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Summary. We discuss the local automorphisms of the Minkosky 

space, and find that they form a simple Lie group, 

which is a subgroup of index two of 0(2,4). 

I. - Introduction. 

The Minkosky space M is the four-dimensional space 

time with the structure given by the light cones through each 

space time point. We will also use thP term "event" for a 

space time point. Let a be a space time point. The forward 

light cone at a , is physicaly, the set of events that will 

be reached by a light signal given at a , and the backward 

light cone at a is the set of events from which a light 

signal will reach a • 

We may identify the points of the Minkofsky space 

with the points in R4 • Let us introduse the Lorentz form 

x•y = X y 
0 0 - x1y2 - x2y2 - x3y3 • The light cone at a is 

the set of points xe. M such that (x-a) 2 = 0 ' 
where we use 

the notation 2 The forward light is the subset X = x•x cone 

such that xo > ao ' 
and the backward light cone is the subset 
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such that x 0 ~ a 0 • By an automorphism of the Minkofsky 

space M , we understand a one to one map of M onto M , 

such that light cones are mapped onto light cones, ahd forward 

light cones are mapped onto forward light cones. In [1] 

Zeeman has determined the group of automorphism of the 

Minkofsky space. An other way of looking on the group of 

automorphisms of the Minkofsky space is in terms of frames. 

The identification of M with R4 considered above is of 

courge in no way natural or unique. Such an identification 

may be called a coordinatization of M • We will say that a 

coordinatization is a frame iff the velocity of light is 1 

in all directions and at any space time point. Written out, 

this is just tha~ if a point in M has coordinates a e R4 , 

then the events on the light cone at a has coordinates 

(x-a) 2 = 0 , and the forward light cone at a , x 0 ~ a 0 • 

The group of automorphisms of M is then nothing but the 

group of coordinate transformations between frames. Zeeman 

has proved in 1 that this group is the group 

by the Poincare-group P and the expa:r:sions. 

G , generated 
0 

By a local automorphism of M , we understand a one to 

one map of an open conected set of M onto an open conected 

set of M , such that the part of the light cones where it is 

defined goes into light cones, and the forward light cones 

into forward light cones. The set of local automorphisms 

of M , does not 0f course form a group under composition, but 

only a local group, since one may only compose two local auto­

morphisms if the range of the one has something in common with 

the domain of the other. What we prove in this paper is that 

this local group comes from a group by restricting the operation 

of multiplication of two elements; in the sense that any local 
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automorphism may be exdended in a unique way to an automorphism 

of a certain projectiv space, here called the projectiv 

Minkofsky space PM ; and that any automorphism of PM is 

also a local automorphism of M • The local automorphisms of 

M may also be looked upon in terms of local frame. A local 

frame is a local coordinatization of M 9 such that the velocity 

of light is 1 in all directions; at all events covered by the 

coordinate neighbourhood. The local automorphisms of M is 

then nothing but the coordinate transformations between local 

frames. 

We see that the automorphisms of M , is dependent 

of the large scale structure of the physical space time, which 

in this case is take to be flat. While the main use of the 

group of automorphisms of M , as the group of coordinate trans­

formations between frames, is in relativistic high energy 

physics in connection with scattering of elementary particles. 

These scattering experiments in high energy physics are of a 

very local nature as well in space as in time, and one should 

not expect the results to be dependent on the large scale 

structure of space time. Moreover the frames used as frames 

of reference for these experiments, are always local frames, 

that can not be extended to global frames, due to the rotation 

of the earth. 

This indicates that the group of local automorphisms 

of lV1 , may be tetter suited for the analysis of the experiments 

in high energy physics. One of the things the author has 

specially in mind is the group theoretical classification of 

the elementary particles. 

In a forth coming paper, in this journal, the author 

will treat the question of classification of the elementary 
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particles by the group of local automorphisms of the Minkofsky 

space. 

It is a pleasure here to acknowledge Professor 

Ingebrigt Johansson and Nils 0vrelid for their help and their 

patience in many discussions on the subject of this paper. 

2. - The inversion in Minkofsky space. 

