Cent. Eur. J. Eng.
DOI: 10.2478/s13531-012-0032-2

Z
VERSITA

Central European Journal of Engineering

A fuzzy logic approach to modeling a vehicle crash

test

Research article

Witold Pawlus, Hamid Reza Karimi*, Kjell G. Robbersmyr

University of Agder, Department of Engineering, Faculty of Engineering and Science, PO Box 509, N-4898 Grimstad, Norway

Received 10 September 201 1; accepted 28 July 2012

Abstract:

This paper presents an application of fuzzy approach to vehicle crash modeling. A typical vehicle to pole collision

is described and kinematics of a car involved in this type of crash event is thoroughly characterized. The basics of
fuzzy set theory and modeling principles based on fuzzy logic approach are presented. In particular, exceptional
attention is paid to explain the methodology of creation of a fuzzy model of a vehicle collision. Furthermore, the
simulation results are presented and compared to the original vehicle’s kinematics. It is concluded which factors
have influence on the accuracy of the fuzzy model’s output and how they can be adjusted to improve the model’'s

fidelity.
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1. Introduction

Vehicle collision is a phenomenon which is extremely com-
plex from the dynamic point of view. There are a lot of
vehicle elements and joints which interact with each other
during a crash. Furthermore, they all undergo deformation
caused by the impact energy transformation, therefore they
cannot be assumed to be perfectly rigid. This complicates
the mathematical description, analysis, and simulation
of this type of event. According to [1] two approaches
to mathematical modeling of real world systems can be
distinguished:

1. Mathematical approach — the fundamental laws of
physics (e.g. Newton's Laws or conservation princi-
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ple) are used to derive dynamics of a phenomenon
or system.

2. System identification — experimental approach. Sys-
tem is examined by performing on it experiments
and subsequently model parameters are estimated.
They are selected to minimize an error between a
real system’s output and the one predicted by a
model.

The second methodology is more appropriate for modeling
complex systems because it does not investigate their
detailed mathematical specification but, on the other hand,
it allows one to create their “black box” models. This
approach will be followed in this paper.

Vehicle users safety is one of the great concerns of everyone
who is involved in the automotive industry. However, crash
tests are complex and complicated experiments. Therefore
it is advisable to establish a vehicle crash model and use
its results instead of a full-scale experiment measurements
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This will
help to increase safety of all road users: car drivers and

to predict car’s behavior during a collision.

their passengers, as well as vulnerable road users (VRUs)
such as motorcyclists and pedestrians. This task involves a
number of correlated issues with many different approaches
and methodologies. There are three main ideas proposed
in [2]: safer behavior, safer infrastructure and safer vehicles.
The ideas applicable to the last topic are discussed in this
study.

Nowadays we can distinguish two main approaches in the
area of vehicle crash modeling. The first one utilizes FEM
(Finite Element Method) software, whereas the second way
is called LPM (Lumped Parameter Modeling). The major
advantage of a FEM model is its capability to represent
geometrical and material details of the structure. The
major disadvantage of FE method is its cost and the fact
that it is time-consuming. To obtain good correlation
of a FEM simulation with test measurements, extensive
representation of the major mechanisms in the crash event
is required. This increases costs and the time required for
modeling and analysis. On the other hand, in a typical
lumped parameter model, used for a frontal crash, the car
can be represented as a combination of masses, springs and
dampers. The dynamic relationships among the lumped
parameters are established using Newton's laws of motion
and then the set of differential equations is solved using
numerical integration techniques. The major advantage of
this technique is the simplicity of modeling and the low
demand on computer resources. The problem with this
method is obtaining the values for the lumped parameters,
e.g. mass, stiffness, and damping. There is a number of
methods which can be applied to assess parameters of such
models (stiffness, damping) basing on the real crash data.
One of them is fitting the models’ responses to the real
car’s displacement - see [3-5]. The advantage of such a
methodology is the fact that models can be easily created,
without a lot of computational effort. However, a serious
drawback with using this method is that the established
models are valid only for a collision scenario for which they
have been formulated. This makes them impossible to use
to represent different crash tests. Therefore, particular
attention is being paid to the estimation of nonlinear
parameters of viscoelastic models as well and to ahead
prediction of vehicle kinematics — refer to [6-8]. It is done
in order to provide for a wider range of crash events which
can be simulated by using one model only. Moreover,
applying the nonlinear models of vehicle crashes increases
their accuracy and improves the simulation results.
Because of the fact that crash pulse is a complex signal, it
is justified to simplify it. One solution for this is covered
in [9]. References [10-12] talk over commonly used ways
of describing a collision — e.g. investigation of tire marks
or the crash energy approach. In the most recent scope

