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Project summary 

Aims 

1 – To quantify emphysema (%LAA, percentage Low Attenuation Areas) and airway 

wall thickness (AWT-Pi10, Airway Wall Thickness in a standardized airway with an 

internal perimeter of 10 mm) in ever-smoking COPD and non-COPD subjects using 

quantitative CT analysis, and to determine how these anatomic measures varied with 

gender, age and smoking habits. 

2 – To describe the relationship between respiratory symptoms of COPD and 

quantitative CT measures of emphysema and airway wall thickness, and to assess how 

these relationships interacted with COPD-status, gender, age and smoking history. 

3 – To examine the relationship between the diffusing capacity of the lung and 

quantitative CT measures of emphysema and airway wall thickness, and to assess how 

these relationships varied by COPD status, gender, age and smoking history. 

Methods 

The subjects included in the current study were all participants in the GenKOLS study, 

and constitute the approximate half of the GenKOLS population that received an 

optional CT scan. A total of 463 COPD subjects (65 % men) and 488 non-COPD 

subjects (53 % men) were included in this study. In paper I we excluded 57 non-COPD 

subjects (volunteers) from the analyses, and in paper III we excluded 175 COPD 

subjects and 63 non-COPD subjects from the analyses due to missing or invalid DLCO 

measurements. All included subjects were current or ex-smokers older than 40 years. 

They underwent spirometry (Vitalograph 2160), diffusing capacity tests 

(SensorMedics Vmax22D) and CT examination (GE LightSpeed Ultra), and 

completed multiple questionnaires, including an ATS questionnaire on respiratory 

symptoms. The CT images were quantitatively assessed (Emphylx-J software), giving 

indices on lung density and airway dimensions. 



10 

 
Results 

1 – Median (25, 75-percentile) %LAA was 8.9 (2.8, 19.1) and 4.7 (1.5, 15.5) in male 

and female COPD subjects, and 0.71 (0.32, 1.58) and 0.32 (0.14, 0.84) in male and 

female non-COPD-subjects. %LAA was higher in ex-smokers and increased with 

increasing age and with increasing number of pack years. Mean (SD) AWT-Pi10 (mm) 

was 5.04 (0.30) and 4.74 (0.31) in male and female COPD subjects, and 4.88 (0.28) 

and 4.63 (0.25) in male and female non-COPD subjects. AWT-Pi10 decreased with 

increasing age in cases, and increased with the degree of current smoking in all 

subjects. 

2 – Both %LAA and AWT-Pi10 were independently and significantly related to the 

level of dyspnea among COPD subjects, even after adjustments for FEV1 in % 

predicted. AWT-Pi10 was significantly related to cough and wheezing in COPD 

subjects, and to wheezing in non-COPD subjects. Odds ratios (95% confidence limits) 

for increased dyspnea in COPD subjects and non-COPD subjects was 1.9 (1.5, 2.3) 

and 1.9 (0.6, 6.6) per 10 % increase in %LAA, and 1.07 (1.01, 1.14) and 1.11 (0.99, 

1.24) per 0.1 mm increase in AWT-Pi10, respectively.  

3 – Multiple linear regression analyses showed significant associations between DLCO 

and both %LAA and AWT-Pi10 in the COPD group. The adjusted regression 

coefficients (SE) for DLCO were -1.15 (0.11) mmol · min-1 · kPa-1 per 10% increase in 

%LAA and 0.08 (0.03) mmol · min-1 · kPa-1 per 0.1 mm increase in AWT-Pi10, and the 

adjusted R2 of the models were 0.65 and 0.49, respectively. 

Conclusions 

1 – There were significant differences between COPD and non-COPD subjects in 

quantitative CT measures of emphysema and airway wall thickness. Gender, age and 

smoking history also had strong effects on these quantitative CT measures and must be 

considered when comparing quantitative CT studies. 
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2 – Quantitative CT measures of emphysema and airway wall thickness were 

significantly and independently associated with respiratory symptoms, and may be 

used to explain the presence of respiratory symptoms beyond the information offered 

by spirometry.  

3 – Quantitative CT measured emphysema was highly related to both diffusing 

capacity and diffusing coefficient in COPD subjects, and this relationship was even 

stronger in men. There was also a positive, but not equally strong, relation between CT 

measured airway wall thickness and diffusing capacity, and this was contrary to our 

hypothesis that there would be no relationship between airways and diffusing capacity. 

Both CT measures provide valuable information about the lungs not readily available 

from spirometry and diffusing capacity alone, but the modest explained variation 

attributable to the airway measurements warrants further studies. 
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Terms and abbreviations 

%LAA Percentage Low Attenuation Areas. A measure of the degree of 

emphysema. Indicates the relative amount of lung voxels that has a 

density less than the given cut-off. The most frequently used cut-off is 

-950 HU (%LAA-950), but other cut-offs are also in use (e.g. -910 

HU, -856 HU, etc). If nothing else is specified, %LAA should be 

interpreted as %LAA-950. 

AWT-Pi10 A standardized measure of Airway Wall Thickness at an Internal 

Perimeter of 10 mm. This measure is calculated by plotting the square 

root of the measured wall area against the internal perimeter of each 

individually measured airway, and then using the resulting regression 

line to calculate the resulting square root of the wall area of a 

«theoretical airway» with an internal perimeter of 10 mm. 

COPD Chronic Obstructive Pulmonary Disease 

CT Computed Tomography 

DICOM Digital Imaging and Communications in Medicine. A standard for 

distributing and viewing any kind of medical image. 

DLCO Diffusing capacity of the Lung for carbon monoxide 

DLCO /VA Diffusing capacity of the Lung for carbon monoxide divided by the 

estimated alveolar volume. The equivalent of KCO. 

FEV1 Forced Expiratory Volume in one second 

FVC Forced Vital Capacity 

GenKOLS Genetic COPD study 

GOLD Global initiative for Obstructive Lung Disease 
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HCRHS Hordaland County Respiratory Health Survey 

HU Hounsfield Units. A density scale, ranging from -1000 HU (the 

equivalent of air) to +1000 HU (the equivalent of dense bone). Water 

has a density of 0 HU. 

HUH Haukeland University Hospital 

Inflation 

Level 

CT measured lung volume divided by the predicted TLC 

IVC Inspired Vital Capacity 

kVp Kilo-Volt peak. Beam energy. 

mAs Milliampere seconds. The product of the tube current and time. 

MRCDS Medical Research Council Dyspnea Scale 

OR Odds Ratio 

Pack-years Number of cigarettes smoked per day divided by 20, and multiplied 

with the number of years smoked. 

Pi  Internal perimeter 

PI type Protease Inhibitor type. Used to classify different forms of A1AT-

defiency 

RV Residual volume 

SOHAS Second Oslo and Hordaland Asthma Survey 

TLC Total Lung Capacity 

VA Estimated Alveolar Volume 
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Voxel A three dimensional pixel, or a box. The size of a voxel is decided by 

the resolution of the image and the slice thickness. A voxel is the 

smallest part of the lung where individual density measurements can 

be made using quantitative CT. 

WA% Wall Area Percent. The percentage of the measured total airway area 

that is made out of wall, and not lumen. 
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Introduction 

About COPD 

Chronic obstructive pulmonary disease (COPD) is a major cause of chronic morbidity 

and mortality throughout the world. It was ranked as the sixth most common cause of 

death worldwide in 1990, and is projected to become the third leading cause of death 

by 2020 (2). 

The main characteristic of COPD is chronic airflow obstruction, and the predominant 

symptoms are chronic and progressive dyspnea, cough, and sputum production. COPD 

is usually caused by cigarette smoking, which is the best-studied risk factor, but 

several other risk factors have been identified (2). These factors include environmental 

tobacco smoke (passive smoking), indoor and outdoor pollution, occupational dusts 

and chemicals, and several genetic risk factors, including α1-antitrypsin deficiency.  

Previous COPD definitions have distinguished between different types of COPD, and 

as illustrated in Figure 1, there is a considerable overlap between the different types of 

COPD (3, 4). 

Asthma is a chronic inflammatory disorder of the airways and cannot be classified as 

COPD as long as the airflow obstruction is completely reversible (5). Chronic 

bronchitis is defined by a chronic productive cough for three months in each of two 

successive years in a patient in whom other causes of chronic cough have been 

excluded (4). Emphysema is defined by abnormal and permanent enlargement of the 

airspaces that are distal to the terminal bronchioles, accompanied by destruction of the 

airspace walls, and without obvious fibrosis (4). As illustrated by the Venn diagram, 

all three conditions may exist independently or concurrently, and they may or may not 

result in chronic airway obstruction. 
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Figure 1 Non-proportional Venn diagram showing subsets of patients with chronic bronchitis, 

emphysema, and asthma (black circles). The subsets defined as COPD are shaded gray. The numbers 

simply indicate the different subsets, and will not be referred to in this thesis. (Taken from ATS. 

