
University of Bergen

In partial fulfillment of MSc. Informatics (Optimization)

The index tracking problem with a limit
on portfolio size

Student:
Purity Mutunge

Supervisor:
Prof. Dag Haugland

November 19, 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NORA - Norwegian Open Research Archives

https://core.ac.uk/display/30909931?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgements

I am most thankful to God for the opportunity to study at the University of
Bergen and for the strength this far. Sincere gratitude to Prof. Dag Haugland
for his guidance, commitment and patience; and for the informatics department
– the administration’s support, many thanks. Special thanks to S&P Dow
Jones Indices for sending a constituent with weights for S&P 400. Thanks to
Joanna for the inspirations, the course lecturers, course–mates and all who used
Room 4152B, thank you. To HIS, LAGET, BKS and to all my friends, Oyugis,
Kakunzas, Else, Judith, Sandves and the list goes on – you made this journey
special! Last but not least, deep gratitude to my wider and immediate family;
the five of you, Wills for all the support and sacrifices! To you Kate–Alyssa, I
am lost for words, thanks for your cooperation; it may be difficult but that does
not make it impossible! Thank you. The journey is to begin, there is no end to
learning.

i

Abstract

For a passive fund manager tracking a benchmark, it is not uncommon to select
some, and not all the assets in the index to his portfolio. In this thesis, we
consider the problem of minimizing the tracking error under the mean–variance
formulation which gives us a quadratic objective function. Our model includes
a cardinality constraint, that puts a limit on the portfolio size. Our problem is
a mixed integer nonlinear problem with a convex, quadratic objective function.
For this NP–Hard problem, we apply continuous as well as Lagrangian relax-
ations. We illustrate a subgradient algorithm, modified to our problem. We also
present two construction and three improvement heuristics to this problem. Our
approaches are compared to the results of an exact and an interrupted solver
and computational time is of interest. Our data sets range from 50–400 (500),
with real constituent weights from S&P Dow Jones Indices for the largest set of
index.

ii

Contents

Acknowledgement i

Abstract ii

Table of Contents iv

List of Tables v

List of Figures vi

List of Algorithms vi

1 Introduction 1

2 Literature Review 4
2.1 Tracking Error Definitions . 4
2.2 Solution Methods . 5

3 Problem Formulation 8

4 Relaxations 10
4.1 Lower Bounds . 10
4.2 Examples of Relaxations . 11

4.2.1 Continuous Relaxation . 11
4.2.2 Lagrangian Relaxation . 11

4.3 Improving the bound . 12
4.4 Strength of the Continuous Relaxation 12
4.5 Theory of Lagrangian Relaxation of Mixed Integer Problems with

Quadratic Objective Functions 14
4.6 Lagrangian Relaxation for the Index Tracking Problem 14

4.6.1 Easy subproblems, fairly weak bounds 15
4.6.2 Hard subproblems, stronger bounds 16

4.7 Subgradient Algorithm . 16

5 Heuristic Approaches 19
5.1 Upper Bounds . 19
5.2 Construction Methods . 19
5.3 Improvement Methods . 20

6 Computational Results 24
6.1 Data Sets . 24
6.2 Exact Solver Results . 24

6.2.1 Limit 600s . 25
6.2.2 Limit ≤ 60s . 25

iii

6.3 Construction Heuristics Results 26
6.3.1 Solve–Forward Greedy Results 27
6.3.2 Sort–Forward Greedy Results 31

6.4 Improvement Heuristics Results 35
6.5 Relaxation Results . 40
6.6 In Summary . 42

7 Conclusions 43

8 References 44

iv

List of Tables

1 Results of the interrupted solver and the solve–forward greedy
heuristics when n = 50 and time limit= 15 seconds 28

2 Results of the interrupted solver and the solve–forward greedy
heuristics when n = 100 and time limit=200 seconds 29

3 Results of the interrupted solver and the solve–forward greedy
heuristics when n = 200 and time limit= 2400 seconds 30

4 Results of the interrupted solver and the solve–forward greedy
heuristics when n = 400 and time limit= 22500 seconds 31

5 Results of the interrupted solver and the sort–forward greedy
heuristics when n = 50 and time limit= 1 second 32

6 Results of the interrupted solver and the sort–forward greedy
heuristics when n = 100 and time limit= 1 second 33

7 Results of the interrupted solver and the sort–forward greedy
heuristics when n = 200 and time limit= 2 seconds 34

8 Results of the interrupted solver and the sort–forward greedy
heuristics when n = 400 and time limit= 5 seconds 35

9 Results of the interrupted solver when time limit = 15 seconds
and the variant A improvement heuristic when n = 50 36

10 Results of the interrupted solver when time limit = 200 seconds
and the variant A improvement heuristic when n = 100 37

11 Results of the interrupted solver when time limit = 2400 seconds
and the variant B improvement heuristic when n = 200 38

12 Results of the interrupted solver when time limit = 22500 seconds
and the variant B improvement heuristic when n = 400 39

13 Results of the interrupted solver when time limit = 22500 seconds
and the variant C improvement heuristic when n = 400 40

14 Results of Lagrangian Relaxation – Hard Subproblem 41

v

List of Figures

1 Exact Solver Performance . 25

List of Algorithms

1 Modified Subgradient Algorithm 17
2 Solve–Forward Greedy Heuristic 20
3 Sort–Forward Greedy Heuristic 20
4 Local Search Heuristic variant A 22
5 Local Search Heuristic variant B 22
6 Local Search Heuristic variant C 23

vi

1 Introduction

In fund management, where wealth from numerous investors is managed, dif-
ferent strategies are employed. The goal is to invest this wealth in order to
create more wealth. Making an investment is in itself a risky affair as one is not
guaranteed of a gain on wealth. However, managers have the task of making
decisions on how to achieve this goal while avoiding losses.

Generally, most companies prefer to raise their capital through equity financ-
ing which involves selling shares (stocks). A share is a small part of ownership
of a company. This way, they are able to raise capital while avoiding paying
interests which would have been the case if they opted for debt financing (bor-
rowing loans). When a company opens up its ownership by issuing of stocks
and then registering itself in a stock market, it opens up more opportunities for
exchange of ownership in day–to–day trading. This distribution of ownership
means that profits and losses are also shared among the owners of the shares
(stockholders). One way for fund managers to increase this wealth is by owning
shares of companies – investing in stocks.

Stock markets exist to facilitate the exchange of shares from one owner to
another. A stock market index is a group of stocks used to measure the value of
a section of the stock market, a tool used by investors to describe the market [7].
These indices are comprised of groups of various companies; companies that have
met predefined criteria in order to qualify. Examples of stock markets indices are
S&P (Standard and Poor’s) Dow Jones Indices, the New York Stock Exchange
(NYSE), NASDAQ, FTSE, among others. In fund management therefore, the
stock market is a big area of interest.

There exist different strategies that fund managers have, depending on their
attitude toward risk. Those managers who are known to be risk averse are the
passive fund managers while those that are risk takers are called active fund
managers. Active fund managers aim at outdoing the stock market and thus
conduct much research in order to decide where to invest their funds while
avoiding potential losses. They try to pick attractive stocks and also watch
out for when to move in or out of the market sectors and may often develop
complex trading systems. On the other hand, passive fund managers make
little or no use of the information that active managers look out for but instead
make decisions based upon long–term historical data [9]. Generally, they prefer
tracking a benchmark, usually a stock market index.

This tracking may involve selecting all the stocks in a benchmark index, in
the same proportions as the index. Such an approach, that is, full replication,
is generally not practical in real life. There is the option to track a benchmark
without selecting all the stocks, a practice that passive fund managers use. It
is not surprising that active managers also limit the number of stocks in their
portfolios [10]. A portfolio is in this case any combination of stocks that form a
subset of a given index. The task is therefore, that of choosing the best portfolio.

1

The measure of difference between a portfolio and the benchmark which it
mimics is referred to as a tracking error. The best portfolio is thus a portfolio
that produces the lowest tracking error.

Different formulations of the index tracking error are proposed, one of which
is the mean absolute deviation which is linear in nature. Another formulation
makes use of standard deviations while another, known as the mean–variance
formulation, makes use of a covariance matrix of the stock returns; further
described in Section 2.1.

The problem we attempt to solve is that of minimizing the tracking error
with a limit on the portfolio size. In using the mean–variance formulation, as
formulated by Jansen and Dijk [6], we are presented with a quadratic objective
function, which is what we adopt for this thesis.

The constraints to the problem include: a constraint that ensures that all
the assets selected to the portfolio total up to 1, as is the case for the benchmark
index. A cardinality constraint, that is, one that puts a limit on the number
of assets allowed in a given portfolio, is an aspect that introduces integrality
to the problem. This means that an asset is either chosen or not chosen, since
it is not possible to pick assets in fractions. In addition, we have a constraint
that ensures harmony in the allocation of weights such that only the selected
assets are considered in the apportioning of weights to total up to 1. With
these constraints, we have a mixed integer problem since some variables are
continuous and others are integers. Our problem is therefore formulated as a
mixed integer nonlinear problem with a convex, quadratic objective function.

The cardinality constraint to the index tracking problem makes this problem
difficult, that is, non–deterministic polynomial time hard (NP-Hard) [1]. An
NP–Hard problem is one that is very unlikely to be solvable in polynomial time.
This NP–Hardness implies that solving instances of benchmarks with many
assets is computationally infeasible and thus inexact approaches are proposed.

Finding exact optimal solutions is possible for small–sized benchmarks and
portfolios comprising of few assets. Such instances may be solved by exact
solvers, for instance, CPLEX, in general. However, when time is of interest
and the benchmark as well as the portfolio sizes increase, we note that it is a
challenge for the exact solver, in this case, CPLEX, to solve instances of realistic
sizes to optimality in reasonable time. It is possible to interrupt the exact solver,
henceforth referred to as the interrupted solver, by putting a time limit for each
instance it is employed.

Continuous and Lagrangian relaxations are applied to the problem with a
goal of obtaining lower bounds. Getting good lower bounds may however not be
an easy task. A subgradient algorithm is also considered in order to get the best
lower bound, if possible. We study the strength of the continuous relaxation
as well as the theory of Lagrangian relaxations on mixed integer problems with
quadratic objective functions.

On the other hand, heuristics may aid in obtaining feasible solutions which

2

are upper bounds to the problem. Improvement heuristics are proposed to im-
prove the solutions obtained by construction heuristics which construct feasible
solutions as their names imply.

These solutions obtained by the relaxations and the heuristics could also
supply valuable information to a passive fund manager. Further, a compari-
son of the lower bound to the upper bound of a given instance, gives valuable
information about where an optimal solution to the original problem lies.

With time being of interest, we evaluate the performance of the exact solver
and accord it a fair amount of time to solve the given instances. We then
compare its results with those of the heuristics. We also compare some of
the solutions from the subgradient algorithm to those from the heuristics. A
mathematical programming language is used to code while MATLAB is used
for data generation for most of the instances.