of research concerning crashworthiness it is to define a
dynamic vehicle crash model which parameters will be
changing according to the changeable input (e.g. initial
impact velocity). One of such trials is presented in [13]. In
addition to this work, in [14] one can find a complete deriva-
tion of vehicle collision mathematical models composed
of springs, dampers and masses with piecewise nonlinear
characteristics of springs and dampers.

References [15-19] discuss usefulness of neural networks
and fuzzy logic in the field of modeling of crash events.
Fuzzy logic together with neural networks and image pro-
cessing have been employed in [20] to estimate the total
deformation energy released during a collision. However,
the number of publications regarding fuzzy logic applica-
tion to vehicle crash modeling is limited. On the other
hand, fuzzy controllers are thoroughly described as vehicle
path planners ([21] and [22]) or as a technology utilized in
damping reduction strategies in vehicle active suspension
systems ([23] and [24]). Fuzzy logic application is not lim-
ited to land mobile robots - some functions of railway and
underwater vehicles can be successfully assisted by it as
well ([25] and [26]).

The work presented in this study offers considerable im-
provement of simulation outcomes as compared to the stan-
dard lumped parameter modeling of viscoelastic systems
discussed above. The major improvement is observed in
the accuracy of the results — kinematics of a reference
vehicle is reproduced with higher degree of fidelity than
in a typical lumped parameter model. Simultaneously, the
current study can be considered as a continuation and
further enhancement of mathematical models of vehicle
crashes based on system identification and “black box”
modeling. The advantage offered here is that the fuzzy
logic approach allows to simulate any type of vehicle crash
(frontal impact, oblique collision, etc), since it is purely
based on signals only. It does not involve much of com-
putational complexity and offers quicker performance as a
typical neural-network based methodology. Finally, the
significant enhancement of vehicle crash modeling shown
in this work, as compared to the previously mentioned
approaches, is that a successfull model is obtained with-
out complex and complicated mathematical analysis and
formulation of differential equations. The method shown
here uses only inputs and outputs of the system and repre-
sents a full-scale vehicle collision by the set of fuzzy rules
which relates those inputs and outputs without the need
of extremely thorough mathematical derivation. For this
reason this field of research is worth researching since it
offers satisfactory results at a reasonable level of modeling
complexity. Hence, fuzzy logic models of vehicle collisions
may be used in an early design stage of vehicles to assess
overall behavior of a given vehicle involved in a collision
and estimate impact severity for its occupants.
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The most important contribution of this paper is the ap-
plication of artificial intelligence methods including fuzzy
logic to create a “black-box” model of a vehicle collision
and validation of the obtained simulation results with the
full-scale experimental data analysis. Novelty of this re-
search is related to the application of a reqular fuzzy logic
modeling method to a real-world problem which has not
been widely explored by this approach so far.