Standards for the diagnosis and care of patients with COPD, 1995 (3)) 

 

It has become clear that COPD is a complex and heterogeneous disease, and that the 

described Venn diagram should not be taken too literally (6). It has been a useful way 

of illustrating the different components of COPD, but it is by no means complete. For 

instance, it does not include small airway disease, while most of the airflow 

obstruction is due to reduced airflow in the small conducting airways (7). The 

discussion about how COPD should be divided into various subgroups or phenotypes 

is ongoing in the scientific community (8). 

Today, the most widely used and accepted COPD guidelines is The Global Initiative 

for Chronic Obstructive Lung Disease (GOLD) (2). GOLD defines COPD as follows: 

"COPD is a preventable and treatable disease with some significant extrapulmonary 

effects that may contribute to the severity in individual patients. Its pulmonary 

component is characterized by airflow limitation that is not fully reversible. The 

airflow limitation is usually progressive and associated with an abnormal 
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inflammatory response of the lungs to noxious particles or gases." The previous 

distinction between asthma, emphysema and chronic bronchitis is not included in the 

current GOLD definition. Instead it focuses on a not fully reversible airflow 

obstruction, and specifies that the chronic airflow limitation characteristic of COPD is 

caused by a mixture of small airway disease (obstructive bronchiolitis) and 

parenchymal destruction (emphysema). The relative contributions of these subtypes 

vary from person to person. 

The chronic airflow limitation in COPD is best measured by spirometry, because this 

is the most widely available, reproducible test of lung function. The GOLD guidelines 

recommend that COPD is classified into four stages of severity based on spirometry, 

ranging from mild to very severe (Table 1). 

 

Table 1 Classification of COPD severity based on post-bronchodilator FEV1 and FVC 

Stage I: mild FEV1/FVC < 0.70 

FEV1  80% predicted 

Stage II: moderate FEV1/FVC < 0.70 

50% FEV1 < 80% predicted 

Stage III: severe FEV1/FVC < 0.70 

30% FEV1 < 50% predicted 

Stage IV: very severe FEV1/FVC < 0.70 

FEV1 < 30% predicted or FEV1 < 50% predicted plus 
chronic respiratory failure 

 

This classification provides a simple and useful clinical tool for both diagnosis and 

treatment of COPD, but the cut points are not clinically validated. Especially the use of 

the fixed FEV1/FVC-ratio of 0.70 has been debated, and it has been shown that the use 

of this fixed ratio can lead to an over-diagnosis of COPD in the elderly (9).  
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The FEV1 % predicted, as reflected in the four GOLD stages, defines the severity of 

COPD, but to the individual patient the respiratory symptoms are more important. The 

characteristic symptoms of COPD are chronic dyspnea, cough and sputum production. 

The level of dyspnea also corresponds reasonably well to the reduction in FEV1, but 

chronic cough and sputum production may precede the development of airflow 

limitation by several years. And conversely, the patients may develop significant 

airflow obstruction without any cough or sputum.  

Hence, spirometry is not the only instrument needed to assess and monitor COPD. A 

thorough physical examination and a detailed medical history, including risk factors, 

respiratory symptoms and co-morbidities are important. A reversibility test may be 

useful, but cannot reliably differentiate COPD from asthma (10). Arterial blood gas 

measurements may be important in the more severe stages of COPD that has started to 

develop respiratory failure. Genetic testing may explain COPD in never-smokers with 

α1-antitrypsin deficiency. Lung diffusing capacity may help differentiate between 

COPD and other interstitial lung diseases, and may also say something about the 

predominant subtype of COPD (emphysema or small airway disease). Chest X-ray and 

CT thorax are also widely used, and will be discussed in the next section.  

Radiological approaches to COPD 

X-rays was discovered by W.C. Roentgen in 1895. Initially its medical use was limited 

to identifying bone structures, but since then it has been increasingly used as a medical 

diagnostic method. Conventional plain X-ray of the chest has for many years been 

used to assess respiratory diseases, including COPD. An abnormal chest X-ray is 

seldom diagnostic in COPD unless obvious bullous disease is present, but it can be 

valuable in excluding alternative diagnoses and establishing the presence of significant 

comorbidities, such as cardiac failure and lung tumours.  

Conventional X-ray technology is limited in that the image it produces is a shadow of 

all the structures in the body that the X-rays pass through. All these structures become 

superimposed on each other as they are projected on the film or X-ray sensor, and as a 
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result each single plane blurs the others. To avoid this, Mayer proposed a method 

known as tomography in the early 1900s, and this was further refined by Vallebona, 

Bocage and Grossmann (11). The idea was based on the principles of projective 

geometry. By moving the X-ray tube and the film (inter-attached by a rod) 

synchronously and in opposite directions, one could produce an image which was 

sharper in the focal plane (corresponding to the rod’s pivot point), while the images 

from the other superimposed planes would be more blurred. Although tomography was 

limited by the fact that the absence of blurring occurred in one plane only, it continued 

to be an important part of radiologic diagnostics for many years, until the development 

of computed tomography. 

The mathematical theory behind computed tomography was also developed in the first 

half of the 20th century (H.A. Lorentz 1905, J.H. Radon 1917). It was shown that the 

distribution of material properties in an object layer can be calculated if the integral 

values along any number of lines passing through the same layer are known. But it was 

first in the 1970s the development of modern computer technology and the transverse 

axial scanning method made possible a new approach. And in 1979, G.N. Hounsfield 

and A.M. Cormack were awarded the Nobel Prize in Medicine in recognition of their 

important role in the development of computed tomography. 

Since the arrival of the first clinical CTs in the 1970s, there has been a tremendous 

development. The first single-slice units could only do head-scans, had low resolution 

(80x80 pixels) and were very slow in terms of both scanning and data processing. 

Today’s CTs can scan the whole body, have a much higher resolution and are much 

faster using multi-slice (128) and dual-source technology. As a result of this ongoing 

development, the newest CTs can scan the whole thorax well within one breath-hold, 

and using much lower radiation doses than before.  

With regard to COPD, a CT of the chest is not routinely recommended. However, 

when there is doubt about the diagnosis of COPD, a high-resolution CT scan might 

help in the differential diagnosis. It is also an important tool to determine the amount 

and distribution of emphysema and the surgical suitability for lung volume reduction. 
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Quantitative CT 

COPD is characterized by abnormal lung function and structure. Pulmonary function 

testing, and spirometry in particular, has evolved to become a reliable and safe method 

to measure the severity and progression of the impaired lung function associated with 

COPD. A similar assessment of the anatomic and structural changes associated with 

COPD has until recently not been possible.  

Conventional CT uses the density measurements from the scan to produce images that 

are available for interpretation by a radiologist, yielding semi-quantitative data. The 

advent of quantitative CT of the chest has made it possible to use the same density 

measurements to produce quantifiable data on airways and parenchyma. Instead of 

categorizing emphysema as mild, moderate or severe based on a radiologist’s 

assessment, quantitative CT yields a more accurate and precise measure of lung 

density and emphysema on a continuous scale. Similarly, instead of a radiologist’s 

description of the presence or absence of bronchiectasis or slightly thickened airway 

walls, quantitative CT accurately measures the dimensions of both lumen and wall in a 

large number of airways throughout the lungs.  

Over the last few years there has been a considerable development of the technical and 

methodological aspects of quantitative CT and a growing number of clinical studies 

have used quantitative CT in their assessment of COPD. But unlike spirometry, 

quantitative CT has not been fully standardized. There is no general consensus on 

which of the many possible quantitative CT algorithms or measures that are best at 

quantifying the airway and parenchymal lesions that are characteristic of COPD. With 

regard to emphysema, there are several different density cut-offs that are used to 

calculate the percentage of low attenuation areas, and the most frequently used is -950 

HU. In addition, many centres measure the density at a given percentile instead, and 

the most frequently used is the 15th percentile. With regard to the airways, there are 

also many different approaches, focusing on both wall area and wall thickness, and 

there is also a discussion about which airways and which generation of airways to 

measure.  
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Relevant literature prior to the current study 

In 1988 Gould et al. (fifth percentile) and Müller et al. (“density mask” at -910 HU) 

described each their quantitative CT technique, and found good correlation with 

morphometric measurements of emphysematous pathologic lung sections (12, 13). 

They also demonstrated that the quantitative lung density measurements were 

correlated with airflow limitation (FEV1) and diffusing capacity (13-15). In 1996 

Gevenois et al. showed that a threshold cut-off value of -950 HU had the best 

correlation with extent of emphysema (16). Other groups pursued the percentile 

method, and found that 15th percentile provided the best estimate of the extent of 

emphysema, especially in subjects with α1-antitrypsin deficiency and in longitudinal 

studies (17, 18). These two methods of assessing the extent of emphysema are 

basically not very different, as they both present the same data in slightly different 

ways, and there are no big controversies between these two approaches. 

The quantitative assessment of airways, on the other hand, has generated more 

controversy (19). In 1997 McNitt-Gray et al. found that airways could be accurately 

measured using a density cut-off of -500 HU (20), and this was followed up King et al. 

in 2000, using a threshold of -577 HU (21). However, while this method was very 

good at assessing the airway lumen, it was not very good at assessing the airway wall. 

