity. The free
mass ITNs distribution changed the rate of acquiring
falciparum malaria among different age categories. Before
free mass ITNs distribution IRR was higher in the 5–14 years
than among < 5 years of age children. After free mass ITNs
distribution, IRR increased among the 15–24 year age group.
This may confirm the shift in rate of acquiring falciparum
malaria among different age categories after such interven-
tions, as has also been reported by others26,38,39; meanwhile,
the absence of a significant difference in the IRRs of all age
categories after IRS with Deltamethrin suggests that IRS
protects all household members regardless of their age. This
may also suggest the differences in IRRs among the age
categories before IRS with Deltamethrin being attributable
to age-related ITNs usage.
Population movement in a form of labor migration is con-

sidered important in malaria8 and other vector-born disease9

transmissions. This study showed that temporary residents
or visitors experienced about a quarter of the number of
falciparum malaria episodes. Characterizing these cases was
limited because of uncertainties of their denominator. Never-
theless, their malaria risk seems to be higher because their
denominator or length of stay is less or shorter than that of
the permanent residents. This shows the contribution of pop-
ulation movement to malaria transmission, and its implication
in prevention and control, and the need for further study.
In conclusion, there were 3.57 episodes of falciparum

malaria per 10,000 person-weeks of observation. The data
showed that rainfall at a lag of 6 weeks significantly increased,
and IRS with Deltamethrin (but not with DDT) reduced
falciparum malaria incidence. The ITNs use fraction did not
show community-wide benefit, whereas individual ITNs pre-
vented falciparum malaria in individuals.
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CONSTRUCTION OF WEALTH INDEX

Principal component analysis (PCA) was carried out using

15 variables. Eleven of the variables were binary and the

other four variables were dichotomized into meaningful cat-

egories (some of the original categories had very few fre-

quencies (Table SF1). Other socio-economic variables were

also analyzed but did result in smaller Eigen values. The total

variance explained by the first principal component and the

corresponding Eigen value was 20.35% and 3.05, respec-
tively. The inclusion of education of the household head in
the PCA reduced the total variance explained by 1%, so we
opted not to consider it in the wealth index construction
rather to use it separately in further analysis. It is also known
that the majority of the household heads depend on farming
to generate income rather than being used on the merits of
their educational status. Table SF2 shows frequencies, com-
munalities, and correlations.

Supplementary TABLE SF1

Variables and assigned values

S. no. Variables Assigned values

1 Electricity Present = 1, Absent = 0
2 Watch Present = 1, Absent = 0
3 Radio Present = 1, Absent = 0
4 TV Present = 1, Absent = 0
5 Mobile Present = 1, Absent = 0
6 Refrigerator Present = 1, Absent = 0
7 Separate room used for kitchen Present = 1, Absent = 0
8 Bicycle Present = 1, Absent = 0
9 Any land used for agriculture Present = 1, Absent = 0
10 Livestock Present = 1, Absent = 0
11 Account in bank or credit association Present = 1, Absent = 0
12 Main material of the floor Cement/ceramic tiles = 1* Earth or dung = 0
13 Main material of the roof Corrugated iron or cement/concrete = 1† Thatch or leaf = 0
14 Main material of the wall Wood with mud/wood with mud and cement = 1‡ No wall§/only wood = 0
15 Latrine facility Pit latrine¶ = 1, No latrine = 0

*Ceramic tile floor: 2 households.
†Cement/concrete roof: 2 households.
‡Wood with mud and cement: 3 households.
§No wall: 2 households.
¶No other specific types reported.

Supplementary TABLE SF2

Frequencies of the binary/dichotomized variables, communalities, and correlations with the first component

Variable (N = 1388)

Present or favorable

Communalities* Correlations with the first component†Frequency Percent

Electricity 1,166 84.0 0.539 0.602
Watch 722 52.0 0.384 0.579
Radio 873 62.9 0.496 0.644
TV 196 14.1 0.555 0.609
Mobile 223 16.1 0.457 0.497
Refrigerator 15 1.1 0.357 0.245
Separate room used for kitchen 767 55.3 0.393 0.374
Bicycle 255 18.4 0.369 0.538
Any land used for agriculture 743 53.5 0.606 0.396
Livestock 800 57.6 0.576 0.417
Account in bank or credit association 127 9.1 0.568 0.180
Main material of the floor 67 4.8 0.322 0.353
Main material of the roof 913 65.8 0.341 0.541
Main material of the wall 1,354 97.6 0.236 0.185
Latrine facility 1,358 97.8 0.439 0.134

*Estimates of the variance in each variable accounted for by the components (4 components were extracted but we took the first component for further analysis).
†Radio was the most representative (of the first component) and followed by TV, electricity, watch, main material of the roof. . . and latrine facility was the least. The absence of negative values

confirms that all variables were positively correlated with wealth (as expected).
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Abstract

Background: Understanding the spatio-temporal pattern of malaria transmission where prevention and control measures
are in place will help to fine-tune strategies. The objective of this study was to assess the effect of mass distribution of
bednets and indoor residual spraying (IRS) with insecticides on the spatio-temporal clustering of malaria in one malaria
endemic village in south Ethiopia.

Methods: A longitudinal study was conducted from April 2009 to April 2011. The average population was 6631 in 1346
locations. We used active and passive searches for malaria cases for 101 weeks. SatScan v9.1.1 was used to identify
statistically significant retrospective space–time clusters. A discrete Poisson based model was applied with the aim of
identifying areas with high rates. PASW Statistics 18 was used to build generalized Poisson loglinear model.

Results: The total number of both types of malaria episodes was 622, giving 45.1 episodes per 1000 persons per year;
among these, episodes of Plasmodium falciparum and vivax infection numbered 316 (22.9 per 1000 per year) and 306
(22.2 per 1000 per year), respectively. IRS with Dichlorodiphenyltrichloroethane (DDT) and later with Deltamethrin and free
mass distribution of insecticide-treated nets (ITNs) were carried out during the study period. There was space–time
clustering of malaria episodes at a household level. The spatio-temporal clustering of malaria was not influenced by free
mass distribution of ITNs; however, the time-span of the spatio-temporal clustering of malaria cases ended after IRS with
Deltamethrin. The presence of clusters on the south-east edge of the village was consistent with the finding of an increasing
risk of acquiring malaria infection for individuals who lived closer to the identified vector breeding site.

Conclusion: The risk of getting malaria infection varied significantly within one village. Free mass distribution of ITNs did not
influence the spatio-temporal clustering of malaria, but IRS might have eliminated malaria clustering.
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Introduction

Malaria is a leading health problem in Ethiopia, where 67% of

the 82 million people are estimated to be at risk. There were 1 036

316 confirmed cases of malaria in 2009. The dominant

plasmodium species are Plasmodium falciparum and vivax, and the

major Anopheles species responsible for transmission is arabiensis [1].

In 2005, massive expansion of malaria control programmes

included the distribution of long-lasting insecticidal nets (LLINs),

and the use of Artemether–Lumefantrine as a first-line treatment

for Plasmodium falciparum malaria [1,2]. In 2007 and 2010, the

percentage of households with at least one LLTN was 53.8% [2]

and 72% [1], respectively. In addition, 20% of households below

an altitude of 2000 metres above sea level were subjected to indoor

residual spraying (IRS) [2].

Nationally, the number of cases has declined since 2005 due to

an expansion in the malaria control programmes. However,

malaria admissions increased in 2009 [1], and more than the

expected number of cases occurred in south Ethiopia in 2010/

2011 [3]. The reasons for this apparent increase are not well

documented and there have been calls for better understanding of

disease transmission, and an evaluation of malaria control

measures.

To implement malaria prevention and control measures, and to

understand risk dynamics, application of Geographic Information

System (GIS) has been emphasized, in particular to provide

a precise definition of the time and location of epidemics [4]. The

results of GIS can be used to explain the interactions among

humans, their environment, risk factors, and changes over time

and space [5,6]. Geo-referencing of malaria cases, combined with

efforts to link them to potential locations of environmental

exposure, increases the benefit of disease maps [7].

Spatial epidemiological studies at a finer geographic scale, such

as households, help to increase understanding of the varied pattern
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of malaria infection and transmission [8]. Several studies have

reported significant spatial and temporal variation in malaria

transmission. Mapping high-risk zones or clusters may contribute

to improved prevention and control efforts by delivering limited

resources to the population at higher risk [8–14]. To inform

policy, it is also important to observe the spatio-temporal pattern

of transmission in line with the presence or absence of prevention

and control measures on the ground. Therefore, this study aimed

to investigate the effect of prevention and control measures on the

spatio-temporal clustering of malaria at a household level in one

malaria endemic village in south Ethiopia.

Materials and Methods

Study Area
Chano Mille Kebele (Kebele is the lowest administrative unit in

Ethiopia) is 492 km south of Addis Ababa (Figure 1). The altitude

is 1206 m above sea level. The annual rainfall was 650 mm in

2009 and 1057 mm in 2010. The area covers 2.4 square km.

There were 1388 households (1346 locations) with an average

population (from the first, midway and last census) of 6631 people

(the total population followed was 8121). The average household

size was 5.9 (8121/1388) individuals. The number of households

was greater than the number of locations because some households

left the study area, replaced by others in the same locations.

Chano Mille Kebele was selected purposely for the study of

malaria epidemiology. Three main irrigation ditches run from the

neighbouring Kebele in the west, cross the Kebele and may also

end within the Kebele. There are two adjacent Kebeles, Chano

Dorga to the north-west and Chano Chalba to the south-west. The

area to the east and south-east sides of the Kebele, extending to

Lake Abaya, is used for agricultural purpose. Most of the

households grow mango trees within their compounds.

There was one health post in the village staffed by a health

extension worker. A health post provides basic health services,

including malaria diagnosis using rapid diagnostic test (RDT) kits

and treatment with Artemether–Lumefantrine.