2. Fuzzy logic modeling methodo-
logy

2.1. The fuzzy sets basics

Fuzzy logic was first proposed in [27]. This notion was
explained by fuzzy sets which are means to represent
uncertainty [28]. In probability theory, the uncertainty is
assumed to be a random process. In opposite to that, the
fuzzy set theory considers not all uncertainties random —
e.g. imprecision, vagueness, and lack of information can
be successfully modeled by fuzzy logic. According to [29]
fuzzy models are used wherever it is difficult to create a
mathematical model, but the actions can be described in
a qualitative way, by using fuzzy rules. They are applied
for processes that have strong cross-coupling, nonlinear
relationships between quantities, large distortions and
time delays. In order to create a fuzzy model of a given
system, the following steps should be taken:

1. Defining fuzzy rules.

2. Defining membership functions for inputs and out-
puts.

3. Fuzzification of inputs to develop conclusions.
4. Applying rules to develop conclusions.

5. Combining conclusions to obtain final output distri-
bution.

6. Output defuzzification to obtain a crisp value.

The above procedure can be visually represented as shown
in Figure 1.

2.2. Methodology of creating a vehicle crash
fuzzy model

The aim of the model established by using fuzzy sets theory
is to reproduce kinematics of a car involved in a crash event.
The fuzzy system from Figure 1 is depicted in Figure 2 as
“Fuzzy Model". The collision measurements (acceleration,
velocity, and displacement) are inputs to this system. The

AND 4 KNOWLEDGE BASE

INPUT FUZZY DE-

OUTPUT
H>FUZZIFICATION——> INFERENCE [—T™lruzzIFICATION——+>

Figure 1. Structure of the fuzzy system.

predicted output is subsequently feed back to be compared
with the reference, original vehicle behavior. Thanks to the
feedback loop, the fuzzy system in fact controls the error
between the actual and desired system’s response. The
main idea of this reasoning is shown in Figure 2. The aim
of the fuzzy model is to increase the change of the output
0, when the difference between the reference and actual
response is negative and vice versa. In other words — it
minimizes the error e and the rate of change of error d..
Thanks to this operation it is possible to predict kinematics
of a car involved in a crash event.

INPUT
KINEMATICS —+

PREDICTED

ERROR KINEMATICS
[

= FUZzy

MODEL

Figure 2. Scheme of the vehicle crash fuzzy model.

2.3. Fuzzy rules

To describe a system and perform inference, rules such as
“If A then Z" (implication A — Z) are used. A is referred to
as an antecedent and Z is known as a consequent, where
both A and Z are fuzzy sets. Such linquistic rules are
called Mamdani-type ones. Mamdani model is a set of
rules in which every rule defines one fuzzy point in the
domain. They were named after E.H. Mamdani ([30] and
[31]) who first used this kind of statement in a fuzzy rule-
base to control a plant. The other commonly used model
is Takagi-Sugeno one, which has a function in the conclu-
sion (consequence) instead of a fuzzy set. The quantities
which are provided as inputs to the fuzzy model (denoted
as “ERROR” in Figure 2) are: the difference between the
desired input and actual output as well as the rate of
change of this error. The tabular structure of the linguistic
fuzzy rulebase is presented in Table 1. Letters stand for
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Gaussian-type MF Bell-type MF
Table 1. Linguistic rulebase for the vehicle crash fuzzy model. ; .
Error e 05 R o5
Change of || B— [M—[S—=] 0 [S+ [M+]|B+ = =
error e
B— B—|B—|B—|B—|M—|S—| 0 0 0
M— B—|B=|B=|[M—=[S—=| 0 | S+ 0 3 10 0 > 10
S— B—|B—[M—=|5—| 0 |5+ M+ Gamma-type MF L-type MF
0 B—|[M—|S—]| 0 | S+ |[M+]|B+ ’ ’
S+ M—|S—| 0 |S+ |[M+|B+ | B+
M+ S—| 0 | S+ (M+|B+ | B+ | B+
B+ 0 [S+[M+]|B+[B+][B+]|B+ Zos Zos
0 0
) ) ) 0 5 10 0 5 10
big (B), medium (M), and small (S), respectively, whereas x X

the signs denote whether a given quantity is positive or
negative.