In R4 we introduce the inner product 

x•y = x 0 y 0 - x 1y 1 - x 2y 2 - x 3y 3 , and the notation x 2 = X•x • 

The light cone at a point a R4 , is the set of points 

(x-a) 2 = 0 , the forward light cone at a is the subset of 

the light cone at a such that x 0 >,..- a 0 , and the backward 

light cone at a is the subset of the light cone at a such 

that x ~ a 0 0-

Definition 1. The Minkofsky space M is R4 with the structure 

given by all forward and backward light cones. 

For two points a and b in M we will use the 

following notations. If b is inside the forward light cone 

at a , we say that b is in the future of a and that a is 

in the past of b • If b is neighter in the future nor in 

+.he T)af1t ,~0T on. the light come of a , we say that b is space 

like to a • We see that if b is space like to a then a 

is space like to b • 

Definition 2. An automorphism of M is a point map of M that 

is one to one and onto and preserve the structure 

of M • That is, it maps forward light cones onto 
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forward light cones, and backward light cones onto 

backward light cones. 

We shall say that a set of points in M is open, 

iff it is open in the usual topology of R4 • A line in R4 
that is co~tained in a ligbt cone is cal:ed a light line in M • 

We see that any light line in M has a natural ordering, namely 

such that the part of it that is in the forward light cone 

oomes after the part in the backward ~ight cone. This ordering 

is obviously independent of the which light cone we choose. 

We shall say that a set of points in M is light convex, iff 

the interseetion of the set with any light line is connected. 

Definition 3. A local automorphism of M is a one to one 

map of an open light convex set A onto an open light 

convex set B , such that it preserves the structure 

of M • That is, it maps the intersection of the 

forward light cone of a point in A onto the inter­

section of the forward light cone of the image point, 

with B , and correspondingly for the backward light 

cone. 

We should remark that we do not require an automor-

phism nor a local automorphism to be continuous in the topology 

4 
11. 

The Lorentz group L is a subgroup of index two in 

0(1,3) , and L acts as a group of automorphisms of M, by 

its natural action as a group of linear transformations in R4 

leaving the form x•y of index (1,3) invariant. L is the 

group generated by the component of the identity in 0(1,3) and 
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the space reflection, so that L has two connected components. 

Let T be the abelian group of translations in R4 T acts 

then in a natur'al way as an abelian group of automorphisms 

of M. The semi direct product P = L• T is the Poincare 

group. Let G0 be the group generated by P and the expan­

sions in R4 • G0 acts then as a group of automorphisms of M , 

and it is proved in [1], that this is the group of all auto­

morphisms of M . 

We will now exhibit a local automorphism of M , that 

is not an automorphism of M It is what will be called the 

"inversion" in M • The inversion in M is most easely 

exhibit in the representation of M as two by two Hermitian 

matrices. Consider therefor the linear map h of R4 onto 

the set of t~o by two Hermitian matrices, given by 

We observe that the determinant of h(x) is eq_ual 

to 2 2 2 x2 get xo - x1 - x2 - 3 ' 
so we 

\h(x)\ 
2 

= X 

So we get that b is on the light cone at a iff 

!h(b-a)\ = 0 , and that b is on the forward light cone at 

LL ,L, b- _.) \ - J and h(b-a) is a posi tve matrix. The 

inversion I in M is then defined by 

where (-h(x))-1 is the invers matrix to -h(x) Ix is 

then defined for all x such that !h(x)l * 0 . That is for 
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all x E M , such that x is not on the light cone at origo. 

The complement of the light cone at origo is the union of 

three open light convex sets S ; F and P • S is the set of 

poin.ts· sp.aoe like to origo, F is the set of points future to 

origo, and P is the set of points pest to origo. 

For the points in S , h(x) is indefinite; for the 

points in F J h(x) is positive definite; and for the points 

in P 1 h(x) is negative definite. Hence we find that I maps 

S onto S , F onto P and P onto F • Moreover 

I 2 = identety. 