Study Design
The cohort study was carried out from April 2009 to April

2011. Both active and passive surveillance schemes were used.

Each household was visited every week for 101 weeks looking for

cases of fever (temperature $37.5 degrees Celsius); if needed

patients were referred to the health post for diagnosis and

treatment of malaria (active case finding). Each day, we checked

whether the referred cases had visited the health post. During the

Figure 1. Map of Ethiopia and location of Chano Mille Kebele.
doi:10.1371/journal.pone.0047354.g001
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days between the visits, the residents were advised to self-report to

the health post if they became febrile (passive case-finding).

We gave a unique household number to each household before

the first census. The geographic coordinates of all households were

recorded using GPS during the first census. The GPS reading for

the new households was performed during the midway census. We

also recorded GPS coordinates for the main vector breeding sites.

These vector breeding sites are swampy areas close to Lake Abaya,

with many hoof prints of cattle and hippopotami. Such small water

bodies are formed mainly after flooding of the lake during the

rainy season. We did not find larvae of Anopheles species near the
irrigation ditches or at other locations in the study area.

Blood Samples and Patient Management
The laboratory technician used a single finger prick to collect

blood samples for RDT and prepared thick and thin blood films

for microscopic evaluation. Based on the results of the RDT, the

patients were treated with Artemether–Lumefantrine (Plasmodium
falciparum) or Chloroquine (Plasmodium vivax). Chloroquine was

provided by the research project. Two experienced laboratory

technicians read each blood slide independently. Whenever there

was a discordant reading, confirmation was obtained from a third

reader. All readers were blinded to the readings of the others.

Analysis
Spatio-temporal. We used SatScan v9.1.1 (http://www.

satscan.org/) software for spatial and space–time statistical

analysis, to identify statistically significant retrospective space–

time clusters. Two episodes of malaria (one vivax and one

falciparum) were excluded from the analysis because of missing

data on the location. The time precision was 1 month and

a coordinate file was provided with latitude and longitude values.

All cases were checked to ascertain whether they had occurred

within the specified time period and geographical area. Case,

population and coordinates files were prepared, considering

a discrete Poisson-based model. The focus was to detect areas of

high infection rate. A criterion of ‘no geographical overlap’ was

used to report secondary clusters. The P-value was generated using

a combination of standard Monte Carlo, sequential Monte Carlo

and Gumbel approximation [15]. We used 9999 Monte Carlo

replications. The maximum temporal cluster size was set at 50%.

The spatial window shape was circular, and the maximum spatial

cluster size was set at 25% of the population at risk, after

evaluating the effects of switching this value to 15%, 35% and

50%. Given that we used the geographic coordinates of the

households, which were close to one another, we performed the

analysis by evaluating the possible changes while using different

levels of maximum spatial cluster size restriction as a percentage of

the population at risk. We started arbitrarily with 50%, then 35%,

25% and finally 15%. This helped to show how the SatScan

software captures the clustering with varying spatial cluster size

restrictions. We observed that the centres of the circles of the most

likely clusters of all spatial cluster size restrictions occurred

consistently very close to the south-east corner of the village.

A maximum spatial cluster size of 50% is recommended

because it should capture all clustering. In our case, it captured all

the smaller clusters (most likely and secondary) that we observed

while running the analysis with smaller maximum spatial cluster

size within one most likely cluster, and it provided no secondary

cluster. The greater portion of the cluster circle had no households

in it. The clusters with maximum cluster size smaller than 50%

yielded smaller clusters with varying relative risks. A maximum

spatial cluster size of 35% yielded a very small secondary cluster

with only 34 people in it, and the greater portion of the cluster

circle did not hold households. A maximum spatial cluster size of

15%, to accommodate an additional secondary cluster, pushed the

most likely cluster to the edge of the village and again the greater

portion of the cluster circle contained no households. This

revealed three secondary clusters, of which one contained only

21 people and the other was the same as the secondary cluster

detected using the 25% maximum spatial cluster size restriction.

Therefore, we decided that the 25% maximum cluster size

restriction was most appropriate to show the malaria clustering

activity of the study area because the portion of the most likely

cluster circle with no households was relatively small and this

specification yielded a secondary cluster. All the results reported

here were obtained with this maximum spatial window size. The

same maximum spatial cluster size was used to investigate the

differences in clustering by the type of malaria and years of study.

(Supplemental figures S1, S2 and S3 are provided showing space-

time clusters of different maximum spatial cluster size restrictions.).

Individual level factors. The PASW Statistics 18 program

(Chicago, IL, USA) was used to fit a generalized Poisson loglinear

model. The dependent variables were episodes of vivax and

falciparum malaria. The potential predictors considered were:

distance to the vector breeding site, number of households located

between each household and the vector breeding site (household

count), sex, age, wealth index and total number of nights spent

under insecticide-treated nets (ITNs). Every week, residents were

asked whether they slept under ITNs the night before the

interview and the names of the household member who had slept

under ITNs were recorded. To get the total number of nights

spent under ITNs, we summed-up the weekly data for each

individual. The number of weeks for which each individual had

been observed was used as a scale weight variable. The scale

parameter method was Pearson chi-square and a robust estimator

was used for the covariance matrix. The log-likelihood function

was kernel. The ratio of the Pearson chi-square value to its degrees

of freedom was used to rule out over-dispersion. This value was

1.34 and 1.28 for vivax and falciparum episodes, respectively.

Given that these values did not deviate significantly from 1, we

assumed that the Poisson distribution was a good fit for the data.

Statistically significant (P-value ,0.05) variables detected during

bivariate analyses were considered for the multivariate model. The

exponential form of the estimates was interpreted as the incidence

rate ratio (IRR). We reported the IRR with 95% confidence

intervals (CI).

We used ESRI HArcMapTM 9.3(CA, USA) to calculate the

distance of each household from the vector breeding site (in km)

and to produce the maps.

To get household count– the number of households between an

individual household and the breeding site, we used the

methodology described in supplemental file S1 (with figures S4,

S5 and S6). This methodology assumes the potential possible area

covered by a mosquito increases with distance travelled, and the

flight pattern has a form of a circular sector. The measure is

expressed in form of an angle. To highlight the sensitivity to the

selection of search angle, the analysis was repeated with angles

from 1 to 30 degrees (1, 5, 10, 15, 20, 25 and 30). The algorithm

was implemented in R [16], and the household count for each

search angle was analysed independently.

A recent paper by the authors has reported the predictors of

falciparum malaria episodes, which included the effect of

meteorological covariates (total rainfall, temperature and relative

humidity), ITN utilization rate, efficacy of the insecticides used for

IRS, and other factors. The statistical models employed were auto-

regressive integrated moving average models with a transfer

function model, generalized Poisson loglinear model and gener-
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alized estimating equation with logit link function. Principal

Component Analysis was used to construct wealth index. The

variables included were presence of electricity, watch, radio, TV,

mobile telephone, refrigerator, separate room used for kitchen,

bicycle, any land used for agriculture, livestock, account in bank or

credit association and latrine facility. In addition the main

materials of the floor, the roof and the wall were included. The

technical details of the construction of the wealth index were

reported elsewhere [17].

Ethical Approval
The Regional Health Research Ethics Review Committee of the

Southern Nations, Nationalities and People’s Regional Health

Bureau has approved this research project. Informed verbal

consent was obtained from all study participants and recorded by

the research team on the ethical consent form (with prior approval

from our ethics review committee). For minors, consent was

obtained from their caregivers or legal guardians. All cases of

malaria were treated immediately. Given that the blood samples

were collected only for the purpose of malaria diagnosis and

treatment, written consent was not suggested by the Regional

Health Research Ethics Review Committee.

Results

The study population (average of the three censuses) was 6631

in 1388 households (1346 locations). Within the study period, the

total number of both types (Plasmodium falciparum and vivax) of

malaria episode was 622, resulting in 45.1 episodes per 1000

persons per year. The number of Plasmodium falciparum and vivax

episodes was 316 (in 226 locations) and 306 (in 199 locations);

meanwhile, the annual rate of episodes per 1000 persons was 22.9

and 22.2, respectively. A higher number of malaria episodes

occurred in males and in individuals aged 5–14 years. The mean

distance of households with malaria episodes from the vector

breeding site was lower (Table 1).

Space–time Analysis
Both the most likely and the secondary clusters were found on

the south-east edge of the village, facing the vector breeding site

(Figures 2 and 3).

The most likely cluster. The most likely space–time cluster

lasted for 9 months (of the 25 months of the study) for both

Plasmodium species. However, the Plasmodium vivax cluster started

and ended 1 month earlier and had a smaller relative risk. The size

and location of the most likely cluster of Plasmodium falciparum was

the same as the cluster for both types of malaria. However, the

relative risk for the Plasmodium falciparum cluster was greater.

Households within the cluster were 7.49 times more at risk of

contracting Plasmodium falciparum infection than households outside

the cluster. This risk was 5.39 for Plasmodium vivax and 6.05 for

both types of malaria (Table 2).

The secondary cluster. Plasmodium falciparum alone did not

have a secondary cluster. The relative risk was 3.28 for both types

of malaria and 5.47 for Plasmodium vivax alone. The time-span for

both types of malaria was the same as that of the most likely cluster

but was shorter by 4 months for Plasmodium vivax alone (Table 3).

Analysis for separate years. The space–time analysis result

of both Plasmodium species (for separate years) was relatively similar

with the analysis involving the whole study period. The location of

the most likely clusters of year I and year II was almost the same.

However, significant secondary cluster was found only in the first

year of the study. There was also slight increase in the relative risk

values (Table 4). Figure 4 shows significant space–time clusters of

each study year.

Malaria Preventive Measures and Spatio-temporal
Clustering
The three major preventive measures applied by the govern-

ment during the study period included: IRS with Dichlorodiphe-

nyltrichloroethane (DDT): 91% of the houses were sprayed in June

2009, free mass ITN distribution (2.3 ITNs per household) in

March 2010, and IRS with Deltamethrin: 97.5% of the houses

Table 1. Malaria episodes by Plasmodium species, sex, age, number of locations and mean distance of locations (with and without
episodes) from the vector breeding site.