The rules should be interpreted as e.g. “IF the error e
is medium negative AND the rate of change of error o,

is small positive THEN the change of output 9, is small : ; ;
negative”. The surface obtained from the above table is
shown in Figure 3. Please note that J, denotes the change
of the output, 0, — rate of change of the error, and e — error
itself. It is noting that the axes of this graph are unitless.
That is because of its application to different data sets
(acceleration, velocity, and displacement). In each of those
cases, the output and error are expressed in g, km/h, and
cm, respectively.

50

100

4 ‘ ‘
)
100 = o5[B° M- S- 0 S+ M+ +
=N ‘
- -100 -50 0 50 100
5 -100 -100 e Errore
e
. . . ~> 1
Figure 3. Correlation of the fuzzy model’s inputs and output. < 5B T 5 o . e d
Zo
= 0 ‘ ‘ ‘
-100 -50 0 50 100
Change of error 5,
2.4. Membership functions 1
=)
:‘% 0.5B~ M- S- 0 S+ M+ + |
. L . . s 9
In conventional set theory it is posstble- to classify elements 100 50 o o 100
only as members or not members of a given set. In the fuzzy Change of output 3

set theory, however, the membership of a given element to
a given set is characterized by the value of the so called Figure 6. Membership functions of the fuzzy model.
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Figure 7. Inference results for arbitrary values of inputs.

membership function p (abbreviated as MF), which ranges
from 0 to 1. Some typical membership functions are shown
in Figure 4. In this work, the so called T-type MF (or
triangle MF) is used. This type of MF is often used in
various applications and simultaneously offers a simple
computational apparatus [32]. It is illustrated in Figure 5
and expressed by the following formula:

0 forx <a

x=a f <x<b
t(x,a,b,c)= 4 b-a OTITSXS (1)

= forb<x<c

0 for x > c.

Taking advantage of the shape of the crash pulse plotted
in Figure 11 and minimal and maximal values achieved by
those plots, it was decided that the values of the inputs:
error e and change of error J,, as well as the values of the
change of output 9, lie within the limits of < —100; 100 >.
The obtained membership functions are presented in Fig-
ure 6.

2.5. Inference

To assess what a degree of a truth level is for each in-
dividual rule, the inference should be performed. It is
a process of mapping membership values from the input
windows, through the rulebase, to the output window [28].
As shown in Section 2.3 in this study there are presented
rules which contain an internal logical “AND” expression,

8‘_.__

-100 100

however, between particular rules there is logical “OR".
Mathematically, the first operation can be explained as
intersection of two fuzzy sets A and B:

Hang(u) = min{pa(u), pg(u)} for all v € U. 2)

On the other hand, the second operation can be character-
ized as union of the two fuzzy sets:

vaus(u) = tarp(u) = max{pa(u), pyg(u)} for all v € U.
3)

Therefore, finally, for the rules stated as:

ORIFeisAAND 8, is BTHEN 5, =C  (4)

the whole so called max-min inference process is given by
the following equation:

pe(0y) = max{min{ua(e), ps(e)}}- )
The results of inference for some exemplary values (e =
58.7 and 0. = 20.9) are shown in Figure 7. Please
note that not all the rules are presented for the sake of
simplicity — because of the logical "AND” between two
inputs e (1st column) and &, (2" column), no output 9,
(3" column) has been produced for rules less than 32. This
graph illustrates relations described in Equation 2-5.
The value of 0, = 61.8 was found by using the min-max
inference technique together with the center of area method
in the defuzzification process (which will be explained later).
Simulations were performed in MATLAB™ software.
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.
2.6. Defuzzification

Defuzzification is the procedure of acquiring the crisp value
representing the fuzzy output set obtained in the inference
process. The most well known defuzzification technique is
called center of area method. It can be explained as ([28]):

Sum of first moments of areas

(6)

Equations for a continuous and discrete system are, re-

Crisp output value =

Sum of areas

spectively:
_ J un(u)du
ult) = [ p(u)du 7) Figure 8. Car before a collision.
u(kT) = iz Uik ll) (8)
Z?:1 H(U,‘) 21 ; Fin e

