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Summary 

The global energy demand increases, and the need for hydrocarbon reserve 

growth is evident. The maturation of hydrocarbon formations worldwide 

combined with declining rate of major oil and gas discoveries, have caused a 

renewed focus on implementing enhanced oil recovery (EOR) methods in 

hydrocarbon reservoirs. The success of an EOR project relies on identifying the 

key driving forces. Non-invasive, non-perturbing imaging of fluid dynamics in 

laboratory opaque systems can identify recovery mechanisms beyond material 

balance experiments. Furthermore, flow experiments should be conducted at a 

variety of scales in the laboratory to couple small-scale phenomena and basic 

mechanisms to the complexity of fluid flow in the field. This thesis visualizes and 

identifies EOR mechanisms from pore- to core-scale in order to improve fluid 

flow characterization in porous media. 

 

A novel imaging approach is presented in Paper 1 where positron emission 

tomography (PET) to image fluid flow was combined with structural information 

acquired from computed tomography (CT). Superimposed images described 

how rock discontinuities affected labeled water fronts and overall sweep 

efficiency. Paper 2 is an extension of Paper 1 and involves explicit tracking of 

the gas phase and evaluates the synergy between EOR and permanent CO2 

storage. Molecular diffusion and viscous displacement were identified as 

recovery mechanisms in respectively fractured sandstone and tight shale. 

Furthermore, a large fraction of injected CO2 was effectively retained in the 

pores by capillary forces, demonstrating the potential for safe CO2 sequestration. 

Explicit flow information during waterfloods and CO2 injection for EOR and 

storage was successfully used to evaluate size dependence on developed flow 

patterns.  

  

The pore-to-core scale approach was experimentally verified in Paper 3, where 

similar displacement systems were studied at the pore-scale. Capillary and 
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dissolution trapping of CO2 by water were directly observed in etched-silicon 

micromodels. CO2 was trapped in single pores and in larger clusters, and the 

residual phase was poorly connected throughout the network. In pore-level 

observation of CO2 EOR, high recoveries were observed due to a spreading oil 

layer between the water phase and the non-wetting gas phase.  

 

Building on Paper 1-3, it was evident that CO2 injection for EOR in fractured 

systems needed to be improved. Therefore, Paper 4 evaluates mobility control 

in fractures. Co-injection of gas and surfactant solution was compared to water-

alternating-gas (WAG) and continuous gas injection (CGI), and was the preferred 

method in terms of areal sweep and mobility reduction factor in 2D fracture 

networks as a result of foam generation. Foam generation was studied at the 

pore-scale in Paper 5, where rectilinear snap-off and snap-off at permeability 

discontinuities were identified as important lamella creation mechanisms.  

 

Low salinity waterflooding (LSW) was evaluated in Paper 6 as an alternative to 

gas injection in oil-wet carbonates. Wettability alteration and interfacial tension 

reduction between crude oil and water were effects attributed to LSW, resulting 

in enhanced secondary and tertiary oil recovery at reservoir conditions. Osmotic 

pressure was discarded as a dominant LSW mechanism in corefloods based on 

pore-level observations.   
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1. Theory and Background  

A theoretical background on hydrocarbon production schemes and enhanced oil 

recovery (EOR) methods emphasizing improved volumetric sweep efficiency are 

presented in this chapter. Here, the potential for EOR by CO2 injection combined 

with CO2 storage in the reservoir, as well as mechanisms involved in low salinity 

waterflooding and foam injection are discussed. In addition, imaging techniques 

used in the included scientific papers are briefly reviewed.  

     

1.1 Introduction 

The focus on enhanced oil recovery (EOR) has recently gained renewed interest 

as a result of current high oil prices, maturation of hydrocarbon formations 

worldwide, few new major oil and gas discoveries, and the increasing global 

energy demand. EOR is defined as oil production through the injection of energy 

and fluids not normally present in the hydrocarbon formation (Lake, 1989). The 

main objective of all EOR methods is to increase the macroscopic sweep 

efficiency and the microscopic displacement efficiency compared to 

conventional recovery, e.g. waterflooding. EOR mechanisms include mobility 

control and selective plugging, oil swelling, oil viscosity reduction, water 

thickening, interfacial tension reduction between displaced and displacing fluid, 

miscible displacement, and fluid-rock interactions leading to wettability 

alterations.  

 

Injection strategies are affected by field location, reservoir structure, rock 

wettability, reservoir pressure and temperature, conventional or fractured 

reservoir, initial fluid distribution, reservoir fluid properties and oil/gas prices 

among other. Especially in naturally fractured reservoirs (often oil-wet 

carbonates), achieving acceptable volumetric sweep can be challenging due to 

large permeability contrasts. Foam has the potential to increase gas flow 

resistance in high permeable fractures and divert gas into regions of lower 

permeability. Another example of improved sweep is during low salinity 
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waterflooding, where wettability alteration can lead to spontaneous imbibition 

of water in areas having established positive capillary pressure. 

 

1.2 CO2 Injection 

Applications for carbon dioxide (CO2) injection include enhanced oil recovery, 

methane production from hydrate-bearing formations, and CO2 storage in 

depleted hydrocarbon reservoirs and deep saline aquifers. Carbon capture 

utilization and storage (CCUS) has emerged as a method to counteract part of the 

CO2 emissions from fossil fuels. By implementing CCUS in hydrocarbon fields, 

incremental oil recovery gained from CO2 injection may be an incentive to 

carbon storage.      

 

1.2.1 CO2 EOR 

Enhanced oil recovery by CO2 injection has been commercially applied for more 

than four decades, and today, CO2 EOR is responsible for 5% of the total oil 

production in the U.S. (Enick and Olsen, 2012). The mature Permian Basin 

covers southeast New Mexico and western Texas and has been a major target for 

CO2 injection under miscible conditions since the early 1970’s. The availability of 

inexpensive, natural CO2 sources, extensive pipeline infrastructure, favorable 

reservoir conditions, and relatively high oil prices make CO2 injection attractive 

in the U.S. The lack of developed pipeline infrastructure and natural CO2 sources, 

combined with off-shore related challenges have so far impeded CO2 injection in 

Europe, but the potential for CO2 EOR in the North Sea is great (Lindeberg and 

Holt, 1994) and currently evaluated.  

 

Incremental oil recovery from CO2 injection is a proven method (Grigg and 

Schechter, 1997). However, it takes about 10 Mcf of CO2 to recover an 

incremental barrel of oil (Pope, 2011), causing large quantities of effluent CO2 

that must be separated from the hydrocarbons, re-pressurized and re-injected.  

Depending on the reservoir pressure, CO2 processes are classified as miscible or 
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immiscible. Although immiscible carbon floods improve oil recovery, they are 

not as effective as miscible floods (Lambert et al., 1996, Kulkarni and Rao, 2004). 

CO2 promotes oil swelling, reduces oil viscosity, and can vaporize and extract 

hydrocarbon components between the leading edge of CO2 and the oil 

(Skjæveland and Kleppe, 1992). Hydrocarbon components up to C30 can be 

stripped from the oil through multiple contacts, and CO2 has the ability to 

achieve miscibility with oil at relatively low pressures. For most reservoir 

conditions, liquid or supercritical CO2 is less prone to viscous instabilities and 

gravity override compared to other solvents such as nitrogen and methane. 

Molecular diffusion of CO2 through water barriers may cause swelling of the oil 

phase and subsequent mobilization of stagnant oil by evaporation into the 

flowing gas (Skjæveland and Kleppe, 1992). Thus, CO2 is less hampered by water 

shielding effects compared to less water-soluble gases.      

 

CO2 is an efficient EOR agent in homogenous reservoirs containing light and 

medium oil, due to the aforementioned properties resulting in excellent 

microscopic displacement efficiency. In stratified and fractured reservoirs, 

however, injected CO2 may cause channeling and bypass large oil zones, and 

matrix oil is recovered primarily by gravity and molecular diffusion. In such 

systems, the macroscopic sweep efficiency of CO2 injection is greatly reduced 

and the need for mobility control is evident. EOR methods aiming to improve 

vertical and areal sweep are discussed in section 1.3. 