Lemma 1, The restriction of I ot S , F or P, is a 

local automorphism of M • 

Proof: Let a and b be in the complement of the light 

cone at origo, and b on the light cone at a , such 

that a and o are in the same component S , F or P 

of the complement of the light cone at origo. We will 

prove that Ib is on the light cone of Is • Set 

b = a+ x where lh(x) I = 0 • Then 

h(Ib) - h(Ia) = (-h(b))- 1 - (-h(a))-1 

= (h(a))- 1 - (h(a) + h(x))- 1 

= (h('.) )- 1 · h(x) • (h(b) )- 1 

Since I h(x)j = 0 , we see that ! h(Ib) - h(Ia)! = 0 , 

hence Ib is on the light cone of Ia , and I maps light 

cones into light cones. We will now prove that the forward 

light cones are mapped into forward light cones. Let therefore 
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b be on the forward light cone at a • b = a + x , where 

h(x) is a singular positive Hermitian matrix. consider the 
' continuous function from [0,1] into the singular Hermitian 

tw~ by two matrices, defined by 

!(t) = h(a)-1 h(x)(h(a) + th(x))- 1 , tE [0,1] 

Since h(x) is singular f(t) is singular. By t¥e formula 
above, we have that 

t • f(t) = h(I(a+t•x)) - h(Ia) • 

Th:i.s gives us that f(t) is Hermitian and non zerq for t::f:O • 

For t = 0 we find 

f(O) = h(a)- 1 h(x) h(a)- 1 

which is obviously Hermitian and non zero. Moreov~r we see 
' ' 

th~t f(O) is positive. Since it is impossible tq come from 

th~ positive singular two by two matTices, by a co~tinuous 

path of singular Hermitian two by two matrics, to a negative 

singular two by two matrix; with out ever crossing ze~o; we 

find that f(1) i~ a positive matrix. But 

f(1) - h(Ib)- h(Ia) , hence 

Ib is on the forward light cone of Ia • This proves the 

lemma .. 

We may now generate local automorphisms of M by 

composing I with elements in G0 

two elements in G0 • g1Ig2 is then a local automorphism 

of M , that maps the complement of a light cone onto the 

complement of a light cone. Since the range of g1Ig2 is 

the complement of a light cone, it intersect the domain of 
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definition of I in an open set, hence the composition 

Ig1Ig2 is again a local automorphism of M , and again we 

may compose by an element in G0 In this way we generate 

a group of local automorphisms. We will denote, this group 

of local automorphisms generated by r: -·o and I , by G • In 

the next section we will study this gro~p. and prove that G 

is a Lie group. 

3. - The projective Minkofsky space. 

Let (, ) be the bilinear form in R6 with index 

(2,4) , given by 

(u,v) = 

Let C be the cone in R6 given by u E C iff (u,u) = 0 

Definition 4. The points of the projective Minkofsky 

space PM 
' 

is the set of lines in c . Let a be 

a point in PM 
' 

given bv 
"' 

a line in c with direction 

u E R6 The light cone at a is the set of points, 

given by lines with direction v such that (u,v)= O. 

An automorphism of PM is a one to one map of the 

set of points of PM onto it self, such that the light cone 

at a point is mapped onto the light cone at the image point. 

We see that 0(2,4) , the group of linear transformations of 

R6 leaving the form (, ) invariant, acts as a group of 

automorphisms of PM • 

There is a natural imbedding of M in PM , such 



- 10 -

th~t light cones are mapped into light cones. Let 4 
X E. R , 

X 'f ,) X ' '. 0 x1 ' x2' x3} The image of X in PM i$ then the 

line on c given by the direction u = f X ' x2, 
2 11( x1' x3' X ' .) . . 0 

We see that (u,u) = 0 
' 

so that this line is in c Let 
2 now y be on the light cone at x , (x-y) = 0 or 

x2 + y2 = 2x•y. Let v = {y0 , y 1 , y2 , Y3 , Y2 

direction of line that represent y in PM • 

1~ · be the 
.) 

(u,v) = 

1 2 2Y = 0 • Hence the image of a light 9one in M 

is contained in a light cone in PM • 

We see that the image of M in PM is the set of 
F 

u2' u3' u4: u5} li:q.es in c with directions given by I 
u = (Uo' u1 

r 
wiiJh u5 i: 0 This set of lines in c will be called the 

set of finite points . PM and its complement in PM will 1n , 
be called the lightcone at infinity;; The line witl;l direction 

u = to, 0, 0, 0, 1, OJ Will ba called the point ~t infinity. 

Th!s notation is ·consistent since the light co~e at infi-

ni ty ·is 'the light ,cone at the point at infinity. 

Lemma 2. If we identify M with the set of finite points 

in PM ; then I , the inversion in. NI , is the restric-

tion to the set of finite points in PM of an automor­

phism of PM that is in the connected component of the 

identity in 0(2,4) • 

Proof: We see that on its domain of definj_tion I coinsides 

with the transformation induced on PM by the following 

linenr transformation. 

