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A relation R on a set E is called a well ordering 

of E if R is a linear order of E such that every non­

empty >ubset X of E has a 11 first 11 element with respect to 

R, i.e. there is an element x0 E X such that x0 Rx for all 

x € X. An equivalent form of the last condition is that 

ev8ry strictly descending chain in E with respect to R 

is finite. 

It is a basic fact of set theory that any two well 

ordered systems < E,R) and .!.. F ,s > either are order 

is~morphic or one is order isomorphic to an initial segment 

of the other. The set of natural numbers in the usual order­

ing is order isomorphic to an initial segment of any infinite 

well ordered set. 

Ordinals numbers are introduced as invariants of well 

ordered sets. (One would like to define an ordinal number 

as an equivalence class of well ordered systems, but this 

leads to the usual difficulties in an axiomatic approach, sp 

that within most formal systems ordinals are defined througp 

a certain choice of representatives, always in such a manner 

that the natural numbers form an initial segment of the 

ordinals. The method most often adopted is due to von Neumann.) 

Well orderings and thus ordinals occur in several 

connections within foundational studies. Godel's incomplete­

ness theorem for elementary formalized arithmetic shows that 
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the consistency of this system is not provable within the 

system itself. On the other hand it was shown by G. Gentzen 

that the consistency of elementary arithmetic is provable by 

means of the method of transfinite induction up to the least 

epsilon-number E0 (i.e. the least solution of the ordinal 

equation OJ« =ex.). Trans£ ini te induction up to any ordinal 

d~ So is provable within arithmetic, and it follows from 

the result mention above that induction up to £ 0 is not so 

provable (see SchUtte ~5] for an exposition of this theory). 

(If ~ is a countable ordinal, then there exists a well 

order R of the natural numbers N of type ~ • Hence the 

scheme of transfinite induction up to ~ can be expressed 

as an elementary number theoretic scheme and may as such be 

provable.) 

Godel's incompleteness theorem asserts that any 

recursively enumerable extension of Peano arithmetic is 

incomplete. In fact, we know from some work of Tarski tnat 

number-theoretic truth is not arithmetically definable. It is, 

however, hyperarithmetic. 

In order to bridge the gap between Godel and Tarski 

the idea of using "ordinal logics 11 was introduced by Turing 

[19]. This idea was later elaborated by Fe;erman [2] who 

(extending greatly the results of Turing) developed a theory 

of "transfinite recursive progressions of axiomatic theories". 

The basic idea is simple. Let A0 be the system of Peano 

arithmetic. From Godel we know that ConA (i.e. the number­
a 

theoretic sentence which asserts the consistency of A0 ) is 
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not provable within A • 
0 

Add Con A 
0 

to the axioms of 

to obtain a new system In this system Con A 
0 

is 

trivially provable, but, again from Godel, Con A is not 
1 

provable within A1 • Thus by iterating the process we 

obtain stronger and stronger systems. We arrive at the 

following scheme of definition. Letting A0 denote the 

Peano axioms we define inductively for all ordinals less than 

some fixed A 0 : 

Ao(+1 = A u { ConA 1 d.< A o ~ 
ot 

and 

AK = u Ad.' 1-(<A o' K a limit number, 
cJ. < K 

There are at least two difficulties in this approach, one 

rather immediate, one somewhat more subtle. To mention the 

last problem first, it is not at all obvious how to choose 

the statements ConA • In fact, Feferman has shown that 

there are seemingly plausible sentences ConA such that 

~ConA. In [1] he has analysed the situation and singled out 

a class of statements suitable for expressing consistency. 

(In the literature there has been much ambiguity on this 

point.) We do not enter into details here, but advise the 

reader that the point raised has caused seriour difficulties 

and has necessitated a delicate analysis of the concepts 

involved. 

The first and rather obvious problem in constructing 

the "progression" of theories concerns the use of ordinals. 