The development of the “full width at half maximum” technique solved some of these 

problems, but has a tendency to overestimate the airway wall area and underestimate 

the lumen area (22, 23). To overcome these obstacles, several other approaches have 

been developed, including the “maximum-likelihood method” and the “score-guided 

erosion algorithm”, but no single method has emerged as superior to the others (19). A 

frequently used way to present the airways measurements is the Wall Area Percent 

(WA%), which is the percentage of the total airway area that is wall. In 2000 Nakano 

et al. showed that WA% in the right apical segmental bronchus correlated with FEV1, 

FVC and RV/TLC (23), and later Nakano et al. showed that WA% measured by CT 

correlated with the wall area measured histologically in the same subjects (24). These 

findings indicated that the airflow limitation in the small airways (< 2 mm), that 

cannot be measured by CT, can be assessed using the larger airways (>2 mm) that are 
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available to quantitative CT measurements. There is however a potential problem with 

WA%. The smaller the airway, the larger the relative wall area (WA%). To avoid this 

potential bias, Nakano also plotted the square root of the airway wall area against the 

internal perimeter of that airway for both CT and histologic measurements, and found 

good correlation between the two (24).  

Thus, at the start of the current study, there were several studies showing that different 

quantitative CT measures correlated well with both anatomic and functional measures 

of the lung. But the majority of these studies had small sample sizes and was focused 

on the methodological aspects. There was limited knowledge on how these 

quantitative CT measures varied with gender, age and smoking history, and how they 

related to pulmonary function and respiratory symptoms, but some data had been 

published: 

 

Gevenois et al. looked at the effects of age, sex, lung size and hyperinflation on CT 

lung densitometry in 1996 (25). They found only a small age-effect, and no gender-

effect, but there were only 42 healthy subjects included in the study. In a longitudinal 

follow-up study of 83 subjects in 2000, Soejima et al. also found that quantitative CT 

measured emphysema increased with age, and more so in smokers, but the study was 

too small to assess the gender effect (26). Nakano et al. found that quantitative CT 

measurements of both airways and emphysema correlated with pulmonary function 

(spirometry and diffusing capacity) in 114 smokers, but did not take age, gender or 

smoking into account (23). In 1999 Park et al. reported that emphysema assessed using 

the -950 HU threshold correlated well with FEV1 and DLCO, and better than the -910 

and -900 HU thresholds (27). This study comprised 60 subjects, and was also too small 

to assess gender, age and smoking effects. In 2001 Dowson et al. reported that 

quantitatively assessed emphysema (-910 HU) correlated with health status assessed 

by St. George’s respiratory questionnaire in 125 subjects with α1-antitrypsin deficiency 

(28). No studies had looked directly on the relationship between quantitative CT and 

respiratory symptoms to give quantitative CT measures a clinical correlate. 
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The above mentioned references are not complete, but illustrate the limited available 

knowledge concerning quantitative CT assessment of emphysema and airways when 

this study was initiated. While there was reasonable agreement that quantitative CT 

measures were correlated with pulmonary function, the technique was not 

standardized, and there were many unsolved questions (29): 

 Disagreement on optimal approaches/techniques, especially with regard 

to airways 

 No established normal reference values 

 Limited validation against phenotypic expressions of COPD other than 

spirometry 

 Lack of large studies to assess the effect of gender, age and smoking 

history in both COPD patients and healthy subjects 

The current study was at the time of initiation the largest available study sample with 

quantitative CT data on lung density and airway dimensions. We hypothesized that 

gender, age and smoking history would have significant effects on the quantitative CT 

measures of emphysema (%LAA) and airway wall thickness (AWT-Pi10). We also 

hypothesized that %LAA would be strongly related to dyspnea score and DLCO, and 

that AWT-Pi10 would be strongly related to respiratory symptoms like cough and 

phlegm. 
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Aims of the study 

 

The objectives of this thesis were: 

1) To quantify emphysema and airway wall thickness in ever-smoking COPD and 

non-COPD subjects using quantitative CT analysis, and to determine how these 

anatomic measures varied with gender, age and smoking history. 

 

2) To describe the relationships between respiratory symptoms of COPD and 

quantitative CT measures of emphysema and airway wall thickness, and to 

assess how COPD-status, gender, age and smoking history interacted with these 

relationships. 

 

3) To examine the relationship between the diffusing capacity of the lung and 

quantitative CT measures of emphysema and airway wall thickness, and to 

assess how these relationships varied by COPD status, gender, age and smoking 

history. 
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Materials and methods 

Study design and study population 

The subjects included in the current study were all participants in the GenKOLS-study, 

and constitute the approximate half of the GenKOLS population (951 of 1909) that 

received an optional CT scan. 

The GenKOLS-study was performed at Haukeland University Hospital (HUH) 

between 2003 and 2005, and was a case/control study designed to look for genetic 

associations with COPD. GenKOLS recruited potential cases and controls from four 

different sources: 

 Hordaland County Respiratory Health Survey (HCRHS) 

 Second Oslo and Hordaland Asthma Survey (SOHAS) 

 Haukeland University Hospital COPD registry (HUH COPD registry) 

 Volunteers 

HCRHS is a large epidemiological cohort study that was performed in Hordaland 

County, initiated in 1985, and followed up in 1996/97 (30, 31). All subjects from 

HCRHS that were still living in Bergen and surrounding communities in 2002 were 

invited to participate in another follow-up of the HCRHS. The HCRHS subjects who 

were eligible for inclusion in GenKOLS were also invited to participate in GenKOLS. 

SOHAS is a cross-sectional population study that was performed in the city of Oslo 

and Hordaland county in 1998 (32). The HUH COPD registry comprised all patients 

registered with a diagnosis of COPD or emphysema in the hospital records between 

1997 and 2005. Volunteers were people who contacted the study staff and expressed 

an interest to participate in the study.  
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The table above (Table 2) shows how many subjects from each source that were 

invited, how many that attended a clinical examination at HUH (GenKOLS screening) 

and finally how many that were included in GenKOLS and subsequently in the 

quantitative CT study. 

Inclusion and exclusion criteria 

Inclusion criteria 

- Able and willing to sign an informed consent form. 

- Age 40 years. 

- Current or ex-cigarette smoker, minimum 2.5 pack years. 

- No evidence of severe 1-antitrypsin deficiency (ZZ, Z Null, Null-Null, or SZ) 

assessed by PI type. 

- Caucasian self reported.  

- Cases:  Diagnosed COPD, GOLD II or worse. 

            FEV1/FVC < 0.7, FEV1 < 80% (post bronchodilator) 

- Controls:  Not diagnosed with COPD.  

      FEV1/FVC > 0.7, FEV1 > 80% (post bronchodilator) 

Exclusion criteria 

- Unable to give informed consent. 

- Severe anaemia as defined by haemoglobin of 9.0 g/dl. 

- Known HIV, hepatitis B or C infection. 

- Blood transfusion received within last 4 weeks. 

- Chronic pulmonary disorder other than COPD (e.g., lung cancer, sarcoidosis, 

active tuberculosis, and lung fibrosis). Inactive tuberculosis and previous diagnosis 

of asthma were not an exclusion criterion. 

- Status post-lung or other organ transplantation. 

- Status post-lung volume reduction surgery. 

- Taken antibiotics for respiratory disease within 1 month or have had a respiratory 

infection within 6 weeks of the visit. 
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To be included in the study the subjects had to fulfill all inclusion criteria and no 

exclusion criteria. However, subjects fulfilling transient exclusion criteria such as a 

recent respiratory infection or low hemoglobin were eligible for a reconsideration of 

inclusion at a later date. 

Study sequence and data collection 

First, the potential study participants from each source were identified. Then, the 

volunteers and the subjects originating from SOHAS and the HUH COPD registry 

were screened by telephone interview (Appendix A), to ensure that they were aged 40 

years or older, that they were current or ex-smokers with at least 2.5 pack years and 

that they were willing to participate in the study. During the telephone interview they 

were also informed about the GenKOLS study, and if they were willing to participate 

they were given an appointment for a screening visit and clinical examination at HUH. 

Those willing to participate were subsequently sent a letter (Appendix B, C) 

containing a confirmation of the appointment, a screening consent form, a screening 

questionnaire and a description of the GenKOLS study. Eligible subjects (age>40 

years, minimum 2.5 pack-years) originating from HCRHS were not screened by 

telephone, but sent a letter (Appendix B, C) directly containing a description of the 

GenKOLS study and why they were invited, a screening consent form, a screening 

questionnaire and an appointment for a screening visit and clinical examination at 

HUH. 

At the screening visit, an extensive description of the study was given to all attending 

participants, and informed written screening consent was signed. The study staff 

ensured that the screening questionnaire was correctly completed, and recorded 

weight, height, waist hip measurements, vital signs and breath sounds on all 

participants. Then pre- and post-bronchodilator spirometry was performed on all 

participants. 

Based on the post-bronchodilator spirometry and the screening questionnaire, the 

subjects were then identified as cases or controls in the GenKOLS study, according to 
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the inclusion and exclusion criteria described. The participants originating from 

HCRHS that did not meet these criteria were still offered to be included in the 

longitudinal follow-up of HCRHS using the already obtained screening data. 