It is an immediate verification that this linear 
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transformation is in the connected component of the identity 

in 0(2,4) • This proves the le~~a. 

The subgroup of 0(2,4) of index two generatied by 

the component of the identity in 0(2,4) and the space 

reflectior~ 

will be denoted by G1 • 

Lemma 3. The subgroup of 

fixed, is isomorphic 

of finite points in 

of G iJ.l M • 0 

G1 

to 

PM 

leaving the point at infinity 

G0 ; and its action on the set 

is identified with the action 

Proof: The subgroup of 0(2,4) leaving the point at infinity 

fixed, i.e. leaving the direction u; [0,0,0,0,1,0} 

invariant, will also leave the orthogonal subspace 

invariant, The orthogonal subspace is the subspace of 

all v E R6 such that v5 = 0 • The marix of a trans­

formation leaving the direction u invariant 1is therefore 

given by 

fA 0 
I 

b, ::;1.. 

0 0 

Where A is a -4 x 4 matrix, a a 4 vector and b' a 

transposed 4 vector and tJ... , r and d' real numbers. Let 

u = { x 0 , x 1 , x2 , x 3 , s,t}, then (u,u) = x 2 - st • Since 

the transformation should leave invariant the form (,),we 

get 2 2 (Ax + t a) - dt ( bx + seX + t r ) = x - s t • 
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By equating terms in the quadratic forms we get 

2 Ax • a = {f b • x , a 2 = Jf , t< j = -1 

This gives us that A leaves the form 2 invariant, i.e. X 

A f.: 0(1,3) • Since G1 is generated by its compqnent of 
' 

the identity and the space reflection s 
' 

we find that A 

mu~t be in the subgroup of 0(1,3) , generated by ~ts compo­

ne~t of the identity and the space reflection. It is A is 

in the Lorentz group L The next equations gives us 

and o( == - 0 -1 

Hence we get the matrix representation of the subgroup 

of G1 leaving the point at infinity fixed as 

where A ~ L • A direct verification shows that t4is group 

operams on the set df finite points in PM as doe~ G0 on M • 

This proves the lemma. 

The component of the identity in 0(2,4) acts trans• 

itively on the set of lines in 0 • To see this let 
6 + R = v CB v- be a direct decomposition of R6 in a subspace 

v+ where (,) is positive definite and v- where (,) is 

negative definite. The subgroup of 0(2,4) respecting this 

deqomposition is canonicaly isomorphic to 0(2) x 0(4) • It 

is easily seen that S0(2) x S0(4) acts transitively on pairs 

and one from v- Since of linear subspaces, one from v+ 

any u E R6 such that (u,u) = 0 has a unique decomposition 

u E V- , this gives us that 
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S0(2) x S0(4) acts transitively on the lines in C • If we 

combine this with lemma 3, we get 

Lemma 4. G1 acts transitively on PM , and the subgroup 

leaving a point fixed is isomorphic with G . 
0 

Moreover the maximal '~~ompact subgroup of the com-

ponent of the identity in G1 ~ 80(2) x S0(4) , acts 

transitively on PM , and the subgroup leaving a point 

fixed is isomorphic with S0(3) , the maximal compact 

subgroup of the component of the identity in G0 • 

A direct verification utilizing the matrix represen-

tation exhibit above for the subgroup G0 leaving the point 

at infinity fixed givss us that G1 is generated by G0 and 

the invertion I , where as pointed out earlier I in PM is 

represented by an element in the component of the identity 

This gives us then that the group of local automor-

phisms of M , generated by I and G0 , which we have denoted 

by G is the same group as the subgroup of index 2 in 0(2,4) 

that we have called G1 • This gives us the following theorem. 

·Theorem 1. The group G of local automorphisms of M , 

generated by I and G0 ; is a subgroup of 0(2,4) of 

index two, generated by the component of the identity 

0(2,4) and the space reflection s . Any of tne_ :tocal 

automorphisms of M in G , is induced by an automorphism 

of T'M , a.nd hence is defined in M outside a light cone. 

Namely the light cone that by the corresponding auto­

morphism in PM is mapped into the light cone at 

infinity. 
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We will now state the main theorem without proof~ 

Theorem 2. 

Let f be a local automorphism of M • Then f 

is a restriction of a unique transformation g E G • 
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