This thesis is organized as follows: We present a review of literature related
to the index tracking problem with a limit on portfolio size in Section 2. Section
3 is a mathematical presentation of the index tracking problem. In Section 4,
we present relaxations to the problem, continuous and Lagrangian, Section 5
presents construction and improvement heuristic approaches. Finally, Sections
6 and 7 present the computational results and the conclusions, respectively.

3

2 Literature Review

2.1 Tracking Error Definitions

The tracking error (TE) can be defined as the measure of the difference between
the returns of the tracking portfolio and the returns of the index. Roßbach and
Karlow [8] formulate the tracking error in time period t as:

TEGEN,t = Rt − vt (1)

where

Rt= return of the tracking portfolio in period t,

vt= return of the index in period t,

and Rt is given as the sum of the total weights of the assets in the tracking
portfolio multiplied by their respective returns in period t.

There are several approaches used in measuring the tracking error. One of
these is the mean absolute deviation which measures the mean of the absolute
differences between the benchmark and the portfolio returns. Over a set of time
periods t = 1, . . . , T , this can be formulated as [8]:

TEMAD =
1

T

T∑
t=1

|Rt − vt|. (2)

Rudolf et al. [2] present alternative definitions of the tracking error based
on the absolute deviations between the benchmark and the portfolio returns.
These models are compared to the tracking error model using the mean square
approach which is defined as the square root of the sum of the squared deviations
between the portfolio and the benchmark and can be formulated as [3]:

TESD =
1

T

(
T∑
t=1

|Rt − vt|α
) 1

α

(3)

where α = 2.

It is observable that for TEMAD, α = 1, which makes TEMAD a special
case of TESD. Using the α–norm of the difference vector R − v, it is possible
to have variants of this formulation with α ≥ 1. There may be advantages to
varying the values of α as Beasley et al. [3] remark. The higher the values of
α, the greater the dominance of the large terms of the vector R − v. Taking
this to the extreme, i.e. letting α→∞, TESD approaches max

t=1,...,T
|Rt− vt|, also

referred to as the infinity norm of R− v.

Another formulation is the tracking error variance, which Jansen and Dijk [6]
formulate as:

TECOV = (x− w)TQ(x− w) (4)

4

where

xi is the percentage weight of asset i in the vector x of the portfolio
weights, i ∈ N , where N = {1, . . . , n},

wi is the percentage weight of asset i in the vector w of the benchmark
weights,

Q is the covariance matrix of the stock returns.

TEMAD and TESD are both averaged over a set of T time periods. On
the other hand, TECOV uses a covariance matrix which is estimated over a
period of time from historical data. This matrix gives the correlation between
all possible pairs of assets. The latter function, as Coleman et al. [4] remark,
is mathematically more appealing as it is convex and can be used in financial
interpretations on the assumption that the covariance matrix is accurate for
future returns.

It is worth noting that as observed by Rudolf et al. [2] and as noted by
Konno and Yamazaki [5], there exist similarities in performance when using the
different approaches. In 2011, Roßbach and Karlow [8], presented a comparative
study of these different approaches.

In this thesis, we adapt definition (4), giving us a convex quadratic objective
function to be minimized subject to linear constraints. One of the constraints
is a cardinality constraint which gives a bound M , to the number of assets in
the portfolio,

n∑
i=1

yi ≤M,

where yi = 0 when xi = 0 and yi = 1, when xi > 0.

2.2 Solution Methods

When a cardinality constraint restricting the number of assets in a portfolio
is introduced, the problem of optimizing the selection of assets in a portfolio
becomes NP–Hard [4], [10]. This means that exact solutions to instances of
realistic sizes are computationally infeasible and thus inexact solutions are the
practical ones.

The tracking error function, as defined in (4), is a convex function whereas
the cardinality constraint is expressed in terms of a discontinuous counting
function, |{i ∈ N : xi > 0}| ≤ M . Jansen and Dijk [6] and Coleman et al. [4]
present two different approaches to dealing with the discontinuity introduced
by the cardinality constraint.

Jansen and Dijk [6], focus on minimizing the tracking error with a relatively
small number of stocks by approximating the discontinuous counting function

5

by a continuous function,
n∑
i=1

xpi

for some parameter p. They then compare their suggested diversity method
with a sequential quadratic optimization method [6].

Coleman et al. [4] propose a graduated non-convexity (GNC) process for min-
imizing the tracking error while restricting the number of assets, which builds
on the approach suggested by [6]. The discontinuous function is approximated
by a continuously differentiable non-convex function,

n∑
i=1

gj(xi; p)

with a parameter j > 0, which is a large constant set to 108. With p > 0,

r =
√

2
p + 1

j and q = 1
jr , they define:

gj(x; p) =

jx2 if |x| ≤ q
1− p

2 (|x| − r)2 if q ≤ |x| < r

1 otherwise

which is symmetric with respect to x. It is possible to see that gj is contin-
uously differentiable at |x| = r, as well as at |x| = q. They solve a sequence
of problems with continuously differentiable approximated objective functions.
They compare the GNC method with the method proposed by [6] and another
heuristic approach that uses (3) as the tracking error definition.

Shaw et al. [10] propose a Lagrangian procedure for portfolio optimization
with a cardinality constraint. Their procedure takes advantage of the covariance
matrix Q, which they decompose into two parts. This leads to the formulation of
two subproblems upon employing Lagrangian relaxation and obtaining a lower
bound on the problem. According to [11], when applying Lagrangian relaxation
to linear problems, there is a trade–off between the ease of the problem and
the strength of the bound. The proposed Lagrangian–relaxed problem in [10]
can be solved in polynomial time. By this choice, it is apparent that they
prefer faster computations to stronger bounds. They then present a branch and
bound procedure, with variable fixing, that attempts to solve the cardinality–
constrained problem to optimality and make comparisons of their findings with
CPLEX.

Chang et al. [12] present three heuristic algorithms based upon genetic al-
gorithms (GA), tabu search (TS) and simulated annealing (SA) for finding the
cardinality constrained efficient frontier. Since different asset combinations are
considered, the cardinality constraint introduces discontinuity to the efficient
frontier, which when unconstrained is a smooth non–decreasing curve that gives
the best possible trade–off of risk and return. This also makes some parts of the

6

curve become invisible. In addition to the cardinality constraint, they limit the
minimum and the maximum proportion that can be held by any asset, if any
is held. The performance of the proposed heuristic algorithms is compared to
the unconstrained efficient frontier in order to measure closeness to optimality.
They present pooled results, that is, a combination of the results of GA, TS and
SA applied on set G, and conclude that combination of the heuristics to be a
sensible approach to the problem.

Li et al. [13] propose an exact solution algorithm in obtaining an optimal
lot solution to cardinality constrained mean–variance formulation for portfolio
selection under concave transaction costs. They make use of special features
in the mean–variance formulation, which involve the covariance matrix Q, used
in (4). Computational results with and without the cardinality constraint are
presented. With their approach, they observe that the search for a better feasible
point is more difficult when a cardinality constraint is included.

7

3 Problem Formulation

Out of the n available investment assets, an investor endeavours to select a
portfolio of size not greater than M , that minimizes the tracking error as defined
in (4), Section 2, that is,

TECOV = (x− w)TQ(x− w).

As explained earlier in Section 2.1, w is an n–dimensional column vector of given
benchmark weights, x is an n–dimensional column vector of portfolio weights
and Q is an nxn positive semi–definite covariance matrix of the stock returns.

For the cardinality constraint, introduced in Section 2, 0–1 decision variables
are introduced:

yi =

{
1, if asset i (i ∈ N) is included in the portfolio

0, otherwise,

where, M with M ≤ n, is a given positive integer denoting the maximum
number of assets allowed in a portfolio, and the constraint is

n∑
i=1

yi ≤M.

A constraint to ensure that the proportions included in the portfolio sum up to
one is given as

n∑
i=1

xi = 1.

We further define a constraint that links yi and xi. Since variable yi is binary, if
asset i is included in the portfolio, then yi = 1 and xi ≤ 1 and therefore yi − xi
cannot be less than 0. If asset i is not included in the portfolio, yi = xi = 0
and thus we have the constraint,

yi − xi ≥ 0.

A valid formulation of the tracking error problem with a limit on the portfolio
size is thus:

8

(P)

min
x

TECOV = (x− w)TQ(x− w) (5)

subject to

n∑
i=1

xi = 1, (6)

n∑
i=1

yi ≤M, (7)

yi − xi ≥ 0 i ∈ N, (8)

y ∈ {0, 1}n, (9)

x ∈ Rn+, (10)

which is a mixed integer nonlinear problem with a convex, quadratic objec-
tive function.

9

4 Relaxations

In order to define a relaxation, we consider a general optimization problem,

z = min
x∈X
{f(x) : gi(x) ≥ 0, i = 1, . . . ,m} ,

which can be formulated as

z = min
x
{f(x) : x ∈ S},

with S = {x ∈ X : gi(x) ≥ 0, i = 1, . . . ,m}, which is the feasible region.

A relaxation for this problem, can in general be defined as,

zR = min
x
{c(x) : x ∈ F},

where F ⊇ S and c(x) ≤ f(x) ∀x ∈ S.

The idea behind relaxation as a way of dealing with optimization problems, is
to obtain lower bounds on the optimal objective function value(s) of the original
problem. It is an important characteristic that a relaxation problem is easier
to solve than the original one. A relaxation can be constructed, for instance,
by either removing or replacing the constraints such that the feasible region is
extended.

4.1 Lower Bounds

For a minimization problem, as introduced above, the optimal value from such
a relaxation provides a lower bound on the optimal objective function value of
the original problem (P), such that,

zR ≤ z.

Lower bounds provide useful information for narrowing down a search in tree
search algorithms, for instance, in branch and bound for discrete optimization
problems.

While satisfying the optimality conditions, it is possible that the optimal
value of the relaxation is equal to the optimal value of the original problem such
that,

zR = z,

which may be used to terminate a solution process in an exhaustive search.

How good a bound is may however, be determined by how good the con-
structed relaxation is. The smaller the gap z − zR, the better, or the stronger
the bound. The quality of the bound and the ease of the relaxed problem are,
for certain problems, inversely related in that the easier it is to solve the relaxed
problem, the weaker the bound is likely to be, and the converse applies [11], [14].
This therefore means that there exists a trade–off between the ease of the relaxed
problem and the quality of the bound.

10

4.2 Examples of Relaxations

In this section, we discuss two frequently used relaxations, namely continuous
relaxation and Lagrangian relaxation.

4.2.1 Continuous Relaxation

For an arbitrary problem where some of the variables are constrained to take
only integer values, allowing such variables to take values that are non-integral
leads to a continuous relaxation.

To explain this further, we consider constraint (9) for the problem (P) in
Section 3, where yi is a 0–1 variable, which means that variable yi is constrained
to take discrete values, that is, yi ∈ {0, 1}.