We would like each A~ to be a recursively enumerable set of 
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axioms. What segment of ordinals to choose and how to proveed 

at limit numbers ? An analysis of the situation shows that 

the class of recursive ordinals will recommend itself as the 

proper segment, but in order to make the construction of the 

various A 's 
~ 

precise, we need an effective scheme of 

notations for the recursive ordinals. Thus in the final 

analysis we shall have a set 0 of notations for the 

recursive ordinals and we shall have a recursive function 

d ~ Ad' such that if d E o, then Ad is a (recursively 

enumerable) axiomatic system. Any system of notations is 

non-unique, thus we do not obtain a well ordered sequence of 

theories. (It has been shown by Feferman that Ad may 
1 

differ from Ad even if d1 and d2 name the same ordinal.l 
2 

What we do obtain has been called by Feferman a transfinite 

recursive progression of axiomatic theories. 

The Riemann hypothesis is equivalent to a number­

theoretic statement of the form (Vx)R(x), where R is a 

primitive recursive predicate [11]. A basic completeness 

result on transfinite progressions due to Turing asserts that 

each true statement of this form is provable at stage ~+1 

in a progression starting from Peano arithmetic and based on 

adding consistency. 

We shall give the basic idea of the proof of the 

Turing completeness result. Let P denote the system of 

Peano arithmetic. Implicit in the second Godel incompleteness 

theorem is the fact that with any (sufficiently well behaved) 

recursively enumerable consistent axiom system A, containing 

Peano arithmetic, one can associate a Godel-sentence vA 

I 
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such that 

Here PrA is the formalized notion of provability, and vA 

is the arithmetized version of VA. Thus, in a sense, ~A 

expresses its own unprovability. Further one may show th?t 

The second GBdel incompleteness theorem is now a conseq~ence 

of the fact that vA is not provable in A. 

Let (Vx)R(x) be a true statement, where R is a 

primitive recursive predicate. R belongs to a formal system 

of arithmetic; to this R there corresponds a rcfation 

R* defined in the set of natural numbers such that 

:..ff 

iff 

We shall define a certain ordinal notation of type W +1 

using the recursive fixed-point theorem. This fixed point 

theorem, which incorporates all kinds of recursion theorems, 

asserts that if E is a recursive functional, then the 

equation 

f = F(f) 
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has a recursive solution. Recursive functions can be replaced 

by their Godel numbers, hence it follows from the fixed point 

theorem that there exists a number e such that 

Let 

ieJ(n0 ) 

e 
d = 3•5 • 

= 

(n 
' 0 

123·5· 
We know that 

if (i) •L R*( i)' 1-n 

if (Ei).'- •R*(i). 1-n 

(~x)R(x) is true, i.e. 

(i)R*(i). This implies that ~e}(n0 ) = n0 for all n, 

which means that d is a ordinal notation and ldl = W. 

On the other hand, if we did not know that 

(i)R*(i), then for some n, ies(n0 ) could be equal to 

2d; let n' be the least such number. From the definition 

of the recursive progression we know that 

thus A2d = A~al(n~) ~Ad. 
the ref ore 1- A vA • 

d d 

But A d contains the sentence 
2 

What we have shown is: 

If (Ei) I R*(i), then t-A YA • 
d d 

(Of course Ad would in this case be inconsistent.) The 

basic point is now that the formalized version is provable in 

Peano arithmetic, i.e. we may obtain 
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Again using a property of the Godei sentence and the f~ct 

that rA YA 1 we may conciude that 
2d d 

1-A (V'x)R(x), 
2d 

) 

I 

which is the Turing completeness result as j2d1 = 1;.)+1· 
Hence either the Riemann hypothesis or its negation 

is provable from some (recursively enumerable) axiomatic 

system in the collection i Ad; d denotes the ordinal w +1 ~ • 

The notion of proof is effective, may we now employ a 

battalion of morons to settle the Riemann hypothesis ? 

Unfortunately not : there is no effective procedure fpr 

deciding whether a number d is a notation for the ordinal 

W+1 or not. (This follows from the original GBdel incomplete-

ness theorem, the undecideable statement is a true st~tement 

of the form (~x)R(x).) 

