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Abstract—This paper deals with some important statistical properties
of the channel capacity of multiple-input–multiple-output (MIMO) sys-
tems with orthogonal space-time block code (OSTBC) transmission. We
assume that all the subchannels are uncorrelated. For OSTBC-MIMO
systems, exact closed-form expressions are derived for the probability
density function (PDF), the cumulative distribution function (CDF), the
level-crossing rate (LCR), and the average duration of fades (ADF) of
the channel capacity. Furthermore, it will be shown that these exact
closed-form expressions can be used to characterize the channel capacity
of single-input–multiple-output (SIMO) and multiple-input–single-output
(MISO) systems. In addition, a Gaussian approximation to the exact LCR
of the capacity of OSTBC-MIMO systems is derived. The correctness of
the derived closed-form expressions and the approximation is confirmed
by simulations.

Index Terms—Average duration of fades (ADF), channel capacity,
cumulative distribution function (CDF), level-crossing rate (LCR), or-
thogonal space-time block code (OSTBC)-multiple-input–multiple-output
(MIMO) systems, probability density function (PDF), Rayleigh fading
channels.

I. INTRODUCTION

Multiple-antenna technology is of growing interest in the field
of mobile communications as it allows a significant increase in the
transmission capacity of wireless channels [1], [2]. Since wireless
channels are time varying, due to the random nature of the propagation
environments and the mobility of the terminals, the underlying capac-
ity thus randomly varies with time. Hence, the channel propagation
conditions are manifested in the corresponding channel capacities.
The resulting time-varying capacity therefore suffers from the random
occurrence of capacity fades [3], during which the channel is unable to
support a specific data rate. For the purpose of efficient system design
and performance evaluation, the statistical characteristics regarding
this fundamental limitation should be investigated and understood. In a
manner similar to that for mobile fading channels, the autocorrelation
function (ACF), level-crossing rate (LCR), and average duration of
fades (ADF) are commonly used to describe the temporal variations
of the capacity. The investigation of these statistical quantities for
the channel capacity of multiple-antenna systems has recently gained
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much interest. The LCR and ADF of the capacity fade of general
multiple-input–multiple-output (MIMO) systems were first considered
in [4] and later in [5], by assuming that the capacity can be approxi-
mated by a discrete Gaussian model. The analysis of the correlation
of the instantaneous capacity of 2 × 2 MIMO systems was addressed
in [6]. For single-input–single-output (SISO) channels, the ACF, LCR,
and ADF were presented in [18]. Furthermore, the difference between
the MIMO channel capacity and the capacity of OSTBC-MIMO
systems has been analyzed in [8].

Although the statistical properties of channel capacity have inten-
sively been studied in the literature, there are still some unsolved
problems. In this paper, we provide closed-form expressions for the
probability density function (PDF), cumulative distribution function
(CDF), LCR, and ADF for the continuous capacity of OSTBC-MIMO
channels. Our derivations are performed using the characteristic func-
tion (CF) approach. Exact closed-form expressions for the PDFs of
the SIMO and MISO channel capacities are derived in [9]. For SIMO
and MISO channels, where the powers of all branches are different,
an expression for the CDF of the channel capacity can be found in
[10]. In this paper, we present the CDF when all the branch powers
are equal. It should be mentioned that the obtained CDF in [10] is
not valid in this case, since the denominator in [10, eq. (14)] will
be equal to zero. In our derivation of the LCR and ADF, we assume
the general case of a nonsymmetrical Doppler power spectral density
(PSD). We should mention that the statistics of the LCR and ADF of
the χ2 processes [11] cannot be applied here, because they are reported
for a symmetrical Doppler PSD. Hence, to the best of our knowledge,
the closed-form expressions of the LCR and ADF of the capacity of
OSTBC-MIMO systems are completely new.

The remainder of this paper is organized as follows. In Section II,
we will describe the Rayleigh process with cross-correlated inphase
and quadrature components. A detailed study of the statistical prop-
erties of the capacity of OSTBC-MIMO systems is the topic of
Section III. Furthermore, a Gaussian approximation of the exact LCR
of OSTBC-MIMO systems is derived in Section IV. The analytical
results obtained in Sections III and IV will be compared with the
simulation results in Section V. Finally, the conclusion is drawn
in Section VI.

