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I. GENERAL NOTIONS FROM THE THEORY OF GAMES 

The purpose of this report is to suggest a general approach to the study 

of vwgood~v strategies in arbitrary tv.ro-person zero-smn games based upon fixed 

point theorems. Our contribution is to the ~~existence11 part of the theory. 

We do not treat matters concerning calculation or characterization of optimal 

strategies, but are interested in an as general existence theorem for 11 good11 

strategies as possible, even if this theorem be highly non-effective. vfuile 

the theorem we actually state is known, we do not believe that this result 

gives the limit of what is obtainable by this approach. 

In this paper we shall always assmne that a game is given in normal form, 

i.e. given as a triple 

G = 1 

where A and B are non-empty sets called sets of p u r e strategies 

and k is a real-valued function defined on the set A x B and called the 

pay-off function. 

In brief outline, the game is played as follows. There are two parti-

cipants, PA and PB • Each selects a strategy, i.e. PA selects a point 

a € A and P B selects a point b E B • The outcome of the game is eva}.-

uated by calculating k(a,b) ''Pay-off~' then consists in PA receiving 

the amou.1'1t k(a,b) from PB (If k(a,b)<o, PA receives a negative 

amount which means that PB gets the amount -k(a,b) from PA .) 

Somewhat imprecisely we may say that the purpose of the game considered 

from the view-point of PA is to select a strategy a E A 
0 

so as to 

maximize his expected pay-off. Conversely P B -vrants to minimize the re-

turn to P A by 101electing a vwgoodvw b E B • 
0 

This preliminar;sr description can be made precise in the following way. 
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min k(a,b) 
b 

(For the moment we assume that all entities entering into our calculations 

exist.) vA(a) represents the security level for PA using strategy a, 

i.eq playing against an intelligent (or rational) opponent vA(a) is the 

maxi.rnum pay-off P A may expecto A i 1 goodw~ strategy for P A in the game G 

is then to select an a0 E A so as to maximize vA (a) , i.e. try to obtain 

the amount 

Similarly we define 

= max min k(a,b) 
a b 

vB(b) = max k(a~b) • 
a 

Then vB(b) represents the maximum loss PB may expect by choosing the 

strategy b E B • The 11good11 thing for P B is then to choose a b 0 E B 

so as to minimize the maximum loss, i.e. try to hold PA down to the amount 

= min max k(a,b) 
b a 

• 

It is easily seen that v A ~ vB o In a...'1 arbitrary game G , even if 

vA and vB exist, there may not exist strategies a 
0 

and b 
0 

such that 

vA = vA(a0 ) and vB = vB(b0 ) , neither do we know whether vA ~ vB or 

vA = vB o An investigation of these problems form the substance of this 

report. 
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It is necessary even for the s~nplest types of games to extend the con-

cept of strategy. A 1'mixed~' or YYrandomizedvw strategy is a probability dis-

tribution over the set of pure strategies. A randomized extension of a game 

G is obtained in the foJ~owing way. 

\- "'" Let '- A and .::: B be 6 -algebras of subsets in A and B , respec-

tively. Then the randomized extension of G = ( A,B,k) with respect to 

the a-algebras ~A ~d ~ B is the triple 

f' = < (>.,t , 03 , K ) , 

where e.{; and ~ are the sets of all probability distributions with 

respect to the ()-algebras Z A and .L B and K( p. , ). ) , TNhere ~ E Qi-

and ~ E' £ , is the extended pay-off function defined by 

where the assumption is made that the integral exists (and can be evaluated 

either as a double integral or as an iterated integral)~ 

An e qui 1 i b r i urn pair Z Po' ~o) in the game 
!'I 
I is 

a pair of mixed strategies ' E :~t ~Ao \,," and ~0 € 63 such that flo 
is good against ).. ' i.e. 0 

and 1\ is good against /\0 

Then and 

K( ~o' ~\ o) ;. K( {A, ~o) for all 

~o ' i.e. K( fA , A ) ::; 
0 0 K(~to'A) 

/\ 
/\0 satisfy the equations 

max K( l.<, ~ ) 
~... r o 

= K( ~ , :A ) = min K( /.ll , A ) 
, 0 0 '). 1 0 

I, I 

r E et 
for all 

The existence of an equilibrium pair < r 0 , ~''.\ 0 ) implies the validity of 

the equation VA = VB (where the notions are suitably extended to r ) . 
In fact, one has that vA = vA( ~ 0 ) = vB(~ 0 ) = vB which follows from the 

inequalities 



- 4-

and the general inequality v A ~ v B • We note that if K( f, :>., ) is defined 

for all }J.. E €.l and ~ E 6:) J then the existence of an equilibrium 

pair implies that all entities involved in our so far formal calculations 

are well defined. 