The original completeness result has been ext~nded 

to a general completeness result for elementary arithmetic 

by Feferman. (The progression is now based on a certa~n 

formalized rule of complete induction.) In [4] we hav~ given 

a more direct and simpler derivation of Feferman's co~plete­

ness result for elementary arithmetic. If d' denotes the 

successor of d, let Ad' consist of all sentence in Ad 

together with all sentences of the form 

where PrA is the arithmetized provability predicate for 
d 
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Ad. (We have to take the arithmetized version in order to 

express the provability notion within the theory itself.) 

The principle expresses that if ¢(n) is provable in Ad 

for each numeral n, then (~x)~(x) is provable at the 

next stage. 

Our result is that every true statement of elementary 

number theory is provable in the progression based on the 

~ove gen.eratin9 principle at a stage whose ordinal is less 
w ~ 

than lA. • And the bound l.O is the best possible. 
'· 

Let ¢ be a sentence of arithmetic. It is immediate 

that ¢ is provable from l_j Ad' 
dE 0; ldiL..C{ 

limit number, iff 

where d. is a 

Hence if c{ < ww and we can then assume that o{ =(.t.)N for 

some natural number N, then ~ is a true sentence of 

number theory iff (Ed)[d 8 O~N & ~ EAdl· It is shown in 

[13] that the assertion dE 0 N is arithmetic, and as 
UJ 

~ E Ad is recursively enumerable, this implies by the 

above equivalence that number-theoretic truth is arithmeti­

cally definable. This contradicts Tarski's theorem and 

shows that the bound coli> is sharp. 

Again, our result does not constitute any decision 

method for number theoretic truth. It is in a sense a 

"normal form" theorem, i.e. a reduction theorem for elementary 

arithmetic. It asserts that every problem within elementary 

number theory, say, ~ny question about the solvability of 
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diophantine equations within the field of rationals, is 

effectively reducible to a problem about notations for 

ordinals less than ~~ • And this it seems to us is of some 

conceptual interest in itself. 

This report is concluded with two rather unrelated 

notes on recursive ordinals. 

Ordinals can either be introduced as invariants of 

well ordered sets or as systems of notations. In note A we 

show the equivalence of the two approaches to recursive 

ordinals. This has previously been proved by w. Markwald 

~4]. We present a new proof in the spirit of Kleene [9). 

Well orderings have so far been considered wrt 

arbitrary descending chains. What happens if we require the 

chains to be hyperarithmetic, arithmetic or recursive ? In 

the last note we discuss this problem. 
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A. RECURSIVE WELL ORDERINGS AND SYSTEMS OF NOTATIONS. 

Let L be the set of all (godel numbers of) 

functions f : N X. N --> N such that f { x, y) = 0 is a linear 

order of all x € N such that f(x,x) = 0. (f(x,x) = 0 

means-that x belongs to the field of the relation f.) 

f is a well ordering of N if f € L and if every 

descending chain in (the domain of) f is finite, where by 

a chain in f we understand a number-theoretic function 

CX: N -~ N such that f(~(x+1),~(x)) = 0 for all x f N. 

Let W denote the collection of all well orderings of N. 

It is easily seen that an f E L belongs to W iff every 

descending chain ~ in f has a repeating element, i.e. 

0( ( x+ 1 ) = d.. ( x} for s orne number x. 

For any f € W we let If I dendB the order type of 

f. An ordinal ~ is called recursive if « = I f I for some 

f E w. There exists a least non-recursive ordinal, denote 

this ordinal by C0~· 

Following the exposition of Kleene [9J we introduce 

a system of {non-unique) notations for a segment of the 

ordinals. (This is the system S3 of Church-Kleene.) The 

sequence < n0 ') defined by the recursion relations 0 0 = 1 
n 

and {n+1) = 2 °, will name the initial segment of final 
0 

ordinals. According to the terminology of Kleene we say that 

y defines recursively as a function of n 
0 

if 



is defined and = y J' n where is the 

~~cursiVe [un~tio~ wl~~ ~~del h0mber e~ The ~et bf 

notation$ 0 and ~ partl~l etder ielatibn a <b 
,0 

introduced by the following induetive aefinition: 

01 • 1 E o. 