The subjects that were eligible for inclusion as cases or controls then signed a written 

case-control study consent form (Appendix D), and completed a larger case-control 

questionnaire (Appendix E). Then measurements of diffusing capacity and whole body 

impedance were performed, and blood samples were drawn for biochemical and 

genetic analyses. The cases and controls were also offered an optional high resolution 

CT scan for quantitative analyses, to be taken the same day or on a separate later visit. 

This optional scan was offered until a total of approximately 1000 CTs were acquired, 

equally distributed between cases and controls. 

Questionnaires 

All invited subjects were sent the short screening questionnaire (Appendix C). Only 

included cases and controls were asked to complete the more extensive case-control 

questionnaire. This questionnaire consisted of 35 pages and more than 200 questions 

concerning demographics, medical history, family history, smoking history, 

occupational history and more. The case-control questionnaire is too large to be 

printed in this thesis. Instead, only the questions that were actually used in papers I-III 

are given in this thesis. The selected questions from the case-control questionnaire 

concerned demographics, smoking history, respiratory symptoms and co-morbidities. 

The exact wording of these questions (not demographics) is given in Appendix E, both 

in English and Norwegian translation. 

Lung function measurements 

Spirometry 

Spirometric measurements were recorded at the screening visit, using a Vitalograph 

2160 Gold Standard Plus (Appendix F), and according to the American Thoracic 

Society standards (3). All testing equipment was calibrated daily using a Vitalograph 1 
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liter precision syringe, and a log of the calibration results was maintained. Local 

reference values for FEV1 and FVC were used (33). 

Subjects were assessed at least 6 weeks after any respiratory infection. Subjects were 

not asked to withhold regular medication (including bronchodilators), but recent use of 

bronchodilators was recorded. The pulmonary function tests were supervised by 

trained technicians, and the subjects were sitting upright using a nose clip to avoid 

leakage. 

Three acceptable forced expiratory maneuvers were recorded, and the highest pre 

bronchodilator FVC and FEV1 values were selected. After the baseline spirometry, the 

subjects were given 400 µg of Ventoline (salbutamol) via a metered dose inhaler and 

an Aerochamber spacer. 30 minutes after the administration of salbutamol, another 

three acceptable forced expiratory maneuvers were recorded, and the highest post 

bronchodilator FVC and FEV1 values were selected. These post bronchodilation 

measurements were used for inclusion/exclusion and GOLD classification of the 

participants, and also as an adjustment factor in the multiple regression analyses. 

Diffusing capacity 

The single breath diffusing capacity of the lung for CO (DLCO) was also recorded at 

the screening visit. We used a SensorMedics Vmax Spectra 22D (Appendix G) for these 

measurements, and the system was calibrated daily. We followed the recommended 

ATS guidelines (34) for DLCO measurements with one exception. This concerned the 

criterion that IVC should not be less than 90% of the largest previously measured 

FVC, and this topic will be discussed later under Methodological Aspects.  

We used a gas mixture of 0.3% carbon monoxide, 0.3% acetylene, 0.3% methane, 

21% oxygen and nitrogen. Estimated alveolar volume (VA) was measured from the 

single breath dilution of methane, and the diffusion coefficient (DLCO/VA) was 

calculated by dividing DLCO by VA. Local reference values for DLCO, VA and 

DLCO/VA (35) were used. 
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The subjects were sitting upright and using a nose clip during the measurements, and 

the tests were supervised by trained technicians. After 4-5 registered tidal volumes, the 

end-expiratory baseline was determined, and the subjects were then asked to exhale 

fully. When full exhalation was reached, the subjects made a rapid maximal inhalation, 

and continued to hold their breath for 10 seconds, before exhaling rapidly. Up to 4 

maneuvers were performed in order to obtain 2 error free tests, and there was a 

minimum interval of 4 minutes between each maneuver.  

Computed tomography 

CT image acquisition 

The high resolution CT images were acquired at Haukeland University Hospital using 

a GE LightSpeed Ultra CT scanner (Appendix H). The images were taken at 

suspended full inspiration, and without spirometric gating. A high resolution axial scan 

was performed, using 120 kVp and 200 mAs, and a slice thickness of 1.25 mm taken 

at 20 mm intervals from the apex to the base of the lungs. The images were 

reconstructed using a low spatial frequency algorithm (standard) for the lung density 

measurements, and using a high spatial frequency algorithm (bone) for the airway 

measurements. The smallest Field Of View that included both lungs was used. The CT 

images were then stored on Magnetic Optical Disks (DICOM 3.0 format), and shipped 

to Vancouver, Canada, for quantitative assessment. 

A local radiologist (at HUH) reviewed all CT images for signs of clinically significant 

abnormalities. A total of 118 subjects were referred for a repeated CT scan 

(contiguous) due to such abnormalities, and then through the national health care 

service for further follow-up. The majority of these abnormalities proved to be 

harmless, but 3 subjects were diagnosed with lung cancer as a result of this process. 

Quantitative assessment 

The quantitative analysis of the CT images was performed by the iCapture Centre in 

Vancouver, BC, Canada, under the supervision of Dr. Harvey Coxson (UBC James 

Hogg Research Centre and Vancouver General Hospital). 
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All the CT images were first assessed by two independent radiologists, yielding semi-

quantitative data on the extent, distribution and type of emphysema, as well as the 

possible presence of bronchiectasis. The radiologists also reported any clinically 

significant abnormalities, and if these were not already discovered by the local 

radiologist at Haukeland University Hospital, the subjects in question were referred 

through the national health care service for further follow-up. These semi-quantitative 

data has not been the focus of this thesis. 

The DICOM 3.0 format CT image data was imported into Emphylx-J (36), a graphics-

based lung analysis program for quantitative analysis of thoracic CT scans developed 

by the iCapture Centre.  

The software automatically segmented the lungs from the chest wall, the trachea and 

central airways and the mediastinum using a modified border tracing algorithm with 

prior position knowledge (37). This segmentation was shown visually to the operator, 

who could check the segmentation slice by slice. Any segmentation errors could then 

be corrected by the operator by adding, subtracting or reclassifying the segmented 

areas. After the correct lung segmentation was established, the software used the X-ray 

attenuation values from the CT images to calculate the lung density, lung volume, lung 

mass, regional expansion and surface area to volume ratios. Based on operator input, 

the software also calculated the percentage of low attenuation areas with a density 

lower than a chosen density cut-off (density mask). All of the above values were 

calculated for each slice, for each lung and for the total lung. 

A custom version of Emphylx-J was also used for the quantitative airway analyses. 

The operator had to review each slice and manually identify airways that were cut in 

cross-section (short to long axis greater than 2:3). A seed point was placed in the 

lumen of each identified airway, and the software automatically computed the inner 

and outer limits of the airway walls using the Full Width At Half Maximum algorithm 

(24). This algorithm draws 64 radial lines from the seed point and measures the X-ray 

attenuation along these lines. Then it chooses the two points where the X-ray 

attenuation is half of the maximum attenuation value measured along that line as the 
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inner and outer limit of the actual airway. After the airway wall limits had been 

established, the software calculated the inner and outer perimeter of each identified 

airway wall, as well as the area of the lumen and the area of the wall itself. To reduce 

the technical errors associated with very small airways, only airways with an internal 

perimeter > 6 mm were included. The number of identified airways was also recorded, 

but due to the axial scanning method that was used (and not helical) we had no way of 

tracing the airways and classifying them into generations. 

Quantitative CT measures used in this study 

The extent of emphysema was assessed using the density mask method described 

above, to get the percentage of lung voxels with a density lower than a certain 

threshold. We used the term %LAA (percentage low attenuation areas) to describe 

these low density regions of the lung. We used -950 Hounsfield Units (HU) as the 

primary cut-off (%LAA-950), and when nothing else is specified, %LAA should be 

interpreted as %LAA-950. The -950 HU cut-off has been shown to be appropriate for 

this CT acquisition technique (16, 38), but several other cut-offs are also commonly in 

use. For comparison, we also performed the density mask analyses using -910 HU and 

-856 HU as cut-offs, yielding %LAA-910 and %LAA-856. Another frequently used 

measure of the extent of emphysema is the 15th percentile density, which is the density 

(given in HU) at which 15% of the lung voxels have a lower density. This measure 

was also calculated from our material. 

The airway wall thickness (AWT) is often expressed as the Wall Area Percent 

(WA%), which is the percentage of the whole airway area that is wall (and not lumen). 

We calculated WA% from this material, but there is a potential problem with this 

measure: With increasing airway generations, the airways get smaller, and the smaller 

the airway, the larger the relative wall area. To avoid the potential bias issues 

surrounding different distribution of airway sizes between subjects, a standardized 

measure for AWT was derived for each subject by plotting the square root of the 

airway wall area against the internal perimeter of each measured airway (Figure 2). 

The resulting regression line was used to calculate the square root of the wall area for a 

‘theoretical airway’ with an internal perimeter of 10 mm (AWT-Pi10). Although CT 
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measured AWT tends to be overestimated compared to histologic AWT, especially in 

small airways, there is a good correlation between histologic and CT measurements 

when the square root of the wall area is plotted against the internal perimeter of the 

airway (24).  