Types of malaria

Plasmodium Falciparum Plasmodium Vivax

Number Percent Number Percent

Number of episodes Sex Male 208 65.8 196 64.1

Female 108 34.2 110 35.9

Age in years ,5 45 14.2 71 23.2

5–14 146 46.2 130 42.5

15–24 85 26.9 71 23.2

.24 40 12.7 34 11.1

Total 316 306

Annual number of episodes per 1000 22.9 22.2

Number of locations 226 199

Mean (SD) distance of locations from
the vector breeding site (km)

With episodes 2.28 (0.36) 2.36 (0.34)

Without episodes 2.53 (0.33)1 2.51 (0.34){

1Number of locations: 1120.
{Number of locations: 1147.
SD: standard deviation.
doi:10.1371/journal.pone.0047354.t001
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Figure 2. Most likely (big) and secondary (small) clusters (shaded circles) of all malaria episodes- orange dots refer to all malaria
episodes.
doi:10.1371/journal.pone.0047354.g002

Figure 3. Most likely and secondary clusters (shaded circles) of malaria episodes by Plasmodium species: Red dots refer to
Plasmodium Falciparum episodes that had one most likely cluster. Meanwhile, green dots refer to Plasmodium Vivax episodes that had most
likely (big) and secondary (small) clusters.
doi:10.1371/journal.pone.0047354.g003
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were sprayed in July 2010. The spatial coverage of IRS and ITNs

are presented in Figures 5 and 6. The spatio-temporal clustering

started 5–6 months after the IRS with DDT and continued for 4–5

months after free mass distribution of ITNs, but ended within 1

month after IRS with Deltamethrin. The time-span of the most

likely space–time cluster generated by SatScan and the timing of

the interventions in relation to the monthly incidence of malaria

are presented in Figure 7.

Factors Determining Episodes of Falciparum and Vivax
Malaria at Individual Level
Of the total number of falciparum and vivax episodes, 224 and

203 episodes, respectively, occurred among permanent residents

for whom we had follow-up data.

Living nearer to the vector breeding site increased the risk of

acquiring falciparum malaria, that is, each 1 km closer to the

vector breeding site added 4.93 (95% CI: 2.59–9.35) times more

risk. Household count was negatively associated with both types of

malaria episodes with all vector’s search angles considered during

bivariate analyses. However, the household counts of the first three

lower search angles (1, 5 and 10 degrees) were found to be

statistically significant in the multivariate model for falciparum

episodes. As the vector’s search angle decreases, the effect of

household count increases. With a search angle of 1 degree, for

each additional household between a household of interest and the

vector breeding site, the risk of getting falciparum malaria

decreases by 2%. Male participants had 1.63 (95% CI: 1.22–

2.18) times more risk of acquiring falciparum malaria. When

compared with adults aged .24 years, children aged 5–14 years

had 3.82 (95% CI: 2.52–5.78) times more risk. Having higher

wealth index was marginally failed to be protective against

falciparum malaria (P-value: 0.051) in the model containing

household count. Nevertheless, for search angles above 15 degrees,

the wealth index regains statistical significance as the household

count becomes no more statistically significant. The total number

of nights spent under ITNs was not associated with the total

number of falciparum episodes. Regarding vivax malaria, house-

hold count, sex, wealth index and the total number of nights spent

under ITNs were not significant predictors. Meanwhile, when

compared with adults aged .24 years, children ,5 years old had

7.6 (95% CI: 4.2–13.74) times more risk, and living 1 km closer to

the vector breeding site conferred 2.9 (95% CI: 1.2–6.99) times

more risk of acquiring vivax malaria (Table 5).

Discussion

There was a space–time clustering of malaria at household level.

Free mass distribution of ITNs did not affect the spatio-temporal

clustering of malaria, but IRS might have. Living nearer to the

vector breeding site increased the risk of acquiring malaria

infection. These differences in malaria risk within a population

who live in one village reflect the complexity of the disease

transmission dynamics.

Our study confirms the findings of other studies that have

shown spatio-temporal clustering of malaria cases at varying

geographical extents [9–13], and even at household level [8,14].

The epidemiology of malaria in the study area may be unique, and

this will limit the generalizability of the findings. However, the

study of malaria in such a micro-environment may help to provide

better knowledge on how the disease transmission is influenced by

preventive and control measures.

Clustering varied by the type of malaria [8]. The similarity in

size and location of the most likely clusters for both types and for

Table 2. Space–time scan statistics of the most likely cluster of malaria episodes.

Both types of malaria Plasmodium Falciparum Plasmodium Vivax

Number of locations included 326 326 332

Coordinates 6.1100N, 37.6005E 6.1100N, 37.6005E 6.1105N, 37.5986E

Radius (km) 0.43 0.43 0.33

Time frame Dec. 2009 to Aug. 2010 Dec. 2009 to Aug. 2010 Nov. 2009 to Jul. 2010

Population 1626 1626 1653

Number of episodes 230 133 106

Expected episodes 54.99 27.94 27.4

Annual episodes/1000 188.6 109.0 85.8

Observed/expected 4.18 4.76 3.87

Relative risk 6.05 7.49 5.39

Log likelihood ratio 184.43 124.51 77.11

P-value ,0.001 ,0.001 ,0.001

doi:10.1371/journal.pone.0047354.t002

Table 3. Space–time scan statistics of the secondary clusters.

Both types of malaria Plasmodium Vivax

Number of locations
included

81 102

Coordinates 6.1077N, 37.5947E 6.1071N, 37.5946E

Radius (km) 0.17 0.22

Time frame Dec. 2009 to Aug. 2010 Dec. 2009 to Apr. 2010

Population 407 489

Number of episodes 43 23

Expected episodes 13.76 4.48

Annual episodes/1000 140.8 113.8

Observed/expected 3.12 5.13

Relative risk 3.28 5.47

Log likelihood ratio 20.46 19.67

P-value ,0.001 ,0.001

doi:10.1371/journal.pone.0047354.t003
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Figure 4. Most likely (big) and secondary (small) clusters (shaded circles) of malaria episodes (both types) according to study year-
orange dots refer to all malaria episodes of the corresponding year.
doi:10.1371/journal.pone.0047354.g004

Table 4. Space–time scan statistics of the most likely and secondary clusters of malaria episodes (both types) according to year of
study.

Year I
(Apr. 2009 to Mar.2010)

Year II
(Apr. 2010 to Apr.2011)

Most-likely cluster Secondary cluster Most-likely cluster

Number of locations included 264 79 322

Coordinates 6.1105N, 37.6009E 6.1077N, 37.5947E 6.1099N, 37.6009E

Radius (km) 0.39 0.17 0.47

Time frame Dec. 2009 to Mar. 2010 Jan. 2010 to Mar. 2010 Apr. 2010 to Aug. 2010

Population 1335 399 1604

Number of episodes 107 22 115

Expected episodes 21.9 4.9 27.6

Annual episodes/1000 241.9 223.8 171.2

Observed/expected 4.89 4.52 4.2

Relative risk 6.77 4.77 6.21

Log likelihood ratio 97.79 16.52 93.13

P-value ,0.001 0.002 ,0.001

doi:10.1371/journal.pone.0047354.t004
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Figure 5. Spatial coverage of indoor residual spraying (IRS) with DDT and Deltamethrin: Red dots refer to houses that were not
sprayed and smaller blue dots refer to sprayed houses.
doi:10.1371/journal.pone.0047354.g005

Figure 6. Spatial coverage of insecticide treated bednets (ITNs): Red dots refer to households that did not receive ITNs and smaller
blue dots refer to those who received at least one ITN.
doi:10.1371/journal.pone.0047354.g006
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Plasmodium falciparum malaria may show that the clustering of

Plasmodium falciparum dominated that of Plasmodium vivax. It was also

shown that the relative risk of the Plasmodium falciparum cluster was

higher than that of both types of malaria for the same cluster

location and size. Similarly, the existence of a secondary cluster in

the analysis of both types of malaria took into account the

clustering activity of Plasmodium vivax (rather than Plasmodium

falciparum) because we observed a secondary cluster only for this

species (with a shorter time span and higher relative risk) when

analysed separately. The most likely cluster of Plasmodium vivax

alone was also closer to the centre of the village (farther from the

vector breeding site). Descriptive statistics also showed that the

mean distance of households with episodes of Plasmodium vivax was

slightly farther from the vector breeding site than that of

households with Plasmodium falciparum episodes. To confirm the

effect of the vector breeding site on malaria clustering in

households close to it, we used Poisson regression to estimate its

effect at the level of individual episodes, controlling for household

count, sex, age, wealth index and the number of nights slept under

ITNs. Those who lived nearer to the vector breeding site had

a greater risk of acquiring infection; meanwhile, the increase in

risk was greater for falciparum than for vivax malaria (4.93 versus

2.9), respectively, as a function of living 1 km closer to the vector

breeding site. This may support the finding that the most likely

cluster of falciparum malaria was nearer to the vector breeding site

than the most likely cluster of vivax malaria, and also justifies the

need for separate space–time clustering analysis for each

Plasmodium species. There may also be a need to verify the role

of new versus relapse episodes of vivax malaria on the space–time

clustering.

An increase in risk of getting vivax malaria has occurred in two

locations (vivax malaria had significant secondary cluster) and the

relative risks within vivax malaria clusters were smaller than that of

falciparum malaria cluster. This may suggest that a targeted

intervention could be easier to apply for falciparum than for vivax

malaria in the study area.

There is ample evidence that sleeping under ITNs protects

against malaria infection [18], provided that they are used

properly [19]. The absence of a significant impact of the number

of nights slept under ITNs on the total number of malaria episodes

an individual experienced may be related to inconsistent or

improper use of ITNs. Meanwhile, in the prevention of malaria at

a community level, the role of ITNs depends on the utilization rate

[20]. The level of ITN utilization increased after mass distribution

of ITNs (data are not shown); however it did not lower the risk for

malaria clustering. Therefore, it is possible that free mass

distribution of ITNs is not an effective tool with which to combat

malaria without follow-up to ensure the optimal utilization of the

ITNs.

The time span (December 2009 to August 2010) for the spatio-

temporal clustering of both types of malaria ended when the

possible effect of IRS with Deltamethrin (sprayed in July 2010)

started. Although it may not be possible to reach the conclusion

that IRS alone eliminated the spatio-temporal clustering of

Figure 7. Monthly malaria incidence, time of interventions and
time span of the most likely spatio–temporal cluster of all
types of malaria. The shaded part indicates the time-span of the most
likely space–time cluster.
doi:10.1371/journal.pone.0047354.g007

Table 5. Factors determining malaria episodes at individual level.