02. If y E. o~ then 2Y G t) and y z 2Y;. 
0 

is 

03. If each Yn E G and Yn <eYn+l 
f . or ail n; 

y defines y0 recursively a§ a funetion of 
y ,. 

then 3•5 E 0 and for ail 

and if 

We now require that 0 and <0 are the least sets such that 

01~03 are satisfied and such that <· is transitive on 0. 
0 

For a development of the theory of 0 we refer the 

reader to papers by Klee~e and Spettot• Ih this note we shall 

mention a few results for iatet reference' Quite basic is 

the existence of a pfl~itiv~ tec~tsive ptedicate V such 

that if the set G(b) is defined as a~ G(P.) iff 

(3x)V(a,b,,x),. "4henforanY beo,,at:G(b) iff~ <0 b· 

Th$ s.et G i tse1f is. only pa!:'tiaily 6tder~d b~ < Q.'· J:>ut 

b ~ 0 
•\ ·-··-

of ihe elementary ~ropertie~ of brdihai arithmetic ca~tY 
' .. 

over to o. An addl tion of ordinal no.tations is defina~le, 

and this ·bpetati~n may b~:extended bl inductio~ to a 
' , ' • ' ,. 1 • 

definition of finite sums. 

Through the following inductive definition 0 will 

be mapped onto a segment of the (Glassicai) ~rdinals: 
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11 ( = 0; 

I2Yl = I y\ +1 for y f o, 

I3·5Y( = limlYnl ' 

where 3•5YE_ 0 and Yn = ~y~(n ). 
0 

Each bE. 0 represents 

a countable ordinal / b\ , and a < 0 b implies I al Z I b\. 

Further for each o( < I b \ there is an a E 0 such that 

a < 0 b and r:A. = I a I . Thus the set ~a I a < 0 b ~ for b E 0 

is of order type lbl. The least ordinal not representable 

by any 

THEOREM. 

b € 0 

(.c)* 
-1 

is called the Church-Kleene ~1 • 

equals the Church-Kleene Ll) 1.!. 

That the Church-Kleene w1 is L ,,* 
- w1 is rather 

easy to show (it follows from the result mentioned above 

concerning the predicate v, details can be found in 

Kleene [ 9] • ) 

That every recursive well ordering of N has a 

notation in 0 has been shown by Markwald l14] and Spector 

(unpublished). We present a new and fairly simple proof 

which depends on an analysis of the finite descending chains 

belonging to an f E w. 
We give some prepatory definitions: A sequence 

number w is a number of the form 
so+1 s1+1 

w = 2 ·3 . . . .. . 
s +1 

P n By (w)t we n understand st' the t'th member of 

the finite sequence w, and lh(w) = n+1 counts the total 

number of members of w. The notions introduced are 

recursive. 
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w f Seq(f) iff {i) w is a sequence number 

(possibly the empty sequence 1 ), (ii) each member (w}t of 

w belongs to the field of f, (iii) w is descending in f. 

The notion of securable f will be introduced in two 

different ways: 

A. w is secured£ iff w E Seq{f) and (w)t = (w)t+1 

for some t < lh(w}_:1. 

w is securable£ iff either w is s~curedf or 

w € Seq(f} and every descending extension <:X.. of 

in f has a repeating element. 

We say that w is immediately secured£ if w is secured£ 

and no proper segment of w is secured£. If w E Seq{£) 

w 

and is unsecured£ (i.e. not secured£)' then w is a proper 

descending cha~ in f. We are interested in definition A 

simply because of the following result. 

PROPOSITION. Let f E L, then f E W iff all 

w E Seg(f) are securable£. 

If f E W, then either w is secured£ and thus securaqlef' 

or w E Seq(f) but is not secured£' which means that it 

is a strictly descending chain in f. But any extension~ 

of w in f is finite, which means that w is securable£ 

according to definition A. Conversely, if f is not a well 

ordering, then the empty sequence 1 which surly belongs to 

Seq(f) is not securable£ according to A. 

We recast definition A as an inductive definition 
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(following an almost analogous proof oo Kleene in [9]). 

