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Abstract

Graph modification problems form an important class of algorithmic problems in
computer science. In this thesis, we study edge modification problems towards
classes related to chordal graphs, with the main focus on trivially perfect graphs
and threshold graphs. We provide several new results in classical complexity,
kernelization complexity, and subexponential parameterized complexity. In all cases
we give positive and negative results—giving polynomial time algorithms as well as
NP-hardness results, polynomial kernels as well as polynomial kernel impossibility
results, and we give subexponential time algorithms, and show that many problems
do not admit such algorithms unless the exponential time hypothesis fails.

Our main focus is on the subexponential time complexity of edge modification
problems. For that to make sense, we first need to figure out whether or not we
actually need super-polynomial time. We show that editing towards trivially perfect
graphs, threshold graphs, and chain graphs are all NP-complete, resolving 15 year
old open questions. When a problem is shown to be NP-complete, we study exactly
how much exponential time is needed for an algorithm to solve it. We provide
several subexponential time algorithms, for, e.g., editing towards chain graphs
and threshold graphs, as well as completing towards trivially perfect graphs. We
complement our results by showing that small alterations in the target graph classes
yields much harder problems: Editing towards trivially perfect graphs and cographs
is not possible in subexponential time unless the exponential time hypothesis fails.

A first step in our subexponential time algorithms, and an otherwise natural first
step in dealing with NP-hard problems is offered by the toolbox of polynomial
kernelization. In polynomial kernelizations, we are asked to design polynomial
time compression algorithms that shrink the input instances to output instances
bounded polynomially in a yes-solution. We provide polynomial kernels for all
edge modification problems towards trivially perfect graphs, threshold graphs and
chain graphs. In addition, we show that on bounded degree input graphs, we
obtain polynomial kernels for any editing or deletion problem towards graph classes
characterizable by a finite set of forbidden induced subgraphs. Finally, we show
that we should not expect the same result for completion problems by proving that
such a compression algorithm would imply the collapse of the polynomial hierarchy.
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Chapter 1

Introduction and motivation

1.1 Graph modification
A mixture of colleagues, family, old friends and new, will be attending dinner at
your house tonight. Your boss is also coming. Anticipating poor social chemistry,
you arrive at the conclusion that the perfect seating arrangement is paramount.
Individuals who like each other should be seated together and individuals who do
not know each other, should not. Not knowing who are friends with whom, you
log in to Gener?ıc, the most popular social network platform. Meticulously, you
scribble down all the friendships among your guests, and end up with a nice little
drawing.

Figure 1.1: The dinner party

With each guest drawn as a round little dot, you draw a line between two guests if
they are friends on Gener?ıc. Not writing the names of the individuals representing
the dots helps prevent bias. You find what seems to be four people that are all
mutually friends but do not have that many other friends. You color them purple
and put them aside. Thereafter, you find a small triangle in the remainder with
similar properties. You color them green. After a while you have colored all your
guests and found your final seating arrangement. Being mathematically inclined,
you begin to wonder over this phenomenon. What were you actually looking for

3



4 CHAPTER 1. INTRODUCTION AND MOTIVATION

just now? You realize that you wanted to minimize the number of friends that
you separate, whilst simultaneously minimizing the number of non-friends you
place at the same table.

Figure 1.2: The seating arrangement

Throughout this thesis, for historical reasons, we will refer to the guests as V (the
dots in your drawing). This letter stands for vertex (plural vertices). We refer to
the friendships with the letter E, for edge. The two pictures are visualizations of
two different graphs, and we denote the graphs with the letter G.

This seating arrangement problem was a quite simple problem, but still, it makes
you think; was the seating arrangement optimal? Or was there one separating fewer
friends at the same time joining fewer non-friends? This problem is well-studied
in computer science, not necessarily purely because of the applications to dinner
parties. The problem in the general sense goes by the name Cluster Editing1,
and has far-reaching applications in biology, computer science, economy, and social
sciences to name a few.

The reason for the name Cluster Editing is quite simple. The cluster part
signifies that the “target graph”, the type of end result we are looking for, is a
perfect clustering. A perfect clustering here means that everyone sitting at the
same table are friends, and that no two friends are sitting at different tables. The
editing part conveys that we are allowed to both add and delete friendships to
obtain the seating arrangements. As we will see later, these “operations”—adding
and deleting friendships—correspond to false negatives and false positives. We
want to minimize the number of both these errors.

This thesis is about these kinds of problems and how to optimally solve them. It
might seem trivial at first to solve such an instance optimally, but this was a very
small dinner party. In Figure 1.3, we have a slightly bigger network, and as we
can see, things get rather messy. And this network is still pretty small, it’s just a
portion of the collaboration network of one person. If we take the collaboration
network of all active researchers in computer science, we would have a network
10 000 times bigger. And it would still be called a small network.

1The formal problem names will throughout this thesis be typeset in small caps.
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Figure 1.3: A social network

Later in this thesis we will discuss all combinations of modifying a graph. In
addition to editing, we study deletion, where we only allow to delete friendships,
and completion, where we only allow to add new friendships.

Social networks and applications. In an abundance of cases in natural and
social sciences, as well as in computer and technology science fields, our data
is of this type of relational form. If our model is based on elements that are
pairwise related, we have a graph at hand. Examples of such models are correlation
graphs, every sort of transportation and communication network, electronic circuits,
chemical bonds, neural networks, and as we saw above, social networks. A social
network is any network that originates from social interaction, with examples
ranging from communication between employees in a company, friendship networks,
collaboration networks, to terrorist networks, spread of epidemic diseases, dating
sites, and so on. The textbook by Easley and Kleinberg [EK10] contains many
more examples of social networks and their applications.

When sampling data from the real world, we are bound to get data that
deviates from the intended model. This can be false data due to faulty, undersen-
sitive or oversensitive equipment, due to incorrectly filled forms, due to software
malfunctions, errors during communication transmission etc. In other cases, the
data is simply not perfect, and might be contaminated for other reasons. However,
if we have reasons to believe that such errors are few, we can still reason about
the underlying platonic model, provided we can compute which samples are most
likely to be flawed. As above in the dinner party example, we may come up with
such an ideal platonic model of how we would like or expect a network to look and
behave. Above, we expected, or at least wanted the network to look like that of a



6 CHAPTER 1. INTRODUCTION AND MOTIVATION

Figure 1.4: The entanglement of a small social network

cluster graph. But this is only one example of a model. If we analyze an email
correspondence network in a company, we might expect to see a completely differ-
ent kind of structure, perhaps a graph with a hierarchical structure. According to
Nastos and Gao [NG13], this type of networks might be what is called trivially
perfect graphs. A trivially perfect graph (we study this graph in much more details
later) is a graph that has a certain hierarchy structure, where links on cross of
groups are “illegal”, whereas all links from a level above have to be present to a
level below. However, just like above, if we are given the communication network
in a company, we would have to expect certain communication links being present
that do not adhere to the hierarchy chain.

In the case where people across groups communicate, we have an example of a
false positive—a link that should not have been present. Similarly, it is perhaps not
expected that the boss emails all her subordinates, and this corresponds to false
negatives—a link that should have been there, but is not present. Assuming there
are few false positives and negatives, we can apply tools from graph modification
theory to get to the core of the communication network, and thus reveal the
correct structure. Nastos and Gao propose that the most natural tool to apply
would be what we will refer to throughout this thesis as Trivially Perfect
Editing—what is the underlying hierarchical structure provided that some edges
are missing and some edges are there that should not have been.

Yet another application of graph modification problems in social networks is
that of finding so-called central nodes in social networks. Zachary’s famous karate
club analysis [Zac77] and Krebs analysis of terrorist networks [Kre02] are just two of
many cases in the social sciences where the importance of nodes—or the centrality—
has been studied from the network structure alone. This problem is called finding
a centrality measure in a social network. However, there is not an agreed-upon
concept of what does and does not make a central node. And until very recently,
the only agreed-upon metric was that a node c was the most central among a group
of nodes if c was the center of an induced star with the rest of the nodes being the
leaves [Fre79]. Brandes argues that there is a very natural generalization of this
concept using a threshold graph instead of a star, and that a node is more central
than another node if it is of higher degree in an induced threshold graph [Bra14].
Brandes suggests that the right tool for the job is Threshold Editing.
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(a) Zachary’s karate club analysis. (b) An underlying hierarchy.

Figure 1.5: On the left, the data of Zachary’s karate club analysis [Zac77]. When
applying Trivially Perfect Editing to Zachary’s data, we obtain a hierarchy
model similar to that on the right [NG13]

The computational complexity of solving editing problems. As was
hinted to above, it is actually not trivial to solve such instances optimally. And as
the instances become larger, they become much harder. Ideally, we would like—or
we would at least accept—that if a problem becomes twice as big, it takes twice
the time to solve it. In the above case, we had 15 guests, and we would accept
that in a dinner party with 30 guests, we used twice as much time to make the
seating arrangement. Unfortunately, that is not how computational complexity,
and indeed mathematics works. In some of these problems, if we add just one
more guest, it would take twice the time. If we add ten new guests, it takes us
thousand times the time it would take us to solve the original instance—as far as
we know! And if this doesn’t warrant further study—well—then what does?

The field concerned with these types of questions is the field algorithmic
graph theory. In this field, algorithms for graph problems are designed, and the
computational complexity of problems classified. Before we start constructing
algorithms, or as a part of constructing algorithms, we determine the overall
complexity of the problem. As discussed above, there are the types of problems
that scale nicely; twice the dinner party, twice the computational time to solve.
We will denote these problems by P.2 And then there is the other type of problems,
the ones where adding a few guests really blows up the computing time, and thus
drains the battery on the laptop used to prepare the party. For the remainder of
this introduction, we take P to mean good, and NPc to mean bad.

Unfortunately, it turned out that classifying the complexity of these editing
problems was not as simple as it sounded. While for other types of problems, like
vertex deletion problems that had the complexity classified for almost all of the
natural problems immediately in 1980 [LY80], we still today are very far away
from general knowledge about the complexity of edge editing problems—and that
is not for lack of trying. We will spend the rest of this section highlighting the
long and weary path that editing problems have taken, and I hope to convince

2The problems we denote by P will actually be all the problems for which there exists a
polynomial time algorithm, hence the P. It is not only the problem names that are written in a
special way, we typeset complexity classes in sans-serif.
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the reader that despite all the work gone into classifying the complexity of these
problems, they remain a mystery.

One of the first studied editing problems was Split Editing. The definition of
split graphs is beyond the scope of this introduction, but is explained in later
chapters. Perhaps it wasn’t surprising back then, but in hindsight it could easily
have been. Hammer and Simeone [HS81] showed that this problem is a P problem.
That is a very good and promising start.

Five years later, Křivánek and Morávek, in 1986, showed that Cluster
Editing, the one we used for the seating arrangement above, was one of the
problems labelled NPc [KM86]. The problem was first proposed in 1964 [Zah64],
so it took more than 20 years to really understand that this problem was a
fundamentally difficult one.

Ten years passed until the next editing problem was classified. Studying
so-called “physical mapping of DNA”, Cirino, Muthukrishnan, Narayanaswamy,
and Ramesh suggested using a model called bipartite interval graphs. Imagine
here, if you will, thousands of DNA strands with partially overlapping endpoints,
aligned on a line. They showed that there is little hope of computing these models
efficiently; Bipartite Interval Editing was shown to be in NPc [CMNR97].
They also offer this nice intuition for why editing is hard:

While edition using insertions and deletions separately has been well
studied for various classes of graphs, graph edition problems appear
harder when both addition and deletion operations are allowed since
they can take potentially many more paths from the source graph to
the target graph passing through intermediate graphs which have little,
or nothing, in common with both.
— Cirino et al. [CMNR97]

After year 2000, people started studying these problems more systematically in
an attempt to obtain more general results and a better theory behind editing in
general. Natanzon, Shamir, and Sharan [NSS01] showed that Perfect Editing,
and Comparability Editing were NPc. Shamir, Sharan, and Tsur refined the
result from above that the dinner party problem was NPc: They showed that even
if you know in advance exactly how many tables you want, the problem is NPc
unless you put everyone at the same table. In the language of mathematics, the
problem `-Cluster Editing is NPc for ` ≥ 2 and P otherwise [SST04].

Then, in 2006, Burzyn, Bonomo, and Durán managed to prove a wide array
of editing problems to be NPc [BBD06], including editing to (unit) (circular)
interval/arc graphs, permutation graphs and circle graphs. Still no sign of another
problem labelled P. They conclude by posing nine open questions, seven of which
on the complexity of editing problems.

In 2009 Alon and Stav [AS09] gave another general theorem for editing problems;
If we, for some ` want to edit away all the cycles in the graph on exactly ` vertices,
we are out of luck: C` Editing is NPc for every ` ≥ 4. When ` = 3, the
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problem is equivalent to the deletion version which was shown to be NPc by
Yannakakis [Yan81b]. For ` ≤ 2 the problem does not make much sense.

The computational complexity of Cograph Editing one of the questions
asked by Natanzon et al. in 2001 and then again by Burzyn et al. in 2006, but
was not shown to be NPc until Liu, Wang, Guo, and Chen just a few years
ago [LWGC12].

Trivially Perfect Editing was asked by Burzyn et al. in 2006, and
was shown to be NPc independently by Nastos and Gao [NG13], and Drange and
Pilipczuk [DP15]. Recall from above that Nastos and Gao studied this problem in a
social networks setting, arguing that the perfect model for hierarchies within social
networks are exactly the graphs trivially perfect graphs model (see Figure 1.5).

Chordal Editing was announced to be NPc by several sources [Nat99,
NSS01, Sha02], however, all of these articles cite private communication with Ben-
Dor. To the best of the author’s knowledge, no proof was published until Drange,
Dregi, Lokshtanov, and Sullivan [DDLS15] published a proof, while showing that
Threshold Editing as well as Chain Editing are NPc, resolving a conjecture
from Natanzon et al. [NSS01]. Recall also that Threshold Editing was the
problem suggested by Brandes to be used for measuring the centrality of a node
in a network.

1.2 Theoretical framework and related work
We now slowly move into the more theoretical and technical parts of this thesis.
However, we will very quickly move through the history of graph modification again,
now with less focus on the editing problems, but rather on graph modification
in general. Some of the fundamental problems in algorithmic graph theory are
the different notions of graph modification. In a graph modification problem, we
are given a graph target, specified by some property Π, and asked to modify a
given input graph to achieve the property. Some of the most commonly studied
properties are various connectivity constraints, covering and packing constraints
and where Π is a graph class of interest. Examples of the latter are deleting
edges to obtain an acyclic graph, to obtain a bipartite graph, deleting or adding
edges—as seen above—to obtain cluster graphs, or adding edges to obtain a
chordal graph. Each of these examples have important practical and theoretical
applications. As far as allowed modifications are concerned, the most popular and
well-behaved variant is that of the so-called vertex deletion problems. In a vertex
deletion problem, we have in mind some class of graphs G and we are asked, given
a graph G, what is the least number of vertices you have to delete in order to
obtain a graph in G. We refer to this number as k and call it the budget of our
instance.

Krishnamoorthy and Deo were among the first to systematically study the
computational complexity of these problems [KD79], showing the NP-completeness
of 17 different problems, including G being the class of complete graphs (Clique),
the edgeless graphs (Independent Set), the class of forests (Feedback Vertex
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Set), the class of planar graphs (Planar Vertex Deletion), the class of
graphs omitting a specific cycle (Ck-free Vertex Deletion), the class of
chordal (Chordal Vertex Deletion), interval graphs (Interval Vertex
Deletion), and many more.3 We here say that a graph G is H-free if G does not
contain H as an induced subgraph, or in other words, we can not delete vertices
of G to obtain a graph isomorphic to H.

Following this result, Lewis and Yannakakis [LY80] published a generalized
result which included many of the 17 results of Krishnamoorthy and Deo, when they
showed that for all non-trivial hereditary graph classes G, for which membership is
polynomial time computable, the G Vertex Deletion problem is NP-complete.
Here, a property Π is non-trivial if it is true for infinitely many graphs and false for
infinitely many graphs. This requirement is necessary, as otherwise the problem
is solvable in polynomial time. A graph class G is hereditary if for every G ∈ G,
if G′ is an induced subgraph of G, then G′ ∈ G. In other words, G is closed under
deleting vertices.

A natural question following these results was the question of obtaining similar
dichotomies or strong theorems for the edge deletion problems. In an edge deletion
problem, we have a fixed graph class G in mind, and we are asked for the least
number of edges to remove from a given graph G to obtain a subgraph G′ ∈ G. We
call these kind of problems simply G Deletion, when G is the target graph class.
But why only consider deleting edges? In the Connectivity Augmentation
Problem we are asked to modify the graph to increase its connectivity. Clearly,
by deleting edges, we never increase the connectivity. This gives rise to the variant
of the edge modification problems called completion problems; What is the least
number of edges to add to G to obtain a supergraph G+ ∈ G? We refer to these
problems as G Completion when G is the target graph class. It should here
be noted that the deletion and the completion problems are not fundamentally
different, as the deletion problem on G to a hereditary class G is equivalent to
the completion problem on G to co-G. That is, by looking at the complement
graph and the complement property, we can swap deletion for completion, and
vice versa.

All versions, deletion of vertices, deletion of edges as well as adding edges have
practical applications. The Planar Deletion has obvious applications in layout
optimization [Ull84, BL84], as the number describes how many “bridges” a circuit
board needs, and was early shown to be NP-complete [LG77]. Cluster Vertex
Deletion has applications in correlation clustering, the problem where we want to
classify objects into natural clusters [HKMN10]. Minimum Fill-In—the problem
of adding as few edges as possible to obtain a chordal graph—has applications in
sparse matrix multiplications [Ros72, Tar75] and more. In this thesis we will refer
to this problem as Chordal Completion since that highlights its relation to
the other problems studied herein.

As we discussed in the first section, there is a third option when it comes to

3The reader is invited at this point to read the very accessible letter on the status of the P
versus NP problem by Fortnow [For09].
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edge modification problems. What if we allow both deletion and completion?
The computational editing problems turn out to have many natural applications,
one important example being the correlation clustering problem [BBC04]. In this
problem we are given a graph, and asked to add and delete as few edges as possible
to obtain a cluster graph, that is, a graph whose connected components induce
complete graphs.
Unfortunately, the way vertex deletion problems behaves nicely as seen above,
with respect to NP-hardness, is exactly the way edge deletion problems do not.
We will now quickly go through some of the goals, obstacles, and achievements in
edge modification problems the last forty years.

It [. . . ] would be nice if the same kind of techniques could be applied to
the edge-deletion problems. Unfortunately we suspect that this is not the
case — the reductions we found for the properties considered [. . . ] do
not seem to fall into a pattern.
— Yannakakis [Yan81b].

Garey, Gavril and Johnson proved in 1977 [GJ79] that Interval Completion was
NP-complete. Following this result, using ad-hoc reductions, Yannakakis [Yan81a]
showed Chain Completion and Chordal Completion to be NP-complete, first
conjectured to be NP-hard by Rose, Tarjan, and Lueker [RTL76, RT78, Yan81a].
One of the first results towards a more general theorem was given by Watanabe,
Ae, and Nakamura [WAN81] who showed that all edge deletion towards “finitely
characterizable by 3-connected graph” problems were NP-complete.

Goldberg, Golumbic, Kaplan, and Shamir [GGKS95] noted, in a study originat-
ing from problems in molecular and computational biology, that from Chordal
Completion [Yan81a], Interval Completion as well as Unit Interval Com-
pletion are NP-complete. They considered four simplified versions of physical
mapping of DNA, the problem of “reconstructing the relative position of fragments
of DNA along the genome from information on their pairwise overlaps” [GGKS95],
finding that most of these problems are NP-hard.

Towards a more classification type of result, El-Mallah and Colbourn [EC88]
showed that P`-free Deletion is NP-complete, where P` is the path on ` vertices,
if and only if ` ≥ 3. For ` = 3, this is exactly Cluster Deletion, and for
` = 4, this is the Cograph Deletion problem. Reducing from the Clique
problem, Margot showed that Threshold Completion is NP-complete [Mar94],
where threshold graphs are the cographs that do not contain C4 nor C4 as induced
subgraphs. The graph C4 is here the cycle on four vertices. See Table 2.1 for the
author’s private collection of small graphs.

Graph completion. The H-free Completion problems form a subclass of
graph modification problems where one is asked to add a bounded number of
edges to an input graph to obtain a graph which is H-free, where H is a set of
forbidden induced subgraphs. We note here that the completion problems are not
fundamentally different from deletion problems, especially not in H-free graphs,
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since the problem H Completion is polynomially equivalent to H′ Deletion,
where H′ is the pointwise complement of H.

One of the motivations to study completion problems in graph algorithms
comes from their intimate connections to different width parameters. For example,
the treewidth of a graph, one of the most fundamental graph parameters, is the
minimum over all possible completions into a chordal graph of the maximum
clique size minus one [Bod98]. The treedepth of a graph, also known as the vertex
ranking number, the ordered chromatic number, and the minimum elimination tree
height, plays a crucial role in the theory of sparse graphs developed by Nešetřil and
Ossona de Mendez [NOdM12]. Mirroring the connection between treewidth and
chordal graphs, the treedepth of a graph can be defined as the largest clique size
in a completion to a trivially perfect graph. Similarly, the vertex cover number of a
graph is equal to the minimum of the largest clique size taken over all completions
to a threshold graph, minus one.

Interval Completion and Proper Interval Completion have strong
connections to width parameters just like the ones mentioned above: The pathwidth
of a graph is the minimum over the maximum clique size in an interval completion
of the graph, minus one, whereas the bandwidth mirrors this relation for proper
interval completions of the graph.
Much work has gone into the area of turning a graph chordal, one way or another,
so much in fact as to have its own survey. Heggernes [Heg06] wrote a survey on
triangulation, the task of adding edges to a graph to obtain a chordal graph, and
note there the intricate relationship between these tasks and the task of computing
the treewidth of a graph, sparse matrix computation [Ros72, Tar75], database
management [BFMY83, TY84], and more.

1.3 Parameterized tractability
There are only few problems above that have polynomial time algorithms. They are
relatively fast, which means we are able to solve relatively large instances relatively
fast. These are the ones we like. However, for the NP-complete problems, no such
algorithm can exist unless P = NP, which is widely believed to not be the case. So
should we just give up? We still would like to be able to solve these problems, so
what can we do? Dealing with the inherent intractability of many computational
problems, like that of the problems mentioned above, is one of the main areas of
modern algorithm research. To cope with the intractability, we are presented with
a few options. We could either turn to approximation algorithms [WS11], where
we are trying, not to find an optimal solution, but a solution that is good enough.
Or we could accept the fate of exponential time, but try finding improved exact
exponential time algorithms [FK10]. A completely different approach is to restrict
our attention to smaller classes of input graphs [KS99, TNS82, GKLT09, CMPP14].
These are all classical ways of dealing with NP-complete problems.

A different perspective is offered by the field of parameterized algorithms and
multivariate analysis. In all problems mentioned above, and in most naturally
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occurring problems, we are interested in finding the smallest possible solution—
we are looking for a solution of size at most some prescribed number k. In
parameterized complexity, we are taking this value into account in the analysis
of the running time. We are here looking for algorithms that solve problems in
time f(k) · poly(n), where f can be any computable function with input k, called
the parameter, and n is the size of the input, usually measured in the number of
vertices in the input graph. However, poly is restricted to be a fixed polynomial
function. A problem admitting such an algorithm is said to be fixed-parameter
tractable. This means, informally and vaguely, that for “small enough” solutions,
the problem is in some sense still tractable.

In some contrast to the chaos we have for edge modification problems with
respect to their P vs. NP classification, much can be said about their parameterized
complexity. Parameterized complexity offers a more fine-grained analysis than
the P vs. NP classification does. As noted above, Yannakakis showed that for
any polynomial time recognizable, hereditary non-trivial graph class, the vertex
deletion problem to that graph class was NP-complete. This led Heggernes, Paul,
Telle, and Villanger to ask if similar requirements were sufficient for obtaining fixed-
parameter tractable algorithms [HPTV07]. However, not long after, Lokshtanov
proved that there are problems, like Wheel-free Deletion that are W[2]-
hard [Lok08], and thus unlikely to admit a fixed-parameter tractable algorithm.
The theory of the W-hierarchy is beyond the scope of this thesis, but by “unlikely”,
we simply mean that if they do admit a fixed-parameter tractable algorithm, then
the W-hierarchy collapses at the second level, i.e., FPT = W[1] = W[2], and this in
turn implies that the exponential time hypothesis fails [LMS11]. We will discuss
this hypothesis in more details later. Indeed, under the same hypothesis, we
cannot even have an f(k)no(k) algorithm for such problems.

However, we can restrict our attention to “finitely generated hereditary graphs”,
graphs characterized by a finite set of forbidden induced subgraphs. These are the
graph classes G for which there is a finite list of graphs H1, H2, . . . , Hp such that
any graph G belongs to G if and only if G does not contain any Hi as an induced
subgraph. And there are many such graph classes. Indeed, most studied graph
classes in this thesis are precisely such; cluster and bicluster graphs, threshold
and chain graphs, trivially perfect and cographs, split and pseudosplit graphs,
and many more. Cai [Cai96] discovered that for all graph modification problems
towards these graph classes, there is a branching algorithm running in time O(cknc)
for some constant c. Here, c depends only on the finite set of forbidden induced
subgraphs. Although many studied graph classes satisfy this property, there
are important examples, like chordal or interval graphs, that are outside this
regime. This result does not directly cover problems like Chordal Completion,
since chordal graphs cannot be characterized by a finite set of forbidden induced
subgraphs. However, given an input instance (G, k) to Chordal Completion,
we may observe that if G has an induced cycle of length more than k+3, then (G, k)
is a no-instance [Cai96]. Hence, when k is the parameter, (G, k) is a yes instance
of Chordal Completion if and only if (G, k) is a yes instance of H-free
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Completion for
H = {C4, C5, . . . , Ck+4},

and the output instance is chordal.

The optimality programme. Once a problem has been shown to admit a
fixed-parameter tractable algorithm, a natural next question is whether it is
possible to improve upon that algorithm. This is especially interesting when the
algorithms have nasty running times like 2O(k2) ·poly(n), or even 2O(2k) ·poly(n). As
mentioned above, the modification problems for finite forbidden induced subgraphs
already have nice running times like 6k · poly(n) or even 3k · poly(n). Is it possible
to obtain faster algorithms than what Cai’s theorem provides? Can we improve
from 3k poly(n) to, say, 2k poly(n) or 1.5k poly(n)?

Clearly, it would be very useful to know if the current best algorithm
can be improved further or it has already hit some fundamental barrier.
— Marx [Mar12].

As Marx points out, it would be interesting to see if there are reasons to suspect
that we cannot get better than 2k · poly(n) algorithms. We will return to that
question later and indeed throughout this thesis, but first we take a detour into
the world of compression and preprocessing.

1.4 Polynomial kernels
What can be done in polynomial time? An interesting question when a
problem is NP-complete is: provided that we are only given polynomial time, what
can we actually achieve within this running time? In this area, parameterized
complexity offers a very intriguing concept: compression with mathematically
grounded guarantees. Suppose that a problem is NP-complete, and let (G, k) be
an input instance of this problem. Is it possible to, in polynomial time, compress
the input instance (G, k) to an equivalent instance (G′, k′), where the size of G′
and k′ are both bounded by f(k) for some function f? We call an algorithm
compressing the instance a kernelization algorithm. It turns out that when f is
allowed to be any computable function, this question is equivalent to the question
whether the problem is fixed-parameter tractable [DFS99]. But what happens if
we require f to be a polynomial?

For vertex deletion problems the answer is again quite simple: As long as G is
characterized by a finite set of forbidden induced subgraphs, the task is to hit all
the copies of these subgraphs (so-called obstacles) that are originally contained in
the graph. Hence, one can construct a simple reduction to the d-Hitting Set
problem for a constant d depending on G, and use the classic O(kd) kernel for the
latter that is based on the sunflower lemma [FG06, AK10]. For edge modifications
problems, however, this approach fails utterly: every edge addition and deletion
can create new obstacles, and thus it is not sufficient to hit only the original ones.
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For this reason, edge modification problems behave counter-intuitively with respect
to polynomial kernelization, and up to recently very little was known about their
complexity.

Kernelization of edge modification problems to classes that are characterized by
a finite set of forbidden induced subgraphs has an interesting history. Already in
1999, Kaplan, Shamir, and Tarjan [KST99] showed that Chordal Completion
admits a polynomial kernel with O(k5) vertices. This was later improved by
Natanzon, Shamir, and Sharan [NSS00]. As above, chordal graphs do not have
a finite set of forbidden induced subgraphs, but the set can be bounded by a
function of k: if the graph contains an induced cycle of length more than k + 3,
then we can immediately infer that (G, k) is a no-instance. Gramm, Guo, Hüffner,
and Niedermeier [GGHN08], and Guo [Guo07] showed kernels for several graph
modification problems towards graph classes characterized by a finite set of
forbidden induced subgraphs, including cluster, split, threshold, chain and trivially
perfect graphs. Several positive results followed, which led Fellows, Langston,
Rosamond, and Shaw to ask whether all H-free modification problems admit
polynomial, and even linear kernels [FLRS07].

This was refuted by Kratsch and Wahlström [KW13] using the framework of
Bodlaender, Downey, Fellows, and Hermelin [BDFH09], who showed that for a
certain graph on seven vertices, HKW (see Table 2.1) with H = {HKW}, none
of the problems H-free Deletion or H-free Editing, admit polynomial
kernels unless NP ⊆ coNP/poly.4 This shows that the subtle differences between
edge modification and vertex deletion problems have tremendous impact on the
kernelization complexity. They conclude by asking whether there is a “simple”
graph, like a path or a cycle, for which an edge modification problem does not
admit a polynomial kernel under similar assumptions. This question was answered
by Guillemot, Havet, Paul, and Perez [GHPP13] who showed that both for the
class of P`-free graphs (for ` ≥ 7) and for the class of C`-free graphs (for ` ≥ 4),
the edge deletion problems do not have polynomial kernelization algorithms, unless
NP ⊆ coNP/poly. They simultaneously gave a cubic kernel for the Cograph
Editing problem, the problem of editing to a graph without induced paths on
four vertices.

These results were later improved by Cai and Cai [CC15], who attempted to
obtain a complete dichotomy of the kernelization complexity of edge modification
problems for classes of H-free graphs, for every graph H. The project has been
very successful—the question is settled for all 3-connected graphs H, all paths and
cycles, as well as all but a finite number of trees. In particular, it turns out that
the existence of a polynomial kernel for any of H-Free Editing, H-Free Edge
Deletion, or H-Free Completion problem is in fact a very rare phenomenon,
and basically happens only for specific graphs H. For instance, for H being a path
or a cycle, the aforementioned three problems admit polynomial kernels if and
only if H has at most three edges.

4NP ⊆ coNP/poly implies that PH is contained in Σp
3. It is widely believed that PH does not

collapse, and hence it is also believed that NP 6⊆ coNP/poly.
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There are several important and interesting open problems in the kernelization
complexity of edge modification problems. To mention a few, Interval Com-
pletion and claw-free Deletion, and in addition a deterministic kernel for
Edge Bipartization.

Towards these goals, some work has been done. Interval Completion
was shown to be fixed-parameter tractable by Villanger, Heggernes, Paul, and
Telle [VHPT09], where they conclude by asking specifically for a polynomial
kernel. This question was raised again in the work of Bliznets, Fomin, Pilipczuk,
and Pilipczuk [BFPP16]. Bessy and Perez [BP13] gave a polynomial kernel
for Proper Interval Completion. Cygan et al. showed that deletion to
a subclass of a claw-free graphs, diamond-claw-free Deletion admits a
polynomial kernel [CPP+15], pinpointing the really hard cases of Claw-free
Deletion one has to overcome before being able to obtain a polynomial kernel,
whereas Cai showed that S11-free Deletion does not have a kernel unless
NP ⊆ coNP/poly [Cai12]. Here, S11 is the star on 11 vertices, and the claw is
the star on four vertices. Kratsch and Wahlström [KW14] proved that there
exists a randomized compression such that Edge Bipartization as well as the
vertex version, Odd Cycle Transversal admits a k4.5 co-RP kernel. Here,
co-RP allows false positives in the sense that if an instance is a no-instance, then
the compressed instance is a no-instance with probability at least 1/2. However,
any yes-instance will be compressed to a yes-instance. Here, we may boost the
success probability by running the algorithm polynomially in k many times (not
polynomial in n as that would defeat the purpose of a kernelization procedure),
and the output instance will then be the “and” over all the compressed instances.

For more on polynomial kernels with respect to the aforementioned graph
classes, we may consult the recent survey on the kernelization complexity by Liu,
Wang, and Guo [LWG14]. This survey is an investigative approach exploring the
frontier of the kernelization complexity of graph modification problems.

1.5 Subexponential time algorithms
In the previous section, we focused on the compressibility of a problem. However,
this is only a preprocessing procedure, and does not actually solve the problem.
We return to the philosophy of the optimality programme. After having Cai’s
theorem showing that all the modification problems towards graph classes that are
characterized by a finite set of forbidden induced subgraphs are solvable in fixed-
parameter tractable time, a natural question to ask is about lower bounds. Cai’s
theorem says that completing to trivially perfect graphs can be done in O(2kn5)
time, so a natural question whether it is possible to improve that running time.

Simultaneously with the optimality programme and the development of poly-
nomial kernel theory, there was a growing interest in identifying parameterized
problems that are solvable in subexponential parameterized time, i.e., in time
2o(k) poly(n). Although for many classic parameterized problems already known
NP-hardness reductions show that the existence of such an algorithm would contra-
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dict the exponential time hypothesis of Impagliazzo et al. [IPZ01], subexponential
parameterized algorithms were known to exist for problems in restricted settings,
like planar, or more generally H-minor free graphs [DFHT05]. The complexity
class of problems admitting such an algorithm is called SUBEPT and was defined by
Flum and Grohe in their seminal work on parameterized complexity [FG06]. They
noticed that most natural problems did, in fact, not live in this complexity class:
The classical NP-hardness reductions paired with the exponential time hypothesis
of Impagliazzo, Paturi, and Zane [IPZ01] is enough to show that no 2o(k) · poly(n)
algorithm exists.

In this context, Chen posed the following question in the field of parameterized
algorithms [BCC+06]: Are there examples of natural problems on graphs, that do
not have such a topological constraint, and also have subexponential parameterized
running time? As a reply to this question, Alon, Lokshtanov, and Saurabh [ALS09]
devised an algorithm solving Feedback Arc Set on tournament graphs in time
2O(
√
k log k) · poly(n). However, the aforementioned graph classes with topological

constraints are sparse, and tournament graphs5 are extremely dense. Hence,
Chen’s question was therefore not fully answered—are there problems which are
in SUBEPT on general graphs?

The question was settled in full when Fomin and Villanger [FV13] gave an
algorithm for Chordal Completion. Numerous 2O(k) poly(n) algorithms were
known [Cai96, KST99, BHV11] for this problem, but the surprising part here
was that Fomin and Villanger proved that this problem was solvable in time
2O(
√
k log k) + poly(n). The additive polynomial factor was due to first preprocessing

the graph, thereby obtaining a kernelized instance of polynomial size. The main
tool in this algorithm was that of minimal triangulations and potential maximal
cliques, a framework constructed earlier by Bouchitté and Todinca [BT01, BT02]
applying tools both from there, and from the work by Fomin, Kratsch, Todinca, and
Villanger on exact algorithms for Treewidth and Minimum Fill-In [FKTV08].

Following the results of Fomin and Villanger, several new subexponential
parameterized time completion results followed. Based on the aforementioned
work by Alon et al. [ALS09], Ghosh et al. [GKK+15] gave an algorithm with the
same running time, 2O(

√
k log k) + poly(n), for Split Completion, thus also giving

an algorithm for the equivalent problem of deleting to a split graph. A natural
question arose again on the complexity of completing to H-free graphs: Could this
be subexponential time for all H. For connected? While the classes of chordal and
split graphs are rather “simple”, they certainly are much more complex than the
simple cluster or bicluster graphs. Therefore, the problems Cluster Editing and
Cluster Deletion were natural candidates for subexponential time algorithms,
together with the similar question for bicluster graphs.

This question was first answered in the negative by Komusiewicz and Uhlmann
studying this problem on bounded degree graphs [KU12], and then independently
by Fomin et al. [FKP+14]. Surprisingly, we cannot expect that such algorithms

5A directed graph is a tournament if between every pair of vertices u and v, either uv is an
arc, or vu is an arc. They can be formed by taking a complete graph and directing all the edges.
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exist. Komusiewicz and Uhlmann gave an elegant reduction proving that both
parameterized and exact subexponential time algorithms were not achievable,
unless the exponential time hypothesis fails [KU12].

Following the subexponentiality results of Chordal Completion and Split
Completion, it was shown that Trivially Perfect Completion, as well
as Chain Completion, Threshold Completion, and Pseudosplit Com-
pletion all were solvable in subexponential parameterized time [DFPV14]. Then
followed two results by Bliznets et al. [BFPP16, BFPP14], that Interval Comple-
tion and Proper Interval Completion both are solvable in subexponential
time, 2O(

√
k log k) poly(n) and 2O(k2/3 log k) + poly(n), respectively.

Later a problem known as Clique Editing, or Sparse Split Editing
was introduced as a model for core/periphery structures [BE00], and for noise
reduction [DM14a]. This problem consists of editing a graph to a disjoint union
of a clique and an independent set, or, {2K2, P3}-free Editing. It should come
as no surprise that the problem is solvable in subexponential time; A polynomial
kernel is quite trivial after a twin reduction rule, and then the result follows from
guessing a vertex in the clique and its (small) neighborhood difference.

Damaschke and Mogren show several similar problems to be solvable in
subexponential parameterized and show that Clique Deletion is solvable in
time O?(1.6355

√
k ln k) [DM14a]. Whether the Clique Editing problem was NP-

hard, was asked as an open problem in IWOCA 2013, and answered independently
by Damaschke and Mogren [DM14a] and Kovác, Selecéniová, and Steinová [KSS14].

Until recently, it was unknown whether Threshold Editing—as well as the
very similar Chain Editing—was NP-hard or not. This was shown by Drange,
Dregi, Lokshtanov, and Sullivan [DDLS15] where it was simultaneously given
algorithms for both problems that run in time 2O(

√
k log k) +poly(n), thereby adding

these problems to the line of subexponential parameterized time solvable problems.

Targets with few components. As mentioned above, Cluster Editing is
unlikely to admit a subexponential time algorithm [KU12]. On the other hand, the
problem p-Cluster Editing, where the number of components in the target class
is fixed to be at most p—rather surprisingly—does indeed admit a subexponential
parameterized time algorithm; This was shown by Fomin et al. [FKP+14], who
designed an algorithm solving this problem in time 2O(

√
pk) · poly(n). The p-

Cluster Editing problem, as well as p-Cluster Deletion was first studied by
Shamir, Sharan, and Tsur [SST04], who showed that even 2-Cluster Deletion
was NP-complete, and furthermore that Cluster Deletion was NP-hard to
approximate within a constant factor.

The subexponential parameterized explanation by Fomin et al. [FKP+14] was
rebutted by Misra, Panolan and Saurabh [MPS13], showing that this parameter
does not always help in the aim of obtaining subexponential time algorithm.
They showed that p-Club d-Cluster Editing does not admit a subexponential
time fixed parameter algorithm when parameterized on solution size and the
number of connected components in the target graph class. Even more problems
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have been studied under this dual parameterization. Drange, Reidl, Sánchez
Villaamil, and Sikdar [DRSVS15] considered the extension of p-Cluster Editing
to Bicluster Editing and the more general t-Partite Cluster Editing,
yielding the problems p-Bicluster Editing and t-Partite p-Cluster Editing.
None of the classical parameterized versions are solvable in subexponential time,
but fixing the number of connected components in the solution, p, the problems
become solvable in subexponential time. There it is shown that a problem called p-
Starforest Editing is solvable in time O(23

√
pk+m+n), whereas an algorithm

of running time 2O(p
√
k log(pk)) +O(m+ n) is given for Bicluster Editing.

Lower bounds. On the other side of the subexponential time parameterized
complexity is the lower bounds aspect. Here we have two things to take into account,
(i) is a problem solvable in time 2o(k) poly(n), and supposing it is: (ii) what is the
optimal running time. Is Chordal Completion solvable in 2O(

√
k) poly(n) time,

or is the log factor essential in the exponent? Recall that Split Completion is
solvable in time 2O(

√
k) poly(n) [CFK+15].

For the first part (i), as mentioned above, Cluster Editing is not solvable in
subexponential time. Drange, Fomin, Pilipczuk, and Villanger [DFPV15] showed
that also for Trivially Perfect Completion, or {C4, P4}-free Completion,
as well as for Pseudosplit Completion and Threshold Completion, we
have subexponential time algorithms. There it is also shown that for any subset H
of {2K2, C4, P4}, the problem H-free Completion is solvable in subexponential
time only when

H = {2K2, C4}, {C4, P4}, or {2K2, C4, P4}.

Even the simple problem Cograph Completion can not be solved in time
subexponential in the solution, unless the exponential time hypothesis fails.

For the optimality programme (ii) for subexponential time algorithms, we do
not have many strong results. Fomin and Villanger [FV13] noted that, unless the
exponential time hypothesis fails, Chordal Completion cannot be solved in
time 2o(k1/6) poly(n). However, in a recent article, Bliznets et al. [BCK+16] show
that this can be tightened quite a bit: Unless the exponential time hypothesis
fails, there is a positive natural number c > 1 such that Chordal Completion
can not be solved in time 2O(k1/4/ logc k) poly(n), and the same lower bound result
holds for Interval Completion, Proper Interval Completion, Trivially
Perfect Completion, Threshold Completion, and Chain Completion.
This, however, still leaves a gap for almost all the problems between k1/2 and
k1/4 in the exponent. Is the correct running times for these problems closer to
2O(k1/4/ logc k) poly(n), to 2O(k1/2) + poly(n) or to 2O(

√
k log k) + poly(n)? The gap is

slightly larger for Proper Interval Completion for which we only know an
algorithm running in time kO(k2/3) + poly(n) [BFPP14].

Under a stronger assumption, they show that none of the problems above can be
solved in time 2o(

√
k) poly(n). This stronger assumption is on the subexponential-

time approximation scheme for Min Bisection on d-regular graphs. The formal
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definitions behind this assumption is beyond the scope of this thesis, but generally
speaking, the assumption says that we need an approximation algorithm for
Min Bisection with factor arbitrarily close to one, and it needs to run in
subexponential time. The current best polynomial-time approximation for Min
Bisection is today on the order logOPT [Räc08].

1.6 Organization and overview

1.6.1 Organization of thesis
This thesis is divided into three main parts. Part II contains results about the
polynomial kernelizability of certain problems, Part III contains results on some
problems with subexponential parameterized time running algorithms and finally
in Part IV we give some evidence that certain problems are not solvable in
subexponential time, and we also prove Threshold Editing, Chain Editing,
Chordal Editing as well as Trivially Perfect Editing and Cograph
Editing to be NP-complete.

The main problems studied are modification towards threshold graphs and trivially
perfect graphs. In each of the parts we add results on specific problems related to
these two graph classes, in addition to several other results. In Part II, we show
polynomial kernels for all three modification problems related to threshold graphs
and trivially perfect graphs (quadratic, and septic vertex kernels, respectively).

In Part III, we show that all three modification problems towards threshold graphs
and chain graphs are solvable in subexponential time, and we show that so is
the completion version towards trivially perfect graphs. All of these algorithms
run in time 2O(

√
k log k) + poly(n). To complement this, we show in Part IV that

neither editing, nor deleting towards trivially perfect graphs can be done within
this running time; Provided that the exponential time hypothesis holds, there
cannot be any algorithm solving Trivially Perfect Editing, nor the deletion
version, in time 2o(k) · poly(n), nor in exact time 2o(n+m). We also show that the
subexponential time algorithm for Threshold Editing is worth studying, by
showing that this problem, and Trivially Perfect Editing are NP-complete.

In the last part, Part V, we conclude with some open questions and possible future
directions in this field.
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Problem

Graph class Deletion Completion Editing

Trivially Perfect k7 (Thm. 4) same as deletion k7 (Thm. 3)
Threshold same as editing same as editing k2 (Thm. 1)
Chain same as editing same as editing k2 (Thm. 2)
t-partite p-cluster same as editing — tpk (Thm. 5)
H-free? same as editing No kernel (Thm. 7) kc (Thm. 6)

Table 1.1: Summary of the kernelization results of this thesis. The kernel sizes are
to be interpreted as O( · ). The row marked with a star (?) is on bounded degree
input graphs, for finite H, and c depends only on the degree bound and on H.
The negative result is under the assumption that NP 6⊆ coNP/poly.

1.6.2 Summary of the results
Kernels. We give several new polynomial kernel results, some for which the
problem was previously unknown to be NP-complete. We improve existing kernels
for Threshold Completion thereby answering recent open questions. We also
improve and extend the known existing kernels for H-free Deletion on bounded
degree graphs to also take into account H being possibly disconnected and to work
for the editing version.

Threshold and chain graphs
Threshold Editing, Threshold Completion, and Threshold Dele-
tion, as well as modifications towards chain graphs admit quadratic vertex
kernels.

Trivially perfect graphs
Trivially Perfect Editing and Trivially Perfect Deletion admit
O(k7) vertex kernels. The kernel works for the completion version, whose
polynomial kernel complexity status was already announced in 2007 by
Guo [Guo07].

Starforest and multipartite cluster graphs
We give an O(tpk) vertex kernel for the general problem t-partite p-
cluster Editing, implying an O(pk) vertex kernel for p-Bicluster
Editing.

On bounded degree input
Finally, on bounded degree input graphs, we obtain polynomial kernels for
every editing and deletion problem towards H-free graphs, provided only
that H is finite. We complement this result by showing that the completion
problem will not admit such procedures unless the polynomial hierarchy
collapses.
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Problem

Graph class Deletion Completion Editing

Cograph same as editing same as editing ETH (Thm. 20)
Trivially Perfect ETH (Cor. 14.5) c

√
k log k (Thm. 10) ETH (Thm. 19)

Threshold c
√
k log k (Thm. 8) same as deletion NPc (Thm. 16)

c
√
k log k (Cor. 9.14)

Chain c
√
k log k (Cor. 9.16) same as deletion NPc (Thm. 17)

c
√
k log k (Thm. 9)

Pseudosplit c
√
k log k (Thm. 12) same as deletion O(n8) (Thm. 11)

C4-free ETH (Thm. 21) ETH (Thm. 22) not considered
Bicluster
p-Bicluster

same as editing
same as editing

—
—

ETH (Cor. 16.5)
c
√
k log k (Thm. 14)

Starforest
p-Starforest

ETH (Cor. 16.4)
same as editing

—
—

ETH (Thm. 23)
23
√
pk (Thm. 13)

Table 1.2: Summary of the subexponentiality results of this thesis. All the running
times should be taken as O?( · ). ETH means that the problem is NP-complete, and
that there is no 2o(k) poly(n) algorithm under the assumption of the exponential
time hypothesis.

Subexponential time algorithms. We design several subexponential time
algorithm, as well as a polynomial time algorithm for Pseudosplit Editing.
Also here, some problems were not known to be NP-complete prior to this work.
We describe algorithms solving all three modification problems towards threshold
graphs and chain graphs, as well as completion towards trivially perfect graphs.
These algorithms all run in time 2O(

√
k log k) + poly(n).

For p-Bicluster Editing, we attempt to obtain similar running time as was
done for p-Cluster Editing, but only achieve 2O(p

√
k log (pk)) + poly(n). For the

special case of p-Starforest Editing, we did however achieve similar running
times, namely O(23

√
pk + n+m).

Threshold and chain graphs
Threshold Editing, Completion and Deletion, as well as modifica-
tions towards chain graphs, are all solvable in time 2O(

√
k log k) + poly(n).

Trivially perfect graphs
Trivially Perfect Completion is solvable in time 2O(

√
k log k) + poly(n).

Pseudosplit graphs
Pseudosplit Completion and its equivalent deletion variant are solvable
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in time 2O(
√
k log k) + poly(n), and Pseudosplit Editing is solvable in

polynomial time.

Starforest and multipartite cluster graphs
p-Starforest Editing is solvable in time O(23

√
pk + n+m), and finally,

both p-Bicluster Editing and t-partite p-cluster Editing admit
algorithms on the form 2O(p

√
k log (pk)) + poly(n), where p is the number of

connected components in the target graph.

Lower bounds. In addition to the lower bound result that H-free Com-
pletion does not admit a general polynomial kernelization procedure (unless
NP ⊆ coNP/poly). We give numerous NP-completeness results and “ETH-hardness”
results. The lower bounds of form 2o(·) below are all under the assumption of the
validity of the exponential time hypothesis.

Threshold and chain graphs
Threshold Editing and Chain Editing are NP-complete. We massage
the reduction into an NP-completeness result for Chordal Editing. The
latter was known, but I have been unable to locate a proof for this in the
literature.

Trivially perfect graphs
Trivially Perfect Editing is NP-complete. This was shown indepen-
dently by Nastos and Gao [NG13], however, we also show that the problem
does not admit a subexponential parameterized time algorithm unless the
exponential time hypothesis, a result which cannot be deduced from their
reduction as the reduction they provide suffers a cubic parameter blow-up.
We give lower bounds on the form 2o(k) poly(n) and even 2o(n+m), also for
Trivially Perfect Deletion.

Cographs graphs
Cograph Editing is shown to be NP-complete by a simpler and much
smaller reduction than the original presented by Liu et al. [LWGC12]. Neither
Cograph Editing nor Cograph Deletion admit subexponential time
algorithms.

C4-free graphs
Neither C4-free Deletion nor C4-free Completion admit subexponen-
tial time algorithms. They are both NP-complete.

Bicluster graphs and starforests
Finally, we show that Starforest Editing as well as the more general
versions Bicluster Editing and t-partite p-cluster Editing are
NP-complete on subcubic graphs and do not admit subexponential time
algorithms, and if we parameterize by p alone, then p-Starforest Editing
is W[1]-hard.
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Chapter 2

Preliminaries

In this chapter we set up all the notation and basic definitions that are used
throughout the thesis. We provide definitions, intuition and equivalent descriptions
of all graph classes mentioned, and we describe the algorithmic toolbox and the
tools of analysis we need. This entire chapter may readily be skipped and be read
at the readers own discretion.

2.1 Graphs and modification problems
We consider only finite simple graphs G = (V,E). We will denote by V (G) and
E(G) the vertex set and edge set of a graph G, respectively, and we use nG and mG

to denote their sizes. If A and B are sets of vertices, we write EG(A,B) to denote
the set of edges of E with one endpoint in A and one in B. If X ⊆ V (G) is a set
of vertices, we denote by mX the number of edges in X, i.e., mX = |EG(X,X)|.
We denote by NG(v) the set of neighbors of v in G, and let degG(v) = |NG(v)|
denote the degree of v. If NG(v) is a clique, we say that v is simplicial. We denote
by ∆(G) the maximum degree of G, that is,

∆(G) = max
v∈V (G)

deg(v).

We say that a graph class G has bounded degree if there exists a constant c ∈ N
such that maxG∈G ∆(G) ≤ c.

We omit subscripts when the graph in question is clear from context. We
refer to the monograph by Diestel [Die05] for graph terminology and notation not
defined here. For an introduction to parameterized complexity analysis, consult
the monographs by Downey and Fellows [DF99, DF13], Flum and Grohe [FG06],
and Niedermeier [Nie06]. For more on parameterized algorithms, see the textbook
on parameterized algorithms by Cygan et al. [CFK+15].

We consider an edge in E(G) to be a set of size two, i.e., e ∈ E(G) is of the
form {u, v} ⊆ V (G) with u 6= v. We denote by [V (G)]2 the set of all size two
subsets of V (G). When F ⊆ [V (G)]2, we write G M F to denote G′ = (V,E4F ),
where 4 is the symmetric difference, i.e., E4F = (E \ F ) ∪ (F \ E). When the
graph is clear from context, we will refer to F simply as a set of edges rather

25
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than F ⊆ [V (G)]2. We will further write G + F and G − F for the graphs
(V (G), E(G) ∪ F ) and (V (G), E(G) \ F ), respectively.

For a graph G and a vertex v we define the true twin class of v, denoted ttc(v)
as the set {u ∈ V (G) | N [u] = N [v]}. Similarly, we define the false twin class
of v, denoted ftc(v) as the set {u ∈ V (G) | N(u) = N(v)}. Observe that either
ttc(v) = {v} or ftc(v) = {v}. From this we define the twin class of v, denoted tc(v)
as ttc(v) if |ttc(v)| > |ftc(v)| and ftc(v) otherwise. We take f(n) = poly(n) to
mean f(n) = nO(1), i.e., that there exists a c ∈ N such that f(n) = O(nc).