 

Figure 2 The calculation of AWT-Pi10. The square root of the wall area of each measured 

airway (√WA) was plotted against the internal perimeter (Pi) of that airway. This was 

performed separately for each subject. From the resulting regression line, a standardized 

measure of airway wall thickness for an airway with an internal perimeter of 10 mm was 

predicted (AWT–Pi10). 

 

Data management 

All data from the questionnaires and clinical tests were initially recorded on paper, and 

the paper records were kept in a locked archive facility. The data from the paper 

records were later punched into an online database by the local study staff, and 

continuous simple error-checks were applied to reveal and correct punching errors. 

Examples of this were out of range values and missing values. The online database 

(GenNet, operated by GSK) was password-protected, and access was only given to 
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selected members of the local study staff and selected members of the GSK staff. The 

online database was anonymized and contained no identifiable data except for a unique 

study ID number. Only the local project manager (Amund Gulsvik) had access to the 

data key that linked this ID with the subjects’ name and date of birth.  

After the data sampling phase was completed, an external monitoring agency checked 

the quality of the sampled data. The paper records from 5 % of the subjects (50 cases 

and 50 controls) were randomly chosen and re-punched, and the results were checked 

against the information stored in the online database. The agency concluded that there 

was good agreement between the paper records and the information stored in GenNet, 

and noted only a few discrepancies that were mostly related to smoking history. There 

were 25 observed smoking related discrepancies among these 100 subjects. But each 

subject answered a total of 36 smoking related questions, yielding a low discrepancy 

rate (25/3600). The observed discrepancies were later corrected in GenNet. 

Then, extensive inconsistency analyses were run manually using Stata 8.0. Several 

inconsistencies were detected, and these were mainly related to smoking history. For 

instance, one subject could have answered “no” to ever having smoked, and then later 

stated that he is currently smoking 20 cigarettes per day. All detected inconsistencies 

were investigated and sought solved by re-checking the paper records, and also using 

the recorded data from the postal questionnaire. Some subjects were also contacted by 

phone for clarification. Solved inconsistencies were updated both in GenNet and in the 

paper records. Unsolvable inconsistencies were marked as missing values when the 

variable in question was non-essential. Unsolvable inconsistencies involving essential 

variables (variables concerning the inclusion/exclusion criteria of a subject) would 

lead to an exclusion from the study. A total of 23 subjects were excluded in this 

process. 

Statistics 

All statistical analyses were performed using the Stata/IC statistical package, releases 

8-10 (StataCorp LP, College Station, TX, USA). In all three papers proportions were 
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tested using Pearson’s χ2-test (39). Normally distributed variables were tested using 

one way analysis of variance (ANOVA) and reported with means and standard 

deviations (SD). Not normally distributed variables were tested using the Kruskal-

Wallis test (40) and reported with medians and 25 and 75 percentiles. A significance 

level of 0.05 was applied for all tests. 

In papers I and III a multiple linear regression model was used to examine the 

relationship between the dependent and independent variables. In paper I, the %LAA-

values were log-transformed using the natural logarithm, because both the %LAA-

values and the resulting regression residuals were right-skewed. In paper I, the results 

from the whole multiple linear regression model was reported as the regression 

coefficient for each explanatory variable, along with the standard errors (SE), p-values, 

intercept and the adjusted R2. In paper III, only the coefficients and SE for the main 

explanatory variables (%LAA and AWT-Pi10) were reported, along with the adjusted 

R2 and a list of the adjustments or covariates used in the model. The regression 

coefficient was regarded as statistically significant if the 95 % confidence interval (95 

% CI) did not include 0. 

 In paper II, the dichotomous respiratory symptom outcomes were examined using a 

multiple logistic regression model, while the ordinal dyspnea measure (MRCDS) was 

examined using a multiple ordinal logistic regression model (41). The results of the 

multiple logistic regression models were reported as odds ratios (OR) with a 95 % CIs 

for the main explanatory variables (%LAA and AWT-Pi10), along with the adjusted 

R2 and a list of adjustments or covariates used in the model. The ORs were regarded as 

statistically significant if the 95% CI did not include 1. 

Multiple regression analysis, both linear and logistic, allows for adjustment for 

confounding factors using covariates. In all regression models adjustments were made 

for sex, age and smoking history (both current and number of pack-years). Although 

every CT scan was supposed to be taken at suspended full inspiration, the level of 

inflation might have varied between subjects. Consequently, all regression models 

were also adjusted for inflation level (CT measured total lung volume divided by the 
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predicted total lung capacity (42)). Other adjustments were also used when specified, 

including FEV1 in percent predicted, DLCO, body mass index (BMI), HbCO and co-

morbid heart disease. We also tested for some potential interactions between sex, age, 

smoking and the main explanatory variables (%LAA and AWT-Pi10) as specified in 

each paper. The analyses were mainly run separately for COPD and non-COPD 

subjects, but some additional analyses were run on the whole sample to check for 

interactions with case/control-status. 
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Synopsis of papers 

Paper I 

Quantitative computed tomography: emphysema and airway wall thickness by sex, age 

and smoking 

COPD is a complex disorder characterized by chronic airflow limitation. The 

underlying cause of this airflow limitation is a mixture of small airway disease 

(obstructive bronchiolitis) and parenchymal destruction (emphysema). COPD is 

usually assessed by spirometry, which is an integral part of both the definition and the 

classification of COPD. But spirometry alone cannot differentiate between the 

underlying causes of this airflow limitation. Quantitative CT can be used to quantify 

these underlying causes, and to assess the relative contribution of airway disease and 

emphysema. There is limited data available on how these quantitative CT measures 

vary with age, gender and smoking history. 

The aim of this study was to quantify the CT measured emphysema (%LAA) and 

airway wall thickness (AWT-Pi10) in a large COPD patient register and community 

based sample of ever-smokers, and to determine how these anatomic variables 

interacted with gender, age and smoking history. 

The median (25, 75-percentile) %LAA was higher in COPD subjects (7.0 (2.2, 17.8)) 

than in non-COPD subjects (0.5 (0.2, 1.3)), and higher in men than in women, 

regardless of COPD status. The mean (SD) AWT-Pi10 (cm) was higher in COPD 

subjects (0.51 (0.03)) than in non-COPD subjects (0.47 (0.03)), and higher in men than 

in women, regardless of COPD status. The %LAA increased with increasing age in 

both COPD and non-COPD subjects, while AWT-Pi10 decreased slightly with 

increasing age in COPD subjects only. %LAA was higher in ex-smokers than in 

current smokers, and increased slightly with number of pack years. This pattern was 

seen regardless of COPD status. The AWT-Pi10 increased with higher daily cigarette 

consumption and increasing number of pack years in both COPD and non-COPD 
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subjects. The multiple linear regression analyses including adjustments for gender, age 

and smoking confirmed the above mentioned crude relationships. Interaction analysis 

revealed that %LAA increased more rapidly with increasing age in female than in 

male non-COPD subjects. Interaction analyses also revealed that among COPD 

subjects %LAA increased more rapidly with increasing age in current smokers, and 

that AWT-Pi10 increased more rapidly with increasing number of pack years in non-

COPD subjects than in COPD subjects. 

In conclusion, we found significant differences between COPD and non-COPD 

subjects in quantitative CT measures of emphysema and airway wall thickness. We 

also found that gender, age and smoking history have strong effects on these 

quantitative CT measures and must be considered when comparing quantitative CT 

studies. 

Paper II 

Quantitative computed tomography measures of emphysema and airway wall thickness 

are related to respiratory symptoms 

The diagnosis of COPD is usually made by spirometry, but respiratory symptoms are a 

very important part of the clinical picture. Quantitative CT can be used to assess the 

pathological changes in lung structure associated with COPD, and to separate different 

subtypes of COPD according to the contribution of airways disease and emphysema. 

Quantitative CT measurements have been shown to be significantly correlated with 

spirometric values, but spirometry alone cannot explain the whole variation of the 

quantitative CT measurements. Previous studies have shown that there is an 

association between respiratory symptoms and quantitative CT measures of 

emphysema and airway wall thickness, but these studies were either very small, or did 

not fully adjust for pulmonary function or other possible confounders. Hence, there is 

limited knowledge on the relationship between respiratory symptoms and quantitative 

CT measurements. 
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The aim of this study was to describe the relationship between respiratory symptoms 

of COPD and quantitative CT measures of emphysema and airway wall thickness, and 

to assess how these relationships interacted with COPD-status, gender, age and 

smoking history. 