According to [29] the advantage of this method is that
all active rules are part of the defuzzification process.
It provides greater sensitivity of the fuzzy model to the ; LD i

changes in input data. However, the drawback of this : o j «---v-EE-F-wF'?;i»N-!-u
approach is its computational complexity. : 'ﬁ;(

3. Experimental setup description

The data used by us come from the typical vehicle to
pole collision. The initial velocity of the car was 35 km/h,
and the mass of the vehicle (together with the measuring

equipment and dummy) was 873 kg. During the test, the
acceleration at the center of gravity in three dimensions Figure 9. The moment of impact.
(x — longitudinal, y — lateral and z — vertical) was recorded.
The yaw rate was also measured with a gyro meter. Using
normal speed and high-speed video cameras, the behavior
of the safety barrier and the test vehicle during the collision
was recorded — see Figure 8 to Figure 10.

3.1. Crash pulse analysis

Having at our disposal the acceleration measurements from
the collision, we are able to describe in details motion of
the car. Since it is a central impact, we analyze only the
pulse recorded in the longitudinal direction (x-axis). By
integrating car'’s deceleration we obtain plots of velocity
and displacement, respectively — see Figure 11. At the
time when the relative approach velocity is zero (t,), the
maximum dynamic crush (d.) occurs. The relative veloc-

ity in the rebound phase then increases negatively up to
the final separation (or rebound) velocity, at which time
a vehicle rebounds from an obstacle. When the relative Figure 10. Cars deformation.
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Figure 11. Real car's kinematics.

Table 2. Relevant parameters characterizing the real collision

Parameter Value
Initial impact velocity V [km/h] || 35
Rebound velocity V' [km/h] 3
Maximum dynamic crush d. [em]|| 52
Time when it occurs ty [ms] 76
Permanent deformation d,, [cm] || 50

acceleration becomes zero and relative separation veloc-
ity reaches its maximum recoverable value we have the
separation of the two masses.

4. Simulation results

The created fuzzy model which was used to simulate a
vehicle to pole collision is illustrated in Figure 12. It
was applied to predict the reference vehicle's kinematics —
results of this operation are presented in Figure 13, Fig-
ure 14, and Figure 15, respectively. The output of the
fuzzy model closely follows the reference signals. It was
shown that the complexity of the examined characteris-
tics does not affect the accuracy of the prediction. High
degree of fidelity is achieved for a relatively simple plot
(displacement) as well as for a rapidly changing course
(acceleration).

5. Further validation

In order to verify if the proposed fuzzy logic model is
capable to represent a different type of collision than the

Error: e (7) FUZzY
(mamdani)
49 rules
Change of output:
elta (7)
u
Rate of change
of error: deltae (7)
System FUZZY: 2 inputs, 1 output, 49 rules
Figure 12. Fuzzy model of a vehicle crash.
30 : :
— Reference
20F - - -Predicted |

Acceleration [g]

_600 20 40 60 80 100 120 140 160

Time [ms]

Figure 13. Simulation results for acceleration reproduction.

40

—— Reference
- - -Predicted |

35 X

301

Velocity [km/h]
- n n
R A

—_
o
T

_50 20 40 60 80 100 120 140 160

Time [ms]

Figure 14. Simulation results for velocity reproduction.
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Figure 15. Simulation results for displacement reproduction.
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Figure 16. Scheme of the experiment.

one already presented in Section 3 it is suggested to
verify its performance to reproduce kinematics of a vehicle
involved in a different crash scenario.

5.1. Vehicle oblique collision

A typical vehicle to safety barrier collision is selected to
provide us with additional data sets. A new, additional
experimental setup description is covered in details in [33].
It is a typical high-speed vehicle to safety barrier oblique
collision - scheme showing the layout of the test setup is
illustrated in Figure 16.