Variable (n =8121) Plasmodium Falciparum (224 episodes) Plasmodium Vivax (203 episodes)

Crude IRR (95% CI) Adjusted IRR (95% CI) Crude IRR (95% CI) Adjusted IRR (95% CI)

Distance (km) from
vector breeding site1

11.11(6.67–20.0) 4.93(2.59–9.35)* 4.55(2.7–7.69) 2.9(1.2–6.99)*

Household count with a search
angle of 1 degree{

0.98(0.96–0.99) 0.98(0.96–0.99)* 0.97(0.96–0.98) 0.99(0.97–1.01)

Sex : Male 1.65(1.23–2.23) 1.63(1.22–2.18)* 1.26(0.87–1.83) NA

Age in years{ ,5 3.37(2.02–5.62) 3.07(1.87–5.03)* 7.82(4.31–14.2) 7.6(4.2–13.74)*

5–14 4.32(2.83–6.58) 3.82(2.52–5.78)* 6.91(3.95–12.12) 6.53(3.74–11.41)*

15–24 2.1(1.28–3.44) 2.14(1.31–3.48)* 1.84(0.91–3.74) 1.84(0.91–3.75)

Wealth index 0.76(0.65–0.89) 0.91(0.83–1.0)¥ 0.95(0.78–1.16) NA

Total number of nights
spent under ITNs

1(0.99–1.01) NA 1(0.99–1.01) NA

{Reference category: .24 years.
*Significant at P-value ,0.05.
1The reciprocal of the IRR (95% CI) was presented to show the risk of being closer to the vector breeding site.
{Household count refers to the number of households located between each household and the vector breeding site. For search angles of 5 and 10 degrees, the effect
measures, adjusted IRR (95% CI), became 0.995 (0.991–0.999) and 0.997 (0.995–0.999), respectively.
¥P-value: 0.051.
NA: Not applicable.
doi:10.1371/journal.pone.0047354.t005
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malaria without considering the effects of other factors such as

rainfall and temperature, it is also not possible to state that the

timing of the possible effect of IRS and the end of the clustering

coincided simply by chance. Thus, we suggest that IRS with

Deltamethrin has possibly suppressed the transmission to the level

where little power to identify clusters remains. Meanwhile, the

location where we observed the clustering activities was almost

perfectly covered with IRS where only fewer than 10 households

did not receive the intervention. A recent paper by the authors has

discussed the reasons for the differences in the risk of falciparum

malaria with regard to sex, age, wealth index, ITN use (with a 2-

week lag in the effect) and other factors. We also showed that,

among the meteorological covariates, rainfall (with a lag of 6

weeks) was a significant predictor of falciparum malaria. When

controlled for the effect of rainfall, IRS with Deltamethrin

significantly reduced the incidence of falciparum malaria; howev-

er, utilization rate of ITNs did not [17]. This finding is consistent

with the negative effect of IRS with Deltamethrin and the ‘null’

effect of mass distribution of ITNs on the clustering of malaria

episodes presented here.

All the clusters observed were on the south-east side of the

community, and near to the identified vector breeding site on the

shore of Lake Abaya. This implies that the greater risk of malaria

infection among these households served as a ‘barrier’ between the

breeding site and households that lived to the north-west of the

cluster. This was supported by the analysis showing the significant

effect of number of households located between each household

and the vector breeding site while using the vector’s search angle

scenarios of 1, 5 and 10 degrees. Meanwhile, the clustering activity

observed close to the vector breeding site in our study area could

provide an example of what Bousema et al. described as ‘‘hotspots

of malaria transmission in the dry and wet season’’. These hotspots

were referred to as groups of households that have an increased

risk of malaria infection within a focus of malaria transmission

[21], and cognizant of the need for focused intervention, studies

suggested ways of identifying malaria hotspots [22,23].

The edge effect is worth mentioning, because we observed

clustering activity on the edge of the village. An edge effect may

result in a biased estimate of risk at the edge of a study area

provided that there are no data for the adjacent localities [24–26].

In this study, beyond the edge of the study area in which we

observed the clustering activity, there were no residential houses or

populations at risk – farmland extended to the vector breeding site.

Therefore, we presume that the relative risk reported here is

unlikely to have been influenced by an edge effect [26,27].

Qualitative evaluation of the figures also confirms that malaria

episodes were more concentrated in the location where the

SatScan identified the clustering. In addition, we chose a spatial

window size that caused the greater portion of the cluster circle to

move inwards [28].

Conclusions
The risk of malaria infection varied within one village, and there

was spatio-temporal clustering of malaria episodes at household

level. The vector breeding site identified may have played a role in

the clustering of malaria. Mass distribution of ITNs did not

influence the spatio-temporal clustering of malaria, but IRS with

Deltamethrin might have eliminated the clustering activity. Local

knowledge of malaria transmission and follow-up on ITN use,

combined with targeted interventions, may improve the existing

malaria prevention and control efforts.

Supporting Information

Figure S1 Space–time clusters of maximum spatial
cluster size restriction of 15 per cent.

(TIF)

Figure S2 Space–time clusters of maximum spatial
cluster size restriction of 35 per cent.

(TIF)

Figure S3 Space–time clusters of maximum spatial
cluster size restriction of 35 per cent. Figures S1, S2 and

S3 show how the different maximum spatial cluster size restrictions

given to the SatScan affect quantitative and qualitative outcomes.

The largest/larger circle in each figure represents the most likely

cluster, meanwhile, the smaller circles/circle represent/s signifi-

cant secondary clusters. The third secondary cluster in Figure S1 is

indicated by a pink dot to the south of the health post. This cluster

is the smallest with a radius of 11 meters and composed of 21

people in three households. The relative risk (14.19) of this cluster

is the highest of all clusters so far presented.

(TIF)

Figure S4 Number of households (59) between the
breeding site (B) and a household (H) using the
simplistic (rectangular) approach.

(TIF)

Figure S5 Illustration of the parameters used to
estimate the number of households between a breeding
site (B), and a household (H), separated by a distance
(D), and a mosquito flying with a search angle (A).

(TIF)

Figure S6 Taking the approach of a search angle rather
than a constant search width alter the perception of how
many houses a mosquito potentially must pass to reach
a given house. This figure is showing three search angles: 10u
(567 houses), 5u (284 houses), and 1u (55 houses).

(TIF)

File S1 Description of methodology employed to get
number of households located between each household
and the vector breeding site.

(DOCX)
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Problem 

To make a clear distinction between distance from a breeding site and number of households 

between a household and the breeding site, some assumptions has to be made about mosquito 

behaviour and flight patterns. In cases where the terrain is relatively flat, the distance between 

a breeding site (B) and a household (H) can easily be found using for example Great Circle 

distance. The counting of number of households can take many forms, and here we show 

some examples on how this can be calculated. 

Methods 

Simplistic approach 

Let us consider an anopheline breeding site (B) and a household (H). If we assume a 

mosquito (M) is heading towards the given household, the most simplistic approach would 

assume the mosquito is flying in a straight line, from B to H, and that the deviation from the 

line is independent of the distance flown. In this case we can assume flight is restricted inside 

a rectangular shape, and the number of households inside the rectangular polygon, minus one, 

is the number of households between B and H. Figure S4 shows an example of the houses 

which would be counted in case of the simplistic approach. 

More realistic approach 

To complicate, or maybe making the counting more realistic, we still assume that when 

leaving the breeding site, the mosquito is heading for the same household. This time, 

however, we assume the deviation from the line is dependent on the distance own. In this 

case, the deviation is measured as an angle, A, which is unknown since the true angle has not 

been measured in the field. 

The polygon (a circular sector) can be constructed using an iterative procedure defining the 

polygon nodes (in addition to the breeding site which is the start and end node). D is equal to 

the distance from the household (H) to the breeding site (B) in meters. An illustration of the 

method can be seen in figure S5.  

For a search angle A (in deg), the angle at the nodes n is: 

2
,

180
,2atan pipi

piA
BHBHMOD n

lonlonlatlatn                                               (1) 

become  and Then     
2/,...,2/with 

YX
AAAn  
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   nDY sin                                                                                                                   (3) 
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become latitude) longitude,(  and   theand latlonlatlon  

180
cos piHf

Xlon
latx

                                                                                                     (4) 

yf
Ylat                                                                                                                                (5) 

ellipsoid  WGS84for the factors flattening are  and  Where yx ff  

180
6378137 pif x                                                                                                                  (6) 

180
3142.6356752 pif y                                                                                                         (7) 

     and the longitude of the node N is lonBN lonlon and the latitude is 

latBN latlat . 

A point in polygon operation following Pebesma and Bivand [1] and Bivand et al. [2] is used 

to identify which houses are in the flight path of the mosquito.  

Figure S6 shows an example of the consequences of changing the search angle with 10º (567 

houses), 5º (284 houses), and 1º (55 houses). 

Discussion 

Here we briefly described two methods to calculate the number of houses between a breeding 

site, B, and a household, H. Since it is not known how the mosquitoes fly in order to reach a 

house, this document is focusing on the assumptions and methodologies made in order to 

calculate this index. To construct a robust index, high resolution release-recapture 

experiments must be carried out. Such experiments were not part of this work. 

1. Pebesma EJ, Bivand RS (2005). Classes and methods for spatial data in R. R News 5 (2), 

http://cran.r-project.org/doc/Rnews/ 

2. Bivand RS, Pebesma EJ, Virgilio GR (2008). Applied spatial data analysis with R. 

Springer, NY. http://www.asdar-book.org/ 
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Freely distributed bed-net use among Chano
Mille residents, south Ethiopia: a longitudinal
study
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Abstract

Background: A huge discrepancy was reported between ownership versus utilization of insecticide-treated bed
nets (ITNs). To acquire the benefits of ITNs, households need to use and not merely own them. The objective of
this study was to characterize the pattern of, and assess factors related to ITN use in one village in south Ethiopia.