About 15% of the non-COPD subjects reported at least dyspnea grade 2 in the 

MRCDS, while the corresponding figure among the COPD subjects was 70%. The 

cough, phlegm and wheezing symptoms were 2-5 times more frequent in those with as 

in those without COPD. In both groups dyspnea grade 2 or above and wheezing was 

reported more often by women than men, while phlegm was more frequently reported 

by men. Crude analyses showed that the MRCDS increased with increasing level of 

%LAA in COPD subjects only, while the airway wall thickness did not significantly 

affect the degree of dyspnea. We found more emphysema and thicker airway walls in 

the subjects who answered yes to the cough and wheezing attack questions, but these 

differences were not always significant. In the multivariate analyses adjusted for 

gender, age, smoking and level of inflation, the above mentioned crude relationships 

mainly persisted, but some relationships gained and some lost significance. The odds 

for increased dyspnea was increased by an estimated factor of 1.87 per 10% increase 

in %LAA among COPD subjects, while none of the other respiratory symptoms varied 

significantly with level of emphysema in the multivariate model. Increasing AWT-

Pi10 was significantly associated with increased dyspnea level and presence of 

morning and chronic cough symptoms among the COPD patients, and significantly 

related to wheezing among both COPD and non-COPD subjects in the multiple 

logistic regression analyses. Adding FEV1 to the multivariate models did not alter the 

observed relationships. Combined analysis of %LAA and AWT-Pi10 in the same 

model showed that both quantitative CT measures were independently associated with 

MRCDS. 

In conclusion, we have shown that quantitative CT measures of emphysema and 

airway wall thickness are significantly and independently associated with respiratory 

symptoms, and may be used to explain the presence of respiratory symptoms beyond 

the information offered by spirometry. 
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Paper III 

Quantitative CT measures of emphysema and airway wall thickness are related to 

DLCO 

The observed airflow limitation in COPD patients is caused by a mixture of small 

airway disease (obstructive bronchiolitis) and parenchymal destruction (emphysema), 

but neither spirometry nor DLCO can adequately separate between these two 

conditions. Quantitative CT is an increasingly used method to assess COPD related 

changes in the lung structure, including the airway wall thickening associated with 

small airway disease and the reduced parenchymal density associated with 

emphysema. The association between these quantitative CT measures and spirometric 

values is well documented in the literature, while there is limited knowledge on the 

relationship between DLCO and quantitative CT measurements. 

The aim of this study was to examine the relationship between the diffusing capacity 

of the lung and quantitative CT measures of emphysema and airway wall thickness, 

and to assess how these relationships varied by COPD status, gender, age and smoking 

history. 

The non-COPD subjects had higher absolute and percent predicted values of DLCO, 

VA and DLCO/VA. Men had higher absolute values of DLCO and VA in both COPD 

and non-COPD subjects. In percent of predicted values, the women had higher values 

for DLCO/VA, especially among COPD subjects. Crude analyses showed that 

increasing level of both %LAA and AWT-Pi10 were significantly associated with 

decreasing and increasing level of DLCO, respectively, in both COPD and non-COPD 

subjects (p < 0.01). DLCO/VA also decreased significantly with increasing level of 

%LAA (p<0.0001) in both COPD and non-COPD subjects, while there was no 

association between AWT-Pi10 and DLCO/VA. Multiple linear regression analyses 

adjusted for gender, hemoglobin concentration, age, height, pack years, current 

smoking, FEV1 in percent of predicted and inflation level showed that %LAA was 

consistently and negatively associated with both DLCO and DLCO/VA in COPD 

subjects. The observed associations of %LAA were less consistent in the non-COPD 
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group, and not significant in the fully adjusted model. Using the same model and 

adjustments, we found a significant and positive association between AWT-Pi10 and 

DLCO in both COPD and non-COPD subjects, but significance was lost after adjusting 

for inflation level in the non-COPD group. We did not find a significant association 

between AWT-Pi10 and DLCO/VA in the multiple linear regression analysis. The 

explained variation (adjusted R2) attributable to %LAA was 16% in the adjusted DLCO 

model and 26% in the adjusted DLCO/VA model among COPD subjects,, while it was 

negligible among non-COPD subjects. The explained variation attributable to AWT-

Pi10 was very small (0-2%) in all models. Interaction analysis of the COPD subjects 

revealed that there was a stronger negative relationship between %LAA and DLCO in 

men than in women. 

In conclusion, we have shown that quantitative CT measures of emphysema are highly 

related to both diffusing capacity and diffusing coefficient, and that this relationship is 

even stronger in men. We have also shown that there is a positive, but not equally 

strong, relation between CT measured airway wall thickness and diffusing capacity, 

and this was contrary to our hypothesis that there would be no such relationship.  
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Methodological aspects 

Study design 

All study participants were part of the GenKOLS study, which was a large 

case/control-study primarily designed to look for genetic risk factors of COPD in ever-

smokers aged 40 years or older. The examination of quantitative CT measurements 

and their relation to age, sex, smoking, respiratory symptoms and pulmonary function 

were secondary study objectives. Furthermore, the quantitative CT studies included in 

this thesis did not use the classical case-control approach of comparing the cases and 

controls, but rather an observational approach to the two separate groups of subjects 

with and without COPD. The study was cross-sectional in design. We were therefore 

limited to describing associations and relationships between variables, and no valid 

inferences could be made about cause and effect. 

Reliability 

The terms reliability and validity are crucial when it comes to determining whether or 

not to trust your findings (43, 44). A test is considered reliable when there is 

reasonable agreement between replicate measurements using that test. The 

measurements of a reliable test will consequently have a small spread, but do not 

necessarily measure the “correct” or “true” value. A high reliability is a prerequisite 

for a high validity, but no guarantee.  

This thesis presents data on pulmonary function (spirometry and diffusing capacity), 

smoking habits, respiratory symptoms and quantitative CT measurements.  

The pulmonary function tests were performed using standardized equipment 

(Appendix F, G), and following the current ATS guidelines (3, 34). The reliability of 

the pulmonary function tests was therefore not perceived as a problem. 
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Smoking habits and respiratory symptoms were assessed using questionnaires. This 

kind of self-reported data may be vulnerable to inaccuracies due to the subjects’ 

memory and perception of the question, but also due to poor data handling afterwards. 

Every precaution was taken to ensure correct data handling, and the wording of the 

questions used was based on previously validated studies (45, 46). The reliability of 

the questionnaire data was not perceived as a problem. 

The CT images were acquired using standardized equipment, and the scanner was set 

up using air and water phantoms according to the manufacturer’s recommendations. 

The reliability of the acquired CT images was therefore not perceived as a problem, 

and due to the associated risk of radiation, internal repeatability tests were not 

performed. 

The quantitative assessment of the CT images was to a certain degree operator 

dependent. But there were only a few highly trained operators, and the operator input 

was minimal with regard to the parenchymal density and volume measurements. We 

performed analyses of a randomized sub-sample of 20 subjects, whose CT images 

were quantitatively assessed by two different operators (Figure 3). This analysis 

showed good correlation between the two operators’ measurements, and a mean 

absolute difference between the two operators’ %LAA values of 0.005 (range 0.00 – 

0.03). 
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Figure 3 Inter-operator variability (%LAA), Bland-Altman plot (19 subjects) 

The airway measurements are more operator-dependent, due to the selection of eligible 

airways, and one would expect a slightly larger inter-operator variability on these. 

Unfortunately, we do not have enough available data to present a Bland-Altman plot 

for the airway measurements, but a preliminary analysis of 3 subjects indicated an 

inter-operator variability of approx. 2 %. As the operators were blinded to other data 

concerning the subjects, it is reasonable to assume that any misclassification of the 

airway measurements was non-differential, and consequently the observed 

associations would have been even stronger without this potential error. The reliability 

of the quantitative CT assessments was therefore not perceived as a problem. 

Validity 

The validity of a test concerns to which degree a test is actually measuring what it is 

intended to measure (43, 44). Validity can be divided into internal and external 

validity. The internal validity of a study concerns the ability to draw valid conclusions 

regarding the study population, and may be influenced by several factors, including 
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random errors, systematic errors and confounding. The external validity of a study 

concerns the ability to draw valid conclusions about a larger population based on the 

results of the study. The external validity is compromised if the study population is not 

representative of the target population. 

Given the size of this study, random errors were not perceived as a problem. 

Systematic errors, or biases, are independent of study size, and cannot be ruled out.  

A large fraction of the invited (43 %) and included (57%) subjects in this study were 

sampled from population based cohorts with high attendance rates (47, 48). However, 

we also invited/included subjects from the HUH COPD registry (51 % / 38 %) and 

volunteers (6 % / 5 %). The subjects from the COPD registry are not population based, 

and although the volunteers did not differ much from the population based subjects, 

their motives for participating are not known. This study design with recruitment from 

several sources, made this study vulnerable to selection bias (49). 

Furthermore, only one half (951 of 1909) of the GenKOLS population underwent a CT 

examination, and this selection was not randomized. Due to the potential radiation risk 

associated with CT, this examination was optional, and offered to included GenKOLS 

subjects until we had included approximately 500 cases and 500 controls with CT. 

This may also have introduced a selection bias. However, there were no large 

differences between the subjects with and without CT with regards to gender, age, 

smoking and FEV1 in percent predicted (Table 3). 