 

1.2.2 CO2 Storage and Trapping Mechanisms  

Enhanced oil recovery to meet the global energy demand and curbed 

anthropogenic climate changes are the potential benefits from combining CO2 

for storage and EOR. Hydrocarbon reservoirs are important targets for carbon 

sequestration due to their integrity against gas escape (Oldenburg et al., 2001). 

In order to reduce emissions of environmental hazardous gases to the 
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atmosphere, very high CO2 retention rates are needed in the migration flow path 

(Benson and Cole, 2008).  

 

Trapping mechanisms to retain and permanently sequester injected CO2 in deep 

sedimentary formations are structural trapping, mineral reaction, fluid 

dissolution, and capillary trapping. Structural trapping occurs at the onset of the 

CO2 injection, whereas mineral trapping (solid state CO2), considered the most 

secure trapping mechanism, requires a considerable amount of time due to slow 

geochemical reaction rates (Gunter et al., 1997). CO2 is displaced from the 

injection well by viscous forces and advances to the top of the formation due to 

gravity segregation. Advancement of CO2 and water within the formation result 

in capillary entrapment of CO2 in the pore space. CO2 can be trapped as clusters 

and as individual ganglia (Chaudhary et al., 2013), and capillary entrapment of 

non-wetting phase by chase water is considered a rapid and efficient way to 

ensure safe CO2 storage (Qi et al., 2009).      

 

When the CO2 plume is immobilized by a stratigraphic feature, e.g. an 

impermeable anticline, CO2 diffusion from the gas cap into the water column 

located below leads to dissolution trapping. CO2 saturated water is denser than 

unsaturated formation water, and density gradients may induce vertical 

convectional currents depending on fluid and reservoir properties. If so, 

unsaturated formation water will be transported to the gas-water contact, and 

this process will increase the contribution from dissolution trapping and 

increase the total storage capacity of the formation (Lindeberg and Wessel-Berg, 

1997).  

 

The contribution from, and the relative importance of, the aforementioned 

trapping mechanisms change over time as CO2 advances and reacts with 

reservoir fluids and minerals (Benson and Cole, 2008). Capillary trapping has 

emerged as one of the dominant mechanisms for long-term carbon storage 
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(Taku Ide et al., 2007, Rosenbauer and Thomas, 2010) with a substantial amount 

of entrapped CO2 reported in core-scale experiments (Iglauer et al., 2011, 

Pentland et al., 2011). In this thesis, CO2 trapped by dissolution and capillary 

forces are evaluated.  

 

1.3 Improving Macroscopic Sweep Efficiency 

The macroscopic sweep can be enhanced by altering the mobility ratio between 

displaced and displacing fluid. For instance, polymer flooding increases the 

viscosity of injected water and can stabilize the displacement front. In 

unconventional reservoirs featuring large permeability contrasts, polymer gel 

can be applied to induce near-wellbore conformance control by plugging high 

permeable zones. Other methods to improve the macroscopic sweep efficiency 

are gas mobility control and wettability reversal in oil-wet or weakly water-wet 

reservoirs.  

 

1.3.1 Water-Alternating-Gas 

The method of water-alternating-gas (WAG) was proposed by Caudle and Dyes 

(1958) and aimed at improving gas flood conformance. WAG is the most widely 

practiced profile control method in the oil reservoirs today (Kulkarni and Rao, 

2004), and based on total enhanced production and number of field applications, 

WAG appears to be the most successful EOR technology in the North Sea 

(Teigland and Kleppe, 2006).  

 

Alternating water and gas injection in the reservoir results in a dispersed flow 

zone and reduced gravity segregation. WAG can potentially increase the 

microscopic displacement efficiency and reduce the residual oil zone compared 

to conventional waterflooding. Important design parameters for WAG include 

rock and fluid characteristics, well pattern, composition of injection gas, WAG 

ratio, slug size, tapering, and three phase relative permeability effects.    
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Kulkarni and Rao (2004) reported, based on oil recovery from homogenous 

Berea cores, that continuous gas injection (CGI) using CO2 appeared to be better 

than water-alternating-CO2 injection. However, when implementing unit of pore 

volume of CO2 injected, the WAG process out-performed CGI. Coreflooding 

results demonstrated that the optimum mode of tertiary injection was a 

sequence of CGI followed by WAG.    

 

1.3.2 Foam Injection 

Foam is a metastable dispersion of gas within a continuous liquid phase where 

individual gas bubbles are separated by surfactant-stabilized lamellae. Lamellae 

are created in porous media by snap-off, lamella division or leave-behind (Roof, 

1970, Mast, 1972). Snap-off and lamella division creates “strong” foam in terms 

of separate gas bubbles above a critical capillary number (Ransohoff and Radke, 

1988), whereas leave-behind forms lamellae oriented parallel to flow direction 

with only moderate effect on flow resistance and the injected gas remains as a 

continuous phase. Foam generation benefits from lower capillary pressure, 

whereas high capillary pressure causes foam collapse (Khatib et al., 1988, Shan 

and Rossen, 2004).   

 

Foam impedes the flow of gas in porous media by increasing the apparent gas 

viscosity (Hirasaki and Lawson, 1985), potentially resulting in enhanced oil 

recovery through improved macroscopic sweep efficiency. Foam is implemented 

in the reservoir primarily as mobility control to suppress fingering and gravity 

override, or as conformance control to block highly permeable thief-zones 

(Enick and Olsen, 2012). Depending on the application, foam is pre-generated or 

in situ generated by co-injection or by surfactant-alternating-gas (SAG) injection. 

Foam injection strategy is affected by reservoir pressure, permeability, and foam 

propagation distance (Turta and Singhal, 2002).    
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Foam is a proven gas mobility control method in fields (Blaker et al., 2002, 

Hirasaki et al., 2011, Enick and Olsen, 2012) and in numerous studies (Bernard 

and Holm, 1964, Holm, 1968, Rossen, 1996, Schramm, 1994, Llave et al., 1990, 

Lawson and Reisberg, 1980). More recently, foam has been suggested as a gas 

diversion agent in stratified systems (Bertin et al., 1999, Tanzil et al., 2002, 

Nguyen et al., 2003, Siddiqui et al., 2003, Li et al., 2010, Li et al., 2011, Conn et al., 

2014) and in fractures and fracture networks (Kovscek et al., 1995, Yan et al., 

2006, Fjelde et al., 2008, Buchgraber et al., 2012b, Haugen et al., 2012). 

 

Nguyen et al. (2003) demonstrated gas diversion in a layered system, and found 

that foam penetration depth in the low permeable layer increased when 

capillary cross-flow was allowed, even if the layers were parallel to the main 

flow direction. Li et al. (2010) reported enhanced vertical sweep in a two-

dimensional stratified sandpack with a 19:1 permeability contrast with SAG 

compared to conventional waterflood. At such sudden increase in permeability, 

snap-off is an important mechanism for foam generation (Falls et al., 1988, 

Rossen, 1999, Tanzil et al., 2002).  

 

Kovscek et al. (1995) observed bulk two-dimensional foam in fractures and that 

alteration in foam bubble shape occurred near gas fractional flow of 0.91, 

coinciding with maximum flow resistance. Yan et al. (2006) reported that foam 

texture, i.e. number of lamellae per unit length, largely controlled the foam 

viscosity in smooth uniform fractures. Resistance to flow increased with greater 

gas fractional flow and larger aperture thickness.      

 

1.3.3 Low Salinity Waterflooding 

Incremental oil recovery from low salinity waterflooding (LSW) has been 

demonstrated in field tests (Webb et al., 2004, McGuire et al., 2005, Lager et al., 

2008, Seccombe et al., 2010) and in laboratory studies (Tang and Morrow, 1997, 

Tang and Morrow, 1999). LSW effects are normally reported during water 
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injections with ionic strengths of about 5000 ppm or less (Morrow and Buckley, 

2011). The threshold value is a balance between EOR effects and prevention of 

formation damage, e.g. swelling (Romanuka et al., 2012).  

 

The main cause of LSW resulting in additional oil recovery beyond conventional 

waterflooding is wettability alteration towards more water-wet rock surfaces. 

This will generally improve the recovery of a waterflood (Anderson, 1987). 