A continuous relaxation would involve replacing such a constraint with a
constraint that allows variable yi to take any value between 0 and 1, that is,
yi ∈ [0, 1]. The feasible region is thus enlarged while leaving the objective
function unchanged. The relaxed problem is thus formulated as:

min
x

TECOV

subject to

n∑
i=1

xi = 1, (11)

n∑
i=1

yi ≤M, (12)

yi − xi ≥ 0, i ∈ N, (13)

y ∈ [0, 1]n (14)

x ∈ Rn+. (15)

This continuously relaxed problem, which is solvable in polynomial time [15],
[16], replaces the mixed integer nonlinear problem (P), and its solution gives a
lower bound on the optimal objective function value of (P).

4.2.2 Lagrangian Relaxation

Lagrangian relaxation involves removing one, some, or all the constraints. Each
constraint removed is multiplied with a penalty variable, that is, each constraint
is dualized, and then added to the objective function. This penalty variable is
referred to as the dual variable or the Lagrangian multiplier. Since one, some,
or all constraints may be dualized, it is possible to generate as many as 2k − 1
subproblems, where k is the number of constraints. These subproblems are
unique as they differ from each other depending on the constraints dualized.

To apply the relaxation, we consider problem (P) in Section 3, where we may
choose to remove, for instance, the cardinality constraint (7). We then introduce

11

a nonpositive Lagrangian multiplier v, then multiply it with the constraint to
get,

v

(
M −

n∑
i=1

yi

)
,

which when added to the the objective function TECOV , gives us subproblem
L(·, v, ·). An analogous notation will be applied for all the possible subproblems.
The optimal objective function value, L(·, v, ·), to this subproblem, is obtained
by solving,

L(·, v, ·) = min
x,y

TECOV + v

(
M −

n∑
i=1

yi

)

subject to

n∑
i=1

xi = 1,

yi − xi ≥ 0, i ∈ N,
y ∈ {0, 1}n,
x ∈ Rn+. (16)

It is easy to show that for all feasible solutions, the objective function of the
subproblem L(·, v, ·), takes a value less than or equal to the value of objective
function of the problem (P). The feasible region in this relaxation is also en-
larged and as introduced in Section 4, L(·, v, ·) qualifies as a relaxation, giving
a lower bound on the optimal value of problem (P).

4.3 Improving the bound

For the subproblem L(·, v, ·) in Section 4.2.2, each nonpositive value of v gives
a lower bound on the optimal objective function value of problem (P). Thus we
may have as many lower bounds as there are different nonpositive values of v.
The best bound is the largest possible, the one closest to the optimal value of
(P), that would give the smallest gap as mentioned in Section 4.1. In order to
find it, we may solve the Lagrangian dual, Lv. For all the possible Lagrangian
dual problems, an analogous notation will be applied.

This Lagrangian dual Lv, is an optimization problem defined as,

Lv = max
v≤0

L(·, v, ·),

and solving it amounts to computing the value of v, maximizing the optimal ob-
jective function value of the Lagrangian relaxation L(·, v, ·). A possible solution
method for solving Lv would for instance, be the subgradient algorithm [11], [14],
as explained in Section 4.7.

4.4 Strength of the Continuous Relaxation

If we could track the benchmark portfolio perfectly, then we would have xi = wi
for i ∈ N , and thus the optimal objective function value would be TECOV = 0,

12

since the covariance matrix Q is positive semi-definite. With a positive definite
Q matrix, which is likely to be the case in practice, this would be possible only
if we are allowed to pick all the assets, that is, M = n.

Proposition 4.1. The optimal objective function value of the continuous re-
laxation of the tracking error problem as defined in Section 4.2.1, is 0.

Proof. We prove that xi = wi = yi for i ∈ N , is feasible in the continuous
relaxation. Constraints (11) - (15) are satisfied as follows: Since

∑n
i=1 wi = 1,

it follows that
∑n
i=1 xi = 1, thus constraint (11) is satisfied. The cardinality

constraint (12), is satisfied with
∑n
i=1 yi =

∑n
i=1 wi = 1 ≤ M . Constraint (13)

is satisfied by an equality since xi = yi for i ∈ N and thus yi−xi = 0 for i ∈ N .
Also, for i ∈ N , since yi = wi with 0 ≤ wi ≤ 1, and xi = wi ≥ 0, constraints
(14) and (15) are satisfied respectively. With the above values of x and y, the
objective function value is 0. As Q is positive semi-definite, it follows that (x, y)
is also optimal in the continuous relaxation, and thus has an optimal objective
function value 0.

It follows from Proposition 4.1 that the continuous relaxation produces a
trivial bound. Further, it follows that any relaxation whose bound is no better
than that of the continuous relaxation, gives an objective function value of 0.
Examples of such relaxations are given in Section 4.6.1.

A possible branch-and-bound tree, with the continuous relaxation at the
root of the tree, would involve fixing some variables yi = 0 or yi = 1, for i ∈ N
in the branching process. With this in mind, we define the following problem
that leads to the proposition below.

Let N0 ⊆ N and N1 ⊆ N , where |N1| < M , and consider the problem
where the constraints yi = 0 for all i ∈ N0 and yi = 1 for all i ∈ N1, are added
to the continuous relaxation given in Section 4.2.1.

Proposition 4.2. If N0 = ∅, this problem has an optimal objective function
value 0. If N0 6= ∅, and Q is positive definite, then the problem has a positive
optimal objective function value.

Proof. When N0 = ∅, xi = wi ≤ yi for i ∈ N , is feasible for this problem.
Constraints (11) and (15) are satisfied as in Proposition 4.1. Since |N1| < M and
yi = 1 for i ∈ N1, then

∑
i∈N1 yi ≤M−1 and by letting yi = wi for i 6∈ N1, then∑

i∈N\N1 yi ≤ 1 as 1 =
∑
i∈N wi ≥

∑
i∈N\N1 wi; and thus Constraint (12) is

satisfied with
∑n
i=1 yi ≤M . It also follows that constraint (13) is satisfied with

an equality as in Proposition 4.1 for i 6∈ N1, and with an inequality yi − xi > 0
for i ∈ N1. Constraint (14) is satisfied with 0 ≤ yi = wi ≤ 1 for i 6∈ N1

and yi = 1 for i ∈ N1. These values of x and y give a similar result as in
Proposition 4.1. However, when N0 6= ∅, yi = 0 for i ∈ N0. Constraint (13) is
to be satisfied with yi−xi ≥ 0 for i ∈ N , this means that for the corresponding
i ∈ N0, xi = 0 and therefore, xi 6= wi for i ∈ N0. Since x − w 6= 0, it follows
that TECOV = (x− w)TQ(x− w) > 0, if Q is positive definite.

13

Therefore, with reference to Section 4.1, the continuous relaxation of the
tracking error problem does not provide useful bound information. However,
Proposition 4.2 shows that in given circumstances, if it is decided beforehand
that some assets in the benchmark cannot be part of the portfolio of M assets,
then, the continuous relaxation can give a positive bound.

Thus, while processing the nodes in a branch and bound tree, except at
the root node and the nodes where only yi = 1, then it is possible to obtain
nontrivial bounds.

4.5 Theory of Lagrangian Relaxation of Mixed Integer
Problems with Quadratic Objective Functions

In mixed integer linear problems, Lagrangian relaxation may in some instances,
be used as an alternative in order to obtain better bounds than those that
could be obtained by solving the original problem while ignoring or dropping
the integrality constraints. However, when Lagrangian relaxation is applied to
mixed integer linear problems, a choice is to be made between the ease of the
relaxed problem and the strength of the bound to be obtained.

When the Lagrangian subproblem for a mixed integer linear problem is solv-
able in polynomial time, that is, when the subproblem is easily solvable, the
resulting bound is fairly weak. A fairly weak bound means a bound that is no
better than the bound obtained by solving the linear relaxation of the original
problem [11]. It is worth observing that this trade–off applies also to nonlinear
integer problems.

Li and Sun [14], prove that the Lagrangian bound for an integer problem
with a convex objective function is at least as good as the bound obtained by the
continuous relaxation. They further explain that when some of the functions
for the problem are nonseparable, the Lagrangian subproblem is not easier to
solve than the original one.

Li and Sun [14] show that when the Lagrangian subproblem for an integer
nonlinear problem is solvable in polynomial time, the resulting bound is one that
is no better than the bound obtained by the continuous relaxation. When the
Lagrangian subproblem is difficult, it may give a better bound on the optimal
objective function value of the nonlinear integer problem.

This theory will be taken into consideration when choosing the relaxations
for this thesis. The discussions in Section 4.6 for the problem (P) will be built
upon this theory.

4.6 Lagrangian Relaxation for the Index Tracking Prob-
lem

We now consider the possible subproblems when Lagrangian relaxation is ap-
plied to problem (P) as formulated in Section 3. For the relaxation of constraints

14

(8), each of the n constraints shall not be relaxed separately, we dualize either
all or none of them. We thus consider the 7 Lagrangian subproblems arising
from the different combinations of constraints (6), (7) and (8).

The subproblems may give varying lower bounds to the optimal value of
problem (P) as they have varying levels of difficulty, as explained in Section
4.5. We categorize the subproblems according to their ease of solution (strength
of bound) and present the two categories in Sections 4.6.1 and 4.6.2.

4.6.1 Easy subproblems, fairly weak bounds

Separability is one of the properties that often lead to easy problems [11]. When-
ever constraints (8) are dualized, the subproblem decouples further into two sub-
problems, with respect to variables x and y. This decoupling results to a linear
subproblem with regard to variable y and a quadratic problem with regard to
variable x.

We consider subproblem L(·, ·, z), one of the 7 combinations where only
constraints (8) are dualized, each with a nonnegative parameter zi. This sub-
problem decouples to (17) - (19) and (20) - (22), that is,

min
x

TECOV +

n∑
i=1

zixi (17)

subject to

n∑
i=1

xi = 1, (18)

x ∈ Rn+, (19)

and

min
y

−
n∑
i=1

ziyi (20)

subject to
n∑
i=1

yi ≤M. (21)

y ∈ {0, 1}n. (22)

Subproblem (17) - (19) is a quadratic problem that is known to be solvable
in polynomial time [15]. Similarly, subproblem (20) – (22) is easily solvable in
that it involves sorting the assets in a nonincreasing manner with respect to
the values z1, . . . , zn, and picking those with the largest values to a total of M .
From Section 4.5, it thus follows that the optimal values of these subproblems
give fairly weak bounds to the optimal value of problem (P); that is, a bound
that is equal to that of a continuous relaxation, as in Section 4.2.1.

A similar observation is made in three other subproblems, that is when one
or both of constraints (6) and (7) are relaxed together with (8). These four
subproblems thus form the category of easy subproblems. From this category,

15

for implementation purposes, we choose the subproblem L(u, ·, z), which relaxes
constraints (6) and (8).