B. If w is securedf' then w is securablef. If 

w E Seq(f) and w is not securedf' but for every 

s such that w * 2s+1 E: Seq(f) (here w * u 

denotes the extension of w by u) ' w * 2s+1 is 

securablef' then w is securablef. 

Plainly we need the following lemma. 

PROPOSITION. w is securablef with respect to definition 

A iff w is securablef with respect to 

definition B. 

If w is securablef wrt B, then either w is 

securedf, hence securablef wrt A, or every 

which belongs to Seq(f) is securablef wrt B, hence by 

inductive assumption also wrt A, which means as every 

extension ~ of w in f has an initial s0gment of the 

form w * 2s+1 € Seq(f), that w itself is securablef 

wrt A. 

Conversely, if w E Seq(f) but is not securablef 

wrt B, then w cannot be securedf. Thus there is some 
s +1 

non-repeating extension w * 2 ° in f which is not 

securablef" Repeating the argument we may further extend 
s 0 +1 s 1+1 

w to an unsecuredf of the form w * 2 * 2 Thus, 

inductively, we are a~le (non-effectively) to find an 

extension s 0 ,s1 , ••• of w in f without repeating 
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elements. 

The set S(f) of all sequences w E Seq(£) which 

are either unsecured£ or immediately secured£ can be 

given a well ordering if f € W. The well order is defined 

as follows: 

u ~ w iff either u extends w or (u)t < (w)t 

for the first member (u)t of u which differs 

from the corresponding member of w. 

PROPOSITION. If f E W, then S(f) is well ordered 

by LJ • 

If w1 t::> w2 t> w3 • • • is an in£ ini te descending chain in 

S{f), then each wn must be unsecured£' i.e. a strictly 

descending chain in f. The "lower envelope" of w1 ,w2 , ••• 

produces an infinite descending chain in 

envelope is the commen extension of all 

f. 

w. 
ln 

(The lower 

such that 

w. [:> w. (i.e. in+ 1 >in) and Sl.)ch 
1 n 1 n+1 

that every w. 

as a sequence is an initial segment of all w. 
lm 

ln 
for 

im > in· The definition is best explained through a diagram! 

And the existence of the "lower envelope" follows from the 

definition of 41 and from the fact that every initial 

segment of N in the usual ordering is finite.) 

The remainder of the proof will now be divided into 

two parts. First the easy one, we show that the order type 

of f is less than the order type of S{f). Next we will 

construct an orderpreserving map of S(f) into 0. In fact 

we shall be able to bound the ordinal of S(f) by a 
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notation in 0. This will conclude the proof. 

PROPOSITION. If f E w, then 1£1 L ls(f1i_. 

The proof preceeds by induction on the order type of f. 

Let fol. be (the godel number of) an initial segment of f, 

i.e. f.x (X, y) = 0 iff f(x,x 0 ) = 0 A f(y,x 0 ) = OA f(x,y) =0, 

where x0 is some fixed element in the field of f. Every 

element wE S(f~) is also an element of Slf), and as f~ 

is a restriction of f, the inclusion map is order 

preserving. So, If I = sup( lfo..l +1) f: sup( IS(£.,.,)1+1) = ls(f)j • 

In order to construct a map ~ (f ,w) with values 

in 0 we need a last definition: 

S(f ,w) = { w}, if w € S(f) and w is secured£. 

S(f,w) = {w * u E S(£)1, if w is unsecured£. 

Note that S(f) = S(£,1 ), further that S(f,w) is the sum 

£ 1 ( s+1 ) of all sets Lwt, ••• ,s f,w * 2 , ••. where 

w * 2s+1 € Seq(f). We shall use the recursion theorem to 

define the map ~ so as to satisfy the following conditions 

~ (w,f) = 

where 

0 if w ¢Seq(£), 
I 

1 if w is secured£' 
d 

3•5 f,w if w f,Seq(f) but is not secured£' 

defines the finite sum 2::0 ~(f,w * 2s+1 ) 
s<n l 

as 

a function of n0 , Here 
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if w E Seq(£) 

otherwise. 