However, a consistent mechanistic explanation to the observed wettability 

change has not yet emerged. Suggested mechanisms include fines migration, 

expansion of electrical double-layer, “salt-in” effect, pH alteration, mineral 

dissolution, saponification, osmotic pressure, and multi-component ion 

exchange. Depending on the crude oil-brine-rock (COBR) properties, one or a 

combination of the aforementioned mechanisms may be valid.         

 

The vast majority of successful LSW experiments reported in the literature have 

been conducted in sandstone porous media. Carbonate surfaces are positively 

charged and contain less clay compared to sandstone, thus, the prevailing 

mechanisms during LSW in carbonates are not necessarily the same as reported 

in sandstones. Additional oil recovery and wettability alterations from LSW in 

rocks with insignificant clay content have been reported (Webb et al., 2005, Pu 

et al., 2010, Romanuka et al., 2012). Improved recovery on pure calcite surfaces 

often require modification of injected water by adding or increasing the 

concentration of surface interaction ions such as sulfate, phosphate, borate, 

magnesium or calcium (Austad et al., 2005, Gupta et al., 2011). Sulfate in the 

imbibing brine increased oil recovery in chalk and limestone rock materials 

during spontaneous imbibition at elevated temperature (Strand et al., 2008, 

Fernø et al., 2011). Reduction in the contact angle between crude oil, brine and 

limestone surfaces (Almehaideb et al., 2004), and enhanced oil recovery by 

surface charge alteration and microscopic anhydrite dissolution (Yousef et al., 

2011) are other effects reported during LSW in carbonates.  
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In this thesis, the potential for incremental oil recovery during secondary and 

tertiary LSW in carbonates with insignificant clay and anhydrite content is 

studied. The results are presented in section 2.4. 

 

1.4 Imaging Techniques 

Imaging techniques enabling in situ visualization of fluid flow in porous media 

are vital tools to characterize flow propagation and rock features in opaque 

systems. Common non-invasive, non-perturbing techniques utilized to obtain 

flow dynamics within standard cores include attenuation methods; X-ray and X-

ray computed tomography (CT), and explicit methods; nuclear tracer imaging 

(NTI), magnetic resonance imaging (MRI) and positron emission tomography 

(PET). This section describes supplementary imaging techniques used in this 

thesis to visualize and quantify fluid dynamics in pores, cores and larger blocks. 

 

1.4.1 Core-Scale Imaging: PET/CT  

The method of positron emission tomography (PET), pioneered in the field of 

medicine and frequently used as a clinical diagnostic tool, has occasionally been 

used in non-medical applications. Hoff et al. (1996) measured water diffusion 

through porous construction materials, Degueldre et al. (1996) determined 

pathway morphology in crystalline rock, Maguire et al. (1997) characterized 

large rock samples, and Khalili et al. (1998) visualized flow in porous sediments, 

all using the method of positron emission tomography. Haugan (2000) 

constructed a low-cost 2D PET system and successfully imaged fingering inside 

porous media by labeling the water phase with 22Na tracers. Ogilvie et al. (2001) 

used PET to monitor fluid flow in a sandstone core containing deformation 

bands, and the authors were able to directly visualize the influence of these 

discontinuities as potential barriers to fluid flow. More recently, PET has 

visualized and partly quantified fluid propagation through geomaterials 

(Kulenkampff' et al., 2008), imaged flow dynamics in porous columns (Boutchko 
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et al., 2012), qualitatively validated numerical models (Dechsiri et al., 2005, 

Boutchko et al., 2012), and imaged fluid mobility in naturally fractured shale 

cores (van Heerden et al., 2013).   

 

Combined PET/CT imaging has to our knowledge not been previously reported 

in petrophysical research. We image fluid dynamics in porous media by 

obtaining 4D information from the explicit method (PET) and the attenuation 

method (CT) sequentially in the same session. 

 

Detection of annihilation gamma ray pairs occurs continuously throughout a 

PET experiment. Time intervals are determined post-process and can be 

optimized with respect to studied displacement mechanism. In positron decay, a 

positron is emitted from the nucleus accompanied by an electron to balance 

atomic charge. The positron loses kinetic energy as it interacts with the 

surroundings, and at near-zero momentum, the positron combines with an 

electron and annihilates at a finite distance outside the radioactive nucleus. The 

electromagnetic radiation is in the form of two photons of 511 keV which 

corresponds to the rest-mass energy of each of the particles. The photons are 

emitted at 180° to conserve momentum and the electromagnetic radiation is 

detected in PET only if the photon pair is within the coincidence window and the 

line-of-response (LOR) acceptance angle (Bailey et al., 2005). From the obtained 

information, the distribution of radionuclides within the object can be 

reconstructed.   

 

Spatial fluid saturations are calculated from the linear relationship between the 

number of disintegrations and the saturation of the labeled fluid, described as  

 ( 1 ) 

where S is the saturation of the labeled phase at location (x,y,z), I is the time-

averaged radiation intensity at location (x,y,z) and A is the time-averaged 
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intensity value of 100% phase saturation at location (x,y,z). The recorded 

number of disintegrations is decay corrected and attenuation corrected for 

spatial density variations within the field of view in the combined PET/CT 

system. Voxel resolution is 0.6 mm3 and 2.0 mm3 for respectively CT and PET in 

the setup used in this thesis.   

 

CT measures the x-ray attenuation, a function of material density and thickness, 

beam energy, and effective atomic number, in the system to create density 

images of both the core and the fluid within. In order to quantify time-averaged 

phase distributions in a standalone CT, the following definition can be used 

(Ikeda et al., 1983): 

 ( 2 ) 

where   is the time-averaged phase fraction of phase 2 at location (i,j),  is 

the time-averaged CT value at location (i,j), and  and  are the time-

averaged CT values of 100% phase 1 saturation and 100% phase 2 saturation at 

location (i,j), respectively, both obtained through CT reference scans (Heindel, 

2011). In CT reconstruction, the magnitude of attenuation occurring within each 

pixel or voxel is calculated and the effective attenuation coefficient usually 

relates linearly to CT values. Commercial CT systems typically use an 

international CT value scale named the Hounsfield Scale, defined as: 

 ( 3 ) 

where  is the Hounsfield unit and  is the attenuation coefficient of water.   

 

Photons interact with matter by different mechanisms depending on the 

radiation energy. At low energies (<100 keV), interactions by the photoelectric 

effect are dominant and here the photon interacts with an orbital electron in an 
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atom and transfer all of its energy to the electron. The ejected electron from this 

process is known as a photoelectron. This phenomenon is important in CT scans, 

but has little impact in PET. At annihilation radiation (511 keV), interactions 

between photons and electrons occurs by Compton scattering. Here, the 

incoming photon transfer part of its energy to a loosely bound atomic electron 

and the photon is deflected through an angle proportional to the amount of 

energy lost to the recoil electron (Bailey et al., 2005). In the PET/CT setup, 

correction factors derived from CT scans (~100 keV) are scaled to the 511 keV 

PET energy by applying a hybrid scaling algorithm (Kinahan et al., 1998).   

 

1.4.2 Pore-Scale Imaging: Microfluidics  

The concept of studying pore-level fluid dynamics in two-dimensional 

micromodels has been around for decades. The use of micromodels allow fluid 

interfaces to be directly visualized and different mechanisms causing similar 

behavior on core-scale can be distinguished and identified at the pore-scale. 

Micromodel applications include processes related to CO2 storage and trapping 

(Kim et al., 2012, Soroush et al., 2014), formation and dissociation of hydrates 

(Tohidi et al., 2001), polymer rheology (Perrin et al., 2006), microbial improved 

oil recovery (Shabani Afrapoli et al., 2011), matrix-fracture transfer mechanisms 

(Rangel-German and Kovscek, 2006), and foam flow (Owete and Brigham, 1987). 

An overview of earlier micromodel studies is summarized in Buckley (1991).  