II. RAYLEIGH PROCESS

Throughout this paper, we deal with frequency-nonselective mobile
channel models, which will be described by making use of the complex
baseband representation of the passband signals. The time-varying
complex channel gain between a single transmit and a single receive
antenna will be denoted by h(t). The complex process h(t) can be
expressed as

h(t) = hI(t) + jhQ(t) (1)

where the inphase and quadrature components of h(t) are denoted
by hI(t) and hQ(t), respectively. In general, it is usually assumed
that hI(t) and hQ(t) are uncorrelated zero-mean real Gaussian noise
processes with identical variances σ2

hI = σ2
hQ = σ2 [12]. In this

paper, the inphase component hI(t) and quadrature component hQ(t)
are allowed to be correlated. The correlation properties are described
by the correlation matrix in [13, eq. (17)]. Since we will assume that
h(t) is a zero-mean complex Gaussian process with unit variance, the
absolute value of h(t) (which is also denoted as envelope)

ζ(t) = |h(t)| =

√
[hI(t)]2 + [hQ(t)]2 (2)

follows a Rayleigh distribution. The time derivative of ζ(t) will be
denoted by ζ̇(t). Throughout this paper, we let the overdote of a
process denote the time derivative. From [13], the joint PDF of ζ(t)
and ζ̇(t) at the same time t can be expressed as

pζζ̇(z, ż) =

√
2

πβ
ze−z2−ż2/(2β), z ≥ 0, |ż| < ∞ (3)

where

β = − d2

dτ
rhIhI (τ)

∣∣∣∣∣
τ=0

−
d

dτ
rhIhQ(τ)

∣∣∣
τ=0

rhIhQ(0)

. (4)

In (4), rhIhI (τ) denotes the ACF of hI(t), and rhIhQ(τ) is the
cross-correlation function of hI(t) and hQ(t). In case of isotropic
scattering, the inphase and quadrature components hI(t) and hQ(t)
are uncorrelated, and we obtain β = 2(πσfmax)

2, where fmax is the
maximum Doppler frequency.

For the calculations of the statistical properties of the capacity of
OSTBC-MIMO systems (see Section III), we need the joint PDF of
ζ2(t) and ζ̇2(t), which is denoted by pζ2ζ̇2(z, ż). To find the joint
PDF, we apply the concept of transformation of random variables
[14]. For fixed values of t = t0, the stochastic processes ζ(t) and ζ̇(t)
become random variables ζ(t0) and ζ̇(t0), respectively. The joint PDF
pζ2ζ̇2(z, ż) of ζ(t0) and ζ̇(t0) can be expressed as

pζ2ζ̇2(z, ż) =
1

4z
pζζ̇

(√
z, ż/

(
2
√

z
))

=
1

2
√

2πβz
e−z−ż2/(8βz), z ≥ 0, |ż| < ∞. (5)

From (5), we can easily see that we cannot express the joint PDF
pζ2ζ̇2(z, ż) as a product of two marginal PDFs, which are denoted

by pζ2(z) and pζ̇2(ż). Hence, the stochastic processes ζ2(t) and ζ̇2(t)
are not statistically independent. Nevertheless, we can obtain the PDF
pζ2(z) as follows:

pζ2(z) =

∞∫
−∞

pζ2ζ̇2(z, ż)dż

= e−z, z ≥ 0. (6)

Equation (6), together with the CF of pζ2(z), will be used in the next
section to derive the PDF of the capacity of OSTBC-MIMO systems.
The CF of pζ2(z) is denoted by Φζ2(ω). This function is defined as
the Fourier transform of pζ2(z), i.e.,

Φζ2(ω) =

∞∫
−∞

pζ2(z)ejωzdz

=
1

1 − jω
. (7)

For the calculation of the LCR of the capacity of OSTBC-MIMO
systems, we need the joint CF of ζ2(t) and ζ̇2(t), which is denoted
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by Φζ2ζ̇2(ω, ω̇). This function can be expressed as

Φζ2ζ̇2(ω, ω̇) =

∞∫
−∞

∞∫
0

pζ2ζ̇2(z, ż)ej(ωz+ω̇ż)dzdż

=
1 + 2βω2 + jω̇

(1 + 2βω2)2 + ω̇2
. (8)

In the next section, we will present the capacity of OSTBC-MIMO
systems. In addition, the SIMO and MISO channels will be considered
by using the preceding Rayleigh fading process.