4.6.2 Hard subproblems, stronger bounds

For the other 3 combinations, where constraints (8) are not relaxed, there exists
some level of difficulty. The subproblems are nonseparable and thus may not be
easier to solve than problem (P) [14]. We believe that the subproblems in this
group are NP-Hard. A possible reduction could be done from the unconstrained
quadratic 0–1 problem which is known to be NP–hard, we are however not aware
of any proof for this.

One of the subproblems in this category, which we choose for implemen-
tation, is subproblem L(·, v, ·) as given in Section 4.2.2. The other two are
formulated when only constraint (6) is relaxed, and when both constraints (6)
and (7) are relaxed, respectively.

With reference to the trade–off as explained in Section 4.5, the optimal values
of these subproblems have the potential to give better, or stronger bounds to
the optimal value of problem (P).

4.7 Subgradient Algorithm

As introduced in Section 4.3, a possible way to get the best lower bound from a
Lagrangian relaxation involves solving the Lagrangian dual using a subgradient
algorithm.

In our case, in order to get the best bound for the subproblems L(u, ·, z)
and L(·, v, ·), chosen in Sections 4.6.1 and 4.6.2, respectively, we employ the
subgradient algorithm with some modifications and solve the corresponding La-
grangian duals Luz and Lv. However, for the easy subproblem as discussed
in Section 4.6.1, we observe from Proposition 4.1, that such a relaxation gives
a bound that is no better than that of the continuous relaxation, that is an
objective function value of 0.

For the hard subproblem, as discussed in Section 4.6.2, each nonpositive
value of v gives a lower bound. The idea behind the algorithm is to aid in ob-
taining the best bound possible by iteratively altering the value of the multiplier
v for the given subproblem, in this case subproblem L(·, v, ·).

Consider the Lagrangian dual Lv as presented in Section 4.3:

Lv = max
v≤0

L(·, v, ·), (23)

We present our modified subgradient algorithm for Lv, applied to our problem
as follows:

16

Algorithm 1 Modified Subgradient Algorithm

Set v ← v0 = 0; µ1, µ2 ← suitable value(s) k ← 0
repeat

Solve L(·, v, ·) and obtain lower bound zR

if
∑n
i=1 yi < M then

vk+1 ← min{vk + µ1k(M −
∑n
i=1 yi), 0}

else
vk+1 ← min{vk + µ2k(M −

∑n
i=1 yi), 0}

Update µ1k, µ2k

until convergence or k = k∗

return zR

In solving Lv, we apply two modifications to the subgradient algorithm. One
of the aspects of the modification is the introduction of a time limit. In essence,
the process of solving the subproblem should not be interrupted, we however do
this because after numerous experiments, we observe that to solve subsequent
iterations is time consuming.

When we interrupt a branch and bound solver, in our case, CPLEX, the
output comprises of the upper and lower bounds that the solver has found in
a branch and bound tree at that time of interruption. We therefore are not
guaranteed of the best lower bound possible. In a branch and bound tree, a
node may have an upper bound which might as well be the optimal solution,
but for this solution to be proved to be optimal, further branching is necessary
until when the upper and the lower bounds are equal.

We apply two different stopping criteria. One stopping criterion is after
k∗ iterations where k∗ is predetermined by considering a time limit. It is also
possible that convergence is achieved, which is the second stopping criterion,
that is, when we allow improvements to be made until no further move can be
made. The challenge is to choose which criterion to apply to which problem, and
as we observe from Section 6.5, we may not base it on the size of the benchmark
neither on the portfolio size.

For an initial multiplier v, to all the instances solved, we use an initial value
of v = 0 and allow this value to vary as the iterations increase. With such an
initial value of v = 0, solving for k = 1, implies obtaining a trivial bound as
expected since all assets would be picked into the portfolio.

The value of the multiplier is adjusted in each iteration based on whether
the relaxed cardinality constraint (7), is satisfied or not. Whenever satisfied,
v is rewarded, that is the absolute value is decreased, whereas whenever the
constraint is not satisfied, v is penalized, that is the absolute value is increased.

The value of v is adjusted using the step lengths µ1k and µ2k, which are
varied. This is the other aspect of our modification. After much trial and error,
we observe that tuning a single step length to be used in updating the variable

17

(multiplier) for each iteration requires much time (to converge), we therefore
choose two different step lengths. It may be possible to predetermine the value
of the initial step length, perhaps by some simulations, but these computations
are beyond the scope of this thesis.

The different step length sizes are assigned such that one is for penalizing and
another for rewarding. It is also worth noting that different ways of adjusting
the step lengths are considered during the experiments with the aim of obtaining
faster convergence. After trial and error on small instances, we employ similar
initial step lengths to all the varying sizes of benchmarks with varying portfolio
sizes.

Experiments, as in Section 6.5, show that reasonable bounds can be obtained
with lots of computations implying more computational time. In general how-
ever, a single iteration of the subproblem may be solved relatively faster than
solving its respective original problem.

18

5 Heuristic Approaches

Relaxations, on minimization problems provide lower bounds on the optimal
objective function value of the original problems as discussed in Section 4.1. Any
feasible solution to a minimization problem, on the other hand, gives an upper
bound on the optimal value of the objective function of the original problem.
In this section we present the various ways we have used in the search for upper
bounds for the index tracking problem with a limit on portfolio size.

5.1 Upper Bounds

Although every feasible solution gives an upper bound to a minimization prob-
lem, the main goal is to find a good upper bound. Here, by a good upper bound
we mean a bound that is close to the optimal solution, such that the gap zU −z,
is minimal, where zU and z are the upper bound and the optimal solution to
the original problem respectively.

As discussed earlier, in Section 2.2, the index tracking problem with a limit
on portfolio size known to be NP–Hard which implies that exact solutions to
instances of realistic sizes are computationally infeasible. Heuristic approaches
can therefore be employed with the goal of obtaining good upper bounds rela-
tively faster.

The aim of a construction method is to find a feasible solution for a given
problem by constructing one from an empty set, whereas improvement methods
aim at improving an already given feasible solution, if possible, by searching
a neighborhood of solutions. Forward and backward greedy algorithms are
examples of construction methods while a local search falls in the category
of improvement methods.

For the index tracking problem, we employ forward greedy algorithms, giving
upper bounds on the original problem (P). For the improvement methods, we
import a solution from one of the greedy algorithms as the initial solution and
perform local search heuristics to improve the solutions, if possible. It is worth
noting that for the local searches, other feasible solutions may also be used as
initial solutions.

5.2 Construction Methods

A greedy approach may be applied to the index tracking problem in a myriad
of ways. We define two approaches where we start with an empty set of assets,
then ’greedily’ pick out M assets to satisfy the cardinality constraint (8).

For the first variant of the greedy approach, in each iteration, we pick the
best asset that can be included in our portfolio. This best asset is the asset that
gives us the lowest tracking error if included in the portfolio. Once an asset is
picked, it is factored in the choice of the subsequent assets, as the number of
assets allowed in a portfolio increase by one in each iteration. Having fixed the

19

M discrete variables, our problem becomes convex and solvable in polynomial
time.

We present this variant of a forward greedy heuristic algorithm for the index
tracking problem with a limit on the portfolio size as follows:

Algorithm 2 Solve–Forward Greedy Heuristic

Set B ← ∅
for j = 1, . . . ,M do
for l ∈ N \B do

zl = min

{
TECOV :

n∑
i=1

xi = 1, xi = 0 ∀ i ∈ N \B \ {l}, x ∈ Rn+

}
Find some l∗ ∈ arg min{zl : l ∈ N \B}
B ← B ∪ {l∗}

Solve (P) and obtain upper bound zU

return zU

The second variant of the greedy approach involves picking the largest M
assets in the benchmark. With this approach, our problem involves sorting the
benchmark weights in descending order, fixing M assets, then solving a convex
problem. For each instance therefore, only one quadratic problem is solved.
This makes the second variant of the greedy approach relatively faster than the
first. The algorithm to this approach is as follows:

Algorithm 3 Sort–Forward Greedy Heuristic

Set B ← ∅
for j = 1, . . . ,M do

Find some l∗ ∈ arg max{wl : l ∈ N \B}
B ← B ∪ {l∗}

Solve (P) and obtain upper bound zU

return zU

These construction methods do not necessarily guarantee any closeness to
optimality. This means that though they yield feasible solutions, we may not
guarantee how minimal the gap zU − z, is, in general. However, it is possible
that in some instances, zU = z.

5.3 Improvement Methods

One of the ways in which we may improve an upper bound is by performing a
local search. For these local searches, as mentioned earlier, in Section 5.1, the
initial feasible solution, that is, the incumbent, could be a solution obtained by
either of the forward greedy approaches presented in Section 5.2. There exist

20

different ways of defining a neighborhood and the procedures for a search. We
here present three variants.

All these heuristics involve swapping the assets in the incumbent with those
that were not included in the portfolio with the aim of obtaining an improved
solution, if any exists.

For variant A, we search for improving swaps by swapping all the assets
in the portfolio with those not included in the portfolio and picking the best
improvement, if any exists. The asset giving this better solution than the initial
is included in the portfolio chosen such that it replaces the asset with which
it had been swapped. This is repeated until no further improvement can be
achieved.

For the variant B however, instead of looking for the best improvement
from among the M · (n − M) possibilities as in variant A, we improve the
incumbent as follows: All the assets in the incumbent are enqueued. One asset
is dequeued and swapped with all the assets that were not in the portfolio and
a best improvement, if any exists, is chosen from the n −M possibilities. The
asset that yields the best improvement, replaces the asset with which it was
swapped with, and is enqueued. This replacement is done before proceeding to
perform swaps for the next asset in the queue. The search for an improvement
through swapping continues until the queue is empty. Thus, all the assets in
the initial solution and those that provided any improvement are all factored in
the search for further improvements, if possible, before the algorithm stops.

For variant C, we perform quick small improvements in that whenever an
improvement is found during the swapping process, a replacement is done. As
opposed to variants A and B which choose the best improvement out of some
possibilities whenever such exist, variant C performs a replacement at the en-
counter of an improvement, if any exists, and proceeds to the next asset in the
queue. Just as with variant B, any asset that gives an improvement is enqueued.
Thus, before the algorithm stops, all the assets in the queue are swapped with
the assets not included in the portfolio in the search for an improvement, if any
exists.