The vehicle has an initial velocity of 104 km/h while
impacting the barrier at the angle of ¥ = 20°. Its total
mass including the measuring equipment and dummy was
determined to be 893 kg. During the test, the acceleration
at the center of gravity (COQ) in three dimensions (x-
longitudinal, y-lateral and z-vertical) was recorded. The
yaw rate was also measured with a gyro meter. The safety
barrier and car themselves are shown in Figure 17 and

Figure 17. Safety barrier - location of impact.

Figure 18, respectively. Using normal-speed and high-
speed video cameras (recording rate was 250 frames per
second), the behavior of the test vehicle during the collision
was recorded - see Figure 19.

5.2. Analysis of vehicle kinematics

Having at our disposal the acceleration measurements from
the collision, we are able to describe in details motion
of the car. Since it is an oblique impact, we analyze
only the pulses recorded in the longitudinal (x-axis) and
lateral (y-axis) directions as well as the yaw rate. By
integrating car'’s deceleration we obtain plots of velocity
and displacement, respectively — see Figure 20. At the time
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Figure 18. Car used in experiment.

when the lateral velocity component is zero, the vehicle
starts to move completely alongside the safety barrier.
Results shown in Figure 20 are already plotted for the
convenience in the global reference frame. The particular
components (X-longitudinal and Y-lateral, respectively)
of the initial velocity are determined by applying a simple
trigonometric relationships (initial impact velocity is vy =
104 [km/h] and the angle of impact is ¥ = 20°):

vx = v - cos W = 98 [km/h] (9)

vy = v -sinW = 36 [km/h] (10)

It is noted that the negative value of the Y-direction ve-
locity component showed in Figure 20 is related to the
assumed global reference frame — see Figure 21. Its center
is located directly in the first point of contact between the
vehicle and the barrier.

5.3. Results of validation

Here are presented the results of applying the created
fuzzy model in the same way as already shown in Sec-
tion 4. The estimated signals of acceleration, velocity, and
displacement are compared to the reference ones and are
shown in Figure 22, Figure 23, Figure 24, respectively.

It is shown that the overall behavior of the estimated accel-
eration curves follow the reference ones. Consequently, the
similarities between estimated and reference velocities as
well as displacements are observed. The discrepancies are
observed in the velocity and displacements plots, however
they stay within the reasonable limits. Please note that to
visualize the effectiveness of the method presented in this
work, the results are compared with the ones presented in
[34]. In [34] vehicle crash was modeled as a viscoelastic

20 05-03-01 PLAY 000141
FWD25 0000 .5600sec

230FPS

1,1000 START

20 05-03-01 PLAY 000178
FUD25 0000 . 7080sec
S— I—r—-l[—-—j"——r—'—"-':——ﬂ—
AR e B
27 B

——— LA

171000 START 230FPS

Figure 19. Subsequent steps of the crash test.

system consisting of a mass, spring, and damper in two dif-
ferent arrangements (parallel connection: so called Kelvin
model, and in series connection: so called Maxwell model).
Parameters of those models were estimated by fitting their
dynamic equations of motion to the reference displacement
of the vehicle. It is noting that those parameters were
constant throughout the simulation. Responses of the two
different models are shown in Figure 25 and Figure 26.
Calculating the root-mean-square errors for each of the
methods (y; — reference value, §; — estimated value):

Z?=1(yi - i)

n

RMSE = (1)
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Figure 20. Complete kinematics of the experimental vehicle.

Figure 21. Vehicle moving in the global reference frame.
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Figure 22. Comparative analysis of acceleration pulses of a vehicle
involved in oblique collision.

yields the results shown in Table 3. The value of the
root-mean-square error determines the average difference
between the reference and estimated value.