The details of the definition is as follows. Let 

nat(b) = pnn< b[b = n0]. Further define 

where ~(w) = 0 if wlf. Seq(£) and "(w} = 1 otherwise. 

Choose a gHdel number p of 9. Then the following 

function is recursive 

r 0 if w *Seq(£), 

~( z, f ,w) = i 1 if w is secured£' 
sf(p,z,f,w) 

3•5 if w € Seq(f) but not 

secured£. 

Note that is~(p,z,f,w)1(n0 ) = iP}(z,f,w,n0) which equals 

L{~2 (z,.f,w * 25 +1 )+0 10 ) if w * 2s+ 1 E.. Seq(f) and eq\,lals 
S<n 
10 otherwise._ Choose e by the recursion theorem so that 

e defines 'f recursively. Then define ~ = { e\ , i.e~ 

~(f,w) = f(e,f,w), and one easily verifies that the 

conditions on ~ stated above obtain. 
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PROPOSITION. If f £ W, then ~(f,w) E 0 for all 

w E: Se g ( f ) and I S ( f , w) I !:: I ~ ( f , w) I + 1 • 

If w £ Seq(f), then as shown above each w € Seq(f) is 

securable£. Using definition B we prove that ~(f,w) E 0: 

In the first case, if w is secured£' then ~(f,w) = 00 E 0. 

If w is securable£ but no~ secured£' 

hypothesis each ~(f,w :w: 25 +1 ) such that 

then by induction 

w :w: 2s+1 ~ Seq(f), 

( s+1 belongs to 0. Then each ~ f,w :w: 2 ) belongs to O, and 

as the finite sums are strictly increasing in O, it follows 

that ~ ( w, f ) = 3 • 5 df 'w € 0 • 

The inequality is proved as follows: If w is 

securedf' then S(f,w). = i w1 and t~(f,w)\ = o, hence the 

estimate is correct. 

It w is securable£ but not secured£' then 

(i) if w :w: 2s+ 1 E Seq(f), then w :w: 2s+ 1 E S(f) and by 

induction hypothesis js(f,w :w: 2s+ 1 )] ~ j~(f,w :w: 2s+1 )1+1 = 
ht_{f ,w :w: 2s+ 1 )j; 

(ii) if w * 2s+1 € Seq( f), then I<"YJ ( f ,w :w: 2s+1) \ = 1 • 

We noted above that S(f,w) is the sum of all sets 

-{w~, ••• ,s(f,w :w: 2s+1 ), ••• , where w )( 2s+1 E Seq( f). Thus 

I - 1 s+1 I IS( f ,w) = L S( f ,w :w: 2 ) +1, 

where s runs through the increasing sequence of natural 

numbers such that w * s+1 ( ) 2 E Seq f • But by expanding the 

sequence we obtain 
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= l~(f,w)l+1, 

as finite sums of notations are defined such as to be order-

preserving under the map b ~ l bl, for b E 0. 

In particular ~(f,1) E 0 and ls(f)l ={~(f,1)1+1. 

This, as noted above, concludes the proof. 
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B. ON SOME SPECIAL TYPES OF RECURSIVE LINEAR ORDERINGS. 

It is known from some work of Spector D6J that the 

least ordinal not representable as a hyperarithmetic well 

ordering of N is the Church-Kleene ~1 • Thus using hyper­

arithmetic relations instead of recursive ones do not give 

us any larger ordinals. What happens if we use recursive 

linear orderings which are well orderings with respect to 

hyperarithmetic descending chains ? It would have been nice 

if we got exactly the class of recursive well orderings, but 

(as may be expected from the proof of the equivalence between 

the definitions A and B of securable£ presented in the 

previous section) this is not so. The class of recursive well 

orderings with respect to hyperarithmetic chains is strictly 

larger than the class of recursive well orderings with 

respect to arbitrary chains. However, an absoluteness 

property similar to the one mentioned above might still be 

true: Does it matter whether we use hyperarithmetic chains or 

use only recursive descending chains ? Again, the answer is 

that it does, then are recursive linear orderings of N whi~h 

are well orderings with respect to arbitrary arithmetic 

descending chains (hence, with respect to recursive ones) 

which are not well orderings with respect to hyperarithmetic 

chains. 