Our local search heuristics for the index tracking problem with a limit on
portfolio size expressed in algorithmic terms are as follows:

21

Algorithm 4 Local Search Heuristic variant A

Require: Initial B, where |B| = M , with an upper bound zU

repeat
done ← true
for r ∈ B do
for l ∈ N \B do

zr,l = min

{
TECOV :

n∑
i=1

xi = 1, xi = 0 ∀i ∈ {r} ∪ (N \B \ {l}), x ∈ Rn+

}
Find some (σ, β) ∈ arg min{zr,l : r ∈ B, l ∈ N \B}
if zσ,β < zU then
B ← B ∪ {β} \ {σ}
zU ← zσ,β
done ← false

until done
return zU

Algorithm 5 Local Search Heuristic variant B

Require: Initial B, where |B| = M , with an upper bound zU

Put all assets in B into a queue q
while q 6= ∅ do

Remove asset r from q
for l ∈ N \B do

zr,l = min

{
TECOV :

n∑
i=1

xi = 1, xi = 0 ∀i ∈ {r} ∪ (N \B \ {l}), x ∈ Rn+

}
Find β ∈ arg min{zr,l : l ∈ N \B}
if zr,β < zU then
B ← B ∪ {β} \ {r}
zU ← zr,β
Add β to q

return zU

22

Algorithm 6 Local Search Heuristic variant C

Require: Initial B, where |B| = M , with an upper bound zU

Put all assets in B into a queue q
while q 6= ∅ do

Remove asset r from q
for l ∈ N \B do

zr,l = min

{
TECOV :

n∑
i=1

xi = 1, xi = 0 ∀i ∈ {r} ∪ (N \B \ {l}), x ∈ Rn+

}
if zr,l < zU then
B ← B ∪ {l} \ {r}
zU ← zr,l
Add l to q

return zU

Just as the construction methods cannot guarantee the nearness of the up-
per bound obtained to the optimal solution for the original problem, so is it
with the improvement methods. However, if any improvement is possible, then
our solution is guaranteed to be better than it was before and thus closer to
the optimal. Moreover, it is also possible that some improvements may yield
solutions such that zU = z.

23

6 Computational Results

In this section, we present the computational results from employing the heuris-
tic approaches as well as the results obtained when the original problem is solved
by the exact solver. All the algorithms in this thesis are programmed in AMPL
and run on a computer with an Intel Core i5–2400 processor, speed of 3.10GHz,
and 3.8GB Memory.

6.1 Data Sets

Just as there are varying numbers of constituents for numerous indices in the
real world, we use varied sets of assets (indices) for our implementations. Our
index sizes include: 50, 100, 200 and 400 assets. In addition, we also use the
following index sizes for Section 6.2: 70, 150, 250, 300 and 500, to obtain more
detailed results.

For the benchmark weights, which are deterministic for the purpose of com-
parison, we generate random sets that total to 1. However, for the 400 assets,
we obtained real–world constituents and weights for benchmark index from S&P
400 as of 31 December 2013. The covariance matrices are also randomly gener-
ated for each of the sets. These data are generated using MATLAB, and these
sets of data are also used for the observations and findings for the relaxations
introduced in Section 4.

The bound M , on the portfolio size, is not fixed for any specific sets of
assets, rather, we vary its value systematically, and compare the results when
the heuristics are employed and when they are not.

Thus, as presented in Section 3, for the problem formulation, for each in-
stance, the given data includes: an n–array of benchmark weights totalling 1,
an nxn matrix, Q, and an integer M , where n is the given number of assets in
the benchmark.

6.2 Exact Solver Results

We shall in this section present the results obtained when the exact solver is
put to task. We observe that the exact solver requires considerably much time
to prove that most of its solutions are optimal even for instances where n = 50.

Figure 1 summarizes the computational time that the solver uses to solve
the given instances, for selected values of M < n/2. For M ≥ n/2, the com-
putational time is expected to decrease as M → n as we observe in Section
6.3, Table 1, for instance. Thus, when the portfolio is to include almost all the
assets, the computational time is almost negligible.

24

100 200 300 400 500

1

2

3

4

5

n

M
<
n
/2

< 5s
< 60s
< 600s

Figure 1: Exact Solver Performance

6.2.1 Limit 600s

Given a time limit of 10 minutes, the exact solver finds a feasible solution but
cannot prove it to be optimal while solving an instance where n = 500 and
M > 1. However, within the same amount of time, the solver finds a feasible
solution and proves it to be optimal for the following combinations: n = 50 with
M = 5, n = 70 with M = 4, n = 150 with M = 3 and n = 300 with M = 2.

Given that it can solve n = 300,M = 2, then it is as observable, possible
for the solver to prove optimality for instances n < 300 with M ≤ 2 within the
given time limit.

6.2.2 Limit ≤ 60s

For n = 50 and M = 4, n = 70 and M = 3, n = 200 and M = 2 and n = 500
and M = 1, the solver can within 1 minute only solve these instances and prove
the solutions to be optimal.

Further, we note that if the time was constrained to 5 seconds, the largest
instance the exact solver can solve and yield optimal results for, is an instance
where n = 300, with M = 1. With this time limit and for M = 2, we can have
a maximum set of n = 100 and for n = 50, our portfolio cannot have more than
three assets.

Figure 1 gives an overview of the capability of the solver to solve instances
and prove these solutions to be optimal for the given sets of assets we have
worked with. We may not, however, in this thesis, tell exactly how big an
instance the solver can handle within given time limits. With a limit of 5
seconds, for instance, and given M = 2, for example, we observe that the

25

maximum that the solver can handle is some n ∈ [100, 150). We could get the
exact set of assets using binary search but this would be time consuming. We
therefore give an overview of the results from the categories of the sets of assets
we have worked with, as introduced in Section 6.1.

With these observations, we note that it is a challenge for the exact solver
to solve instances of realistic sizes to optimality in reasonable time. When we
interrupt the solver as we do by putting time constraints, we can, in general,
not even be guaranteed to get feasible solutions. However, in our experiments,
the solver was able to generate feasible solutions and in the subsequent sections,
we analyze these results further as well as those of the heuristics.

6.3 Construction Heuristics Results

We present the findings of the two construction methods we use. We here also
observe a trade–off between the time used to solve some of the problem instances
and the strength of the solutions obtained. This is as was the case in Section
4.1.

The sort–forward greedy method, that is, the second variant introduced in
Section 5.2, in general gives solutions that are relatively weaker compared to its
counterpart, the solve–forward greedy algorithm. However, it is notable that
in certain instances, these algorithms yield identical results. In addition, there
exist cases where zU = z, as we observe in Tables 1 and 5 among others that
are presented in this section.

After running the two heuristics, we approximate favourable time limits and
use them to interrupt the solver. As mentioned earlier and as we have observed
in Section 6.2, since the solver cannot always prove that its solutions are optimal
within the given time limits, we may not tell exactly how far our heuristics
solutions are from the optimal solutions. For the instances when the solver
yields optimal solutions, however, we can tell how far the solutions produced by
the heuristics are from their respective optimal solutions. We therefore compare
the results obtained from the interrupted solver to those of the heuristics in the
subsequent sections. We further highlight some differences between the two
heuristics in relation to the solutions yielded.

We use tables to present our findings and in all the tables presented in
Section 6.3.1 and 6.3.2: The first column represents the bound M , the second
and third columns represent the time used, in seconds, and the tracking error
of the interrupted solver respectively; whereas the fourth and the fifth columns
represent the time used, in seconds, and the tracking error of the respective
heuristic, respectively. The last column informs of the number of assets that
make the portfolios chosen by the interrupted solver and the given heuristic
non–identical.

For the choices of M , we start with 2 assets in a portfolio and systematically
increase the portfolio size by a constant number; this constant number varies
as the size of the set of assets, n, varies. We also have an upper limit to the

26

largest portfolio size and we assume that no investor is to pick all the assets in
the benchmark.

For the results reported, where the time required to an instance is less than
or equal to 1000 seconds, we rerun these instances 3 times and report the least
amount of time required. For the instances requiring more than 1000 seconds,
we perform only one run. The limit of time put on the solver, is set to be slightly
larger than the highest amount of time taken by the specific heuristics to solve
an instance for a given index.

6.3.1 Solve–Forward Greedy Results

As the value of M increases, the amount of time that this algorithm requires
increases progressively. As we make comparisons between the results of this
heuristic and those of the interrupted solver, we note that in some instances,
the solutions are identical and for some of these, we observe that they are
optimal solutions. For other instances however, there exists a difference.

50 Assets

The time limit on the solver is 15 seconds, we make the observations as
shown in Table 1. We observe that out of the 16 instances solved, the difference
in the portfolios chosen by the interrupted solver and the heuristic is at most 1
per portfolio; this is as shown in column 6 of the table.

For 10 of the instances solved, we observe that the interrupted solver and
the heuristic yield identical results. Of these, it is worth noting that out of the 8
instances when the solver gives optimal solutions, that is for the instances solved
when M = 2 and M ≥ 29, this heuristic gives 6 solutions which are optimal.

27

Table 1: Results of the interrupted solver and the solve–forward greedy heuris-
tics when n = 50 and time limit= 15 seconds

M Interrupted Solver Solve–Forward Greedy # Diff. assets

Time(s) TE Time(s) TE

2 0.20 3.307E-1 0.39 3.427E-1 1
5 Limit 1.072E-1 1.23 1.099E-1 1
8 Limit 5.406E-2 2.08 5.487E-2 1

11 Limit 3.062E-2 2.70 3.133E-2 1
14 Limit 1.870E-2 3.66 1.870E-2 0
17 Limit 1.191E-2 4.25 1.191E-2 0
20 Limit 7.639E-3 4.96 7.658E-3 1
23 Limit 4.725E-3 5.75 4.725E-3 0
26 Limit 2.824E-3 6.24 2.824E-3 0
29 4.97 1.762E-3 6.68 1.762E-3 0
32 1.20 1.039E-3 7.31 1.044E-3 1
35 0.38 5.746E-4 7.86 5.746E-4 0
38 0.29 3.413E-4 8.18 3.413E-4 0
41 0.13 1.728E-4 8.40 1.728E-4 0
44 0.10 5.946E-5 8.82 5.946E-5 0
47 0.11 5.013E-5 8.94 5.013E-5 0

100 Assets

For an index of 100 assets and with a time limit of 200 seconds on the solver,
we obtain the results as presented in Table 2.

In only 3 out of all the instances solved did the interrupted solver and the
solve–forward greedy algorithm produce different results, that is, when M = 20,
M = 38 and M = 62. For all the instances with proven optimal solutions, we
observe that the results of the heuristic are also optimal solutions.