Methods: A prospective cohort study involving 8,121 residents (in 1,388 households) was carried out from April
2009 to April 2011 (101 weeks). Every week, individuals were asked whether they slept under an ITN the night
before the interview. Descriptive statistics was used to report the availability and use of ITN. A negative, binomial,
probability, distribution model was fitted to find out significant predictors of ITN use. Reasons for not using ITN
were summarized.

Results: The total number of ITNs available at the beginning of the study was 1,631 (1.68 ITNs per household). On
week 48, 3,099 new ITNs (PermaNet2.0) were distributed freely (2.3 ITNs per household). The number of households
who received at least one new ITN was 1,309 (98.4%). The percentage of children <5 years and pregnant women
not using ITNs exceeded that of other adults. The mean (range; SD) ITN use fraction before and after mass
distribution was 0.20 (0.15-0.27; 0.03) and 0.62 (0.47-0.69; 0.04), respectively. Before mass ITN distribution, the most
frequent reason for not using ITN was having worn out bed nets (most complained the bed nets were torn by
rats); and after mass ITN distribution, it was lack of convenient space to hang more than one ITN. Males, younger
age groups (mainly 15–24 years) and those living away from the vector-breeding site were less likely to use ITN.

Conclusions: The ITN use fraction reached to a maximum of 69% despite near universal coverage (98.4%) was
achieved. Gender, age differences and distance from vector breeding site were associated with ITN use. Strategies
may need to be designed addressing disproportions in ITN use, lack of convenient space to hang more than one
ITN (for those receiving more than one), and measures to prolong usable life of ITNs.

Background
Insecticide-treated bed nets (ITNs) are the tools of mal-
aria control and prevention [1]. The impact of ITNs on
reducing malaria episodes is well documented [2,3]. Use
of ITNs is one of the major vector control measures in
Ethiopia. More than 20 million ITNs were distributed
between 2005 and 2007, enabling 68% of the households
living in malaria-endemic areas to own at least one ITN
[4]. The recent national strategic plan targets that at

least 80% of people at risk of malaria shall use ITNs
properly and consistently, whereby, 100% of households
in malaria-endemic areas should own one ITN per
sleeping space by the year 2015. The country aims at
malaria elimination in areas with historically low malaria
transmission, while achieving near zero malaria trans-
mission in the remaining malarious areas [5]. To achieve
such a goal, better understanding of utilization of pre-
vention and control tools, mainly ITNs, is essential.
A huge discrepancy was reported between ownership

versus use of ITNs [1]. Studies quantified this difference
as 95% vs 59% (Kenya) [6], 70% vs 53.1% (Nigeria) [7]
and 90% vs 77% (Tanzania) [8]. Misconceptions about
prevention of malaria, discomfort, perceived low
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mosquito density, inconvenience to hang the nets, place
of residence, economic and educational background, age
and gender differences, and colour of nets were among
the reported reasons related to ITN utilization [9–15].
To acquire the benefits of ITNs, households need to

use, not merely own them [1]. This calls for a need to
study ITN use. This study aims to characterize the pat-
tern of ITN utilization and determine associated factors
in one malaria-endemic village in south Ethiopia.

Methods
Setting
Chano Mille village is one of the rural, malarious areas
near Arba Minch town, 492 km south-west of Addis
Ababa. The altitude is 1,206 m above sea level. The vil-
lage was selected purposively to study malaria epidemi-
ology in detail in the presence of favourable malaria
vector breeding site. The presence of Lake Abaya to the
south-east of the village resulted in intense malaria
transmission since the shore of the lake favoured malaria
vector breeding. The incidence rates of falciparum and
vivax malaria in the village were 22.9 and 22.2 per 1,000
persons per year, respectively. The distance of the house-
hold from the shore of the lake, wealth index, age and
gender were found to be significant predictors of malaria
infection. In the two-year study period, the government
had undertaken indoor residual spraying with insecti-
cides (twice) and mass free ITN distribution (once) as
prevention and control measures [16,17].

Study design and data
This was a prospective cohort study that involved all
residents of the village. The total number of households
was 1,388 and the total number of individuals followed
for 101 weeks (from April 2009 to April 2011) was
8,121. Every week, individuals were asked whether they
slept under an ITN the night before the interview; and if
they did not use the ITN, open-ended question was used
to ask the reason why. To maintain a gap of six days be-
tween the visits, households were visited on the same
day each week. A census was carried out three times to
update the denominator: at the start of the study, on
week 50, and at the end of the study. For the first four
weeks, ITN use data were collected considering vulner-
able groups, including children under five years and
pregnant women. After week 5, all residents of the vil-
lage were considered and the name of the individual
who slept under an ITN was recorded. Weekly ITN use
fraction was calculated by taking the number of indivi-
duals who slept under an ITN as numerator and the
total population of the week as denominator; this was
done for different gender and age categories as well. The
number of weekly follow-ups in which ITN use was
reported was calculated for each of 8,121 individuals.

The number of bed nets available at each household was
recorded at the beginning. In addition, after free mass
distribution of ITNs, which was carried out by the gov-
ernment on week 48, ITN coverage survey was carried
out on week 50. During the ITN coverage survey, the
households were asked if they had usable ITNs in
addition to the new ones; and when available, these
ITNs were considered old-functional.
The data collectors were recruited from the village

having college level diploma.

Data analysis
Summary statistics were used to report the number of
bed nets (new and old-functional) available in each
household, and the proportion of children aged less than
five years, and pregnant women that did not use ITNs.
Likewise, the median number of weekly follow-ups in
which ITN use was reported was calculated for different
population sub-groups. A summary was provided on the
reported reasons for not using ITN.
The count data on the number of weekly follow-ups,

in which ITN use was reported, was over dispersed while
Poisson regression was fitted. The ratio of the deviance
over the degree of freedom was 24.4. This value became
1.6 with a negative binomial probability distribution
model. As the later model handled the overdispersion
problem (since the value was very close to 1), a negative
binomial regression model was fitted to the data. The
number of weeks an individual was observed was set as
a scale weight variable. A fixed value of 1 was used as a
scale parameter method and robust estimator was used
for the covariance matrix. Exponential parameter esti-
mates were interpreted as incidence rate ratios (IRR).
The 95% confidence intervals (CI) for the IRR were also
reported. Gender, age, education of the household head,
wealth tertiles and distance (in km) from vector breeding
site were considered as determinants for ITN use. To
construct wealth index, principal component analysis
(PCA) was used. The variables included were presence
of electricity, watch, TV, radio, mobile phone, refriger-
ator, separate room used for kitchen, bicycle, agricultural
land, livestock, account in bank or credit association and
latrine facility. In addition, the main materials of the
floor, wall and roof were considered. The details of
wealth index construction are reported elsewhere [16].
Distance of each household (in km) from the identified
vector breeding site was calculated using proximity
analysis tool of ESRI ArcMap 9.3 (Redlands, CA, USA).
Statistically significant independent variables during bi-
variate analyses were used to construct the multivariate
model. Pairwise comparison was done for age categories
using sequential Sidak as adjustment for multiple com-
parisons. PASW 18.0 (Chicago, IL, USA) was used for
analysis.
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Ethical clearance
The Southern Nations and Nationalities Regional Health
Bureau Ethical Review Committee approved this study.
Permission and support letters were obtained from rele-
vant administrative bodies of the area. Informed verbal
consent was obtained from each household.

Results
The total population followed was 8,121 in 1,388 house-
holds making the average household size 5.9 persons.

ITN coverage
The total number of nets available at the beginning of
the study was 1,631 (1.68 ITNs per household). All bed
nets were PermaNet2.0 and 241 (19.9%) reported that
they did not have any bed nets (Table 1).
According to the ITN coverage survey (carried out on

week 50), the households reported that they had 916
old-functional ITNs. On week 48, they received 3,099
new ITNs (PermaNet2.0) for free (2.3 ITNs per house-
hold). The number of households receiving at least one
new ITN was 1,309 (98.4%), and nearly half, 605 (45.4%)
of the households received three ITNs each (Table 2).

ITN use fraction
In the first four weeks of observation, the percentage of
ITN use was determined for vulnerable groups. The data

showed that the percentage of under five years children
not using ITNs (followed by pregnant women) exceeded
that of other adults (Figure 1).
The mean (range; SD) ITN use fraction before and

after mass distribution was 0.20 (0.15-0.27; 0.03) and
0.62 (0.47-0.69; 0.04), respectively. The distribution of
ITN use fraction is presented in Figure 2.
The significant increase in ITN use fraction after week 48

indicates the time of free mass ITN distribution. In general,
the proportion of females using bed nets exceeded that of
males in all weeks of observation (Figure 3). The proportion
of adults aged above 24 years (followed by children less
than five years old) using ITNs surpassed all other age
categories (Figure 4).
Figure 5 shows the ITN use fraction according to age

groups and gender. The gap in the level of ITN use frac-
tion between age groups five to 14 and 15 to 24 became
wider after free mass ITN distribution, mainly for males
(less use among aged 15 to 24 years); and among
females, more use was recorded among aged 15 to 24

Table 1 Number of insecticide-treated bed nets per
household according to the first census

Number of ITNs per household (n = 1212) Number Percent

0 241 19.9

1 414 34.2

2 463 38.2

3 85 7.0

4 9 0.7

1-4 971 80.1

Table 2 Number of insecticide-treated bed nets according to the second census conducted on week 50

Number of ITNs
available per household

Old-functional¥ n = 1,156 households New‡ n = 1,330 households

Number Percent Number Percent

0 530 45.8 21§ 1.6

1 372 32.2 201 15.1

2 223 19.3 468 35.2

3 28 2.4 605 45.5

4 2 0.2 29 2.2

5 0 0.0 5 0.4

6 1 0.1 1 0.1

1-6 626 54.2 1309 98.4
¥Distributed three years previously.
‡Distributed two weeks previously, the number of households involves both existing and newly added ones.
§Four existing households and 17 newly enrolled households.

Figure 1 Percentage of <5 years, pregnant women and other
adults not using available insecticide-treated bed nets (in the
first four weeks of observation).
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years for most of the weeks. For most of the weeks,
females under five years had less ITN use fraction com-
pared to the whole population, which was not the case
for their male counterparts.