 

 Table 3 Comparison of GenKOLS subjects with and without CT 
   

GenKOLS (All) GenKOLS (no CT) CT sample 
    Non-COPD COPD   Non-COPD COPD   Non-COPD COPD 

n 955 954 467 491 488 463 
Male (%) 50 61 47 58 53 65 

Age (Mean) 56 65 56 67 56 64 
Currently smoking(%) 41 47 40 44 42 49 

Pack-years (Median) 16 28 16 29 16 27 
FEV1% pred (Mean)   95 51 95 49 95 53 
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There was 4797 invited subjects in this study, but only 2984 (62 %) attended the 

screening visit at HUH. This may have introduced a non-response bias, but a previous 

population study from Hordaland have shown that increasing the response rate from 65 

% to 89 % did not affect the relationship between smoking and lung disease (50).  

Confounding may arise when investigating an association between an exposure and an 

outcome, and both the exposure and outcome are strongly associated with a third 

(known or unknown) variable (43). In multivariate regression models, known 

confounders can be adjusted for. We have included sex, age, smoking and several 

other factors in our regression models, in an attempt to control for potential 

confounders. However, this study only included smokers with at least 2.5 pack-years. 

We were therefore unable to fully adjust for smoking, and cannot rule out that there is 

some residual confounding from smoking. 

Diffusing capacity guidelines 

According to the current ATS guidelines for accurate measurements of diffusing 

capacity (34), a test should be rejected if the measured inspired vital capacity is less 

than 90% of the largest previously measured FVC. This was the case in 148 subjects in 

the current study. Despite the guidelines, these subjects were not excluded from the 

study. However, it has previously been shown that it is acceptable to include subjects 

with an IVC/FVC-ratio < 90% as long as the characteristics of these subjects do not 

differ much from those with a ratio > 90% (51). As shown in Table 4, there were 

slightly more women and fewer current smokers among the non-COPD subjects in the 

low ratio group compared to the high ratio group. Otherwise there were no large 

differences between the groups, and the 148 subjects were consequently included in 

the study. 
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Table 4 Comparison of subjects with an IVC/FVC ratio over / under 90 % 
 

IVC/FVC > 90% IVC/FVC < 90% 
    Non-COPD COPD   Non-COPD COPD 

n 332 233 93 55 
Male (%) 56 70 47 71 

Age (Mean) 56 63 53 64 
Currently smoking (%) 51 49 40 56 

Pack-years (Median) 16 26 16 26 
FEV1% pred (Mean)   95 59   97 61 

 

Radiation issues 

In order to perform quantitative CT analyses, one must first acquire a CT image. And 

with the acquisition of this CT image, comes the unavoidable radiation risks that 

accompany any X-ray examination, and especially so with CT. While the standard 

chest radiography only exposes the subject to a radiation dose equivalent of approx. 3 

days of average natural background radiation, the radiation dose from a chest CT is 

approx. 350 times higher, or the equivalent of more than 1000 days of background 

radiation (52). There is still incomplete knowledge about the complex link between 

ionizing radiation exposure and adverse future effects in humans, but even the 

relatively low radiation doses associated with a chest CT (approx. 7 mSv) carries an 

increased risk of cancer (53). This risk is probably cumulative, and higher in younger 

people, women and in certain tissues (e.g. breast and thyroid).  And however low this 

risk may be, there is general consensus that one should keep this exposure to a 

necessary minimum. And when a CT is warranted, the examination should involve as 

little radiation as possible, while maintaining the image quality. Fortunately, newer 

techniques and equipment have made it possible to achieve better image quality using 

lower radiation doses. With regard to quantitative CT measures of the chest, one can 

achieve acceptable images from the lung parenchyma using very low radiation doses, 

while airway analyses may require higher doses (54, 55). 
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Quantitative CT analyses 

 There are many different approaches to quantitative CT analysis, and some 

controversies, especially with regard to airway analysis. But all these approaches are 

similar in their use of acquired CT images to obtain measurements of lung volume and 

X-ray attenuation or density measured in Hounsfield units. The measurements of lung 

volumes are done by using different lung segmentation algorithms. These algorithms 

have become very precise, and there is general consensus that supine lung volume can 

be accurately measured using quantitative CT measurements (56). 

Parenchymal analysis 

The X-ray attenuation values obtained from the CT images gives in indication of the 

density of the lung, as the HU scale is proportional to the density within the biological 

range. These density measurements must then be summarized in a way that gives a 

reasonable estimate of the phenotype in question (emphysema). The two most 

common ways of doing this are the density mask threshold cut-off and the percentile 

methods, and both approaches have been shown to correlate with the extent of 

emphysema in corresponding pathological samples (12, 13). Both methods have been 

accepted by the scientific community, and the remaining debate concerns which 

density cut-off, or which percentile to use. In the current study we have chosen the 

density mask approach, with the most commonly used threshold cut-off value (-950 

HU). This was a cross-sectional design, and we could have used either method, but for 

longitudinal data it is recommended that one uses the percentile method (15th perc), as 

this method is less sensitive to minor changes in the technical aspects of the CT scan 

and more sensitive to structural changes (56). These technical aspects (type of scanner, 

X-ray exposure settings, image noise, reconstruction algorithms) can greatly influence 

the amount of emphysema measured. It is therefore very important to keep these 

aspects as constant as possible, especially in longitudinal studies, but also for 

comparison of different cross-sectional studies. Another important influence on the 

amount of emphysema measured is the degree of inhalation during the CT scan. This 

can be controlled using spirometric gating, but that is not very practical. It is therefore 

recommended, especially in longitudinal studies, that one use a mathematical 
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adjustment based on the CT measured lung volume (17). In the multiple regression 

analyses presented in the current study, we used the CT measured lung volume divided 

by the predicted TLC to adjust for this. 

Airway analysis 

The characteristic airflow limitation seen in COPD is in large part due to airway 

remodeling in the small airways (< 2 mm in diameter) (7, 57), and non-invasive 

measures of these small airways is of great interest. However, CT images, and 

consequently quantitative CT analyses of the airways, has a limited resolution, both in 

pixel size and slice thickness. The field of view in each slice limits the pixel size to 

approx. 0.5 mm, and although some of the newest multi-slice scanners can acquire 

images with a slice thickness as thin as 0.5 mm, most scanners in a clinical setting are 

limited to a slice thickness of 1.0-1.25 mm. Due to these resolution limitations, 

airways smaller than 2 mm in diameter cannot be accurately measured using 

quantitative CT, and the technology is limited to measuring airways > 2 mm in 

diameter. However, it has been shown that the remodeling in the small airways can 

also be seen in larger airways, and that measurements of these larger airways can be 

used as a surrogate for the processes occurring in the smaller airways (24). This 

correlation gets stronger the smaller (more distal) the measured airway is, so that a 6th 

generation airway correlates better than a 3rd generation airway (58, 59). In the current 

study we used a slice-gap approach, and could therefore not classify the airways into 

generations. Newer approaches use contiguous scans to produce a three-dimensional 

airway three, enabling measurements from airways with known generations. This new 

approach bears promise of a more precise airway assessment, and an even stronger 

correlation with the small airways actually responsible for the airflow limitation. 

An accurate localization of the transitions between airway lumen, airway wall and the 

surrounding parenchymal tissue is a key element in quantitative CT assessment of the 

airways. This process gets more difficult when the size of the structures you are 

measuring (e.g. the airway wall) borderlines the point spread function (also known as 

the “partial volume effect”) of the scanner, resulting in blurring and inaccurate 

measurements. Several approaches and reconstruction algorithms have been applied to 
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overcome this problem, one of the first being the “full-width at half-maximum” 

method (23, 60), which we used in this study. A known problem with this approach is 

the overestimation of the airway wall, and the underestimation of the airway lumen, 

and this problem increases with decreasing airway size (22, 60). Several alternative 

algorithms have therefore been developed, and examples of these are the “maximum-

likelihood method” (22), the “score-guided erosion algorithm” (21) and the “elliptical 

fit algorithm” (61). While each approach has some advantages, there is no solid 

evidence that one particular algorithm provides more useful information than the 

others (19). 
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Discussion of the results 

Several topics regarding the results from the current study have already been discussed 

in the discussion sections of Papers 1-3, and they will not be repeated here. The focus 

of this section will be on topics that were not discussed thoroughly in the respective 

papers. 

Pre- versus post-bronchodilator CT 

In accordance with the current GOLD guidelines (2) , we used post-bronchodilator 

spirometric values to classify the subjects included in this study. Furthermore, we used 

post-bronchodilator FEV1 values as an adjustment in the multiple regression analyses. 

The CT images that the quantitative analysis was based on were however not acquired 

after administration of any bronchodilator. There is limited knowledge about the effect 

of bronchodilation on quantitative CT measures, but this difference could potentially 

have influenced our results with regard to both airway dimensions and parenchymal 

density through altered regional ventilation (62). Furthermore, this influence would 

probably have been even stronger in the non-COPD subjects, as many of the COPD 

subjects were already using long acting bronchodilators. The exact effect of this 

difference is not known, but it is reasonable to assume that the observed associations 

would have been even stronger without this potential influence. 