28

Table 2: Results of the interrupted solver and the solve–forward greedy heuris-
tics when n = 100 and time limit=200 seconds

M Interrupted Solver Solve–Forward Greedy # Diff. assets
Time(s) TE Time(s) TE

2 1.16 3.175E-1 3.18 3.175E-1 0
8 Limit 6.357E-2 19.74 6.357E-2 0

14 Limit 2.736E-2 35.69 2.736E-2 0
20 Limit 1.462E-2 50.13 1.467E-2 1
26 Limit 8.454E-3 63.32 8.454E-3 0
32 Limit 5.270E-3 76.00 5.270E-3 0
38 Limit 3.308E-3 87.74 3.333E-3 2
44 Limit 2.046E-3 98.61 2.046E-3 0
50 Limit 1.322E-3 108.65 1.322E-3 0
56 Limit 8.176E-4 118.58 8.176E-4 0
62 Limit 4.797E-4 126.00 4.803E-4 1
68 Limit 2.525E-4 133.08 2.525E-4 0
74 116.85 1.248E-4 138.71 1.248E-4 0
80 13.10 5.971E-5 143.50 5.971E-5 0
86 3.09 2.717E-5 147.37 2.717E-5 0
92 0.83 9.642E-6 151.68 9.642E-6 0

200Assets

For such a large index, we limit our portfolio sizes to not more than 110.
We observe from Table 3, that the portfolios differ by 2 assets except for three
instances; when M = 2, where both the solver and the heuristic yield an optimal
solution, when M = 26 where the portfolios differ by 3 assets and when M = 58,
where the portfolios chosen differ by 5 assets.

We note that it is only for one instance among those solved that both the
interrupted solver and the heuristic yield a solution that is optimal. For the
rest of the instances, the interrupted solver yields feasible solutions but is not
able to prove them to be optimal even with a time limit of 40 minutes for each
instance.

29

Table 3: Results of the interrupted solver and the solve–forward greedy heuris-
tics when n = 200 and time limit= 2400 seconds

M Interrupted Solver Solve–Forward Greedy # Diff. assets
Time(s) TE Time(s) TE

2 17.44 3.326E-1 27.97 3.326E-1 0
10 Limit 5.283E-2 241.33 5.450E-2 2
18 Limit 2.318E-2 450.36 2.385E-2 2
26 Limit 1.254E-2 652.39 1.325E-2 3
34 Limit 7.620E-3 845.61 7.964E-3 2
42 Limit 4.972E-3 1033.49 5.180E-3 2
50 Limit 3.376E-3 1210.68 3.507E-3 2
58 Limit 2.387E-3 1385.48 2.470E-3 5
66 Limit 1.701E-3 1548.59 1.750E-3 2
74 Limit 1.227E-3 1715.08 1.264E-3 2
82 Limit 8.899E-4 1855.79 9.157E-4 2
90 Limit 6.487E-4 1998.67 6.668E-4 2
98 Limit 4.732E-4 2137.82 4.809E-4 2

106 Limit 3.459E-4 2254.86 3.494E-4 2

400Assets

As we observe in Table 4, the solve–forward greedy algorithm requires more
than 6 hours to solve the instance with the largest portfolio size among the
instances we solve. Therefore, the time set to interrupt the solver is 6 hours
and 15 minutes. We observe that this is still not enough time for the solver to
prove that most of its feasible solutions are optimal.

For the smallest portfolio size, when M = 2, the solver requires almost twice
the amount of time required by the heuristic to give a feasible result, which
it proves to be optimal. For the rest of the instances solved, the interrupted
solver does give relatively better solutions than those of the heuristic, and the
difference in the solutions is generally small.

30

Table 4: Results of the interrupted solver and the solve–forward greedy heuris-
tics when n = 400 and time limit= 22500 seconds

M Interrupted Solver Solve–Forward Greedy # Diff. assets
Time(s) TE Time(s) TE

2 429.32 3.950E-1 224.82 3.954E-1 1
15 Limit 4.806E-2 3273.15 4.863E-2 5
28 Limit 2.331E-2 6255.00 2.371E-2 11
41 Limit 1.445E-2 9153.59 1.476E-2 16
54 Limit 9.843E-3 11959.00 1.010E-2 15
67 Limit 7.167E-3 14660.50 7.319E-3 10
80 Limit 5.467E-3 17318.10 5.536E-3 12
93 Limit 4.284E-3 19895.70 4.334E-3 12

106 Limit 3.404E-3 22433.10 3.447E-3 9

We observe that in general, this heuristic is time consuming, even though for
some instances it is promising. The interrupted solver is capable of obtaining
equally good or even better solutions for most of the instances given. As it de-
mands more time in the way it picks assets into the portfolio, it is not surprising
that some of its solutions are stronger than those of its counterpart presented
in Section 6.3.2.

6.3.2 Sort–Forward Greedy Results

This second variant of the greedy heuristics requires very little time to give
a feasible solution regardless of the value of M , the bound on the portfolio
size. For most instances, the solutions are weaker than those obtained by the
solve–forward greedy approach. The results may be useful as initial solutions
for improvement heuristics introduced in Section 5.3.

There are some instances where this sort–forward greedy algorithm yields
identical to or even better results than the solve–forward greedy algorithm. In
such instances, using this approach, we get good feasible solutions in a few sec-
onds. Even though we cannot determine beforehand the specific instances where
we get good solutions, this approach is useful as the portfolio sizes increases with
increase in the number of assets in the benchmark indices, and as well as when
time is of interest.

Here, we put a time limit varying between 1 and 5 seconds on the solver, and
compare these results with those of the sort–forward heuristic, which in general
requires a few milliseconds to solve an instance.

50 Assets

We observe, in Table 5, that our sort–forward heuristic yields 5 optimal
results out of the 8 known optimal solutions as observed in Table 1, where we

31

had observed that the solve–forward greedy heuristic yielded 6 optimal solutions.
We note that for such instances, the latter heuristic requires on average more
than 100 times the amount of time the former needs to obtain these identical
results. We observe that when M = 5, the sort–forward greedy heuristic gives
a better solution as compared to the solve–forward greedy heuristic.

Table 5: Results of the interrupted solver and the sort–forward greedy heuristics
when n = 50 and time limit= 1 second

M Interrupted Solver Sort–Forward Greedy # Diff. assets
Time(s) TE Time(s) TE

2 0.20 3.307E-1 0.03 3.553E-1 1
5 Limit 1.072E-1 0.02 1.072E-1 0
8 Limit 5.406E-2 0.04 5.444E-2 1

11 Limit 3.062E-2 0.03 3.062E-2 0
14 Limit 1.870E-2 0.05 1.873E-2 1
17 Limit 1.191E-2 0.02 1.214E-2 1
20 Limit 7.639E-3 0.03 7.670E-3 1
23 Limit 4.725E-3 0.05 4.725E-3 0
26 Limit 2.824E-3 0.02 2.824E-3 0
29 Limit 1.762E-3 0.02 1.762E-3 0
32 Limit 1.039E-3 0.05 1.044E-3 1
35 0.38 5.746E-4 0.02 5.746E-4 0
38 0.29 3.413E-4 0.04 3.508E-4 1
41 0.13 1.728E-4 0.03 1.728E-4 0
44 0.10 5.946E-5 0.03 5.946E-5 0
47 0.11 5.013E-6 0.03 5.013E-6 0

100 Assets

We observe, in Table 6, that the sort–forward heuristic yields weaker so-
lutions as compared to the solve–forward greedy heuristic as in Table 2. We
observe that when the solver is interrupted at 1 second, when M = 20, the
result obtained is not similar to the one in Table 2. For this specific instance,
the sort–forward greedy heuristic yields a better solution faster even though we
know from Table 2, that the interrupted solver would yield a better solution
given more time.

However, it is worth noting that this heuristic gives solutions very fast,
each instance is solved in milliseconds. When M = 74, the two heuristics
and the interrupted solver yield an identical result. For this specific instance,
while the solve–forward greedy requires more than 2 minutes and the solver
requires almost two minutes, the sort–forward greedy heuristic requires a few
milliseconds to choose an identical portfolio, which we know to be the optimal
solution as we observe in Table 2.

Moreover, for the solution when M = 38, we observe that the result from the

32

sort–forward greedy algorithm is better than that of the solve–forward greedy
algorithm.

Table 6: Results of the interrupted solver and the sort–forward greedy heuristics
when n = 100 and time limit= 1 second

M Interrupted Solver Sort–Forward Greedy # Diff. assets
Time(s) TE Time(s) TE

2 1.16 3.175E-1 0.06 3.839E-1 2
8 Limit 6.357E-2 0.05 6.514E-2 1

14 Limit 2.736E-2 0.05 2.767E-2 2
20 Limit 1.470E-2 0.05 1.469E-2 2
26 Limit 8.454E-3 0.06 8.832E-3 2
32 Limit 5.270E-3 0.05 5.444E-3 2
38 Limit 3.308E-3 0.07 3.329E-3 1
44 Limit 2.046E-3 0.07 2.108E-3 1
50 Limit 1.322E-3 0.07 1.332E-3 1
56 Limit 8.176E-4 0.07 8.252E-4 1
62 Limit 4.797E-4 0.07 4.852E-4 2
68 Limit 2.525E-4 0.08 2.555E-4 1
74 Limit 1.248E-4 0.08 1.248E-4 0
80 Limit 5.971E-5 0.09 6.019E-5 1
86 Limit 2.717E-5 0.08 2.746E-5 1
92 0.83 9.642E-6 0.09 9.757E-6 1

200 Assets

We observe here that this heuristic yields better solutions than the solutions
of the solve–forward greedy heuristic, that is, we get 11 better results out of the
14 instances solved.

Table 7 gives these results and the comparisons are made against Table 3
presented earlier in Section 6.3.1. Further, we observe that when the solver is
interrupted after 2 seconds, it yields solutions that are not as good as when it
is given more time as we see in Table 3.

The solutions yielded by the heuristic when M ≥ 26 are in this case better
than those given by the interrupted solver except when M = 42,M = 50 and
M = 58. When M = 18, the interrupted solver and the sort–forward greedy
heuristic yielded identical results.

33

Table 7: Results of the interrupted solver and the sort–forward greedy heuristics
when n = 200 and time limit= 2 seconds

M Interrupted Solver Sort–Forward Greedy # Diff. assets
Time(s) TE Time(s) TE

2 Limit 3.375E-1 0.09 3.807E-1 2
10 Limit 5.352E-2 0.10 5.406E-2 1
18 Limit 2.362E-2 0.12 2.362E-2 0
26 Limit 1.363E-2 0.11 1.309E-2 1
34 Limit 8.267E-3 0.12 7.700E-3 1
42 Limit 5.030E-3 0.13 5.091E-3 1
50 Limit 3.395E-3 0.12 3.439E-3 2
58 Limit 2.428E-3 0.14 2.455E-3 1
66 Limit 1.865E-3 0.13 1.733E-3 3
74 Limit 1.574E-3 0.14 1.246E-3 2
82 Limit 1.204E-3 0.14 9.011E-4 3
90 Limit 9.473E-4 0.19 6.542E-4 3
98 Limit 7.593E-4 0.19 4.815E-4 4

106 Limit 6.719E-4 0.17 3.612E-4 6

400 Assets

Even though the results of the sort–forward greedy heuristic are not better
than those of its counterpart as we observed in the comparison for the 200 index,
it is worth noting that in a few milliseconds, this heuristic gives solutions that
are close to those of the solve–forward greedy approach.