Reasons for not using insecticide-treated bed nets
The most frequent reason for not using an ITN was hav-
ing worn-out bed nets (most complained that the bed
nets were torn by rats). Some did not hang the bed nets
because of being dirty, changes in bed arrangement, un-
suitable housing structure and considering alternatives
such as insecticide sprays. The other reasons were ab-
sence of mosquitoes within the house, sleeping in the
farm and presence of social gatherings because of death
of family member. Some reported that they provided the
bed nets to their children as they sent them to other
places for schooling. Some reported discomfort (feeling
warmth) while sleeping under the net and a few reported

that they used the bed nets as curtain for traditional pit
latrines. Meanwhile, after mass ITN distributions, the
most frequent reason for not using bed nets was lack of
convenient space in the house to hang more than one
bed net.

Total number of weekly follow-ups in which insecticide
treated bed net use was reported
The median number of weekly follow-ups in which mos-
quito net use was reported over 97 weeks of observation
was higher for females, the age category >24 years, the
poor, and residents having secondary level education
(Table 3).

Predictors of total number of weekly follow-ups in which
insecticide treated bed net use was reported
Wealth tertiles and level of education of the household
head did not show statistical significance during

Figure 2 Distribution of insecticide-treated bed net use fraction according to gender and age categories (in year) before and after
mass insecticide-treated bed net distribution. M and F refer to males and females, respectively.

Figure 3 Insecticide-treated bed net use fraction by gender. Figure 4 Insecticide-treated bed net use fraction by age group.
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bivariate analysis. Controlled for other variables, the rate
of total number of weeks spent under ITNs was less by
10% among males. This rate was 54% less for age cat-
egory 15 to 24 years compared to adults >24 years old.
Meanwhile, this rate decreased by 19% for each km dis-
tance away from the vector breeding site (Table 4).
The pairwise comparison showed that children under

five years old spent more number of weeks under the
ITNs compared to age categories five to 14 and 15 to 24
years but less compared to age category >24 years. The
least number of weeks spent under ITNs was observed
among 15 to 24 years old compared to all other age cat-
egories (Table 5).

Discussion
Coverage of new ITN distribution was 98.4% and the
maximum ITN use fraction was 69%. The percentage of
under five years and pregnant women not using ITNs
exceeded that of other adults. Being male, younger, and
living farther from the vector breeding site were factors
associated with less frequent use of ITNs. Residents in
the age range 15 to 24 years were the least users of
ITNs. Lack of convenient space to hang the ITN was the
prominent reason for not using ITN, despite its
availability.
ITN use fraction was calculated based on self-report.

It may not be possible to avoid bias with self-report.
However, listing the names of household members who
slept under ITN the night before the interview was con-
sidered to be better than asking a Yes/No question. A
similar approach was used in previous studies [10]. The
fact that the ITN use fraction did not reach 100% (the
maximum was 69%) after mass distribution of ITNs was
reassuring in that social-desirability bias did not over-
whelm this study.
Distance from the vector breeding site affected use of

ITNs. This may support the notion that ITN use is asso-
ciated with risk perception [10]. This was also indicated
by the finding that the number of malaria episodes
decreases in the household farther from the vector
breeding site [16,17], which might have compelled resi-
dents who lived away from the vector breeding site to
perceive lower risk of disease and to use ITNs less
frequently.
A recent paper showed that before mass ITN distribu-

tion, the risk of falciparum malaria was higher in the
age category <15 years compared to 15 to 24 years.
However, this risk shifted to the age category 15 to 24
years after mass ITN distribution [16]. This could be
explained by the significant differences in frequency of
ITN use among different age categories, whereby less
frequent use of ITNs was observed in the category 15 to
24 years. Though this less frequent use (in 15 to 24 years
category) had existed before mass ITN distribution, the

Figure 5 Insecticide-treated bed net use fraction by gender and
age group.

Table 3 Median number of weeks in which insecticide
treated bed net use was reported over 97 weeks of
observation

Variables N Median §

Gender Males 4227 26

Females 3894 34

Age in years < 5 1067 39

5–14 2175 25

15–24 2321 7

>24 2558 52

Wealth tertiles Poor 2671 35

Medium 3168 32

Rich 2282 19

Education of the household head No education 4351 25

Primary 2050 32.5

Secondary 1616 41

Above secondary 104 29.5

All 8121 30
§Total number of weeks = 97.
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increased frequency of ITN use among the younger age
categories (<15 years) after mass ITN distribution could
move the risk towards 15 to 24 years category.
Educational status and wealth index did not signifi-

cantly affect ITN use in this study. Some studies
reported similar findings [7,18,19], while the others
showed significant associations between socio-economic
factors and ITN use [11,12]. The presence of prominent
vector breeding site yielding varying risk to the house-
holds in the study area was worthy of note since the
households located closer to the vector breeding site
reported more frequent use of ITNs, implying influence
of nuisance mosquitoes and/or risk perception might
have outweighed factors such as education and wealth,
with regard to sleeping under ITNs.
The first four weeks of observation showed adults

using ITNs more than the vulnerable groups: under five
years and pregnant women. Similarly, during the
remaining 97 weeks of follow up, adults used ITNs more

than the younger (<24 years) residents and this was not
expected. This might also have resulted in lower inci-
dence rate of falciparum malaria among adults since
ITN use at individual level was reported to be protective.
Similar speculation could be derived for male study par-
ticipants, as males used ITNs less frequently and suf-
fered more from falciparum malaria [16].
The most frequent reason for not using ITNs before

mass distribution was having worn-out bed nets, mainly
because the ITNs were ragged by rats. This implies the
need to integrate rodent control measures with ITN dis-
tribution in areas with a similar problem in order to
lengthen the usable life of ITNs, considering cost impli-
cations in distributing free ITNs more often.
Except those who did not receive new ITNs, no house-

hold reported inadequacy of number of ITNs received
during mass distribution; however, frequency of ITN use
did not reach to the coverage. The maximum ITN use
fraction was 69% while coverage was 98.4%. Studies indi-
cated such discrepancies between bed net coverage and
use [6–8]. Quantitative data showed individual differ-
ences in frequency of bed net use including age, gender
and risk perception. Meanwhile, according to the
responses to the open-ended question, the most frequent
reason for not using bed nets, while at least one was
available, was lack of convenient space to hang the bed
nets. This was also the case in the review made on
reported reasons for not using ITNs [10]. This implies
mere calculation of ratio of number of household mem-
bers to bed nets (while distributing the nets), without
considering the housing structure or helping the house-
hold to hang the desired number of bed nets, would not
bring this prevention and control measure to the
intended level of efficiency and effectiveness. Meanwhile,

Table 4 Factors associated with insecticide-treated bed net use

Variable (n = 8121) Total number of weeks spent under ITNs

Crude IRR (95% CI) Adjusted IRR (95% CI)

Gender: Male 0.9(0.87-0.93)* 0.9(0.87-0.93) *

Age in years‡ < 5 0.71(0.68-0.74) * 0.71(0.68-0.74) *

5–14 0.51(0.49-0.53) * 0.51(0.49-0.53) *

15–24 0.46(0.44-0.48) * 0.46(0.43-0.48) *

Wealth tertiles¥ Poor 1.04(0.99-1.09) NA

Medium 1.04(0.99-1.09) NA

Education of the household head§ No education 0.9(0.77-1.05) NA

Primary 0.99(0.85-1.17) NA

Secondary 1.12(0.96-1.31) NA

Distance (km) from vector breeding site 0.84(0.8-0.88) * 0.81(0.77-0.85) *
‡Reference category: >24 years.
¥Reference category: Rich.
§Reference category: Above secondary.
*Significant at 0.05 level.
NA: Not applicable.

Table 5 Pairwise comparisons of estimated marginal
means of age categories based on the original scale of
total number of weeks spent under insecticide-treated
bed nets

Category Mean
difference (A-B)

P value
(Sequential Sidak)A B

Age in years‡ <5 5-14 Positive <0.001

15-24 Positive <0.001

>24 Negative <0.001

5-14 15-24 Positive 0.002

>24 Negative <0.001

15-24 >24 Negative <0.001
‡Overall test results: Wald Chi-Square = 1036.68 and P value < 0.001.
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the unusual practice of using bed nets for other pur-
poses, including as curtains for traditional pit latrines
(though not frequently reported) should be properly
addressed.

Conclusions
The ITN use fraction reached to a maximum of 69%
despite near universal coverage. Residents aged above 24
years used ITNs more than the younger age categories,
while those aged 15 to 24 years and males were the least
users. Households that were distant from the main vec-
tor breeding site were less likely to use ITNs. After mass
ITN distribution, lack of convenient space to hang more
than one bed net was the most frequently reported rea-
son for not using ITNs. Use of ITNs as malaria preven-
tion and control may benefit from combinations of
strategies to improve ITN use among the younger age
groups, to ensure that each household managed to hang
all the bed nets provided for free, and to incorporate
measures (such as rodent control) that could prolong
the usable life of bed nets. To better understand the rea-
sons for not using ITN, well designed qualitative re-
search approach should be considered.
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Variation in malaria transmission    99 
 

 

 

 

Study instruments 
 



 Census Questionnaire page 1
Questionnaire to conduct census and gather data on malaria prevention and treatment practices 

General Information 

GI1 
 
Household Code 

 
 ____________________        GPS data: Longitude _________Latitude_________ 

GI2  
Site in which the interview is 
being conducted 

 
a) Kebele _______________________________ 
b) Sub-Kebele ___________________________  

GI3 Personnel (name and 
signature) 

 
a) Interviewer__________________________________________ 
 
b) Field Supervisor__________________________________ 

GI4 Date of visit  [_____|_____| ______| 
                                                                                      dd  |  mm|  yyyy 

GI5 Time at beginning and end 
of interview 

 
Beginning ____:____                                         End_____:_____   

Introduction and Consent   
 
My name is___________ and I’m working for Hawassa University.  We are conducting a survey about malaria in collaboration with the 
Woreda Health Office.  We would very much appreciate your participation in this survey.  This information will help the SNNPR Regional 
Health Bureau to plan health services. This interview could take less than 15 minutes to complete.  Whatever information you provide will be 
kept strictly confidential and will not be shown to other persons.  Participation in this survey is voluntary and you can choose not to answer 
any individual questions or all of the questions.  However, we hope that you will participate fully in this survey since your views are 
important. 
 