III. STATISTICAL PROPERTIES OF THE CHANNEL CAPACITY

In the following, we consider a MIMO channel with MT and MR

antennas at the transmitter and receiver, respectively. The complex
channel gains will be denoted by hm(t) for m = 1, . . . ,MT MR. It
is assumed that stochastic processes hm(t) for m = 1, . . . ,MT MR

are uncorrelated complex Gaussian processes.
For OSTBC-MIMO systems, the channel capacity can be written

as [15]

CMIMO(t) = log2

(
1 +

γ

MT

hH(t)h(t)
)

(9)

where h(t) = [h1(t), . . . , hMT MR
(t)]T is the MT MR × 1 complex

channel gain vector. The transpose and the complex conjugate trans-
pose operators are denoted by (·)T and (·)H , respectively. Finally, the
quantity γ is the average signal-to-noise ratio (SNR). Alternatively, the
capacity CMIMO(t) in (9) can be expressed in component form as

CMIMO(t) = log2

(
1 +

γ

MT

MT MR∑
m=1

ζ2
m(t)

)
(10)

where ζ2
m(t) = |hm(t)|2. For simplicity, we denote

Λ(t) =

MT MR∑
m=1

ζ2
m(t). (11)

By using [16, eq. (2.32)], the PDF of Λ(t) is obtained as

pΛ(z) =
1

Γ(MT MR)
zMT MR−1e−z, z ≥ 0 (12)

where Γ(·) is the Gamma function [17, eq. (8.310)]. Applying the
concept of transformation of random variables [14] allows us to find
the PDF of CMIMO(t), which is denoted by pC,MIMO(r), as a function
of the PDF pΛ(z) of the stochastic process Λ(t) in the following form:

pC,MIMO(r) =
2rMT ln 2

γ
pΛ (MT (2r − 1)/γ)

=
(MT )MT MR ln 2

Γ(MT MR)γMT MR
2r(2r − 1)MT MR−1

× e−MT (2r−1)/γ , r ≥ 0. (13)

The CDF FC,MIMO(r) of CMIMO(t) can be expressed as

FC,MIMO(r) = 1 −
(

γ

MT

)1−MT MR

× e−MT (2r−1)/γ(2r − 1)MT MR−1

×
MT MR−1∑

k=0

γk

Γ(MT MR − k) [MT (2r − 1)]k
.

(14)

To find the LCR and ADF of the capacity CMIMO(t), we continue as
follows. In the Appendix, it is shown that the joint PDF of Λ(t) and
Λ̇(t), which is denoted by pΛΛ̇(z, ż), is given by

pΛΛ̇(z, ż) =
zMT MR−1e−z−ż2/(8βz)

2Γ(MT MR)
√

2πβz
, z ≥ 0, |ż| < ∞. (15)

From (9) and (10), it follows that CMIMO(t) is a function of Λ(t).
Thus, by applying the concept of transformation of random variables,
we obtain

pCĊ,MIMO(z, ż) =

(
2zMT ln 2

γ

)2

× pΛΛ̇ (MT (2z − 1)/γ, 2z żMT ln 2/γ)

=
22z−1(MT )MR ln2 2

Γ(MT MR)γMR

√
2πβ(2z − 1)

× e−MT (2z−1)/γ−MT (2z ż ln 2)2/(8βγ(2z−1)).

(16)

The LCR NC,MIMO(r) of the channel capacity CMIMO(t) is
defined as

NC,MIMO(r) =

∞∫
0

żpCĊ,MIMO(r, ż)dż, r ≥ 0. (17)

After substituting (16) in (17) and carrying out some lengthy algebraic
computations, we finally find the result

NC,MIMO(r) =
(MT )MT MR

√
2γβ(2r − 1)

Γ(MT MR)γMT MR
√

πMT

× (2r − 1)MT MR−1e−MT (2r−1)/γ . (18)

It should be noted that NC,MIMO(r) is proportional to fmax, as can
easily be shown by substituting β with [13, eq. (21b)]. Thus, the
normalization of NC,MIMO(r) onto fmax removes the influence of the
vehicle speed.