We note that as the size M of the portfolio increases, that is from when
M = 41, the results given by the interrupted solver are not as good as those
yielded by the heuristic. This is as expected due to the strict time limit. The
number of the assets differing between the portfolios increases progressively with
increase in M until M = 80.

We also observe that when the portfolio comprises of 93 and 106 assets, the
interrupted solver yields identical solutions. For these instances, the interrupted
solver managed to pick only 88 assets, due to the time limitation. Picking fewer
assets than expected implies a larger tracking error; this accounts for the large
difference in the assets differing from the portfolios chosen by the sort–forward
heuristic and those the interrupted solver picks.

34

Table 8: Results of the interrupted solver and the sort–forward greedy heuristics
when n = 400 and time limit= 5 seconds

M Interrupted Solver Sort–Forward Greedy # Diff. assets
Time(s) TE Time(s) TE

2 Limit 4.069E-1 0.33 4.205E-1 1
15 Limit 5.051E-2 0.34 5.134E-2 2
28 Limit 2.443E-2 0.34 2.492E-2 6
41 Limit 1.584E-2 0.35 1.501E-2 15
54 Limit 1.162E-2 0.35 1.028E-2 27
67 Limit 9.569E-3 0.45 7.481E-3 42
80 Limit 7.851E-3 0.47 5.705E-3 50
93 Limit 7.238E-3 0.48 4.481E-3 60

106 Limit 7.238E-3 0.48 3.579E-3 70

The sort–forward greedy heuristic is a more favourable heuristic compared
to the solve–forward greedy heuristic when time is of concern, with some of
its solutions being optimal. In general, the number of assets differing from the
results of the interrupted solver, is not large with reference to the portfolio sizes.
These results also form good initial solutions for possible improvements, if any
exists, as presented in Section 6.4.

6.4 Improvement Heuristics Results

We shall here present the results of the heuristic introduced in Section 5.3.
Since we are in search of a swap that yields a better solution, that is, a smaller
tracking error, the task requires more computations as the number of assets n
and / or the bound M increases. Our solutions here build upon the results
obtained from the construction heuristics as presented in Section 6.3.

We compare the improvements, if any exists, with the results of the inter-
rupted solver when the time limit for interruption was larger, that is, the results
used in comparison to the solve–forward greedy heuristic findings. These are
the results of the interrupted solver as presented in Section 6.3.1, column 6.

Generally, variant B of the improvement heuristic is faster compared to
variant A. Variant C is however fastest. As the size of the indices increase with
increase in the portfolio sizes, the time taken to perform the swaps generally
increases. Therefore, we choose to employ the faster variants, that is B and C, for
the improvements with large indices and apply variant A for the improvements
with small sized indices. Since the approaches for improvement are different,
we cannot tell beforehand whether their results would be identical if they were
applied to a given instance.

We also use tables to present our findings. The first column represents the
bound M , while the second column represents the tracking error from the inter-
rupted solver. For the third column, we present the initial solution from which

35

the improvement heuristic departs, which is the tracking error from the sort–
forward greedy heuristic. The fourth column represents the total time used to
obtain the initial solution and to perform the improvement, in seconds, whereas
the fifth column represents the tracking error after employing the improvement
heuristic. The sixth column represents the number of assets differing between
the results of the interrupted solver and the specific improvement results. The
seventh column represents the number of executed improvements.

50 Assets

We here present the results of the improvement when the improvement
heuristic variant A is put into use. We observe that in a few seconds, we obtain
improvements, if any exists, such that the tracking errors for all the instances
solved are equal to those of the interrupted solver. Within the given time limit,
the interrupted solver is not able to prove that its solutions are optimal for
M = 5 until M = 26, as we observed in Table 1 in Section 6.3.1.

We note that using the results of the sort–forward greedy heuristic and
improving them using variant A local search heuristic, our results are equal to
those of the interrupted solver and the time used is less than the time limit on
the solver. The largest number of executed improvements is 2 that is, when
M = 38.

Table 9: Results of the interrupted solver when time limit = 15 seconds and the
variant A improvement heuristic when n = 50

M I.Solver Initial Sol Imp.Var A # Diff.Ass # Improve
Results Time(s) TE

2 3.307E-1 3.553E-1 1.26 3.307E-1 0 1
5 1.072E-1 1.072E-1 1.54 1.072E-1 0 0
8 5.406E-2 5.444E-2 4.51 5.406E-2 0 1

11 3.062E-2 3.062E-2 2.94 3.062E-2 0 0
14 1.870E-2 1.873E-2 7.04 1.870E-2 0 1
17 1.191E-2 1.214E-2 8.04 1.191E-2 0 1
20 7.639E-3 7.670E-3 8.89 7.639E-3 0 1
23 4.725E-3 4.725E-3 4.77 4.725E-3 0 0
26 2.824E-3 2.824E-3 4.98 2.824E-3 0 0
29 1.762E-3 1.762E-3 5.07 1.762E-3 0 0
32 1.039E-3 1.044E-3 9.89 1.039E-3 0 1
35 5.746E-4 5.746E-4 4.75 5.746E-4 0 0
38 3.413E-4 3.508E-4 12.78 3.413E-4 0 2
41 1.728E-4 1.728E-4 3.66 1.728E-4 0 0
44 5.946E-5 5.946E-5 2.76 5.946E-5 0 0
47 5.013E-6 5.013E-6 1.56 5.013E-6 0 0

36

100 Assets

We observe in Table 10, that all the improvement solutions are equal to the
results of the interrupted solver and that all these solutions are obtained within
five minutes.

We note from Table 2 that at least five solutions were optimal, that is, when
M = 2 and when M ≥ 74. Table 6 shows that the sort–forward greedy heuristic
had results that were close to the optimal solutions. For all the solutions we
know to be optimal, variant A improvement heuristic can obtain improvements
that are the optimal solutions, in less than two minutes. For all the other
results, only in two instances does the heuristic require more than 200 seconds
to give the same solutions as the interrupted solver which has a time limit of
200 seconds.

Table 10: Results of the interrupted solver when time limit = 200 seconds and
the variant A improvement heuristic when n = 100

M I.Solver Initial Sol Imp Var A # Diff.Ass # Improve
Results Time(s) TE

2 3.175E-1 3.839E-1 16.56 3.175E-1 0 2
8 6.357E-2 6.514E-2 42.41 6.357E-2 0 1

14 2.736E-2 2.767E-2 106.17 2.736E-2 0 2
20 1.462E-2 1.469E-2 92.29 1.462E-2 0 1
26 8.454E-3 8.832E-3 159.86 8.454E-3 0 3
32 5.270E-3 5.444E-3 251.75 5.270E-3 0 3
38 3.308E-3 3.329E-3 139.33 3.308E-3 0 1
44 2.046E-3 2.108E-3 157.03 2.046E-3 0 1
50 1.322E-3 1.332E-3 155.02 1.322E-3 0 1
56 8.176E-4 8.252E-4 154.36 8.176E-4 0 1
62 4.797E-4 4.852E-4 297.61 4.797E-4 0 3
68 2.525E-4 2.555E-4 145.47 2.525E-4 0 1
74 1.248E-4 1.248E-4 67.03 1.248E-4 0 0
80 5.971E-5 6.019E-5 114.25 5.971E-5 0 1
86 2.717E-5 2.746E-5 87.99 2.717E-5 0 1
92 9.642E-6 9.757E-6 53.97 9.642E-6 0 1

200 Assets

As we observe in Table 11, we are able to make improvements that give
us solutions that are equal to those of the interrupted solver except for three
of the instances solved, that is, when M = 58, 66 and 74. We also observe
that when using the variant B of the improvement heuristic, the total time
needed increases with increase in M . This is contrary to what we observed

37

when employing variant A of the improvement as in Table 10, for instance.

Table 11: Results of the interrupted solver when time limit = 2400 seconds and
the variant B improvement heuristic when n = 200
M Int.Solver Initial Sol Improvement Var B # Diff. assets # Improve

Results Time(s) TE

2 3.326E-1 3.807E-1 46.14 3.326E-1 0 2
10 5.283E-2 5.406E-2 262.73 5.283E-2 0 3
18 2.318E-2 2.362E-2 459.71 2.318E-2 0 3
26 1.254E-2 1.309E-2 640.63 1.254E-2 0 6
34 7.620E-3 7.700E-3 804.57 7.620E-3 0 2
42 4.972E-3 5.091E-3 954.46 4.972E-3 0 4
50 3.376E-3 3.439E-3 1082.14 3.376E-3 0 3
58 2.387E-3 2.455E-3 1203.02 2.389E-3 1 9
66 1.701E-3 1.733E-3 1312.41 1.702E-3 2 6
74 1.227E-3 1.246E-3 1414.13 1.231E-3 3 7
82 8.899E-4 9.011E-4 1487.30 8.899E-4 0 3
90 6.487E-4 6.542E-4 1578.87 6.487E-4 0 4
98 4.732E-4 4.815E-4 1625.18 4.732E-4 0 3

106 3.459E-4 3.612E-4 1659.11 3.459E-4 0 10

400 Assets

We observe from Table 12, that only in one instance did the improvement
lead to a solution that we know to be optimal from Table 4.

In all the other instances, the improvement solutions are close to the solutions
of the interrupted solver. The highest relative gap is 2.672 · 10−2 when M = 28.
All the solutions of the improvement are obtained in less time than the limit
allowed on the interrupted solver.

38

Table 12: Results of the interrupted solver when time limit = 22500 seconds
and the variant B improvement heuristic when n = 400
M Int.Solver Initial Sol Improvement Var B # Diff.assets # Improve

Results Time(s) TE

2 3.950E-1 4.205E-1 384.37 3.950E-1 0 2
15 4.806E-2 5.134E-2 3466.56 4.830E-2 7 9
28 2.331E-2 2.492E-2 6313.87 2.395E-2 13 16
41 1.445E-2 1.501E-2 8960.92 1.449E-2 9 16
54 9.843E-3 1.028E-2 11487.60 9.856E-3 4 22
67 7.167E-3 7.481E-3 13894.50 7.174E-3 3 22
80 5.467E-3 5.705E-3 16077.50 5.468E-3 6 26
93 4.284E-3 4.481E-3 18239.50 4.299E-3 8 29

106 3.404E-3 3.579E-3 20188.20 3.410E-3 3 33

Noting that the amount of time required by improvement heuristic variant
B is above 10 minutes when M > 15, we present results of variant C of the
improvement heuristic for n = 400 in Table 13.

We observe that even though the time used by variant C is not as much
as that used by variant B, the solution is weaker. This is as expected from
discussions in Section 4.1 and Section 6.3, where the strength of the solution
and the time required to obtain the solution are inversely related.

Generally, the number of improvements done by variant C are more than
those of variant B except for one instance when M = 2. For M = 2, we observe
that variant B yields a better solution even though both heuristics had two
improvements.