 

The first micromodels were etched glass models with uniform pore geometry 

(Mattax and Kyte, 1961, Davis and Jones, 1968). Drawbacks with the earlier 

models in glass were concave-shaped pore walls, enlarged pore throats and pore 

bodies, and low coordination numbers. Improved etching techniques in silicon 

wafer materials led to rectangular pore cross-sections and representation of 

small-scale pore features. Hornbrook et al. (1991) developed a silicon model 

based on pore geometry from Berea sandstone. Today’s micromodels made from 

silicon wafer bonded to a glass plate yield rough-walled, complex pore networks 
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with a 1:1 representation of grain size and aspect ratios. This provides a realistic 

magnitude of the Peclet number and capillary forces present in the microfluidic 

system. The models are naturally water-wet due to a film of silicon dioxide 

coating the surfaces as a result of the bonding process.  A detailed etched-silicon 

micromodel fabrication procedure is described elsewhere (Buchgraber et al., 

2012a).  

 

Figure 1 shows etching characteristics (top left), scanning electron microscope 

(SEM) image of rough, vertical pore walls (top right), and depth profiles 

(bottom) in an etched-silicon micromodel based on a Berea sandstone thin-

section. Typical networks have more than 3.5x105 pores distributed over a 5x5 

cm2 etched pore area, with a constant etching depth of 25 μm (Kovscek et al., 

2007). Grain size ranges from 10 μm to 215 μm, and the coordination number 

varies between 1-5. The dimension of the pore network in the micromodel 

appears to meet the representative elementary volume (REV) scaling 

requirements in 2D (Dullien, 1991). 

 

The microfluidic system used in this thesis includes etched-silicon micromodels, 

syringe injection pump, high-resolution camera and an inverted microscope to 

document pore-level fluid dynamics. The inverted microscope was fitted with 

four objective lenses, neutral density filters, and green and blue fluorescence 

filter cubes with individual exciter, emitter and dichroic beamsplitter. This 

allowed specific fluids to be dyed with fluorescent for improved phase 

identification. A detailed description of the microfluidic system is given in 4 - 

Appendix.  
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Figure 1 - Left: Pore etching depth is 25 μm throughout the pore network. Right: 

Scanning Electron Microscope (SEM) image showing the sharp corners and rough walls 

in the micromodel. Bottom: 1D depth profiles showing etching depth and pore walls 

etched perpendicular to the flat silicon wafer floor (Pharmafluidics, 2013) 
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2. Results and Discussion 

The main results from the six scientific papers included in this thesis are 

presented and discussed here. The first part of this chapter is devoted to the 

novel imaging approach enabling explicit fluid detection in porous media. Paper 

1 and 2 demonstrate the benefits from combined PET/CT imaging of fluid 

dynamics and structural properties in conventional and unconventional 

formations. By detecting explicit signals from the water phase (Paper 1) and the 

CO2 phase (Paper 2), fluid saturations were quantified and flow pattern 

visualized in superimposed 3D images. The second part of this chapter revolves 

around CO2 utilization and storage, and methods of enhancing oil recovery by 

improving the macroscopic sweep efficiency. Paper 1-3 describe CO2 

distribution and propagation within heterogeneous porous rocks and 

micromodels in processes related to CCUS. Paper 4-6 present methods of 

enhancing the contact area between displacing and displaced fluid in porous 

media and fracture networks.  

 

2.1 PET/CT: A Novel Imaging Approach   

Benefits and important scientific contributions from conducting PET/CT imaging 

of fluid flow in porous rocks are discussed here. The combined imaging, in a 

single gantry, obtained data from both the explicit method and the attenuation 

method sequentially in the same session. 

 

2.1.1 Flow Characterization 

A selection of PET compatible radionuclides exists in terms of half-life and 

mixing properties and both explicitly water (Paper 1) and CO2 (Paper 2) were 

investigated to determine distribution and flow of these phases during oil 

recovery and CO2 storage. A major advantage with PET is that temporal 

resolution is defined in post-processing and can therefore be optimized to 

capture different displacement processes in the same experiment. Table 1 lists 

radionuclides used in this thesis for explicit phase identification in porous 
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media. Due to the relatively short half-life, 11C nuclides were generated in a 

particle accelerator located on-site. 

 

Table 1 – Tracers in PET/CT 

Radionucleus Phase labeled Photon energy Half time Initial activity 

22Na Water 511, 1275 keV 2.6 years 0.037 GBq 

11C CO2 511 keV 20.4 min 3 GBq 

 

Whereas attenuation methods primarily yield structural information and rely on 

density differences to visualize dynamic processes, explicit imaging techniques 

measure fluids only. The advantage of combining CT imaging (porosity 

distribution, flow conduits and flow barriers) with explicit PET imaging of fluid 

dynamics was demonstrated in Paper 1 and Paper 2. The results imply that 

PET/CT can be used to differentiate fingering and instabilities caused by 

unfavorable mobility ratios from flow instabilities caused by rock 

discontinuities.      

 

2.1.2 Sample Size and REV 

Representative elementary volume (REV) defines the smallest volume where a 

measured property, e.g. porosity and permeability, gives an accurate 

representation of the whole system. REV in porous media is strongly coupled to 

rock heterogeneity, thus complex carbonates tend to require greater REV than 

more homogenous sandstone rocks. Determining the REV size is not 

straightforward as it depends on the nature of the specific material, the 

parameter studied, and micro-scale parameters that impact macro-scale 

properties (Al-Raoush and Papadopoulos, 2010).  

 

In Paper 1, the effect of sample size on fluid flow in carbonates was investigated, 

and a standard core system was compared to a 550% larger block system. Both 

systems are larger than the REV for this rock type, as porosity and absolute 
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permeability values are similar. The PET/CT setup benefits from a bore 

diameter of 700 mm and axial field of view of 169 mm in the PET detector array, 

allowing large samples beyond standard core sizes to be imaged. Results showed 

that sample size affected residual saturations, initial water distribution, and 

macroscopic sweep efficiency in carbonates. Growing viscous fingers were 

observed in the standard core system, but did not develop to form an unstable 

front due to size constrains. In contrast, the block system allowed front 

instabilities to develop with less influence from system boundaries due to 

increased size. Thus, the REV size to capture flow appears to exceed the 

standard core size when evaluating macroscopic properties such as sweep and 

recovery in the carbonate rock material. 

 

2.1.3 Microporosity and Tight Formations 

PET offers excellent signal-to-noise ratio (SNR) compared to conventional 

attenuation methods. Where CT needs a relatively large volume of pore space 

occupied with fluids to perform saturation rendering, PET is highly sensitive and 

requires a tracer activity as low as 10-12 mol/l  (Kulenkampff' et al., 2008). This 

is beneficial in samples featuring micropores and in tight shale where the matrix 

porosity can range from 0.5% to 9% (Lee et al., 2011). Attenuation methods 

struggle to provide accurate representation of fluid distribution within such 

unconventional media (Tovar et al., 2014) due to small variations in density. An 

explicit method such as PET, however, measures the electromagnetic radiation 

only, not the surrounding rock, and provides substantial SNR in order to 

reconstruct the fluid distribution in tight formations.   

 

An example is given in Paper 2, where CO2 propagation in a layered reservoir 

shale core was imaged using decoupled PET/CT. Figure 2 shows an image series 

of a) shale core obtained from CT, b) high density shear bands within the shale, 

c) CO2 flow from PET, and d) superimposed image containing fluid flow (PET) 

and rock discontinuities (CT). It is evident that the high density shear bands 
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identified from CT imaging affects the CO2 propagation pattern and macroscopic 

sweep within the pore network. Also, the 3D rendering provides evidence of 

viscous flow of CO2 in tight non-fractured, reservoir shale. This may create 

opportunities for CO2 EOR in unconventional formations without fracturing the 

media, but also a cause for concern regarding carbon sequestration and the role 

of shale as a structural trap to prevent gas escape to the atmosphere.  

   

 

a) 

 

b) 

 

c) 

 

d) 

Figure 2 – 3D rendering of a) shale core from CT, b) deformation bands within the core, 

c) PET image of CO2 only, and d) superimposed image of fluid distribution and rock 

discontinuities 

 

2.2 CO2 Injection 

This section describes CO2 distribution and propagation in core samples (Paper 

1 and Paper 2) and in single pores (Paper 3). Oil recovery by CO2 injection and 

processes related to CO2 storage in sedimentary formations are discussed.   