Let us consider the LCR of the SISO channel capacity. When MT =
MR = 1, then (18) reduces to

NC,SISO(r) =

√
2β(2r − 1)

πγ
e−(2r−1)/γ . (19)

It should be mentioned that an expression similar to (19) can also be
found in [18] if we use the von Mises density [19] for the distribution
of the angle of arrival seen at the receiver. Finally, by means of [20],
the ADF TC,MIMO(r) of the MIMO channel capacity is obtained as

TC,MIMO(r) =
FC,MIMO(r)

NC,MIMO(r)
. (20)

A closed-form solution can directly be obtained for TC,MIMO(r) by
using the results in (14) and (18).

All the preceding results can easily be applied to characterize the
SIMO and MISO channel capacity. First, we consider a SIMO channel
with MR transmit antennas. The SIMO channel capacity CC,SIMO(t)
is defined as

CSIMO(t) = log2

(
1 + γhH(t)h(t)

)
(21)

where h(t) = [h1(t), . . . , hMR
(t)]T is the MR × 1 complex channel

gain vector. By setting MT = 1 in (13), (14), (17), and (20), we obtain
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the PDF, CDF, LCR, and ADF, respectively, of the SIMO channel
capacity. Second, we consider a MISO channel with MT transmit
antennas. The MISO channel capacity CC,MISO(t) is defined as

CMISO(t) = log2

(
1 +

γ

MT

hH(t)h(t)
)

(22)

where h(t) = [h1(t), . . . , hMT
(t)]T is the MT × 1 complex channel

gain vector. Again, by setting MR = 1 in (13), (14), (17), and (20),
we obtain the PDF, CDF, LCR, and ADF, respectively, of the MIMO
channel capacity. Note that the SIMO and MISO systems in (21) and
(22) are known as the maximal ratio combiner and maximal ratio
transmitter, respectively [15]. In Section V, we confirm the correctness
of our analytical expressions by simulations.

Another approach in solving the level-crossing problem is to use a
Gaussian approximation. This is the topic of the next section.

IV. GAUSSIAN APPROXIMATION OF THE LCR
FOR OSTBC-MIMO SYSTEMS

If the capacity CMIMO(t) is a standardized continuous-time real
Gaussian process with ACF rC(τ), then the LCR of CMIMO(t) has
a Gaussian shape (see [4] and [21]). If CMIMO(t) is a real-valued
Gaussian process with mean mC and variance σ2

C , then the LCR
NC,MIMO(r) of CMIMO(t) can be obtained as

NC,MIMO(r) =

√
−¨̃rC(0)

2π
e−(r−mC)2/(2σ2

C) (23)

where the quantity ¨̃rC(0) denotes the double derivative of the normal-
ized ACF r̃C(τ) at τ = 0. The ACF rC(τ), which is not normalized, is
defined by

rC(τ) =E {C(t)C(t + τ)}

=E
{

log2

(
1 +

γ

MT

hH(t)h(t)
)

× log2

(
1 +

γ

MT

hH(t + τ)h(t + τ)
)}

(24)

where E{·} denotes the expectation operator. Furthermore, the nor-
malized ACF r̃C(τ) is defined by

r̃C(τ) =
rC(τ) − mC

σ2
C

. (25)

In general, it seems hard to calculate (24) and, hence, (25) for an
arbitrary SNR [18]. However, some simple approximations of (24)
can be obtained in the low- and high-SNR regimes. For the low-
SNR regime and, hence, γ → 0, the function log2(1 + γx) can be
approximated by γx for fixed x. On the other hand, when γ → ∞,
the function log2(1 + γx) can be approximated by log2(γx). For
high values of γ, an approximation of the LCR of the SIMO/MISO
channel capacity can be found in [4]. It is straightforward to extend this
approximation to OSTBC-MIMO channels. By using [17, eq. (9.122)],
the formula in [4, eq. (34)] can be simplified as follows:

¨̃rC(0) =
2

(MT MR − 1)ψ̇(MT MR)
r̈h(0) (26)

where the function ψ̇(·) is the first derivative of the Euler’s digamma
function [17, eq. (8.360)], and r̈h(·) is the second derivative of the
ACF of the underlying complex Gaussian subchannels. It should be
mentioned that (26) and [4, eq. (34)] are not valid for SISO channels.