When comparing the number of assets differing from those picked by the
interrupted solver, generally variant C results have a larger gap than the results
of variant B except for two instances. These two instances are when M = 15
and M = 28. For the former, both variants have a difference of 7 assets but
yield varying results; for the latter, variant C result give a smaller number of
differing assets but a weaker solution compared to the solution from variant B.

39

Table 13: Results of the interrupted solver when time limit = 22500 seconds
and the variant C improvement heuristic when n = 400
M Int.Solver Initial Sol Improvement Var C # Diff assets # Imp. Iter

Results Time(s) TE

2 3.950E-1 4.205E-1 19.80 4.158E-1 2 2
15 4.806E-2 5.134E-2 1426.82 5.027E-2 7 12
28 2.331E-2 2.492E-2 2606.22 2.414E-2 10 22
41 1.445E-2 1.501E-2 6086.62 1.459E-2 12 24
54 9.843E-3 1.028E-2 8394.57 1.011E-2 12 25
67 7.167E-3 7.481E-3 10817.10 7.304E-3 10 26
80 5.467E-3 5.705E-3 12303.10 5.568E-3 10 31
93 4.284E-3 4.481E-3 13706.30 4.344E-3 12 39

106 3.404E-3 3.579E-3 15620.20 3.491E-3 10 36

6.5 Relaxation Results

As introduced in Section 4.7, the subgradient algorithm can aid in obtaining a
better lower bound by solving the Lagrangian dual, Lv, of the hard subproblem
L(·, v, ·), where the cardinality constraint (7), is relaxed.

We observe that many computations are required in order to achieve con-
vergence, which would imply non–trivial solutions, even possibly an optimal
solution where zR = z. These computations also imply more time as well as
good techniques of adjusting the step lengths so as to improve the solutions
progressively. With our modified version of the subgradient algorithm, we are
able to get non-trivial bounds for some of the instances but not all as shown in
Table 6.5 below.

As mentioned in Section 4.7, each portfolio with varying number of assets
may require different initial guesses of step lengths, we however, apply the same
initial step length for the instances given.

For M = 2 instances with various combinations of n, the solutions could

be found by enumerating n(n−1)
2 portfolios; we therefore choose, from the given

indices, the least portfolio sizes and present our findings in Table 6.5. This time
limit is set according to the time applied in the heuristics in Section 6.3.1.

Column one and two show the index size n, and the portfolio size M , respec-
tively. Column three indicates the value of the dual variable when the algorithm
terminates whereas column four gives the best lower bound at the time of inter-
ruption. We compare our data with the results of the improvement heuristics
from Section 6.4 which are presented in the last column.

40

Table 14: Results of Lagrangian Relaxation – Hard Subproblem
n M v Best LB Imp Heur S

50 2 -0.124547 3.307E-1 3.307E-1
100 2 -0.107511 3.124E-1 3.175E-1
200 2 -0.110851 -4.991E-1 3.326E-1
400 2 -0.302415 2.532E-1 3.950E-1

For n = 50, with M = 2, we set a time limit of 15 seconds per iteration and
run the algorithm to convergence which is achieved after 202 iterations. We
observe that we obtain a positive lower bound, which is equal to the solution
from the improvement heuristic; a case where zR = zU . It is worth noting
that even though a time limit was set to 15 seconds, the initial and the latter
iterations used significantly less time. On the other hand, for n = 100, with
M = 2, we observe convergence after 14 iterations. Our time limit was 200
seconds per iteration.

For the other combinations, that is, when n = 200, with M = 2 and n = 400,
with M = 2, we set k∗ to 10. Since the time limit would be 2400 and 22500
seconds respectively, we reduce the total time allocated per iteration to 240 and
22250 seconds respectively.

For n = 200, we observe that the bound obtained is trivial. Perhaps, it
would be possible to improve this bound given more computational and with a
better tuning of the step lengths.

For n = 400, convergence happens after 4 iterations, with a total time used of
4507.08 seconds. We note that even though we observe convergence here, there
exists a gap between the best lower bound achieved and the upper bound solu-
tion, which we know to be the optimal solution – the challenge of interrupting
the solver.

The results in column four show how good the solutions from Section 6.3.1,
presented in the last column, are. For n = 50 with M = 2, the lower bound from
the relaxation is equal to the upper bound from the improvement heuristic.

The results show that it is possible for the subgradient algorithm to yield
good lower bounds, even in this case where zR = zU which implies an optimal
solution as the results in Section 6.3.1 show. On the other hand, when time is of
interest, we observe from the results of n = 200, that the result of the algorithm
provides no valuable information.

These few observations may however not be conclusive for all instances and
as discussed in Section 4.7, a lot is required to have a good initial guess as well
as the step lengths used for the instances. A lot of computational time is also
needed while using this algorithm.

41

6.6 In Summary

The exact (or the interrupted) solver is able to generate solutions that are
feasible but to prove some of them to be optimal is time–consuming. In 10
minutes, and for the S&P 400 index, the exact solver can only prove an optimal
solution for a portfolio comprising of 2 assets.

For the instances with 50 assets, we know of 50% of the solutions to be
optimal. Our construction heuristics give 75% of the optimal solutions in a time
interval of 0.03 seconds to 8.94 seconds, whereas the improvement methods give
100% of the optimal solutions in a range of 1.26 seconds to 12.78 seconds. In
4 out of the 8 instances with known optimal solutions, our sort–forward greedy
heuristic gives these optimal solutions in less time compared to the exact solver.

For the instances with 100 assets, out of the 5 instances where the optimal
solutions are known, the sort–forward heuristic generates one of the optimal
solution in 8 milliseconds, whereas the solver uses almost 2 minutes to generate
an identical solution. The solve–forward greedy heuristic is able to give all
the other optimal solutions in a time range of 3.18 seconds to 151.68 seconds.
The improvement heuristics require up to 114.25 seconds to give the optimal
solutions. The solver uses a range of 0.83 seconds to 116.85 seconds to prove
these feasible solutions to be optimal.

For the instances with 200 assets, the solve–forward greedy heuristic gives
an optimal solution for the only instance where the optimal solution is known,
in less than half a second just as the interrupted solver; the improvement gives
a similar solution in 46.14 seconds. Our improvement heuristic variant B is
able to generate similar solutions to those of the interrupted solver to all but
three instances with a time range of 46.14 seconds to 1659.11 seconds. On the
other hand, even though the interrupted solver generated better results when
interrupted at 2400 seconds, it was not able to prove that these solutions are
optimal for 13 out of the 14 instances solved.

For the instances with 400 assets, the improvement heuristic B is able to
generate an optimal solution for the least held portfolio size in less time than
the solver. For the rest of the solutions, the improvement heuristic variant
B required less time than that used to interrupt the solver, even though its
solutions were not as good as those of the interrupted solver. Improvement
heuristic variant C does reduce the amount of time required and even though
its solutions are relatively weaker. We observe that it is possible to better the
results from the sort–forward heuristic in less time, if any improvement exists.

The subgradient algorithm could be helpful in obtaining good lower bounds
given suitable dual variables as well as suitable initial and subsequent step
lengths. We observe that even with our modified version, a lot of computa-
tional time is needed.

42

7 Conclusions

In this thesis, we have considered the problem of minimizing the index tracking
error with a limit on portfolio size and have presented heuristic approaches and
attempted relaxations on the problem. We have observed that a continuous
relaxation on this problem gives an objective function value of 0, which is a
trivial bound. However, we have proposed that a stronger bound using the
continuous relaxation is achievable when beforehand, at least one asset is not
to be part of the portfolio.

Lagrangian relaxation on hard subproblems may produce good solutions
when a suitable dual variable is available albeit more computational time re-
quired when employing the subgradient algorithm. Solving this hard subprob-
lem is difficult. Some convergence may be possible while using the subgradient
algorithm but this cannot be guaranteed, an area for further research.

The different variants of heuristic approaches, provide valuable information
to a fund manager and the general trade–off is between time and the strength of
the solution. A hybrid is also possible. The fastest construction heuristic forms
a good initial solution to the improvement heuristics in the interest of total
computational time. The improvement heuristics do improve initial solutions,
if any exist.

Our results indicate that when the benchmark index comprises of few assets,
then our construction heuristics could give a fund manager a good choice of port-
folio in good time. Improvement heuristics on large benchmark indices generally
require a lot of computational time. In using these improvement heuristics, it
is possible to constrain the time allowed, or limit the number of iterations on
improvements, an area that could be further researched.

43

8 References

[1] M. Woodside–Oriakhi, C. Lucas, J. E. Beasley: Heuristic algorithms for the
cardinality constrained efficient frontier, European Journal of Operational
Research. 213, 538-550, 2011.

[2] M. Rudolf, H. J. Wolter, H. Zimmermann: A linear model for tracking
error minimization, Journal of Banking & Finance 23(1), 85–103, 1999.

[3] J. E. Beasley, N. Meade, T. J. Chang: An evolutionary heuristic for the
index tracking problem, European Journal of Operational Research 148(3),
621–643, 2003.

[4] F. Coleman, L. Yuying, H. Jay: Minimizing tracking error while restricting
the number of assets, Unpublished note 2006.

[5] H. Konno, H. Yamazaki: Mean absolute deviation portfolio optimization
model and its applications to tokyo stock–market Management Science
37(5), 519–531, 1991.

[6] R. Jansen, R. van Dijk: Optimal benchmark tracking with small portfolios,
Journal of Portfolio Management 28(2), 33–39, 2002.

[7] G. Dave: What is a stock index?, http://www.ehow.com

[8] P. Roßbach, D. Karlow: The stability of traditional measures of index
tracking quality, Working paper series// Frankfurt School of Finance &
Management No 164, 2011.

[9] E. Steve : A Comparison of Active and Passive Investment Strategies,
http://www.evansonasset.com/

[10] D. X. Shaw, S. Liu, L. Kopman: Lagrangian relaxation procedure for
cardinality–constrained portfolio optimization, Optimization methods &
software 23(3), 411–420, 2008.

[11] L. Wolsey: Integer Programming, John Wiley & Sons, Inc. 1998.

[12] T. J. Chang, N. Meade, J. E. Beasley, Y. M. Sharaiha: Heuristics for the
cardinality constrained portfolio optimisation, Computers & Operations
Research. 27(13), 1271–1302, 2000.

[13] D. Li, X. Sun, J. Wang: Optimal lot solution to cardinality–constrained
mean-variance formulation for portfolio selection, Mathematical Finance
16(1), 83–101, 2006.

[14] D. Li, X. Sun: Nonlinear Integer Programming, Springer Science + Busi-
ness Media, LLC. 2006.

[15] M. K. Kozlov, S. P. Tarasov, L. G. Hacijan: Polynomial solvability of
convex quadratic programming, Soviet Math. Dokl. 20, 1108- 1111, 1979.

44

[16] J. Skorin–Kapov Quadratic Programming: Quantitative analysis and Poly-
nomial Running Time Algorithms, PhD Thesis, The University of British
Columbia 1987.

45