 

2.2.1 Determining CO2 Storage Capacity 

A successful CO2 sequestration project depends upon high storage capacity and 

high retention rate of CO2 in the porous medium. The measured storage capacity 

in a laboratory experiment depends on capillary number, fluid properties and 

rock material. CO2 storage capacity in a tilted Bentheim core resembling a 

dipping reservoir layer was investigated in Paper 1. Liquid CO2 was injected at 

capillary number of 7.6*10-10 into the fully water saturated porous rock. Fluids 

were not equilibrated prior to injection and added a dissolution effect to the 
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otherwise immiscible displacement. Determining the quantity of explicitly 

labeled water displaced by CO2 provided estimates of the CO2 storage capacity.  

 

Figure 3 shows CO2 propagating upwards in the core sample where viscous 

fingers developed with preferred CO2 flow paths along the edges of the 

cylindrical core plug, whereas water remained primarily in the center of the 

rock. Gravitational forces amplified instabilities and further segregated injected 

CO2 from the water phase, resulting in early CO2 breakthrough after 0.4 PV 

injected and poor sweep efficiency near the outlet side of the tilted core sample. 

Another 2.1 pore volumes of CO2 were injected without any significant changes 

in saturation distribution. Upwards LqCO2 injection in the Bentheim sandstone 

resulted in an overall storage capacity of 23% in the representative pore space. 

Similar results have been reported in pore-scale (Chaudhary et al., 2013) and 

core-scale (Krevor et al., 2012) experiments.     

 

Figure 3 – CO2 migration at selected time steps in a tilted Bentheim core. Warm colors 

indicate large quantities of water labeled with sodium-22 nuclides. CO2 was injected 

upwards at a constant flow rate of 2.5 cm3/h  

 

2.2.2 Trapping Mechanisms 

In Paper 2, capillary entrapment of CO2 was quantified in Bentheim core 

samples using combined PET/CT imaging. Following the CO2 injection during 
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primary drainage, water was injected at constant flow rate of 0.5 cm3/min. 

Relative changes in CO2 fractions over the core length was quantified from the 

explicitly labeled gas phase using PET. Results indicated that on average 62% of 

CO2 was trapped within the porous rock after 0.60 PV of water injected. Less CO2 

was trapped in the vicinity of the inlet side (XD=0.0–0.3) compared to the core 

average due to a dissolution effect. The fractional, residual CO2 saturation was 

uniformly distributed from core length XD=0.3–1.0. In this region, about 66% of 

the injected CO2 was retained by capillary forces primarily and corroborates 

similar results on capillary entrapment of CO2 in sandstone (Iglauer et al., 2011, 

Akbarabadi and Piri, 2013). In order to further describe mechanisms associated 

with capillary trapping and dissolution effects, experiments conducted on the 

micro-scale were needed.  

 

Pore-level CO2 trapping was qualitatively studied in a water-CO2 imbibition 

process in Paper 3. Here, injected water was dyed with fluorescent in order to 

improve fluid identification in the water-wet micromodel. Methods of capillary 

entrapment of CO2 by water were monitored using an inverted microscope as 

unsaturated water was injected at constant flow rate into a CO2 saturated 

micromodel. Water fingers developed in the matrix and advanced perpendicular 

and in the opposite direction of the bulk flow. Instabilities were manifested by a 

capillary dominated flow behavior. CO2 was trapped in single pores by film 

thickening leading to snap-off, and trapped as a result of bypassing of several 

pores by Haines jumps due to capillary contrasts. Clusters of CO2 were trapped 

in larger pores when water fingers advanced in smaller pores and merged, as 

shown in Figure 4. Retained CO2 was also documented in pores with low 

coordination number (dead-end pores), and the residual phase was poorly 

connected throughout the network. 
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Figure 4 – Pore-level capillary trapping of CO2 (black) by water (yellow). Bulk flow 

direction is from bottom to top in the images and scale bar in the right corner is 1000 μm  

 

Discontinuous CO2 was not mobilized in the porous network but rather 

dissolved in contact with unsaturated water. Buchgraber et al. (2012c) reported 

that shrinking and complete dissolution of gas bubbles only occurred after the 

continuous gas phase was isolated and made immobile by capillary trapping, 

consistent with observations in Paper 3.       

 

2.2.3 CO2 Injection for EOR 

In Paper 3, CO2 was injected at constant pressure in a micromodel partially 

filled with oil and water similar to a tertiary oil recovery scenario. Oil was the 

intermediate wetting phase, and a spreading configuration was observed on the 

pore-scale where a stable oil layer able to conduct flow separated connate water 

from the non-wetting gas. The spreading oil layer was a consequence of 

interfacial tensions as well as the geometry of the cross-sectional flow area in 

the pore network. A positive spreading coefficient for oil has also been reported 
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in glass micromodels at reservoir conditions (Robin et al., 2012). Injected CO2 

propagated in preferred flow paths mainly through oil-filled pores resulting in 

an efficient oil production at pore-scale, even at high initial water saturation. The 

nature of the spreading layer caused oil to maintain hydraulic conductivity 

during CO2 injection, which further decreased the residual oil saturation 

although the initial piston displacement of oil by CO2 occurred much faster than 

drainage of the spreading oil layer. Connate water was mobilized through double 

drainage, and multiple displacement events occurred frequently in the porous 

media. As a consequence, local fluid distribution changed rapidly and gas flow 

paths shifted accordingly, resulting in trapped CO2 bubbles associated with the 

process of breaking and forming of gas channels.        

 

Oil production by continuous CO2 injection was scaled up in Paper 2. Here, CO2 

propagation in a fractured Bentheim core sample was studied in the PET/CT 

setup emphasizing CO2 diffusion as a recovery mechanism. Molecular diffusion is 

often ignored in conventional reservoirs, but plays an important role in 

fractured systems with insignificant contribution from viscous forces (Hoteit 

and Firoozabadi, 2009). The Bentheim core was cut longitudinal and a fracture 

aperture of 1 mm throughout the core length was controlled by a POM 

(Polyoxymethylene) spacer. Injected CO2 advanced primarily in the open 

fracture, causing gas channeling and sudden breakthrough. After gas 

breakthrough, increase in CO2 intensity in adjacent pores was ascribed to 

molecular diffusion of CO2 into the matrix and subsequent mobilization of 

stagnant oil. A gravity effect was present in the fracture where oil was overlying 

CO2 throughout the experiment.       

 

Figure 5 shows accumulated CO2 distribution within the fractured rock at four 

different time steps. Even though the vertical fracture equals the core diameter, 

CO2 is only observed in the lower part of the rock. The CO2 saturation in the 

fracture stabilized after 11 minutes, but the mass transfer between the gas and 
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oil was ongoing throughout the experiment (171 min). As the saturation of CO2 

increased in the matrix proximal to the fracture, reduced driving forces were 

observed slowing the progress. Diffusive CO2 reached the transverse core 

boundaries after 31 minutes. An extended and symmetric CO2 distribution was 

obtained in the lower part of the rock, confirming molecular diffusion as the 

main driving mechanism. However, the total macroscopic sweep in the entire 

core was limited. In order to further improve the CO2 areal and vertical sweep 

efficiency in fractured rocks, mobility control and gas diversion agents could be 

applied. This is further discussed in section 2.3.   

 

Time: 1 min Time: 21 min Time: 71 min Time: 171 min 

Figure 5 – CO2 displacing oil in a fractured rock imaged by PET/CT. An isosurface (brown 

color) shows areas with high accumulation of CO2 (threshold=1 MBq/cm3) in the porous 

media. Four transverse orthoslices are included to show radial CO2 distribution within 

each sector.  