Fig. 1. PDF of the (1 × MR) SIMO and (MT × 1) MISO channel
capacities.

In the following, we assume low SNR. Under this assumption, the
ACF rC(τ) can be expressed as

rC(τ) =
MRγ2 log2

2 e (MT MR + r2
h(τ))

MT

(27)

where e = 2.71828 . . .. Since the product hH(t)h(t) is a random
process, following the chi-square distribution with 2MT MR degrees
of freedom, the mean and variance of CMIMO(t) are given by
[16, eq. (2.35)]

mC =MRγ log2 e (28)

σ2
C =

MRγ2 log2
2 e

MT

(29)

respectively. By assuming rh(0) = 1 and ṙh(0) = 0, we obtain

¨̃rC(0) = 2r̈h(0). (30)

For example, if we consider isotropic scattering and, hence, rh(τ) =
J0(2πfmaxτ), where J0(·) denotes the zeroth-order Bessel func-
tion of the first kind, we obtain r̈h(0) = −2π2f2

max, and the LCR
NC,MIMO(r) becomes

NC,MIMO(r) = 2fmaxe
−MT (r−MRγ log2 e)2/(2MRγ2 log2

2 e). (31)

In the next section, the Gaussian approximation presented in (31) is
evaluated for its accuracy.

V. SIMULATION RESULTS

In the following, we present analytical and simulation results of
the statistical properties of the channel capacity for various OSTBC-
MIMO systems. To generate mutually uncorrelated Rayleigh fading
waveforms, we have used the sum-of-sinusoids principle. For the
computation of the model parameters, we have used the generalized
method of exact Doppler spread (GMEDS1) [22]. In the applied
Rayleigh fading channel simulator, the following parameters have
been used: The numbers of sinusoids were N1 = 35 and N2 = 36.
The maximum Doppler frequency was 91 Hz. For the simulations of
the channel capacity of OSTBC-MIMO systems, the SNR was set to
17 dB. First, we consider the PDF of the capacity for various numbers
of receive and transmit antennas in Fig. 1. In all cases, there is an
excellent fit between the analytical and simulation results. Fig. 1 shows
that the expected value of CMISO(t) is nearly independent of the
number of transmit antennas. In addition, from Fig. 1, we observe that
to obtain high capacity, it is more important to have a high number
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Fig. 2. Normalized LCR of the (MT × MR) OSTBC-MIMO channel
capacity.

Fig. 3. Normalized LCR of the (1 × MR) SIMO and (MT × 1) MISO
channel capacities.

Fig. 4. Normalized ADF of the (MT × MR) OSTBC-MIMO channel
capacity.

of receive antennas rather than a high number of transmit antennas. In
Figs. 2 and 3, we have presented the normalized LCR of the capacity.
In the SIMO and MISO cases, the spread of the capacity decreases
with increasing number of antennas. Fig. 3 shows that the maximum
LCR is nearly independent of MR for MR ≥ 2. In addition, Fig. 3
shows that the maximum LCR of CMISO(t) is nearly independent
of MT for MT ≥ 2. Again, there is an excellent correspondence
between theory and simulation. Fig. 4 shows the normalized ADF of
the OSTBC-MIMO channel capacity and the fact that the mean value
for the length of the time intervals in which the capacity CMIMO(t) is
below a given length r is decreasing with the number of transmit and
receive antennas. In Fig. 5, we can observe the behavior of the ADF
of the SIMO channel capacity. Similar to the MIMO case, the ADF

Fig. 5. Normalized ADF of the (1 × MR) SIMO and (MT × 1) MISO
channel capacities.