Definition 2.1 (X-neighborhood). Let G be a graph and X ⊆ V (G). For a
vertex v ∈ V (G)\X, the X-neighborhood of v, denoted NG,X(v), is the set NG(v)∩
X. The family of X-neighborhoods of G is the set {NG,X(v) : v ∈ V (G) \X}.
When the graph G is clear from context, we simply write NX(v).

Definition 2.2 (Isomorphism). An isomorphism between two graphs G1 and G2
is a bijective function ϕ : V (G1) → V (G2) such that vu ∈ E(G1) if and only if
ϕ(v)ϕ(u) ∈ E(G2). If there exists an isomorphism between G1 and G2, we say
that they are isomorphic, and denote it by G1 ∼= G2.

Definition 2.3. Let G and H be two graphs. We say that G contains a copy of
H, or simply put, G contains H if there is a set of vertices VH ⊆ V (G) such that
G[VH ] ∼= H.

Definition 2.4 (H-free). A graph G is H-free if G does not contain any of the
graphs H ∈ H.

We will sometimes abuse notation and write H-free for {H}-free.
The diameter of a connected graph G, denoted diam(G), is defined as the

number of edges in a longest shortest path of G, i.e.,

diam(G) = max
u,v∈V (G)

distG(u, v).

If G is disconnected, we define diam(G) to be maxC diam(C), over all con-
nected components C of G. For a graph G, a vertex v ∈ V (G) and a set of
vertices X ⊆ V (G) we define the distance from v to X, denoted dist(v,X)
as minu∈X dist(v, u). When provided with a non-negative integer r in addi-
tion, we define the ball around X of radius r, denoted B(X, r), as the set
{v ∈ V (G) such that dist(v,X) ≤ r}.

An obstruction set H is a finite set of graphs. Given an obstruction set H,
a graph G and an induced subgraph H of G we say that H is an obstruction
in G if H is isomorphic to some element of H. If there is no obstruction H
in G we say that G is H-free. The size of the largest graph in H we denote by
nH = max{|V (H)| for H ∈ H}. In addition, we lift the notation of diameter
to account for a finite set of graphs H, denoted diam(H), being the maximum
of diamG for G ∈ H.
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Given a graph G and an integer k the problem H-free Deletion asks
whether there is a set F ⊆ E(G) with |F | ≤ k such that G − F is H-free. And
similarly, H-free Editing asks whether there is a set F ⊆ E(G) with |F | ≤ k
such that G M F is H-free. We say that a set of edges F is an H-solution
if G M F is H-free. When H is clear from context, we will refer to F simply as
a solution. When the problem at hand is the deletion problem, we furthermore
assume F ⊆ E(G), and when the problem at hand is the completion problem, we
assume F ∩ E(G) = ∅, as is expected.

Definition 2.5 (H-packing). Given a graph G and an obstruction H we say that
X forms an H-packing in G if

(i) G[X] and H are isomorphic for every X ∈ X , and

(ii) X and Y are disjoint for every X, Y ∈ X .

Observation 2.6. Given a graph G and an obstruction H we can obtain a maximal
H-packing X in O(n|V (H)|+1) time.

2.1.1 The three edge modification problems
We have already heard a lot about graph modification problems, and here we
formally define the three general edge modification problems mentioned above.
Below, we take H to be any set of simple graphs. Recall that a graph G is H-free
if for every obstruction H ∈ H, the graph G does not contain H as an induced
subgraph.

Input: A graph G, and an integer k
Question: Does there exist a set F of at most k edges such that G + F

is H-free?

H-free Completion parameterized by k

Input: A graph G, and an integer k
Question: Does there exist a set F of at most k edges such that G− F

is H-free?

H-free Deletion parameterized by k

Input: A graph G, and an integer k
Question: Does there exist a set F of at most k edges such that G M F

is H-free?

H-free Editing parameterized by k
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We say that the pointwise complement of H = {H1, H2, . . . }, where H is any set
of graphs, is the set H = ⋃

H∈HH. Observe then that the class of H-free graphs
are closed under complements.

Fact 2.7. If H is its own pointwise complement, then H-free Completion is
polynomial time equivalent to H-free Deletion.

2.1.2 Modules and modular decomposition
In our kernelization algorithm for the modification problems towards trivially
perfect graphs, we will apply the notion of a module in a graph.

Definition 2.8. Given a graph G, a set of vertices M ⊆ V (G) is called a module
if for any two vertices v and u in M , we have that N(v) \M = N(u) \M , i.e., all
the vertices of M have exactly the same neighborhood outside M .

Observe that for any graph G, any singleton M = {v} is a module, and also V (G)
itself is a module. However, G can contain a whole hierarchy of modules. This
hierarchy can be captured using the following notion of a modular decomposition,
introduced by Gallai [Gal67]. The following description of a modular decomposition
is taken verbatim from the work of Bliznets et al. [BFPP16].

A module decomposition of a graph G is a rooted tree T , where each node t is
labeled by a module M t ⊆ V (G), and is one of four types:

leaf
t is a leaf of T , and M t is a singleton;

union
G[M t] is disconnected, and the children of t are labeled with different
connected components of G[M t];

join
the complement of G[M t] is disconnected, and the children of t are labeled
with different connected components of the complement of G[M t];

prime
neither of the above holds, and the children of t are labeled with different
modules of G that are proper subsets of M t, and are inclusion-wise maximal
with this property.

Moreover, we require that the root of T is labeled with the module V (G). We
need the following properties of the module decomposition.

Proposition 2.9 ([MS99]). For a graph G, the following holds.

1. A module decomposition (T, (M t)t∈V (T )) of G exists, is unique, and com-
putable in linear time.
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2. At any prime node t of T , the labels of the children form a partition of M t.
In particular, for each vertex v of G there exists exactly one leaf node with
label {v}.

3. Each module M of G is either a label of some node of T , or there exists a
union or join node t such that M is a union of labels of some children of t.

Since in this work we do not aim at optimizing the running time of the kernelization
algorithms, we do not need to compute the modular decomposition in linear time.
Any simpler polynomial time algorithm would suffice (see the work of McConnell
and Spinrad [MS99] for a literature overview).

Definition 2.10 (Laminar). Given a set system S = (U ,F) over a universe U ,
we say that S is laminar if for every two sets F1, F2 ∈ F , either F1 ⊆ F2, F2 ⊆ F1
or F1 ∩F2 = ∅. In other words, every pair of sets in the system is either disjoint or
nested. When the set system is clear from context, we will refer to F as laminar.

Lemma 2.11 (Folklore). Let F be a laminar set system over a finite ground set U .
Then the cardinality of F is at most 2|U |.

Proof sketch. By associating the elements of U with the leaves of a rooted tree
where each internal non-root node has degree at least three, a non-empty element
of F corresponds exactly to a rooted induced subtree. Since this tree can have at
most 2|U | − 1 nodes, by adding the possibility of the empty set, we obtain the
result.

Definition 2.12 (Weakly laminar set system). A set system F ⊆ 2U over a
ground set U is called a weakly laminar set system if for every X1 and X2 in F
with x1 ∈ X1 \X2 and x2 ∈ X2 \X1, there is no Y ∈ F with {x1, x2} ⊆ Y .

The following property bounds the size of a weakly laminar set system, which we
need later, and as it turns out, the size of a weakly laminar set system is even less
than for a laminar set system:

Lemma 2.13. Let F be a weakly laminar set system over a finite ground set U .
Then the cardinality of F is at most |U |+ 1.

Proof. We proceed by induction on |U |, with the claim being trivial when U = ∅.
Suppose F is a weakly laminar set system over a ground set U , and let X be a
member of F that has the minimum cardinality among the nonempty ones (if
there is no such set, then |F| ≤ 1 and we are done). The first observation is that if
Y1 and Y2 are two nonempty members of F that satisfy Y1 \X = Y2 \X (possibly
Y1 = X or Y2 = X), then in fact Y1 = Y2. Suppose otherwise that there exist two
such nonempty sets Y1, Y2 ∈ F with Y1 ∩X 6= Y2 ∩X; Without loss of generality,
suppose that there exists an element x1 ∈ Y1 \ Y2 ⊆ X, and hence x1 ∈ X \ Y2.

Since X is of minimum cardinality, we have that |X| ≤ |Y2|. As X * Y2, we
infer that there exists an element x2 ∈ Y2 \X = Y1 \X. Consider the pair {x1, x2}
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and observe that (a) x1 ∈ X \ Y2, (b) x2 ∈ Y2 \X, and (c) {x1, x2} ⊆ Y1. This
contradicts the definition of a weakly laminar set system.

Define a set system F ′ over the ground set U \X as follows:

F ′ = {Y \X : Y ∈ F , Y 6= ∅}.

Clearly, F ′ is a weakly laminar set system over a strictly smaller ground set, so
from the induction hypothesis we infer that |F ′| ≤ |U \X|+ 1. Moreover, from
the observation of the previous paragraph we infer that sets Y \X are pairwise
different for Y ∈ F , Y 6= ∅, and hence |F| ≤ |F ′|+ 1 (the additive +1 comes from
possibly having the empty set in F). Concluding,

|F| ≤ |F ′|+ 1 ≤ |U \X|+ 1 + 1 ≤ |U | − 1 + 1 + 1 = |U |+ 1.

For our polynomial kernel hardness result, we reduce from the problem Cubic
Planar Vertex Cover, which is the famous Vertex Cover problem restricted
to regular planar input graphs of degree three. The following result shows the
validity of reducing from this restricted instance:

Proposition 2.14 ([Moh01]). Vertex Cover is NP-complete on cubic planar
graphs.

It is well known that planar graphs can be recognized in polynomial time, so an
algorithm can simply reject the input if the graph is not regular or non-planar.
When we later will make a cross-composition argument, we will reduce from Cubic
Planar Vertex Cover, but the resulting budget will depend on the number of
edges in the input graph!

Luckily, this is not a problem for us. We may allow us, on t = 2r instances of
Cubic Planar Vertex Cover on n vertices, m edges and a budget of k, to have
a budget of size bounded by polylog(t) + poly(k) = polylog(t) + poly(n+m+ k),
as the following observation shows us:

Observation 2.15. The vertex cover number of a cubic graph on n vertices is at
least m/3. Since m = n3/2, vc(G) ≥ n/2.

2.1.3 Cheap or Expensive?
Given an instance (G, k) and a solution F , we define the editing number of a
vertex v, denoted enFG(v), to be the number of edges in F incident to a vertex v.
When G and F are clear from the context, we will simply write en(v). A vertex v
will be referred to as cheap if en(v) ≤ 2

√
k and expensive otherwise. We will call

a set of vertices U ⊆ V small provided that |U | ≤ 2
√
k and large otherwise.

Definition 2.16. Given an instance (G, k) with solution F , we call a vertex v
cheap if en(v) ≤ 2

√
k.
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The following observation will be used extensively.

Observation 2.17. If U ⊆ V (G) is a large set, then there exists a cheap vertex
in U , or contrapositively: if a set U ⊆ V (G) has only expensive vertices, then U is
small. Specifically it follows that in any yes-instance (G, k) where F is a solution,
there are at most 2

√
k expensive vertices.

This gives the following win-win situation: If a set X is small, then we can “guess”
it, in time O(n2

√
k), which is subexponential provided that n = poly(k). Hence we

can in subexponential time enumerate all candidates, and otherwise, we can guess
a cheap vertex inside the set and its “correct” neighborhood. In particular, since
the set of expensive vertices is small, we can guess it in the beginning. We can
always assume, with subexponential time overhead, that the graph G is a labeled
graph, where some vertices are labeled as cheap and others as expensive. There
will never be more than 2

√
k vertices labeled expensive, however a vertex labeled

expensive might very well not be expensive in G and vice versa. The idea is then
that we guess the expensive vertices at the start of the algorithm and then bring
this information along when we recurse on subgraphs.

A crucial part of many of the subexponential time algorithms is to enumerate
sets of size at most O(

√
k). The following lemma shows that as long as the instance

of size polynomial in the parameter, this is indeed doable and we will use the
result of this lemma throughout the thesis without necessarily referring to it.

Lemma 2.18. For every c ∈ N there is an algorithm that, given an input instance
(G, k) with |V (G)| = poly(k) enumerates all vertex subsets of size c

√
k in time

2O(
√
k log k).

Proof. Given an input graph G = (V,E) and a natural number k with |V | = n =
poly(k), we can simply output the family of sets X ⊆ 2V of size at most c

√
k,

which takes time
∑

κ≤c
√
k

(
n

κ

)
≤ c
√
k

(
n

c
√
k

)
≤ c
√
k · nc

√
k = 2O(

√
k logn) = 2O(

√
k log k),

where the first inequality follows since
(
n
i

)
is increasing for i from 1 to c

√
k.

2.2 Graph classes
In this chapter we recall some basic graph classes that will be important for
understanding the results of this thesis. The majority of the results in the thesis
concern trivially perfect graphs and threshold graphs. These graph classes are
covered in detail below. However, being graph classes, they live in a vast jungle
(see Figure 2.11) of other graph classes, and it is important to understand the

1Note that the even-hole-free graphs are the graphs that are {C6, C8, C10, C12, . . . }-free,
i.e. C4 is not forbidden, as is used in the survey on graph classes [BLS99]; There, a hole is any
cycle of length at least five.
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Figure 2.1: Jungle of graph classes we are concerned with in this thesis

nature of these graph classes, their relations with each other and their structure
to fully appreciate the tools applied. The nice and helpful survey by Brandstädt,
Le, and Spinrad on graph classes [BLS99] contains more than enough information
on the graph classes studied here and can therefore readily be used as a reference.

2.2.1 Chordal and related graphs
The chordal graphs form a fundamental graph class. They are the graphs without
induced cycles of length at least four, that is, they are precisely the {C4, C5, C6, . . . }-
free. More information on chordal graphs can be found in the survey on minimal
triangulations by Heggernes [Heg06], which includes several important characteri-
zations of chordal graphs and many pointers to the vast literature surrounding
the study of chordal graphs. However, since we will not be working directly on
chordal graphs, we will not cover this class in more details.

The interval graphs form a subclass of the chordal graphs. They are the AT-free
chordal graphs; An asteroidal triple, or AT for short, of a graph G, is a triple of
vertices A = (v1, v2, v3) such that for any vertex x ∈ A, the other two vertices are
connected in G−N [x]. It is here understood that no two of these vertices can be
adjacent. A graph is said to be AT-free if it does not contain an AT. Thus, being
the AT-free chordal graphs, the interval graphs have a linear structure. There is
also a geometric definition of this graph class. A graph G = (V,E) is an interval
graph if and only if there is a mapping ϕ from V to intervals on the real line such
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that vu ∈ E if and only if ϕ(v) overlaps ϕ(u). We call ϕ an interval model in the
case where the graph determined by ϕ is isomorphic to G.

The proper interval graphs, also known as unit interval graphs, are exactly those
interval graphs whose interval representation can be represented by intervals of unit
length, hence the name unit interval graphs. An interval model can be represented
using only unit length intervals if and only if it can be represented in a way such
that no interval properly contains another interval, hence the name proper interval
graphs. The proper interval graphs are exactly the claw-free interval graphs, where
a claw is the star on four vertices.

Whereas chordal graphs were the graphs without cycles of length at least four,
the bipartite graphs are exactly the graphs without odd cycles, i.e., it does not
contain (neither induced nor as a subgraph) a cycle with an odd number of edges.
It is an old folklore result that the following are equivalent:

• A graph is bipartite, i.e., its vertex set can be partitioned into two sets A
and B such that for every edge uv, |{u, v} ∩ A| = 1

• A graph does not contain an odd cycle as a subgraph

• A graph does not contain an odd cycle as an induced subgraph

• A graph is colorable with two colors such that no two adjacent vertices have
the same color

We denote by G = (A,B,E) a bipartite graph where A ]B is the vertex set and
E ⊆ A×B. The complement of a bipartite graph is called a cobipartite graph.

2.2.2 Finite set of forbidden induced subgraphs
For a set of graphs H, we say that G is H-free if for every H ∈ H, G does not
have as an induced subgraph, an isomorphic copy of H. We denote by GH the
graph class consisting of all graphs that are H-free.

All the above graph classes can be characterized by such a set of forbidden
induced subgraphs, i.e., for every graph class G above, there is a set H of graphs,
such that G = GH any graph G is in G if and only if G does not have any
graph H ∈ H as an induced subgraph. This property is in fact equivalent to that
of being a hereditary graph class.

There is, however, a special class of graph classes2 that are characterized
by a finite set of forbidden induced subgraphs. We say that a graph class G is
characterized by a finite set of forbidden induced subgraphs if there is a finite set
of graphs H such that G = GH.

2It is worthwhile to make clear that even though we talk about graph classes and classes of
graph classes, we are in fact talking about sets. As long as we consider a graph to be represented
by its “isomorphism class” we are in fact only dealing with ℵ0 and ℵ1 sized sets here; There is a
countable number of graph classes characterized by finite sets of forbidden induced subgraphs,
and ℵ1 many hereditary graph classes.
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Split and pseudosplit graphs. The class of split graphs is a fundamental and
old graph class which has been studied intensely. It is a very simple graph class to
define, but a graph class hard to master. Being exactly the intersection of chordal
and co-chordal graphs [FH76], a graph G is a split graph if its vertex set can be
partitioned into two sets C and I such that C is a clique and I is an independent
set. We call (C, I) a split partition of G. Observe that the split partition is not
unique, but that there are at most |V (G)| many different split partitions.

A different characterization of split graphs is that they are the class of H-free
graphs [BLS99], where H = {2K2, C4, C5}. One very intriguing property of split
graphs is that the editing number, or the splittance of a graph, is linear time
computable [HS81]. That is, Split Editing is in P. It is interesting to note that
this class is closed under complement; If you have a split graph G, then also the
complement G is a split graph. The easiest way to see this is to consider a split
partition (C, I) of G and observing that (I, C) will be a split partition in G. A
different way of verifying this is to observe that 2K2 = C4 and that C5 = C5.

We say that a split graph G = (V,E) with split partition (C, I) is sparse if
E = [C]2, and dense if E = [V ]2 \ [I]2. That is, G is sparse if it is a disjoint union
of a clique and an independent set, and dense if it is the complement, that is, a
complete join of a clique and an independent set. The problem to editing to a sparse
split graph has in the literature been called Clique Editing [DM14a, KSS14].
The pseudosplit graphs are mostly interesting as an artifact of the split graphs
and the finite characterization; When considering the forbidden graphs of the split
graphs, {2K2, C4, C5}, a natural question is, what happens when we remove the
peculiar occurrence of the five-cycle? It turns out that this yields a rather strange
graph class. Pseudosplit graphs are the {2K2, C4}-free graphs.

A split graph is a pseudosplit graph. This is trivial by the fact that it is
{2K2, C4}-free. However, the imperfect pseudosplit graphs [BHPT93, MP94], are
the graphs whose vertex set can be partitioned into three sets (C, S, I) such that C
is a clique, I is an independent set and S ∼= C5 and S is completely joined to C
and there are no edges between S and I.

It turns out, by Maffray and Preissman [MP94], that also imperfect pseudosplit
graphs are characterized by degree sequences. A graph G = (V,E) with degree
sequence d is imperfect pseudosplit if and only if

p∑
i=1

di = p(p+ 4) +
n∑

i=p+6
di, and

dq+1 = dq+2 = · · · = dq+5 = p+ 2, where p = max{i | di ≥ i+ 4}.

Proposition 2.19 ([MP94]). A graph G = (V,E) is pseudosplit if and only if
one of the following holds

• G is a split graph, or

• V can be partitioned into a pseudosplit partition (C, I,X) such that G[C∪I] is
a split graph with C being a clique and I being an independent set, G[X] ∼= C5,
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and moreover, there is no edge between X and I and every edge is present
between X and C.

Note that pseudosplit graphs are self-complementary. This can be observed by
either observing that the forbidden set {2K2, C4} is self-complementary, or by
observing that for a given C, S, I-partitioning of G, the complement C, S, I will
have G[S] ∼= C5, G[C] an independent set, G[I] a clique, and all edges will be
present between S and I and no edge present between S and C.

It is also worth noting that, just like split graphs [HS81], the pseudosplit graphs
are characterized by a degree sequence [MP94]. Indeed, the pseudosplit graphs are
degree-sequence-forcing [BKH08], that is, if a realization of a degree sequence d is
a pseudosplit graph, then every realization of d is a pseudosplit graph. This also
holds for split graphs and threshold graphs [MP95].

Cographs and trivially perfect graphs. The cographs are precisely the
graphs that are P4-free. The name comes from “complement reducible” [CLB81].

• K1 is a cograph,

• G1 ]G2 is a cograph if both G1 and G2 are, and

• G1 ./ G2 is a cograph if both G1 and G2 are.

The trivially perfect graphs are the closures of rooted trees. This graph class is
sometimes referred to as quasi-threshold graphs [JHJJC96, NG13], or as intersection
graphs of nested intervals [BLS99]. Let T be a rooted tree, and for every vertex u
and v that are on a path from the root to a leaf, add the edge uv. The resulting
graph is called the closure of T . A graph G is a trivially perfect graph if and only
if it is the closure of a tree. Trivially perfect graphs happen also to be intersection
graph of laminar intervals (see Definition 2.10). The trivially perfect graphs can
also be characterized as the {C4, P4}-free graphs, or by the following inductive
definition [BLS99]:

• K1 is a trivially perfect graph,

• G1 ]G2 is a trivially perfect graph is G1 and G2 are, and

• G ./ K1 is a trivially perfect graph if G is.

Since the trivially perfect graphs (and next up, the threshold graphs) are the main
graph classes with which we will be dealing in this thesis, we will spend some extra
time diving into the structure of trivially perfect graphs. These observations and
results will be crucial for the proof of Theorem 10, that there is a subexponential
time algorithm solving Trivially Perfect Completion, in Chapter 10.
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Threshold and chain graphs. The threshold graphs form a large subclass of
the trivially perfect graphs and split graphs, in that they are the P4-free split
graphs. That is, they are {2K2, C4, P4}-free. Originally, the name was chosen
because of the following characterization of the graph class. A graph G = (V,E)
is threshold if and only if there exists an assignment of positive real numbers
r : V → R+ and a real number t, called the threshold, such that uv ∈ E if and
only if r(u) + r(v) ≥ t.

Proposition 2.20 ([MP95]). A graph G is a threshold graph if and only if G has
a split partition (C, I) and the neighborhoods of the vertices of I are nested.

Proposition 2.21 ([BLS99]). A graph G is a threshold graph if and only if G
does not have a C4, P4 nor a 2K2 as an induced subgraph. Thus, the threshold
graphs are exactly the {2K2, C4, P4}-free graphs.

Chain graphs are the bipartite graphs whose neighborhoods of the vertices on
one of the sides form an inclusion chain. It follows that the neighborhoods on
the opposite side form an inclusion chain as well. If this is the case, we say that
the neighborhoods are nested. The relation to threshold graphs is obvious, see
Figure 2.4 for a comparison; A graph is a chain graph if and only if the graph by
making one of the bipartitions into a clique is a threshold graph. The problem of
completing edges to obtain a chain graph was introduced by Golumbic [Gol80]
and later studied by Yannakakis [Yan81a], Feder, Mannila and Terzi [FMT09] and
finally by Fomin and Villanger [FV13] who showed that Chain Completion
when given a bipartite graph whose bipartition must be respected is solvable in
subexponential time. We remove the latter requirement in Section 9.2.

A formal definition of the chain graph, that formalizes the nestedness property
is the following, however, we also observe that the chain graphs are exactly the
{2K2, C3, C5}-free graphs.

Definition 2.22 (Chain graph). A bipartite graph G = (A,B,E) is a chain
graph if there is an ordering of the vertices of A, a1, a2, . . . , a|A| such that N(a1) ⊆
N(a2) ⊆ · · · ⊆ N(a|A|).

Biclusters and starforests. A star graph is a tree of diameter at most two (a
graph isomorphic to K1,` for some `). The degree-one vertices are called leaves and
the vertex of higher degree, or the unique isolated vertex in the case of S1 = K1,0
the center. In the case of the edge, the graph K1,1 = S2 = P2 = K2, we will fix one
to be the center and the other the leaf. A starforest is a forest whose connected
components are stars or, equivalently, a graph that does not contain {C4, K3, P4} as
induced subgraphs. A biclique is a complete bipartite graph Ka,b for some a, b ∈ N,
and a bicluster graph is a disjoint union of bicliques. That is, a graph is a biclique
if it is a bipartite graph with bipartition (A,B) and for every pair of vertices
v1 ∈ A and v2 ∈ B, there is an edge v1v2. We write Ka,b for the complete bipartite
graph with a vertices in A and b vertices in B. A bicluster graph is a graph that is
a disjoint union of bicliques. A t-partite clique graph is a graph whose vertex set
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can be partitioned into at most t independent sets, all pairwise fully connected,
and a t-partite cluster graph is a disjoint union of t-partite cliques.

2.2.3 Structure of trivially perfect graphs
Apart from the aforementioned characterization by forbidden induced subgraphs,
an inherently local characterization, several other equivalent definitions of trivially
perfect graphs are known. These definitions reveal more structural properties
of this graph class which will be essential in our algorithm. We now establish a
number of results on the global structure of trivially perfect graphs and minimal
completions which will be useful.

The trivially perfect graphs have a rooted decomposition tree, which we call
a universal clique decomposition, in which each node corresponds to a maximal
set of vertices that all are universal for the graph induced by the vertices in the
subtree rooted at this node. This decomposition is similar to that of a treedepth
decomposition. We refer to Figure 2.2 for an example of the concepts that we
introduce next. The following recursive definition is often used as an alternative
definition of trivially perfect graphs.

Proposition 2.23 ([JHJJC96]). The class of trivially perfect graphs can be defined
recursively as follows:

• K1 is a trivially perfect graph.

• Adding a universal vertex to a trivially perfect graph results in a trivially
perfect graph.

• The disjoint union of two trivially perfect graphs is a trivially perfect graph.

Let T be a rooted tree and t be a node of T . We denote by Tt the maximal subtree
of T rooted in t. We can now use the universal clique uni(G) of a trivially perfect
graph G = (V,E) to make a decomposition structure.

Definition 2.24 (Universal clique decomposition). A universal clique decompo-
sition, or a UCD, of a connected trivially perfect graph G = (V,E) is a pair
(T = (VT , ET ),B = {Bt}t∈VT

), where T is a rooted tree and B is a partition of the
vertex set V into disjoint non-empty subsets, such that

• if vw ∈ E(G) and v ∈ Bt and w ∈ Bs, then s and t are on a path from a
leaf to the root, with possibly s = t, and

• for every node t ∈ VT , the set of vertices Bt is the maximal universal clique
in the subgraph G[⋃s∈V (Tt) Bs].

We call the vertices of T nodes and the sets in B bags of the universal clique
decomposition (T,B). By slightly abusing the notation, we often do not distinguish
between nodes and bags. Note that by the definition, in a universal clique
decomposition every non-leaf node has at least two children, since otherwise the
universal clique contained in the corresponding bag would not be maximal.
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Lemma 2.25. A connected graph G admits a universal clique decomposition if
and only if it is trivially perfect. Moreover, such a decomposition is unique up to
isomorphisms.

Proof. From right to left, we proceed by induction on the number of vertices
using Proposition 2.23. The base case is when we have one vertex, K1 which is a
trivially perfect graph and also admits a unique universal clique decomposition.
The induction step is when we add a vertex v, and by the definition of trivially
perfect graphs, v is a universal vertex. Either we add a universal vertex to a
connected trivially perfect graph, in which case we simply add the vertex to the
root bag, or we add a universal vertex to the disjoint union of two or more trivially
perfect graphs. In this case, we create a new tree, with rv being the root connected
to the root of each of the trees for the disjoint union. Since v is the only universal
vertex in the graph, the constructed structure is a universal clique decomposition.
Observe that the constructed decompositions are unique (up to isomorphisms).

From left to right, we proceed by induction on the height of the universal clique
decomposition. Suppose (T,B) is a universal clique decomposition of a graph G.
Consider the case when T has height 1, i.e., we have only one single tree node
(and one bag). Then this bag, by Proposition 2.23, is a clique (every vertex in the
bag is universal), and since a complete graph is trivially perfect, the base case
holds. Consider now the case when T has height at least 2. Let r be the root of T ,
and let x1, x2, . . . , xp be children of r in T . Observe that the tree Txi

is a universal
clique decomposition for the graph G[⋃t∈V (Txi ) Bt] for each i = 1, 2, . . . , p. Hence,
by the induction hypothesis we have that G[⋃t∈V (Txi ) Bt] is trivially perfect. To
see that G is trivially perfect as well, observe that G can be obtained by taking
the disjoint union of graphs G[⋃t∈V (Txi ) Bt] for i = 1, 2, . . . , p, and adding |Br|
universal vertices.

For the purposes of the dynamic programming procedure, we define the following
notion.

Definition 2.26 (Block). Let (T = (VT , ET ),B = {Bt}t∈VT
) be the universal

clique decomposition of a connected trivially perfect graph G = (V,E). For each
node t ∈ VT , we associate a block Lt = (Bt, Dt), where

• Bt is the subset of V contained in the bag corresponding to t, and

• Dt is the set of vertices of V contained in the bags corresponding to the
nodes of the subtree Tt.

• The tail of a block Lt is the set of vertices Qt contained in the bags corre-
sponding to the nodes of the path from t to r in T , where r is the root of T ,
including Bt and Br.

When t is a leaf of T , we have that Bt = Dt and we call the block Lt = (Bt, Dt) a
leaf block. If t is the root, we have that Dt = V (G) and we call Lt the root block.
Otherwise, we call Lt an internal block. Observe that for every block Lt = (Bt, Dt)
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(a) A trivially perfect graph G.

{a}

{b} {c} {d, e}

{f} {g, h}

(b) The universal clique decomposi-
tion of G with the bags as labels.

Label (bag) Block Tail
{a} ({a}, V ) {a}
{b} ({b}, {b}) {a, b}
{c} ({c}, {c}) {a, c}
{d, e} ({d, e}, {d, e, f, g, h}) {a, d, e}
{f} ({f}, {f}) {a, d, e, f}
{g, h} ({g, h}, {g, h}) {a, d, e, g, h}
(c) Table of the bags with corresponding blocks and tails.

Figure 2.2: In the first figure, we have a trivially perfect graph, and in the second,
a universal clique decomposition of the graph with the bags as labels. Finally we
have a table of the bags and the corresponding blocks and tails. Notice that for a
block (B,D) and tail Q, B ⊆ D and B ⊆ Q. Furthermore, in any leaf block it
holds that B = D, and in the root block it holds that D = V .

with tail Qt we have that Bt ⊆ Qt, Bt ⊆ Dt, and Dt ∩ Qt = Bt, see Figure 2.2.
Note also that Qt is a clique and the vertices of Qt are universal to Dt \Bt. The
following lemma summarizes the properties of universal clique decompositions,
maximal cliques, and blocks used in our proof.

Lemma 2.27. Let (T,B) be the universal clique decomposition of a connected
trivially perfect graph G and let L = (B,D) be a block with Q as its tail.

(i) The following are equivalent:

(1) L is a leaf block,
(2) D = B,
(3) Q is a maximal clique of G, and
(4) Q = NG[v] for every v ∈ B.

(ii) If L is a non-leaf block, then for every two vertices u, v from different
connected components of G[D \B], we have that Q = NG(u) ∩NG(v).

(iii) For every maximal clique Q′ of G, there exists a leaf block L′ in (T,B) with
tail Q′.
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Proof. (i) We first prove the chain (1) → (2) → (3) → (1). If L is a leaf block
and D is the set of vertices in all the bags of the subtree rooted at L, then B = D.
If D = B we have that NG[v] = Q for any v ∈ B (so also (2)→ (4)). Hence Q is
maximal. If L is not a leaf block, then there is a vertex v which belongs to a child
node of L, and for any such vertex v the set Q ∪ {v} is a clique, and so Q is not a
maximal clique. Hence if Q is a maximal clique, then L is a leaf block.

Finally, we show that (4)→ (2): Since Q is a clique and v ∈ Q, we have that
Q ⊆ NG[v]. On the other hand, since v ∈ B and L is a leaf block, we have that
Q ⊇ NG[v] by the definition of universal clique decomposition.

(ii) Suppose L = (B,D) is a non-leaf block and D1 and D2 are two connected
components of G′ = G[D \ B]. Let v ∈ D1 and u ∈ D2 and observe that since
they are in different connected components of G[D \B], NG′(v) ∩NG′(u) = ∅. By
the universality of Q, the result follows: Q = NG(v) ∩NG(u).

(iii) Let (T,B) be a UCD and consider the following construction of a tail
of a block Lt. Obviously uni(G) ⊆ Q′. Let L1 = (uni(G), V (G)). Consider the
disconnected trivially perfect graph G− uni(G). This has exactly one component
containing vertices from Q′. Let G2 be the connected component of G− uni(G)
containing a vertex from Q′. Again uni(G2) ⊆ B′, so let L2 = (uni(G2), V (G2)).
Continue until Lt is a leaf bag. Since uni(Gt) = V (Gt) and since uni(Gt) ⊆ Q′

(again by maximality of Q′), we have that Q′ = ⋃
1≤1≤t uni(Gi), which is exactly

the tail of Lt. Since (T,B) is unique, Lt is a leaf bag of (T,B) which proves the
claim.

2.2.4 Structure of threshold and chain graphs
In this section, we highlight some of the similarities between threshold graphs
and chain graphs. As we did for the trivially perfect graphs above, we will give a
decomposition theorem for threshold graphs.

Definition 2.28 (Threshold partition). We say that a partition of the vertex
set into (C, I), where C = 〈C1, . . . , Ct〉, and I = 〈I1, . . . , It〉), forms a threshold
partition of G if the following holds (see Figure 2.3 for an illustration):

• (C, I) is a split partition of G, where C = ⋃
i≤tCi and I = ⋃

i≤t Ii,

• Ci and Ii are twin classes in G for every i

• N [Cj] ⊂ N [Ci] and N(Ii) ⊂ N(Ij) for every i < j.

• Finally, we demand that for every i ≤ t, (Ci, I≥i) form a complete split
partition of the graph induced by Ci ∪ I≥i.

We furthermore define, for every vertex v in G, lev(v) as the number i such that
v ∈ Ci ∪ Ii and we denote each level Li = Ci ∪ Ii.
In a threshold decomposition we will refer to Ci for every i as a clique fragment
and Ii as a independent fragment. Furthermore, we will refer to a vertex in ∪C as
a clique vertex and a vertex in ∪I as an independent vertex.
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Figure 2.3: A threshold partition—the left hand side is the clique and the right
hand side is an independent set, each bag contains a twin class. All bags are
non-empty, otherwise two twin classes on the opposite side would collapse into
one, except possibly the two extremal bags.

Proposition 2.29 (Threshold decomposition). A graph G is a threshold graph if
and only if G admits a threshold partition.

Proof. Suppose that G is a threshold graph and therefore admits a nested ordering
of the neighborhoods of vertices of each side [HIS81]. We show that partitioning
the graph into partitions depending only on their degree yields the levels of a
threshold partition. The clique side is naturally defined as the maximal set of
highest degree vertices that form a clique. Suppose now for contradiction that
this did not constitute a threshold partition. By definitions, every level consists of
twin classes, and also, for two twin classes Ii and Ij, since their neighborhoods
are nested in the threshold graph, their neighborhoods are nested in the threshold
partition as well. So what is left to verify is that (Ci, I≥i) is a complete split
partition of G[Ci ∪ I≥i]. But that follows directly from the assumption that G
admitted a nested ordering and Ci is a true twin class.

For the reverse direction, suppose G admits a threshold partition (C, I). Con-
sider any four connected vertices a, b, c, d. We will show that they can not form
any of the induced obstructions. For the 2K2 and C4, it is easy to see that at
most two of the vertices can be in the clique part of the decomposition—and they
must be adjacent since it is a clique—and hence there must be an edge in the
independent set part of the decomposition, which contradicts the assumption that
C, I was a threshold partition. So suppose now that a, b, c, d forms a P4. Again
with the same reasoning as above, the middle edge b, c must be contained in the
clique part, hence a and d must be in the independent set part. But since the
neighborhoods of a and d should be nested, they cannot have a private neighbor
each, hence either ac or bd must be an edge, which contradicts the assumption
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(a) A chain graph (b) A threshold graph

Figure 2.4: The relationship between a chain and a threshold graph.

that a, b, c, d induced a P4. This concludes the proof.
Lemma 2.30. For any instance (G, k) of editing or completing to either threshold
or chain graphs, it holds that there exists an optimal solution F such that for every
pair of vertices u, v ∈ V (G), if NG(u) ⊆ NG[v] then NGMF (u) ⊆ NGMF [v].
Proof. Let us define, for any editing set F and two vertices u and v, the set

Fv↔u = {e | e′ ∈ F and e is e′ with u and v switched}.
Suppose F is an optimal solution for which the above statement does not hold.
Then NG(u) ⊆ NG[v] and NGMF (v) ⊆ NGMF [u] (see Proposition 2.20). But then
it is easy to see that we can flip edges in an ordering such that at some point,
say after flipping F 0, u and v are twins in this intermediate graph G M F 0. Let
F 1 = F \ F 0. It is clear that for G′ = G M (F 0 ∪ F 1

v↔u), NG′(u) ⊆ NG′ [v]. Since
|F | ≥ |F 0 ∪ F 1

v↔u|, the claim holds.

From the following proposition, it follows that chain graphs are characterized
by a finite set of forbidden induced subgraphs and hence are subject to Cai’s
theorem [Cai96].
Proposition 2.31 ([BLS99]). Let G be a graph. The following are equivalent:
• G is a chain graph.

• G is bipartite and 2K2-free.

• G is {2K2, C3, C5}-free.
• G can be constructed from a threshold graph by removing all the edges in the
clique partition.

Since they have the same structure as threshold graphs, it is natural to talk about
a chain decomposition, (A,B) of a bipartite graph G with bipartition (A,B). We
say that (A,B) is a chain decomposition for a chain graph G if and only if (A,B)
is a threshold decomposition for the corresponding threshold graph G′ where A is
made into a clique.
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2.2.5 Small graphs
In this section we simply list some small graphs that appear throughout this
thesis. These graphs are small but fundamental building blocks, or fundamental
obstructions, in graphs and graph classes we are concerned with in this thesis. Of
special importance are the paths and cycles on four vertices, as well as 2K2, the
complement of the four-cycle.

Table 2.1: Table of small graphs.

In the table above, the following graphs are listed:

Row 1: K1, K2 = P2, P3, K3 = C3.
Row 2: P4, C4, C4 = 2K2, diamond, K4, K1,3 = S4 = claw, paw.
Row 3: P5, C5, house = C5, gem, bull, cricket, butterfly.
Row 4: P6, C6, net, sun, P7, C7, HKW.

2.3 Parameterized complexity
The primary tool for studying graph modification problems has in the work leading
to this thesis been parameterized complexity. Parameterized complexity is a field
introduced by Downey and Fellows [DF99]. For an introduction to this field, we
refer the reader to the original work and to Flum and Grohe [FG06].

In parameterized complexity, we introduce a new measure, a parameter to the
problem instance, whose purpose is to extract information on where the complexity
of the problem truly lies. A problem is said to be fixed parameter tractable with
respect to a certain parameter k if there exists a function f such that any instance x
of the problem, with parameter k can be solved in time f(k) · poly(|x|) where poly
is any polynomial and |x| denotes the total length of the input. We define the
complexity class FPT to be the class of all problems solvable in fixed-parameter
tractable time.

One of the main advantages of analyzing problems from a parameterized, or
multivariate perspective is that it helps us in creating fast exponential algorithms.
Before the invention of parameterized algorithms, the only way of measuring the
complexity was as a function of the size of the input. When a problem is NP-hard,
we often do not expect any algorithms to solve our instance much faster than cn
for some constant c > 1. In the light of parameterized complexity, we introduce
a secondary measure—the parameter—which we use to measure the complexity
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of the instance. In fixed-parameterized time, we allow a polynomial time in the
length of the input, and exponential time in the parameter.

A second benefit of parameterized complexity is that as we observed, there are
problems that are unlikely to be fixed-parameter tractable, and this gives rise to a
whole new hierarchy of computational complexity. There are three fundamental
basic graph problems, Clique and Independent Set, which are both W[1]-
complete, and Dominating Set which is W[2]-complete. Although the so called
W-hardness is outside the scope of this thesis3, since all the problems considered
in this thesis are in FPT by a result of Cai [Cai96], it is important to know that
there are problems that are unlikely to be in FPT. By “unlikely”, here we mean
that if FPT = W[1], then NP ⊆ DTIME(2o(n)), and in particular, ETH would fail.

A parameterized problem is a subset Q ⊆ Σ∗ × N for some finite alphabet Σ,
where the second part of the input is called the parameter. A parameterized
problem Q ⊆ Σ∗ × N is said to be fixed-parameter tractable if for each pair
(x, k) ∈ Σ∗ × N it can be decided in time f(k) · poly(|x|) whether (x, k) ∈ Q,
for some function f that only depends on k. Here |x| denotes the length of the
input x.

For all our purposes in this thesis, the full language Σ∗ will be that of undirected
simple graphs, denoted G, and thus in most our problems, the input instances will
be of the form (G, k) where G is any finite simple graph. Hence, fixed-parameter
tractable algorithms will in this case have running times on the form f(k) ·poly(n).

Definition 2.32 (SUBEPT). The complexity class SUBEPT is defined as all the
problems Q that can be solved in time 2k/s(k) poly(n, k) = 2o(k) poly(n, k), where s
is a monotonically increasing unbounded function.

Proposition 2.33 ([FG06, LMS11]). A parameterized problem Q is in SUBEPT
if and only if there is an algorithm that for every ε > 0 solves the instances (G, k)
of Q in time 2εk poly(n, k).

2.3.1 Polynomial kernels
One of the main tools that parameterized complexity brought the field of algorithms
and especially the field of algorithmic graph theory, is the concept of a kernel.
Intuitively, a kernelization algorithm is an algorithm that in polynomial time
preprocesses—or compresses—a given instance and outputs an instance whose size
is bounded polynomially in the parameter, or as is most often in our case, in the
solution size. The goal of kernelization is (at least) two-fold. First, it is useful as
a preprocessing stage, as we now may assume with polynomial overhead that our
instances are bounded polynomially in k, which allows us to do exponential work
on the kernelized instance and still be within fixed-parameter tractable time. This
can also be useful in intermediate steps in branching algorithms [AK15]. Second,
the kernel-size of different problems is a form of complexity measure that combined

3Just barely outside, since Lokshtanov proved that Wheel-free deletion—a specific
H-free Deletion problem for an infinite set H—is W[2]-complete [Lok08].
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with provable lower bounds, e.g., on the assumption that NP 6⊆ coNP/poly, gives
rise to an optimality programme of compression.

More formally, a kernelization algorithm (often referred to as the kernel), is an
algorithm for a problem that on an input (G, k) outputs an equivalent instance
(G′, k′) with max{|G′|, k′} ≤ f(k) for some function f . Furthermore, the algorithm
needs to run in polynomial time.

Definition 2.34. We say that a parameterized problem Q has a kernel if there
is an algorithm that transforms each instance (x, k) in time poly(|x|+ k) into an
instance (x′, k′), such that (x, k) ∈ Q if and only if (x′, k′) ∈ Q and |x′|+ k′ ≤ g(k)
for some function g. If g is a polynomial, then we say that the problem admits a
polynomial kernel.

If in addition to g being a polynomial, we are guaranteed that k′ ≤ k, we say that
the kernel is a proper polynomial kernel. The following result shows that the power
of kernels is, so to speak, equivalent to the power of fixed parameter tractability:

Proposition 2.35 ([DFS99, Lemma 4.8]). A problem is fixed parameter tractable
if and only if it admits a kernel and is decidable.

Kernelization lower bounds. It turns out that not every problem, up to
certain complexity assumptions admits a polynomial kernel. The following might
serve as an intuition for that case. Consider the problem k-Path, which is the
following:

Input: A graph G and an integer k
Question: Does G have a path on k vertices?

k-Path parameterized by k

This problem is NP-complete and solvable in fixed-parameter time (thus in FPT),
however it is unlikely to have a polynomial kernel. Suppose it had a polynomial
kernel of size kc for some c. Suppose furthermore that you had kc

100 different
instances, G1, G2, . . . , Gkc100 , all with the same parameter k. Now, let us construct
Ĝ = ⊎

i≤kc100 Gi, the disjoint union of all the above graph instances, and furthermore
observe that Ĝ has a path on k vertices if and only if at least for one i ≤ kc

100 , Gi

has a path on k vertices.
Let (G′, k′) be the output instance of the alleged kernelization algorithm on

input (Ĝ, k), and observe that the size of G′ and k′ are both bounded by kc. Even
in bits, this is much smaller than just the number of input instances, so it cannot
even store one bit per input instance. That means that the polynomial time
algorithm must have been able to rule out many of the instances, each of which
could have been an important yes-instance.

To paraphrase Ryan Williams [Wil11], “at this point we have reached a degree
of handwaving so exuberant, one may fear we are about to fly away. Surprisingly,
this handwaving has a completely formal theory behind it,” and that is the theory
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we will now briefly discuss. Namely, that this can be formalized in a way that
shows that if k-Path had a polynomial kernel, the polynomial hierarchy would
collapse to the second level, or more specifically, NP ⊆ coNP/poly.

The lower bounds result in Section 8.2 will be based on the or-cross-composition
framework by Bodlaender, Jansen, and Kratsch [BJK14], which builds on previous
work by Bodlaender, Downey, Fellows, and Hermelin [BDFH09], Fortnow and
Santhanam [FS11], and Dell and van Melkebeek [DM14b]. This framework provides
nice tools for proving polynomial kernel impossibility results.

The following framework for lower bounds, the or-cross-composition framework
is taken verbatim from the article by Bodlaender, Jansen, and Kratsch:

Definition 2.36 (or-cross-composition, [BJK14]). Let L ⊆ Σ∗ be a language, R
a polynomial equivalence relation on Σ∗, and let Q ⊆ Σ∗ × N be a parameterized
problem. An or-cross-composition of L into Q (with respect to R) is an algorithm
that, given instances x1, x2, · · · , xt ∈ Σ∗ of L belonging to the same equivalence
class of R, takes time polynomial in ∑t

i=1 |xi| and outputs an instance (y, k) ∈
Σ∗ × N such that

“pb”: The parameter value k is polynomially bounded in maxti=1 |xi|+ log t.

“or”: The instance (y, k) is a yes-instance for Q if and only if at least on instance
xi is a yes-instance for L.

Proposition 2.37 ([BJK14]). If L is an NP-complete language and has an or-
cross-composition into a parameterized language Q, then Q does not have a
polynomial compression, provided NP 6⊆ coNP/poly.

2.3.2 Lower bounds using ETH
In this section we give the main tools for the lower bounds used in Part IV. The
main ingredients here are the exponential time hypothesis and the sparsification
lemma, both by Impagliazzo, Paturi, and Zane [IPZ01]. For an introduction
to lower bounds using ETH, see the excellent survey of Lokshtanov, Marx, and
Saurabh [LMS11].

As far as we know, problems that are NP-complete might be solvable in
polynomial time. It is considered highly unlikely by most computer scientists and
mathematicians around the globe, but as long as we do not have a proof that P is
not equal to NP, we cannot rule out such algorithms. What’s worse is that we are
very—very— far away from being able to show this; We do not even know if P is
a proper subset of PSPACE.

However, although the theory behind NP-hardness gives us strong evidence that
certain problems are not solvable in polynomial time, we cannot use this theory to
rule out algorithms of the form nO(logn) (so-called quasi-polynomial running time),
or 2o(n) poly(n). However, attempts on finding algorithms computing, e.g., the
chromatic number of a graph in subexponential time 2o(n) has not given positive
results.
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Thus, for some problems, we would like to show that we need truly exponential
time, for example, for 3Sat (defined below), it seems plausible that it should be
impossible to solve ϕ in 2o(|V(ϕ)|) poly(|ϕ|) time, where Vϕ is the set of variables
of ϕ. However, as this would imply that P 6= NP, we cannot hope for such results
yet. This led Impagliazzo, Paturi and Zane [IPZ01] to define a new complexity
theoretic hypothesis—the exponential time hypothesis—which is slightly stronger
than P 6= NP. Whether or not one believes that the hypothesis is true or not is
actually not that important, for as Lokshtanov et al. [LMS11] notes,

the very least, these results show that breaking the lower bounds
require fundamental advances in satisfiability algorithms, and therefore
problem-specific ideas related to the particular problem are probably
not of any help.

Before we state the hypothesis, we formally define some notions on satisfiability
and reductions needed for the hypothesis. The results below hold for all r ≥ 3, but
for simplicity, we will only refer to 3-CNF-SAT, rather than the more general r-
CNF-SAT.

Definition 2.38 (3-CNF-SAT). A formula ϕ over variables Vϕ and clauses Cϕ is
said to be a 3-CNF-SAT formula if every clause contains at most three variables.
An assignment for a SAT formula is a function α : Vϕ → {true, false}. We say
that α satisfies ϕ if for every clause c ∈ Cϕ, there is a variable which α-satisfies c.
A SAT formula ϕ is satisfiable if it admits a satisfying assignment.

Input: A 3-CNF-SAT formula ϕ
Question: Is ϕ satisfiable?

3Sat

Exponential time hypothesis (ETH). There exists a positive real number s
such that 3Sat with n variables cannot be solved in time 2sn.
Impagliazzo et al. [IPZ01] defined the notion of a subexponential reduction family
(SERF) to construct lower bounds using ETH. However, for this thesis we only
need the less general and slightly simpler class of reductions which are called
FPT-reductions with linear parameter blow-up.

Definition 2.39 (FPT-reduction, [LMS11]). An FPT-reduction from Π1 to Π2 is
a mapping R : G × N→ G × N with a corresponding computable function g, such
that

• for all (G, k), (G, k) ∈ Π1 if and only if R((G, k)) ∈ Π2,

• R is computable by an FPT-algorithm parameterized by k, and

• for any instance (G, k), k′ ≤ g(k), where k′ is the parameter output by R.
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It g is linear, we say that the reduction has a linear parameter blow-up.

It can be observed that if there is an FPT-reduction from Π1 to Π2 with a linear
parameter blow-up, then if Π2 ∈ SUBEPT then Π1 ∈ SUBEPT.

Since, in a 3-CNF-SAT formula ϕ, every variable occurs in at least one clause,
it follows that |V| ≤ 3|C|. An immediate consequence is that 3Sat with parameter
(complexity measure) |C| (the number of clauses) is SERF-reducible to 3Sat with
parameter |V|. The reverse direction, however, is less clear. However, Impagliazzo
et al. gave a SERF-reduction for the opposite direction as well, thereby showing
that not even “sparse” instances are solvable in subexponential time, under ETH.
This result is called the sparsification lemma. An instance of 3Sat is called sparse
if it has O(|V|) many clauses, i.e., |C| = O(|V|).

Proposition 2.40 (Sparsification lemma [IPZ01]). For every ε > 0 and positive
integer r, there is a constant C = O(( r

ε
)3r) so that any 3-CNF-SAT formula F

with n variables, can be expressed as F = ∨t
i=1 Yi , where t ≤ 2εn and each Yi is a 3-

CNF-SAT formula with every variables appearing in at most C clauses. Moreover,
this disjunction can be computed by an algorithm running in time 2εn poly(n).

Impagliazzo et al. give a SERF-reduction from 3Sat with parameter |V| to 3Sat
with parameter |C|. Thus the following proposition is a direct consequence of the
sparsification lemma.

Proposition 2.41 ([IPZ01]). Assuming ETH, there is a positive real s such that
3Sat with parameter |C| cannot be solved in time O(2sm). That is, there is no 2o(m)

algorithm for 3Sat with parameter |C|.

The following lemma is the conclusion from the above exposition and will be our
main tool for showing lower bounds for graph modification problems.

Lemma 2.42. Assuming ETH, if there is an FPT-reduction from 3Sat to a
parameterized graph problem Π with linear parameter blow-up, and the number
of vertices, n and edges, m is linear in the size of the formula, then that problem
cannot be solved in 2o(n+m) poly(n) time, nor 2o(k) poly(n) parameterized time.



Part II

Kernels
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This part is devoted to the polynomial kernelizability of edge modification prob-
lems. There are many reasons for studying polynomial kernelizability for its own
sake, however, as we will see in Part III, one of the main tools for obtaining
subexponential parameterized time algorithms is precisely to be able to start out
with a kernelized instance.