 

2.3 Foam Injection 

4D imaging data from Paper 1 and 2 revealed instabilities during pure CO2 

injection such as viscous fingering and gravity override, causing early gas 

breakthrough in heterogeneous systems. Paper 4 and 5 propose foam injection 

as a method to impair the mobility of injected gas and increase the sweep 

efficiency in stratified systems and fracture networks. Foam’s ability to divert 

gas from high permeable layers to low permeable layers highly depends on foam 

texture and the foam generation process. Therefore, both pore-level events 

describing the forming and breaking of foam and macroscopic effects such as 

viscous pressure drop and sweep efficiency have been investigated in Paper 4 

and Paper 5.   
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2.3.1 Foam Generation and Texture 

Foam is generated by three distinct mechanisms; snap-off, lamella division and 

leave-behind. Foam generation is affected by pore topological properties, 

wetting content, capillary suction pressure, surfactant formula, gas fractional 

flow and flow rate. Pore-level foam generation mechanisms were investigated in 

Paper 5, where foam was injected at various gas fractions in water and oil 

saturated micromodels. Here, rectilinear snap-off and snap-off at permeability 

discontinuities were identified as important mechanisms for in situ foam 

generation. Foam bubbles created at the exit of the constriction appeared more 

finely textured with smaller average bubble diameter compared to bubbles 

created by rectilinear snap-off, consistent with Huh et al. (1989) and Chambers 

and Radke (1991). Subdivision of foam bubbles at branching pores in the 

interior of the micromodel was not observed.   

 

In Paper 4, foam was successfully generated in rough-walled, calcite fracture 

networks during SAG and co-injection of gas and surfactant solution. Bubble 

densities were mapped during co-injection for gas fractions fg=0.80, fg=0.90 and 

fg=0.95 with constant total flow rate of 3 cm3/min. Foam bubble size increased 

with increased gas fraction, consistent with earlier results on foam flow in 

fractures (Kovscek et al., 1995). This effect may be attributed to thinning of 

lamella at high gas fractional flow (documented in Paper 5), resulting in foam 

coalescence and merging of smaller bubbles. Furthermore, bubble size was 

uniformly distributed in the fracture for fg=0.80, whereas a larger distribution in 

bubble size existed for greater gas fractions. The bubble shape was polyhedral 

for all three fractional flows. Bubble shape in porous media (Paper 5) was 

dictated by pore configuration, whereas bubble shape in fractures (Paper 4) is 

deformed according to interfacial tension, and the gas-liquid interfacial 

curvature varies according to foam quality (Pancharoen et al., 2012).  
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2.3.2 Flow Resistance in Fractures 

The pressure response in a fracture network (Paper 4) for different gas 

fractional flows and total flow rates during co-injection of surfactant solution 

and gas is presented in Figure 6. The viscous pressure drop increased with 

increasing gas fractions for total flow rates 1, 3, 5 and 8 cm3/min. The pressure 

increase is most prominent between fg=0.85-0.95. Here, liquids drain from the 

lamella to the Plateau border due to increased capillary suction-pressure. This 

resulted in thinning of lamellae and alteration in bubble shape from circular to 

polyhedral foam accompanied by an increase in flow resistance. The measured 

pressure gradients peak about fg=0.95. Other work on foam in fractures reported 

bubble shape alteration and maximum flow resistance at fg=0.91 (Kovscek et al., 

1995). A sudden drop in differential pressure occurred after fg=0.95 for all flow 

rates and is attributed to foam coalescence in the fracture network.  

 

 

Figure 6 – Pressure gradients versus gas fractions during co-injection of surfactant 

solution and gas using constant total flow rates of 1, 3, 5 and 8 cm3/min in a fracture 

network  
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Foam rheology in fractures was studied by calculating apparent viscosity during 

co-injection of gas and surfactant solution. Gas mobility reduction factors 

spanned from about 200 to 1000 depending on gas fractional flow and total flow 

rate. The foam generated in rough-walled, calcite fracture network 

demonstrated a shear-thinning behavior, consistent with other work in smooth-

walled systems (Hirasaki and Lawson, 1985, Yan et al., 2006).  

 

2.3.3 Fracture Filling Sequences and Sweep Efficiency  

In Paper 4, fracture network filling sequences and areal sweep efficiency were 

evaluated during continuous gas injection (CGI), surfactant-alternating-gas 

(SAG) and co-injection of gas and surfactant solution (fg=0.6) at total flow rate of 

1 cm3/min. The fracture network was subdivided into smaller parts and fluid 

propagation within each sector was monitored. Figure 7 shows local sweep 

efficiency as a function of normalized network length for CGI, SAG and co-

injection at gas breakthrough for CGI. CGI experienced breakthrough after 0.4 

fracture volumes (FV) injected. At this time step, SAG was advancing in sector 3 

and co-injection had just entered sector 2. Gas breakthrough for SAG and co-

injection occurred at respectively 0.60 FV and 0.72 FV. Final sweep efficiency for 

the three injection strategies was 52.2% (CGI), 61.8% (SAG) and 77.2% (co-

injection). The results showed that foam (SAG and co-inj) effectively delayed gas 

breakthrough and improved sweep efficiency compared to CGI in the fracture 

network. Furthermore, co-injection of surfactant solution and gas was superior 

to SAG in five out of six sectors. The flow pattern during co-injection consisted of 

substantial cross-flow and the injection pattern was less dictated by the large 

longitudinal fractures compared to SAG and CGI.   
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Figure 7 – Comparison of local sweep efficiency at gas breakthrough during CGI (red), 

SAG (blue) and co-injection (green) in the fracture network subdivided into six sectors  

 

Pore-scale areal sweep efficiency during CGI and foam injection was evaluated in 

water-wet micromodels in Paper 5. Here, pre-generated foam successfully 

diverted gas from the high permeable fracture to the low permeable matrix. 

Final sweep efficiency for foam was 87% within matrix field of view. CGI failed 

to establish a viscous pressure drop high enough to overcome the matrix 

threshold pressure.  

  

2.4 Low Salinity Waterflooding 

Increased sweep in heterogonous and fractured systems by foam injection was 

presented in Paper 4 and 5. Another EOR method in fractured, hydrophobic 

media is wettability reversal. Spontaneous imbibition controlled by capillary 

forces is an important recovery mechanism in fractured reservoirs, and the 

efficiency of capillary imbibition is strongly influenced by reservoir wettability 

(Zhou et al., 2000). By altering this parameter and establish water-wet rock 

surfaces during low salinity waterflooding (LSW), water may spontaneously 

imbibe into unswept areas because the rock threshold pressure is terminated, 
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and thus improve the areal and vertical sweep efficiency. Paper 6 describes LSW 

effects at reservoir conditions in aged carbonates having insignificant clay and 

anhydrite content. Work in progress on osmotic gradient induced oil recovery in 

micromodels is also discussed.        

 

2.4.1 Fluid-Fluid Interactions 

Interfacial tensions between the reservoir crude oil and brines with varying 

ionic strength were measured in a pendant drop setup. The visualization cell 

was filled with brine, and droplets of crude oil were injected through a needle 

from the bottom of the cell. Interfacial tensions were derived from droplet 

geometry by applying the Young-Laplace equation. Paper 6 proved that 

interfacial tensions between oil and brine decreased with reduced brine salinity. 

By replacing synthetic brine (TDS=92.47 g/l) with low salinity brines 

(TDS=18.49 g/l and TDS=1.849 g/l), interfacial tensions were reduced by almost 

30%. Similar trends have been reported by others (Okasha and Alshiwaish, 

2009, Yousef et al., 2012). This effect will increase the capillary number and may 

contribute in mobilizing residual oil during LSW if the critical capillary number 

is exceeded. 

 

2.4.2 Fluid-Rock Interactions 

Unsteady-state relative permeability measurements were conducted on three 

twin plugs. Brines with varying ionic strength were injected at constant flow rate 

of 0.5 cm3/min in carbonates initially saturated with crude oil at irreducible 

water saturation. Fractional flow calculations during oil and water production 

were obtained from the Johnson-Bossler-Neumann approach. Results 

demonstrated an increase in oil relative permeability endpoints and decrease in 

water relative endpoints during LSW compared to high salinity waterflooding 

(HSW). These observations indicated that the relative permeability curves 

shifted towards more water-wet characteristics (Craig, 1971) when lowering the 

ionic strength of injected water. Thus, wettability alterations on the carbonate 
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surface during LSW were indirectly confirmed by relative permeability 

measurements.    

 

2.4.3 Incremental Oil Recovery 

Secondary and tertiary LSW were conducted at constant injection flow rate and 

compared to HSW baseline experiment yielding identical boundary conditions. 