Fig. 6. Normalized LCR of the (MT × MR) OSTBC-MIMO channel
capacity.

of CSIMO(t) decreases with the number of antennas. Furthermore,
Fig. 5 shows the ADF of the MISO channel capacity. Around the
mean value of CMISO(t), the ADF of CMISO(t) is nearly independent
of the number of transmit antennas. For levels r less than the mean
value of CMISO(t), the ADF decreases with the number of transmit
antennas. The opposite occurs for levels r that are larger than the
mean value of CMISO(t). Finally, in Fig. 6, we present the Gaussian
approximation of the LCR for OSTBC-MIMO systems. Here, we have
used γ = −25 dB. Remember that our Gaussian approximation only
works for low SNR. Furthermore, the approximation works very well,
even for moderate numbers of antennas.

VI. CONCLUSION

In this paper, we have studied the statistical properties of the capac-
ity for various OSTBC-MIMO channels. Exact closed-form solutions
for the PDF, CDF, LCR, and ADF of the capacity have been derived.
The analytical expressions are valid for any number of transmit and
receive antennas. In addition, an accuracy Gaussian approximation of
the LCR for OSTBC-MIMO systems has been derived. Our analytical
developments help us understand and predict the capacity gain ex-
pected from the MIMO technique in terms of the channel dimension
and parameters. Simulation results show an excellent correspondence
between theory and simulation.

APPENDIX

Since we have assumed that hm(t) and, hence, ζ2
m(t) are indepen-

dent stochastic processes, the CF of Λ(t) and Λ̇(t), which is denoted
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by ΦΛΛ̇(ω, ω̇), can be expressed as

ΦΛΛ̇(ω, ω̇) =

MT MR∏
m=1

Φζ2ζ̇2(ω, ω̇) (32)

where Φζ2ζ̇2(ω, ω̇) is given by (8). Hence, we obtain

ΦΛΛ̇(ω, ω̇) =
1

(1 + 2βω2 − jω̇)MT MR
. (33)

Using the inversion formula of the 2-D Fourier transforms, it follows
that the joint PDF pΛΛ̇(z, ż) of Λ(t) and Λ̇(t) can be expressed as

pΛΛ̇(z, ż) =
1

4π2

∞∫
−∞

∞∫
−∞

ΦΛΛ̇(ω, ω̇)e−j(ωz+ω̇ż)dωdω̇ (34)

for z ≥ 0 and |ż| < ∞. By substituting (33) in (34), we obtain, after
some lengthy algebraic computations, the following expression:

pΛΛ̇(z, ż) =
zMT MR−1e−z−ż2/(8βz)

2Γ(MT MR)
√

2πβz
, z ≥ 0, |ż| < ∞.

(35)
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SVD-Assisted Multiuser Transmitter and Multiuser
Detector Design for MIMO Systems

W. Liu, L. L. Yang, and L. Hanzo

Abstract—A novel singular value decomposition (SVD)-based joint
multiuser transmitter (MUT) and multiuser detector (MUD) aided
multiple-input–multiple-output (MIMO) system is proposed, which takes
advantage of the channel state information (CSI) of all users at the base sta-
tion (BS), but only of the mobile station (MS)’s own CSI, to decompose the
multiuser (MU) MIMO channels into parallel single-input–single-output
(SISO) channels, where each SISO channel corresponds to the singular
values of a particular MS’s channel matrix. Based on the proposed scheme,
the SVD-based transmission carried out in the context of a single user can
readily be extended to the MU case for both the uplink (UL) and downlink
(DL). As a beneficial application of the proposed scheme, we improve the
system’s achievable throughput and highlight its future applications.

Index Terms—Multiple-input multiple-output (MIMO), postprocessing,
preprocessing, singular value decomposition (SVD), space-division multi-
ple access (SDMA), zero forcing (ZF).

I. INTRODUCTION

In multiple-input–multiple-output (MIMO)-aided multiuser sys-
tems, both the uplink (UL) and downlink (DL) transmissions experi-
ence multiuser interference (MUI), also referred to as multiple access
interference (MAI), as well as interantenna interference (IAI). The
optimum maximum-likelihood (ML) receiver employed at the mobile
station (MS) often imposes excessive computational complexity. To
reduce the complexity of the MS, multiuser transmission (MUT)
techniques can be invoked at the base station (BS) [1]–[5]. Widely used
linear preprocessing techniques, such as the minimum mean square
error (MMSE) and the zero-forcing (ZF) MUT arrangements, were
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