Three of the problems concerned in this part, Threshold Editing, Chain
Editing, and Trivially Perfect Editing were previously not known to be
NP-hard, hence the question of polynomial kernelizability seems strange; maybe
we could just as well have solved them completely in polynomial time. However,
in Part IV, we show that they are indeed NP-complete, and hence the problem
of kernelizability is a natural next step. The NP-completeness of Trivially
Perfect Editing was shown independently by Nastos and Gao [NG13]. Their
proof suffers an (at least) cubic blow-up and can therefore not be used to rule out
a subexponential time algorithm. Our reduction in Chapter 14 will be linear, both
in size and parameter, and shows therefore that we should not expect algorithms
of running time 2o(k) · poly(n).

The main contribution of this part is a new technique for obtaining polynomial
kernelization results for edge modification problems towards H-free graphs. We
describe this case, and provide a small example as a use case, in the first chapter
of this part; Chapter 3 gives a very simple quadratic vertex kernel for Cluster
Deletion using the modulator technique.

In Chapters 4 and 5 we obtain quadratic sized vertex cover for all the edge
modification problems towards threshold graphs as well as the related class chain
graphs. In Chapter 6 we show how to use the modulator to obtain a kernel with
O(k7) vertices for all edge modification problems towards trivially perfect graphs.
This is by far the most technical chapter of this part. In Chapter 7, we show that
there is a simple kernel with O(kp) vertices for p-Bicluster Editing, and a
more general variant of the problem. This will be useful for our algorithmic results
on that problem in the next part.

We conclude the part on kernels by adding a result concerning bounded degree
input graphs in Chapter 8. This shows that problems like editing or deleting
towards C4-free graphs, which in general do not admit polynomial kernels [Cai12],
do admit polynomial kernels when the input graphs have bounded degree. We
will also see that we cannot expect to be able to obtain the same result for the
completion variant; that is, there is a finite set H for which H-free Completion
does not admit a polynomial kernel, even on bounded degree input graphs, unless
NP ⊆ coNP/poly. Lifting the former positive results to degenerate graphs is also
not possible, as shown by Kratsch and Wahlström [KW13]; Although not explicitly
stated in their paper, a careful analysis of their proof reveals that edge deletion to
HKW-free graphs (See Table 2.1) does not admit a polynomial kernel, even if the
input graphs are 6-degenerate, unless NP ⊆ coNP/poly.
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Chapter 3

Technique: Modulator driven
kernels — a showcase

In this chapter we present the main technique of this part by giving a very simple
quadratic kernel for Cluster Deletion. Let (G, k) be an instance to Cluster
Deletion, and recall that Cluster Deletion is the problem of deleting edges
to obtain a P3-free graph. The technique consists mainly of a twin reduction rule,
and sometimes other irrelevant vertex deletion rules. For this case, we use the
following two rules:

Rule 3.1. If a connected component C is a cluster, continue with (G− C, k).

Rule 3.2. If T = tc(v) is a twin class of size at least 2k + 4 with v ∈ T , continue
with the instance (G− v, k).

Lemma 3.1. Rules 3.1 and 3.2 are sound and can be exhaustively applied in
polynomial time.

Proof. The first rule is straight forward. For the second rule, let T = tc(v) be
a twin class of v. First we observe that in polynomial time, we can either find
such a set, or conclude that no such set exists. Since cluster graphs are hereditary,
if (G, k) is a yes-instance, then (G− v, k) is a yes-instance for any vertex v. So
suppose that (G− v, k) is a yes-instance for some v that Rule 3.2 applied to, and
suppose for the sake of a contradiction that (G, k) is a no-instance. We assume
for simplicity that Rule 3.1 did not apply to v, hence v is not an isolated vertex.

Let F be a solution to (G− v, k). Now, since T has at least 2k + 4 vertices,
and F can only be incident to 2k vertices, there are three vertices in G− v not
incident with any edge in F ; We call these vertices v1, v2, and v3. Since v is not an
isolated vertex, neither are any of the three above. But this means that {v1, v2, v3}
is a clique, and so is {v, v1, v2, v3}. Since these vertices are twins, the connected
component of v is a clique, hence G− F is a cluster graph, which contradicts the
assumption that (G− v, k) was a no-instance.

The main tool of analysis is the following. We construct a set X as follows: If
there is an induced P3 on vertex set W1 with at most one vertex in X, we add W1
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to X. If there is an induced P3 on vertex set W2 with exactly two endpoints in X
and the middle vertex not in X, we add the middle vertex to X. That is, any
obstruction without any edges in X will be put into X. We continue until no such
obstructions exists.

X

Figure 3.1: Forbidden intersections for obstructions. None of the four above
configurations occurs after the algorithm above has been exhaustively applied.

Lemma 3.2. If (G, k) is a yes-instance, |X| ≤ 3k.
Proof. Suppose that (G, k) is a yes-instance. We need only observe that every
time we find an obstruction and add it to X, this is a witness that we need at
least one more edge deletion to obtain a cluster graph. Hence in any yes-instance,
this process must terminate after at most k steps. Since we never add more than
three vertices at a time, |X| ≤ 3k.
Rule 3.3. If |X| > 3k continue with (P3, 0) (that is, we say no).
We now claim that after the rules are applied, in any yes-instance, |V (G)| = O(k2).
Since G−X is a cluster graph and since every twin class has size at most 2k+3, we
have the following situation. Suppose a vertex v /∈ X has two neighbors x1, x2 ∈ X.
Then x1x2 ∈ E since otherwise {x1, v, x2} would be an obstruction with only the
endpoints in X. And if v1, v2 /∈ X, with a common neighbor x ∈ X, then v1v2 ∈ E.

X

Figure 3.2: The kernelized instance.

This means that the neighborhoods of G−X are partitioned into classes such that
every component in G−X sees exactly the same vertices in X. Since |X| ≤ 3k, it
follows that there are at most 3k components in G−X. Since every component
is a clique and since every vertex in a clique has the same neighborhood, every
component of G−X is a twin class, hence there are at most 3k(2k + 3) vertices
in G−X. It follows that there are at most 6k2 + 6k vertices.

Intuitively, the “real kernel” is the set X. This set contains the main parts of
the graph that need to be fixed in order to obtain a cluster graph (or other graph
classes when other problems are at hand). The rest of the instance, G−X serves
almost exclusively as a way of annotating the vertices of the modulator to which
vertices they belong.

Finally, note that there is a much better—and faster— kernel for Cluster
Deletion, the above exposition is for explanatory purposes only.



Chapter 4

Threshold graphs

In this chapter, we show that the edge modification problems relating to threshold
graphs all have quadratic vertex kernels. This answers a recent question by Liu,
Wang, and Guo [LWG14]. Since the class of threshold graphs is closed under
taking complements, it follows that for every instance (G, k) of Threshold
Completion, (G, k) is an equivalent instance of Threshold Deletion and
vice versa by Fact 2.7. The same trick almost applies to Chain Deletion as
well. Due to this, we restrict our attention to the completion and editing variants.

Input: A graph G and an integer k
Question: Does there exist a set F of at most k edges such that G M F

is a threshold graph?

Threshold Editing parameterized by k

We study all three graph modification problems towards threshold graphs. The
definition of the two other problems, the completion and deletion variant are
exactly the same, but replace M with either adding the edges or deleting the edges.
We start by describing the obstructions of threshold and chain graphs.

Motivated by the characterization of threshold graphs from Chapter 2, more
specifically Propositions 2.21 and 2.31, we define obstructions.

Definition 4.1 (Obstruction). A graph H is a threshold obstruction if it is
isomorphic to a member of the set {2K2, C4, P4} and a chain obstruction if it is
isomorphic to a member of the set {2K2, C3, C5}. If it is clear from the context,
we will often use the term obstruction for both threshold and chain obstructions
and denote the set of obstructions by H. Furthermore, if an obstruction H is an
induced subgraph of a graph G we call H an obstruction in G.

Definition 4.2 (Realization). For a graph G and a set of vertices X ⊆ V (G) we
say that a vertex v ∈ V (G) \X is realizing Y ⊆ X if NX(v) = Y . Furthermore,
we say that a set Y ⊆ X is being realized if there is a vertex v ∈ V (G) \X such
that v is realizing Y .
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Before proceeding, we observe that our kernelization algorithms does not modify
any edges, and only changes the budget in the case that we discover that we have a
no-instance (in which case we return (H, 0), where H is an obstruction in G). The
only modification of the instance is vertex deletion, hence the kernelized instance is
an induced subgraph of the original graph. Since the parameter is never increased,
we obtain proper kernels (recall Definition 2.34).

4.1 Outline of the kernelization algorithm
The kernelization algorithm consists of a twin reduction rule and an irrelevant
vertex rule. The twin reduction rule is based on the observation that any obstruc-
tion containing vertices from a large enough twin class will have to be handled
by edges not incident to the twin class. From this observation, we may conclude
that for any twin class, we may keep only a certain amount without affecting the
solutions.

A key concept of the irrelevant vertex rule is what we in the previous chapter
referred to as a modulator. A modulator is here a set of vertices X in G of
linear size in k, such that for every obstruction H in G one can add and remove
edges in [X]2 to turn H into a non-obstruction. First, we prove that we can in
polynomial time either obtain such a set X or conclude correctly that the instance
is a no-instance. The observation that G−X is a threshold graph will be exploited
heavily and we now fix a threshold decomposition (C, I) of G−X. We then prove
that the idea of Proposition 2.20 can be extended to vertices in G − X when
considering their neighborhoods in G. In other words, the neighborhoods of the
vertices in G−X are nested also when considering G. This immediately yields
that the number of subsets of X that are being realized is bounded linearly in the
size of X and hence also in k.

We now either conclude that the graph is small or we identify a sequence
of levels in the threshold decomposition containing many vertices, such that all
the clique vertices and all the independent set vertices in the sequence have
identical neighborhoods in X, respectively. The crux is that in the middle of such
a sequence there will be a vertex that is replaceable by other vertices in every
obstruction and hence is irrelevant. Such a sequence is obtained by discarding all
levels in the decomposition that are extremal with respect to a subset Y of X,
meaning that there either are no levels above or underneath that contain vertices
realizing Y . One can prove that in this process, only a quadratic number of vertices
are discarded and from this we obtain a kernel.

4.2 The twin reduction rule
First, we introduce the twin reduction rule as described above. For the remainder
of the section we will assume this rule to be applied exhaustively and hence we
can assume all twin classes to be small. Recall now that tc(v) denotes the twin
class of a vertex v.
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Rule 4.1 (Twin reduction rule). Let (G, k) be an instance of Threshold Com-
pletion or Threshold Editing and v a vertex in G such that | tc(v)| > 2k+ 2.
We then reduce the instance to (G− v, k).

Lemma 4.3. Let G be a graph and v a vertex in G such that | tc(v)| > 2k+2. Then
for every k we have that (G, k) is a yes-instance of Threshold Completion (or
Threshold Editing) if and only if (G− v, k) is a yes-instance of Threshold
Completion (resp. Threshold Editing). Furthermore, we can exhaustively
perform Rule 4.1 in polynomial time.

Proof. For readability we only consider Threshold Editing, however exactly
the same proof works for Threshold Completion. Let G′ = G− v. It trivially
holds that if (G, k) is a yes-instance, then also (G′, k) is a yes-instance. This is
due to the fact that removing a vertex never will create new obstructions.

Now, let (G′, k) be a yes-instance and assume for a contradiction that (G, k)
is a no-instance. Let F be an optimal solution of (G′, k) and W an obstruction
in G M F . SinceW is not an obstruction in G′ it follows immediately that v is inW .
Furthermore, since |F | ≤ k it follows that there are two vertices a, b ∈ tc(v) \ {v}
that F is not incident with. One may observe that no obstruction contains more
than two vertices from a twin class and hence we can assume without loss of
generality that b is not inW . It follows thatNGMF (v)∩(W−v) = NG(v)∩(W−v) =
NG(b)∩(W−v) = NG′(b)∩(W−v) and hence the graph induced on V (W ) M {b, v}
is an obstruction in G′ M F , contradicting that F is a solution for (G′, k).

Finally, to observe that the rule can be exhaustively applied in polynomial
time, observe that we apply is at most n times, each time finding the twin class of
the vertices, which is clearly doable in polynomial time.

4.3 The modulator
Recall now that a set X is a modulator of a graph G if for every obstruction W
in G we can edit edges between vertices in X to turn W into a non-obstruction.
The kernelization algorithm will heavily depend on finding a small modulator X
and the fact that G−X is a threshold graph.

Lemma 4.4. There is a polynomial time algorithm that given a graph G and an
integer k either

• outputs a modulator X of G such that |X| ≤ 4k or

• correctly concludes that (G, k) is a no-instance of both Threshold Com-
pletion and Threshold Editing.

Proof. Let X1 be the empty set and W = {W1, . . . ,Wt} the set of all obstructions
in G. We execute the following procedure for every Wi in W: If Wi M F is an
obstruction for every F ⊆ [Xi ∩ V (Wi)]2 we let Xi+1 = Xi ∪ V (Wi), otherwise we
let Xi+1 = Xi. After we have considered all obstructions we let X = Xt+1. If
|X| > 4k we conclude that (G, k) is a no-instance, otherwise we output X.
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H1 H2 H3 H4 H5 H6 H7

X

Figure 4.1: Some of the intersections with a modulator X that will not occur by
definition. More specifically the ones necessary for the proof of the kernel.

Since all there is a fixed number of obstructions, the algorithm described clearly
runs in polynomial time. We now argue that X is a modulator of G. If Wi was
added to Xi+1, we let F be all the non-edges of W . Since W M F is isomorphic
to K4 it follows immediately that W M F is not an obstruction. If Wi was not
added to Xi+1, let F the set found in [Xi ∩ V (Wi)]2 such that Wi M F is not an
obstruction. Observe that F ⊆ [X]2 and hence X is a modulator.

It remains to prove that if |X| > 4k then (G, k) is a no-instance of Threshold
Editing. Observe that it will follow immediately that (G, k) is a no-instance
of Threshold Completion. Since every obstruction consists of four vertices
there was at least k+ 1 obstructions added during the procedure. Assume without
loss of generality that W1, . . . ,Wk+1 was added. Observe that by construction,
a solution must contain an edge in [Xi+1 −Xi]2 for every i ∈ [k + 1] and hence
contains at least k + 1 edges.

4.4 Obtaining structure
We now study the modulator’s interaction with the remaining graph in order to
obtain structure of the neighborhoods between the modulator and the remaining
graph. First, we prove that the neighborhoods of the vertices outside of X are
nested and that the number of realized sets in X are bounded linearly in k.

Lemma 4.5. Let G be a graph and X a modulator. For every pair of vertices u
and v in G−X it holds that either N(u) ⊂ N [v] or N(v) ⊂ N [u].

Proof. Assume otherwise for a contradiction and let u′ be a vertex in N(u) \N [v]
and v′ a vertex in N(v) \N [u]. Let W = G[{u, v, u′, v′}] and observe that uu′ and
vv′ are edges in W and uv′ and vu′ are non-edges in W by definition. Hence, no
matter if some of the edges uv and u′v′ are present or not, W is an obstruction
in G (see Figure 4.1 for an illustration). Since u′v′ is the only pair in W possibly
with both elements in X this contradicts X being a modulator.

Lemma 4.6. Let G be a graph and X a modulator, then the number of X-
neighborhoods,

|{NX(v) for v ∈ V (G) \X}| ≤ |X|+ 1.
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Or in other words, there are at most |X|+ 1 subsets of X that are being realized.

Proof. Let u and v be two vertices inG−X. It follows directly from Lemma 4.5 that
either NX(v) ⊆ NX(u) or NX(v) ⊇ NX(u). The result follows immediately.

With the definition of the modulator and the basic properties above, we are now
ready to extract more vertices from the instance, aiming at many consecutive
levels that have the same neighborhood in X for the clique, and independent set
vertices, respectively. This will lead up to our irrelevant vertex rule.

Let G be a graph, X a modulator and (C, I) a threshold partition of G−X. Recall
from Definition 2.28 that C = 〈C1, . . . , Ct〉 and I = 〈I1, . . . , It〉. Letting P denote
either C or I, and Pi = Ci or Pi = Ii, we say that a subset Y ⊆ X has its upper
extreme in Pi if Pi realizes Y and for every j > i it holds that Pj does not realize Y .
Similarly, a subset Y ⊆ X has its lower extreme in Pi if Pi realizes Y and for every
j < i it holds that Pj does not realize Y . We say that Y ⊆ X is extremal in Pi
if Y has its upper or lower extreme in Y . Observe that every Y ⊆ X is extremal
in at most two clique fragments and two independent set fragments.

We continue having P denote either C or I.

Lemma 4.7. Let G be a graph, X a modulator and (C, I) a threshold partition
of G −X. For every Y ⊆ X it holds that if Y has its lower extreme in P` and
upper extreme in Pu, then for every vertex v ∈ Pi with i ∈ [`+ 1, u− 1] it holds
that NX(v) = Y .

Proof. Let Y be a subset of X with C` and Cu being its lower and upper extremes
in the clique respectively. By definition there is a vertex u ∈ C` and a vertex
w ∈ Cu such that NX(u) = NX(w) = Y . Let i be an integer in [` + 1, u − 1]
and a vertex v ∈ Ci. By the definition of a threshold partition it holds that
NG−X(w) ⊂ NG−X(v) ⊂ NG−X(u). It follows from Lemma 4.5 that N(w) ⊂ N [v]
and that N(v) ⊂ N [u]. Hence,

Y = NX(w) ⊆ NX(v) ⊆ NX(u) = Y

and we conclude that NX(v) = Y . Since i and v was arbitrary, the proof is
complete.

We will now distinguish between three types of vertices in G−X. This distinction
into three categories will be helpful when analyzing the number of vertices a
yes-instance can have in G − X. It will also be useful when adding one final
reduction rule, an irrelevant vertex rule (Rule 4.2).

Definition 4.8 (Important, outlying, and regular). We say that Pi in the partition
is important if there is a Y ⊆ X such that Y has its extreme in Pi. Furthermore,
a level Li is important if Ci or Ii is important. Let f be the smallest number such
that | ∪i≤f Ci| ≥ 2k + 2 and r the largest number such that | ∪i≥r Ii| ≥ 2k + 2.
A level Li is outlying if i ≤ f or i ≥ r. All other levels of the decomposition are
regular and a vertex is regular, outlying or important depending on the type of
the level it is contained in.
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With this characterization, we proceed to analyze the number of important levels
and, more importantly, the number of important vertices in total in G−X. We
will see that this is already bounded by O(k2).

Lemma 4.9. Let G be a graph and X a modulator of G of size at most 4k. Then
every threshold partition of G−X has at most 16k + 4 important levels.

Proof. The result follows immediately from the definition of important levels and
Lemma 4.6.

Lemma 4.10. Let G be a graph, X a modulator of G and (C, I) a threshold
partition of G −X, then for every set Y ⊆ X there are at most two important
clique fragments (independent fragments) realizing Y .

We henceforth refer to C and I as the vertices comprising C, the clique partition,
and I, the independent set partition, respectively.

Proof of Lemma 4.10. We first prove the statement for clique fragments. Let Y
be a subset of X and i < j < k three integers. Assume for a contradiction that
Ci, Cj and Ck are important clique fragments all realizing Y . By definition there
are vertices u ∈ Ci, v ∈ Cj and w ∈ Ck such that NX(u) = NX(v) = NX(w) = Y .
Furthermore, there is a vertex v′ ∈ Cj such that NX(v′) 6= Y since Cj is important
and Y does not have an extreme in Cj. By the definition of threshold partitions,
we have that NG−X(w) ⊂ NG−X(v′) ⊂ NG−X(u). Lemma 4.5 immediately implies
that N(w) ⊂ N [v′] and N(v′) ⊂ N [u] and since {u, v′, w} ⊆ C it holds that
N [u] ⊆ N [v′] ⊆ N [w]. Since NX(v′) 6= Y , we have NX(w) ⊂ NX(v′) ⊂ NX(u),
which contradicts the definition of w and u since NX(u) = NX(w). By a symmetric
argument, the statement also holds for independent fragments.

Lemma 4.11. Let G be a graph, X a modulator of G of size at most 4k and
(C, I) a threshold partition of G − X. Then there are at most 64k2 + 80k + 16
important vertices in G−X.

Proof. Let Y be the set of all vertices contained in a important clique or indepen-
dent fragment and let Z be the set of all important vertices. Observe that Y ⊆ Z
and that every Ci or Ii contained in Z \ Y is a twin class in G by definition. By
Lemma 4.9 there are at most 16k + 4 important levels and since the twin-rule has
been applied exhaustively it holds that |Z \Y | ≤ (16k+4)(2k+2) = 32k2 +40k+8.

Let A be a subset of X and B the vertices in Y such that their neighborhood
in X is exactly A. Let D be a Ci or Ii contained in Y and observe that D∩B is a
twin class in G and hence |D∩B| ≤ 2k+2. And hence it follows from Lemma 4.10
that |B| ≤ 8k + 8. Furthermore, we know from Lemma 4.6 that there are at most
4k+ 1 realized in X and hence |Y | ≤ (8k+ 8)(4k+ 1) = 32k2 + 40k+ 8. It follows
immediately that |Z| ≤ 64k2 + 80k + 16, completing the proof.

Having bounded the number of important vertices, we proceed to bound the
number of outlying vertices, also by O(k2). When this is done, what remains is to
bound the number of regular vertices. However, there might still be arbitrarily
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many regular vertices, and so the next section will introduce a new rule to take
care of this.

Lemma 4.12. Let G be a graph, X a modulator of G of size at most 4k and
(C, I) a threshold partition of G−X. Then there are at most 80k2 + 112k + 32
important and outlying vertices in total in G−X.

Proof. By Lemma 4.11 it follows that there are at most 64k2 + 80k + 16 vertices
that are important and possibly outlying. It follows from Lemma 4.7 that if a
level is not important its vertices are covered by at most two twin classes in G and
hence the level contains at most 4k + 4 vertices. By definition there are at most
4k+4 outlying levels and hence at most (4k+4)(4k+4) = 16k2 +32k+16 vertices
which are outlying, but not important. The result follows immediately.

For the next section, where we introduce the last rule and wrap up, the following
lemma will be useful. It essentially says that in any solution to the instance (G, k),
no regular vertex will change from the clique partition to the independent set
partition and vice versa.

Lemma 4.13. Let G be a graph, X a modulator of G, v a regular vertex in some
threshold partition (C, I) of G−X. Then for every F ⊆ [V (G)]2 such that G M F
is a threshold graph, |F | ≤ k and every split partition (CF , IF ) of G M F we have:

• v ∈ C if and only if v ∈ CF and

• v ∈ I if and only if v ∈ IF .

Proof. Observe that the two statements are equivalent and that it is sufficient to
prove the forward direction of both statements. First, we prove that v ∈ C implies
that v ∈ CF . Let Y be the set of outlying vertices in I ∩NG(v) and recall that
|Y | > 2k+ 1 by definition. Observe that at most 2k vertices in Y are incident to F
and hence there are two vertices u, u′ in Y that are untouched by F . Clearly, u and
u′ are not adjacent in G M F and hence we can assume without loss of generality
that u is in IF . Since u is untouched by F , v is adjacent to u by the definition
of outlying vertices and hence v is not in IF . A symmetric argument gives that
v ∈ I implies that v ∈ IF and hence our argument is complete.

4.5 The irrelevant vertex rule
We have now obtained the structure necessary to give our irrelevant vertex rule.
But before stating the rule, we need to define these consecutive levels with similar
neighborhood and what it means for a vertex to be in the middle of such a
collection of levels.

Definition 4.14 (Strips and centrality). Let G be a graph, X a modulator and
(C, I) a threshold partition of G − X. A strip is a maximal set of consecutive
levels which are all regular and we say that a strip is large if it contains at least
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16k + 13 vertices. For a strip S = ([Ca, Ia], . . . , [Cb, Ib]) a vertex v ∈ Ci is central
if a ≤ i ≤ b and | ∪j∈[a,i−1] Cj| ≥ 2k + 2 and | ∪j∈[i+1,b] Cj| ≥ 2k + 2. Similarly
we say that a vertex v ∈ Ii is central if a ≤ i ≤ b and | ∪j∈[a,i−1] Ij| ≥ 2k + 2 and
| ∪j∈[i+1,b] Ij| ≥ 2k+ 2. Furthermore, we say that a vertex v is central in G if there
exists a modulator X of size at most 4k and a threshold decomposition of G−X
such that v is central in a large strip.

The following lemma explicitly states the relationship between being a large strip
and that of a central vertex:

Lemma 4.15. If a strip is large it has a central vertex.

Proof. Let S = ([Ca, Ia], . . . , [Cb, Ib]) be a large strip. First, we consider the case
when | ∪i∈[a,b] Ci| ≥ | ∪i∈[a,b] Ii|. Observe that | ∪i∈[a,b] Ci| ≥ 8k + 7. Let i be the
smallest number such that | ∪j∈[a,i−1] Cj| ≥ 2k + 2. It follows immediately from
|Ci−1| ≤ 2k + 2 that | ∪j∈[a,i−1] Cj| ≤ 4k + 3. Furthermore, since |Ci| ≤ 2k + 2 it
follows that | ∪j∈[i+1,b] Cj| ≥ 8k + 7− (2k + 2 + 4k + 3) = 2k + 2. And hence any
vertex in Ci is central. A symmetric argument for the case |∪i∈[a,b]Ci| < |∪i∈[a,b] Ii|
completes the proof.

We are ready for the second and final rule of this kernel. Intuitively, whereas the
twin reduction rule (Rule 4.1) ensured that each level contained few vertices, this
rule ensures that there are few “similar-looking” levels, levels only differing in the
neighborhood in G−X:

Rule 4.2 (Irrelevant vertex rule). If (G, k) is an instance of either Threshold
Completion or Threshold Editing and v is a central vertex in G then we
continue with the instance (G− v, k).

In now only remains to show that this rule is sound. That done, a very simple
summary will conclude that the size of a yes-instance has at most O(k2) vertices.

Lemma 4.16. Let (G, k) be an instance, X a modulator and v a central vertex
in G. Then (G, k) is a yes-instance of Threshold Editing (Threshold
Completion) if and only if (G− v, k) is a yes-instance.

Recall from Definition 2.28 that lev(v) for a vertex v of a graph G with threshold
partition (C, I) is the number i such that v ∈ Ci ∪ Ii, that is, the index of the
level in which v lives.

Proof of Lemma 4.16. For readability we only consider Threshold Editing,
however the exact same proof works for Threshold Completion. For the
forwards direction, for any vertex v, if (G, k) is a yes-instance, then (G− v, k) is
also a yes-instance. This holds since threshold graphs are hereditary.

For the reverse direction, let (G − v, k) be a yes-instance and assume for
a contradiction that (G, k) is a no-instance. Let F be a solution of (G − v, k)
satisfying Lemma 2.30, and let G′ = G M F . By assumption, (G, k) is a no-
instance, so specifically, G′ is not a threshold graph. Let W be an obstruction
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Figure 4.2: The vertex v is a center vertex in a strip and W = {v, a, b, y} is
assumed to be an obstruction.

in G′. Clearly v ∈ W since otherwise there is an obstruction in (G− v) M F , so
consider Z = V (W ) \ v. For convenience we will use N ′ to denote neighborhoods
in G′ and specifically for any set Y ⊆ V (G′), N ′Y (v) = NG′(v) ∩ Y . Furthermore,
let (C, I) be a threshold decomposition of G−X such that there is a large strip S
for which v is central. We will now consider the case when v is in the clique of
G−X. Since |F | ≤ k and S is a large strip it follows immediately that there are
two clique vertices w and w′ in S in higher levels than v that is not incident to F .
Observe that {w,w′, v} forms a triangle and that W contains no such subgraph.
Hence, we can assume without loss of generality that w /∈ V (W ). Similarly, we
obtain a clique vertex u in a lower level than v in S such that u /∈ W .

Observe that G′[Z ∪ {u}] is not an obstruction and hence NZ(u) = N ′Z(u) 6=
N ′Z(v) = NZ(v). Since u and v are clique vertices from the same strip it is true
that NX(v) = NX(u) and hence there is an independent vertex a in Z such that
lev(u) ≤ lev(a) < lev(v) (see Definition 2.28). In other words u is adjacent to a
while v and w are not. By a symmetric argument we obtain a vertex b such that
lev(v) ≤ lev(b) < lev(w), meaning that both u and v are adjacent to b while w is
not. Let y be last vertex of Z, meaning that {v, y, a, b} = V (W ). Observe that a
and b are regular vertices and hence it follows from Lemma 4.13 that for every
threshold partition of G′ it holds that {a, b} are independent vertices.

Recall that u, v, w, a, b are all regular and hence they are in the same partitions
in G′ as in G−X by Lemma 4.13. Furthermore, sinceW is an obstruction and a is
neither adjacent to v nor b in G′ it holds that y and a are adjacent in G′. It follows
that y is a clique vertex in G′ and hence it is adjacent to both u and w in G′.
Since u and w are not incident to F by definition, they are adjacent to y also in G.
Since u, v, w are regular and from the same strip it follows that v is adjacent to y
in both G and G′. Observe that the only possible adjacency not yet decided in W
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is the one between b and y. However, for W to be an obstruction it should not be
present. Hence y is adjacent to a but not to b in G′. By definition NG(a) ⊆ NG(b),
however by the last observation this is not true in G′. This contradicts that F
satisfies Lemma 2.30. A symmetric argument gives a contradiction for the case
when v is an independent vertex and hence the proof is complete.

The above lemma shows the soundness of the irrelevant vertex rule, Rule 4.2,
and we may therefore apply it exhaustively. It should be clear that it can be
exhaustively applied in polynomial time since G−X is a threshold graph and we
can find (C, I) in polynomial time. Marking all regular vertices and then counting
successive regular levels and vertices suffices to locate an irrelevant vertex. The
following theorem wraps up the goal of this section.

Theorem 1. The following three problems admit proper kernels with at most O(k2)
vertices: Threshold Deletion, Threshold Completion and Threshold
Editing.

Proof. Assume that Rules 4.1 and 4.2 have been applied exhaustively. If this
process does not produce a modulator, we can safely output a trivial no-instance by
Lemma 4.4. Hence, we can assume that we have a modulator X of size at most 4k
and that the reduction rules cannot be applied. By Lemma 4.12 we know that
there are at most O(k2) vertices in G−X that are not regular. Furthermore, every
regular vertex is contained in a strip and by Lemma 4.9 there are at most O(k)
such strips. Since the reduction rules cannot be applied, no strip is large, and
hence they contain at most O(k) vertices each. Since every vertex in G is either
in X, or considered regular, outlying or important this gives us O(k2) vertices in
total.



Chapter 5

Chain graphs

In this chapter we provide kernels with quadratically many vertices for Chain
Deletion, Chain Completion and Chain Editing. Due to the fundamental
similarities between modification to chain and threshold graphs we omit the full
proof and instead highlight the differences between the two proofs. Not only do
we improve the current best (cubic vertex) kernel for the deletion and completion,
and provide a new kernel for the editing version, but we also get rid of earlier
requirements on being given a bipartite graph with fixed bipartitions as input,
as was the case for the previous kernel [Guo07]. This was also the case for the
subexponential parameterized time algorithm for the completion problem [FV13],
and we get rid of the requirement in our algorithm in Chapter 9 as well.

Input: A graph G and an integer k
Question: Does there exist a set F of at most k edges such that G M F

is a chain graph?

Chain Editing parameterized by k

We may observe that in the previous chapter, the only proofs for the threshold
kernels that explicitly apply the obstructions are those of Lemmata 4.4, 4.5,
and 4.16 and hence these will receive most of our attention.

The twin reduction rule goes through immediately and hence our first obstacle
is the modulator. Luckily, this is a minor one. Recall from Definition 4.1 that
the obstructions now are H = {2K2, C3, C5}; We thus get a chain-modulator X of
size 5k, as the largest obstruction contains five vertices. Besides this detail, the
proof goes through exactly as it is.

5.1 An additional step
Before we continue with the remainder of the proof we need an additional step.
Namely to discard all vertices that are isolated in G−X. We will prove that by
doing this we discard at most O(k2) vertices. Now, if the irrelevant vertex rule
concludes that the graph is small, then the graph is small also when we reintroduce

65
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the discarded vertices. And if we find an irrelevant vertex, we remove it and
reintroduce the discarded vertices before we once again apply our reduction rules.
Due to the locality of our arguments, this is a valid approach.

Lemma 5.1. For a graph G and a corresponding chain-modulator X there are at
most O(k2) isolated vertices in G−X.

Proof. Let I be the set of isolated vertices in G − X. We will prove that F =
{NX(v) | v ∈ I} is laminar (see Definition 2.10) and hence by Lemma 2.11 it holds
that |F| ≤ 2|X| ≤ 10k. It follows immediately, due to the twin reduction rule,
that there are at most 10k(2k + 2) = O(k2) independent vertices in G−X.

Assume for a contradiction that there are vertices u, v and w in I such that
there exists u′ ∈ NX(u) \NX(v) and v′ ∈ NX(v) \NX(u) with {u′, v′} ⊆ NX(w).
These vertices intersect with the modulator as a variant of the forbidden H5 in
Figure 5.1 and hence we get a contradiction.

H1 H2 H3 H4 H5

X

Figure 5.1: Some of the intersections of an obstruction with a chain-modulator X
that by definition will not occur. Dashed edges represent edges that could or could
not be there. These are the intersections necessary for the proof of the kernel.

5.2 Nested neighborhoods
From now on we will assume in all of our arguments that there are no isolated
vertices in G − X. The next difference is with respect to Lemma 4.5, which is
just not true anymore. The lemma provided us with the nested structure of the
neighborhoods in the modulator and was crucial for most of the proofs. As harmful
as this appears to be at first, it turns out that we can prove a weaker version that
is sufficient for our needs.

Lemma 5.2 (New, weaker version of Lemma 4.5). Let G be a graph and X a
chain-modulator. For every pair of vertices u and v in the same bipartition of
G−X it holds that either N(u) ⊆ N(v) or N(v) ⊆ N(u).

Proof. Let u and v be two vertices from the same bipartition of G−X. By the
definition of chain graphs we can assume that NG−X(u) ⊆ NG−X(v). Assume for a
contradiction that the lemma is not true. Then there is a vertex u′ ∈ NX(u)\NX(v)
and a vertex v′ in NX(v) \NX(u). By definition, u and v are not adjacent. Since
there are no isolated vertices in G−X there is a vertex a ∈ NG−X(u) ⊆ NG−X(v).
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Observe that if a is adjacent to either u′ or v′ we get a C3 that only has one
vertex in X, which is a contradiction (see H1 in Figure 5.1). However, if a is not
adjacent to both u′ and v′ then {u, v, u′, v′, a} forms the same interaction with the
modulator as H4 in Figure 5.1 and hence our proof is complete.

One can observe that Lemma 5.2 is a sufficiently strong replacement for Lemma 4.5
since all proofs are applying the lemma to vertices from only one partition of
G−X. The only exception is the proof of Lemma 4.6, but by applying Lemma 5.2
on one partition at the time we obtain the following bound instead:

|{NX(v) for v ∈ V (G) \X}| ≤ 2|X|+ 2.

5.3 An irrelevant vertex rule
It only remains to prove that the irrelevant vertex rule can still be applied with
this new set of obstructions. Although the strategy is the same, the details are
different and hence we provide the proof in full detail.

Lemma 5.3. Let (G, k) be an instance, X a modulator and v a central vertex
in G. Then (G, k) is a yes-instance of Chain Editing (Chain Completion)
if and only if (G− v, k) is a yes-instance.

Proof. For readability we only consider Chain Editing, however the exact same
proof works for Chain Completion. For the forwards direction, for any vertex v,
if (G, k) is a yes-instance, then (G− v, k) is also a yes-instance. This holds since
chain graphs are hereditary.

For the reverse direction, let (G − v, k) be a yes-instance and assume for
a contradiction that (G, k) is a no-instance. Let F be a solution of (G − v, k)
satisfying Lemma 2.30, and let G′ = G M F . By assumption, (G, k) is a no-
instance, so specifically, G′ is not a chain graph. Let W be an obstruction in G′.
Clearly v ∈ W , since otherwise there is an obstruction in (G − v) M F . Let
Z = V (W ) − v. For convenience we will use N ′ to denote neighborhoods in G′
and specifically for any set Y ⊆ V (G′), N ′Y (v) = NG′(v) ∩ Y . Furthermore, let
(A,B) be a chain decomposition of G−X such that there is a large strip S for
which v is central. Let A = ∪A and B = ∪B. We will now consider the case
when v is in A. Since |F | ≤ k and S is a large strip it follows immediately that
there are two vertices w and w′ in A∩S in higher levels than v that is not incident
to F . Observe that {w,w′, v} forms an independent set of size three and that W
contains no such subgraph. Hence, we can assume without loss of generality that
w /∈ V (W ). Similarly, we obtain a vertex u in A at a lower level than v in S such
that u /∈ W .
Observe that G′[Z ∪ {u}] is not an obstruction and hence NZ(u) = N ′Z(u) 6=
N ′Z(v) = NZ(v). Since u and v are vertices in A from the same strip it is
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true that NX(v) = NX(u) and hence there is a vertex a in Z ∩ B such that
lev(u) ≤ lev(a) < lev(v). In other words u is adjacent to a, while v and w are not.
By a symmetric argument we obtain a vertex b such that lev(v) ≤ lev(b) < lev(w),
meaning that both u and v are adjacent to b while w is not. We now fix a chain
decomposition (A′,B′) and let A′ = ∪A′ and B′ = ∪B′. Observe that a and b are
regular vertices and hence it follows from the chain version of Lemma 4.13 that
{a, b} is in B′. This yields immediately that W is not a C3 (since a and b are not
adjacent) and hence we are left the cases of W being a 2K2 or a C5.

We now consider the case when W is isomorphic to a 2K2. Let y be the last
vertex of Z, meaning that {v, y, a, b} = V (W ). Observe that since W is a 2K2 it
holds that y is adjacent to a, but not to b. However, in G it holds that N(a) ⊆ N(b)
and hence F is not satisfying Lemma 2.30, which is a contradiction.

Hence we are left with the case that W is isomorphic to a C5. Let y, x be the
last vertices of Z. Observe that all vertices in W should be of degree two and
hence a is adjacent to both x and y. Recall that a is in B′ and observe that u is
in A′ by the same reasoning. Due to their adjacency to a, also x and y is in A′.
It follows immediately that u, x and y form an independent set in (G− v) M F .
Since u and v are not touched by F and in the same strip it follows that v, x and y
form an independent set in G′. We observe that by this W can not be isomorphic
to a C5. The argument for the case when v ∈ B is symmetrical and hence the
proof is complete.

With the new irrelevant vertex rule and the bound on the number of possible
X-neighborhoods, we obtain our kernelization results for modifications into chain
graphs. The proof is exactly the same as for Theorem 1, the corresponding
problems for threshold graphs.

Theorem 2. The following three problems admit proper kernels with at most
O(k2) vertices: Chain Deletion, Chain Completion, and Chain Editing.



Chapter 6

Trivially perfect graphs

In this chapter we describe an O(k7) vertex kernel for Trivially Perfect
Editing. This is done in the first section of this chapter. In the second section,
§ 6.2, we see that by modifying only two rules in total, we obtain polynomial
kernels for the deletion and the completion variant as well.

Input: A graph G and an integer k
Question: Does there exist a set F of at most k edges such that G M F

is trivially perfect?

Trivially Perfect Editing parameterized by k

The latter result (originally, a cubic vertex kernel for co-Trivially Perfect
Deletion) was already announced at the 18th International Symposium on
Algorithms and Computation (ISAAC) in 2007 by Guo [Guo07], but unfortunately
neither the proof nor the rules of the kernel were published. We therefore add the
short modifications necessary to adapt the kernel for the editing version, together
with the corresponding proof, for completeness.

6.1 A kernel for editing towards trivially perfect
graphs

This section is devoted to the proof of Theorem 3, stating that Trivially
Perfect Editing admits a proper kernel with O(k7) vertices. But before
starting the formal description, we go through a brief overview of the structure of
the proof.

In Section 6.1.1 we give some preliminary basic rules, that mostly deal with
situations where we can find a large number of induced C4s and P4s in the graph
(henceforth called obstacles), that share only one edge or non-edge. We then infer
that this edge or non-edge has to be included in any editing set of size at most k,
and hence we can perform the necessary edit and decrement the budget.

In Section 6.1.2 we construct a modulator based on the characterization that
trivially perfect graphs are exactly the {C4, P4}-free graphs. We refer to this

69
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modulator, X, as modulator. Recall again that |X| ≤ 4k (otherwise, (G, k) is
a no-instance) and G −X is a trivially perfect graph. We will see that G −X
and the interaction between G−X imposes a lot of structure on the considered
instance, and is the key for further analysis of irrelevant parts of the input.

In Definition 2.24, we defined a universal clique decomposition, or UCD for
short. A UCD is a recursive decomposition of a trivially perfect graph G into
universal vertices. Recall that a graph G is trivially perfect if and only if it admits a
universal clique decomposition (T = (VT , ET ),B = {Bt}t∈VT

). Further, recall that
for a given set of vertices X ⊆ V (G), we refer to NX(v), or the X-neighborhood
of v as the neighbors of v in X (Definition 2.1).

In Section 6.1.4 we proceed to analyze the trivially perfect graph G − X.
Having the polynomial bound on the number of neighborhoods within X, we can
locate in the UCD of G−X a polynomial (in k) number of important bags, where
something interesting from the point of view of X-neighborhoods happens. The
parts between the important bags have very simple structure. They are either
tassels: sets of trees hanging below some important bag, where each such tree
is a module in the whole graph G; or combs: long paths stretched between two
important bags where all the vertices of subtrees attached to the path have exactly
the same neighborhood in X. Tassels and combs are treated differently: Large
tassels contain large trivially perfect modules in G that can be reduced quite easily,
however for combs we need to devise a quite complicated irrelevant vertex rule
that locates a vertex that can be safely discarded in a long comb. The module
reduction rules are described in Section 6.1.5, while in Section 6.1.6 we reduce the
sizes of tassels and combs and conclude the proof.

The algorithm consists of five parts, each of which will be covered in the
following sections:

1. Run set of basic rules

2. Modulator construction

3. Bounding modulator neighborhoods

4. Locating important bags

5. Module reduction

6. Kernelizing non-important parts (irrelevant vertex deletions)

6.1.1 Basic rules
In this section we introduce the first two basic reduction rules. In the argumentation
of the next sections, we will assume that none of these rules is applicable. An
instance satisfying this property will be called reduced.

See Figures 6.1 and 6.2 for illustrations of Rules 6.1 and 6.2. The red dotted
edges are non-edges; They form a matching in the complement graph. In each of
the cases, the only common vertices are u and v.
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u v

Figure 6.1: Rule 6.1: There are four C4s sharing only the vertices u and v. Unless
the edge uv is added, we must use at least as many edits as the size of the
non-matching.

u v

Figure 6.2: Rule 6.2: There are four P4s sharing only the vertices u and v. Unless
the edge uv is deleted, we must use at least as many edits as the size of the
non-matching.

Rule 6.1. For an instance (G, k) with uv /∈ E(G), if there is a matching of size
at least k + 1 in G[N(u) ∩N(v)], then add edge uv to G and decrease k by one,
i.e., return the new instance (G+ uv, k − 1).

Rule 6.2. For an instance (G, k) with uv ∈ E(G) and N1 = N(u) \ N [v] and
N2 = N(v) \N [u], if there is a matching in G between N1 and N2 of size at least
k + 1, then delete edge uv from G and decrease k by one, i.e., return the new
instance (G− uv, k − 1).

Lemma 6.1. Applicability of Rules 6.1 and 6.2 can be recognized in polynomial
time. Moreover, both these rules are safe, i.e., the input instance (G, k) is a
yes-instance if and only if the output instance (G′, k − 1) is a yes-instance.

Proof. Observe that verifying the applicability of Rule 6.1 or 6.2 to a fixed edge or
non-edge uv boils down to computing the cardinality of the maximum matching
in an auxiliary graph. This problem is well-known to be solvable in polynomial
time [Edm65]. Thus, by iterating over all edges and non-edges of G we obtain
polynomial time algorithms for recognizing applicability of Rules 6.1 and 6.2. We
proceed to the proof of the safeness for both rules.

Proof of Rule 6.1. Let x0y0, x1y1, . . . , xkyk be the edges of the found matching
in the graph G[N(u) ∩N(v)]. Observe that for each i, 0 ≤ i ≤ k, the ver-
tices 〈u, xi, v, yi〉 induce a C4 in G. These induced four-cycles share only the
non-edge uv, hence any editing set that does not contain uv must contain at least
one element of [{u, xi, v, yi}]2 \ {uv}, and consequently be of size at least k + 1.
We infer that every editing set for G that has size at most k has to include the
edge uv, and the safeness of the rule follows.

In plain words, Rule 6.1 states that there are k + 1 vertex disjoint (except
from u and v) cycles of length four using v and u on the diagonals. Since any
editing set can touch at most k of these cycles, if we do not add the edge uv, there
will remain one C4 in any editing of size at most k. Hence adding uv is necessary,
and thus we can reduce k. y
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X

Figure 6.3: Forbidden patterns of intersection between an obstruction and a
modulator X.

Proof of Rule 6.2. We proceed similarly as for Rule 6.1. Suppose that we have
found a matching, x0y0, x1y1, . . . , xkyk in G, where xi ∈ N1 and yi ∈ N2 for 0 ≤
i ≤ k. Then the vertices 〈xi, u, v, yi〉 induce a P4, and all these P4s for 0 ≤ i ≤ k
pairwise share only the edge uv. Similarly as for Rule 6.1, we conclude that every
editing set for G of size at most k has to contain uv, and the safeness of the rule
follows. y

Combining the applicability of the two rules in polynomial time with their now
proved soundness, the lemma follows.

We can now use Lemma 6.1 to apply Rules 6.1 and 6.2 exhaustively; note that each
application reduces the budget k, hence at most k applications can be performed
before discarding the instance as a no-instance. From now on, we assume that the
considered instance (G, k) is reduced.

6.1.2 Modulator construction
We now move to the construction of the modulator. Recall the W ⊆ V (G) is an
obstruction if G[W ] is isomorphic to C4 or P4:

Definition 6.2 (Modulator). Let (G, k) be an instance of Trivially Perfect
Editing. A subset X ⊆ V (G) is a modulator if for every obstruction W , the
following holds (see Figure 6.3):

• |W ∩X| ≥ 2, and

• if |W ∩ X| = 2, then it cannot happen that G[W ] is a C4 or a P4 of the
form 〈x1, y1, y2, x2〉, where W ∩X = {x1, x2}.

We call a modulator X small if |X| ≤ 4k.

We now proceed to show exactly how to construct such a modulator, or conclude
that the given instance is a no-instance. We essentially do this by a greedy packing
of obstacles, and if we find more than k obstacles we may conclude that we are
dealing with a no-instance.

Lemma 6.3. Given an instance (G, k) of Trivially Perfect Editing, we can
in polynomial time construct a small modulator X ⊆ V (G), or correctly conclude
that (G, k) is a no-instance.
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Proof. The algorithm starts with X0 = ∅, and iteratively constructs an increasing
family of sets X0 ⊆ X1 ⊆ X2 ⊆ . . .. In the ith iteration we look for an obstacle W
that contradicts the fact that Xi−1 is a modulator. If this check verifies that Xi−1
is a modulator, then we terminate the algorithm and output X = Xi−1. Otherwise,
we set Xi = Xi−1 ∪ W and proceed to the next iteration. Moreover, if we
performed k+1 iterations, i.e., successfully constructed setXk+1, then we terminate
the algorithm concluding that (G, k) is a no-instance. Since in each iteration the
next Xi grows by at most four vertices, we infer that if we succeed in outputting
a modulator X, then it has size at most 4k.

We are left with proving that if the algorithm successfully constructed Xk+1,
then (G, k) is a no-instance. To this end, we prove by induction on i that for every
i = 0, 1, . . . , k + 1 and every editing set F for G, it holds that |F ∩ [Xi]2 | ≥ i.
Indeed, from this statement for i = k + 1 we can infer that every editing set for G
has size at least k + 1, so (G, k) is a no-instance. The base of the induction is
trivial, so for the induction step suppose that Xi = Xi−1 ∪W , where W is an
obstacle with |W ∩Xi−1| ≤ 1.

First, if |W ∩ Xi−1| ≤ 1, then [W ]2 is disjoint with [Xi−1]2. Since F is an
editing set for G, we have that F ∩ [W ]2 6= ∅, and hence∣∣∣F ∩ [Xi]2

∣∣∣ ≥ ∣∣∣F ∩ [Xi−1]2
∣∣∣+ ∣∣∣F ∩ [W ]2

∣∣∣ ≥ i− 1 + 1 = i,

by the induction hypothesis. Second, if |W ∩Xi−1| = 2 and W has one of the two
forms described in the second point of Definition 6.2, then it is easy to see that F
in fact has to have a nonempty intersection with [W ]2 \ {x1x2}: editing only the
(non)edge x1x2 would turn a C4 into a P4 or vice versa. Since [W ]2 \ {x1x2} is
disjoint with [Xi−1]2, we analogously obtain that∣∣∣F ∩ [Xi]2

∣∣∣ ≥ ∣∣∣F ∩ [Xi−1]2
∣∣∣+ ∣∣∣F ∩ ([W ]2 \ {x1x2}

)∣∣∣ ≥ i− 1 + 1 = i.

6.1.3 Bounding the number of modulator neighborhoods
We now compute the universal clique decomposition T = (T,B) of the trivially
perfect graph G − X. The goal of this section is to analyze the structure of
neighborhoods within X of vertices residing outside X.

Extending the quasi-order � on G−X. Again, we shall omit the subscript G
whenever this does not lead to any confusion. Recall that the UCD T gives us
a quasi-ordering � on the vertices of G − X. We have u � v if the bag to
which v belong is a descendant of the bag which u belongs to, where every bag
is considered its own descendant. We shall use the notation u ≺ v to denote
that u � v and v � u. The following two lemmata show that the quasi-ordering �
is compatible with the inclusion ordering of X-neighborhoods.

Lemma 6.4. If u ≺ v then NX(u) ⊇ NX(v).
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Proof. Suppose u ∈ Bt and v ∈ Bs, where t 6= s and t is an ancestor of s in the
forest T . Recall that in a UCD, every non-leaf node has at least two children,
which means that there exists some node s′ that is a descendant of t, but which is
incomparable with s. Let w be any vertex of Bs′ . From the definition of a UCD it
follows that uv, uw ∈ E(G) but vw /∈ E(G).

For the sake of contradiction suppose that NX(u) 6⊇ NX(v), which means there
exists a vertex x ∈ X with xv ∈ E(G) and xu /∈ E(G). It follows that {x, u, v, w}
is an obstacle regardless of whether wx is an edge or a non-edge: it is an induced C4
if wx ∈ E(G) and an induced P4 if wx /∈ E(G). Thus we have uncovered an
obstacle sharing only one vertex with X, contradicting the fact that X is a
modulator.

Lemma 6.5. If u, v ∈ Bt for some Bt ∈ B, then NX(u) ⊆ NX(v) or NX(v) ⊆
NX(u).

Proof. Since u, v ∈ Bt, we have that uv ∈ E(G). For the sake of contradiction,
suppose that there exist some xu ∈ NX(u) \NX(v) and xv ∈ NX(v) \NX(u). It
can be now easily seen that regardless whether xuxv belongs to E(G) or not, the
quadruple {u, v, xu, xv} forms one of the obstacles forbidden in the second point of
the Definition 6.2. This is a contradiction with the fact that X is a modulator.

Lemmata 6.4 and 6.5 motivate the following refinement of the quasi-ordering �:
If u, v belong to different bags of T , then we put u �N v if and only if u � v, and
if they are in the same bag, then u �N v if and only if NX(u) ⊇ NX(v). Thus,
by Lemma 6.5 �N refines � by possibly splitting every bag of T into a family of
linearly ordered equivalence classes. Moreover, by Lemmata 6.4 and 6.5 we have
the following corollary.

Corollary 6.6. If u �N v then NX(u) ⊇ NX(v).

Observe that for a pair of vertices u, v ∈ V (G) \ X, the following conditions
are equivalent: (a) u and v are comparable with respect to �, (b) u and v are
comparable with respect to �N , and (c) uv ∈ E(G). We have now prepared all
the tools needed to prove the main lemma from this section. For the proof of the
lemma we will use the fact that a weakly laminar set system has size at most the
size of the ground set plus one. See Definition 2.12 for the definition of a weakly
laminar set system, and Lemma 2.13 for the size bound.

Lemma 6.7. If (G, k) is a reduced instance for Trivially Perfect Editing
and X is a small modulator, then the number of different X-neighborhoods is at
most O(k4).