LSW responded in additional oil recovery up to 7.5% OOIP (twin core) in 

secondary mode and up to 10.2% OOIP (same core) in tertiary recovery mode 

beyond conventional HSW. These results imply that LSW as an EOR method can, 

depending on the COBR properties, be implemented on an early stage in less 

water-wet fields, but also target the numerous mature, watered-out carbonate 

formations in production worldwide.     

  

2.4.4 Osmotic Gradient 

The enhanced oil recovery associated with LSW in Paper 6 is likely caused by a 

combination of fluid-fluid and fluid-rock interactions. In addition to wettability 

alteration, osmosis may lead to incremental oil recovery during LSW. Oil 

mobilization within single pores was investigated in two-dimensional 

micromodels with constant wetting preferences. The osmotic gradient was 

induced by conducting a LSW in the fracture at low flow rate. Pore-level oil 

mobilization by water diffusion (osmosis) was then monitored in a layered 

system where viscous forces were absent. An oil layer separated the saline 

formation water (matrix) from the low salinity water (fracture). A standard 

experimental procedure is detailed in Appendix 4.3. 

 

Results using mineral oils demonstrated qualitatively pore-scale mobilization of 

retained oil and counter-current displacement of oil from the matrix into the 

fracture. Water molecules diffused from the fracture and into the matrix where 

the oil layer acted as a semi-permeable membrane. As a result, formation water 

swelled and increased in volume inside the matrix, and oil was subsequently 
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displaced towards the fracture. Figure 8 shows before and after pictures of 

water diffusion from fracture towards matrix through a layer of crude oil during 

LSW without contribution from viscous forces and capillary imbibition. The oil 

phase (brown color) proximal to the fracture darkened gradually as water 

migrated through it.  

 

Osmosis has been proposed as a significant driving force for oil movement 

(Sandengen and Arntzen, 2013), although the process demands a long exposure 

time as documented here in 2D media at ambient temperature. Thus, the 

osmotic gradient mechanism may contribute to additional oil recovery in 

lengthy spontaneous imbibition experiments, however, it is not a dominant 

mechanism during coreflood LSW as described in Paper 6.   

 

 

Figure 8 – Before (left) and after (right) transport of LSW from the fracture to the matrix 

through a layer of crude oil. The time difference between the images is 194 hours and 

the scale bar in the lower right corner reads 500 μm  
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3. Conclusions and Perspectives 

The main findings in this thesis are summarized and presented here as well as 

future perspectives regarding the experimental work. 

3.1 Conclusions 

� A novel approach using positron emission tomography (PET) and 

computed tomography (CT) was implemented in a series of flow 

experiments where sample size, porosity, level of heterogeneity and 

recovery mechanisms varied. Simultaneous decoupled structural rock 

information (CT) and explicit fluid saturation information (PET) provided 

a robust imaging technique. Superimposed images identified flow 

instabilities caused by rock discontinuities in samples from conventional 

and unconventional formations due to the high sensitivity of PET. The 

imaging technique offers excellent temporal resolution, and time intervals 

are defined and optimized in post-processing with respect to studied 

displacement mechanism 

� Continuous CO2 injection in etched-silicon micromodels displaced oil 

efficiently due to the presence of a spreading oil layer. However, in larger 

and more complex structures, CO2 EOR resulted in poor macroscopic 

sweep and early gas breakthrough. Molecular diffusion was the dominant 

oil recovery mechanism in fractured core sample. A large fraction of the 

injected CO2 was retained in pores by capillary forces, demonstrating the 

potential for safe CO2 sequestration. CO2 was trapped in single pores and 

in larger clusters, and the residual phase was poorly connected 

throughout the pore network   

� Foam rheology was studied at pore-scale and in heterogeneous fracture 

networks. Foam was superior to continuous gas injection (CGI) and 

water-alternating-gas (WAG) in terms of areal sweep and mobility 

reduction factor. Co-injection of gas and surfactant solution resulted in 

higher apparent viscosity and delayed gas breakthrough compared to 
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surfactant-alternating-gas (SAG). Lamella creation occurred in situ in 

pores and in fractures, and rectilinear snap-off and snap-off at 

permeability discontinuities were identified as important foam generation 

mechanisms  

� Low salinity waterflooding (LSW) in carbonates resulted in enhanced 

secondary and tertiary oil recovery. Wettability alteration and interfacial 

tension reduction between crude oil and water were effects ascribed to 

LSW. Osmotic pressure was not a dominant oil recovery mechanism 

during low salinity corefloods    

 

3.2 Future Perspectives 

Foam experiments presented in this thesis should be scaled and conducted in 

heterogeneous and fractured cores and larger blocks, preferably at reservoir 

conditions. PET/CT would serve as an excellent imaging tool in order to 

visualize and quantify foam propagation and volumetric sweep efficiency in 

larger opaque systems. To further optimize fluid flow description in PET/CT, a 

contrast liquid should be added in the water phase if saturation rendering by CT 

is needed. Field pilot tests of CO2 and CO2-foam injections combined with 4D 

seismic are currently ongoing in watered-out reservoirs in West Texas, U.S. This 

collaborating project between international academic institutions and industrial 

partners was initiated by the reservoir physics group here at the University of 

Bergen. Reservoir imaging by logging and seismic data are essential in order to 

monitor in situ fluid dynamics. By comprehending pore-, core-, block- and pilot 

field-scale mobility control data, a thorough prediction of the process in complex 

reservoirs can be achieved.       

 

Low salinity effects in carbonates are an ongoing experimental study. 

Incremental oil recovery and indirect wettability alteration by changes in 

relative permeability were observed in this thesis. A more direct way to 

determine wettability alteration in carbonates involves contact angle 
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measurements on a calcite surface before and after LSW. However, it can be 

challenging making an artificial disc mimicking the mineral surface of the rock 

sample. X-ray diffraction (XRD) should be used to determine rock mineral 

composition. To further determine mechanisms involved in LSW, pH 

measurements of initial and effluent fluids as well as inductively coupled plasma 

(ICP) analysis could identify fluid-rock interactions.     

 

Pore-scale oil mobilization by osmotic pressure is work in progress. The study 

has so far investigated the impact of brine salinity, oil composition and thickness 

of semi-permeable layer on oil recovery in water-wet porous media. Future 

work on this topic will involve the effects of temperature and wettability on 

water diffusion in etched-silicon micromodels. Wettability alterations can be 

induced by flooding the models with crude oil and aged with no initial water 

saturation (Buchgraber et al., 2012a). Film flow of water along the surfaces in an 

oil-wet micromodel can be neglected and only water diffusion through the semi-

permeable layer contributes in swelling of formation water and subsequent oil 

mobilization. By comparing water-wet and oil-wet results, the effect of film flow 

can be determined.        

 

Pore- and core-scale experimental results in this thesis should be compared to 

numerical simulated outcomes to better validate the experimental findings. 

When the observed in situ fluid flow behavior is captured and implemented in 

numerical models, upscaling and time-efficient numerical sensitivity studies can 

be conducted.   
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Abbreviations 

CCUS Carbon capture utilization and storage 

CGI Continuous gas injection 

COBR Crude oil-brine-rock 

CT Computed tomography 

EOR Enhanced oil recovery 

FV Fracture volume 

HSW High salinity waterflooding 

ICP Inductively coupled plasma 

ID Inside diameter 

LOR Line-of-response 

LqCO2 Liquid CO2 

LSW Low salinity waterflooding 

MRI Magnetic resonance imaging 

NTI Nuclear tracer imaging 

OD Outside diameter 

OOIP Oil originally in place 

PET Positron emission tomography 

POM Polyoxymethylene 

PV Pore volume 

REV Representative elementary volume 

SAG Surfactant-alternating-gas 

SEM Scanning electron microscope 

SNR Signal-to-noise ratio 

TDS Total dissolved solids  

WAG Water-alternating-gas 

XRD X-ray diffraction 
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Nomenclature 

A Time-averaged radiation intensity at 100% phase saturation 

 Time-averaged CT value at location i,j 

fg Gas fraction 

H Hounsfield unit 

I Time-averaged radiation intensity 

S Saturation 

XD Dimensionless length 

 Time-averaged phase fraction at location i,j 

 Attenuation coefficient 
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4. Appendix – Microfluidic Laboratory Description 

The process of building the microfluidic laboratory at University of Bergen (UiB) 

was initiated the summer of 2011. Today’s areas of interest within pore-scale 

research at UiB include various EOR methods and natural gas production from 

hydrate-bearing formations. The laboratory holds two permanent setups that 

are briefly described here.   