In this section we present a uniform method for 

answering the problems discussed above. Some of the results 

we present are known, but some seems to be new (in particular 
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the existence of a well ordering with respect to arithmetic 

descending chains which is not a well ordering with respect 

to hyperarithmetic ones). 

Let a ~ b be the recursive enumerable relation 

a~ b iff (jx)V(a,b,x), 

discussed in the previous section. As there let 

C(b) ={a/a ..1... b~, and let c*(b) = C(2b) = {a\a { bf, where 

a~ b iff a ..1... b v a = b. VVe recall a few properties: 

{i) a ..( 1 never holds; (ii) If b + o, then a< 2b iff 

a~ b; (iii) a-< 3•5e iff (:3n)(ier(n0 ) is defined and a 

~ie\ (n0 )]; (iv) If bE O, then a..( b iff a <0 b. 

Following the exposition of Feferman and Spector (3], 

we introduce a certain set M by letting d E M iff 

{i) c*(d) 

of c*(d) 

is linearly ordered by< ; ( ii) any element a 
b is either of the form a = 1 or a = 2 , where 

b + o, or e a = 3•5 , is defined for all n 

and ie\(n0 ) ..( ie}((n+1) 0 ). 

Let D~ ,d = \n[oc..{n) + 0~ n c*(d), and consider the 

predicate A(~,d) defined by 

A(o(,d} iff d£ MA [oo<,d f ¢.....:, 3least element of 

oo(,,d in the ordering ..( J . 

The predicate A(~,d) will be used to introduce 

three sets of notations and the evaluations of the resulting 

predicates will give us all the results mentioned above. 
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(1) d 6 0 iff (~o~.)A(cx,d). 

(2) dE o* iff ('Qed( o:._t;i-IA ~ A(D(,d)]. 

(3) dE o** iff (VcJ.) L o<.E-ARITH ~ A(ot.,d)J· 

Here HA is the collection of hyperarithmetic functions and 

ARITH denotes the class of functions whose graph is 

arithmetically definable. Obviously, 0 ~ o* f o**. Our 

first purpose is to prove that all inclusions are proper. 

Before doing this thEre is one detail to take care 

of. o, the set of notations for recursive well orderings, 

was introduced in section A. That the two versions of 0 are 

the same needs a proof. (That dE 0 according to (1) above 

implies that d is a Church-Kleene 0 is proved by 

induction on c*(d) (note that d * E C (d)), using the fact 

that d € M and that ('v'odA(ci.,d) implies that c*(d) is 

well ordered by -< • The converse is rather immediate on 

account of the minimality of 0.) 

PROPOSITION. (i) 0 is a complete n ~ set; (ii) o* is a 
%1 

complete > ~ set2 {iii} o** is hyper-

arithmetic. 

This proposition, whose proof will occupy the reminder of this 

section, answers our questions. A complete Tl ~ set is not 

expressible in the dual form, hence 0 1 o*, and as 0 ~o*, 

there is a * d € 0 -0. 
0 

Using the techniques of Kleene [9], 

we may from this d0 produce a recursive linear ordering of 
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N which is a well ordering with respect to hyperarithmetic 

chains, but not with respect to arbitrary chains. In the same 

manner it follows that o* is not hyperarithmetic, hence any 

d1 E o**-o* determines a recursive linear ordering of N 

which is a well ordering with respect to arithmetic (hence, 

recursive) chains, but not with respect to hyperarithmetic 

ones_. 

The proof of (j) was given by Kleene [9], and the 

proof that o* is 2::~ follows from results in Kleene [101. 