Proof. Let F be the family of X-neighborhoods in G. For every Z ∈ F , let us
choose an arbitrary vertex vZ ∈ V (G) \ X with Z = NX(vZ). We split F into
two subfamilies: The first family F1 contains all the sets of F that contain the
endpoints of some non-edge in G[X], whereas the second family F2 contains all
the sets of F that induce complete graphs in G[X]. We bound the sizes of F1
and F2 separately.
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Bounding |F1|: Let xy be a non-edge of G[X], and for 2 ≤ κ ≤ |X| let Fxy,κ1 be
the family of those sets of F1 that contain {x, y} and have cardinality exactly κ.
Take any distinct Z1, Z2 ∈ Fxy,κ1 , and observe that they are not nested since
both have size κ. By Corollary 6.6, this means that vertices vZ1 and vZ2 are
incomparable with respect to �N , so vZ1vZ2 /∈ E(G). Hence, set {vZ : Z ∈ Fxy,κ1 }
is independent in G. Observe now that if we had that |{vZ : Z ∈ Fxy,κ1 }| ≥ 2k + 2,
then Rule 6.1 would be applicable to the non-edge xy. Since we assume that the
instance is reduced, we conclude that |{vZ : Z ∈ Fxy,κ1 }| ≤ 2k + 1, and hence also
|Fxy,κ1 | ≤ 2k + 1. By summing through all the κ between 2 and |X| and through
all the non-edges of G[X], we infer that

|F1| ≤
(

4k
2

)
· 4k · (2k + 1) = O(k4).

Bounding |F2|: Consider any pair of X-neighborhoods Z1, Z2 ∈ F2 such that they
are not nested, and moreover there exist vertices x1 ∈ Z1 \ Z2 and x2 ∈ Z2 \ Z1
such that x1x2 ∈ E(G). Since Z1 and Z2 are not nested, by Corollary 6.6 we infer
that vZ1 and vZ2 are incomparable with respect to �N , and hence vZ1vZ2 /∈ E(G).
Observe that then G[{vZ1 , vZ2 , x1, x2}] is an induced P4; however, the existence of
such an obstacle is not forbidden by the definition of a modulator.

Create an auxiliary graph H with V (H) = F2, and put Z1Z2 ∈ E(H) if and
only if Z1 and Z2 satisfy the condition from the previous paragraph, i.e., Z1 and Z2
are not nested and there exist x1 ∈ Z1 \ Z2 and x2 ∈ Z2 \ Z1 with x1x2 ∈ E(G).
Run the classic greedy 2-approximation algorithm for vertex cover in H. This
algorithm either finds a matching M in H of size more than

(
4k
2

)
· k, or a vertex

cover C of H of size at most 2 ·
(

4k
2

)
· k. In the first case, assign each edge Z1Z2

of M to the corresponding edge x1x2 of G[X] as in the definition of the edges
of H. Observe that since |X| ≤ 4k, then some edge x1x2 ∈ G[X] is assigned at
least k + 1 times. Then it is easy to see that the sets {vZ1 , vZ2 , x1, x2} for Z1Z2
being edges of M assigned to x1x2 induce P4s that share only the edge x1x2, and
hence Rule 6.2 would be applicable to x1x2. This is a contradiction with the
assumption that (G, k) is reduced. Hence, we can assume that we have successfully
constructed a vertex cover C of H of size at most 2 ·

(
4k
2

)
· k = O(k3).

Let now F ′2 = F2 \ C. Since F ′2 is independent in H, it follows that for
any non-nested Z1, Z2 ∈ F ′2 and any x1 ∈ Z1 \ Z2, x2 ∈ Z2 \ Z1, we have that
x1x2 /∈ E(G). Since the sets of F ′2 induce complete graphs in G[X], this means
that in particular there is no set Z3 ∈ F ′2 that contains both x1 and x2. This
proves that the family F ′2 is a weakly laminar set system with X as ground set, so
by Lemma 2.13 we infer that |F ′2| ≤ |X|+ 1 ≤ 4k + 1. Concluding,

|F2| ≤ |C|+ |F ′2| ≤ O(k3) + 4k + 1 = O(k3),

and |F| ≤ |F1|+ |F2| = O(k4) +O(k3) = O(k4).
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Figure 6.4: Neighborhood Type 0: x sees a disjoint union of connected components.

Figure 6.5: Neighborhood Type 1: x sees all the vertices in bags from a root and
to a point in a bag, and nothing else.

6.1.4 Locating important bags
In the previous section we analyzed the structure of neighborhoods that vertices
from V (G) \X have in X. Our goal in this section is to perform the symmetric
analysis: to understand, how the neighborhood of a fixed x ∈ X in V (G) \ X
looks like. Eventually, we aim to locate a family I of O(k) important bags, where
some non-trivial behavior with respect to the neighborhoods of vertices of X
happens. Then, we will perform a lowest common ancestor-closure on the set I,
thus increasing its size to at most twice that of its original size. After performing
this step, all the connected components of T − I have very simple structure from
the point of view of their neighborhoods in X. As there are only O(k) such
components, we will be able to kernelize them separately.

The following definition and lemma explains what are the types of neighbor-
hoods that vertices of X can have in V (G) \X. To simplify the notation, in the
following we treat � also as a partial order on the vertices of the forest T denoting
the ancestor-descendant relation, i.e., s � t if and only if s is an ancestor of t
(possibly s = t).

See Figures 6.4, 6.5, and 6.6, which depicts the three types of neighborhoods;
simply denoted Type 0, Type 1, and Type 2. The blue parts in the figures mark
the possible neighborhoods of a vertex x ∈ X.

Definition 6.8 (Type 0, 1, and 2 neighborhoods). Let x ∈ X be any vertex and
consider Ux = N(x) \X. We say that Ux is:

A neighborhood of Type 0
if Ux is the union of the vertex sets of a collection of connected components
of G−X.
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Figure 6.6: Neighborhood Type 2: x has as neighbors all the vertices from a root
and down to a bag, and a collection of subtrees below that bag.

A neighborhood of Type 1
if there exists a node tx ∈ V (T ) such that⋃

s≺tx
Bs ⊆ Ux ⊆

⋃
s�tx

Bs.

In other words, Ux consists of all the vertices contained in bags on the path
from tx to the root of its subtree in T , where some vertices of Btx itself may
be excluded.

A neighborhood of Type 2
if there exists a node tx ∈ V (T ) and a collection Lx of subtrees of T rooted
at children of tx such that

Ux =
⋃
s�tx

Bs ∪
⋃
S∈Lx

⋃
s∈V (S)

Bs.

In other words, Ux is formed by all the vertices contained in bags on the path
from tx to the root of its subtree in T , plus a selection of subtrees rooted
in the children of tx, where the vertices appearing in the bags of each such
subtree are either all included in Ux or all excluded from Ux.

The following lemma shows that the neighborhood types described above are
complete, that is, that every neighborhood Ux of a vertex x ∈ X is one of the
three types above.

Lemma 6.9. Let x ∈ X be any vertex and consider Ux = N(x) \X. Then Ux is
of Type 0, 1 or 2.

Proof. From Corollary 6.6 we infer that Ux is closed downwards with respect to
the quasi-ordering �N , i.e., if v ∈ Ux and u �N v, then also u ∈ Ux. Let Sx be the
set of nodes of T whose bags contain at least one vertex of Ux. It follows that Sx
is closed under taking ancestors in forest T . Moreover if t ∈ Sx, then the bags of
all the ancestors of t other than t are fully contained in Ux.
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x X

Bt Bt′y y′

v

Figure 6.7: An induced P4 on 〈y, x, y′, v〉, with only one vertex, x, in the modulator,
appearing in the proof of Claim 6.10.

Claim 6.10. Suppose t, t′ ∈ Sx are two nodes that are incomparable with respect
to �. Then Ux ⊇

⋃
s�tBs and Ux ⊇

⋃
s�t′ Bs, i.e., Ux contains all the vertices of

all the bags contained in the subtrees of T rooted at t and t′.

Proof of claim. We prove the statement for the subtree rooted at t′; The proof
for the subtree rooted at t is symmetric. Let y and y′ be arbitrary vertices
of Bt ∩ Ux and Bt′ ∩ Ux, respectively. For the sake of contradiction suppose
there exists some v ∈ ⋃s�t′ Bs such that vx /∈ E(G). Since v ∈ ⋃s�t′ Bs and t, t′
are incomparable with respect to �, by the properties of the universal clique
decomposition we have that yy′ /∈ E(G), vy /∈ E(G) and vy′ ∈ E(G). Since
xy, xy′ ∈ E(G) by the definition of Ux, we conclude that {y, y′, x, v} would induce
a P4 in G that has only one vertex in common with X (see Figure 6.7), a
contradiction to the definition of a modulator. y

We now use Claim 6.10 to perform a case study that recognizes Ux as a neighbor-
hood of Type 0, 1, or 2.

Suppose first that Ux contains vertices of at least two distinct connected
components of G−X. Let C1, C2 be any two such components, and let T1 and T2
be the trees of the forest T that are UCDs of C1 and C2, respectively. Since Sx is
closed under taking ancestors in T , it follows that the roots of T1 and T2 belong
to Sx. Claim 6.10 implies then that the entire vertex sets of C1 and C2 are
contained in Ux. Since C1, C2 was an arbitrary pair of components containing a
vertex of Ux, it follows that Ux must be the union of vertex sets of a selection of
connected components of G−X, i.e., a neighborhood of Type 0.

Since Ux = ∅ is also a neighborhood of Type 0, we are left with analyzing the
case when Ux ⊆ V (C0) for C0 being a connected component of G − X; Let T0
be the UCD of C0. Observe that if Ux does not contain any pair of vertices
incomparable with respect to �, then Sx must form a path from some node of T0
to the root of T0, and hence Ux is a neighborhood of Type 1. Otherwise, there
exists some node of Sx such that at least two subtrees rooted at its children
contain nodes from Sx. Let tx be such a node that is highest in T0, and let Lx be
the family of subtrees rooted at children of tx that contain nodes of Sx. Again
applying Claim 6.10, we infer that Ux contains all the vertices of all the bags of
every subtree of Lx: for any two distinct subtrees T1, T2 ∈ Lx, Sx contains the
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roots of T1 and T2, and hence by Claim 6.10 Ux contains all the vertices of all the
bags of T1 and T2. Since tx was chosen to be the highest, it follows that Ux is a
neighborhood of Type 2 for node tx and selection of subtrees Lx.

Clearly, for every x ∈ X we can in polynomial time analyze Ux and recognize it as
a neighborhood of Type 0, 1, or 2. Let I0 be the set of nodes tx for vertices x ∈ X
for which Ux is of Type 1 or 2. To simplify the structure of T − I0, we perform
the lowest common ancestor-closure operation on I0. The following variant of
this operation is taken verbatim from the work of Fomin, Lokshtanov, Misra, and
Saurabh on Planar F-Deletion [FLMS12].

Definition 6.11 ([FLMS12]). For a rooted tree T and vertex set M ⊆ V (T )
the lowest common ancestor-closure (LCA-closure) is obtained by the following
process. Initially, set M ′ = M . Then, as long as there are vertices x and y in M ′

whose least common ancestor w is not in M ′, add w to M ′. When the process
terminates, output M ′ as the LCA-closure of M . The following folklore lemma
summarizes two basic properties of LCA-closures.

Lemma 6.12 ([FLMS12]). Let T be a tree,M ⊆ V (T ) andM ′ = LCA-closure(M).
Then |M ′| ≤ 2|M | and for every connected component C of T −M ′, |N(C)| ≤ 2.

Construct now the set I by taking LCA-closure(I0) and adding the root of every
connected component of T that contains a bag of I0 (provided it is not already
included). The nodes from I will be called important nodes, or important bags.
From Lemma 6.12 it follows that |I| ≤ 3|X| ≤ 12k, and by the construction we
infer that every connected component C of T − I is of one of the following three
forms:

• C is not adjacent to any node of I, and is thus simply a connected component
of T that does not contain any important bag.

• C is adjacent to one node a of I, and it is a subtree rooted at a child of a.

• C is adjacent to two nodes a and b of I such that a is an ancestor of b.
Then C is formed by the internal nodes of the a− b path in T , plus all the
subtrees rooted at the other children of these internal nodes.

6.1.5 Module and twin reduction
In this section we give two new reduction rules: a twin reduction and a module
reduction rule. These rules are executed exhaustively by the algorithm as Rules 6.3
and 6.4. The reason why we introduce them now is that only after understanding
the structural results of Sections 6.1.3 and 6.1.4, the motivation of these rules
becomes apparent. Namely, these rules will be our main tools in reducing the sizes
of parts of G−X located between the important bags.
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Twin reduction

Rule 6.3. If T ⊆ V (G) is a true twin class of size |T | > 2k + 5, and v ∈ T is
an arbitrarily picked vertex, then remove v from the graph, i.e., proceed with the
instance (G− v, k).
Lemma 6.13. Applicability of Rule 6.3 can be recognized in polynomial time.
Moreover, Rule 6.3 is safe, i.e., (G, k) is a yes-instance if and only if (G− v, k) is
a yes-instance.
Proof. In order to recognize the applicability of Rule 6.3 we only need to inspect
every true twin classes in the graph, which clearly can be done in polynomial time.
We proceed to the proof of the safeness of the rule.

Let T be a true twin class of size at least 2k + 5 and let v be the vertex the
rule deleted. Since the class of trivially perfect graphs is hereditary, if (G, k) is
a yes-instance, it follows that (G − v, k) is a yes-instance. Suppose now that
(G − v, k) is a yes-instance. Let F be a set of edges with |F | ≤ k such that
(G− v) M F is trivially perfect. We now show that G M F is also trivially perfect,
which means that F is also a solution to (G, k). For the sake of contradiction,
suppose W is an obstruction in G M F . Since (G− v) M F is trivially perfect, W
must contain the deleted vertex v. Since F has size at most k, at most 2k vertices
of T can be incident to an edge of F . Let v1, v2, v3, and v4 be four vertices of T
that are different from v and are not incident to F . Then one of them, say v1,
is not contained in W . Since v and v1 are true twins both in G and in G M F ,
we can replace v with v1 in W yielding a new set W ′ which is an obstruction in
G M F . However, since v is not a member ofW ′, we have thatW ′ is an obstruction
in (G − v) M F , contradicting the assumption that (G − v) M F was trivially
perfect.

Module reduction

Recall that a module is a set of verticesM such that for every vertex v in V (G)\M ,
either M ⊆ N(v) or M ∩N(v) = ∅; see Definition 2.8. The following rule enables
us to reduce large trivially perfect modules.
Rule 6.4. Suppose M ⊆ V (G) is a module such that G[M ] is trivially perfect
and it contains an independent set of size at least 2k + 5. Then let us take any
independent set I ⊆M of size 2k + 4, and we delete every vertex of M apart from
I, i.e., proceed with the instance (G− (M \ I), k).
Observe that Rule 6.4 always deletes at least one vertex, since |M | ≥ 2k + 5 and
|I| = 2k + 4. Actually, we could define a stronger rule where we only assume that
|M | ≥ 2k + 5; however, the current statement will be helpful in recognizing the
applicability of Rule 6.4.

We first prove that the rule is indeed safe.
Lemma 6.14. Provided that (G, k) is a reduced instance (w.r.t. Rules 6.1 and 6.2),
then Rule 6.4 is safe, i.e., (G, k) is a yes-instance if and only if (G− (M \ I), k)
is a yes-instance.
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Proof. Let A = M \ I, and G′ = G − A. Since G′ is an induced subgraph of G,
by heredity, if (G, k) is a yes-instance, then (G′, k) is a yes-instance. We proceed
to the proof of the other direction. Suppose then that (G′, k) is a yes-instance,
and let F , |F | ≤ k, be a minimum-size editing set for G′.

Claim 6.15. No vertex of I is incident to any edit of F .

Proof of claim. Since F has minimum possible size, it is inclusion-wise minimal.
We show that if FI ⊆ F is the set of edges of F incident to a vertex of I and
F ′ = F \ FI , then G′ M F being trivially perfect implies G′ M F ′ being trivially
perfect. Since |I| = 2k + 4, we can find at least four vertices v1, . . . , v4 ∈ I
that are not incident to any edit of F . Suppose that G′ M F ′ is not trivially
perfect. Then there is an obstruction W in G′ M F ′ containing at least one of the
vertices of I incident to an edge of F . Create W ′ by replacing every vertex of
(W ∩ I) \ {v1, . . . , v4} by a different vertex of {v1, . . . , v4} that is not contained
in W . Since vertices of I are not incident to the edits of F ′, they are false twins
in G′ M F ′, and hence W ′ created in this manner induces a graph isomorphic
to the one induced by W . Thus, W ′ is an obstacle in G′ M F ′. However, the
vertices v1, . . . , v4 are not incident to the edits of F and henceW ′ induces the same
graph in G′ M F ′ as in G′ M F . Therefore W ′ would be an obstacle in G′ M F , a
contradiction to G′ M F being trivially perfect.

Since we argued that F ′ ⊆ F is also a solution, by the optimality of F we infer
that F = F ′ and FI = ∅. y

We now argue that G M F is trivially perfect, which will imply that (G, k) is a
yes-instance. For the sake of contradiction, suppose that there exists an obstacleW
in G M F ; It follows thatW shares at least one vertex withM \I. From Claim 6.15
it follows that no edit of F is incident to any vertex of M , so in G M F we still
have that M is a module.

If the obstruction W induces a P4, then it is known that W is fully contained
in the module M , or has at most one vertex in M [GHPP13, Observation 1].
Since G[M ] = (G M F )[M ] is trivially perfect, the latter is the case. But since M
is a module in G M F , then replacing the single vertex of W ∩ A with any vertex
of I would yield an obstacle in G′ M F , a contradiction.

Consider then the case when W induces a C4 in G M F . We have that W
is not entirely contained in M since G[M ] = (G M F )[M ] is C4-free. Also, if W
had three vertices in M , then the remaining vertex would need to be contained
in NG(M), and hence would be adjacent in G M F to all the other three vertices
of W , a contradiction to (G M F )[W ] being a C4. Therefore, at most two vertices
of W can be in M .

Suppose exactly two vertices w1 and w3 of W are in M , and w2 and w4 are
outside M . As M is a module both in G and in G M F , we must have that
w2, w4 ∈ NG(M) and hence the four-cycle induced by W in G M F must be
〈w1, w2, w3, w4〉. Take any two vertices w′1, w′3 ∈ I and obtain W ′ by replacing w1
and w3 with them. It follows that W ′ induces a C4 in G′ M F , a contradiction.
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Finally, consider the case when exactly one vertex of W , say w1, is in M .
Again, replacing w1 with any vertex of I would yield an induced C4 contained in
G′ M F , a contradiction. Thus, we conclude that G M F is trivially perfect.

Observe that in order to apply Rule 6.4, one needs to be given the module M .
Given M , finding any independent set I ⊆ M of size 2k + 4 can then be done
easily as follows: We can find an independent set of maximum cardinality in M
in polynomial time, since G[M ] is trivially perfect and the Independent Set
problem is polynomial-time solvable on trivially perfect graphs (it boils down to
picking one vertex from every leaf bag of the universal clique decomposition of the
considered graph). Then we take any of its subsets of size 2k + 4 to be I. Hence,
to apply Rule 6.4 exhaustively, we need the following statement.

Lemma 6.16. There exists a polynomial-time algorithm that, given an instance
(G, k), either finds a module M ⊆ V (G) where Rule 6.4 can be applied, or correctly
concludes that Rule 6.4 is inapplicable.

Proof. Using Proposition 2.9, we can compute the module decomposition of G,
namely (T, (M t)t∈V (T )). Then we verify the applicability of Rule 6.4 to each
module M t for t ∈ V (T ), by checking whether G[M ] is trivially perfect and
contains an independent set of size 2k + 5 (the latter check can be done in
polynomial time since G[M ] is trivially perfect). Moreover, we perform the same
check on all the modules Nt formed as follows: take a union node t ∈ V (T ), and
construct a module Nt by taking the union of labels of those children of t that
induce trivially perfect graphs.
We now argue that if Rule 6.4 is applicable to some module M in G, then this
algorithm will encounter some (possibly different) module M ′ to which Rule 6.4
is applicable as well. By the third point of Proposition2.9, either M = M t for
some t ∈ V (T ), or M is the union of a collection of labels of children of some
union or join node. In the first case the algorithm verifies M explicitly. In the
following, let α(H) denote the size of a maximum independent set in a graph H.

If now M is a union of labels of some children of a union node t, then by
heredity M ⊆ N t. Moreover, N t induces a trivially perfect graph (since trivially
perfect graphs are closed under taking disjoint union) and clearly α(N t) ≥ α(M).
Hence, Rule 6.4 is applicable to M ′ = N t, and this will be discovered by the
algorithm.

Finally, suppose M is a union of labels of some children t1, t2, . . . , tp of a join
node t. Observe that since for every i 6= j, every vertex of M ti is adjacent to
every vertex of M tj , it follows that α(G[M ]) = maxi=1,2,...,p α(G[M ti ]). Without
loss of generality suppose that the maximum on the right hand side is attained for
the module M t1 . Then by heredity G[M t1 ] is trivially perfect, and α(G[M t1 ]) =
α(G[M ]) ≥ 2k + 5. Therefore Rule 6.4 is applicable to M ′ = M t1 , and this will be
discovered by the algorithm.

We remark here that for the kernelization algorithm it is not necessary to be sure
that Rule 6.4 is inapplicable at all. Instead, we could perform it on demand. More
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precisely, during further analysis of the structure of G−X we argue that some
modules have to be small, since otherwise Rule 6.4 would be applicable. This
analysis can be performed by a polynomial-time algorithm that would just apply
Rule 6.4 on any encountered module that needs shrinking. However, we feel that
the fact that Rule 6.4 can be indeed applied exhaustively provides a better insight
into the algorithm, and streamlines the presentation.

Having introduced and verified Rules 6.3 and 6.4, we can now prove that after
applying them exhaustively, all the trivially perfect modules in the graph are
small.
Lemma 6.17. A (possibly disconnected) trivially perfect graph with maximum
true twin class size t and maximum independent set size α has at most (2α− 1)t
vertices in total.
Proof. Let T be the UCD of G, a trivially perfect graph with independent set
number α and every true twin class of size at most t. Since any collection
comprising one vertex from each leaf bag of T forms an independent set, there
are at most α leaf bags in T . Thus the number of nodes of T in total is at most
2α− 1. Since every bag of the decomposition T ⊆ V (G) is a true twin class, we
conclude that there are at most (2α− 1)t vertices in G.
Corollary 6.18. Suppose an instance (G, k) is reduced, and moreover Rules 6.3
and 6.4 are not applicable to (G, k). Then for every module M ⊆ V (G) such that
G[M ] is trivially perfect, we have that |M | = O(k2).
Proof. Suppose M is such a module. Observe that members of every true twin
class in G[M ] are also true twins in G (since M is a module). Hence twin classes
in G[M ] have size at most 2k + 4, as otherwise Rule 6.3 would be applicable.
Moreover, if G[M ] contained an independent set of size 2k+5, then Rule 6.4 would
be applicable. By Lemma 6.17, we infer that |M | ≤ (4k+ 7)(2k+ 4) = O(k2).

From now on we assume that in the considered instance (G, k) we have exhaustively
applied Rules 6.1–6.4, using the algorithms of Lemmata 6.1, 6.13, and 6.16. Hence
Corollary 6.18 can be used. Observe that to perform this step, we do not need
to construct the small modulator X at all. However, we hope that the reader
already sees that Rules 6.1–6.4 will be useful for shrinking too large parts of G−X
between the important bags.

6.1.6 Irrelevant vertex deletion
Recall that we have fixed a small modulator X with |X| ≤ 4k such that G−X
is a trivially perfect graph with universal clique decomposition T . Moreover,
Rules 6.1–6.4 are inapplicable to (G, k). By Lemma 6.7 we have that the number
of X-neighborhoods is O(k4). By the marking procedure, we have marked a set I
of O(k) bags of T as important, in such a manner that every connected component
of T − I is adjacent to at most two vertices of I, and is in fact of one of the three
forms described at the end of Section 6.1.4.

Thus, the whole vertex set of G−X can be partitioned into four sets:
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VI: vertices contained in bags from I;

V0: vertices contained in bags of those components of T − I that are not adjacent
to any bag from I;

V1: vertices contained in bags of those components of T − I that are adjacent to
exactly one bag from I;

V2: vertices contained in bags of those components of T − I that are adjacent to
exactly two bags from I.

We are going to establish an upper bound on the cardinality of each of these sets
separately. Upper bounds for VI , V0, and V1 follow already from the introduced
reduction rules, but for V2 we shall need a new reduction rule. The upper bounds
on the cardinalities of VI and V0 are quite straightforward.

Lemma 6.19. |VI | ≤ O(k6).

Proof. Consider for some a ∈ I the bag Ba. Note that Ba is a module in G−X.
By Lemma 6.7 there are only O(k4) possible X-neighborhoods among vertices
of G−X. Hence, vertices of Ba can be partitioned into O(k4) classes w.r.t. the
neighborhoods in X. Each such class is a module in G that is also a clique,
and hence it is a true twin class. Since the twin reduction rule (Rule 6.3) is
not applicable, each true twin class has size at most 2k + 5, which implies that
|Ba| ≤ O(k5). As |I| = O(k), we conclude that |VI | ≤ O(k6).

We remark that using a more precise analysis of the situation in one bag Ba for
a ∈ I, one can see that the X-neighborhoods of elements of Ba are nested, so there
is only at most |X|+ 1 ≤ 4k + 1 of them. By plugging in this argument in the
proof of Lemma 6.19, we obtain a sharper upper bound of O(k3) instead of O(k6).
However, the upper bounds on |V0| and |V1| are O(k6) and O(k7), respectively, so
establishing a better bound here would have no influence on the overall asymptotic
kernel size. Hence, we resorted to a simpler proof of a weaker upper bound.

Lemma 6.20. |V0| ≤ O(k6).

Proof. Observe that V0 is the union of bags of these connected components ofG−X,
whose universal clique decompositions (being components of T ) do not contain
any important bag. By the definition of important bags, each such connected
component C is a module in G, and clearly its neighborhood is entirely contained
in X. Recall that by Lemma 6.7 there are only O(k4) possible different X-
neighborhoods among vertices of G − X. Thus, we can group the connected
components of G[V0] according to their X-neighborhoods into O(k4) groups, and
the union of vertex sets in each such group forms a module in G. Since Rule 6.4 is
not applicable, by Corollary 6.18 we have that each of these modules has size O(k2).
Thus we infer that |V0| ≤ O(k6).
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To bound the size of V1 we need a few more definitions. Suppose that C is a
component of T − I that is adjacent to exactly one important bag a ∈ I. By the
construction of I, we have that C is a tree rooted in a child of a. We shall say
that C is attached below a. The union of bags of all the components of T − I
attached below a will be called the tassel rooted at a. Thus, V1 can be partitioned
into O(k) tassels.

Lemma 6.21. For every a ∈ I, the tassel rooted at a has size at most O(k6).

Proof. Let C1, C2, . . . , Cr be the components of T − I rooted at the children of a,
whose union of bags forms the tassel rooted at a. Recall that none of the Cis
contains any important bag. Therefore, from Lemma 6.9 we infer that for any Ci
and any x ∈ X, either all the vertices from the bags of Ci are adjacent to x, or none
of them. Thus, the union of bags of each Ci forms a module in G: The vertices
in this union have the same X-neighborhood, and moreover their neighborhoods
in G−X are formed by the vertices from the bags on the path from a to the root
of a’s connected component in T . Similarly as in the proof of Lemma 6.20, by
Lemma 6.7 there are only O(k4) possible X-neighborhoods, so we can partition
the components Ci into O(k4) classes with respect to their neighborhoods in X.
The union of bags in each such class forms a module in G; since Rule 6.4 is not
applicable, by Corollary 6.18 we infer that its size is bounded by O(k2). Thus, the
total number of vertices in all the components Ci is at most O(k6).

As |I| = O(k), Lemma 6.21 immediately implies the following.

Lemma 6.22. |V1| ≤ O(k7).

We are left with bounding the cardinality of V2. Let us fix any component C
of T − I which is adjacent in T to two nodes of I. From the construction of I, it
follows that C has the following form:

• C contains a path P = 〈a1, a2, . . . , ad〉 such that in T , node ad is a child of
an important node b↑, and a1 has exactly one important child b↓.

• For every i = 1, 2, . . . , d, C contains also all the subtrees of T rooted in
children of ai that are different from ai−1 (where a0 = b↓).

Such a component C will be called a comb (see Figure 6.8). The path P is called
the shaft of a comb; the union of the bags of the shaft will be denoted by Q. The
union of the bags of the subtrees rooted in children of ai, apart from ai−1, will
be called the tooth at i, and denoted by Ri. Note that the subgraph induced
by a tooth is not necessarily connected; it is, however, always non-empty by the
definition of the universal clique decomposition. We also denote R = ⋃d

i=1Ri. By
somehow abusing the notation, we will also denote Bi = Bai

for i = 1, 2, . . . , d.
The number of teeth d is called the length of a comb.

Since the comb C does not contain any important vertices, from Lemma 6.9
and the construction of I we immediately infer the following observation about
the X-neighborhoods of vertices of the shaft and the teeth.
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Lemma 6.23. There exists two sets Y, Z with Z ⊆ Y ⊆ X such that NX(u) = Y
for every u ∈ Q and NX(v) = Z for every v ∈ R.

In particular, Lemma 6.23 implies that every tooth of a comb is a module. Hence,
since Rule 6.4 is not applicable, we infer that |Ri| = O(k2) for i = 1, 2, . . . , d. Also,
observe that each Bi is a twin class, so by inapplicability of Rule 6.3 we conclude
that |Bi| ≤ 2k + 5 for each i = 1, 2, . . . , d.

Since T is a forest and |I| = O(k), it follows that in T − I there are O(k)
combs. As we already observed, for each comb the sizes of individual teeth and
bags on the shaft are bounded polynomially in k. Hence, the only thing that
remains is to show how to reduce combs that are long. In order to do this, we
need one more definition: a tooth Ri is called simple if G[Ri] is edgeless, and it is
called complicated otherwise. We can now state the final reduction rule.

Rule 6.5. Suppose C is a comb of length at least (4k+3)2, and adopt the introduced
notation for the shaft and the teeth of C. Define an index β as follows:

(i) If at least 4k + 3 teeth Ri are complicated, then we let β = d.

(ii) Otherwise, there is a sequence of 4k+3 consecutive teeth Ri, Ri+1, . . . , Ri+4k+2
that are simple. Let β be the index of the last tooth of this sequence, i.e.,
β = i+ 4k + 2.

Having defined β, remove the tooth Rβ from the graph and do not modify the
budget. That is, proceed with the instance (G−Rβ, k).

Lemma 6.24. Rule 6.5 is safe.

Proof. Since G−Rβ is an induced subgraph of G, then we trivially have that the
existence of a solution for (G, k) implies the existence of a solution for (G−Rβ, k).
Hence, we now prove the converse. Suppose that F is a solution to (G−Rβ, k),
that is, a set of edits in G−Rβ such that (G−Rβ) M F is trivially perfect and
|F | ≤ k.

We will say that a tooth Ri is spoiled if any vertex of Ri ∪Bi is incident to an
edit from F , and clean otherwise. The first goal is to find an index α such that

(a) 1 < α < β,

(b) the teeth Rα−1 and Rα are clean, and

(c) if any of the teeth Rα+1, Rα+2, . . . , Rβ is complicated, then Rα is complicated.

Suppose first that β was constructed according to case (i), i.e., there are at least
4k + 3 complicated teeth in the comb, and hence β = d. Out of these teeth Ri,
at most one can have index 1, at most one can have index d, at most 2k can be
spoiled (since |F | ≤ k) and at most 2k can have the preceding tooth Ri−1 spoiled.
This leaves at least one complicated tooth Ri such that 1 < i < d and both Ri

and Ri−1 are clean. Then we can take α = i; thus, property (c) of α is satisfied
since Rα is complicated.
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Suppose then that β was constructed according to case (ii), i.e., the following
teeth are all simple:

Rβ−(4k+2), Rβ−(4k+1), . . . , Rβ−1, Rβ.

Similarly as before, out of these 4k + 3 teeth, one has index β, one has index
β−(4k+2), at most 2k can be spoiled, and at most 2k can have the preceding tooth
spoiled. Hence, among them there is a tooth Ri such that β− (4k+2) < i < β and
both Ri and Ri−1 are clean. Again, we take α = i; thus, property (c) is satisfied
since all the teeth Rβ−(4k+2), Rβ−(4k+1), . . . , Rβ−1, Rβ are simple.

With α defined, we are ready to complete the proof of Lemma 6.24. To that aim,
define L = ⋃β

i=α−1Bi∪Ri. Construct F ′ from F by removing all the edits that are
incident to any vertex of L; clearly |F ′| ≤ |F | ≤ k. We claim that F ′ is a solution
to the instance (G, k), that is, that G M F ′ is trivially perfect. For the sake of a
contradiction, suppose that A ⊆ V (G) is a vertex set of size 4 such that G M F ′[A]
is a P4 or a C4. Let A0 = A ∩ L and A1 = A \ A0.

Claim 6.25. |A0| = 1 or |A0| = 2.

Proof of claim. Suppose first that A0 = ∅, so A ⊆ V (G) \ L ⊆ V (G−Rβ). Since
F∩[V (G) \ L]2 = F ′∩[V (G) \ L]2 and Rβ ⊆ L, we have that the induced subgraph
G M F ′[A] is equal to the induced subgraph (G − Rβ) M F [A]. However, the
graph (G−Rβ) M F is trivially perfect, so it cannot have an induced P4 or C4; a
contradiction.

Suppose now that |A0| ≥ 3. Since A0 ⊆ L and no edit of F ′ is incident to any
vertex of L, we infer that there is no edit of F ′ between vertices of A: only at
most one vertex of A does not belong to A0. Therefore G[A] = G M F ′[A] and
G[A] is an induced C4 or P4 in the graph G. However, A0 ⊆ L ⊆ V (G) \X, so
|A∩X| ≤ 1. Thus, G[A] would be an obstacle in G that has at most one common
vertex with modulator X, a contradiction with the definition of a modulator
(Definition 6.2). y

To obtain a contradiction, we shall construct a set A′0 satisfying the following
properties:

(i) A′0 ⊆ Rα−1 ∪Bα−1 ∪Rα ∪Bα;

(ii) |A′0| = |A0| and G[A′0] is edgeless if and only if G[A0] is edgeless;

(iii) |A0 ∩Q| = |A′0 ∩Q| and hence |A0 ∩R| = |A′0 ∩R|.

Let us define A′ = A1 ∪ A′0. For now we postpone the exact construction

Claim 6.26. If A′0 satisfies properties (i), (ii), and (iii), then G M F ′[A] is
isomorphic to G M F ′[A′].
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Proof of claim. By property (iii) there exists a bijection η between A0 and A′0 that
preserves belonging to Q or R between the argument and the image. Extend η
to A by defining η(u) = u for u ∈ A1; we claim that η is an isomorphism between
G M F ′[A] and G M F ′[A′]. To see this, observe that since A0, A

′
0 ⊆ L, then we

have that no vertex of A0 or A′0 is incident to any edit of F ′. Moreover, in G, all
the vertices of L∩R have the same neighborhood in V (G) \L, and the same holds
also for the vertices of L ∩ Q. As the neighborhoods of these vertices in G and
in G M F ′ are exactly the same, we infer that each vertex u ∈ A0 is adjacent in
G M F ′ to the same vertices of A1 as the vertex η(u) is.

To conclude the proof, we need to prove that η restricted to A′0 is also an
isomorphism between G M F ′[A0] and G M F ′[A′0]. Again, A0 and A′0 are not
incident to any edit of F ′, so G M F ′[A0] = G[A0] and G M F ′[A′0] = G[A′0]. By
Claim 6.25 we have that |A0| = 1 or |A0| = 2, and we conclude by observing that
a pair of simple graphs with at most two vertices are isomorphic if and only if
both of them are edgeless or both of them contain an edge, and in both cases any
bijection between the vertex sets is an isomorphism. y

We now argue that the existence of a set A′0 satisfying properties (i), (ii), and
(iii) leads to a contradiction. Recall that the teeth Rα−1 and Rα are clean, which
means that no vertex of Rα−1 ∪ Bα−1 ∪ Rα ∪ Bα is incident to any edit from F .
Moreover, as β > α, we have that A′ ⊆ V (G − Rβ). By the construction of F ′
and A′ we infer that G M F ′[A′] = (G − Rβ) M F [A′]. By Claim 6.26 we have
that G M F ′[A′] is a P4 or a C4, since G M F ′[A] was. This would, however, mean
that (G−Rβ) M F would contain an induced P4 or an induced C4, a contradiction
to the assumption that (G−Rβ) M F is trivially perfect.

Therefore, we are left with constructing a set A′0 satisfying properties (i),
(ii), and (iii). We give different constructions depending on the alignment of the
vertices of A0. In each case we just define A′0; verifying properties (i), (ii), and (iii)
in each case is trivial.

Case 1. |A0| = 1.

Case 1a. A0 = {u} and u ∈ Q. Then A′0 = {u′} for any u′ ∈ Bα−1.
Case 1b. A0 = {u} and u ∈ R. Then A′0 = {u′} for any u′ ∈ Rα−1.

Case 2. |A0| = 2.

Case 2a. A0 = {u, v}, u, v ∈ Q. As G[Q] is a clique, it follows that
uv ∈ E(G). Then A′0 = {u′, v′} for any u′ ∈ Bα−1 and v′ ∈ Bα.

Case 2b. A0 = {u, v}, u ∈ Q, v ∈ R, and uv /∈ E(G). Then A′0 = {u′, v′}
for any u′ ∈ Bα−1 and v′ ∈ Rα.

Case 2c. A0 = {u, v}, u ∈ Q, v ∈ R, and uv ∈ E(G). Then A′0 = {u′, v′}
for any u′ ∈ Bα and v′ ∈ Rα−1.

Case 2d. A0 = {u, v}, u, v ∈ R, and uv /∈ E(G). Then A′0 = {u′, v′} for
any u′ ∈ Rα and v′ ∈ Rα−1.
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Case 2e. A0 = {u, v}, u, v ∈ R, and uv ∈ E(G). As there are no edges
in G between different teeth, we observe that u, v ∈ Ri for some i such
that Ri ⊆ L, i.e., α − 1 ≤ i ≤ β. In particular, the tooth Ri must be
complicated. If i = α−1 or i = α, then we can take A′0 = A0. Otherwise
we have that α < i ≤ β and Ri is complicated, so by property (c) of β
we infer that Rα is also complicated. Then we take A′0 = {u′, v′} for
any u′, v′ ∈ Rα such that u′v′ ∈ E(G).

This case study is exhaustive due to Claim 6.25.

We can finally gather all the pieces and prove our main theorem.

Theorem 3. The problem Trivially Perfect Editing admits a proper kernel
with O(k7) vertices.

Proof. The algorithm first applies Reduction Rules 6.1—6.4 exhaustively. As
each application of a reduction rule either decreases n and does not change k, or
decreases k while not changing n, the number of applications of these rules will be
bounded by O(n+ k) until k becomes negative and we can conclude that we are
working with a no-instance. By Lemmata 6.1, 6.13, 6.14, and 6.16, these rules are
safe, applicability of each rule can be recognized in polynomial time, and applying
the rules also takes polynomial time.

After Rules 6.1–6.4 have been applied exhaustively, we construct a small
modulator X using the algorithm of Lemma 6.3. In case the construction fails, we
conclude that we are working with a no-instance. Otherwise, in polynomial time
we construct the universal clique decomposition T of G−X, and then we mark
the set I of important bags. Both locating the important bags and performing
the lowest common ancestor closure can be done in polynomial time. After this,
we examine all the combs of T − I. In case there is a comb of length greater than
(4k + 3)2, we apply Rule 6.5 on it and restart the whole algorithm. Observe that
each application of this rule reduces the vertex count by one while keeping k, so
the total number of times the algorithm is restarted is bounded by the vertex
count of the original instance.

We are left with analyzing the situation when Reduction Rule 6.5 is not
applicable, i.e., all the combs have length less than (4k + 3)2. As we have argued,
the inapplicability of Rules 6.3 and 6.4 ensures that bags of shafts of combs have
sizes O(k) and teeth of combs have sizes O(k2). Hence, every comb has O(k4)
vertices. Since the number of combs is O(k), we infer that |V2| ≤ O(k5). Together
with the upper bounds on the sizes of VI , V0, and V1 given by Lemmata 6.19, 6.20,
and 6.22, we conclude that

|V (G)| = |X|+|VI |+|V0|+|V1|+|V2| ≤ 4k+O(k6)+O(k6)+O(k7)+O(k5) = O(k7).

Hence, we can output the current instance as the obtained kernel.
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6.2 The remaining problems
We now present how the technique applied to Trivially Perfect Editing also
yields polynomial kernels for Trivially Perfect Completion and Trivially
Perfect Deletion after minor modifications. That is, we prove the following
theorem:

Theorem 4. Trivially Perfect Completion and Trivially Perfect
Deletion admit proper vertex kernels on O(k7) vertices.

We show that all the rules given above, with only two minor modifications are
correct for both problems. Clearly, the running times of the algorithms recognizing
applicability of the rule do not depend on the problem we are solving, so we only
need to argue for their safeness.

In the first two rules, Rules 6.1 and 6.2, we add and delete an edge, respectively,
and the argument is that any editing set of size at most k must necessarily include
this edit. However, in the completion and deletion version, we are not allowed both
operations. Hence, for the first rule, in the deletion variant we can immediately
infer that we are working with a no-instance, and respectively for the second rule
in the completion variant.

Thus, the two following rules replace Rule 6.1 for deletion and Rule 6.2 for
completion, and their safeness is guaranteed by a trivial modification of the proof
of Lemma 6.1:

Rule 6.1D. For an instance (G, k) with uv /∈ E(G), if there is a matching of size
at least k+ 1 in G[N(u) ∩N(v)], then return a trivial no-instance as the computed
kernel.

Rule 6.2C. For an instance (G, k) with uv ∈ E(G) and N1 = N(u) \N [v] and
N2 = N(v) \N [u], if there is a matching in G between N1 and N2 of size at least
k + 1, then return a trivial no-instance as the computed kernel.

Observe that Rules 6.1D and 6.2C are applicable in exactly the same instances as
their unmodified variants. Hence, exhaustive application of the basic rules with
any of these modifications results in exactly the same notion of a reduced instance
as the one introduced in Section 6.1.1. We now argue that Rules 6.3 and 6.4 are
safe for both the deletion and the completion variant, without any modifications.

Lemma 6.27. Rules 6.3 and 6.4 are safe both for Trivially Perfect Com-
pletion and for Trivially Perfect Deletion.

Proof. The proof of the safeness of Rule 6.3 (Lemma 6.13) in fact argues that
every editing set F for (G − v, k) with |F | ≤ k is also an editing set for (G, k).
This holds also for editing sets that consist only of edge additions/deletions, so
the reasoning remains the same for Trivially Perfect Completion and
Trivially Perfect Deletion.

The proof of the safeness of Rule 6.4 (Lemma 6.14) first argues that any
minimum-size editing set F for the reduced instance (G′, k) is not incident to any
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vertex of I. This is done by showing that otherwise F would not be an inclusion-
wise minimal editing set (proof of Claim 6.15), and the argumentation can be in
the same manner applied to minimum-size completion/deletion sets. Then it is
argued that F is in fact an editing set for the original instance (G, k), and the
argumentation is oblivious to whether F is allowed to contain edge additions or
deletions.

We now proceed to the analysis of Rule 6.5 in the completion and deletion variants.
First, let us consider the construction of the modulator. In the completion/deletion
variants we can construct the modulator in exactly the same manner as for editing.
Indeed, the main argument for the bound |X| ≤ 4k states that if the construction
was performed for more than k rounds, then we are dealing with a no-instance,
since then any editing set for G has size at least k + 1. Completion and deletion
sets are editing sets in particular, so the same argument holds also for Trivially
Perfect Completion and Trivially Perfect Deletion.

Results of Sections 6.1.3 and 6.1.4, i.e., the analysis of the X-neighborhoods
and marking of the important bags, work in exactly the same manner, since they
are based on the same notions of a reduced instance and of a modulator. Thus,
Lemma 6.7 holds as well, and we have marked the same set I of O(k) important
bags, with the same properties. Rules 6.3 and 6.4 are not modified, so the bounds
on |VI |, |V0| and |V1| from Lemmata 6.19, 6.20, and 6.22 also hold.

We are left with analyzing Rule 6.5, and we claim that this rule is also safe for
Trivially Perfect Completion and Trivially Perfect Deletion without
any modifications. Indeed, in the proof of the safeness of the rule (Lemma 6.24), we
have argued that for every editing set F (|F | ≤ k) for the new instance (G′, k), there
exists some F ′ ⊆ F which is a solution to the original instance (G, k). In case F
consists of edge deletions or edge additions only, so does F ′. Hence, (G′, k) being
a yes-instance of Trivially Perfect Completion, resp. Trivially Perfect
Deletion, implies that (G, k) is also a yes-instance of the same problem. Thus
Rule 6.5 is safe without any modifications, and the kernel size analysis contained
in the proof of Theorem 3 (end of Section 6.1.6) can be performed in exactly the
same manner. This concludes the proof of Theorem 4.
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Figure 6.8: The anatomy of a comb. The top and bottom bags, b↑ and b↓, are
important bags.



Chapter 7

Bicluster and related problems

A bicluster graph is a graph whose connected components are complete bipartite
graphs, also called bicliques. We can lift this definition to t-partite cluster graphs,
in which every connected component is a complete t-partite graph. Bicluster graphs
have wide applications, especially in the context of bipartite similarity graphs and
gene expression data, and the editing problem towards bicluster graphs, Bicluster
Editing has been studied in great depth [CC99, Ami04, MO04, TSS05, GHKZ08].

We show a simple O(ktp) kernel for the t-partite p-cluster Editing prob-
lem that will be the foundation of the subsequent subexponential parameterized
time algorithms in Chapter 12. The kernelization algorithm has one single rule,
Rule 7.1, which can be exhaustively applied in time O(n+m). The problem at
hand is the following generalization of p-Bicluster Editing:

Input: A graph G = (V, E) and a non-negative integer k.
Question: Is there a set F of at most k edges such that G M F is a

disjoint union of exactly p complete t-partite graphs?

t-partite p-cluster Editing parameterized by p, k

For our rule, we say that a set T ⊆ V (G) is a non-isolate twin class if for every v
and v′ in T , NG(v) = NG(v′) 6= ∅. Note that this is by definition a false twin class,
i.e., vv′ /∈ E(G), or in other words, a non-isolate twin class is an independent set.

Rule 7.1. If there is a non-isolate twin class T ⊆ V (G) of size at least 2k + 2,
then delete all but 2k + 1 of the vertices of T . That is, let T ′ ⊆ T be an arbitrary
set such that |T | = 2k + 1. Continue with the instance (G− T ′, k).

Lemma 7.1. Rule 7.1 is sound and can be exhaustively applied in linear time.

Proof. To reduce the number of connected components by one we need to add at
least one edge. Hence, a yes-instance cannot contain more than p+ k connected
components.

It is sufficient to observe that a non-isolated class of false twins T of size
at least 2k + 1 will never be touched by a minimal solution. Let (G, k) be a
yes-instance with F a solution. Suppose T is a non-isolated class of false twins of
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Figure 7.1: A bicluster

size at least 2k + 1. At most 2k vertices are touched by T , and we claim that F ′,
the set of edges of F not incident to any vertex of T , is a solution. Let x ∈ T
be a vertex not incident with F . This means that NG(x) is exactly the entire
complete t-partite component, with the exception of the vertices of the side to
which x belongs. But since t-partite p-clusters are closed under adding non-isolated
false twins, we may add as many false twins to x in G as we want without changing
the solution. It follows that we may assume that its false twins will not be touched
by F and hence F ′ is a solution as well.

The rule can be applied in linear time by first computing a modular decompo-
sition of the input graph, which can be done in linear time [HP10], and marking
all the vertices to be deleted.

The following result is an immediate consequence of the above rules and their
correctness.

Theorem 5. The problem t-partite p-cluster Editing admits a kernel with
pt(2k + 1) + 2k = O(ptk) vertices.

Proof. We now count the number of vertices we can have in a yes-instance after the
rules above have been applied. We claim that if G has more than pt(2k + 1) + 2k
vertices, it is a no-instance.

Let (G, k) be the reduced instance according to Rule 7.1 and let F be a solution
of size at most k. At most 2k vertices can be touched by F , so the rest of the
graph remains as it is, and is a disjoint union of at most p complete t-partite
graphs, each of which has at most t non-isolate twin classes. It follows that in a
yes-instance, G has at most pt(2k + 1) + 2k = O(ptk) vertices.



Chapter 8

On bounded degree input graphs

We know that there are H-free Deletion and H-free Editing problems that
do not admit polynomial kernels unless NP ⊆ coNP/poly [KW13, GHPP13]. A
different way of dealing with NP-completeness is as mentioned above, to restrict
the input graph class, for instance, to graphs of bounded degree. However, there
are problems that remain NP-hard on graphs on bounded degree, like Cluster
Editing, Trivially Perfect Editing, Starforest Editing, etc.

These two limitations led Aravind, Sandeep, and Sivadasan [ASS14] to investi-
gate the polynomial kernelizability of the problem H-free Deletion, where H
is a finite set of forbidden induced subgraphs, on bounded degree input graphs.
They showed that as long as every graph in H is connected, the problem H-free
Deletion admits a polynomial kernel.

We will see in this chapter that the also H-free Editing admits polynomial
kernels, and we remove the requirement for the set H to contain only connected
graphs. In the second section of this chapter, Section 8.2 we see that for a carefully
constructed setH, the problemH-free Completion does not admit a polynomial
kernel unless NP ⊆ coNP/poly, even on input graphs of degree at most 6.

8.1 Compressing bounded degree input
In this section we prove that for any finite set of obstructions H, deleting or editing
at most k edges to make an input graph of bounded degree H-free admits poly-
nomial kernels. More precisely, both H-free Editing and H-free Deletion
admit polynomial kernels on bounded degree graphs.

The argument consists of two parts. First, we identify a set of critical vertices
in the input graph G, called the obstruction core Z. Based on this set we can
decompose any set of modifications F in G. The decomposition leads to the
construction of a set of vertices in the graph, called the extended obstruction
core Z+. The first crucial property of Z+ is that if F modifies G[Z+] into an H-free
graph, then F also modifies G into an H-free graph. In other words, whichever
obstructions we want to remove in the input graph should be done within the
extended obstruction core. The second crucial property is that the extended
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obstruction core can be proved to live within a ball around the obstruction core,
were the radius depends on how well the solution decomposes. This ball will in
the end constitute the kernel.

In the second part of the argument we prove that every minimal solution
decomposes well. Hence we can bound the size of the ball containing the extended
obstruction core and obtain a kernel.

We point out that we have considered the editing variant of the problem where
we are allowed to surpass the original maximum degree in the graph by adding
edges. However, it is true that there is always a solution that at most doubles
the maximum degree of the graph since if more edges are added one might as
well remove all edges incident to the vertex. The validity of this is proved in
Lemma 8.11. Furthermore, it can be argued that the studied version of the problem
is the most general one. This is due to the fact that adding every supergraph of
the star with ∆(G) + 1 leaves to the obstruction set ensures that any solution
respects the current maximum degree.

8.1.1 Cores and layers
Now we introduce the concepts of obstruction cores and extended obstruction
cores. They are heavily based on the notion of shattered obstructions, which are
the set of obstructions we get from H if we take every connected component as an
obstruction. It follows immediately that every shattered obstruction is connected.

Recall from the preliminaries that the size of the largest graph in H we denote
by nH = max{|V (H)| for H ∈ H}.

Definition 8.1 (Shattered obstructions). Given a set of obstructions H we define
the shattered obstructions, denoted H?, as follows:

{C : C is a connected component of H and H is a graph in H}.

Based on shattered obstructions we now define an obstruction core and explain
how such a set of not too large size can be obtained.

Definition 8.2 (Obstruction core). Let (G, k) be an instance of H-free Editing
(H-free Deletion). We say that a set Z ⊆ V (G) is an obstruction core in G if
for every shattered obstruction H in G it holds that either:

(i) V (H) ⊆ Z or

(ii) there is an H-packing in G[Z] of size at least (∆(G) + 1) · nH + 2k + 1.

Observation 8.3. Given an instance (G, k) of either H-free Editing or of
H-free Deletion, we can in time O(|H?|nnH+1) obtain an obstruction core Z
in G of size at most

|H?|((∆(G) + 1) · nH + 2k + 1).
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Proof. Let Z be the empty set initially. Then for every shattered obstruction H
we find a maximal H-packing X = X1, . . . , Xt and add the following set ⋃pi=1Xi

to Z, where p = min(t, (∆(G) + 1) · nH + 2k + 1). The time complexity follows by
Observation 2.6.