CT versus diffusing capacity: The effect of body position 

CT images are usually (and in the current study) acquired in the supine position 

(although the prone position may also be used), while DLCO is usually (and in the 

current study) measured sitting in an upright position. This positional difference may 

potentially have affected the results of Paper 3. 

The density measurements obtained from a CT scan are dependent on the relative 

amounts of lung tissue, air and blood present in the lung. These components are not 

homogenously distributed throughout the lung, and the relative proportions 
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continuously change during respiration (63). The relative distribution of these 

components is also affected by gravity, and the extent of air trapping follows a 

gravitational gradient with more air trapping in the dependent lung regions (64). This 

effect is less pronounced when CT images are acquired at full inhalation, as was done 

in the current study, but gravity certainly has an effect on the distribution of air and 

blood. 

It has also been shown that both the pulmonary capillary blood volume and DLCO 

increases in the supine position as compared to an erect position. These effects were 

far more pronounced in patients with the chronic bronchitis phenotype as opposed the 

emphysematous phenotype, and the effect decreased with increasing age (65, 66). 

As the current study population was relatively old, the difference in body position has 

probably not affected the observed relationship between %LAA and DLCO. We cannot 

rule out the possibility that the difference in body position may have influenced the 

observed relationship between AWT-Pi10 and DLCO, but there are no indications that 

CT measured airway dimensions are affected by body position. 

CT assessed emphysema and airway wall thickness versus 

respiratory symptoms  

Our study showed that level of emphysema and airway wall thickness was related to 

dyspnea, while airway wall thickness was related to cough, phlegm and wheezing. 

These findings help to provide a clinical correlate to level of emphysema and airway 

wall thickness. This is important as the patient does not sense the emphysema or the 

airway wall dimensions. It also enables the clinician to interpret the CT findings and to 

put them into a clinical context. It is important to the researcher as our observations 

imply that the CT assessment may be used to describe potential phenotypes of COPD 

(8).   

The cough and wheezing symptoms were assessed as dichotomous variables.  This is a 

rough way of recording the symptoms and will probably work to underestimate the 
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strength of the relationship between respiratory symptoms and the quantitative CT 

measures. Dyspnea was also assessed as a categorical, but ordinal variable. The 

perception of the symptoms also may influence on their relationships to the CT 

findings. We have no information as to what extent differences in perception of the 

various symptoms influence the observed associations between symptoms and 

quantitative CT measures. 

Dyspnea, cough and wheezing may be seen in other conditions than COPD, as for 

instance coronary heart disease, cardiac heart failure and asthma. All of these 

conditions may be related to COPD, and we adjusted for some of these conditions. 

However, the information indicative of these diseases was self-reported. If more valid 

information about these co-morbidities had been available and added to the equation, 

one may speculate that more specific relationships between respiratory symptoms and 

quantitative CT measures would have been observed than was actually the case.  

The technology and data handling available at the time of the present study did not 

allow us to assess the level of bronchial generation studied. Up to date technology in 

CT allows the researcher to generate a three-dimensional bronchial tree, and estimate 

the generation of the measured bronchia down to the sixth generation bronchus (67). 

This allows a more precise characterization of the airways than we have been able to 

perform in the current study. This new technology will hopefully work to further 

clarify the relationship between the airway wall dimensions and the respiratory 

symptoms. 

A final comment to the relationship between the CT findings and the respiratory 

symptoms has to do with the study design. As the current study is a cross sectional 

survey, it offers only one point of time in this relationship. A longitudinal study would 

have allowed another perspective of the association between symptoms and CT 

findings. One may speculate that the observed relationships then would have been 

stronger than what was observed cross-sectionally. However, from a clinical point of 

view, the doctor often has only one CT available when making his or her clinical 

decisions. 
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CT assessed emphysema and airway wall thickness by gender and 

smoking 

As the first study we observed that smoking is related to airway wall dimensions 

(Paper I). When evaluating these results it is important to bear in mind that other 

potential risk factors of COPD have not been taken into account. Examples of such 

factors include occupational airborne exposure, impaired socio economic status and 

poor indoor air quality. These risk factors are also related to cigarette smoking and 

may act as confounders in the relationship between smoking and the CT measured 

airway wall dimensions. They may theoretically also interact with smoking 

aggregating its effect on the airway wall measurements.  

Several studies have observed a stronger relationship between smoking and the 

pulmonary outcome variables in women than in men (68, 69). One interpretation has 

been that women are more susceptible to smoking than men (70). The pulmonary 

outcomes have mainly been respiratory symptoms and quality of life assessments. 

Hence, gender differences in perception of these outcomes could explain these 

dissimilarities between men and women. Level of emphysema and airway wall 

dimensions are beyond perception. Our findings do not support the hypothesis that 

women are more susceptible to smoking than men. On the other hand we used self-

reported information on both current smoking status and total smoking consumption. 

This might have worked to obscure any gender difference in the effect of smoking. 

Recent data suggest that there are biological mechanisms indicating increased 

susceptibility of COPD in female smokers (71, 72).     

The lower airways are not sterile, and culture independent molecular methods have 

shown that the microbiota of humans is far greater in extent than previously 

recognized (73). Symbiotic bacteria like Bacteriodetes and Firmicutes elicit tonic 

signals in the gut epithelium that prevent activation of innate and adaptive immune 

responses (73, 74), and symbiotic bacteria down regulate immune responses to 

pathogens in the nasal mucosa (75). It is possible that similar mechanisms may be 

operational in healthy airways. 
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It is not known if smoking may influence the distribution and relative content of 

symbiotic and pathogenic bacteria in the airways, but smoking is related to thicker 

airway walls. One may speculate that at least part of this effect may be due to the 

influence of smoking on the airway microbiome. 

When interpreting the observations of the current study it is important to bear in mind 

that it is cross sectional in design. As such, we are not able to take into account any 

cohort effects or any influence of different time periods. In a cross sectional setting 

any difference between a 40 years old and an 80 years old subject may be interpreted 

as being due to the age. To be able to examine the cohort and period effects, a 

longitudinal survey with repeated data samplings is needed.    
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Conclusions 

This study has shown that COPD subjects and men have significantly more 

emphysema and thicker airway walls than non-COPD subjects and women. 

Furthermore, both these quantitative CT measures are substantially affected by age and 

smoking habits. This has not previously been shown in a large study like this, and it 

underlines the importance of taking gender, age and smoking habits into account when 

designing and interpreting these kinds of studies. 

This study has also shown that these quantitative CT measures are strongly and 

independently associated with respiratory symptoms, and that they may be used to 

explain respiratory symptoms beyond the information that is available from a 

spirometry. 

This study has also confirmed our hypothesis that CT measured emphysema is highly 

related to diffusing capacity, and that this relationship is even stronger in men. The 

finding of a significant and positive relationship between diffusing capacity and 

airway wall thickness was contrary to our hypothesis, and has not been shown 

previously. 
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Perspectives 

1. The analyses of this thesis are based on cross sectional study design. It would be of 

interest to examine the relationships of gender, age and smoking to level of 

emphysema and airway wall thickness in a longitudinal study design. Such a study 

would give a more valid estimate of these relationships than offered by a one point 

in time examination. 

2. A similar consideration as above can be made for the associations between the 

quantitative CT variables and the respiratory symptoms. 

3. Longitudinal data on the development of emphysema and airway wall thickness in 

terms of distribution and degree will improve our knowledge of the natural history 

of COPD and its phenotypes. A further objective would be to examine predictors 

for these developments. 

4. Apart from smoking, limited data is available on how other airborne exposures like 

occupational airborne exposure and indoor air pollution including passive smoking 

affect the level of emphysema and airway wall thickness. As CT is increasingly 

used to characterize patients with COPD both in the clinic and in research, data on 

the relationship between CT findings and other airborne exposures than smoking is 

warranted. 

5. Limited data is available regarding the prognostic value of these quantitative CT 

variables. This particularly relates to the airway wall thickness. Such knowledge 

will work to improve the clinical validity of the CT findings. This goes for both 

subjects with and without COPD. 

6. Improvements in both CT technology and data handling in the years to come will 

enable the use of quantitative CT to better characterize the anatomical correlates of 

for instance respiratory symptoms. One may also be able to examine the 

generations of the bronchial tree more specifically than it is done today.  

7. Little is known regarding the use of these quantitative CT variables in combination 

with other COPD key variables like spirometry, exercise capacity, exacerbation 

rates or inflammatory markers in the characterization of phenotypes of COPD.  
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8. We defined COPD based on the GOLD criteria. It would be interesting to examine 

how the observed relationship in this thesis would be affected if COPD had been 

defined based on the lower limit of normal of the FEV1/FVC ratio. 
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Errata 

a) Methods sections of Papers I, II and III 

In all three papers, it was specified that we used a slice thickness of 1.0 mm at 

20 mm intervals when acquiring the CT images. This is incorrect. The actual 

slice thickness used was 1.25 mm at 20 mm intervals. The error was due to a 

misunderstanding in an early phase of the project, and was not discovered until 

June 2011. However, this error has had no consequences with regard to the data 

presented in the three papers, as the error was in the description only, and the 

correct slice thickness was used for all the quantitative analyses. 
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