 

Setup A consists of an inverted Nikon Eclipse Ti-U microscope with four 

objective lenses (2x, 5x, 10x, 20x), and green and blue fluorescence filter cubes 

with individual exciter, emitter and dichroic beamsplitter. In addition, the 

microscope has a built-in 1.5x zoom, thus making a 30x magnification possible. 

Fields of view for different objective lenses are given in Table A- 1. A TI-FL Epi-fl 

illuminator with neutral density (ND)-4 and ND-8 filters was placed behind the 

microscope body, able to extend fluorescence lifetime by reducing light 

intensity. An external adjustable light source was connected to the microscope 

via optical fiber cable. A 5-megapixel, CCD high-definition color camera was used 

for capturing images of up to 2560 x1920 pixels with 16 bit RGB pixel depth. 

Time-lapse image sequences were controlled and analyzed in an image 

acquisition software, and a capture rate of 1 frame per second was achieved with 

1280 x 960 pixels at 8bit RGB pixel depth. Setup A also include a Nexus 3000 

syringe pump with 23.03 mm ID and step resolution of 0.012 microns (min. flow 

rate is 0.0023 cm3/h), a mass flow controller (MFC), and a differential pressure 

transducer with full scale (FS) 15 bar ± 0.01%FS. 

 

Setup B consists of a Nikon SMZ 1500 microscope, LED-F1 cold light source, 

Nikon D7100 camera, Quizix SP-5200 pump system, Grant LTC6-30 refrigerated 

circulating bath, and a closed Plexiglas container system for fluid circulation. The 

micromodel and the holder are placed within the inner container and the 

effective temperature can be set from -2 degrees C to +60 degrees C. Maximum 

absolute pressure using 1.7 mm micromodels is 100 bar.  
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Table A- 1 – Field of view for different objective lenses for Nikon Eclipse Ti-U 

Objective lens 

Field of View 

Width [μm] Height [μm] 

2x zoom 6167.3 4629.6 

5x zoom 2470.3 1854.3 

10x zoom 1238.5 929.7 

20x zoom 626.9 470.6 

 

4.1 Micromodel Manufactering 

A feasibility study using a maskless technology to manufacture carbonate 

etched-silicon micromodels was conducted at UiB NanoStructures Laboratory. 

In the process, a 180 nm thick layer of a polymethyl methacrylate (PMMA) was 

deposited on a silicon wafer spinning at 3000 rpm. The sample was then pre-

baked on a hotplate. The modified pore geometry was based on an Edward 

limestone thin-section and transferred to the silicon wafer using an electron 

beam lithography tool. This technique enabled accurate writing of pore features 

directly on the PMMA-coated wafer, eliminating the need of an expensive mask. 

Maximum resolution was about 20 nm on a 100 μm writefield. Electron beams 

with pre-calibrated exposure dose weakened the positive resist and the sample 

was developed by removing exposed PMMA that later would represent pore 

space in the micromodel. Finally, the sample was exposed to plasma etching 

(CHF3) in order to transfer the pore geometry from the resist to the silicon 

wafer. The anisotropic etching created vertical sidewalls in the wafer in areas 

where the PMMA was removed. PMMA-coated areas (grains) were also slowly 

destroyed in the process, thus restraining the pore etching depth in the 

micromodel. The etching process is illustrated in Figure A- 1. Here, a uniform 
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etching depth of 50 nm was achieved in the silicon wafer. The damaged PMMA 

layer can be observed in the left image.  

 

 

Figure A- 1 – SEM image (left) and cross-sectional illustration (right) of the etching 

process in the PMMA-coated silicon wafer 

 

4.2 Standard Operating Procedure 

Here, a procedure on how to optimize the instalment of the micromodel in the 

model holder and how to properly seal the system for high-pressure 

experiments is detailed.  

1. Micromodel and fittings/tubes must be thoroughly cleaned using 

isopropanol and deionized water, and dried prior to the experiment 

2. Four identical gaskets (N-124-02) yielding 0.5 mm thickness should be 

thoroughly centered on the coned female nanoports using flat tip 

tweezers and pressed into the circular slit 

3. Carefully place the micromodel in the squared track with the silicon side 

facing the seals and coned ports. When installed, the micromodel should 

be perfectly horizontal and leveled slightly above the top half of the 

aluminum holder      

4. Embed the micromodel in the aluminum holder using a torque key and 

apply a momentum of 0.5 Nm on the 1.7 mm thick models 

5. Coned male nuts and 360 μm OD capillary tubes should be finger- 

tightened to the female nanoports located on the micromodel holder 
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6. When all pipelines are connected, pre-flush the system with deionized 

water at low flow rates 

7. Initially, the injection port and the three production ports should be kept 

open. After water breakthrough, close off individual production ports and 

inject diagonally across the network. When a 100% water saturated pore 

network is achieved (confirm visually using the microscope), close the 

final production port and monotonically pressurize the system using 

constant pressure operations on the injection pump 

8. Select an appropriate field of view and focus the microscope by adjusting 

the working distance and apply fluorescent filters if needed   

9. Initiate the desired displacement process at experimental conditions and 

obtain microvisual data by choosing relevant temporal resolution (image 

series or video) on the digital camera embedded on the microscope. 

Camera should be set to 1/8 shutter speed, ISO 2000, and f/13 aperture  

 

4.3 Osmotic Gradient Induced Oil Recovery in Micromodels 

This section describes a standard experimental procedure on osmosis as a low 

salinity oil recovery mechanism in etched-silicon micromodels. The 

aforementioned laboratory setup A was used for this project. Brine composition 

and oil type utilized in various experiments are listed in Table A- 2.  

 

Table A- 2– Fluid composition utilized in osmotic gradient induced oil recovery 

experiments 

 Oil 

Name Oil A Oil B Oil C Oil E 

Comp. n-Hexane n-Heptane n-Hexane + 
2vol% crude 

Ekofisk 
crude oil 

 Water 

Name High 

salinity A 
High 

salinity B 
Low salinity  

Comp. 5 wt% NaCl 20 wt% NaCl Deionized 
water 
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Figure A- 2 shows a schematic description of the high-pressure micromodel 

consisting of a pore network, two fluid distribution channels and four ports 

located in each corner allowing fluid injection (port 1) and production (port 2, 

port 4). The micromodel was embedded in an aluminum holder and installed 

horizontally on the microscope stage. The porous medium was prepared by the 

following five steps: 1) Initial water saturation. High salinity water was injected 

through port 1 into a cleaned, air-filled model until 100% water saturation was 

achieved within the porous network and distribution channels. Air was 

displaced by water by a combination of spontaneous and forced imbibition, and 

production occurred through port 2 and/or port 4.  

 

 

Figure A- 2 – Schematic description of the micromodel including injection/production 

ports, flow distribution channels and pore network. Field of view is indicated in the 

transition area between the channel and the network 

 

2) Oil primary drainage. Initially, oil displaced saline formation water from port 

1 to port 2. Oil pressure was monotonically increased, and the non-wetting 
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phase invaded the pore network when the matrix threshold pressure was 

exceeded. The primary drainage process was terminated when the lower part of 

the network reached irreducible water saturation. The upper part of the 

network consisted mostly of formation water. The displacement was monitored 

through the microscope to make sure a continuous uniform layer of oil was 

established that acted as a semi-permeable membrane during osmosis later on. 

 

3) High salinity waterflood. Oil was displaced from the distribution channel, and 

high salinity water was injected until spontaneous imbibition ceased in the pore 

network. Port 3 and 4 were closed during the process. 4) Low salinity 

preparation. An osmotic gradient was established by carefully filling the 

distribution channel with low salinity water. No oil production occurred at this 

point. 5) Water diffusion. Formation water in the pore network was separated 

from the low salinity water occupying the channel by a uniform oil layer. Water 

transportation from the channel towards the pore network occurred in the 

absence of viscous forces. Fluid movements within the field of view were 

documented every 15 minutes for about 10 days.       
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