The next definitions are the ones of layer decompositions and core extensions,
arguably the most central definitions of the kernelization algorithm. They are
both with respect to a fixed obstruction core Z and set of edges F . The solution
is decomposed into several layers such that the first layer consists of the edges
of F that are contained in Z. The second layer consists of the edges of F that are
contained in scattered obstructions created when the modifications in Z was done,
and so forth. The extended core is a set of vertices encapsulating all scattered
obstructions either in G[Z] or created in G when doing the modifications of the
layers.

Layer decompositions and core extensions. Let (G, k) be an instance of
H-free Editing (H-free Deletion), F ⊆ [V (G)]2 and Z an obstruction core.
We construct the layer decomposition F1, . . . , F` of F as follows: Let G1 = G,
R1 = F and Z1 = Z. Then, inductively we construct the set X = Ri ∩ [Zi]2.
If X is empty we stop the process, otherwise we let Fi = X, Gi+1 = Gi M Fi and
Ri+1 = Ri \ Fi. Furthermore, we let

Wi+1 = {v ∈ H | H is a shattered obstruction in Gi+1 with [V (H)]2 ∩ Fi 6= ∅}.

Based on this we let Zi+1 = Zi ∪Wi+1. With the construction above in mind we
introduce some notation and terminology:

Definition 8.4 (Intermediate graphs and the extended core). We will refer to Gi

as the i’th intermediate graph, Ri as the i’th remainder, Zi as the i’th core extension
and ` as the solution depth (all with respect to G, Z and F ). Furthermore, we will
refer to G+ = G`+1 as the resulting graph and Z+ = Z`+1 as the extended core.

The next lemma says that if there is an obstruction in some intermediate graph
such that every connected component of the obstruction is either inside the
corresponding core extension or not modified at all so far by the layers, then there
is an isomorphic obstruction contained entirely within the core extension. The
intuition is that any untouched connected component has a large packing in Z
and hence it can be replaced by an isomorphic subgraph inside Z that both avoids
the modifications and the neighborhood of the rest of the obstruction.

Lemma 8.5. Let (G, k) be an instance of either H-free Editing, or of H-free
Deletion, Z an obstruction core of G, and F ⊆ [V (G)]2 with |F | ≤ k and
F1, . . . , F` a layer decomposition of F . For an integer j ∈ [1, `+ 1] let Gj be the
intermediate graph and Zj the core extension with respect to G,Z and F . Let H
be an obstruction in Gj with connected components H1, . . . , Ht such that every Hi

satisfies either:
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(i) V (Hi) ⊆ Zj or

(ii) Hi = G[V (Hi)].

Then there is an obstruction H ′ in Gj isomorphic to H with V (H ′) ⊆ Zj and
V (H ′) \ V (H) ⊆ Z.

Proof. For convenience we denote neighborhoods in Gj by Nj. Let H ′ be the
disjoint union of every Hi such that V (Hi) ⊆ Zj and L the list containing
every Hi not added to H ′. Let Hi be an element of L. We will now prove
that there is an H ′i in Gj[Zj \ Nj[H ′]] such that Hi and H ′i are isomorphic.
Let Xi be the maximal Hi-packing obtained when constructing Z. Since V (Hi)
is not contained in Zj (and hence Z) and Hi’s edges are as in G it holds that
|Xi| ≥ (∆(G)+1)·nH+2k+1 by the definition of obstruction cores. This yields that
(∆(G)+1)·nH+2k+1 of the elements of the packing was added to Z. Furthermore,
we observe that |V (H ′)| ≤ nH and hence that |NG(H ′)| ≤ ∆ · nH. It follows
immediately that |Nj(H ′)| ≤ ∆ ·nH+k and hence that |Nj [H ′]| ≤ (∆ + 1) ·nH+k.
By the previous arguments it follows that there is an Hi-packing in Gj [Z \Nj [H ′]]
of size at least k + 1. And hence, by the pigeon hole principle there is an H ′i
isomorphic to Hi in Gj[Zj \Nj[H ′]] such that [V (H ′i)]2 and F ′ are disjoint.

To complete the proof we do the following for every Hi in L. We find an H ′i
as described above, add H ′i to H ′ and remove Hi from L. Since H1, . . . , Ht

are the connected components of H it follows that H and H ′ are isomorphic.
Furthermore, V (H ′) is clearly contained in Zj and V (H ′) \ V (H) in Z.

This possibility of moving obstructions to the inside of core extensions immediately
yields several very useful lemmata.

Lemma 8.6. Let (G, k) be an instance of either H-free Editing, or of H-free
Deletion, Z an obstruction core of G, and F ⊆ [V (G)]2. Construct the layer
decomposition F1, . . . , F` of F with respect to Z, let F ′ = ∪`i=1Fi and let Z+ be the
extended core with respect to Z and F . It then holds that:

(G M F ′)[Z+] is H-free if and only if G M F ′ is H-free.

Proof. Recall that G+ = G M F ′. It is trivial that if there is an obstruction H
in G+[Z+] then H is also an obstruction in G+. For the other direction, let H be
an obstruction in G+ and H1, . . . , Ht the connected components of H. Observe
that by the definition of Z+ it holds that every Hi satisfies either (i) or (ii) of
Lemma 8.5 with j = ` + 1. It follows that there is an obstruction H ′ in G+

with V (H ′) ⊆ Z+. Hence H ′ is an obstruction in G+[Z+], which completes the
argument.

Lemma 8.7. Let (G, k) be an instance of either H-free Editing, or of H-free
Deletion, Z an obstruction core of G, F a minimal solution and F1, . . . , F` the
layer decomposition of F with respect to Z. It then holds that F1, . . . , F` forms a
partition of F .
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Proof. Let Fi and Fj be two layers with i < j. It follows immediately from the
definition of layer decomposition that Fj ⊆ Rj ⊆ Ri \ Fi and hence Fi and Fj
are disjoint. For convenience we let F ′ = ∪i∈[1,`]Fi. We now prove that F ′ = F .
It follows from the definition of layer decomposition that F ′ ⊆ F . Assume for
a contradiction that F ′ ( F . Consider the final graph G+ = G M F ′. If G+ is
H-free it follows that F is not a minimal solution, yielding a contradiction.

Hence, G+ is not H-free. It follows immediately from Lemma 8.6 that G+[Z+]
is also not H-free. Furthermore, we know by the definition of layer decompositions
that G+[Z+] = (G M F )[Z+]. And hence G M F is not H-free, contradicting
that F is a solution.

We finish the section by its two most crucial lemmata. The first one gives the true
power of an extended core, namely that if a set of edges is a solution for the graph
induced on its extended core it also is a solution for the entire graph. The second
lemma gives us a partial tool for encapsulating an extended core without knowing
the solution beforehand. The next section is dedicated to turning this partial tool
into something useful.

Lemma 8.8. Let (G, k) be an instance of either H-free Editing, or of H-free
Deletion, Z an obstruction core of G, F ⊆ [V (G)]2 and Z+ the extended core
with respect to Z and F . If F ⊆ [Z+]2 then

(G M F )[Z+] is H-free if and only if G M F is H-free.

Proof. Since F ⊆ [Z+]2 it holds that G+ = G M F . It trivially holds that if G+

is H-free, then so is G+[Z+]. Let H be an obstruction in G+ with connected
components H1, . . . , Ht. Observe that if Hi contains an edge of F then V (Hi) ⊆ Z+

due to the definition of Z+ and the assumption that F ⊆ [Z+]2. Apply Lemma 8.5
with j = `+ 1 to obtain an obstruction H ′ in Z+.

Recall from the preliminaries that we let the notation of diameter account for a
finite set of graphs H, denoted diam(H), being the maximum of diamG for G ∈ H,
and whenever G is disconnected, the diameter is the maximum diameter of its
connected components.

Lemma 8.9. Let (G, k) be an instance of either H-free Editing, or of H-free
Deletion, Z an obstruction core of G, F ⊆ [V (G)]2 and Z+ the extended core
with respect to Z and F . It then holds that

Z+ ⊆ B(Z, ` · diam(H)).

Proof. Let Z1, . . . , Z`+1 be the extended cores. Instead of proving the lemma
directly we prove the following, stronger claim:

(?) For every Zi it holds that Zi ⊆ B(Z, (i− 1) · diam(H)).
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Since Z+ = Z`+1, it is clear that (?) implies the lemma. The proof of (?) is by
induction. First, we observe that (?) holds for i = 1 by the definition of balls,
since Z = Z1. Assume for the induction step that (?) holds for i. Let v be a vertex
in Zi+1. If v is also in Zi we are done by assumption. Hence, we assume v to be
a vertex in Zi+1 \ Zi. Or in other words, v is in Wi+1. By definition there is a
scattered obstruction H in Gi+1 and an edge uw in Fi such that both u, v and w
are in H. Observe that the distance between u and v is at most diam(H) and
recall that u is in Zi ⊆ B(Z, (i− 1) · diam(H)). It follows immediately that v is in
B(Z, i · diam(H)) and hence the proof is complete.

8.1.2 Solutions are shallow
In this section we prove that the depth of any solution is bounded logarithmically
by the size of the solution. This, combined with Lemma 8.9 gives that linearly
in k many balls of logarithmic radius is sufficient to encapsulate an extended core.
To motivate that we obtain a polynomial kernel, observe that a ball of logarithmic
radius in a bounded degree ball is of polynomial size.

First, we prove that when considering any layer we can always find a set of
vertices of the same size, which removal would result in a H-free graph. Next we
prove that as long as the graph is not very small, removing a set of vertices from
the graph has the same effect as modifying the graph such that the set becomes a
set of isolates.

Lemma 8.10. Let (G, k) be an instance of either H-free Editingor of H-free
Deletion, with Z an obstruction core of G. Suppose that F is a minimal solution
of the instance and F1, . . . , F` is the layer partition of F with respect to Z. For
every i ∈ [1, `] there exist a set Y with Y ≤ |Fi| such that Gi − Y is H-free.
Proof. We construct Y as follows: For every edge uv in Fi we add to Z the
endpoint furthest away from Z. If it is a tie, we choose an arbitrary endpoint.
Assume for a contradiction that Gi − Y is not H-free. Let H be an obstruction
in Gi − Y and H1, . . . , Ht the connected components of H.

First, we consider the case when i = 1. We then apply a modification of
the proof of Lemma 8.5. The idea is as follows: Let H ′ be the disjoint union
of the components of H contained in Z and Hx a component not in Z. Then
there is a Hx-packing of size k + 1 in Z avoiding the closed neighborhood of H ′.
We observe that Y intersects with at most k of the elements of the packing and
hence we can find a subgraph H ′x in G[Z] not intersecting with Y such that Hx

and H ′x are isomorphic. Add H ′x to H ′ and continue with the next component not
contained in Z. It follows immediately that H ′ is also an obstruction in G2. By
definition G2[Z] = G+[Z] and henceH ′ is an obstruction in G+. This contradicts F
being a solution.

If i ≥ 2 it holds that Y and Z are disjoint. This is true since if both endpoints
of an edge are included in Z, the edge would be in F1 and not Fi. It holds by
the definition of Y that [V (H)]2 ∩ Fi is empty. Furthermore, by the definition of
layer decompositions it holds that if some Hx intersects with some Fj with j < i
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then V (Hx) ⊆ Zj+1 ⊆ Zi. Hence we can apply Lemma 8.5 to obtain an obstruc-
tion H ′ in Gi with V (H ′) ⊆ Zi. Since V (H) ⊆ V (G)\Y and V (H ′)\V (H) ⊆ Z it
follows that H ′ is an obstruction in Gi \ Y . It follows immediately that H ′ is also
an obstruction in Gi+1. By definition Gi+1[Zi] = G+[Zi] and hence H ′ is an ob-
struction in G+. This contradicts F being a solution and completes the proof.

We now show that if we the graph is big compared to the budget, the bounded
degree, and H, deleting vertices and deleting edges are in some sense equivalent.

Lemma 8.11. Let (G, k) be an instance of either H-free Editing, or of H-
free Deletion, X a set of vertices in G and EX the set of edges incident to
vertices in X. It then holds that either

(i) |V (G)| < |X|+ k + 2(∆(G) + 1)nH or

(ii) the instances (G−X, k′) and (G− EX , k′) are equivalent for every k′.

Proof. We assume that (i) does not apply and prove that this implies (ii). It is
trivial that if (G−EX , k′) is a yes-instance then (G−X, k′) is also a yes-instance.
For the other direction, assume for a contradiction that (G − X, k′) is a yes-
instance and that (G−EX , k′) is a no-instance. Let F be a solution of (G−X, k′).
For convenience we define GV = (G − X) M F and GE = (G − EX) M F .
Let H an obstruction in GE and B the set of vertices V (H) − V (H). Observe
thatGV [B] = GE[B] and that |NGE

(V (H))| ≤ ∆(G)·nH+k. It follows immediately
that

|V (GE) \ (X ∪NGE
[V (H)])|

≥ |V (GE)| − |X| − |NGE
[V (H)]|

≥ |X|+ k + 2(∆(G) + 1)nH − |X| − nH −∆(G) · LH − k
= 2(∆(G) + 1)nH − nH −∆(G) · nH
= (∆(G) + 1)nH.

It follows immediately that we can obtain an independent set I of size X ∩ V (H)
that is contained entirely outside of both X and NGE

[V (H)]. Let H ′ = GV [I ∪B]
and observe that H ′ is isomorphic to H, contradicting GV being H-free.

With the two previous lemmata in mind we present the main intuition of the
shallowness of a solution. Intuitively, if for any level of a decomposed solution we
do a factor ∆(G) more modifications in the future than we do in this particular
level, we could instead remove a set of edges related to this layer and stop any
further propagation. This ensures that in any optimal solution the size of the
union of the remaining layers are bounded by a layer and the maximum degree of
the graph.

Lemma 8.12. Given an instance (G, k) of either H-free Editing, or of H-
free Deletion, an obstruction core Z, an optimal solution F and its layer
decomposition F1, . . . , F`, it holds that either
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(i) |V (G)| ≤ k + 2(∆(G) + 1) · nH or

(ii) ∆(G) · |Fi| ≥ |Ri+1| for every i ∈ [1, `].

Proof. We assume that (i) does not apply and hence that

|V (G)| > k + (∆(G) + 2) · nH.

Assume for a contradiction that there is an i ∈ [1, `] such that (ii) does not hold.
Specifically, i is so that ∆(G) · |Fi| < |Ri+1|. By Lemma 8.10 there is a set of
vertices Y with |Y | ≤ |Fi| such that Gi − Y is H-free. It follows by Lemma 8.11
with k′ = 0 that Gi −EX is also H-free. Let F ′ = (∪j∈[1,i−1]Fj) ∪EX and observe
that G M F ′ is H-free. By the following calculations:

|F ′| ≤ | ∪j∈[1,i−1] Fj|+ |EX | < | ∪j∈[1,i−1] Fj|+ |Ri+1| = |F |

we conclude that |F ′| < |F |. This contradicts the optimality of |F | and hence our
proof is complete.

Lemma 8.13. Given a instance (G, k) of either H-free Editing, or of H-free
Deletion, an optimal solution F and its layer decomposition F1, . . . , F`, it holds
that either

(i) |V (G)| ≤ k + 2(∆(G) + 1) · nH or

(ii) ` ≤ 1 + log ∆(G)+1
∆(G)

|F |.

Proof. Assume that (i) does not hold and hence that |V (G)| > k+2(∆(G)+1) ·nH.
It follows immediately that (ii) in Lemma 8.12 applies.

|F | = |R1| = |F1|+ |R2|

≥ |R2|
∆(G) + |R2| =

∆(G) + 1
∆(G) · |R2| =

∆(G) + 1
∆(G) · (|F2|+ |R3|)

≥ · · · ≥
(

∆(G) + 1
∆(G)

)`−1

· |R`|

=
(

∆(G) + 1
∆(G)

)`−1

· |F`|

≥
(

∆(G) + 1
∆(G)

)`−1

This gives that ` ≤ 1 + log ∆(G)+1
∆(G)

|F | and hence the argument is complete.
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8.1.3 Obtaining the kernels
We now have all the necessary tools for providing the kernels. We reduce the
graph to a ball of small radius around any obstruction core Z and by this obtain
a kernelized instance. Both the size bounds and the correctness of the reduction
rule follows by combining the tools developed during the section.
Rule 8.1. For a given instance (G, k) of either H-free Editing, or of H-free
Deletion, and an obstruction core Z of G. If |V (G)| > k + 2(∆(G) + 1) · nH,
return (G[B(Z, r)], k) where r = diam(H) · (1 + log ∆(G)+1

∆(G)
k).

The rule can clearly be applied in polynomial time; From Observation 8.3, we
find Z in polynomial time and then it only remains to compute a breadth-first
search from Z to depth r. This is the only rule, and thus the returned kernelized
instance is exactly (G[B(Z, r)], k), which yields a proper kernel.

We proceed now to prove that the rule is sound (Lemma 8.14) and that the
kernel indeed is a polynomial kernel (Lemma 8.15) before we wrap up this section
with Theorem 6.
Lemma 8.14. Let (G, k) be an instance of either H-free Editing, or of H-free
Deletion, and (G′, k) the instance obtained when applying Rule 8.1 to (G, k).
Then (G, k) is a yes-instance if and only if (G′, k) is a yes-instance.
Proof. It follows immediately from G′ being an induced subgraph of G that if (G, k)
is a yes-instance, then so is (G′, k). For the other direction, let (G′, k) be a yes-
instance and let Z be the obstruction core of G obtained when applying Rule 8.1.
Clearly, Z is also an obstruction core of G′. Let F be an optimal solution of (G′, k)
and construct the layer decomposition F ′1, . . . , F ′`′ and the core extensions Z ′i with
respect to Z and F in G′. Now we construct the layer decomposition F1, . . . , F`
and the core extensions Zi with respect to Z and F in G. By the definition core
extensions it holds that Z ′i ⊆ Zi and hence ` ≤ `′. By Lemma 8.8 it holds that
Z+
G = Z`+1 ⊆ BG(Z, ` · diam(H)) ⊆ BG(Z, `′ · diam(H)). By Lemma 8.13 applied

to F in G′ it holds that
` ≤ 1 + log ∆(G)+1

∆(G)
|F | ≤ 1 + log ∆(G)+1

∆(G)
k,

and hence Z+
G ⊆ V (G′). It follows immediately that (G M F )[Z+

G ] is H-free.
By Lemma 8.7 it holds that F ⊆ [Z ′`′+1]2 and hence F ⊆ [Z`+1]2. It follows
immediately that Lemma 8.8 applies and hence G M F is H-free. Hence (G, k) is
a yes-instance and the proof is complete.

For ease of readability, for the remainder of this section we denote diam(H) simply
by D. The following lemma shows that the kernel given by the rule, is actually a
polynomial kernel.
Lemma 8.15. Let (G, k) be an instance of either H-free Editing, or of H-free
Deletion, and (G′, k) the instance obtained when applying Rule 8.1 to (G, k).
Then the number of vertices in G′ is at most

2nH|H?|∆D+1k1+D/(log∆(∆+1)−1).
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Proof. Clearly |B(Z, r)| ≤ |Z| ·∆r. By definition it holds that

|Z| ≤ nH|H?|((∆ + 1) + 2k + 1) ≤ 2nH|H?|∆k
for any non-trivial H and positive parameter k. To bound ∆r, we observe that

∆r = ∆
D(1+log ∆+1

∆
k)

= ∆D∆
D·log ∆+1

∆
k

= ∆D∆D·log∆ k/ log∆
∆+1

∆ = ∆DkD/(log∆(∆+1)−1),

and hence

|V (G)| ≤ 2nH|H?|∆k ·∆DkD/(log∆(∆+1)−1)

= 2nH|H?|∆D+1k1+D/(log∆(∆+1)−1).

Theorem 6. Both H-free Editing and H-free Deletion admit kernels with
at most 2nH|H?|∆D+1k1+D/(log∆(∆+1)−1) vertices. For fixed H and ∆ this is a
kernel where the number of vertices is bounded by poly(k).

Proof. Given an instance (G, k) we find an obstruction core Z and apply Rule 8.1.
By Observation 2.6 we can find Z in polynomial time. And by a standard breadth-
first search we can apply Rule 8.1, given Z, in polynomial time. The correctness
follows from Lemma 8.14 and the size of the kernel by Lemma 8.15.

8.2 Hardness for completion
This section is devoted to giving strong evidence that for the completion operation,
there cannot be a general polynomial kernelization result on bounded degree
graphs, even when the target graph class is characterized by a finite sets of
forbidden connected graphs. This strong evidence will come from the cross-
composition framework in the form of an or-cross-composition (Definition 2.36).
Proposition 2.37 stated that if an NP-complete language admits an or-cross-
composition into a parameterized language, then the latter language does not have
a polynomial kernel, unless NP ⊆ coNP/poly. To this aim, we give a finite set H of
connected graphs for which H-free Completion does not admit a polynomial
kernel unless NP ⊆ coNP/poly. The result here is purely a classification result, as
it will be clear that the size of H—albeit finite—is quite large. We will throughout
this section refer to H-free Completion with the intended meaning that H is
a finite set of connected forbidden induced subgraphs determined later.

We use or-cross-composition and reduce from Cubic Planar Vertex
Cover. In this problem we are given a planar cubic graph G (i.e., δ(G) =
∆(G) = 3), and an integer k′ and asked to find a vertex cover of size k′, that
is, decide whether vc(G) ≤ k′. Observe that vc(G) ≥ m/3 since every vertex
can cover at most three edges. Hence if k′ < m/3, where m is the number of
edges of G, we can safely reject the input. Since the input graph is cubic we may
henceforth assume that k′ = Θ(n+m).
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(a) Selector tree for-
bidden

(b) Selector tree ok (c) Duplicator for-
bidden

(d) Duplicator ok

Figure 8.1: The selector tree gadget (on the left) and the duplicator gadget (on the
right). The former has two possible completions, either to the left, or to the right.
The latter (the duplicator) has only one legal completion, adding both edges.

Outline. We will define four base graphs. These graphs will be our main building
blocks, and they are all non-planar, in the way that they contain, as a minor, a K5
or a K3,3. This means that we do not have to worry that they will appear in our
problem instance to Cubic Planar Vertex Cover, whose graphs are all planar.
The base graphs will all be added to H together with all their supergraphs, except
for a few supergraphs. These supergraphs will act as selectors, or as propagators
or duplicators when only one completion is allowed. The size of H will be bounded
by the sum over all possible supergraphs for each of the base graphs. The base
graphs are the following:

1. Selector tree (Figure 8.1a, one of the allowed completions is depicted in
Figure 8.1b)

2. Duplicator gadget (Figure 8.1c, the unique allowed completion is depicted
in Figure 8.1d)

3. Propagator gadget (Figure 8.2a, the unique allowed completion is depicted
in Figure 8.2b)

4. Vertex selector gadget (Figure 8.2c, one of the allowed completions is depicted
in Figures 8.2d and 8.2e)

Let USEL be the selector tree gadget as depicted in Figure 8.1a. We define USEL↑
to be the set of all supergraphs of USEL except the two graphs isomorphic to the
completed selector tree, depicted in Figure 8.1b. For the three other base graphs,
we do the same thing. Let UDUP be the duplicator gadget and UDUP↑ all supergraphs
except the one depicted in Figure 8.1d. Finally we construct UPRO↑ and UVER↑ for
the propagator and vertex selector gadgets. These sets together comprise H: Let

H = USEL↑ ∪UDUP↑ ∪UPRO↑ ∪UVER↑ .
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(a) Propa-
gator for-
bidden

(b) Propa-
gator ok

(c) Vertex selec-
tor forbidden

(d) Vertex selec-
tor ok

(e) Vertex selec-
tor ok

Figure 8.2: The propagator gadget (on the left) and the vertex selector gadget (on
the right). The propagator has as purpose to simply separate two gadgets. The
vertex selector gadget is the final gadget used in the vertex cover reduction. Three
completion of the latter gadget is allowed, shortcutting either the left or the right
edge, or shortcutting both, corresponding to adding one or two endpoints of an
edge to the vertex cover.

The or-cross-composition will take as input t = 2r instances of the NP-complete
problem Cubic Planar Vertex Cover (recall Proposition 2.14) where we may
assume they are on the form (G1, k

′), (G2, k
′), . . . , (Gt, k

′), that is the parameter is
the same across all instances, in addition to that |V (Gi)| = |V (Gj)| for all i, j ≤ t,
hence also |E(Gi)| = |E(Gj)|. The restriction that t is a power of two is not
necessary—we could attach any cul-de-sac gadget, e.g., the propagator with an
extra edge in the K5, on the end of the selector tree for every index i > t—but
makes the proofs simpler to conceptualize.

We reduce to a single instance of H-free Completion (G, k) with budget
k = log t + k′ + 3m − 2. The graph G will have a single induced obstruction.
The budget will be tight with log t edges forced in the selector gadget, selecting
instance (Gi, k

′), then 3m− 1 edges will be used to construct the graph copy Ĝi.
The remaining part of the budget is the k′ edges corresponding to a vertex cover
of Gi. Recall that m = Θ(k′) and hence k = poly(k′ + log t).

8.2.1 Selector Tree
In this section we describe how to construct a selector tree that will be used in
the or-cross-composition. For now, let us fix t to be the number of instances
provided as input to the reduction, and let G1, . . . , Gt be the cubic planar graphs.
Furthermore, denote by k′ the budget for the input instance. We may assume
that t is a power of two. Let USEL be the graph depicted in Figure 8.1a. Denote
by v1 and v2 the two top vertices of USEL. Denote the vertices on the bottom on
the path (including endpoints) between the bicliques with a1, b2, a2, b1, in order.

Let T be a complete binary tree on t/2 = 2r−1 leaves. Replace each leaf
node `i with Ui. Note that this is one Ui for each two instances, i.e., we have
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twice as many instances as we have leaves. For each two siblings U1 and U2
in the tree, replace its parent v by Uv and identify v1, v2 of U1 with a1 and a2,
and equivalently, identify v1, v2 of U2 with b1 and b2. The tree construction T is
depicted in Figure 8.3. Finally, for every Ui, except the one corresponding to the
root, we remove the edge v1v2.

We define h(T ) to be the height of T , i.e., h(T ) = log(t) (see Figure 8.3).

Figure 8.3: The selector tree T is a complete binary tree with nodes replaced by
copies of USEL. For an input t (e.g. t = 16 in this case), we construct the complete
binary tree with t/2 leaves. The tree has height h(T ) = log(t) = 4 and needs a
budget of 4.

Lemma 8.16. The constructed selector tree has maximum degree five.
Proof. It is easy to verify that the vertices with maximum degree in T are the
vertices corresponding to a1 and b1, i.e., the vertices of K3,3 identified with top
vertices in a child. These have degree 5.

Definition 8.17. A solution F of (T, k) is said to select i if the bi/2cth leaf has
its corresponding a1a2 (or b1b2 if i is even) in F .

Lemma 8.18. Given an instance (T, h(T )) of H-free Completion, the fol-
lowing holds: (T, h(T )) is a yes-instance, and (T, h(T )− 1) is a no-instance.
Proof. By strong induction on h(T ). Let h(T ) = 1, i.e., we have one copy of USEL.
We know that USEL is forbidden, and that U can be eliminated by adding one edge.
This concludes the base case.

Suppose the statement is true for all h(T ′) ≤ n−1. Construct T with h(T ) = n
by taking two copies of T ′ of height h(T ) − 1 and attaching them to a new
root Ur. Clearly, again, we can take any solution of one of the subtrees and add a
corresponding edge for Ur selecting the subtree with the solution. Suppose now
that T had a solution of size h(T )− 1 = h(T ′). We know that the root Ur must
have one edge. But then h(T ′) has a solution of size h(T ′)− 1, contradicting the
induction hypothesis. See Figure 8.3.
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Figure 8.4: Instance activator Mi for m̂ = 4, with budget b = 11 = 3m̂− 1.

With the tightness proven, we are ready to state the main lemma of the selector
tree:

Lemma 8.19 (Selector lemma). Given an instance (T, h(T )) of H-free Com-
pletion, any solution F of size at most h(T ) selects exactly one i.

Proof. As witnessed in the proof above, every solution is on the form of a path
from root to a leaf. For a budget of h(T ) edges, we can select exactly one leaf,
which is the i in the statement.

From Lemmata 8.18 and 8.19 we get the interface we wanted from this section;
a tree T constructed as above, together with the corresponding budget, must be
handled in one specific way, by adding one edge in all constructed USELs in a path
from a leaf to the root.

Corollary 8.20. A budget of log(t) = h(T ) is sufficient and necessary to eliminate
all obstructions from T .

8.2.2 Instance Activator
Let m be the number of edges in the instances we will reduce from and m̂ < 2m
the next power of two greater than m. In this section, we create for a given m,
an instance activator M which consists of one propagator on the top, m̂ − 1
duplicators, and then m̂ new propagators. The first propagator will be the interface
to the instance selector tree in the previous section, Section 8.2.1, attached to an
appropriate place in the selector tree.

We construct the graph Mi as seen in Figure 8.4, and then in the next section
we construct Pi, for each instance Gi of Cubic Planar Vertex Cover.

Lemma 8.21. When the ith propagator gadget is activated, all m̂ edges out of Mi

are activated and this uses budget 2(m̂− 1) + 1 + m̂ = 3m̂− 1, not counting the
activation edge on the top.
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Proof. The propagator gadget (Figure 8.2a) has only one possible completion
(Figure 8.2b), and the same holds for the duplicator gadget (Figure 8.1c, the
completion is depicted in Figure 8.1d). This implies that once the top propagator
is activated, all edges in every duplicator will be added, and finally, again, all
the m̂ propagators will be activated. This sums up to the claimed budget.

8.2.3 Cubic Planar Vertex Cover Reduction
With the instance activator Mi ready, we are ready to construct the actual vertex
cover reduction. Let (Gi, k

′) be an instance of Cubic Planar Vertex Cover.
In this section, we construct the output instance Pi of an input instance of Cubic
Planar Vertex Cover.

We construct a copy Ĝi of Gi but with an empty edge set, hence, Ĝi is the
empty graph on n vertices. Between v ∈ V (Gi) and v̂ ∈ V (Ĝi), its corresponding
vertex, we create a K5, and connect v to a path of length 2 to the K5 and v̂
directly to a different vertex of the constructed clique. See Figure 8.5a.

Lemma 8.22. When Gi is activated, Pi must be completed into P̂i in any minimal
completion.

Proof. When the ith instance activator is activated, having a unique completion,
must add every edge in ûv̂ where the propagators are attached.

Ĝi

Gi

(a) The planar graph gad-
get Pi before the edges of Gi

has been added to Ĝi.

Ĝi

Gi

(b) The completed graph,
with edges added to Ĝi. This
depicts P̂i.

Ĝi

Gi

(c) The completed graph,
with edges added to Ĝi and
the vertex cover. This de-
picts P̂i with vc.

Figure 8.5: The vertex cover gadget. On the left, Pi, the graph before the edges
of Ĝi have been added. In the middle, the graph P̂i, when the edges of Ĝi have
been added. On the right, the completed P̂i with the vertex cover solution.

Lemma 8.23. For (Gi, k) of Cubic Planar Vertex Cover the constructed
graph Pi has ∆(Pi) ≤ 5.

Proof. We attached one edge to each vertex of an empty graph and a cubic graph,
so these instances have degree at most 4. The vertices in the K5 attached to the
rest of the gadgets have degree 5. These are the only vertices.

Lemma 8.24. Pi is H-free.
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Proof. Since every forbidden structure contains as a minor either a K5 or a K3,3,
we know that neither Gi nor Ĝi contains an obstruction. Hence the obstructions
must use the newly introduced vertices.

We argue that none of the vertices in Ĝi are in any obstructions. There is only
one forbidden structure with a pendant, namely the propagator. However, in Pi
there are no propagators (only vertex selectors). Hence none of the vertices of Gi

are in any forbidden structures and can thus be disregarded for the remainder of
this proof. But Pi − V (Ĝi) is a planar graph with K5s attached to each vertex
which does not constitute any forbidden graphs.

Let P̂i be the graph obtained by adding every edge v̂û for uv ∈ E(Gi) to Pi.

Lemma 8.25. P̂i has exactly one obstruction per edge in Gi.

Proof. Consider the possible obstructions that can live in P̂i. Since Gi and Ĝi

are planar and there are no edges going between them, every obstruction needs
to contain vertices between Gi and Ĝi (see Figure 8.5b). The graph P̂i does not
have any K3,3s, nor K3,3s with subdivided edges. Furthermore, it does not have
any K5s with a subdivided edge. Hence the only possible obstruction is the vertex
selector (Figure 8.2c). Since the vertex selector is asymmetric—it has a path of
length five on one side—we can observe that the obstructions must be on the form
where vu is an edge and is the middle edge of the path of length five, and v̂û must
be the middle edge of the path of length three. There is one such obstruction per
edge, and these are all the obstructions.

Lemma 8.26. (P̂i, k′) is a yes-instance of H-free Completion if and only
of Gi has a vertex cover of size k′.

Proof. The first thing we want to observe is that for any obstruction using vu
and v̂û, adding an edge vv̂ or uû is sufficient to eliminate the obstruction, and
furthermore does not create any new obstructions. The latter holds since any
obstruction must be on the form vu and v̂û and K5s between v and v̂, and u and û.
For the former statement, the following, even stronger statement holds: For any
vertex v ∈ Gi, adding the edge vv̂ will eliminate every obstruction in which v
and v̂ is.

With those two observations, we are ready to prove the lemma statement. In
the forwards direction, let (P̂i, k′) be a yes-instance with F a solution. Since there
is one obstruction per edge, and any solution will be of the form ⋃

v∈V (F )∩V (Gi){vv̂},
we will show that ⋃v∈V (F )∩V (Gi){v} is a vertex cover of Gi. Suppose there is an
edge uv which has not been covered by a vertex. Then uv and ûv̂ together with
the K5s form an obstruction. This contradicts the assumption that F was a
solution and concludes the forwards direction.

In the reverse direction, let C be a vertex cover of Gi of size at most k′. For
each vertex v ∈ C, add the edge between v and v̂, its corresponding vertex in Ĝi.
We claim that this graph is H-free. Suppose there is still an obstruction. This
obstruction has form uv and ûv̂ with K5s between. There are three allowed
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G1 G2 G3 G4

Ĝ1

Figure 8.6: A complete reduction G for four graphs G1, G2, G3, G4. However, in
these examples, the graphs are subcubic, and does not have the same number of
edges. The intuition for the gadget is that if k′ = 1 and G1 has a vertex cover of
size 1, then we can chose to complete the edges such that we solve G1.

completions of the obstruction, namely of {uû}, {vv̂}, and {uû, vv̂}. However,
none of them has been added by the construction, hence u /∈ C and v /∈ C. It
follows that C is not a vertex cover since uv is an edge.

This concludes the proof of the vertex cover reduction.

8.2.4 Wrapping up the cross-composition
We now combine the gadgets from the previous sections, the selector tree from
Section 8.2.1, the instance activator from Section 8.2.2 and the vertex cover
reduction from the previous section, Section 8.2.3.

The goal is to have the tree T activate one instance activator Mi, which in turn
adds all the edges of Ĝi in a vertex cover reduction Pi, thus constructing P̂i. This
finally creates one induced copy of the forbidden vertex selector gadget (Figure 8.2c)
for each edge of Gi. We here have a minimal completion corresponding directly to
a vertex cover of Gi. This completion is depicted in Figure 8.2d.

Lemma 8.27. Let G be the constructed instance above for input (G1, . . . , Gt, k).
The maximum degree of G is five.

Proof. Again, it is not hard to find that the instance has degree bounded by 5 by
inspecting all the gadgets and the way they are connected. Each vertex of T has
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G1 G2 G3 G4

Ĝ1

Figure 8.7: A completed reduction G where we have selected G1 to be the instance
we want to solve, and chosen the universal vertex of G1 as our vertex cover. The
budget is exactly k′ = log t+ 2m+ k.

degree at most 5 as per Lemma 8.16, the propagators have degree bounded by 5,
the duplicators have degrees at most 5 (including the connections). Finally, Pi
has degree bounded by 5, as the vertices in Gi all have degree at most 4 and the
vertices in Ĝi have degrees at most 4. Finally, the connections in Pi between Gi

and Ĝi have degrees 4 and 5. These are all the vertices of G.

Lemma 8.28. If (Gi, k) is a yes-instance, then FT (the solution selecting i)
together with a solution Fi for Gi and the four edges activating Gi is a solution
of G.

Proof. Invoke Lemmata 8.19, 8.26 and 8.27.

Lemma 8.29. Let (G, k,R) be a yes-instance constructed as above with k =
log t+ k′ + 3m− 2 and F a minimal solution of size at most k. Then there is an i
such that:

• F = Fi ∪ FT ∪ the activation edges of Gi and

• (Gi, k) is a yes-instance of Vertex Cover

Proof. Corollary 8.20 showed that it is necessary and sufficient with a budget
of log t to eliminate all obstructions from T . Furthermore, Lemma 8.19 showed
that there is exactly one i such that Gi is activated. When Gi has been activated,
we need, by Lemmata 8.22 and 8.21 to add 3m− 1 edges to Pi. Finally, we are
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left with a completed P̂i, which by Lemma 8.26 is completable using at most k
edges if and only if Gi is a yes-instance for Cubic Planar Vertex Cover.

From the discussions in this section, it is clear that given a set of t = 2r many
graphs G1, . . . , Gt and a natural number k, we can construct in polynomial time
an instance (G, k′) which is a yes-instance for H-free Completion if and
only if there is an i ≤ t such that (Gi, k) is a yes-instance of Cubic Planar
Vertex Cover. This is the “or” part of the definition of or-cross-composition
(Definition 2.36). The second part of the definition is that the parameter value
must be polynomially bounded (“pb”), and this is clear since k′ ≤ 2k+ log t. That
is, (G, k) is subject to or-cross-composition.

As we observed in Lemma 8.27, ∆(G) = 5, and hence applying Proposition 2.37
yields the following theorem.

Theorem 7. Assuming NP 6⊆ coNP/poly, there exists a finite set H such that
H-free Completion does not admit a polynomial kernel, even on input graphs
of maximum degree 5.
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Part III

Subexponential algorithms
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In this part, we move away from the preprocessing aspect of parameterized
complexity, and consider the actual solving of the problem. We focus on whether
or not a parameterized problem is solvable in subexponential parameterized time,
that is, in time 2o(k) · poly(n). The subexponential parameterized time complexity
of graph modification problems is even more mysterious than the kernelization
complexity and the classical complexity of edge modification problems. It seems, for
some strange reason, that there are more natural completion problems than deletion
problems that admit subexponential time algorithms, and sometimes it helps to
bound the number of connected components in the solution [FKP+14, DRSVS15]
and other times it does not [MPS13].

We will show that all the three modification problems are solvable in subexponential
time for both threshold graphs and chain graphs. This puts these problems in a
special category; These are to the best of the author’s knowledge the only graph
classes known for which editing, completion, and deletion are all NP-complete and
subexponential time solvable. In the next part, Part IV, on lower bounds, we will
show that neither Trivially Perfect Editing nor Deletion is solvable in
subexponential time unless the exponential time hypothesis fails. However, the
completion version is solvable in time 2O(

√
k log k) + poly(n), which we will see in

Chapter 10.

Pseudosplit Editing is solvable in polynomial time as a consequence of Split
Editing being solvable in polynomial time [HS81]. We will show this and that
Pseudosplit Completion (and then also the deletion variant) are solvable in
subexponential parameterized time.

Finally, we show that bounding the number of components in the solution by p gives
an algorithm running in time 2O(

√
pk) + poly(n) for a “toy problem”, Starforest

Editing. In Chapter 16, Theorem 23 we show that the bound on the number
of stars is essential in the quest for subexponential time algorithms. If we only
parameterize by the budget, the problem does not have a subexponential time
algorithm unless the exponential time hypothesis fails. The goal of that project
was to obtain an algorithm matching that of p-Cluster Editing. However,
we did not succeed in generalizing the algorithm for Starforest Editing
to the “proper problem”, Bicluster Editing. We managed only to achieve
2O(p

√
k log pk) +O(n+m) running time. It is an interesting open problem whether

we can solve Bicluster Editing in time 2O(
√
pk) · poly(n), as was done for

Cluster Editing by Fomin et al. [FKP+14]. Note that the technique used by
Fomin et al. is not immediately applicable for Bicluster Editing as the number
of small cuts in a bicluster may be arbitrarily large.
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Chapter 9

Threshold and chain graphs

In this chapter we show that there is an algorithm which in 2o(k) + poly(n) solves
the problems Threshold Editing, Threshold Completion, and by Fact 2.7,
the equivalent problem Threshold Deletion. We then show, in Section 9.2,
that we can modify the algorithm to work with Chain Editing as well as the
corresponding deletion and completion problems. The chain graphs are not closed
under pointwise complement. The complement of a chain graph is a cobipartite
chain graph, but they are closed under bipartite complement. The bipartite
complement of a bipartite graph G = (A,B,E) is the graph G = (A,B,E), where
uv ∈ E if and only if |{u, v} ∩ A| = 1 and uv /∈ E. In other words, we flip only
edges between A and B.

9.1 Threshold graphs

In this section we will show that Threshold Editing is solvable in subexponential
parameterized time. Later in the section we will see that a minor modification of
our algorithm also solves both the completion and deletion variant as well. This
section is devoted to the proof of the following theorem:

Theorem 8. Threshold Editing admits a 2O(
√
k log k) + poly(n) time algorithm.

The additive poly(n) factor comes from the kernelization procedure of Chapter 4.
The remainder of the algorithm operates on the kernel, and thus has running time
that depends only on k.

We first refer to a solution F as a set such that, when given an instance
(G, k), F is a set of at most k edges such that G M F is a threshold graph. In
the next section, a solution will be such that G M F is a chain graph. After
Section 9.1.1, we will be working with the problem Split Threshold Editing,
so we assume F ⊆ C × I when (C, I) is the split partition of G.
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Input: A split graph G with a split partition (C, I), and an integer k
Question: Does there exist a set of at most k edges F ⊆ [V ]2 such that

G M F is a threshold graph with split partition (C, I)?

Split Threshold Editing parameterized by k

Definition 9.1 (Potential split partition). Given a graph G and an integer k, we
call a partitioning (C, I) of V (G) a potential split partition of G provided that(

|C|
2

)
− E(C) + E(I) ≤ k.

That is, the cost of making G into a split graph with the prescribed partitioning
does not exceed the budget.

A brief explanation of the algorithm for Theorem 8. The algorithm
consists of four parts, the first of which is the kernelization algorithm described
in Chapter 4. This gives in polynomial time an equivalent instance (G, k) with
the guarantee that |V (G)| = O(k2). We may observe that this is a proper kernel,
i.e., the reduced instance’s parameter is bounded by the original parameter. This
allows us to use time subexponential in the kernelized parameter.

The second step in the algorithm selects a potential split partitioning of G. We
show that the number of such partitionings is bounded subexponentially in k, and
that we can enumerate them all in subexponential time. This step actually also
immediately implies that editing1, completing and deleting to split graphs can be
solved in subexponential time, however all of this was known [HS81, GKK+15].
The main part of this step is Lemma 9.2. For the remainder of the algorithm,
we may thus assume that the input instance is a split graph, and that the split
partition needs to be preserved, that is, we focus on solving Split Threshold
Editing.

The third and fourth steps of the algorithm consist of repeatedly finding special
kind of separators and solving structured parts individually. Step three consists of
locating cheap vertices (see Definition 2.16 for a formal explanation). These are
the vertices, v, whose neighborhood is almost correct, in the sense that there is an
optimal solution in which v is incident with only O(

√
k) edges. The dichotomy

of cheap and expensive vertices gives us some tools for decomposing the graph.
Specific configurations of cheap vertices allow us to extract three parts, one part
is a highly structured part, the second part is a provably small part which we
may brute force, and the last part we solve recursively. All of which is done in
subexponential time 2O(

√
k log k).

Henceforth we will have in mind a “target graph” H = G M F with threshold
partitioning (C, I) where F is the solution, i.e., |F | ≤ k. See Definition 2.28 for
the definition on threshold partitioning.

1Indeed, editing to split graphs is solvable in linear time [HS81].
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9.1.1 Partitioning the graph
The second step of the subexponential time algorithm was as described above to
compute the potential split partitionings of the input instance. Since we are given
a general graph, we do not know immediately which vertices will go to the clique
partition and which will go to the independent set partition. However, we now
show that there is at most subexponentially many potential split partitionings.
That is, there are subexponentially many partitionings of the vertex set into (C, I)
such that it is possible to edit the input graph to a threshold graph with the given
partitioning not exceeding the prescribed budget.

The next lemma will be crucial in our algorithm, as our algorithm presupposes
a fixed split partition. Using this result, we may in subexponential time compute
every possible split partition within range, and run our algorithm for editing to
threshold graphs on each of these split graphs.

Lemma 9.2 (Few split partitions). There is an algorithm that, given a graph G
and an integer k with |V (G)| = kO(1), can generate a set P of split partitions of
V (G) such that for every split graph H such that |E(H) M E(G)| ≤ k and every
split partition (C, I) of H it holds that (C, I) is an element of P. Furthermore,
the algorithm terminates in 2O(

√
k log k) time.

Proof. Let G = (V,E) be a graph and k a natural number. The first thing we
do is to guess the size sc of the clique and let C be a set of sc vertices of highest
degrees, and si = n−sc, and let I = V (G)\C. In the case that min{sc, si} ≤ 6

√
k

we can simply enumerate every partitioning by Lemma 2.18, so we assume from
now on that min{sc, si} > 6

√
k.

Claim 9.3. Let H be a split graph with split partition (C ′, I ′) where |E(H) M
E(G)| ≤ k. If |C ′| = sc, then |C M C ′| ≤ 2

√
k and |I M I ′| ≤ 2

√
k.

Proof of claim. Suppose that 2
√
k vertices Ĉ ⊆ C are in I ′ and that 2

√
k ver-

tices Î ⊆ I are in C ′. Let σc = ∑
v∈Ĉ deg(v) and σi = ∑

v∈Î deg(v). First,
since the vertices in C of G are of degree at least that of the vertices in I
of G, σi ≤ σc. Second, since in the final solution, Ĉ is in the independent set,
σc ≤ sc2

√
k + k (we can move at most k vertices from Ĉ) and using the same

reasoning, σi ≥ (sc − 2
√
k) +

(
2
√
k

2

)
− k = sc2

√
k − 3k −

√
k (we can move at

most k vertices to Î).
However, since sc > 6

√
k, we have

sc · 2
√
k − 3k −

√
k ≤ σi ≤ σc ≤ sc · 2

√
k + k, and thus

9k −
√
k ≤ σi ≤ σc ≤ 13k,

yielding that σc ≥ 9k −
√
k. However, we can only lower the total degree of Ĉ

by 2k, which means that even if we spend the entire budget on deleting from Ĉ,∑
v∈C′ degH(v) ≥ 6k which means that there is a vertex in Ĉ with degree higher

than the size of the clique (a contradiction). y
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Observe that since sc and si are fixed, if we move ` vertices from C to I, we
have to move ` vertices from I to C. Hence, if the claim holds, we can simply
enumerate every set of 4

√
k vertices and take the sets with equally many on each

side and swap their partition. Adding each such partition to P gives the set in
question.

We would like to remark that this lemma also gives a simpler algorithm for Split
Completion (equivalently Split Deletion). Ghosh et al. [GKK+15] showed
that Split Completion can be solved in time 2O(

√
k log k) · poly(n) using the

framework of Alon, Lokshtanov and Saurabh [ALS09]. However, the following
observation immediately yields a very simple combinatorial argument for the exis-
tence of such an algorithm. Together with the polynomial kernel by Guo [Guo07],
the following result is immediate from the above lemma.

Corollary 9.4. The problem Split Completion is solvable in time 2O(
√
k log k) +

poly(n).

Proof. The algorithm is as follows. On (a kernelized [Guo07]) input (G, k) we
compute, using Lemma 9.2, every potential split partitioning (C, I) at most k
edges away from G. Then we in linear time check that I is indeed independent
and that C lacks at most k edges from being complete.

We will from now on assume that all our input graphs G = (V,E) are split graphs
provided with a split partition (C, I), and that we are to solve Split Threshold
Editing, that is, we have to respect the split partitioning. We are allowed to
do this with subexponential time overhead, as per Lemma 9.2. In addition, we
assume that |V (G)| = O(k2).

9.1.2 Splitting Pairs and Unbreakable Segments
This section is devoted to showing that—in a yes-instance—either the graph at
hand is small (compared to the parameter), or there is a splitting pair. We start
by defining the splitting pairs and their counterparts, parts of the graph that do
not contain splitting pairs. Finally we show how to greedily solve the latter, the
unbreakable segments.

We start this section with three definitions. Recall from Section 2.1.3, and
especially Definition 2.16, that given an instance (G, k) with solution F , a vertex v
is called cheap if the edit number enF (v) ≤ 2

√
k.

Definition 9.5 (Splitting pair). Let G be a graph, k an integer, F a solution
of (G, k) and (C, I) a threshold decomposition of G M F . We then say that the
vertices u ∈ Ia and v ∈ Cb is a splitting pair if

• a < b,

• u and v are cheap,
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• ∪a<i<bLi consists of only expensive vertices. Recall from Definition 2.28
that Li = Ci ∪ Ii.

Definition 9.6 (Unbreakable). Let G be a graph, k an integer, F a solution
of (G, k) and (C, I) a threshold decomposition of G M F . We then say that a
sequence of levels (Ca, Ia), (Ca+1, Ia+1), . . . , (Cb, Ib) is an unbreakable segment if
there is no splitting pair in the vertex set ∪i∈[a,b](Ci ∪ Ii).

Furthermore, we say that an instance (G, k) is unbreakable if there exists an
optimal solution F and a threshold decomposition (C, I) of G M F such that
the entire decomposition is an unbreakable segment. We also say that such a
decomposition is a witness of G being unbreakable.

Definition 9.7 (Transfer level). Let G be a graph and (C, I) a threshold decom-
position of G M F for some solution F . Then we say that i is a transfer level
if

• for every j > i it holds that Cj contains no cheap vertices, and

• for every j < i it holds that Ij contains no cheap vertices.

Given these three definitions, we are ready to investigate the structure of yes-
instances of Split Threshold Editing. The remainder of this section is devoted
to study how unbreakable segments and transfer levels relate, and bounding the
number of levels in an unbreakable segment.

Lemma 9.8. Let (G, k) be a yes-instance of Split Threshold Editing with
solution F such that G is unbreakable and (C, I) is a witness. Then there is a
transfer level in (C, I).

Proof. Suppose for a contradiction that the lemma is false. Let a be the maximum
index such that Ca contains a cheap vertex and b minimum such that Ib contains
a cheap vertex. Since i = a clearly satisfies the first condition, it must be the case
that b < a. Increment b as long as b+1 < a and there is a cheap vertex in ∪i∈(b,a)Ii.
Then decrement a as long as b + 1 < a and there is a cheap vertex in ∪i∈(b,a)Ci.
Let u be a cheap vertex in Ca and v a cheap vertex in Cb. It follows from the
procedure that they both exist. Observe that u, v is indeed a splitting pair, which
is a contradiction to G being unbreakable and (C, I) being a witness.

Lemma 9.9. Let (G, k) be an instance of Split Threshold Editing such
that G is unbreakable and (C, I) a witness of this. Then the number of levels in
(C, I) is at most 2

√
k + 1.

Proof. Let i be the transfer level in (C, I). It is guaranteed to exist by Lemma 9.8.
Observe that for every j > i it holds that Ci consists of expensive vertices and for
every j < i it holds that Ii consists of expensive vertices. It follows immediately
that every level besides i contains at least one expensive vertex. As there are at
most 2

√
k such vertices the result follows immediately.
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We describe an algorithm, unbreakAlg which solves the unbreakable segments
below. But first we need one final observation, namely stating how the cheap
vertices appear in an unbreakable segment.
Lemma 9.10. Let (G, k) be an instance of Split Threshold Editing such
that G is unbreakable, (C, I) is a witness of this and F a corresponding solution.
If X is the set of cheap vertices in G then (G M F )[X] forms a complete split
graph.
Proof. Let t be the transfer level of the decomposition, u a cheap vertex in Ci
and v a cheap vertex in Ij for some i and j. By the definition of t it holds that
i ≤ t ≤ j. It follows immediately that u and v are adjacent in G M F and the
proof is complete.