The completeness of o* ~11 as a 1-- predicate is a little 

more involved. Gandy and Spector (independently) have shown 

that every 2::~ predicate can be expressed in the form 

Ctld.)[ c£.€ HA -7 (3x)S(d,~(x))] for a suitable (primitive) 

recursive s. Every predicate of this form is a 11~ 

predicate relativized to HA, and o* is 0 relativized to 

HA. Hence the obvious thing to do is to try to relativize 
of 

the proof (i) as given in Kleene [9]. 
~ tt>fenn.:~ ~­

This we have been informed, was done som years ago(,' 

but his proof has remained unpublished. In 1966, without 

knowing the previous work of Feferman, I indicated to him a 

~1 * proof of the L--1-completeness of 0 • I then learned that 

J. Harrison in his thesis [6] also had given a proof of this 

very same result (as part of a more comprehensive investi­

gation into the set o*). I realized that a detailed working 

out of my proposal would produce a proof quite similar to the 

one given by Harrison. Hence I did not pursue the matter any 

further •. 

The success of the relativization depends upon the 
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-1 
following "uniformization lemma" for I 11-predicates, due in 

substance to Kreisel [12]. For every P € T1~ we can define 

a Q f n~ such that Q(x,y) ~ P(x,y), 

Q(x,y} ~ Q(x,z) ~ y = z and (3y)P(x,y) ~ (j y )Q( X' y) • 

I h t n 11 subset of n s or , every N X N has a n11 cross-

section. 

Using this lemma we can prove the following induction 

principle: Let X~ N and <J a recursive relation in X 

which is a w.o. wrt hyperarithmetic descending chains. Then 

every non-empty n11 set of X has a least element wrt. 

~ • - For the proof assume the converse, i.e. let 

)6 o\= Y ~ X, Y En~. As Y has no least element in the 

ordering <1, we have (\fx)fxE Y ~ ('3y}[y E Y f\ y4x]J. 
L 

Consider the predicate P(x,y) ~· x E Y ~ y € Y ~ y4 x. It 

is n ~, hence it has a TI ~ cross-section Q E TI~. Q 

produces an infinite hyperarithmetic descending chain in X, 

viz. let d0 be some fixed element in v and define 

b0 = d0 , bn+1 =the unique y such that Q(bn,y). 

With this induction principle the adaphon of Kleene's 

proof is fairly straight forward, but a complete version of 

the proof would be rather long. The general induction 

principle was formulated explicitly by Harrison [6], whereas 

in my proposed version it was implicitlyinvolved at several 

points. 

It remains to show that o** is hyperarithmetic. Our 

proof is a Kleene-type evaluation: Consider for convenience 

the predicate 

(.30() [ O(E ARITH 1\ A(ci,d)J, 
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where A(~,d) is any arithmetic predicate. Let Hy' y E o, 
be the fallowing hierarchy of predicates: H1 (a) iff a= a; 

H 
H2Y(a) iff 

if 3·5y t 0 

(:J x ) T 1 y ( a , a , x ) ; H y ( a ) iff H ( ( a ) ) , 
3·5 Y(a)1 a 

and Yn = {y~ (n 0 ). It is known from work of 

Kleene [B) that any arithmetic predicate is recursive in 

same Using this we may rewrite (*) as fallows: 

(3ct) [ t'>( E ARITH 1\ 1\(c< ,d) ] • iff. 

(-jC()(3n) [( 0.. is rec. in Hn
0

) A A(c{,d)] • iff. 

(:J n) (3 e) [ ( e is gnr. from H of a total function 
no 

o<e)l\ A(ol.e,d)]. 

From the construction of the T-predicate it fallows that if 

(3z)T 1 ~ (e,x,z), then z is unique. Using this (*) can be 

rewritten in the twa fallowing equivalent forms. 

( i) 
H \ H 

(:tn)(:1e)[(~i)(3t)T 1 n°(e,i,t) 1\ (~~)1(Vi)T 1 n°(e,i,~(i)) 

4 A ( ~ i U ( ~ ( i )) , d)~ J , 

and 
H H 

n 
(ii) (jn) (3e)[ (\di) (jt)T1 °(e,i,t)" (j~)i(~i)T 1 n°(e,i,~(i)) 

1\ A ( ~ i U ( ~ ( i )) , d ) 1 J . 

(i) and (ii) together shaw that (*) is hyperarithmetic. 
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