Do you have any questions about the survey?  May I begin the interview now?  
 
Verbal consent given to interview, check box  
Section 1: Household members’ listing and socio-demographic and economic characteristics 
Q101 Total number of household 

members Number __________ 
Start listing from the respondent him/herself  
 Q102 Household Members  Age Sex Relationship Educational 

status Occupation Birth 

1       Birth in the 
last 1 year: 
 
Yes………1 
No………2 

 
If yes, sex: 

Male…….1 
Female….2 

2       
3       
4       
5       
6       
7       
8       
9       
10       
11       
12       
13       
14       
15       

Relationship 
1. Father; 2. Mother 
3. Child; 4. Relative 
5. Maid; 6. Other 

Sex 
1. Male 
2. Female 

Educational Status  
(6 years and above) 
 I= Illiterate  
 RW= Read and 

Write only  
 If formal education, 
write the highest 
grade completed 

 

Occupation  
(18 years and above) 
1. Employed 
2. House wife 
3. Farmer  
4. Day laborer   
5. Trader  
6. Fishery    
7. Student  
8. No job/dependent 
9. Housemaid   
10. Others 



 Census Questionnaire page 2
 

Q103 Does your household have: 
Electricity? 
A watch?   
A radio? 
A television?  
A mobile telephone? 
A non-mobile telephone? 
A refrigerator? 
A table?  
A chair?  
A bed?  
An electric mitad? 
A kerosene lamp/pressure lamp?  

Yes   No 
Electricity…………..….…..……..…….1 2 
Watch……………..………..…….…….1 2  
Radio…….………….…………....…….1 2  
Television….………….…..……...…….1 2  
Mobile Telephone.…….………....…….1 2  
Non-Mobile Telephone…...……..…….1 2 
 Refrigerator…………...……………….1 2  
Table………….……..…..……….…….1 2  
Chair……………...…………….……...1 2  
Bed…………………...………..………1 2  
Electric Mitad……….........………...….1 2 
 Kerosene/Pressure Lamp….….…...…..1 2 

 

 

Q104 What type of fuel does your household 
mainly use for cooking? 

Electricity. …..…... . . . . . . . . . . . . . …. 1 
Kerosene . ..…..... . . . . . . . . . . . . . ….... 2 

            Charcoal . . . .. . ……... . . . . . . . . . . . ... 3 
Wood . . . . . .. . …. . . . . . . . . . . . ……..  4 

        Animal Dung……...….……….….…… 5 
Other…………..…..…….…………….. 96 

(Specify)_____________________ 

 

Q105 Is the cooking usually done in the 
house, in a separate building, or 
outdoors? 

In The House . . . ….... . . . . . . . . . . . . . . . ...1 
               In a Separate Building…….….. . . . . . . . . ..2 

Outdoors. . …….. . . . . . .. . . . . . . . . . . . . …3  
Other...….………..….……………………..96 

(Specify) _____________________ 

 

Q106 Do you have a separate room which is 
used as a kitchen? 

Yes………….….……………………………1 
No……………..…………………………….2 

 

Q107 Main material of the floor.  
 
 
(Record observation) 
 

  Earth/Dung ………….……………………...1 
  Ceramic Tiles….….…...…………………….2 
  Cement……….... . . . ..... . . .  . . . …………..3 
 Other……………………………………….96 

   (Specify)_________________________ 

 

Q108 Main material of the roof  
 
(Record observation) 

Thatch/Leaf…………………………………1 
Corrugated Iron . . . . . .. . . …….... …….…..2 
Cement/Concrete . . . . . ……………... . . . . 3 

Other…………….…..……………………..96 
(Specify)_____________________ 

 

Q109 Main material of the wall. 
 
(Record observation) 

No wall………….…….……………………..1 
Wood……………….….…………………….2 
Wood with mud………..…………………….3 
Wood with mud and cement…….…………..4 
Cement blocks……….…….………………...5 
Other…………….……..…………………..96 

(Specify)_____________________ 

 

Q110 Type of windows 
 
(Record observation) 
 

Yes   No 
Any window……….......………..…….1       2 
Windows with glass…………….…….1       2  
Windows with screen/mesh wire….….1       2  
Windows with curtains………........….1       2  

 

Q111 How many rooms in this household 
are used for sleeping? 

Number of rooms[__|__]  

Q112 Does any member of this household 
own:  
A bicycle?  
A motorcycle? 
An animal-drawn cart? 
A car or truck? 

 
Yes   No 

Bicycle……….………………....…….1       2 
Motorcycle……………………...…….1       2  
Animal-drawn cart……………...…….1       2  
Car/truck……………...………...…….1       2 

 

Q113 Does any member of this household 
own any land that can be used for 
agriculture? 

Yes……………..……………………………1 
No……………..…………………………….2 

 

Q114 How many (LOCAL UNITS) of 
agricultural land do members of this 
household own? 
(If unknown enter 98) 

Local units [___|___] 
Specify the local unit__________________ 

 

 



 Census Questionnaire page 3
 

Q115 Does this household own any livestock, 
herds, or farm animals? 

Yes…………………………………………1 
No………………………………………….2 

 

Q116 How many of the following animals 
does this household own? 
Milk cows, oxen, or bulls? 
Horses, donkeys, or mules? 
Goats? 
Sheep? 
Chickens? 
(If unknown, enter 98) 

Milk cows, oxen, or bulls------   
Horses, donkeys, or mules-----   
Goats------------------------------   
Sheep------------------------------   
Chickens--------------------------   

 

 

Q117 If you have cattle, do they spend the 
night in the same house with you? 

Yes…………………………………………1 
No………………………………………….2 

 

Q118 Does any member of this household 
have an account with a bank/credit 
association/micro finance? 

Yes…………………………………………1 
No………………………………………….2 

 

Q119 How long does it take you to walk to the 
nearest health center/health post?  
 

 
 

Minutes    [____|____] 
Hours      [____|____] 

 

Q120 What is the main source of 
drinking water for members of 
your household? 
 
(Do not read out Responses) 
 
 

                            Piped (Tap) 
Piped into dwelling…...…...…1 
Piped into compound.……......2 
Piped outside compound.….....3 
Covered Well………....…...…4 
Protected Spring……..…..…..5 

 
 Open Well/Spring 

Open Well……...……………6 
Open Spring……...……….…7  

   
 

                            Surface Water  
River……………….………..8 
Pond/Lake/Dam…....……….9 
Rainwater……….…...…….10 

 
Other….………….………..11 

 (Specify)_____________________ 

 

Q121 How long does it take you to go 
there, get water and come back?  

Minutes    _________ 
 

Hours     _________ 
 

On premises…………96 

 

Q122 Do you treat your water in any 
way to make it safer to drink? 

Yes………………….1 

No…………………..2 

                          
 
    Skip to Q124 

Q123 If yes, what do you usually do to 
the water to make it safer to 
drink? 
 
Probe:  Any thing else? 
 
(Multiple response possible: record 
all responses) 

(M = Mentioned, N = Not Mentioned) 

M      N 

Boil………………………...……………….1         2 

Add bleach/chlorine…………………….….1         2 

Strain through cloth………………...………1         2 

 Use water filter (ceramic, sand, etc…)….…1         2 

Store in narrow necked container….….……1         2 

Let it to stand and settle………………..…..1         2 

Other…………………………………..……1         2 

 

Other (specify)____________________________ 

 

Q124 How far is the nearest irrigation 
ditch from your house? 

Minutes    [____|____] 
Hours      [____|____] 

Very close to the house…..96 
 



 Census Questionnaire page 4
 

Q125 What kind of toilet 
facility do most 
members of your 
household use? 
 
(observe latrine) 

 

Flush toilet……………….…...………....1 

        Pit latrine/traditional pit toilet..…...…….2 

        Ventilated improved pit latrine (VIP) …3 

        No facility/Bush/Field… ……..…….….4 

      Other………….…………….………..…5  

Other(Specify)_____________________  
 

 
          
 
 
 
    
    Skip 
to Q201 

Q126 Do you share this 
facility with other 
households? 
 

Yes…………….1 
No..…….……...2 

 

Section 2: Malaria prevention and treatment  
Q201 Does your household 

have any mosquito net 
that can be used while 
sleeping? 

Yes…………….1 

No..…….……...2 

 
                
       
      Skip 
to Q209 

Q202 How many mosquito nets 
do your household use? 
 

Number of Nets    _________ 
  

 

Q203 What type of mosquito 
net(s) does your 
household possess? 
 
(Probe by how often net 
requires treatment) 

Net #1 

Every 6 months………………………1 

Every year……………………………2 

Permanet……………………………..3 

Don’t Know….……………………….8 

Net #2 

Every 6 months………………………1 

Every year……………………………2 

Permanet……………………………..3 

Don’t Know….……………………….8 

  

 
                
       
       
 
 
   Skip to 
Q206 
 
 
 
 
   
 
 
    Skip to 
Q206 

Q204 When was your net(s) 
last treated with a 
product to kill 
mosquitoes? 
 
(If less than 1 month, 
indicate 1 month) 
 
 
 

Net #1                                                                  Months  _________   
 

Years  _________ 

 

Has not been treated……………………………97 

 

Net #2                                                                  Months _________ 
 

Years _________ 

 

Has not been treated…………………………….97 

If 
treated, 
skip to 
Q206 
 
    
    
  
 
 
If 
treated, 
skip to 
Q206 
 
   
  

Q205 If not treated, how long 
ago was the net 
obtained?  
 

Net #1                                                                            Months  _________ 
 

Years  _________ 

Net #2                                                                              Months  _________   
 

Years _________ 

 

 
 



 Census Questionnaire page 5
 

Q206 Did anyone sleep 
under the mosquito 
net last night? 