We will now describe the algorithm unbreakAlg. It takes as input an instance
(G, (C, I), k) of Split Threshold Editing, with the assumption that G is
unbreakable and has split partition (C, I), and returns either an optimal solution F
for (G, k) where |F | ≤ k or correctly concludes that (G, k) is a no-instance.
Suppose that (G, k) is a yes-instance. Then there exists an optimal solution F and
a threshold decomposition (C, I) of G M F that is a witness of G being unbreakable.
First, we guess the number of levels ` in the decomposition, and by Lemma 9.9,
we have that ` ∈ [0, 2

√
k+ 1] and the transfer level t ∈ [0, `]. Then we guess where

the at most 2
√
k vertices that are expensive in G are positioned in (C, I). Observe

that from this information we can obtain all edges between expensive vertices in F .
Finally, we put every cheap vertex in the level that minimizes the cost of fixing its
adjacencies into the expensive vertices while respecting that t is the transfer level.
From this information we can obtain all adjacencies between cheap and expensive
vertices in F . Since the set of cheap vertices induces a complete split graph, we
reconstructed F and hence we return it.
Lemma 9.11. Given an instance (G, k) of Split Threshold Editing with G
being unbreakable, unbreakAlg either outputs an optimal solution or correctly
concludes that (G, k) is a no-instance in time 2O(

√
k log k).

Proof. Since the algorithm goes through every possible values for ` and t (according
to Lemmata 9.8 and 9.9), and every possible placement of the expensive vertices,
the only thing remaining to ensure is that the cheap vertices are placed correctly.
However, since the cheap vertices form a complete split graph (according to
Lemma 9.10), the only cost associated with a cheap vertex is the number of
expensive vertices in the opposite side it is adjacent to. However, their placement
is fixed, so we simply greedily minimize the cost of the vertex by putting it in a
level that minimizes the number of necessary edits.

If we get a solution from the above procedure, this solution is optimal. On
the other hand, if in every branch of the algorithm we are forced to edit more
than k edges, then either (G, k) is a no-instance, or G is not unbreakable. Since
the assumption of the algorithm is that G is unbreakable, we conclude that the
algorithm is correct.
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9.1.3 Divide and Conquer
We now explain the main algorithm. The algorithm takes as input a graph G,
together with a split partition (C, I) and a budget k. In addition, it takes a
vertex set S which the algorithm is supposed to find an optimal solution for. The
algorithm is recursive and either finds a splitting pair, in which it recurses on a
subset of S, and if there is no splitting pair, then G[S] is unbreakable, and thus
it simply runs unbreakAlg on S. To avoid unnecessary recomputations, it uses
memoization to solve already computed inputs.

The algorithm solveAlg(G, (C, I), k, S) returns an optimal solution for the in-
stance (G[S], k), respecting the given split partition (C, I) in the manner described
in Algorithm 1.

Algorithm 1 solveAlg(G, (C, I), k, S)

(1) Run unbreakAlg(G[S], (C ∩ S, I ∩ S), k).

(2) For every pair of cheap vertices u ∈ I and v ∈ C, together with their correct
neighborhoods Nu and Nv, and every pair of subsets CX ⊆ C and IX ⊆ I
of expensive vertices we do the following: Let X = IX ∪ CX , RC = Nu,
UI = Nv ∩ I, RI = I \ (X ∪ UI) and UC = S \ (X ∪ RC ∪ UI ∪ RI). Now,
U = UI ∪ UC is the unbreakable segment, X is the set of expensive vertices
between the splitting pair, and R = RI ∪ RC is the remaining vertices. We
now

(a) Run unbreakAlg(G[U ], (C ∩ U, I ∩ U), k) yielding a solution FU ,
(b) solve G[X] optimally by brute force since it has size at most 2

√
k, giving

a solution FX , and
(c) recursively call solveAlg(G, (C, I), k, R) to solve the instance correspond-

ing to the remaining vertices yielding FR.

Finally we return F , the union of FU , FX , and FR together with all edges
from C ∩R and I ∩ (X ∪ U), and all edges from C ∩X to I ∩ U .

In (1) we consider the option that there are no splitting pairs in G. In (2)
(see Figure 9.1) we guess the uppermost splitting pair in the partition and the
neighborhood of these two vertices. Then we guess all of the expensive vertices that
live in between the two levels of the splitting pair. Observe that these expensive
vertices together with the splitting pair partition the levels into three consecutive
sequences. The upper one, U is an unbreakable segment, the middle, X are the
expensive vertices and the lower one, R is simply the remaining graph.

When we apply unbreakAlg on the upper part, brute force the middle one and
recurse with solveAlg on the lower part, we get individual optimal solutions for
each of the three. Finally we may merge the solutions and add all the remaining
edges (see end of (2)).
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C I

U

X

R

Figure 9.1: The partitioning of the vertex sets according to solveAlg. The square
bags are the bags containing the splitting pair, U is an unbreakable segment and
the bags of X contain exclusively expensive vertices. The edges drawn indicates
the neighborhoods of the splitting pair across the partitions.

Lemma 9.12. Given a split graph G = (V,E) with split partition (C, I), solveAlg
either returns an optimal solution for Split Threshold Editing on input
(G, (C, I), k, V ), or correctly concludes that (G, k) is a no-instance.

Proof. If (G, k) with split partition (C, I) is a yes-instance of Split Threshold
Editing there is a solution F with threshold decomposition (C, I) and a sequence
of pairs (u1, v1), (u2, v2), . . . , (ut, vt) such that u1, v1 is the splitting pair highest in
(C, I), and u2, v2 in the highest splitting pair in the graph induced by the vertices
in and below the level of v1, etc. Since we in a state (G, (C, I), k, S) try every
possible pair of such cheap vertices and every possible neighborhood and set of
expensive vertices, we exhaust all possibilities for any threshold editing of S of at
most k edges. Hence, if there is a solution, an optimal solution is returned.

Thus, if ever an F is constructed of size |F | > k, we can safely conclude that
there is no editing set F ? ⊆ C×I of size at most k such that G M F ? is a threshold
graph.

Lemma 9.13. Given a split graph G = (V,E) with split partition (C, I) and
an integer k with |V (G)| = O(k2), the algorithm solveAlg terminates in time
2O(
√
k log k) on input (G, (C, I), k, V ).

Proof. By charging a set S for which solveAlg is called with input (G, (C, I), k, S)
every operation except the recursive call, we need to (i) show that there are at
most 2O(

√
k log k) many sets S ⊆ V for which solveAlg is called, and (ii) that the

work done inside one such call is at most 2O(
√
k log k).

For Case (i), we simply note that when solveAlg is called with a set S, the
sets R on which we recurse are uniquely defined by u, v,Nu, Nv, X, and there are
at most O(k4) · 2O(

√
k log k)3 = 2O(

√
k log k) such configurations, so at most 2O(

√
k log k)

sets are charged. Case (ii) follows from the fact that we guess two vertices, u
and v and three sets, Nu, Nv and X. For each choice we run unbreakAlg, which
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runs in time 2O(
√
k log k) by Lemma 9.11, and the brute force solution takes time

2O(
√
k log(

√
k)). The recursive call is charged to a smaller set, and merging the

solutions into the final solution we return, F , takes polynomial time.
The two cases show that we charge at most 2O(

√
k log k) sets with 2O(

√
k log k)

work, and hence solveAlg completes after 2O(
√
k log k) steps.

To conclude, we observe that Theorem 8 follows directly from the above exposition.
Given an input (G, k) to Threshold Editing, from the previous section we
can in polynomial time obtain an equivalent instance with at most O(k2) vertices.
Furthermore, by Lemma 9.2 we may in time 2O(

√
k log k) time assume we are solving

the problem Split Threshold Editing. Finally, by Lemmata 9.12 and 9.13,
the theorem follows.

Finally, since it is straight forward to observe that one can always choose F
to be either disjoint from, or contained in the edge set of the input graph, E(G),
the following is an immediate consequence from the above and from the fact that
both problems admit a polynomial kernel (Theorem 1):

Corollary 9.14. The problems Threshold Completion and Threshold
Deletion are solvable in time 2O(

√
k log k) + poly(n).

9.2 Chain graphs
We now proceed to give the necessary observations and constructions for obtaining
subexponential algorithms for the edge modification problems to chain graphs
using the results from the previous section. In other words, we show that Chain
Editing, as well as the corresponding deletion and completion version, all can be
solved in subexponential time.

The main difference between Chain Editing and Threshold Editing is
that it is far from clear that the number of bipartitions is subexponential, that
is, is there a bipartite equivalent of the bound of the potential split partitions
as in Lemma 9.2? If we were able to enumerate all such “potential bipartitions”
in subexponential time, we could simply run a very similar algorithm to the one
above on the problem Bipartite Chain Editing, where we are asked to respect
the bipartition (see Section 13.2 for the definition of this problem).

It turns out that we indeed are able to enumerate all such potential bipartitions
within the allowed time:

Lemma 9.15. There is an algorithm which, given a graph G = (V,E) and an
integer k, enumerates

( |V |
O(
√
k)

)
= 2O(

√
k log |V |) bipartite graphs H = (A,B,E ′) with

|E M E ′| ≤ k with the following properties. If (G, k) is a yes-instance of Chain
Editing, then at least one output (H, k) will be a yes-instance of Bipartite
Chain Editing, and furthermore if any yes-instance (H, k) is output, then (G, k)
is a yes-instance of Chain Editing. This also holds for the deletion and comple-
tion versions.
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Proof. We first mention that it is trivial to change the below proof into the proofs
for the deletion and completion versions, one simply disallow one of the operations.
So we will prove only the editing version. Furthermore, it is clear to see that
if any output instance (H, k) is a yes-instance for Bipartite Chain Editing,
then (G, k) was a yes-instance for Chain Editing.

Consider any solution H = (A,B,E ′) for an input instance (G, k). If either A
or B has size at most 5

√
k, then we can simply guess every such in subexponential

time. Hence, we assume that both sides of H are large. But this means, by Obser-
vation 2.17, that both A and B have cheap vertices. Let vA be a cheap vertex as low
as possible in A and vB be a cheap vertex as high as possible in B. It immediately
follows from the same observation that the set of vertices below vA, AX is a set of
expensive vertices, and the same for the vertices above vB, BX . Since vA and vB
are cheap, we can in subexponential time correctly guess their neighborhoods in H
and we can similarly guess AX and BX .

Now, since we know vA, vB, NH(vA) and NH(vB), as well as AX and BX , the
only vertices we do now know where to place, are the vertices in A which are in
the levels above lev(vB), call them AY , and the vertices in b which are in the levels
below lev(vA). However, we know which set this is, that is, we know Z = AY ∪BY .
Define now AM = A\ (AY ∪AX ∪{vA}) and similarly BM = B \ (BY ∪BX ∪{vB}).
These are the vertices living in the middle of A and B, respectively.

We now know that the vertices of Z should form an independent set. This
follows from the fact that AM and BM are both non-empty. Hence, the vertices
of AY are in higher levels than all of BY , and since there are no edges going from
a vertex in A to a vertex lower in B, and each of A and B are independent sets, Z
must be an independent set.

The following is the crucial last step. We can in subexponential time guess
the partitioning of levels of both AX and of BX , since they are both of sizes at
most 2

√
k. When knowing these levels, we can greedily insert each vertex in Z

into either A and B by pointwise minimizing the cost; A vertex z ∈ Z can safely
be places in the level of A or B which minimizes the cost of making it adjacent
to only the vertices of BX above its level, or by making it adjacent to only the
vertices below its level in AX .

Given the above rather technical and rather cumbersome lemma, we may now work
on the more restricted problem, Bipartite Chain Editing. It should be clear,
judged by the similarities between Split Threshold Editing and Bipartite
Chain Editing that the rest of the algorithm for Threshold Editing works
without any changes.

Theorem 9. Chain Editing is solvable in time 2O(
√
k log k) + poly(n).

Proof. On input (G, k) we first run the kernelization algorithm from Chapter 5,
and then we enumerate every potential bipartition according to Lemma 9.15.
Now, for each bipartition (A,B) we make A into a clique, and run the Split
Threshold Editing algorithm from the previous chapter.
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Now, (G, k) is a yes-instance if and only if there is a bipartition (A,B) such
that when making A into a clique, the resulting instance is a yes-instance for
Split Threshold Editing.

As for the completion and deletion version, they are both solvable in the same
running time as the editing version, just as we observed in the previous section
for threshold graphs. Together with the kernelization argument (Theorem 2), the
above arguments immediately yield the following corollary:

Corollary 9.16. The problem Chain Completion, and then also Chain Dele-
tion, are solvable in subexponential parameterized time 2O(

√
k log k) + poly(n).
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Chapter 10

Trivially perfect graphs

In this chapter we give an algorithm which, given an input instance (G, k) of
Trivially Perfect Completion, in 2O(

√
k log k) + poly(n) time computes a

completion set F of size at most k—a set such that G+ F is trivially perfect—or
decides that (G, k) is a no-instance. The additive polynomial factor is purely
the running time of the kernelization procedure. As mentioned in Chapter 6,
a cubic vertex kernel was announced by Guo [Guo07]. Trivially Perfect
Completion was shown to be NP-complete by Yannakakis [Yan81a].

Input: A graph G and an integer k
Question: Does there exist a set F of at most k edges such that G + F

is trivially perfect?

Trivially Perfect Completion parameterized by k

As already stated in the introduction and in the previous part on kernels, trivially
perfect graphs are characterized by a finite set, {C4, P4} of forbidden induced
subgraphs, and thus it follows from Cai [Cai96] that the problem also is fixed
parameter tractable, i.e., it belongs to the class FPT. The main result of this
chapter is the following theorem:
Theorem 10. For an input (G, k), Trivially Perfect Completion is solvable
in time 2O(

√
k log k) + poly(n).

Throughout this chapter, an edge set F is called a completion for G if G+ F is
trivially perfect. Furthermore, a completion F is called a minimal completion
for G if no proper subset of F is a completion for G. The main outline of the
algorithm is as follows:
Step A

On input (G, k), we first apply the algorithm by Guo [Guo07] to obtain a
kernel O(k3) vertices. The running time of this algorithm is O(kn4). The
kernelization algorithm of Guo can only reduce the parameter, i.e., k′ ≤ k
where k′ is the new parameter. Moreover, the output kernel is in fact of size
O(k′3). Therefore, due to this preprocessing step we may assume without
loss of generality that we work on an instance (G, k) with |V (G)| ≤ O(k3).

131
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Step B
Assuming our input instance has O(k3) vertices, we show how to generate
all special vertex subsets of the kernel which we call vital potential maximal
cliques in time 2O(

√
k log k). A vital potential maximal clique Ω ⊆ V (G) is a

vertex subset which is a maximal clique in some minimal completion of size
at most k.

Step C
Using dynamic programming, we show how to compute an optimal solution
or to conclude that (G, k) is a no-instance, in time polynomial in the number
of vital potential maximal cliques.

10.1 Structure of minimal completions
In Section 2.2.3, we investigated the structure of trivially perfect graphs, and,
in Definition 2.24 gave a decomposition of these graphs. This decomposition,
the universal clique decomposition, or UCD, will be heavily used throughout this
chapter. In this section, we will study the structure of yes-instances and properties
of minimal completions.

Lemma 10.1. Let G = (V,E) be a connected graph, F a minimal completion
of G, and let H = G + F . Suppose L = (B,D) is a block in the universal
clique decomposition of H and let D1, D2, . . . , D` be the connected components of
H[D]−B.

(i) If L is not a leaf block, then ` > 1;

(ii) If ` > 1, then even in the original graph, G, every vertex v ∈ B has at least
one neighbor in each of the sets D1, D2, . . . , D`;

(iii) The graph G[Di] is connected for every i ∈ {1, . . . , `};

(iv) For every i ∈ {1, . . . , `}, B ⊆ NG(D \ (B ∪Di)).

Proof. (i) Let (B,D) be a non-leaf block. Recall that by the definition of a
universal clique decomposition, B is the maximal universal clique of H[D]. From
Lemma 2.27 (i), we get that B 6= D. Since B = uni(H[D]), there must be two
non-adjacent vertices in D \B and no universal vertex in D \B. Since H[D \B]
is trivially perfect, it must have several connected components, i.e., ` > 1.
(ii) Suppose, without loss of generality, that there exists a vertex v ∈ B such that
NG(v) ∩ D1 = ∅. Let F ′ = F \ ({v} × V (D1)). Note that since v is universal
to V (D1) in H and is completely non-adjacent to V (D1) in G, it follows that
{v}×V (D1) ⊆ F and that F ′ is a proper subset of F . We claim that H ′ = G+F ′

is also a trivially perfect graph, which contradicts the minimality of F . Indeed,
consider a universal clique decomposition obtained from the universal clique
decomposition of H by (a), in case ` = 2, moving v from B to the root bag of D2,
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or (b), in case ` > 2, moving v from B to a new bag B′ = {v} attached below B,
with all the root bags of D2, D3, . . . , D` re-attached from below B to below B′.
It can easily be seen that this new universal clique decomposition is indeed a
universal clique decomposition of H ′, which proves that H ′ is trivially perfect.
(iii) For the sake of a contradiction, supposeG[Da] was disconnected. Let (Da1 , Da2)
be a partition of Da such that there is no edge between Da1 and Da2 in G. Clearly,
H[Da1 ] and H[Da2 ] are trivially perfect graphs as they are induced subgraphs
of H, and hence they admit some universal clique decompositions. Since H[Da] is
connected, we infer that F contains some edges between Da1 and Da2 . Now let
F ′ = F \ {uv | u ∈ Da1 , v ∈ Da2 , uv ∈ F}; by the previous argument we have that
F ′ ( F . Modify now the given universal clique decomposition of H by removing
the subtree below B that corresponds to Da, and attaching instead two subtrees
below B that are universal clique decompositions of H[Da1 ] and H[Da2 ]. Observe
that thus we obtain a universal clique decomposition of G+ F ′, which shows that
G+ F ′ is trivially perfect. This contradicts the minimality of F .
(iv) Follows directly from (i) and (ii): if ` > 0, then ` > 1 and every vertex of B
has edges in G to all the different connected components of D \B.

10.2 Completion in subexponential time
As has been already mentioned, the following concept is crucial for our algorithm.
Recall that when Ω is a set of vertices in a graph G, by mΩ we mean the number
of edges in G[Ω].

Definition 10.2 (Vital potential maximal clique). Let (G, k) be an input instance
to Trivially Perfect Completion. A vertex set Ω ⊆ V (G) is a trivially
perfect potential maximal clique or simply potential maximal clique, if Ω is a
maximal clique in some minimal trivially perfect completion of G. If moreover this
trivially perfect completion contains at most k edges, then the potential maximal
clique is called vital.

Observe that given a yes-instance (G, k) of Trivially Perfect Completion
and a minimal completion F of size at most k, every maximal clique in G + F
is a vital potential maximal clique in G. Note also that in particular, any vital
potential maximal clique contains at most k non-edges. The following definition
will be useful:

Definition 10.3 (Fill number). Let G = (V,E) be a graph, F a completion of G,
and H = G + F . We define the fill number of a vertex v, denoted by fnGH(v) as
the number of edges incident to v in F .

Observation 10.4. If (G, k) is a yes-instance of Trivially Perfect Com-
pletion, F a completion of G with|F | ≤ k, and H = G + F , then there are at
most 2

√
k vertices v in G such that fnGH(v) >

√
k.
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It follows that for such a graph G = (V,E) and every set U ⊆ V such that
|U | > 2

√
k, there is a vertex u ∈ U with fnGH(u) ≤

√
k. Any vertex u such that

fnGH(u) ≤
√
k will be referred to as a cheap vertex. If u is not cheap, we call it

expensive.
We are now ready to begin with the proof of Theorem 10. Our algorithm for

Trivially Perfect Completion consists of three steps. We first compress, in
polynomial time, the instance to an instance of size O(k3), then we enumerate all
the (subexponentially many) vital potential maximal cliques in this new instance,
and finally we do a dynamic programming procedure on these objects.

Step A. Kernelization. We start from one of the known polynomial kerneliza-
tion algorithms for the problem. For a given input (G, k), we want to construct
in polynomial time an equivalent instance (G′, k′), where G′ has kO(1) vertices
and k′ ≤ k. Such a kernelization algorithm producing in time O(kn4) an equivalent
instance with graph G′ on O(k3) vertices was announced by Guo in [Guo07]. The
existence of a larger polynomial kernel with O(k7) vertices was shown in Section 6.2.
Let us note that for our algorithm any polynomial kernel will work fine.

From now on we assume that the input graph G has O(k3) vertices. (Replacing
O(k3) by any other polynomial of k will not change our proof.) Without loss
of generality, we will also assume that G is connected, since we can treat each
connected component of G separately.

Step B. Enumeration. In this step, we describe an algorithm that in time
2O(
√
k log k) outputs a family C of vertex subsets of G such that

• the size of C is 2O(
√
k log k), and

• every vital potential maximal clique belongs to C.

We identify four different types of vital potential maximal cliques. For each type i,
1 ≤ i ≤ 4, we list a family Ci of 2O(

√
k log k) subsets containing all vital potential

maximal cliques of that type. Finally, we set C = C1 ∪ · · · ∪ C4. We show that
every vital potential maximal clique of (G, k) is of at least one of these types and
that all objects of each type can be enumerated in 2O(

√
k log k) time.

Let Ω be a vital potential maximal clique of G. By the definition of Ω, there
exists a minimal completion of G with at most k edges into a trivially perfect
graph H such that Ω is a maximal clique in H. Let (T = (VT , ET ),B = {Bt}t∈VT

)
be the universal clique decomposition of H. Recall that by Lemma 2.27, Ω
corresponds to a path Prt = Bt0Bt1 · · ·Btq in T from the root r = t0 to a leaf
t = tq. Then for the corresponding leaf block (Bt, Dt) with tail Qt, we have
that Ω = Qt. To simplify the notation, we use Bi for Bti .

Note that the algorithm knows neither the clique Ω nor the completed trivially
perfect graph H. However, in the analysis we may partition all the vital potential
maximal cliques Ω with respect to structural properties of Ω and H, and then
provide simple enumeration rules which ensure that all vital potential maximal
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Z0

B0

Z1
Z<i

B1

· · ·

Zi−1

Bi

Zi

Bi+1

· · ·

Zq−2
Z>i

Bq−1

Bq

(a) Illustration of the vital potential maximal
cliques of Type 3. Zi is the collection of vertices
corresponding to bags below Bi but not below
Bi+1.

Z0

B0

· · ·

Zi2−1

Bi2

Zi2 Z<i1,>i2

Bi2+1

· · ·

Zi1−1

Bi1

· · ·

Zq−2
Z>i1

Bq−1

Bq

(b) Illustration of vital potential maximal
cliques of Type 4 . Indices i1, i2 are the
two largest indices such that Zi1 and Zi2

contain cheap vertices.

Figure 10.1: Illustration of the different neighborhoods of the maximal clique that
we use to find the maximal cliques of Types 3 and 4. The figure shows a universal
clique decomposition of a completed graph, where Ω = B0 ∪ . . . ∪Bq is a maximal
clique. Observe that the leaf block is Lq = (Bq, Bq) and that its tail is Ω.

cliques of each type are indeed enumerated. We now proceed to the description
of the types and enumeration rules and refer to Figure 10.1 for a visualization
of these concepts. Henceforth, whenever we are referring to cheap or expensive
vertices, we mean being cheap/expensive with respect to a fixed completion to H.

Type 1. Potential maximal cliques of the first type are such that |V \ Ω| ≤ 2
√
k.

The family C1 consists of all sets W ⊆ V such that |V \W | ≤ 2
√
k. There are at

most (2
√
k + 1) ·

(
O(k3)
2
√
k

)
such sets, and using the fact that

(
a
b

)
= aO(b) = 2O(b log a),

we enumerate all of them in time 2O(
√
k log k) by trying all vertex subsets of size at

least |V | − 2
√
k. Thus every Type 1 vital potential maximal clique is in C1.

Type 2. By Lemma 2.27 (i), we have that Ω = Qt = NH [v] for each vertex
v ∈ Dt = Bt. Vital potential maximal cliques of the second type are those of
the form NH [v] for some v ∈ Bt where Bt is a leaf bag in the universal clique
decomposition of H, and |Bt| > 2

√
k. We generate the family C2 as follows.

Every set in C2 is of the form W1 ∪W2, where W1 = NG[v] for some v ∈ V , and
|W2| ≤

√
k. There are at most

(
O(k3)√

k

)
·O(k3) such sets and they can be enumerated

by computing for every vertex v the set W1 = NG[v] and adding to each such
set all possible subsets of size at most

√
k. Hence every Type 2 vital potential

maximal clique is in C2.
Thus if Ω is not of Types 1 or 2, then |V \ Ω| > 2

√
k and for the corresponding

leaf block we have |Bt| ≤ 2
√
k. Since |V \Ω| > 2

√
k it follows that V \Ω contains

at least one cheap vertex, i.e., a vertex with fill number at most
√
k.

We partition the nodes of T that are not on the path B0, B1, . . . , Bq into q
disjoint sets Z0, Z1, . . . , Zq−1 according to the nodes of the path Prt. Node x /∈
V (Prt) belongs to Zi, i ∈ {0, . . . , q − 1}, if i is the largest integer such that ti is
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an ancestor of x in T . In other words, Zi consists of bags of subtrees outside Prt
attached below ti, see Figure 10.1a. For two integers p1 and p2, we will denote
Bp1,p2 = ⋃p2

j=p1 Bj.
For the remaining two types of vital potential maximal cliques we distinguish

cases depending on whether all cheap vertices in V \ Ω are located in exactly one
set Zi, or not. Recall that all vital potential maximal cliques for which V \Ω does
not contain any cheap vertex are already contained in Type 1.
Type 3. Vital potential maximal cliques Ω of the third type are the ones that do
not belong to Type 1 or 2, but for which there exists an index i ∈ {0, 1, . . . , q− 1}
such that all cheap vertices of V \ Ω belong to Zi. Since Ω is not of Type
1, Zi is non-empty. Also, since Ω is not of Type 2, we have that |Bq| ≤ 2

√
k.

Let us denote Z<i = ⋃i−1
j=0 Zj and Z>i = ⋃q−1

j=i+1 Zj (see Figure 10.1a). By our
assumption, we have that Z<i and Z>i contain only expensive vertices, and hence
|Z<i|, |Z>i| ≤ 2

√
k. Let u be any cheap vertex belonging to Zi, and observe that

the following equalities and inclusions are implied by Lemma 10.1 (ii):

• B0,i−1 = NG(Z<i) ⊆ Ω;

• Bi+1,q−1 ⊆ NG(Z>i) ⊆ Ω;

• Bi ⊆ NG(Bq ∪ (NG[Z>i] \NH(u))) ⊆ Ω.

It follows that

Ω = NG(Z<i) ∪NG(Z>i) ∪NG

(
Bq ∪

(
NG[Z>i] \NH(u)

))
∪Bq. (10.1)

Given (10.1), we may define family C3. Family C3 comprises all the sets that can
be constructed as follows:

• Pick three disjoint sets W1,W2,W3 ⊆ V of size at most 2
√
k each. This

corresponds to the choice of Z<i, Z>i and Bq, respectively.

• Pick a vertex v ∈ V and a set A ⊆ V of size at most
√
k. This corresponds

to the choice of u and fill-in edges adjacent to u. Let Nv = NG(v) ∪ A.

• Put the set NG(W1) ∪ NG(W2) ∪ NG(W3 ∪ (NG[W2] \ Nv)) ∪W3 into the
family C3.

Observe that since |V | = O(k3), and since we enumerate all possible collections of
four sets of size O(

√
k) and one vertex, the number of sets included in C3 is at most(

O(k3)
O(
√
k)

)4
· O(k3) = 2O(

√
k log k). Furthermore, this family can also be enumerated

within the same asymptotic running time. From (10.1) it follows immediately that
each vital potential maximal clique of Type 3 is contained in C3.
Type 4. Vital potential maximal cliques Ω of the fourth type are the ones that
do not belong to Type 1 or 2, but there exist at least two indices i1 and i2 such
that Zi1 and Zi2 both contain a cheap vertex. Let i1, i2 be the two largest such
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indices, where i1 > i2. Let Z<i1,>i2 = ⋃i1−1
j=i2+1 Zj and Z>i1 = ⋃q−1

j=i1+1 Zj. See
Figure 10.1b for an illustration. By the maximality of i1, i2 we have that Z<i1,>i2
and Z>i1 contain only expensive vertices, and hence that |Z<i1,>i2|, |Z>i1| ≤ 2

√
k.

Again, since Ω is not of Type 2, we have that |Bq| ≤ 2
√
k. Let u1 ∈ Zi1 and

u2 ∈ Zi2 be two cheap vertices. Observe that the following equalities and inclusions
are implied by Lemma 10.1 (ii):

• B0,i2 = NH(u1) ∩NH(u2);

• Bi2+1,i1−1 ⊆ NG(Z<i1,>i2) ⊆ Ω;

• Bi1+1,q−1 ⊆ NG(Z>i1) ⊆ Ω;

• Bi1 ⊆ NG(Bq ∪ (NG[Z>i1 ] \NH(u1))) ⊆ Ω.

It follows that

Ω =
(
NH(u1) ∩NH(u2)

)
∪NG(Z<i1,>i2) ∪NG(Z>i1)

∪NG

(
Bq ∪

(
NG[Z>i1 ] \NH(u1)

))
∪Bq .

(10.2)

Given (10.2), we may define the family C4. This family comprises all the sets that
can be constructed as follows:

• Pick three disjoint sets W1,W2,W3 ⊆ V of size at most 2
√
k each. This

corresponds to the choice of Z<i1,>i2 , Z>i1 and Bq, respectively.

• Pick two vertices v1, v2 ∈ V and two sets A1, A2 ⊆ V , each of size at most√
k. This corresponds to the choice of u1 and u2, and of the neighbors in H

adjacent to u1 and u2. Let Nvi
= NG(vi) ∪ Ai, for i = 1, 2.

• Put the set (Nv1 ∩Nv2)∪NG(W1)∪NG(W2)∪NG(W3∪ (NG[W2]\Nv1))∪W3
into the family C4.

Observe that since |V | = O(k3), and by the same analysis as for Type 3, the
number of sets included in C4 is at most 2O(

√
k log k), and that this family can be

enumerated within the same asymptotic running time. From (10.2) it follows
immediately that each vital potential maximal clique of Type 4 is contained in C4.

Summarizing, every vital potential maximal clique of Types 1, 2, 3, and 4 is
included in the family C1, C2, C3, and C4, respectively. Since every vital potential
maximal clique is of Types 1, 2, 3, or 4, by taking C = C1 ∪ C2 ∪ C3 ∪ C4 we can
infer the following lemma that formalizes the result of Step B.

Lemma 10.5 (Enumeration lemma). Let (G, k) be an instance of Trivially
Perfect Completion such that |V (G)| = O(k3). Then in time 2O(

√
k log k), we

can construct a family C consisting of 2O(
√
k log k) subsets of V (G) such that every

vital potential maximal clique of (G, k) is in C.
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Step C. Dynamic programming. We first give an intuitive idea of the dy-
namic programming procedure: We start off by assuming that we have the family C
containing all vital potential maximal cliques of (G, k). We start by generating
in time 2O(

√
k log k) a family F of pairs (X, Y ), where X, Y ⊆ V (G), such that for

every minimal completion F of size at most k, and the corresponding universal
clique decomposition (T,B) of H = G + F , it holds that every block (B,D) is
in F , and the size of F is 2O(

√
k log k). (See Definition 2.26 for the definition of a

block.)
The construction of F is based on the following observations about blocks and

vital potential maximal cliques: Let G be a graph, F a minimal completion and
L = (B,D) a block of the universal clique decomposition of H = G+ F , where H
is not a complete graph, with Q being its tail. Then the following hold, as we
prove later:

• If L is a leaf block, then B = Ω1 \ Ω2 for some vital potential maximal
cliques Ω1 and Ω2, and D = B.

• If L is the root block, then the tail of L is B, B = Ω1 ∩ Ω2 for some vital
potential maximal cliques Ω1 and Ω2, and D = V .

• If L is an internal block, then Q is the intersection of two vital potential
maximal cliques Ω1 and Ω2 of G, B = Q\Ω3 for some vital potential maximal
clique Ω3, and D is the connected component of G− (Q \B) containing B.

From this observation, we can conclude that by going through all triples Ω1,Ω2,Ω3
of elements of C, we can compute the set F consisting of all blocks (B,D) of
minimal completions. We now define the value dp(B,D) as follows: dp(B,D) is
equal to the minimum number of edges needed to be added to G[D] to make it a
trivially perfect graph with B being the universal clique contained in the root of
its universal clique decomposition, unless this minimum number is larger than k;
in this case we put dp(B,D) = +∞. We later derive recurrence equations that
enable us to compute all the relevant values of dp(·, ·) using dynamic programming.
Finally, the minimum cost of completing G to a trivially perfect graph is equal to
min(B,V (G))∈F dp(B, V (G)). If this minimum is equal to +∞, then no completion
of size at most k exists and we can conclude that (G, k) is a no-instance.

We now proceed to a formal proof of the correctness of the dynamic programming
procedure. Suppose that we have the family C containing all vital potential
maximal cliques of (G, k). We start by generating in time 2O(

√
k log k) a family F

of pairs (X, Y ), where X, Y ⊆ V , where V = V (G), such that

• for every minimal completionH that adds at most k edges, every block (B,D)
of the universal clique decomposition of H belongs to F , and

• the size of F is 2O(
√
k log k).

The construction of F is based on the following lemmata.
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Lemma 10.6. Let G be a graph, F a minimal completion of G of size at most k,
and (B,D) a non-leaf and non-root block of the universal clique decomposition of
H = G+ F , with Q being its tail. Then

(i) Q is the intersection of two vital potential maximal cliques Ω1 and Ω2 of G,

(ii) B = Q \ Ω3 for some vital potential maximal clique Ω3, and

(iii) D is the connected component of G− (Q \B) containing B.

Proof. (i) Consider two connected components D1 and D2 of H[D \B] and let Ω′1
and Ω′2 be maximal cliques in D1 and D2. Observe that Ω1 = Ω′1 ∪ Q and
Ω2 = Ω′2∪Q are maximal cliques in H. By definition, Ω1 and Ω2 are vital potential
maximal cliques in G, and Ω1 ∩ Ω2 = Q.

(ii) Let L̂ = (B̂, D̂) be the parent block of (B,D). Since L̂ is not a leaf-block, L̂
has at least two children and thus there is a block (B′, D′) 6= (B,D) which is also
a child of L̂. By the previous argument, Q̂, the tail of L̂ is exactly Q̂ = Ω1 ∩ Ω3
for some vital potential maximal clique Ω3. It follows that B = Q \ Ω3.

(iii) It follows from Lemma 10.1 that G[D] is connected. Then it follows
immediately that D is the unique connected component of G−(Q\B) containing B.

Lemma 10.7. Let G be a graph, F a minimal completion of G of size at most k,
and L = (B,D) a leaf block of the universal clique decomposition of H = G+ F .
If H is not a complete graph, then

(i) B = Ω1 \ Ω2 for some vital potential maximal cliques Ω1 and Ω2, and

(ii) D = B.

Proof. (i) Let L̂ = (B̂, D̂) be the parent block of L, which exists since L is not the
root block. Let L′ = (B′, D′) be a child of L̂ which is not L. If L′ = (B′, D′) is a
leaf, then set L′′ = L′, and if not, then let L′′ = (B′′, D′′) be a leaf which has L′ as
an ancestor. The blocks L′ and L′′ exist since L̂ is not a leaf. Furthermore, let Q̂
be the tail of L̂, and let Ω1 = NH [B] and Ω2 = NH [B′′]; Ω1 and Ω2 are then two
maximal cliques in H. From similar arguments as above we get that Q̂ = Ω1 ∩ Ω2
and hence that B = Ω1 \ Ω2.

(ii) This follows immediately from Lemma 2.27.

Lemma 10.8. Let G be a connected graph, F a minimal completion of G of size
at most k, and L = (B,D) the root block of the universal clique decomposition of
H = G+ F . If H is not a complete graph, then

(i) the tail of L is B,

(ii) B = Ω1 ∩ Ω2 for some vital potential maximal cliques Ω1 and Ω2, and

(iii) D = V .
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Proof. (i) By definition, the tail is the collection of vertices from B to the root.
Since L is a root block, the tail is B itself.

(ii) This follows in the same manner as in the proof of Lemma 10.6 (i), since B
is the tail of block L.

(iii) From the definition of universal clique decompositions we have that D is
the connected component of H[V \ (Q \B)] containing B. But since Q \B = ∅,
we get that D is the connected component of H containing B. Now since H is
connected, the result follows.

By making use of Lemmata 10.6–10.8, one can construct the required family F
by going through all possible triples of elements of C. The size of F is at most
|C|3 = 2O(

√
k log k) and the running time of the construction of F is 2O(

√
k log k). Note

here that by Lemma 10.1 (iii) and the fact that G is connected, we may discard
from F every pair (B,D) where G[D] is not connected.

For every pair (X, Y ) ∈ F , with X ⊆ Y ⊆ V , we define dp (X, Y ) to be the
minimum number of edges required to add to G[Y ] to obtain a trivially perfect
graph where X is the maximal universal clique; If this minimum value exceeds k,
we define dp (X, Y ) = +∞. Thus, to compute an optimal solution, it is sufficient
to go through the values dp (X, Y ), where (X, Y ) ∈ F with Y = V . In other
words, to compute the size of a minimum completion we find

min
(X,V )∈F

dp (X, V ), (10.3)

and if this value is +∞, then the size of a minimum completion exceeds k.
In the following, for a subset of vertices A we write mA to denote the number of

edges inside A, i.e., mA = |E(A)|. We compute (10.3) by making use of dynamic
programming over elements of F . For every pair (X, Y ) ∈ F which can be a leaf
block for some completion, i.e., for all pairs with X = Y , we put

dp (X,X) =
(
|X|
2

)
−mX .

Of course, if the computed value exceeds k, then we put dp (X,X) = +∞.
For (X, Y ) ∈ F withX ( Y , if (X, Y ) is a block of some minimal completionH,

then in H, we have that X is a maximal universal clique in H[Y ], every vertex
of X is adjacent to all vertices of Y \X and the number of edges in H[Y \X] is
the sum of the number of edges in the connected components of H[Y \X]. By
Lemma 10.1, the vertices of every connected component Y ′ of H[Y \X] induce a
connected component in G[Y \X]. Observe that each connected component Y ′
of H[Y \ X] corresponds to a block (X ′, Y ′) in the decomposition of H. Now
since F contains all blocks of minimal trivially perfect completions it follows that
(X ′, Y ′) ∈ F .

Now for (X, Y ) ∈ F we use mX,Y \X = |E(X, Y \X)| to denote the number
of edges between X and Y \X in G. Let C be the set of connected components
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of G[Y \X]. Then we compute, in order of increasing size of Y ,

dp (X, Y ) =
(
|X|
2

)
−mX + |X| · |Y \X| −mX,Y \X +

∑
G[Y ′]∈C

min
(X′,Y ′)∈F

dp (X ′, Y ′) .

Again, if the value on the right hand side exceeds k, then we set dp (X, Y ) = +∞.
Since the cardinality of Y ′ is less than |Y |, and blocks are processed in increasing

cardinality of Y , the value for dp (X ′, Y ′) has already been calculated when it is
needed to compute dp (X, Y ).

The running time required to compute dp (X, Y ) is, up to a polynomial factor
in k, proportional to the number of sets (X ′, Y ′) ∈ F , which is O(|F|). Thus the
total running time of the dynamic programming procedure is, up to a polyno-
mial factor in k, proportional to O(|F|2), and hence (10.3) can be computed in
time 2O(

√
k log k). This concludes Step C and the proof of Theorem 10.
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Chapter 11

Pseudosplit graphs

The pseudosplit graphs are exactly the {2K2, C4}-free graphs. Since 2K2 = C4, by
Fact 2.7, the problem Pseudosplit Completion is equivalent to Pseudosplit
Deletion. The problem Split Editing [HS81] is well known to be solvable
in polynomial time. Essentially, by guessing the induced C5, so is Pseudosplit
Editing. We give a short proof for this and motivate it more later.

11.1 Polynomial time editing
Recall that in the problem Split Editing, we are given a graph G = (V,E) and
an integer k ≥ 0 and asked whether there exists a split editing set F for G of size
at most k.

The answer is given by the formula σ(G), the splittance [HS81] of G, defined
by

σ(G) = 1
2

k(k − 1)−
k∑
i=1

di +
n∑

i=k+1
di

 , (11.1)

where di denotes the degree of the ith highest degree vertex, and k = max{i |
1 ≤ i ≤ n, di ≥ i− 1}. Hammer and Simeone [HS81] showed that the size of the
minimum split editing set F for a graph G is |F | = σ(G). This shows that Split
Editing, with standard sorting arguments, can be computed in linear time, by
computing the right hand side of Equation (11.1).

In Pseudosplit Editing, we are given a graph G and an integer k ≥ 0 and
asked whether there is a pseudosplit editing set of size at most k, i.e., does there
exist an edge set F such that G M F is a pseudosplit graph and |F | ≤ k? Since
a pseudosplit graph is either a split graph, or an imperfect pseudosplit graph,
and that the split editing problem is solvable in linear time, we may consider the
complexity of editing a graph to a so-called imperfect pseudosplit graph, a graph
in which the C5 is present. We refer to this problem as Imperfect Pseudosplit
Editing.

Define ψ(G) to be the size of a minimum imperfect pseudosplit editing set.
We aim to show that ψ(G) can be computed in the same manner as σ(G), only
taking into consideration the induced C5. Finally, we conclude that Pseudosplit

143
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Editing can be computed by taking the minimum of the two parameters, namely
min(σ(G), ψ(G)).

Proposition 11.1. For a proper pseudosplit graph G, we have that σ(G) ≤ 2.

Proof. Let C, S, I be a pseudosplit partition of V (G). Suppose s1s2s3s4s5s1 is the
five-cycle G[S] ∼= C5. Let F = {s3s4, s4s5}. Now it suffices to observe that G M F
is a split graph on partition C ∪ {s1, s2}, I ∪ {s3, s4, s5}.

Lemma 11.2. Let Fψ be a pseudosplit editing set of a graph G with pseudosplit
partition C, S, I. If one of the vertices in S is incident with at least two edges of C
or of I in Fψ, then there is a split editing set Fσ of size at most |Fψ|.

Proof. Let Fψ be pseudosplit edit set for which G M Fψ has partition C, S, I.
Let s1s2s3s4s5s1 denote the five-cycle S and suppose without loss of generality
that s1 is incident with two edges e1 = s1c1 and e2 = s1c2 with c1, c2 ∈ C. Then
Fσ = Fψ \{e1, e2}∪{s1s5, s1s2} is a split edit set for which G M Fσ is a split graph
on partition C ∪ {s3, s4}, I ∪ {s1, s2, s5}. The proof of the case when s1 is incident
with at least two edges of I is similar, except we remove s3s4 and s4s5, and the
split partition will be C ∪ {s1, s2}, I ∪ {s3, s4, s5}.

From Lemma 11.2, we can immediately conclude the following:

Corollary 11.3. Let G be a graph such that ψ(G) < σ(G). Then an optimal
pseudosplit edit set Fψ with partition C, S, I has the property that every s ∈ S is
incident with at most two edges of V (G) \ S in Fψ.

The following lemma essentially shows that if ψ(G) < σ(G), then the set S already
induces a C5 in G.

Lemma 11.4. If Fψ is a pseudosplit edit set which contains an edge e with both
endpoints in S, then there is a split edit set Fσ = Fψ \ {e} ∪ {e′}, where e′ also
has both endpoints in S.

Proof. There are two cases, either e is an added edge, without loss of generality
s1s2, or e is a deleted edge, w.l.o.g. s1s3. If e = s1s2 is an added edge, then let
e′ = s2s3 and the claim follows by observing that G M Fσ has split partition
C ∪ {s4, s5}, I ∪ {s1, s2, s3}. If e = s1s3 is the deleted edge, then we let e′ = s4s5
and G M Fσ has split partition C ∪ {s1, s2, s3}, I ∪ {s4, s5}.

Corollary 11.5. Let G be a graph such that ψ(G) < σ(G). Then it follows from
Corollary 11.3 and Lemma 11.4 that there is a set S ⊆ V (G) such that s ∈ S is
incident with at most two edges of V \ S and furthermore G[S] ∼= C5.

Lemma 11.6. Let G be a graph and Fψ a pseudosplit edit set with C, S, I the
pseudosplit partition of G M Fψ. If there are more than two edges incident with S
in Fψ, then there is a split edit set Fσ of size at most Fψ.
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Algorithm 2 Algorithm solving Pseudosplit Editing.
On input (G, k),

1. Compute σ(G). If σ(G) > k + 2, by Proposition 11.1 we return no. If
σ(G) ≤ k, we return yes.

2. Try every induced C5 S = {s1, . . . , s5} in V (G). Let C ′ = N(S) and
I ′ = V (G) \ (C ′ ∪ S). For each u, v of C ′ ∪ I ′, we compute kC,S,I , where C
and I are the possible ways of distributing u and v in C and I. Given such
a partition C, S, I, we return true if kC,S,I ≤ k.

3. Return no (Corollary 11.5) if no induced C5 satisfied the above inequality.

Proof. Let e1, e2 and e3 be the edges in Fψ incident with vertices in S and let us
assume by Corollary 11.5 that they are not (a) having both endpoints in S and
(b) not all incident with the same vertex in S. Suppose that si and sj are two
vertices in S incident with two of the edges, without loss of generality e1 and e2.
Let e1 = siv and e2 = sju. We distinguish between two cases, (i) v and u are
(w.l.o.g.) contained in I or (ii) v ∈ C and u ∈ I.

For (i), let e be an edge in G[S] not incident with si nor sj and let e′ be the
non-edge in G[S] that is needed to add to make si and sj be contained in a triangle.
Now, Fσ = Fψ \ {e1, e2} ∪ {e, e′} is a split edit set. For (ii), we follow the same
strategy, but we want si to go to I and sj to go to C. So we let e be a non-edge
in G[S] that will make sj be contained in a triangle without si, and we delete the
edge needed to make G[S] into a bull1. It follows that Fσ = Fψ \ {e1, e2} ∪ {e, e′}
is a split edit set.

Lemma 11.7. Let G be a graph with ψ(G) < σ(G) and let Fψ be a minimum edit
set with C, S, I = (G M Fψ). Then for at least four vertices s1, . . . , s4 ∈ S, we
have that NG(si) \ S = C.

Proof. We know that at most two edges of Fψ are incident with S, and if there
are two edges e1, e2 ∈ Fψ incident with S, then e1, e2 are both incident with the
same vertex s ∈ S. Hence for S \ {s}, we have that NG(S \ {s}) = C.

Definition 11.8. Let G be a graph and C, S, I a partition of the vertex set with
the restriction that G[S] ∼= C5. We define

kC,S,I = (|C|(|C| − 1))/2− |E(C)|+ |E(C, S)|+ |E(I)|+ |E(S, I)|,

that is, kC,S,I is the cost of editing G into an imperfect pseudosplit graph with
partition C, S, I.

The following theorem and the correctness of Algorithm 2 is straightforwards from
the above exposition.

1See Table 2.1 for a description of the bull.
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Theorem 11. The pseudosplit number of a graph G can be computed in time
O(n8).

As mentioned earlier, and as Yannakakis also stated, we are far from understanding
the nature of the complexity of edge modification problems. One interesting open
problem is for which finite sets H the problems H-free Completion, H-free
Deletion, and H-free Editing are NP-complete. In the latter case, we
have somehow “sharpened” the knowledge here by stating that {2K2, C4}-free
Editing, in addition to {2K2, C4, C5}-free Editing, is polynomial time solvable.

In addition to this observation on classical complexity, it partially refutes an
open problem posed by Cai and Cai [CC15, Problem 7.6] on kernelization complex-
ity. They ask the following: Suppose that neither H1-free Editing nor H2-free
Editing admit a polynomial kernel (under the assumption NP 6⊆ coNP/poly),
does it hold that {H1, H2}-free Editing is incompressible? In our case, C4-free
Editing, which is equivalent to 2K2-free Editing, is incompressible, by their
work. However, we have just seen that {2K2, C4}-free Editing is even solvable
in polynomial time.

The answer is only partial, though, since they simultaneously ask for the edge
deletion version. This is to the best of the author’s knowledge still open. However,
it seems likely that here one can also simply provide a polynomial kernel for
Pseudosplit Deletion, and thus refute their conjecture.

11.2 Subexponential time completion
In this section we show that Pseudosplit Completion can be solved by first
applying a polynomial-time and parameter-preserving preprocessing routine, and
then using the subexponential time algorithm of Ghosh et al. [GKK+15] for
Split Completion. The NP-completeness of the problem follows from the
NP-completeness of Split Completion.

In order to ease the argumentation regarding minimal completions, we call a
split partition (C, I) I-maximal if there is no vertex v ∈ C such that (C \ {v}, I ∪
{v}) is a split partition. Our algorithm uses the subexponential algorithm of
Ghosh et al. [GKK+15] for Split Completion as a subroutine. We therefore
need the following result (which we also proved in Chapter 9, Corollary 9.4):

Proposition 11.9 ([GKK+15]). Split Completion is solvable in subexponential
parameterized time 2O(

√
k log k) + poly(n).

Formally, in this section we prove the following theorem:

Theorem 12. Pseudosplit Completion is solvable in subexponential parame-
terized time 2O(

√
k log k) · poly(n).

The algorithm whose existence is asserted in Theorem 12 is given as Algorithm 3.
We now proceed to prove that this algorithm is correct, and that its running time
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Algorithm 3 Algorithm solving Pseudosplit Completion.

1. Use the algorithm from Proposition 11.9 to check in time 2O(
√
k log k) · poly(n)

if (G, k) is a yes-instance of Split Completion. If (G, k) is a yes-instance
of Split Completion, then return that (G, k) is a yes-instance of Pseu-
dosplit Completion. Otherwise we complete to an imperfect pseudosplit
graph.

2. For each S = {x1, x2, . . . , x5} ⊆ V (G) such that there is a supergraph GS ⊇
G[S] and GX

∼= C5, we construct an instance (G′, k′) to Split Completion
from (G, k) as follows:

(a) Let k′ = k + |E(G[X])| − 5.
(b) Add all the possible edges between vertices of S, so that S becomes a

clique.
(c) Add a set A of k + 2 vertices to G.
(d) Add every possible edge between A and NG[S].

3. Use Proposition 11.9 to check if (G′, k′) is a yes-instance of Split Com-
pletion. If (G′, k′) is a yes-instance of Split Completion, then return
that (G, k) is a yes-instance of Pseudosplit Completion.

4. If for no set S the answer yes was returned, then return no.

on input (G, k) is 2O(
√
k log k) ·poly(n). In the following we adopt the notation from

Algorithm 3.
As in the algorithm, we denote by S the set of five vertices which will be used

as the set inducing a C5 (we try all possible subsets; note that their number is
bounded by O(n5)). Note here that since G[S] admits a supergraph isomorphic to
a C5, it follows that |E(G[S])| ≤ 5 and, consequently, k′ ≤ k. Similarly, by A we
denote the set of k+ 2 vertices we add that are adjacent only to NG[S]. Intuitively,
this set will be used to force that in any minimal split completion of size at most k
it holds that NG[S] ⊆ C. From now on G′ is the graph as in the algorithm, that
is, G′ is constructed from G by making S into a clique, adding vertices A and all
the possible edges between A and NG[S].

The following lemma will be crucial in the proof of the correctness of the
algorithm.

Lemma 11.10. Assume that F is a minimal split completion of G′ of size at
most k′, and let (C, I) be an I-maximal split partition of G′ + F . Then:

(i) NG[S] ⊆ C,

(ii) A ⊆ I,

(iii) no edge of F has an endpoint in A,
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(iv) C \ S is fully adjacent to S in G′ + F , and

(v) I \ A is fully non-adjacent to S in G′ + F .

Proof. (i) Aiming towards a contradiction, suppose that some v ∈ NG[S] is in I.
Since A ⊆ N(v), we must then have that A ⊆ C. However, since A is independent
in G′, this demands adding at least

(
k+2

2

)
> k′ edges.

(ii) Aiming towards a contradiction, assume that A ∩ C 6= ∅. Since NG′(A) ⊆ C
and A is independent in G′, it follows that G′+F ′, where F ′ = F \ (A×A) is also
a split graph with partition (C ′, I ′), where C ′ = C \A and I ′ = I ∪ (A∩C). Since
F ′ ⊆ F holds, we have that either |F ′| < |F | which contradicts the minimality
of F , or that F ′ = F which contradicts the assumption that partition (C, I)
was I-maximal.
(iii) Suppose that there is an edge e ∈ F incident with a vertex of A. Since A ⊆ I,
we infer that F \ {e} is still a split completion, which contradicts the minimality
of F .
(iv) C is a clique in G′ + F and S ⊆ C, so this holds trivially.
(v) Suppose for the sake of a contradiction that some vi ∈ I \ A is adjacent to
some vx ∈ S. Since NG[S] ⊆ C, we have that vivx ∈ F . But then F \ {vivx} is
also a split completion, which contradicts the minimality of F .