Table 3 clearly points out the significant improvement in
the results of modeling vehicle crash by using fuzzy logic-
based method described in this work with respect to the
results yielded by typical lumped-parameter models. It
is observed that for both frontal and oblique collisions
the factor which plays the most important role during a
collision (i.e. acceleration) follows closely the reference
one yielding low values of RMSE. RMSE for velocities
and displacements are also at low level, as compared to
the typical lumped parameter viscoelastic models. Above
considerations explicitly show the benefit of the current
method and enhancement of vehicle crash modeling out-
comes.
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Table 3. Root-mean-square errors (RMSE).

[ Quantity [Acceleration [g][ Velocity [km/h][Displacement [cm]]
Kelvin model 10.49 16.81 24.60
Maxwell model 8.60 4.02 2.21
Fuzzy logic approach: Frontal impact 1.39 0.45 112
Fuzzy logic approach: Planar impact - X-direction 1.21 273 6.38
Fuzzy logic approach: Planar impact - Y-direction 1.44 2.66 5.67
X-direction velocity X-direction displacement
100 ; 350 T
3001
95 b
2501
90 2l _. 200F
< — Reference E 150L
£ 85¢ - - - Estimated <
> £ 100f
S sol 3
2 & 50 — Reference
a 0 - - - Estimated 1
75¢
RARLEIN -50 1
7or s 100 -
65 ‘ ‘ ‘ -150 ‘ : :
0 50 100 150 200 0 50 im0 150 200
Time [ms] ime [ms]
—diracti : Y-direction displacement
s | Y d|rect|<?n velocity ‘ 130 i
ol ! 1 120 1
110 b
_5}
. 100 N
——10r 5 — Reference
< = 90 ; 1
£ c - - - Estimated
= -15¢ “E)
> g 80
o L
o -2 3 70r
> — Reference g
-25 - - - Estimated 7 601
-30 : 50f L
_35 R 401
30 ; ; ;
—40 ‘ w ‘
50 100 150 200 0 50 100 150 200
Time [ms]

Time [ms]

Figure 23. Comparative analysis of velocities of a vehicle involved
in oblique collision.

6. Conclusions and future works

The methodology presented in this study proves usefulness
of the fuzzy logic application to vehicle crash modeling.
The results obtained in this work were compared to the
results of By using the fuzzy approach to vehicle crash mod-
eling a lot of different crash scenarios may be successfully
simulated, regardless of their type, initial impact velocity

Figure 24. Comparative analysis of displacements of a vehicle in-
volved in oblique collision.

or impact angle. This makes the current study a valuable
contribution to modeling and simulation of vehicle behav-
tor throughout a collision. Care should be taken while
selecting the membership functions’ ranges as well as their
density. Higher MF density offers higher sensitivity of the
modeling therefore it should be used for the applications
in which it is crucial to capture the rapidly changing sys-
tem'’s output. To obtain an even more precise fuzzy model’s
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Figure 25. Kelvin model performance comparison [34].
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Figure 26. Maxwell model performance comparison [34].

output, the number of rules can be increased, as well as
the number of labels for each variable. The factor which
plays a crucial role in fuzzy modeling is also a shape of
MF - it should be adjusted individually to the nature of an
event being modeled. Thus, to achieve a better response
of a fuzzy model it is advisable to increase its complexity:
the number of MFs, the number of rules as well as to verify
which shape of MF is the most suitable for the vehicle
crash modeling. In the wider perspective the methodology
discussed in this paper may be used as a tool for safety
assessment of a vehicle crash depending on number of
inputs like the type of collision, vehicle initial impact ve-
locity or impact angle. Those various factors may be linked
by the fuzzy logic approach with determination of occu-
pants severity, creating a reliable and effective knowledge

base. Finally, it is advisable to investigate performance
of neuro-fuzzy inference systems in the area of vehicle
crash modeling. They offer a strong potential in the ahead
prediction of signals which makes them appropriate tools
for prediction of crash pulses. Such enhanced modeling
methodology would ultimately increase safety of vehicle
occupants, since more extensive work would be possible
to be carried out in the early design stage due to those
mentioned efficient and effective modeling methodologies.
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