Yes…………….1 

No..….………...2 

Not sure.………3 

 
    
   Skip to Q208 
     Skip to    
    Q209 

Q207 Who slept under this 
mosquito net last 
night? 
(If more than one 
under-five child, 
consider  only if all of 
them slept under the 
net) 

Net #1 Net #2 
Child under 5 years: Yes = 1 No = 2  
    No under five child in the house = 3 
 
Pregnant women: Yes = 1 No = 2  
   No pregnant women in the house = 3 
 
Other adult: Yes =  1 No = 2   
     No other adult in the house = 3 

Child under 5 years: Yes = 1 No = 2  
    No under five child in the house = 3 
 
Pregnant women: Yes = 1 No = 2  
   No pregnant women in the house = 3 
 
Other adult: Yes =  1 No = 2   
     No other adult in the house = 3 

Q208 Why did you not use 
the bed net?  

Q209 Has your house ever 
been sprayed with 
insecticide for malaria 
prevention by 
spraymen from the 
District Health Office? 

Yes…………….1 
No...…………...2 
Not sure.………3 

 
 
      
      
Skip to 
Q211 

Q210 How many months ago 
was your house 
sprayed? 
(If less than one 
month, record 01) 

Months ago [___/___] 
Not sure…..98  

Q211 Has member of your 
family been ill with a 
fever at any time in 
the last 7 days? 
(if more than 3 people, 
consider those who are 
younger and pregnant) 

Yes…………….1  
Q102 number______ 

No...…………...2 
Don’t Know…..98 

Yes…………….1  
Q102 number______ 

No...…………...2 
Don’t Know…..98 

Yes…………….1  
Q102 number______ 

No...…………...2 
Don’t Know…..98 

 
If 2 or 98, 
   skip to 
Q217 

Q212 Did he/she give blood 
sample from finger 
tip? 

Yes…………….1 
No...…………...2 

Don’t Know…..98 

Yes…………….1 
No...…………...2 

Don’t Know…..98 

Yes…………….1 
No...…………...2 

Don’t Know…..98 
 

Q213 Did he or she take 
antimalarial drug? 
 

Yes…………….1 
No...…………...2 

Don’t Know…..98 

Yes…………….1 
No...…………...2 

Don’t Know…..98 

Yes…………….1 
No...…………...2 

Don’t Know…..98 

If 2 or 98, 
skip to 
Q217 

Q214 Which antimalarial 
drug was used? 
(Do not read the 
options) 

Co-Artem….…….1 
Chloroquine..……2  

Don’t Know….....98 

Co-Artem….…….1 
Chloroquine..……2  

Don’t Know….....98 

Co-Artem….…….1 
Chloroquine..……2  

Don’t Know….....98 

If 98, 
skip to 
Q217 

Q215 How long after the 
fever started did the 
diseased individual 
take the antimalarial 
drug? 

Same day……….....0 
Next day…………...1 
Two days after…….2 
Three days after…...3 
Four or more days 
after…………….…4 
Don’t Know….…..98 

Same day……….....0 
Next day…………...1 
Two days after…….2 
Three days after…...3 
Four or more days 
after…………….…4 
Don’t Know……...98 

Same day…………..0 
Next day…………....1 
Two days after……..2 
Three days after…....3 
Four or more days 
after……………..…4 
Don’t Know…..…..98 

 

Q216 For how many days 
did the diseased 
individual take the 
drug? 

Days………[_____] 
 
Still taking………..96 
 
Don’t know………98 

Days………[_____] 
 
Still taking………..96 
 
Don’t know………98 

Days………[_____] 
 
Still taking………..96 
 
Don’t know………98 

 

Q217 Was there death of 
family member in the 
last one year? 

Yes…………….1 
 

No...…………...2 

     
    When did it occur? 
________months ago 

Sex 
Male……1 
Female…2 

 

Age 
______ 

Year/Month 

 



 
Chano Mille Malaria research project: Weekly data collection format 

House number_____________ Date of visit[_____|_____|______] 
                                                                                                           dd  |  mm|  yyyy 

Data collector  Name ________________________ Signature _______________  
Q01 Did anyone sleep 

under the bed net 
last night? 

Yes…………….1 
No..…………...2 
Not sure………3 

The household doesn’t own net…..4 

 
   Skip to Q03 
      
   Skip to Q04 

Q02 Who slept under 
the bed net last 
night? 
 
(List the names) 

1._____________________________ 

2._____________________________ 

3._____________________________ 

4._____________________________ 

5. ____________________________ 

 

6._____________________________ 

7._____________________________ 

8._____________________________ 

9._____________________________ 

10.____________________________ 

 
Q03 Why did you not 

use the bed net?  

Q04 Presence of 
ailments any time 
in the last 7 days. 

Fever  
Yes………1 
No……….2 

Cough  
Yes………1 
No……….2 

Diarrhoea  
Yes………1 
No……….2 

If 2 or Cough/ 
Diarrhoea only   
End 

Q05 Description of the 
individual who had 
or has fever 
(if more than 3 
people, use another 
format and attach) 

Name:______________ 
___________________ 
Age ____Years/Months 

Sex  
Male……1 
Female…2 

Name:______________ 
___________________ 
Age ____Years/Months 

Sex  
Male……1 
Female…2 

Name:______________ 
___________________ 
Age ____Years/Months 

Sex  
Male……1 
Female…2 

 
 

Q06 Did he/she give 
blood sample from 
finger tip? 

Yes…………….1 
No...…………...2 

Don’t Know…..98 

Yes…………….1 
No...…………...2 

Don’t Know…..98 

Yes…………….1 
No...…………...2 

Don’t Know…..98 
 

Q07 Did he or she take 
antimalarial drug? 
 

Yes…………….1 
No...…………...2 

Don’t Know…..98 

Yes…………….1 
No...…………...2 

Don’t Know…..98 

Yes…………….1 
No...…………...2 

Don’t Know…..98 

If 2 or 98 
 
Skip to Q11 

Q08 Which antimalarial 
drug was used? 
(Don’t read the 
options) 

CoArtem…….….1 
Chloroquine.……2 
Quinine…………3  
Don’t Know.…..98 

CoArtem…….….1 
Chloroquine.……2 
Quinine…………3  
Don’t Know.…..98 

CoArtem…….….1 
Chloroquine.……2 
Quinine…………3  
Don’t Know.…..98 

If 98 
Skip to Q11 

Q09 How long after the 
fever started did the 
diseased individual 
take the 
antimalarial drug? 

Same day………...…..0 
Next day…………......1 
2 days after……….….2  
3 days after………......3 
4 or more days after....4 
Don’t Know………..98 

Same day………...…..0 
Next day…………......1 
2 days after……….….2  
3 days after………......3 
4 or more days after....4 
Don’t Know………..98 

Same day………...…..0 
Next day…………......1 
2 days after……….….2  
3 days after………......3 
4 or more days after....4 
Don’t Know………..98 

 

Q10 For how many days 
did the diseased 
individual take the 
drug? 

Days………[_____] 
Still taking……….96 
Don’t know………98 
 
 

Days………[_____] 
Still taking……….96 
Don’t know………98 
 
 

Days………[_____] 
Still taking……….96 
Don’t know………98  

Q11* If there is a member of the family who is 
febrile during the interview and did not take 
any medication, take axillary temperature and 
if it is 37.50C, record the case’s name and 
house number on your note book, then send 
the case with a referral slip to HEW as soon as 
possible.  
 (Use another format if you got more than one case in 
the same household and attach) 
(Use separate referral slip for each case) 

Name________________ 
 
Age _____Years/Months 

Sex 
Male……1 
Female…2 

Axillary temp. _____oC 

  
P. falciparum..….…..1  
P. vivax…….…….…2 
Mixed infection….…3 
Negative …………...4 
Other hemoparasite...5 
(specify___________) 

Parasite density 
______________ 
Morphology 
______________ 

 

                                                 
* Please confirm the referred case gave blood sample at the health post and if so, request the HEW or the lab technician to have 
her/his signature on your note book at the end of the day.  
The HEW or the lab technician is expected to label the slide with the date and the case’s first name, age and house number. 
  
 

Blood sample result 
(To be filled in the laboratory) 



Re-enumeration of residents of Chano Mille after one year of follow-up 
 
Census conducting week: _____     HH Number: ___________ 
 

New ITN (in number): ______   Old (functional) ITN (in number): _______ 
 

Q102# Existing members (from previous census) 
(A) 

Now 
present 

(B) 
If not present, 

reason 

If not present, 
month left/deceased 

1      
2     
3     
4     
5     
6     
7     
8     
9     
10     
11     
12     
13     
14     
15     
16     
17     
 
 
 
 
Register in-migrants or new births in the last one year (after the first census) 
 

Q102# New comers including births after the 
last census Age Sex Relationship Educational 

status Occupation 

If new 
comer, 
when 

(month)? 
21         
22        
23        
24        
25        
26        
27        
28        
29        
30        

  

(A) 
1. Yes 
2. No 

(B) 
1. Left the kebele 
2. Left the HH 
3. Deceased  

Sex 
1. Male 
2. Female 

Relationship 
1. Father; 2. Mother 
3. Child; 4. Relative 
5. Maid; 6. Other 

Educational Status  
(6 years and above) 
 I= Illiterate  
 RW= Read and 

Write only  
 If formal education, 
write the highest 
grade completed 

 

Occupation  
(18 years and above) 
1. Employed 
2. House wife 
3. Farmer  
4. Day laborer   
5. Trader  
6. Fishery    
7. Student  
8. No job/dependent 
9. Housemaid   
10. Others 



Household Identification card –front  Household Identification card –back 

 
 
 
 

Referral slip  

                               
 
 
Format used to collect data on coverage of IRS and practice of re-plastering  
S. No. Question  Options  Skip 
Q1 House Number: _______________ 
Q2 Was indoor residual insecticide sprayed 

recently in this house for the purpose of 
preventing malaria? 

1. Yes 
2. No 

 
End here 

Q3 Is there any sign of the sprayed insecticide 
on the wall? (Observe) 

1. Yes 
2. No 

End here 

Q4 Ask for reasons (including re-plastering): 
__________________________________________________________________
__________________________________________________________________ 

 