The correctness of the algorithm is implied by the following lemma:

Lemma 11.11. The instance (G, k) is a yes-instance of Pseudosplit Comple-
tion if and only if Algorithm 3 returns yes on input (G, k).

Proof. In the forwards direction, let (G, k) be a yes-instance for Pseudosplit
Completion. Observe that (G, k) is a yes-instance for Split Completion if
and only if our algorithm returns yes in the first test. We therefore assume that G
has to be completed to an imperfect pseudosplit graph.

Let F0 be a completion set with |F0| ≤ k such that G0 = G+F0 is an imperfect
pseudosplit graph. Let (C, I,X) be the pseudosplit partition of G + F0; hence
G0[S] is isomorphic to a C5. We claim that the algorithm will return yes when
considering the set S in the second step; let then G′ be the graph constructed in
the second step of the algorithm, starting with the set S. Let F be equal to F0
with all the edges of G0[S] that were not present in G[S] removed; note that
|F | = |F0|+ |E(G[S])| − 5 ≤ k′. We claim that G′ + F is a split graph with split
partition (C ∪ S, I ∪A). Indeed, since G′[S] is a clique, S is fully adjacent to C in
G0 ⊆ G′ + F , and C is a clique in G0 ⊆ G′ + F , it follows that C ∪ S is a clique
in G′ + F . On the other hand, I ∪ A is independent in G′ and all the edges of F
have at least one endpoint belonging to C ∪ S, so I ∪ A remains independent in
G′ + F . As a result G′ + F is a split graph, and so the algorithm will return yes
after the application of Proposition 11.9 in the third step.
In the reverse direction, assume that Algorithm 3 returns yes on input (G, k).
If it returned yes already after the first test, then G may be completed into a
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split graph by adding at most k edges, so in particular (G, k) is a yes-instance
of Pseudosplit Completion. From now on we assume that the algorithm
returned yes in the third step. More precisely, for some set S the application of
Proposition 11.9 has found a minimal completion set F of size at most k′ such
that G′ + F is a split graph, with I-maximal split partition (C, I).

By Lemma 11.10 we have that (i) NG[S] ⊆ C, (ii) A ⊆ I, (iii) no edge
of F has an endpoint in A, (iv) C \ S is fully adjacent to S in G′ + F , and (v)
I \ A is fully non-adjacent to S in G′ + F . By the choice of S, there exists a
supergraph GS of G[S] such that GS

∼= C5. Let now F0 be equal to F with all
the edges of GS that were not present in G[S] included. Observe that |F0| ≤ k
and that by (iii) F0 contains only edges incident with vertices of G. Consider now
the partition (C \ S, I \ A, S) of V (G+ F0). Since (C, I) was a split partition of
G′ + F , it follows that C \ S is a clique in G + F0 and I \ A is an independent
set in G+ F0. Moreover, from (iv) and (v) it follows that S is fully adjacent to
C \ S in G + F0 and fully non-adjacent to I \ A in G + F0. Finally, the graph
induced by S in G+ F0 is GS

∼= C5. By Proposition 2.19 we infer that G+ F0 is
a pseudosplit graph, and so the instance (G, k) is a yes-instance of Pseudosplit
Completion.

As for the time complexity of the algorithm, we try sets of five vertices for S, which
is O(n5) tries. For each such guess, we construct the graph G′, which has n+ k+ 2
vertices. Since k′ ≤ k, by Proposition 11.9 solving Split Completion requires
time 2O(

√
k log k) · poly(n), both in the first and the third steps of the algorithm.

Thus the total running time of Algorithm 3 is 2O(
√
k log k) · poly(n).
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Chapter 12

Bicluster graphs and starforests

12.1 Subexponential time starforest editing
A first natural step in handling modification problems related to bicluster graphs
is modification towards the subclass of bicluster graphs called starforests. Recall
that a graph is a starforest if it is a forest of stars, or, a bicluster where every
biclique has one side of size exactly one.

Input: A graph G = (V, E) and a non-negative integer k.
Question: Is there a set of at most k edges F such that G M F is a

disjoint union of stars?

Starforest Editing parameterized by k

The problem where we only allow to delete edges is referred to as Starforest
Deletion. These two problems can easily be observed to be equivalent; Adding
an edge to a forbidden induced subgraph will create one of the other forbidden
subgraphs, or simply put, it never makes sense to add an edge.

In Chapter 16 we show that this problem is NP-hard, and that it is not solvable
in time 2o(k) poly(n) unless the exponential time hypothesis fails.

Multivariate analysis. Since no subexponential algorithm is possible under
ETH, we introduce a secondary parameter, p, which bounds the number of
connected components in a solution graph. This has previously been done with
success in the Cluster Editing problem [FKP+14]. Hence, we define the
following multivariate variant of the above problem.

Input: A graph G = (V, E) and a non-negative integer k.
Question: Is there a set F of edges of size at most k such that G M F is

a disjoint union of exactly p stars?

p-Starforest Editing parameterized by p, k

151



152 CHAPTER 12. BICLUSTER GRAPHS AND STARFORESTS

Figure 12.1: A starforest

Observe that this problem is not the same as p-Starforest Deletion since
we might need to merge stars to achieve the desired value p for the number of
connected components. In Section 16.2 (Theorem 24) we show that the problem is
W[1]-hard parameterized by p alone, and that we therefore need to parameterize
on both p and k.

Lemma 12.1. Let (G, k) be input to p-Starforest Editing. If (G, k) is a
yes-instance, there can be at most p+ 2k vertices with degree at least 2.

Proof. Suppose H = G M F is a disjoint union of p stars with |F | ≤ k. Let C be
the set of p centers. Now, V (H) \ C is a set of leaves of which at most 2k can be
incident to F in G. Since all other leaves must already have degree one in G, the
claim follows.

The following bound will be key to obtain the subexponential running time.

Proposition 12.2 ([FKP+14]). If a and b are non-negative integers, then
(
a+b
a

)
≤

22
√
ab.

Lemma 12.3. Given a graph G and a vertex set S, we can compute in linear
time O(n + m) an optimal editing set F such that G M F is a starforest, when
restricted to have S as the set of centers in the solutions.

Proof. Observe that we need to delete every edge whose endpoints either lie both
inside S or both outside of S. What remains is a bipartite graph with S being
one side of the bipartition. To complete the editing, for every vertex v ∈ V \ S,
with deg(v) > 1, we delete all but one edge, and for every isolated vertex, we
arbitrarily attach it to some vertex of S. It is easy to see that this solution is
optimal.

We now describe an algorithm which solves the problem p-Starforest Editing
in time O(23

√
pk + n+m).

The algorithm. Let (G, k) be an instance of p-Starforest Editing. If the
number of vertices of degree at least two is greater than p + 2k, we say no in
accordance with Lemma 12.1. Otherwise we split the graph into G1 and G2
as follows: Let X ⊆ V (G) be the collection of vertices contained in connected
components of size one or two, i.e. G[X] is a collection of isolated vertices and
edges. Let G1 = G[X] and G2 = G[V (G) \X]. Clearly, there are no edges going
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out of X in G. We will treat G1, G2 as (almost) independent subinstances by
guessing the budgets k1 +k2 = k and the number of components in their respective
solutions p1 +p2 = p. The only time we cannot treat them as independent instances
is when p1 or p2 is zero; Let p∗i be the number of stars completely contained in Gi

in an optimal solution. If both p∗i > 0, then there always exist an optimal solution
that does not add any edge between G1 and G2.

Solving (G1, k1) with p1 components: Assume G1 contains s isolated edges
and t isolated vertices, with p1 > 0. If |V (G1)| < p1, we immediately say no, since
we need exactly p1 connected components. Depending on the values of s and t,
we execute the following operations as long as the budget k1 is positive. If s ≤ p1
and s+ t ≤ p1, we have too few stars, and we arbitrarily delete edges to increase
the number of connected components to p1.

If s = 0 we turn the isolated vertices arbitrarily into p1 stars. Otherwise, fix
an arbitrary endpoint c of an isolated edge. Assume that s ≤ p1: then we connect
enough isolated vertices to c such that the number of stars is p1. Finally, if s > p1,
we first dissolve s− p1 edges and continue as in the previous case. It is easy to
check that the above solutions are optimal.

Solving (G2, k2) with p2 components: By Lemma 12.1, the number of vertices
of degree at least two is bounded by p2 + 2k2. Every vertex of degree one in G2
is adjacent to a vertex of larger degree, thus it makes never sense to choose it as
a center (its neighbor will always be cheaper). Hence, it suffices to enumerate
every set S2 of p2 vertices of degree larger than one and test in linear time, as
per Lemma 12.3, whether a solution inside the budget k2 is possible. Using
Proposition 12.2 we can bound the running time by(

p2 + 2k2

p2

)
· pk +O(n+m) = O(23

√
p2k2 + n+m).

We are left with the cases where p1 or p2 are equal to zero: then the only possible
solution is to remove all edges within G1 or G2, respectively, and connect all the
resulting isolated vertices to an arbitrary center in the other instance. We either
follow through with the operation, if within the respective budget, or deduce that
the subinstance is not solvable. We conclude that the above algorithm will at
some point guess the correct budgets for G1 and G2 and thus find a solution of
size at most k. The theorem follows.

Theorem 13. p-Starforest Editing is solvable in time O(23
√
pk + n+m).
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12.2 Subexponential time bicluster editing
In this section we lift the result of Section 12.1 by showing that the following
problem is solvable in time 2O(p

√
k log(pk)) + O(n + m). Observe that we lose the

subexponential dependence on p, however, contrary to the result of Misra et
al. [MPS13], for fixed (or small, relative to k) p, this still is truly subexponential
parameterized by k.

Input: A graph G = (V, E) and a non-negative integer k.
Question: Is there a set F of at most k edges such that G M F is a

disjoint union of p complete bipartite graphs?

p-Bicluster Editing parameterized by p, k

We denote a biclique of G as C = (A,B) and call the sets A,B the sides of C.
Before describing the algorithm for the general problem, we show that the following
simpler problem is solvable in linear time using a greedy algorithm:

Input: A bipartite graph G = (A, B, E), a partition A =
{A1, A2, . . . , Ap} of A and a non-negative integer k.

Question: Is there a set F of at most k edges such that G M F is a
disjoint union of p complete bipartite graphs with each one
side in A?

Annotated Bicluster Editing

Lemma 12.4. Annotated Bicluster Editing is solvable in time O(n+m).

Proof. Let G = (A,B,E), A = {A1, . . . , Ap}, k be an instance of Annotated
Bicluster Editing. Consider a vertex v ∈ B and define costi(v) to be the cost
of placing v in Bi where Ci = (Ai, Bi) is the ith biclique of the solution, i.e.,

costi(v) = |Ai| − 2 degAi
(v) + deg(v),

where degAi
(v) = |N(v) ∩ Ai|. We prove the following claim which implies that

we can greedily assign each vertex v ∈ B to a biclique of minimum cost.

Claim 12.5. An optimal solution will always have v ∈ B in a biclique Ci = (Ai, Bi)
which minimizes costi(v).

Suppose that costi(v) is minimal but v is placed by a solution F in a biclique Cj =
(Aj, Bj) with costj(v) > costi(v). Deleting from F all edges Ej between v and Aj
and adding all edges Ei between v and Ai creates a new solution F ′ = F \Ej ∪Ei.
Since costj(v) > costi(v), we have that |F | > |F ′| hence F is not optimal. This
concludes the proof of the claim and the lemma.
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12.2.1 Bicluster editing
We now show that the problem p-Bicluster Editing is solvable in subexponential
time by using the kernel from Theorem 5, guessing the annotated sets and applying
the polynomial time algorithm for the annotated version of the problem. The
important ingredient will be cheap vertices, by which we mean vertices that are
known to receive very few edits. Intuitively, a cheap vertex is a “pin” that in
subexponential time reveals for us its neighborhood in the solution, and thus can
be leveraged to uncover parts of said solution.

We adopt the following notation and vocabulary. For an instance (G, k) of
p-Bicluster Editing, and a solution F , we call H = G M F the target graph. A
vertex v is called cheap with respect to F if it receives at most

√
k edits. Observe

that any set X of size larger than 2
√
k has a cheap vertex. We call such a set

large and all sets that contain at most 2
√
k vertices small. We will further classify

the bicliques in the target graph into two different classes: A biclique is small if
its vertex set is small and large otherwise.

The algorithm now works as follows. Given an input instance (G, k) of p-
Bicluster Editing, we try all combinations of ps + p` = p, with the intended
meaning that ps is the number of small bicliques and p` is the number of large
bicliques in the target graph.

Handling small bicliques. We enumerate a set of ps sets As ⊆ 2V with
the property that they are pairwise disjoint, and each of size at most 2

√
k.

Furthermore, G[⋃As] contains at most k edges. Delete all edges in As and reduce
the budget accordingly. These are going to be all the left sides in small bicliques.
This enumeration takes time

(2
√
k)ps

(
n

2
√
k

)ps

≤ (2
√
k)p

(
pk + k2

2
√
k

)p
= 2O(p

√
k log(pk)).

Handling large bicliques. The large bicliques have the following nice property.
Since the vertex set of each such biclique is large, every biclique contains a cheap
vertex. We guess a set B` of size p`. For the biclique Ci, the vertex vi of B` will
be a cheap vertex in Bi. Now, we enumerate all combinations of p` sets N =
〈N1, N2, . . . , Np`

〉, each of size at most 2
√
k which will be the edited neighborhood

of each cheap vertex, and we conclude that Ai = NH(vi) = NG(vi)4Ni. The
enumeration of this asymptotically takes time(

n

p`

)
· (2
√
k)p`

(
n

2
√
k

)p`

≤
(
pk + k2

p

)
· (2
√
k)p

(
pk + k2

2
√
k

)p
= 2O(p

√
k log(pk)).

Putting things together. With the above two steps, in time 2O(p
√
k log(pk)) we

obtained all the left sides A, partitioned into As and A`. Using this information, we
can in polynomial time compute whether the Annotated Bicluster Editing
instance (G, k,A) is a yes-instance. If so, we conclude yes, otherwise, we backtrack.
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Theorem 14. p-Bicluster Editing is solvable in time 2O(p
√
k log(pk)) +O(n+m).

Proof. We now show that the algorithm described above correctly decides p-
Bicluster Editing given an instance (G, k). Suppose that the algorithm above
concludes that (G, k) is a yes-instance. The only time it outputs yes, is when
Annotated Bicluster Editing for a given set A and a given budget k′ outputs
yes. Since this budget is the leftover budget from making A an independent set, it
is clear that any Annotated Bicluster Editing solution of size at most k′
gives a yes-instance for p-Bicluster Editing.

Suppose now for the other direction that (G, k) is a yes-instance with F a
solution for p-Bicluster Editing. Consider the left sides A1, . . . , Ap of G M F
with the restriction that the smaller of the two sides in Ci is named Ai. First
we observe that during our subexponential time enumeration of sets, all the Ais
that are of size at most 2

√
k will be enumerated in one of the branches where ps

is set to the number of small bicliques. Furthermore, if Aj is large, then both
are large, and then, for each of the large bicliques, there is a branch where we
selected exactly one cheap vertex for each of the largest sides. Given these cheap
vertices, there is a branch where we guess exactly the edits affecting each of the
cheap vertices, hence we can conclude that in some branch, we know the entire
partition A. From Lemma 12.4, we can conclude that the algorithm described
above concludes correctly that we are dealing with a yes-instance.

12.2.2 The t-partite case
We can in fact obtain similar (we treat t here as a constant so the results are up
to some constant factors in the exponents) results for the more general case of
t-partite p-cluster Editing. Again we need the polynomial kernel described
in Theorem 5. The only difference now to the bicluster case is that we define a
cluster to be small if every side is small. In this case, we can enumerate

(
n√
k

)tp
sets, which will form the small clusters.

In the other case a cluster C = (A1, A2, . . . , At) is divided into A1, A2, . . . , Ats
small sides and Ats+1, Ats+2, . . . , At large sides. For this case, we guess all the
small sides and for each of the large sides we guess a cheap vertex. Guessing the
neighborhoods Nts+1, Nts+2, . . . , Nt for the cheap vertices vts+1, vts+2, . . . , vt gives
us complete information on C; To compute what Aj is, if j > ts, we simply take
the intersection ⋂

ts<i≤t,i 6=j Ni and remove ⋃i≤ts Ai. We arrive at the following
lemma whose proof is directly analogous to that of Theorem 14.

Theorem 15. The problem t-partite p-cluster Editing is solvable in subex-
ponential time 2O(p

√
k log(pk)) +O(n+m).
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Lower bounds
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In this last of the technical parts we present some lower bounds results. We start
with two NP-completeness results, showing that Threshold Editing and Chain
Editing are NP-complete in Chapter 13. We then move on to lower bounds for
subexponentiality, that is, we list some problems for which a subexponentiality
result would break the exponential time hypothesis. These are Trivially Perfect
Editing and Trivially Perfect Deletion, as well as Cograph Deletion
and Cograph Editing in Chapter 14. Then we show that C4-free Deletion
nor C4-free Completion admit subexponential time algorithms—as well as
state why we study these problems—in Chapter 15.

Finally, in Chapter 16, we show that, unless we limit the number of connected
components in the target graph, neither Starforest Editing nor Bicluster
Editing are solvable in subexponential time, again under the exponential time
hypothesis. We complement this result by showing that parameterizing on the
budget is also necessary; p-Starforest Editing isW[1]-hard when parameterized
by p alone.
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Chapter 13

Threshold and chain graphs

In this chapter we show that Threshold Editing is NP-complete. Recalling (see
Figure 2.4) that chain graphs are bipartite graphs with structure very similar to
that of threshold graphs, it should not be surprising that we obtain as a corollary
that Chain Editing is NP-complete as well. The computational complexity of
Threshold Editing and Chain Editing has repeatedly been stated as open
interesting questions, starting from Natanzon, Shamir, and Sharan [NSS01], and
then more recently by Burzyn, Bonomo, and Durán [BBD06], and again very
recently by Liu, Wang, Guo, and Chen [LWGC12].

We conclude the chapter by giving a proof for the fact that Chordal Edit-
ing is NP-complete.1 The problem was recently shown to be FPT by Cao and
Marx [CM14], however they studied a more general problem which indeed is
well-known to be NP-complete as it is a generalized version of Chordal Vertex
Deletion.

13.1 NP-completeness of Threshold Editing
In this section we show the following:

Theorem 16. Threshold Editing is NP-complete, even on split graphs.

A boolean formula ϕ is in 3-CNF-SAT if it is in conjunctive normal form and each
clause has at most three variables. Our hardness reduction is from the problem
3Sat, where we are given a 3-CNF-SAT formula ϕ and asked to decide whether ϕ
admits a satisfying assignment. We will denote by Cϕ the set of clauses, and
by Vϕ the set of variables in a given 3-CNF-SAT formula ϕ. An assignment for
a formula ϕ is a function α : Vϕ → {true, false}. Furthermore, we assume we
have some natural lexicographical ordering <lex of the clauses c1, . . . , c|Cϕ| and the
same for the variables v1, . . . , v|Vϕ|, hence we may write, for some variables x and y,

1It has somehow been folklore that Chordal Editing is NP-complete. Natanzon [Nat99],
Natanzon, Shamir, and Sharan [NSS01], Sharan [Sha02] all cite private communication with
Ben-Dor 1996. I have been unable to locate a proof for the NP-completeness of Chordal
Editing in the literature, and therefore choose to include the observation.
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vc1

c1 = x ∨ y

vc2
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Figure 13.1: The connections between clause gadgets and variable gadgets. All the
vertices on the top (the variable vertices) belong to the clique, while the vertices
on the bottom (the clause vertices) belong to the independent set. The vertices in
the left part of the clique has higher degree than the vertices of the right part of
the clique, whereas the clause vertices (in the independent set) will all have the
same degree, namely 3 · |Vϕ|.

that x <lex y. To immediately get an impression of the reduction we aim for, the
construction is depicted in Figure 13.1.

Construction. We now want to construct a graph Gϕ and pick a corresponding
integer kϕ so that (Gϕ, kϕ) is a yes-instance of Threshold Editing if and only
if ϕ is satisfiable. We will design Gϕ to be a split graph, so that the split partition
is forced to be maintained in any threshold graph within distance kϕ of Gϕ, where
kϕ = |Cϕ| · (3|Vϕ| − 1).

Given ϕ, we first create a clique of size 6|Vϕ|. To each variable x ∈ Vϕ, we
associate six vertices of this clique, and order them in the following manner

vxa , v
x
b , v

x
⊥, v

x
>, v

x
c , v

x
d .

We will throughout the reduction refer to this ordering as πϕ: πϕ is a partial order
which has

vxa <πϕ v
x
b <πϕ v

x
>, v

x
⊥ <πϕ v

x
c <πϕ v

x
d ,

and for every two vertex vx? and vy? with x <lex y, we have vx? <πϕ v
y
? . Observe

that we do not specify which comes first of vx> and vx⊥—this is the choice that will
result in the assignment α for ϕ.

We enforce this ordering by adding O(k2
ϕ) vertices in the independent set;

Enforcing that v1 comes before v2 in the ordering is done by adding kϕ + 1 vertices
in the independent set incident to all the vertices coming before v1, including v1.
Since swapping the position of v1 and v2 would demand at least kϕ + 1 edge
modifications and kϕ is the intended budget, in any yes-instance, v1 ends up
before v2 in the ordering of the clique.
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3|V| − 1
3|V|
3|V|+ 1

Satisfying literals

Figure 13.2: The cost with which we charge a clause vertex depends on the cut-off
point; The x-axis denotes the point in the lexicographic ordering which separates
the vertices adjacent to the clause vertex from the vertices not adjacent to the
clause vertex.

We proceed adding the clause gadgets; For every clause c ∈ Cϕ, we add
one vertex vc to the independent set. Hence, the size of the independent set is
O(|Cϕ|+ k2

ϕ). For a variable x occurring in c, we add an edge between vc and vx⊥
if it occurs negatively, and between vc and vx> otherwise. In addition, we make vc
incident to vxb and vxd .

For a variable z which does not occur in a clause c, we make vc adjacent to vzb , vzc ,
and vzd. To complete the reduction, we add 4(kϕ + 1) isolated vertices; kϕ + 1
vertices to the left in the independent set, kϕ + 1 vertices to the right in the
independent set, and kϕ + 1 to the left and kϕ + 1 to the right in the clique. This
ensures that no vertex will move from the clique to the independent set partition,
and vice versa.

Properties of the constructed instance. Before proving Theorem 16, and
specifically Lemma 13.4, we may observe the following, which may serve as an
intuition for the idea of the reduction. When we consider a fixed permutation of
the variable gadget vertices (the clique side), the only thing we need to determine
for a clause vertex vc, is the cut-off point: the point in πϕ at which the vertex vc will
no longer have any neighbors. Observing that no vertex vxi swaps places with any
other vxj for i, j ∈ {a, b, c, d}, and that no vx? changes with vy? for x, y ∈ Vϕ, consider
a fixed permutation of the variable vertices. We charge the clause vertices with the
edits incident to the clause vertex. Since the budget is kϕ = |C| · (3|Vϕ| − 1), and
every clause needs at least 3|Vϕ| − 1, to obtain a solution (upcoming Lemma 13.2)
we need to charge every clause vertex with exactly 3|Vϕ| − 1 edits. Figure 13.2
illustrates the charged cost of a clause vertex.

Observation 13.1. The graph Gϕ resulting from the above procedure is a split
graph and when kϕ = |C| · (3|Vϕ| − 1), if H is a threshold graph within distance kϕ
of Gϕ, H must have the same clique-maximizing split partition as Gϕ.
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Lemma 13.2. Let (Gϕ, kϕ) be a yes-instance to Threshold Editing constructed
from a 3-CNF-SAT formula ϕ with |F | ≤ kϕ a solution. For any clause vertex vc,
at least 3|Vϕ| − 1 edges in F are incident to vc.

Proof. By the properties of πϕ, we know that the only vertices we may change the
order of are those corresponding to v?> and v?⊥. Pick any index in πϕ for which we
know that vc is adjacent to all vertices on the left hand side and non-adjacent to
all vertices on the right hand side. Let Lc be the set of variables whose vertices are
completely adjacent to vc and Rc the corresponding set completely non-adjacent
to vc. By construction, vc has exactly three neighbors in each variable and thus
these variable gadgets contribute 3(|Lc|+ |Rc|) to the budget. If Lc ∪Rc = Vϕ, we
are done, as vc needs at least 3|Vϕ| edits here.

Suppose therefore that there is a variable x whose vertex vxa is adjacent to vc
and vxd is non-adjacent to vc. But then we have already deleted the existing
edge vcvxd and added the non-existing edge vcvxa . This immediately gives a lower
bound on 3(|Vϕ| − 1) + 2 = 3|Vϕ| − 1 edits.

Proof of correctness. We proceed to show that the reduction above is correct,
and henceforth, when F is a set of edges and v a vertex, denote by F (v) the set of
edges in F that are incident with v.

Lemma 13.3. If there is an editing set F of size at most kϕ for an instance (Gϕ, kϕ)
constructed from a 3-CNF-SAT formula ϕ, and |F (vc)| = 3|Vϕ| − 1, then the <lex-
highest vertex connected to vc corresponds to a variable satisfying the clause c.

Proof. From the proof of Lemma 13.2, we may observe that for a clause c to be
within budget, we must choose a cut-off point inside a variable gadget, meaning
that there is a variable x for which vc is adjacent to vxa and non-adjacent to vxd .

We now distinguish two cases, (i) x is a variable occurring (w.l.o.g. positively)
in c and (ii) x does not occur in c. For (i), vc was adjacent to vxb , vx>, and vxd . By
assumption, we add the edge to vxa and delete the edge to vxd . But then we have
already spent the entire budget, hence the only way this is a legal editing, vx> must
come before vx⊥, and hence satisfies vc. See Figure 13.3.

For (ii) we have that vc was adjacent to vxb , vxc , and vxd . Here we, again by
assumption, add the edge to vxa and delete the edge to vxd . This alone costs two
edits, so we are done. But observe that these two edits alone are not enough, hence
if we want to achieve the goal of 3|Vϕ| − 1 edited edges, the cut-off index must be
inside a variable gadget corresponding to a variable occurring in c, i.e. (i) must be
the case.

The above result showed how to obtain a satisfying vertex for each clause from
an editing set. We will now use this to get the full correctness result, which
immediately implies the NP-completeness of Threshold Editing.

Lemma 13.4. A 3-CNF-SAT formula ϕ is satisfiable if and only if (Gϕ, kϕ) is a
yes-instance to Threshold Editing.
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Figure 13.3: The edited version when y satisfies c1. We have added three edges to
the gadget x and deleted three edges to the gadget z, and added the edge to vya and
deleted the edge to vyd , that is, we have edited exactly 3 · 2 + 2 = 3(|V| − 1) + 2 =
3|V| − 1 edges incident to c1. Notice that if vy⊥ was coming before vy>, we would
have to choose a different variable to satisfy c1.

Proof. For the forward direction, let ϕ be a satisfiable 3-CNF-SAT formula where
α : Vϕ → {true, false} is any satisfying assignment, and (Gϕ, kϕ) the Threshold
Editing instance as described above. Furthermore, let π be any permutation of
the vertices of the clique side with the following properties

• for every x <lex y ∈ Vϕ, we have vx? <π v
y
? ,

• for every x ∈ Vϕ, we have vxa <π v
x
b <π v

x
> < vxc <π v

x
d and vxa <π v

x
b <π

vx⊥ < vxc <π v
x
d , and finally

• for every x ∈ Vϕ, we have vx⊥ <π v
x
> if and only if α(x) = false.

We now show how to construct the threshold graph Hπ
ϕ from the constructed

graph Gϕ by editing exactly kϕ = |C| · (3|Vϕ| − 1) edges. For a clause c, let x
be any variable satisfying c. If x appears positively, add every non-existing edge
from vc to every vertex v ≤π vx> and delete all the rest. If x appears negated,
use vx⊥ instead. We break the remainder of the proof in the forward direction into
two claims:

Claim 13.5. Hπ
ϕ is a threshold graph.

Proof of Claim 13.5. Let Gϕ and π be given, both adhering to the above con-
struction. Since Gϕ is a split graph, π a total ordering of the elements in the
independent set part and every vertex of the clique part of Hπ

ϕ sees a prefix of
the vertices of the independent set, their neighborhoods are naturally nested.
Hence Hπ

ϕ is a threshold graph by Proposition 2.20. y

Claim 13.6.
∣∣∣E(Gϕ) M E(Hπ

ϕ)
∣∣∣ = kϕ.
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Proof of Claim 13.6. Since we did not edit any of the edges within the clique part
nor the independent set part, we only need to count the number of edits going
between a clause vertex and the variable vertices. Let c be any clause and x the
lexicographically smallest variable satisfying c. Suppose furthermore, without
loss of generality, that x appears positively in c and has thus α(x) = true. We
now show that |F (vc)| = 3|Vϕ| − 1, and since c was arbitrary, this concludes the
proof of the claim. Since vc is adjacent to exactly three vertices per variable,
and non-adjacent to exactly three vertices per variable, we added all the edges
to the vertices appearing before x and removed all the edges to the vertices
appearing after x. This cost exactly 3(|Vϕ| − 1) = 3|Vϕ| − 3, hence we have
two edges left in our budget for c. Moreover, the edge vcvxa was added and the
edge vcvxd was deleted. Now, c is adjacent to every vertex to the before, and
including, x, and non-adjacent to all the vertices after x. The budget used was
3(|Vϕ| − 1) + 2 = 3|Vϕ| − 1. Hence, the total number of edges edited to obtain Hπ

ϕ

is ∑c∈C 3|Vϕ| − 1 = |C| · (3|Vϕ| − 1) = kϕ. y

This shows that if ϕ is satisfiable, then (Gϕ, kϕ) is a yes-instance of Threshold
Editing.
In the reverse direction, let (Gϕ, kϕ) be a constructed instance from a given 3-
CNF-SAT formula ϕ and let F be a minimal editing set such that Gϕ M F is
a threshold graph and |F | ≤ kϕ. We aim to construct a satisfying assignment
α : Vϕ → {true, false} from Gϕ M F . By Observation 13.1, H = Gϕ M F has the
same split partition as Gϕ. By construction, we have enforced the ordering, πϕ, of
each of the vertices corresponding to the variables. Thus, we know exactly how H
looks, with the exception of the internal ordering of each literal and its negation.
Construct the assignment α as described above, i.e., α(x) = false if and only
if vx⊥ <π v

x
>.

By Lemmata 13.2 and 13.3, it follows directly that α is a satisfying assignment
for ϕ which concludes the proof of the main lemma.

The above lemma shows that there is a polynomial time many-one (Karp) reduction
from 3Sat to Threshold Editing so we may wrap up the main theorem of
this section. Lemma 13.4 implies Theorem 16, that Threshold Editing is
NP-complete, even on split graphs.

For the sake of the next section, devoted to the proof of Theorem 17, we work
on the annotated version of editing to threshold graphs. Recall from Chapter 9.1
that in this problem, we are given a split graph and we are asked to edit the graph
to a threshold graph while respecting the split partition.

Corollary 13.7. Split Threshold Editing is NP-complete.

Proof. Split Threshold Editing is clearly in NP and that the problem is NP-
hard follows immediately from combining Lemma 13.4 with Observation 13.1.

Corollary 13.8. Assuming ETH, neither Threshold Editing nor Split
Threshold Editing are solvable in 2o(

√
k) · poly(n) time.
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Proof. First we note that for any given input instance ϕ of 3Sat, by the definition
of the budget kϕ in the reduction above,

√
kϕ =

√
|Cϕ| · (3|Vϕ| − 1) < |Cϕ|+ 3|Vϕ|.

This implies that an O?(2o(
√
kϕ)) algorithm for either problem would yield an

algorithm solving 3Sat in time 2o(n+m), where n and m here refer to the number
of variables and clauses, respectively, of ϕ, the input instance of 3Sat. This is
in contradiction with the exponential time hypothesis, so we conclude that the
corollary is true.

13.2 NP-hardness of Chain and Chordal Editing

13.2.1 Chain Graphs
A bipartite graph G = (A,B,E) is a chain graph if the neighborhoods of A are
nested (which necessarily implies the neighborhoods of B are nested as well).
Recalling Proposition 2.31, chain graphs are closely related to threshold graphs:
given a bipartite graph G = (A,B,E), if one replaces A (or B) by a clique, the
resulting graph is a threshold graph if and only if G was a chain graph.

It immediately follows from the above exposition that the following problem is
NP-complete. This problem has also been referred to as Chain Editing in the
literature (for instance in the work by Guo [Guo07]).

Input: A bipartite graph G = (A, B, E) and an integer k
Question: Does there exist a set F ⊆ A × B of size at most k such that

G M F is a chain graph?

Bipartite Chain Editing

Observe that in this problem we are given a bipartite graph together with a
bipartition, and are asked to respect the bipartition in the editing set.

Corollary 13.9. The problem Bipartite Chain Editing is NP-complete.

Proof. We reduce from Split Threshold Editing. Recall that to this problem,
we are given a split graph G = (V,E) with split partition (C, I), and an integer k,
and asked whether there is an editing set F ⊆ C × I of size at most k such that
G M F is a threshold graph. Since a chain graph is a threshold graph with the
edges in the clique C removed (Proposition 2.31) it follows that G M F with all
the edges in the clique removed is a chain graph.

Let (G, k) be the input to Split Threshold Editing and let (C, I) be
the split partition. Remove all the edges in C to obtain a bipartite graph G′ =
(A,B,E ′). Now it follows directly from Proposition 2.31 that (G, k) is a yes-
instance to Split Threshold Editing if and only if (G′, k) is a yes-instance to
Bipartite Chain Editing.
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Input: A graph G = (V, E) and a non-negative integer k
Question: Is there a set F of size at most k such that G M F is a chain

graph?

Chain Editing

We now aim to prove the following theorem:

Theorem 17. Chain Editing is NP-complete.

Proof. Reduction from Bipartite Chain Editing. Let G = (A,B,E) be a
bipartite graph and consider the input instance (G, k) of Bipartite Chain
Editing. We now show that adding 2(k + 1) new vertices to G to obtain a
graph G′ = (V,E ′), gives us that (G′, k) is a yes-instance of Chain Editing if
and only if (G, k) is a yes-instance of Bipartite Chain Editing.

Let G = (A,B,E) be a bipartite graph and k a positive integer. Add k + 1
new vertices a1, . . . , ak+1 to A and make them universal to B, and add k + 1
new vertices b1, . . . , bk+1 to B and make them universal to A. Call the resulting
graph G′ = (V,E ′). The following claim follows immediately from the construction.

Claim 13.10. If G′ M F is a chain graph with |F | ≤ k, then G′ M F has bipartition
(A ∪ {a1, . . . , ak+1}, B ∪ {b1, . . . , bk+1}).
It follows that for any input instance (G, k) of Bipartite Chain Editing, the
instance (G′, k) as constructed above is a yes-instance of Chain Editing if and
only if (G, k) is a yes-instance of Bipartite Chain Editing.

Due to the similarity of Chain Editing to Threshold Editing, it should not
be surprising that we obtain similar lower bounds under ETH as we did in the
previous section.

Corollary 13.11. Assuming ETH, there is no algorithm solving neither Chain
Editing nor Bipartite Chain Editing in time 2o(

√
k) · poly(n).

Proof. In both these cases we reduce from Split Threshold Editing with-
out changing the parameter k. Hence this follows immediately from the above
exposition and from Corollary 13.8.

13.2.2 Chordal Graphs
We will now combine our previous result on Chain Editing with the following
observation of Yannakakis to prove Theorem 18. Yannakakis showed [Yan81a],
while proving the NP-completeness of Chordal Completion (more often known
as Minimum Fill-In), that a bipartite graph can be transformed into a chain
graph by adding at most k edges if and only if the cobipartite graph formed by
completing the two sides can be transformed into a chordal graph by adding at
most k edges.
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Input: A graph G and an integer k
Question: Does there exist a set F of at most k edges such that G M F

is chordal?

Chordal Editing

Theorem 18. Chordal Editing is NP-complete.

To prove the theorem, we will first give an intermediate problem that makes the
proof simpler. Let G = (A,B,E) be a cobipartite graph. Define the problem
Cobipartite Chordal Editing to be the problem which on input (G, k) asks
if we can edit at most k edges between A and B, i.e., does there exist an editing
set F ⊆ A × B of size at most k, such that G M F is a chordal graph. That is,
Cobipartite Chordal Editing asks for the bipartition A,B to be respected.

Input: A cobipartite graph G = (A, B, E) and an integer k
Question: Does there exist a set F ⊆ A × B of size at most k such that

G M F is a chordal graph?

Cobipartite Chordal Editing

We will use the following observation to prove the above theorem:

Lemma 13.12. If G = (A,B,E) is a bipartite graph, and G′ = (A,B,E ′) is the
cobipartite graph constructed from G by completing A and B, then F is an optimal
edge editing set for Bipartite Chain Editing on input (G, k) if and only if F
is an optimal edge editing set for Cobipartite Chordal Editing on input
(G′, k).

Proof. Let F be an optimal editing set for Bipartite Chain Editing on input
(G, k) and suppose that G′ M F has an induced cycle of length at least four.
Since G′ is cobipartite, it has a cycle of length exactly four. Let 〈a1, b1, b2, a2〉 be
this cycle. But then it is clear that a1b1, a2b2 forms an induced 2K2 in G M F ,
contradicting the assumption that F was an editing set.

For the reverse direction, suppose F is an optimal edge editing set for Cobi-
partite Chordal Editing on input (G′, k) only editing edges between A and B.
Suppose for the sake of a contradiction that G M F was not a chain graph. Since F
only goes between A and B, G M F is bipartite and hence by the assumption
must have an induced 2K2. This obstruction must be of the form a1b1, a2b2, but
then 〈a1, b1, b2, a2〉 is an induced C4 in G′ M F which is a contradiction to the
assumption that G′ M F was chordal. Hence G M F is a chain graph.

Corollary 13.13. Cobipartite Chordal Editing is NP-complete.

We are now ready to prove Theorem 18, that Chordal Editing is NP-complete.
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Proof of Theorem 18. Let G = (A,B,E) be a cobipartite graph and (G, k) the
input to Cobipartite Chordal Editing. Our reduction is as follows. Create
G′ = (A′ ∪B′, E ′) as follows:

• A′ = A ∪ {a1, a2, . . . , ak+1},

• B′ = B ∪ {b1, b2, . . . , bk+1},

• E ′ = E ∪ ⋃i≤k+1,b∈B′{aib} ∪
⋃
i,j≤k+1{aiaj, bibj}

Finally, we create G′′ as follows. For every edge aiaj create k + 1 new vertices
adjacent to only ai and aj , and for every edge bibj create k+1 new vertices adjacent
to only bi and bj This forces none of the edges in A′ and in B′ to be removed.
Claim 13.14. The instance of Chordal Editing (G′′, k) is equivalent to the
instance (G, k) to Cobipartite Chordal Editing.

Proof of claim. The proof of the above claim is straight-forward. If we delete
an edge within A (resp. B), we create at least k + 1 cycles of length 4, each of
which uses at least one edge to delete, hence in any yes-instance, we do not edit
edges within A (resp. B). Furthermore, every chordal graph remains chordal when
adding a simplicial vertex, which is exactly what the k + 1 new vertices are. y

From the claim it follows that (G′′, k) is a yes-instance to Chordal Editing if
and only if (G, k) is a yes-instance to Cobipartite Chordal Editing. The
theorem follows immediately from Corollary 13.13.

Also here we get lower bounds similar to what we got from Threshold Editing:

Corollary 13.15. Assuming ETH, there is no algorithm solving Chordal Edit-
ing in time 2o(

√
k) · poly(n).



Chapter 14

Trivially perfect graphs and
cographs

In this section we show that Trivially Perfect Editing is NP-hard, and fur-
thermore not solvable in subexponential parameterized time unless the exponential
time hypothesis fails. The NP-hardness of the problem was established by Nastos
and Gao [NG13] independently. However, their reduction [NG13, Theorem 3.3]
starts with an instance of Exact 3-Cover with universe of size n and a set family
of size m, and constructs an instance (G, k) of Trivially Perfect Editing
with k = Θ(mn2). Thus, the parameter blow-up is at least cubic, and the reduction
cannot be used to establish the non-existence of a subexponential parameterized
algorithm under ETH.

Theorem 19. Trivially Perfect Editing is NP-complete and, under ETH,
cannot be solved in time 2o(k) poly(n) nor 2o(n+m), even on graphs with maximum
degree 4.

Here, we give a direct, linear reduction from 3Sat to Trivially Perfect
Editing. Furthermore, the resulting graph in our reduction has maximum degree
four. Thus, we in fact prove that even on input graphs of maximum degree four,
Trivially Perfect Editing remains NP-hard, and that it does not admit a
subexponential parameterized algorithm unless ETH fails. Formally, the following
lemma will be proved, where, as in the previous chapter, for an input formula ϕ
of 3Sat, by Vϕ and Cϕ we denote the variable and clause sets of ϕ, respectively:

Lemma 14.1. There exists a polynomial-time reduction that, given an instance ϕ
of 3Sat, returns an instance (Gϕ, kϕ) of Trivially Perfect Editing such that
ϕ is satisfiable if and only if (Gϕ, kϕ) is a yes-instance. Furthermore, |V (Gϕ)| =
13|Cϕ|, |E(Gϕ)| = 18|Cϕ|, kϕ = 5|Cϕ|, and ∆(Gϕ) = 4.

Lemma 14.1 clearly implies Theorem 19, and its conclusion follows from the reduc-
tion by an application of Proposition 2.41. Hence, we are left with constructing
the reduction, to which the rest of this section is devoted. Our approach is similar
to the technique used by Komusiewicz and Uhlmann to show the hardness of a

171
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Figure 14.1: Gadget c = x ∨ ¬y ∨ z. The clause c is now the second clause all
variables x, y, and z appear in, and x and z appears positively whereas y appears
negatively.

similar problem, Cluster Editing [KU12]; However, the gadgets are tailored to
work for the Trivially Perfect Editing problem.

We will in the very end prove that the reduction given below is already alone
sufficient to show that none of the edge modification problems towards cographs
are solvable in subexponential time either, unless the exponential time hypothesis
fails.

14.1 Trivially perfect graphs
Let ϕ be the input instance of 3Sat. By standard modifications of the formula
we may assume that every clause contains exactly three literals, all containing
different variables, and that every variable appears in at least two clauses, and we
again assume some lexicographical ordering. For a variable x ∈ Vϕ, let px > 1 be
the number of occurrences of x in the clauses of ϕ. Observe that ∑x∈Vϕ

px = 3|Cϕ|.
Now, for every x ∈ Vϕ we create a variable gadget, and for every c ∈ Cϕ we create
a clause gadget.

Variable gadget. For x ∈ Vϕ, construct a graph Gx isomorphic to C3px , a cycle
on 3px vertices. The vertices of Gx are labeled ⊥xi ,>xi ,^x

i for i ∈ [0, px− 1], in the
order of their appearance on the cycle. We then add a vertex Pxi adjacent to >xi
and ⊥xi , for each i ∈ [0, px − 1], see Figure 14.1. Formally, the vertices Pxi do not
belong to Gx, but they will be used to wire variable gadgets with clause gadgets.
This concludes the construction of the variable gadget, and it should be clear that
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Figure 14.2: Edited gadget of c = x ∨ ¬y ∨ z where α(x) = true, α(y) = true
and α(z) = false and x has been chosen (no choice, really) to satisfy c. Notice
the formation of paws, except the one incident to c which induces a cricket.

the number of created vertices and edges is bounded linearly in px—more precisely,
we created 4px vertices and 5px edges.

For the sake of later argumentation, we now define the deletion set Fα
x for Gx.

If, in an assignment of variables α : Vϕ → {false, true}, we have α(x) = true,
then we let Fα

x be the set consisting of every edge of the form ^x
i⊥xi+1 mod px

for
i ∈ [0, px − 1]. If, on the other hand, α(x) = false, we define the deletion set Fα

x

to be the set comprising the edges >xi ^x
i for i ∈ [0, px − 1], see Figure 14.2. We

will later show that these are the only relevant editing sets of size at most px
for Gx.

Clause gadget. The clause gadgets are very simple. A clause gadget consists
simply of one vertex, i.e., for a clause c ∈ Cϕ construct the vertex vc. This vertex
will be connected to Gx, Gy and Gz, for x, y, and z being the variables appearing
in c, in appropriate places, depending on whether the variable occurs positively or
negatively in c. More precisely, if c is the ith clause x appears in, then we make vc
adjacent to >xi provided that x appears positively in c, and to ⊥xi provided that x
appears negatively in c. This concludes the construction of a clause gadget. As
every clause gadget contains one vertex and three edges, the construction of all
the clause gadgets creates |Cϕ| vertices and 3|Cϕ| edges.

The deletion set Fα
c for a clause gadget and a satisfying assignment α : Vϕ →

{false, true} will be as follows. Suppose c = `x ∨ `y ∨ `z, where the literals `x, `y,
and `z contain variables x, y, and z, respectively. Pick the lexicographically first
literal satisfying c, say `x, and delete the two other edges in the connection, i.e.,
the two edges connecting vc with vertices of Gy and Gz. Thus vc remains a vertex
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of degree 1, adjacent to a vertex of Gx.
Let Gϕ be the constructed graph. We set the budget for edits to

kϕ = ∑
x∈Vϕ

px + 2|Cϕ| = 5|Cϕ|.

Observe also that

|V (Gϕ)| = ∑
x∈Vϕ

4px + |Cϕ| = 13|Cϕ|,
|E(Gϕ)| = ∑

x∈Vϕ
5px + 3|Cϕ| = 18|Cϕ|,

and that ∆(Gϕ) = 4. Thus, all the technical properties stated in Lemma 14.1 are
satisfied, and we are left with proving that (Gϕ, kϕ) is a yes-instance of Trivially
Perfect Editing if and only if ϕ is satisfiable.

Before we state the main lemma, we give two auxiliary observations that settle
the tightness of the budget:

Claim 14.2. Suppose that a graph H is a cycle on 3p vertices for some p > 1,
and suppose F is an editing set for H. Then |F | ≥ p. Moreover, if |F | = p then F
consists of deletions of every third edge of the cycle.

Claim 14.3. Suppose a graph H is a subdivided claw, i.e., the star K1,3 with
every leg subdivided once (see Figure 14.3a). Furthermore, suppose that F is an
editing set for H. Then |F | ≥ 2. Moreover, if |F | = 2 then F consists of deletions
of two edges incident to the center of the subdivided claw (see Figure 14.3b).

We will prove the two claims in order now. The astute reader should already see
that this implies the tightness of the budget: every editing set needs to include
exactly px edges of every variable gadget Gx (by Claim 14.2), and exactly two
edges incident to every vertex vc (by Claim 14.3). The additional vertices Pxi will
form the degree-1 vertices of subdivided claws created by clause gadgets, and all
the subgraphs in question pairwise share at most single vertices, which means that
any edit can influence at most one of them. This statement is made formal in the
proof of Lemma 14.4.

Proof of Claim 14.2. Let 〈v0, v1, . . . , v3p−1〉 be the vertices of H, in their order of
appearance on the cycle. For i = 0, 1, . . . , p− 1, let Ai = 〈v3i, v3i+1, v3i+2, v3i+3〉;
Here and in the sequel, the indices are taken cyclically in a natural manner. Observe
that each Ai induces a P4 in H, hence F ∩ [Ai]2 6= ∅. However, the sets [Ai]2 are
pairwise disjoint for i = 0, 1, . . . , p− 1, from which it follows that |F | ≥ p.

Suppose now that |F | = p. Hence |F ∩ [Ai]2 | = 1 for each i ∈ [0, p− 1], and
there are no edits outside the sets [Ai]2. There are five possible ways for an Ai of
how F ∩ [Ai]2 can look like: It is either a deletion of the edge v3iv3i+1, v3i+1v3i+2,
or v3i+2v3i+3 (henceforth referred to as types D−, D0, and D+, respectively), or
an addition of the edge v3iv3i+2 or v3i+1v3i+3 (henceforth called types C− and C+,
respectively)—the sixth possibility, which has been left out, creates an induced C4.
Observe now that if some Ai has type D−, then Ai+1 also has type D−, or
otherwise a P4 〈v3i+1, v3i+2, v3i+3, v3i+4〉 would remain in the graph. Similarly, if Ai
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Figure 14.3: Vertices in and near clause gadget

has type D+ then Ai−1 also has type D+. Hence, if type D+ or D− appears
for any Ai, then all the Ais have the same type. Observe now that if some Ai
had type C− and C+, then Ai−1 would have to have type D+ and Ai+1 would
have to have type D− or otherwise an unresolved P4 would appear; This is a
contradiction with the previous observations, since types D− and D+ cannot
appear simultaneously. Hence, we are left with only three possibilities: all the Ais
have type D−, or all have type D0, or all have type D+. y

Proof of Claim 14.3. Denote the vertices of H as in Figure 14.3a. Consider the
following three P4s in H:

• 〈a2, a1, v, c1〉,

• 〈b2, b1, v, a1〉, and

• 〈c2, c1, v, b1〉.

Observe that any edge addition in H can destroy at most one of these P4s, and a
deletion of any of edges a1a2, b1b2, or c1c2 also can destroy at most one of these P4s.
Moreover, a deletion of any of the edges incident to the center v destroys only
two of them. We infer that |F | ≥ 2 since no single edit can destroy all three
considered P4s, and moreover if |F | = 2, then F contains at least one deletion
of an edge incident to v, say va1. After deleting this edge we are left with a P5
〈b2, b1, v, c1, c2〉, and it can be readily checked that the only way to edit it to a
trivially perfect graph using only one edit is to delete vb1 or vc1. Thus, any editing
set F with |F | = 2 in fact consists of deletions of two edges incident to v. y

Lemma 14.4. A 3-CNF-SAT formula ϕ is satisfiable if and only if (Gϕ, kϕ) is a
yes-instance of Trivially Perfect Editing.

Proof. Suppose ϕ is satisfiable and let α : Vϕ → {false, true} be a satisfying
assignment. Define the editing set Fα = ⋃

x∈Vϕ
Fα
x ∪

⋃
c∈Cϕ

Fα
c ; Note that F

consists of deletions only. Then we have that |Fα| = kϕ and it can be easily seen
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that G M F is a disjoint union of components of constant size, each being a paw
or a cricket (see Table 2.1 in Section 2.2.5, or simply Figure 14.2). Both these
graphs are trivially perfect, so a disjoint union of any number of their copies is
also a trivially perfect graph. Thus Fα is a solution to the instance (Gϕ, kϕ).

For the reverse direction, let F ⊆ [V (Gϕ)]2 be an editing set such that Gϕ M F
is trivially perfect, and |F | ≤ kϕ. For every x ∈ Vϕ consider the subgraph Gx. For
every c ∈ Cϕ consider the subgraph Gc induced in G by

• the vertex vc;

• the three neighbors of vc, say 2x
ix , 2y

iy , and 2z
iz , where x, y, z are variables

appearing in c and each symbol 2 is replaced by ⊥ or > depending whether
the variable’s occurrence is positive or negative; and

• the vertices Pxix , Pyiy , and Pziz .

Observe that each Gx is isomorphic to a cycle on 3px vertices and each Gc is
isomorphic to a subdivided claw. Moreover, all these subgraphs pairwise share
at most one vertex, which means that sets [V (Gx)]2 for x ∈ Vϕ and [V (Gc)]2 for
c ∈ Cϕ are pairwise disjoint. By Claim 14.2 we infer that |F ∩ [V (Gx)]2 | ≥ px for
each x ∈ Vϕ, and by Claim 14.3 we infer that |F ∩ [V (Gc)]2 | ≥ 2 for each c ∈ Cϕ.
Thus

|F | ≥
∑
x∈Vϕ

px + 2|Cϕ| = kϕ.

Hence, in fact |F | = kϕ and all the used inequalities are in fact equalities: |F ∩
[V (Gx)]2 | = px for each x ∈ Vϕ and |F ∩ [V (Gc)]2 | = 2 for each c ∈ Cϕ. Using
Claims 14.2 and 14.3 again, we infer that F has the following form: it consists
of deletions only, from every cycle Gx it deletes every third edge, and for every
vertex vc it deletes two out of three edges incident to it. In particular, no edit is
incident to any of the vertices Pxi for x ∈ Vϕ and i ∈ [0, px − 1].

Consider now the cycle Gx; We already know that the solution deletes either
all the edges ⊥xi>xi for i ∈ [0, px − 1], or all the edges >xi ^x

i for i ∈ [0, px − 1], or
all the edges ^x

i⊥xi+1 mod px
for i ∈ [0, px − 1]. Observe that the first case cannot

happen, since then we would have an induced P4 〈⊥xi ,Pxi ,>xi ,^x
i 〉 remaining in

the graph—no other edit can destroy it. Hence, one of the latter two cases
happen. Construct an assignment α : Vϕ → {false, true} by, for each x ∈ Vϕ,
putting α(x) = false if all the edges >xi ^x

i are included in F , and α(x) = true
if all the edges ^x

i⊥xi+1 mod px
are included in F . We now claim that α satisfies ϕ.

For the sake of contradiction, suppose that a clause c = `x∨`y∨`z is not satisfied
by α. Let e be the edge incident to vc which has not been removed and suppose
without loss of generality that this edge connects vc with Gx. Suppose further
that `x = x, i.e., x appears positively in c, so e = vc>xi for some i ∈ [0, px − 1].
Since x does not satisfy c, α(x) = false and both edges ^x

i−1 mod px
⊥xi and

⊥xi>xi are not deleted in F—the deleted edge is >xi ^x
i . But then we have the

following induced P4: 〈vc,>xi ,⊥xi ,^x
i−1 mod px

〉, which contradicts the assumption



14.2. COGRAPHS 177

that Gϕ M F is trivially perfect. The case when `x = ¬x, i.e., x appears negatively
in c, is symmetric.

Hence α is indeed a satisfying assignment for ϕ and we are done.

Lemma 14.4 guarantees that the reduction is correct, and hence Theorem 19
follows by a straightforward application of Proposition 2.41. We can also observe
that this reduction works immediately for Trivially Perfect Deletion as
well since every optimal edit set consisted purely of deletions (see Claims 14.2
and 14.3).

Corollary 14.5. Trivially Perfect Deletion is NP-complete and, under
ETH, cannot be solved in time 2o(k) poly(n) nor 2o(n+m), even on graphs with
maximum degree 4.

It might be interesting to note here that for p-Trivially Perfect Editing,
editing to a graph with at most p connected components is not likely to be of
help when it comes to subexponential parameterized time algorithms, as adding a
universal vertex to an input graph will have an optimal solution which is connected.
Recall that bounding the number of connected components in the target graph is
exactly what was done to obtain subexponential time algorithms for Cluster
Editing. It could be interesting to see if the above reduction immediately prove
that for the graph class threshold cluster, the class of graph whose connected
components is threshold graphs, editing and deleting towards that graph class have
exactly the same properties as Trivially Perfect Editing and Trivially
Perfect Deletion.

14.2 Cographs
Let us recall that since P4 = P4, the problems Cograph Deletion and Co-
graph Completion are polynomial time equivalent (Fact 2.7). We aim to
show the following theorem, whose proof is a short modification of the proof of
the above theorem, Theorem 19, and the corresponding corollary, Corollary 14.5.
The NP-hardness of Cograph Editing was first shown by Liu, Wang, Guo,
and Chen [LWGC12], however, their reduction from Exact 3-Cover, adapted
from the proof of the NP-hardness of Cograph Deletion by El-Mallah and
Colbourn [EC88] suffers a quadratic blow-up in the parameter, and has Ω(|C|6) ver-
tices, where |C| is the number of sets in the input instance. Hence, this reduction
is unsuitable for showing the kind of lower bounds we are after.

Theorem 20. Cograph Completion, Cograph Deletion, and Cograph
Editing are NP-complete and, under ETH, cannot be solved in time 2o(k) poly(n)
nor 2o(n+m), even on graphs with maximum degree 4.

We first show that the theorem is true for the completion and deletion variants. This
follows immediately from the following observation combined with Corollary 14.5.
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Observation 14.6. Given an instance ϕ of 3Sat, the constructed instance
(Gϕ, kϕ) of Trivially Perfect Editing in the previous section is C4-free.

What remains to show is that even if we allow adding edges, and possibly even
constructing four-cycles, we could just as well have deleted edges and created a
trivially perfect graph within the same budget. The following lemma encapsulates
this, stating that Trivially Perfect Editing and Cograph Editing are
equivalent on the graph class generated by the above reduction from 3Sat.

Lemma 14.7. Given an instance ϕ of 3Sat, (Gϕ, kϕ) is a yes-instance of Triv-
ially Perfect Editing if and only if it is a yes-instance of Cograph Editing
if and only if it is a yes-instance of Cograph Deletion.

Proof. We will show that any cograph editing set of size at most kϕ can be replaced
by a cograph deletion set of size at most kϕ. Hence, we show only that Trivially
Perfect Editing is equivalent to Cograph Editing for the given instance.
The final result will follow immediately. Since trivially perfect graphs are cographs,
the forward direction is correct. We therefore focus on the reverse direction, and
assume henceforth that F is a solution for (Gϕ, kϕ) of Cograph Editing. We
will now show that there is a solution F ′ of Trivially Perfect Editing. There
are two things we need to take care of. First, we simply observe that the proof
of Claim 14.2 immediately shows that for a cycle C3p, we need at least p edits,
and that there exists, for each Gx, a solution of size px, where px is the number
of clauses in which x occurs. This was shown in the proof by considering all the
paths on four vertices of form Ai = 〈v3i, v3i+1, v3i+2, v3i+3〉, and observing that the
sets [Ai]2 are pairwise disjoint, hence one edit is necessary per such occurrence.

If we can show that two edits are necessary per clause gadget, we are done,
that is, we need an equivalent of Claim 14.3 (see also Figure 14.3). It can be
manually verified that for the subdivided claw, however we add an edge, we need
at least two more edits, which means that for the subdivided claw, we need two
deletions. What remains is now to show that the clause gadget will indeed live in
a subdivided claw. But since the cycle C3p needs p edits, clearly in Gx, we cannot
afford to delete any of the edges in the appended triangle. Hence the clause gadget
will live in a subdivided claw after optimally editing all variable gadgets.

We showed that whenever there is a solution, there is a solution only deleting
edges. Hence, since Gϕ does not contain any four-cycles, all of the problems
Trivially Perfect Editing, Trivially Perfect Deletion, Cograph
Editing, and Cograph Deletion are equivalent on input (Gϕ, kϕ).

Combining Lemma 14.7 above with Lemma 14.4, the theorem of this section
follows. Any subexponential parameterized time algorithm solving any of the
three modification problems towards cographs would break the exponential time
hypothesis.



Chapter 15

C4-free graphs

For every H-free Completion problem that so far turned out to be solvable in
subexponential time, we had the graph C4 in H together with some other graphs:
trivially perfect graphs are the class excluding C4 and P4, threshold graphs are the
class excluding 2K2, C4 and P4, and pseudosplit graphs are the class excluding 2K2
and C4. Previous known subexponentiality results in the area of graph modifica-
tions are: completing to chordal graphs and chain graphs [FV13], completing to
split graphs [GKK+15] and recently, completing to interval graphs [BFPP16] and
proper interval graphs [BFPP14]. All these graph classes are C4-free1.

It is therefore natural to ask whether the C4 is the “reason” for the existence
of subexponential algorithms. However, in this chapter we show that excluding C4
alone is not sufficient for achieving a subexponential time algorithm.

15.1 C4-free deletion
In this section we show that C4-free Deletion, or 2K2-free Completion, is
NP-complete and not solvable in subexponential time. We will refer to an induced
C4 as a 4-cycle, or sometimes simply a four-cycle.

Input: A graph G and an integer k
Question: Does there exist a set F of at most k edges such that G − F

is C4-free?

C4-free Deletion parameterized by k

We show the following theorem.

Theorem 21. C4-free Deletion, or 2K2-free Completion is NP-complete
and, under ETH, cannot be solved in time 2o(k) poly(n) nor 2o(n+m).

1Even p-Cluster Editing and p-Starforest Editing are C4-free. The only problem
even resembling an exception is p-Bicluster Editing; C4 is a biclique. However, this problem
is not an H-free Editing problem for any H since p-bicluster graphs are not hereditary.

179
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(a) The variable gadget Gx for
a variable x with three occur-
rences of C4. The edge txpx is
the true edge and the edge txnx

is the false edge. All C4s of Gx

can be eliminated by removing
the true or the false edge.
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(b) The clause gadget Gc for
a clause c has three occur-
rences of C4, which can be
eliminated by removing two of
the variable-edges, the thick
edges in the figure.

Figure 15.1: Variable (left) and clause (right) gadgets used in the reduction.

Of the two equivalent problems, deletion towards C4-free graphs and completion
towards 2K2-free graphs, we find it much more convenient to show the hardness
of C4-free Deletion. Dealing with 2K2-free graphs is rather painful.

Construction. We reduce from 3Sat using the gadgets in Figure 15.1. Let ϕ be
an instance of 3Sat. We construct the instance (Gϕ, kϕ) for C4-free Deletion
and we begin by defining the graph Gϕ. For every variable x ∈ Vϕ, we construct a
variable gadget graph Gx. The graph Gx consists of six vertices wx0 , wx1 , wx2 , nx
(for negative), px (for positive), and tx. The three vertices wx0 , wx1 and wx2 will
induce a triangle whereas nx and px are adjacent to the vertices in the triangle
and to tx. We can observe that the four vertices nx, tx, px, wxi induce a C4 for
i = 0, 1, 2, and that no other induced C4 occurs in the gadget (see Figure 15.1a).
It can also be observed that by removing either one of the edges nxtx and pxtx,
the gadget becomes C4-free. We will refer to the edge txpx as the true edge and
to txnx as the false edge. These edges are the thick edges in Figure 15.1a. This
concludes the variable gadget construction.

For every clause c ∈ Cϕ, we construct a clause gadget graph Gc as follows.
The graph Gc consists of two triangles, ac0, ac1, ac2 and bc0, b

c
1, b

c
2. We also add

the edges ac0bc0, ac1bc1, and ac2b
c
2. These three latter edges will correspond to the

variables contained in c and we refer to them as variable-edges (the thick edges
in Figure 15.1b). No more edges are added. The clause gadget can be seen in
Figure 15.1b. Observe that there are exactly three induced C4s in Gc, all of
the form aci , a

c
i+1, b

c
i+1, b

c
i for i = 0, 1, 2, where the indices are taken modulo 3.

Moreover, removing any two edges of the form acib
c
i for i = 0, 1, 2 eliminates all

the induced C4s contained in Gc.
To conclude the construction, we give the connections between variable gadgets

and clause gadgets that encode literals in the clauses (see Figure 15.2). If a
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Figure 15.2: The connections for a clause c = x ∨ ¬y ∨ z. For the negated
variable, ¬y, we connect the clause gadget to ny and ty, whereas for the variables in
the non-negated form we have the clause connected to the t and p vertices. Observe
that a budget of five is sufficient and necessary for eliminating all occurrences
of C4 in the depicted subgraph.

variable x appears in a non-negated form as the ith (for i = 0, 1, 2) variable in a
clause c, we add the edges txaci and pxbci . If it appears in a negated form, we add
the edges txaci and nxbci . The connections can be seen in Figure 15.2. Observe
that we get exactly one extra induced C4 in the connection, and that this can be
eliminated by removing either one of the thick edges.

This concludes the construction. We have now obtained a graph Gϕ constructed
from an instance ϕ of 3Sat. We let kϕ = |Vϕ|+2|Cϕ| be the allowed (and necessary)
budget, and the instance of C4-free Deletion is then (Gϕ, kϕ). The above
exposition, with the tightness of the budget in mind, can be summarized in two
observations.

Observation 15.1. In any solution F of an instance (Gϕ, kϕ),

• for each variable gadget Gx, exactly one of nxtx and txpx is contained in F ,
and

• for each clause gadget Gc exactly two of the three edges {ac0bc0, ac1bc1, ac2bc2} are
in F .
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We now proceed to prove the following lemma, which will give the result.

Lemma 15.2. A given 3Sat instance ϕ has a satisfying assignment if and only
if (Gϕ, kϕ) is a yes-instance of C4-free Deletion.

Proof. Let ϕ be satisfiable and Gϕ and kϕ be as above. We show that (Gϕ, kϕ) is a
yes-instance for C4-free Deletion. Let α : Vϕ → {true, false} be a satisfying
assignment for ϕ. We now define a solution Fα

ϕ . For every variable x ∈ Vϕ, if
α(x) = true, add to Fα

ϕ , from the variable gadget Gx, the edge corresponding to
true, that is, the edge txpx; otherwise add to Fα

ϕ the edge corresponding to false,
that is, the edge txnx. Every clause c ∈ C is satisfied by α; we pick an arbitrary
variable x, say, the lexicographically first, whose literal satisfies c and add to Fα

ϕ

two edges corresponding to the two other literals. If a clause is satisfied by more
than one literal, we pick any of the corresponding variables.

For every clause, Fα
ϕ contains exactly two edges and for every variable exactly

one edge. Thus the total number of edges in Fα
ϕ is 2|Cϕ|+ |Vϕ| = kϕ. We argue

now that the graph Gα
ϕ = Gϕ − Fα

ϕ is C4-free. Since variables appearing in clauses
are pairwise different, it can be easily observed that every induced cycle of length
four in Gϕ is either

• entirely contained in some clause gadget, or

• entirely contained in some variable gadget, or

• is of form txγxbcia
c
i , where x is the ith variable of clause c, and γ ∈ {n, p}

denotes whether the literal in c that corresponds to x is negated or non-
negated.

By the construction of Gα
ϕ, we destroyed all induced 4-cycles of the first two types.

Consider a 4-cycle 〈tx, px, bci , aci〉 of the third type, where x appears positively in
clause c. In the case when the literal of variable x was not chosen to satisfy c,
we have deleted the edge acibci and so this 4-cycle is removed. Otherwise we have
without loss of generality that α(x) = true, and we have deleted the edge txpx,
thus also removing the considered 4-cycle. The case of a 4-cycle of the form
〈tx, nx, bci , aci〉 is symmetric.

Thus we get that all the induced 4-cycles that were contained in Gϕ have been
removed in Gα

ϕ. Since vertex pairs (aci , bci) and (γx, tx) for γ ∈ {n, p} do not have
common neighbors, it follows that no new C4 could be created when obtaining Gα

ϕ

from Gϕ by removing edges as described above. We infer that Gα
ϕ is indeed C4-free.

We now prove the reverse direction. Let F be an edge set of Gϕ of size at most kϕ
such that Gϕ−F is C4-free. By the definition of the budget kϕ and the observation
that every variable gadget needs at least one edge to be in F and every clause
gadget needs at least two edges to be in F (note here that the edge sets of clause
and variable gadgets are pairwise disjoint), we have that F contains exactly one
edge from each variable gadget, exactly two edges from each clause gadget, and no
other edges.



15.2. C4-FREE COMPLETION 183

We construct an assignment α : Vϕ → {true, false} for the formula ϕ as
follows. For a variable x ∈ Vϕ, we let α(x) = true if the true edge txpx of Gx

is in F , and α(x) = false otherwise. By Observation 15.1, it follows that
if α(x) = false, then the false edge, txnx of Gx is in F . We claim that the
assignment α satisfies ϕ.

Suppose for the sake of a contradiction that a clause c ∈ C is not satisfied.
Since exactly two edges in the clause gadget Gc are in F , there is a variable x in c
such that the corresponding variable-edge of Gc is not in F . If α(x) = true, then
because c is not satisfied, we have that ¬x ∈ c. By the definition of α we have
that the false edge of Gx does not belong to F . Then in Gϕ, the false edge of Gx

and the variable-edge of Gc corresponding to x form part of an induced C4 that is
not destroyed by F , a contradiction. The case α(x) = false is symmetric. This
concludes the proof of the lemma.

Finally, the proof of Theorem 21 follows from Lemma 15.2: Combining the pre-
sented reduction with an algorithm for C4-free Deletion working in 2o(k) poly(n)
time would yield an algorithm which solves 3Sat in 2o(n+m) time, which con-
tradicts ETH by the results of Impagliazzo, Paturi and Zane [IPZ01]. Since
|V (Gϕ)| = 6|Vϕ|+ 6|Cϕ|, and |E(Gϕ)| = 11|Vϕ|+ 9|Cϕ|+ 6|Cϕ|, we also get lower
bounds of the type 2o(n+m) for C4-free Deletion.

15.2 C4-free completion
We mentioned in the part on subexponential time algorithms that it seems more
completion problems have subexponential time algorithms more often than the
deletion problems. So it could still be that the C4-free Completion could be
solvable in subexponential time. Unfortunately, that is not the case as we now
show. C4-free Completion is NP-complete and not solvable in subexponential
time unless the exponential time hypothesis fails.

Input: A graph G and an integer k
Question: Does there exist a set F of at most k edges such that G + F

is C4-free?

C4-free Completion parameterized by k

Theorem 22. C4-free Completion, or 2K2-free Deletion is NP-complete
and, under ETH, cannot be solved in time 2o(k) poly(n).

The observant reader may observe that the theorem leaves out one thing several of
the other theorems contained; We do not show lower bounds of the form 2o(n+m).
The reason, as will be clear during the construction, is that the clause gadget is
not of constant size; the graph will have size Ω(|Cϕ|2). It is not hard to imagine
that using 4Sat instead, we could get similar lower bounds as before.
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Figure 15.3: Variable gadget Gx.

(a) Before comple-
tion

(b) True (c) False (d) Differing orienta-
tions

Figure 15.4: The variable gadget Gx, before completion, its two completions
corresponding to assignments and a completion with differing orientations.

Again we reduce from 3Sat, and similarly as before we start with a formula
where each clause contains exactly three literals corresponding to pairwise different
variables. By duplicating clauses if necessary, we also assume that each variable
appears in at least two clauses. Let ϕ be the 3Sat instance. We yet again need
two types of gadgets, one gadget to emulate variables in the formula and one
gadget to emulate clauses. We construct the graph Gϕ as follows:

Variable gadget. For each variable x ∈ Vϕ we construct a variable gadget
graph Gx as depicted in Figure 15.3. Let px be the number of clauses x occurs in;
by our assumption we have that px ≥ 2. The graph Gx consists of a “tape” of 4px
squares arranged in a cycle, with additional vertices attached to the sides of the
tape. The intuition is that every fourth square in Gx is “reserved” for a clause in
which x occurs. Formally, the vertex set of Gx is

V (Gx) =
⋃

0≤i<4px

{uxi , txi , bxi , dxi },

and the edge set is

E(Gx) =
⋃

0≤i<4px

{uxi txi , uxi txi+1, t
x
i u

x
i+1, t

x
i t
x
i+1,

txi b
x
i , b

x
i b
x
i+1, b

x
i d

x
i+1, b

x
i d

x
i , d

x
i b
x
i+1},

where the indices are taken modulo 4px. The letters for the vertices are chosen
to correspond with top and bottom (tx and bx) of tape, and up and down (ux
and dx). The construction is visualized in Figures 15.3 and 15.4a.
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Figure 15.5: The clause gadget Gc. It contains one C4, and if we add either edge
vc1v

c
2 or edge vc3vc4, we get a new C4 that must be destroyed by adding one more

edge. The kϕK2 gadget makes sure we cannot add edge vc4uc4.

Claim 15.3. The minimum number of edges required to add to Gx to make it C4-
free is 4px. Moreover, there are exactly two ways of eliminating all 4-cycles with 4px
edges, namely adding an edge on the diagonal for each square. Furthermore, if we
add one edge to eliminate some cycle, all the rest must have the same orientation,
i.e., all added edges are either of the form txi b

x
i+1 or of the form txi+1b

x
i . See

Figure 15.4.

Proof of claim. A gadget Gx contains 4px induced four-cycles, and no two of them
can be eliminated by adding just one edge. Hence, to eliminate all four-cycles
in Gx, we need at least 4px edges. On the other hand, it is easy to verify that
after adding 4px diagonals to four-cycles of the same orientation the resulting
graph does not contain any induced C4, see Figure 15.4 for examples. Whenever
we have two consecutive cycles with completion edges of different orientation, we
create a new C4 consisting of the two completion edges, and (depending on their
orientation) either two edges incident to vertex uxi above their common vertex, or
two edges incident to vertex dxi below. See Figure 15.4d. y

Corollary 15.4. The minimum number of edges required to eliminate all C4s
appearing inside all the variable gadgets is 12|Cϕ|.

Proof. Since each clause of Cϕ contains exactly three occurrences of variables,
it follows that ∑x∈Vϕ

px = 3|Cϕ|. The constructed variable gadgets are pairwise
disjoint, so by Claim 15.3 we infer that the minimum number of edges required in
all the variable gadgets is equal to ∑x∈Vϕ

4px = 3 · 4|Cϕ| = 12|Cϕ|.

Clause gadget. We now proceed to create the clause gadgets. For each
clause c ∈ Cϕ, we create the graph Gc as depicted in Figure 15.5. It consists of an
induced 4-cycle 〈vc1, vc4, vc2, vc3〉 and induced paths 〈vc2, uc1, uc2, vc1〉 and 〈vc3, uc4, uc3, vc4〉.
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Figure 15.6: The connections for a clause c = x ∨ ¬y ∨ z. In this example, c is
the first clause of appearance for x thus x is connected to Gc via the 0th square.
For y and z, we assume that c is the third clause they appear, thus y and z use
the 8th square.

We also attach a gadget consisting of kϕ internally disjoint induced paths of
four vertices with endpoints in vc4 and uc4, where kϕ is the budget to be specified
later. This makes it impossible to add an edge between vc4 and uc4 in any C4-free
completion with at most kϕ edges.

By the i-th square we mean a four-cycle 〈txi , bxi , txi+1, b
x
i+1〉. If a clause c is the

`-th clause the variable x appears in, we will use the vertices of the 4(` − 1)-st
square for connections to the gadget corresponding to c. For ease of notation let
j = 4(`− 1). We also use pairs {vc1, uc1}, {vc2, uc2}, and {vc3, uc3} of Gc for connecting
to the corresponding variable gadgets. If a variable x appears in a non-negated
form as the ith (for i = 1, 2, 3) literal of a clause c, then we add the edges txj+1v

c
i

and bxjuci . If it appears in a negated form, we add the edges txj vci and bxj+1u
c
i . See

Figure 15.6. This concludes the construction of Gϕ. Finally, we set the budget for
the instance to be kϕ = 14|Cϕ|.

Claim 15.5. For each clause gadget Gc for a clause c ∈ Cϕ, we need to add at least
two edges between vertices of Gc to eliminate all induced C4s in Gc. Moreover,
there are exactly three ways of adding exactly two edges to Gc so that the resulting
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the clause must be
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Figure 15.7: The clause gadget

graph does not contain any induced C4: by adding {vc1vc2, vc1uc1}, {vc1vc2, vc2uc2}, or
{vc3vc4, vc3uc3}.
Proof of claim. There is a four-cycle 〈vc1, vc4, vc2, vc3〉 which needs to be eliminated,
either by adding the edge vc1vc2 (Figure 15.7b) or vc3vc4 (Figure 15.7c). In any case
we create a new C4, either 〈vc1, uc2, uc1, vc2〉 in the former case, and 〈vc4, uc3, uc4, vc3〉 in
the latter case. In the former case we can eliminate the created C4 by adding vc1uc1
or vc2uc2, and in the latter case we can eliminate it by adding vc3uc3. Note that in
the latter case we cannot add vc4uc4, since then we would create kϕ new induced
four-cycles. A direct check shows that all the three aforementioned completion
sets lead to a C4-free graph. y

Lemma 15.6. A 3-CNF-SAT formula ϕ has a satisfying assignment if and only
if (Gϕ, kϕ) is a yes-instance of C4-free Completion, where kϕ = 14|Cϕ|.
Proof. In the forward direction, suppose ϕ is satisfiable with a satisfying assignment
α : Vϕ → {true, false}. For every variable x ∈ Vϕ, if α(x) = true, we add the
edges txi bxi+1 to the completion set Fα for i ∈ {0, . . . , 4px− 1} and if α(x) = false,
we add the edges txi+1b

x
i to Fα for i ∈ {0, . . . , 4px − 1}.

For a clause c in Cϕ, if the first literal satisfies the clause, we add the edges
vc1v

c
2 and vc1u

c
1 to Fα. If the second literal satisfies the clause, we add vc1v

c
2 and

vc2u
c
2 to Fα and if it is the third literal, we add vc3vc4 and vc3uc3 to Fα. If more than

one literal satisfies the clause, we pick any one. In total this makes 12|Cϕ| edges
added to the variable gadgets and 2|Cϕ| edges added to the clause gadgets.

Suppose now for a contradiction that Gϕ + Fα contains a cycle L of length
four. From Claims 15.3 and 15.5 we know that L is not completely contained in
a variable or clause gadget. Each vertex has at most one incident edge ending
outside the gadget of the vertex and such edges are there only between variable and
clause gadgets. Thus L consists of one edge from a variable gadget and one from
a clause gadget and two edges between. We can observe that L then must contain
either vc1uc1, vc2uc2, or vc3uc3 of the clause gadget, see Figure 15.6. Let us assume
without loss of generality that L contains the edge vc1uc1. By the construction of
the set Fα this implies that the literal of the first variable x of c satisfies c. If x
is non-negated in c, then we have that α(x) = true and that vc1txj+1 and uc1bxj are
edges of L. To complete the cycle txj+1b

x
j must be an edge of L; however, by the
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definition of Fα we have added the edge txj bxj+1 to Fα instead of txj+1b
x
j , and we

obtain a contradiction. The case where x is negated is symmetric.
In the reverse direction, suppose (Gϕ, kϕ) is a yes-instance for kϕ = 14|Cϕ| and
let F be such that Gϕ + F is C4-free with |F | ≤ kϕ. By Corollary 15.4 and
Claim 15.5 we know that we need to use at least 12|Cϕ| edges to fix the variable
gadgets and we need to use at least 2|Cϕ| edges for the clause gadgets. Since
|F | ≤ kϕ, we infer that |F | = kϕ, that we use exactly 4px edges to fix each variable
gadget Gx (and that the orientation of the added edges must be the same within
each gadget), that we use exactly two edges for each clause gadget Gc, and that F
contains no edges other than those mentioned above.

We now define an assignment α for Vϕ and prove that it is indeed a satisfying
assignment. If F contains the edge tx0bx1 , we let α(x) = true, and if F contains
the edge tx1bx0 we let α(x) = false. Let c ∈ Cϕ be a clause and suppose that c is
not satisfied by the assignment α. We know by Claim 15.5 that the gadget for c
contains {vc1vc2, vc1uc1}, {vc1vc2, vc2uc2}, or {vc3vc4, vc3uc3}.

Without loss of generality assume that Gc contains {vc1vc2, vc1uc1} and that x is
the first variable in c, and that it appears non-negated. Since x does not satisfy c,
we infer that α(x) = false. This means that tx1bx0 ∈ F , and since the orientation
of the added edges in the gadget Gx is the same, then also txi+1b

x
i ∈ F . As a

result, both edges txi+1b
x
i and vc1uc1 are present in Gϕ + F . But then we have an

induced four-cycle 〈vc1, uc1, bxi , txi+1, v
c
1〉, contradicting the assumption that Gϕ + F

was C4-free. The cases for y, z and negative literals are symmetric. This concludes
the proof.

Similarly as before, the proof of Theorem 22 can be completed as follows: combining
the presented reduction with an algorithm which solves C4-free Completion in
2o(k) · poly(n) time would give an algorithm which solves 3Sat in 2o(n+m) time,
which contradicts ETH by the results of Impagliazzo, Paturi, and Zane [IPZ01].



Chapter 16

Biclusters and starforests

As promised in the part on subexponential time algorithms, we show that if
we do not bound the number of connected components in the target graph—
we refer to this bound as p—there is little chance of obtaining subexponential
time algorithms for the problems Starforest Editing and the more general
Bicluster Editing. When we have a bound on the number of connected
components in the target graph, we refer to these problems as p-Starforest
Editing and p-Bicluster Editing. We finally show that parameterizing
by both p and k is necessary; Parameterized by p alone, it turns out that p-
Starforest Editing is W[1]-hard.

16.1 Hardness for bicluster editing
We first show that Starforest Editing is NP-hard and that we cannot expect
a subexponential algorithm unless the exponential time hypothesis fails. We
again (for the last time) describe a linear reduction from 3Sat. This time to
Starforest Editing. Furthermore, the instance we reduce to has maximal
degree three, thus not only showing that Starforest Editing is NP-complete
on graphs of bounded degree, but also not solvable in subexponential time on
subcubic graphs.
Theorem 23. The problem Starforest Editing is NP-complete and, assuming
ETH, does not admit a subexponential parameterized algorithm when parameterized
by the solution size k, i.e., it cannot be solved in time 2o(k) poly(n), nor in exact
exponential time 2o(n+m), even when restricted to subcubic graphs.
We resort to similar reductions as used in Chapter 14, but the gadgets here are
even simpler. They are also subcubic, so we achieve lower bounds for subcubic
graphs. In Chapter 14 we needed vertices of degree four, but here we manage to
push the degree to three. See Figures 16.1a and 16.1b for figures of the gadgets.

Variable gadget. We construct for x ∈ Vϕ a graph Gx
∼= C6px where px is

the number of clauses in ϕ which x appears in. The vertices of Gx are labeled,
consecutively, >xi ,⊥xi , Axi , Bx

i , C
x
i , D

x
i for i ∈ [0, px − 1].

189
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Gx

c
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p

Dx
p

>x
0

⊥x
0Ax

0

Bx
0

Cx
0
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0

(a) Parts of a variable gadget x
and its connection when occurring
positively in c.

Gx

Gy

Gzc = x ∨ ¬y ∨ z

(b) Deletion when x is chosen to satisfy
the clause. If we chose not to delete
the edge connecting the clause vertex
with Gy we would have gotten an in-
duced P4.

Figure 16.1: Reduction from 3Sat to Starforest Editing on subcubic graphs

There are exactly three ways of deleting Gx into a starforest using at most kx =
6px edges. Clearly a collection of P3s is a starforest and is our target graph. We will
define the >-deletion for Gx as the deletion set F x

> = {Cx
i D

x
i ,⊥xiAxi | i ≤ px − 1}

and the ⊥-deletion for Gx as the deletion set F x
⊥ = {AxiBx

i , D
x
i>xi+1 | i ≤ px − 1},

taking the i+ 1 in the index of >xi+1 modulo px. In other words, in the gadget Gx,
we are keeping the edges in

• 〈Dx
i−1,>xi ,⊥xi 〉 and 〈Axi , Bx

i , C
x
i 〉, when x is set to true, and

• 〈>xi ,⊥xi , Axi 〉 and 〈Bx
i , C

x
i , D

x
i 〉, when x is set to false.

Observe that when x is set to true, we will have paths on three vertices, where >xi
is the middle vertex, and if x is set to false, we will have paths on three vertices
with ⊥xi being the middle vertex. Later, we will see that if x satisfies a clause c,
the ith clause x appears in, then either >xi or ⊥xi will be the middle vertex of a
claw, depending on whether x appears positively or negatively in c.

Observation 16.1. In an optimal edge edit of a cycle of length divisible by 6, no
edge is added and exactly every third consecutive edge is deleted.

Clause gadget. A clause gadget simply consists of one vertex, i.e., for a
clause c ∈ Cϕ, we construct the vertex vc. This vertex will be connected to Gx, Gy

and Gz, for x, y, z being its variables, in appropriate places, depending on whether
or not the variable occurs negated in c. In fact, it will be connected to >xi if c
is the ith clause x appears in, and x appears positively in c, and it is connected
to ⊥xi if c is the ith clause x appears in, and x appears negatively in c.

Let kϕ = 2|C|+ 2∑x px = 2|C|+ 3 · 2|C| = 8|C| be the budget for a formula ϕ.
We now observe that the budget is tight.
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Lemma 16.2. The graph Gϕ has no starforest editing set of size less than kϕ,
and if the editing set has size kϕ it contains only deletions.

Proof. It is straightforward to verify that for each induced variable gadget Gx we
need at least 2px edges. Since every clause contains three variables, we have |C|/3
such gadgets, and their necessary budget sum up to exactly ∑x 2px · 3 = 6|C|.

Since no two consecutive edges inGx will be deleted, by the previous observation,
we have that for each clause, after deleting edges in the variable gadgets, we will
have an induced subdivided claw with the clause vertex as its center, and this
graph needs at least two edits to become a star forest. This can be verified by
observing that we have three induced P5s, and at most two of them can be removed
by one edge edit.

From the above analysis, we can conclude that Gϕ needs at least 6|C| · 2|C| =
8|C| = kϕ edits to become a starforest graph.

We now continue to the main lemma, from which Theorem 23 follows.

Lemma 16.3. A 3Sat instance ϕ is satisfiable if and only if (Gϕ, kϕ) is a yes-
instance of Starforest Editing.

Proof. Suppose ϕ was satisfiable and let α : Vϕ → {false, true} be a satisfying
assignment. We show that G − Fα for Fα defined below is a starforest graph
and that |Fα| ≤ kϕ (since the budget is tight, we have equality). For x ∈ Vϕ we
define Fα

x to be the following set of edges:

• Fα
x = {Cx

i D
x
i ,⊥xiAxi | i ≤ px − 1}, if α(x) = true.

• Fα
x = {AxiBx

i , D
x
i>xi+1 | i ≤ px − 1}, if α(x) = false.

Finally, for a clause c ∈ Cϕ, let xc be a variable satisfying c. Define Fα
c to be the

two edges not incident to xc.
We now show that Fα = ⋃

x∈V F
α
x ∪

⋃
c∈C F

α
c is our solution. It should at this

point be clear that |Fα| ≤ kϕ. Since Gx − Fα
x is a collection of P3s, we only need

to verify that no clause gadget c is in an obstruction. Let c be an arbitrary clause
gadget and let xc be the variable that is still incident to c. Clearly, since c is of
degree 1, it has to be in an obstruction with xc. However, since xc satisfies c,
and (for the moment) assuming that xc appears positively in c, α(x) = true
and from Gx, we deleted Cx

i D
x
i and ⊥xiAxi for every i. Since c connects to some

vertex >xi , the connected component containing c is a claw centered in >xi with
leaves c, Dx

i and ⊥ix. Hence c cannot be in an obstruction. The case when xc
appears negatively is symmetric. This concludes the forward direction of the proof.
For the reverse direction, suppose (Gϕ, kϕ) is a yes-instance of Starforest
Editing and let F be a solution. Since the budget is tight, by the above lemma
and observation, we know that F contains only deletions. There are unique ways
of deleting all the Gxs for the variable gadgets, so construct an assignment for
the variables of ϕ, αF : Vϕ → {false, true} by letting αF (x) = true if for some i,
the edge ⊥xiAxi is deleted, and let αF (x) = false otherwise. We claim that αF
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is a satisfying assignment. Suppose that a clause c is not satisfied by any of its
variables, and consider xc, the variable c is still adjacent to. We know it must be
adjacent to at least one vertex since the budget is tight (not all three edges were
deleted). Suppose xc appeared positively in c (thus the vertex for c is adjacent to
some >xi ). Since G− F is a starforest (recall that F can only contain deletions in
the given budget), we know that in the subgraph Gx to which xc belongs, we must
have deleted the edge ⊥xiAxi , for otherwise, since every third edge is deleted, the
edges Dx

i−1>xi and Cx
i−1D

x
i would remain and form an induced P4, contradicting

the assumption that G− F was a starforest graph. But since ⊥xiAxi was deleted,
by the construction of αF , we set x to true, so x indeed satisfies c contradicting the
initial assumption. The case where xc appears negatively in c is symmetric.

Observing that the maximum degree of Gϕ is three—the clause vertices have
exactly degree three, and the variable gadgets are cycles with some vertices
connected to at most one clause vertex—this concludes the proof of Theorem 23.
From the discussions above, the following result is an immediate consequence:
Corollary 16.4. The problem Starforest Deletion is NP-complete and not
solvable in subexponential time under ETH, even on subcubic graphs.
Before going into parameterized lower bounds of Starforest Editing, we show
that the exact same reduction above simultaneously prove similar results for the
bicluster case. We note that the NP-hardness was shown by Amit [Ami04], but
their reduction suffers a quadratic blowup and is therefore not suitable for showing
subexponential lower bounds.
Corollary 16.5. The problems Bicluster Editing and Bicluster Deletion
are NP-complete and not solvable in subexponential time under ETH, even on
subcubic graphs.
Proof. We show that every optimum solution of (Gϕ, kϕ) for the above con-
structed Gϕ and kϕ will yield a starforest and hence the corollary follows from the
above result. We first show that Observation 16.1 also holds for the Bicluster
Editing case, that is, for budget kx, there is a unique (up to rotation) solution
which consists of deleting every third edge. First, we observe that deleting every
third edge indeed is a solution as starforests are a subclass of biclusters. Second,
we can pack 3px paths of length four such that each pair of P4s share at most one
edge, and such that any edit can eliminate at most two obstructions. Hence we
need at least 2 · 3px = kx edges to eliminate all the P4s. Since the budget is tight
for Gx, we now show that we still need at least two edges to eliminate Gc

Consider a clause-gadget. Since we have the same situation as above, i.e. it
contains three induced P5s, we observe that at least two edits inside the gadget
are necessary. Suppose that one of the edits is an edge addition (needed to make
a biclique that is not a star), then we must use that edge to construct a C4. But
this edit leaves one induced P5 which cannot be resolved by the remaining edit.

By combining the arguments for Gx and Gc, we conclude that (Gϕ, kϕ) is a
yes-instance if and only if ϕ is satisfiable and furthermore that the solution will
only delete edges, thus yielding a starforest.
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16.2 W[1]-hardness parameterized by stars
In this section we show that the parameterization by k is necessary, even for the
case of p-Starforest Editing. That is, we show that when we parameterize
by p alone, the problem becomes W[1]-hard, and we can thus not expect any
algorithms of running time f(p) ·poly(n) for any function f solving p-Starforest
Editing.

Input: A graph G = (V, E) and a non-negative integer k.
Question: Is there a set of at most k edges F such that G M F is a

disjoint union of stars?

p-Starforest Editing parameterized by p

We reduce from the problem Multicolored Regular Independent Set. An
instance of this problem consists of a regular graph colored into p color classes, each
color class inducing a complete graph, and we are asked to find an independent
set of size p.

Proposition 16.6 ([CFK+15]). The problem Multicolored Regular Inde-
pendent Set is W[1]-complete.

Since each color class is complete, any independent set will be of size at most p
and any independent set of size p is maximum. The reduction is direct, in fact we
have that given a budget k = (n− p)(d− 1), where d is the regularity degree, the
following direct translation between the two problems holds:

Lemma 16.7. Let G be a d-regular graph on n vertices, p ≤ n, and fix the budget
k = (n− p)(d− 1). Then (G, p) is a yes-instance of Multicolored Regular
Independent Set if and only if (G, k) is a yes-instance of p-Starforest
Editing.

Proof. In the forward direction, suppose S is an independent set of size p in G.
Then, since S is maximal, every vertex in G − S is adjacent to S. For every
vertex v /∈ S, delete d− 1 edges, but keep one connected to a vertex in S. Since
there are n − p vertices outside S, and since S is an independent set, this is
exactly all the edges we need keep and we obtain a starforest editing with exactly
budget k.

For the reverse direction, let us assume that G does not contain an independent
set of size p. Hence, any set of p centers contains at least one edge; the total
budget needed to edit to a starforest is then at least (n− p)(d− 1) + 1 > k and
hence the answer for (G, k) is no, as well.

Combining Proposition 16.6 with Lemma 16.7 yields the following result:

Theorem 24. p-Starforest Editing is W[1]-hard when parameterized by p.
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Chapter 17

Conclusions and future directions

In this chapter we conclude this thesis by stating some open problems and some
research questions for the future. A summary of all the results in this thesis was
listed in Section 1.6.2. The results following Lewis and Yannakakis’ work on the
complexity of vertex deletion problem [LY80] as well as Yannakakis’ work on the
Minimum Fill-In problem [Yan81a], combined with Fomin and Villanger’s proof
that Minimum Fill-In is solvable in subexponential parameterized time [FV13],
have steadily been steered towards some new lines of research stated below. Some
of the main research questions following this thesis are:

? How far can we push subexponentiality beyond chordal graphs?

? Which graph modification problems admit subexponential parameterized
time algorithms?

? Which graph modification problems admit polynomial kernels?

Future directions

Complexity dichotomies for H-free Completion
Can we come up with general classifications for H, possibly finite, for which

• H-free Completion is NP-complete or in P,

• H-free Completion admits a polynomial kernel,

• H-free Completion is solvable in subexponential parameterized time,

and similar questions for H-free Editing. Some results have recently started
appearing. In a series of preprints, Aravind, Sandeep, and Sivadasan announced
that H-free Deletion, Completion, and Editing is NP-complete if H is
a graph with at least two edges, at least two non-edges, and at least three
vertices, respectively [ASS15a, ASS15b]. This is adding one step towards a better
understanding of the complexity landscape of these problems. For the second

197
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question, many results were achieved by Cai [Cai12] in his Master thesis, which
can be considered a continuation of the work by Guillemot et al. [GHPP13] and
Kratsch and Wahlström [KW13]. For the third question, however, absolutely no
dichotomies or general theorems are known except for the large classes of graphs
we know do not have subexponential parameterized time algorithms according
to ETH. In the aforementioned preprint by Aravind et al. [ASS15a], they do
however show that for the problems mentioned there, a 2o(k) poly(n) lower bound
under ETH should follow. Unfortunately, though, we are nowhere near a broad
understanding of this complexity landscape.

Subexponentiality depends on kernelizability
It seems, with the only possible exception of Interval Completion, that every
graph modification problem solvable in subexponential parameterized time admits
a polynomial kernel. Indeed, in many cases it is a prerequisite for obtaining
the algorithm. Most subexponential parameterized time algorithms of this kind
consists of enumerating sublinear sized sets of vertices, however, to avoid getting
XP-type running times, the domain over which we enumerate must be of size
bounded polynomially in k. In the algorithm for Interval Completion, the
authors get away without a polynomial kernel by only looking at small enough
portions of the input graph at the same time [BFPP16].

Since Cluster Deletion admits a polynomial kernel [CM12], but does
by the lower bounds result of Komusiewicz and Uhlmann [KU12] not have a
subexponential parameterized time algorithm, the reverse direction does not hold.
It is also easy to come up with problems for which there are subexponential
parameterized time algorithms, but no polynomial kernels, unless the polynomial
hierarchy collapses, but these problems are typically not H-free Completions.
Consider the following problem, which we slightly abusively call an Or-H-free
Completion problem:

Input: A graph G and an integer k
Question: Does G have a connected component C such that (C, k) is a

yes-instance of Trivially Perfect Completion?

OR-Trivially Perfect Completion parameterized by k

This problem trivially cross-composes and is clearly NP-complete, so it cannot have
a polynomial kernel unless NP ⊆ coNP/poly. Furthermore, running Trivially
Perfect Completion component-wise on the input graph G solves the problem
in subexponential parameterized time.



199

The square root phenomenon: Chordal graphs
All our results on subexponential parameterized time algorithms have been for
graph classes closely related to chordal graphs, that is, every graph class for
which modifying towards have been subclasses of chordal graphs. There is a
minor exception in the case of pseudosplit graphs. The pseudosplit graphs (see
Section 2.2, Proposition 2.19), are not chordal, however, they can be represented
as split graphs, which are chordal, plus n extra bits of information.

There is another exception in the problem p-Bicluster Editing. Recall that
for a fixed p, we can solve this problem in 2O(

√
k log k) + poly(n) time (Theorem 14).

However, this graph class is neither chordal nor co-chordal since C4 is a bicluster
and since 2K2 = C4 is a bicluster. But, here the situation may still be salvaged
by arguing that p-Bicluster Editing is not definable as an H-free Editing
problem. The graph class p-bicluster—contrary to the class of p-cluster graphs—is
not hereditary; removing the center vertex of a 1-starforest may result in a graph
with arbitrarily many components.

So the interesting question is, for H-free Editing and H-free Completion,
are there H-free graph classes unrelated to chordal graphs for which any of the two
problems above are NP-complete and solvable in subexponential parameterized
time? This question is also related to the third complexity dichotomy for H; for
whichH isH-free Completion andH-free Editing solvable in subexponential
parameterized time.

Subexponential for targets with few components
As we have discussed in several occasions throughout this thesis (see e.g. Sec-
tion 1.5), Fomin et al. [FKP+14], discovered that upon bounding the number of
connected components in the target graph by p, they could obtain subexponential
time algorithms for the problem p-Cluster Editing. Such results are ruled out
for Cluster Editing under ETH. Misra et al. [MPS13] showed that this parame-
ter does not always help in the aim of obtaining subexponential time algorithm; it
does not for p-Club d-Cluster Editing. We saw also in Chapters 12.1 and 16.1
that it does help for Bicluster Editing. Allowing arbitrarily many components
in the target graph gives 2o(k) poly(n) lower bounds under ETH, whereas bounding
this number gives 2O(p

√
k log(pk)) + poly(n) results.

Now, it is clear that bounding the number of components in the target for
trivially perfect graphs does not help; If a graph class is closed under adding
universal vertices, by adding a universal vertex to an input instance, any optimal
solution will always be connected. An interesting question is to figure out exactly
when bounding the number of connected components in the solution helps, and
when not.
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Some concrete important open problems

Classical complexity
Open problem 1. What are sufficient and necessary conditions for H-free
Deletion to be NP-hard for finite H?

Open problem 2. What are sufficient and necessary conditions for H-free
Editing to be NP-hard for finite H?

Here, we should always keep in mind that (Pseudo)Split Editing is polynomial
time solvable [HS81].

Open problem 3. Is Pseudosplit Editing solvable in linear time?

One place to start is to see whether one can read directly from the degree sequence
the C, S, I-partitioning of the closest solution.

Polynomial kernels
Claw-free and line graphs. From the Master thesis of Cai [Cai12], some of
the interesting remaining open questions are H-free Deletion for stars. Denote
by Sn the star on n vertices, i.e., K1,n−1. It is well known that S3 = K1,2 = P3 does
admit a 2k vertex kernel, being the Cluster Deletion problem. On the other
side, Cai [Cai12] showed that S11-free Deletion does not admit a polynomial
kernel unless NP ⊆ coNP/poly.

Hence there is a large gap for H being S4, the claw, up to S10. Closing
this gap is an interesting theoretical question. Recall that P` and C` have the
corresponding edge modification problems admitting polynomial kernels if and
only if the forbidden structure has at most three edges. Does the same hold for
the stars?

Open problem 4. Does claw-free Deletion admit a polynomial kernel?

In a recent article, Cygan et al. [CPP+15] show, using an overall strategy similar to
what we did for Trivially Perfect Editing, that deleting to {claw,diamond}-
free graphs admits a polynomial kernel. This might seem like an arbitrary graph
class but is not; These are the line graphs of triangle-free graphs [MT03, KS12].
This is also, as they argue, a first important step towards deletion to claw-free
graphs; They highlight the next obstacle for obtaining a polynomial kernel (X is
here a vertex modulator):

Thus, we believe that for the sake of showing a polynomial kernel for
claw-free Deletion, one needs to understand the three special
cases when G−X is (a) a line graph, (b) a proper interval graph, and
(c) a co-bipartite graph. [CPP+15]
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Aravind and Sandeep [SS15] improve the size of the polynomial kernel of diamond-
free Deletion by Cai [Cai12], and ask

Open problem 5. Does paw-free Deletion admit a polynomial kernel?

See Table 2.1 for definitions of the paw and the diamond. The paw is a claw plus
an edge, and the diamond is a K4 minus an edge. A graph G is a paw-free graph if
and only if each component of G is triangle-free or complete multipartite [Ola88].

An interesting first attempt to tighten the bound between S3 and S11 might
be S7-free Deletion. The reason why this might be interesting comes from
considering the graph HKW, which is obtained from S7 by adding two non-incident
edges. The problem HKW-free Deletion does not admit a polynomial kernel
unless NP ⊆ coNP/poly [KW13].

Open problem 6. Can we show that S7-free Deletion does not admit a
polynomial kernel unless NP ⊆ coNP/poly?

A graph class slightly related to claw-free graphs are the line graphs. The class of
line graph is characterized by nine forbidden induced subgraphs, the claw being
one of them.

Open problem 7. Does Line Deletion admit a polynomial kernel?

Interval graphs. The question of the parameterized complexity of Interval
Completion was first asked in a FOCS paper in 1994 and then in a journal
version by the same authors, Kaplan, Shamir, and Tarjan in 1999 [KST99]. This
was answered in the positive more than a decade later by Villanger, Heggernes,
Paul, and Telle [VHPT09]. In 2014, Bliznets, Fomin, Pilipczuk, and Pilipczuk
showed that Interval Completion is solvable in subexponential parameterized
time [BFPP16]. This is the first subexponential parameterized time algorithm for
such a problem given without relying on a polynomial kernelization. To this date
the kernelization complexity of this problem is wide open.

Open problem 8. Does Interval Completion admit a polynomial kernel.

There is currently a large gap in our knowledge of Chordal Editing. The
problem was just recently proved to be FPT by Cao and Marx [CM14], but they
give a kk-type algorithm. In Section 13.2.2, we saw a lower bound of the type
2o(
√
k) · poly(n) using ETH. There is a big gap between

2O(k log k) poly(n) and 2o(
√
k) poly(n).

What is the correct bound? Is it 2Θ(k) poly(n)? In addition to the question in
light of the optimality programme question, there is a question of whether the
problem admits a polynomial kernel.
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Open problem 9. Does Chordal Editing admit a polynomial kernel?

Finally, the following problem is still a valid and interesting problem, despite
that we know that the problems have co-RP kernels [KW14] (see Section 1.4).
Providing randomized kernels demanded completely new tools for these problems,
namely applying matroid theory for preprocessing. This has already sparked new
research directions, and there is a hope that the same thing may happen for the
deterministic version.

Open problem 10. Do Odd Cycle Transversal and Edge Bipartization
admit deterministic polynomial kernels?

Subexponential time
Of all the H-free Completion problems we know to be solvable in subexponen-
tial parameterized time, only one is known to be solvable in time 2O(

√
k) poly(n):

Split Completion [CFK+15]. In addition, only one is not known to be solvable in
time 2O(

√
k log k) poly(n), namely Proper Interval Completion. A natural next

step in the optimality programme is to improve the 2O(k2/3 log k) +poly(n) algorithm
by Bliznets et al. [BFPP14] to an algorithm running in time 2O(

√
k log k) poly(n).

In light of the optimality programme and the few lower bounds we have for these
graph problems, a most interesting question is “what are the correct running
times?”

As stated above, Fomin and Villanger [FV13] noticed that under ETH, we
cannot solve Chordal Completion in time 2O(k1/6) poly(n). Bliznets et al.
recently improved this to a lower bound on the form

2O(k1/4/ logc k) · poly(n),

for some integer c, simultaneously providing lower bounds for the problems Inter-
val Completion, Proper Interval Completion, Threshold Completion,
Chain Completion, and Trivially Perfect Completion [BCK+16]. Under
the assumption that there is no subexponential-time approximation scheme for
Min Bisection on d-regular graphs, they give stronger bounds of the form
2o(
√
k) poly(n) for all of those problems as well.

Open problem 11. Is Chordal Completion solvable in 2O(
√
k) ·poly(n) time?

Open problem 12. Does there exist a set H such that H-free Completion is
solvable in 2o(k) · poly(n) but does not admit a polynomial kernel?

Recall from above that there are plenty of problems that are solvable in subex-
ponential parameterized time but does not admit a polynomial kernel—trivially
cross composable problems like Planar k-path [DFHT05, BDFH09], or any
problem of the form “does the input graph have a connected component C which
is lacking k edges from being, say, a chordal graph?”
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Going beyond chordal graphs. The threshold signed graphs are exactly the
graphs of dilworth number 2, whereas threshold graphs are graphs of dilworth
number 1. It is the first next level of natural generalizations of threshold graphs.
The definition is the following:

Definition 17.1 (Threshold signed graph). A graph is a threshold signed graph if
there are two positive reals s ∈ R and t ∈ R and a weight function w : V → R, such
that for every vertex v, w(v) ≤ min{s, t} and for every two vertices u, v, uv ∈ E(G)
if and only if |w(u) + w(v)| ≥ s or |w(u)− w(v)| ≥ t.

Open problem 13. Is Threshold Signed Completion FPT? Is it solvable
in subexponential parameterized time?

The permutation graphs are a superclass of the threshold signed graphs, and
are best definable using a geometric intersection model, like the interval graphs
(Section 2.2).

Definition 17.2 (Permutation graph). A graph is a permutation graph if and
only if it has an intersection model consisting of straight lines between two parallel
lines [BLS99].

Open problem 14. Is Permutation Completion FPT? Is it solvable in
subexponential parameterized time?

A graph is a circle-polygon graph if it is the intersection graph of convex polygons
inscribed in a circle.

Open problem 15. Is circle-polygon Completion FPT? Is it solvable in
subexponential parameterized time?
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