Thus if < II , ~ > is an equilibrium pair in the extended game r ro o ' 
then PA by selecting the strategy u. can guarantee himself at least a ro 
pay-off equal to vA , whereas PB by selecting ~ 0 can hold P A down 

to vB , and the game is VVfair11 or in equilibrium as v A = vB • 

This concludes our introduction to some general notions from game theory. 

We refer the reader to basic treatises such as Karlin ((2)) , Luce and Raif-

fa ((4)) and von Neumann and Morgenstern ((6)) for further informations. 

Our problem is to determine whether any game G has some randomized exten-

sian r possessing an equilibrium point. In the next section we shall 

treat this problem by extending the fixed point technique given by Nash 

((5)) for the case that both A and B are finite. 

II. THE FIXED POI:tvTT THEOREJVI 

111Te now consider some fixed extension r = <:'8( , & ,K > of the ga;11e 

G = < A,B,k) and assume that the pay-off function k is bounded, i.e. 

there shall exist an JYU such that 

for all a E A and b E B 

The restriction is further imposed that k(a,b) is measurable with 

respect to the rs -algebra ~ = 2 A X 2.. B on A X B 0 Then k(a,b) 

is integrable with respect to the product measure for all 
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and f 2 E lB , and we have unlimited access to the Fubini 

theorem. 

In order to identify the pure strategies a and b with mixed ones, 

and fb ~ we shall require that each one point set in A and B be-

longs to the C) -algebras L:A and rB 0 
We may then define fA' a and 

JAb by setting /Aa (X) = 1 if aE: X and 0 otherwise, where XEJE.A, 

and !J'b(Y) = 1 if bEY and 0 otherwise, for YE ~ B • With these 

assumptions we observe that the real-valued function 

where ~2 is considered as a parameter, is integrable on A which follows 

from the equalities 

= J k(a, b)d p- 2 

applying the Fubini theorem. In the sequel we denote fa and 

by a and b , respectively. 

Next define for each r = f 1 X J-i 2 E 8{ X 63 

= 

= 

[ K(a, ~ 2 ) - K( p. 1, }12)] v 0 

[KC,_ 1,f 2)- K(y. 1,b)] v 0 

' 

simply 

Both c r' 
how far 

and df are integrable and it is seen that they jointly measure 

< f-1 'r 2 > is from being a good strategy pair against the pure 

strategies a and b • 

Regularity assumption on k: A x B ~ R : For all 2> > 0 there 

shall exist a finite covering of A x B 

such that ! k(a,b) - k(a',b') I < S 

belong to the same set U. XV. • 
l l 

of the form U. x V. , i = 1, ••• ,n, 
l l 

if both <a, b ') and ( a ', b ') 
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This regularity condition is in particular satisfied if both A and B 

are compact spaces and k continuous. 

Using this regularity condition we shall construct two measures ~A 

and ~B 

sets in 

suitable for measuring the average value of cf and dr over 

? A and '2: B , respectively. (The regularity condition is only 

sufficient. Below we shall make some remarks on other conditions which coulq 

equally well serve and which apply in some cases where the above condition 

fails.) 

For each 0 let <;; 
0 •• ' u rn 

be a refinement of the covering 

u1, u of A such that if u~ It U. -:} ¢ , then u 2. ,- u. and let 
0 Q.' .._, 

' n J l j - l 

at: be some point in u~ Let E ~ for any b E, B there is • a u. ' some 
J J J 

such that <a, b ') U. XV. Hence ~ u. -:} ¢ 0 As then uE u. E . u. n r;; 
l l J l J l 

£ E this implies that a. E u. ' therefore (a ·P b '> E ul. X v. 0 From the 
J l 0 l 

regularity condition we then may conclude that { k(a, b) - k(a~, b) ! < £ . 
J 

And if a E. U~ , this inequality holds for all b E B • 
J 

Next observe that 

entails that 

i 

lc}L(a)- cp.(a')j ~ r , ' I / v I J I k(a,b) - k(a ,b)t d~2 ~ max k(a,b) - k(a ,b) • 

Thus for each n ~ 1 there exist points n a1 , ••• , 

that given any a E A there is some n a. such that 
l 

for all ~ = ~ 1 x ~ 2 • 

We may now define ~ A for each X E ,L_ A by 

2_ 
1 . 2n. 
~ l~m m n n 

(n;i) 

b 

n a with the property 
m 

n 

) cf(a) - c ,ia~) j < ~ 

where (n;i) = 1 if ar: E X and 0 otherwise. In the same way we define 
l 

a measure ~ B on < B, I_ B ) • 
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We may establish the crucial property of the measure A c~ must be 

identically 0 on A if J ,._,Ca)d~ = 0 o Suppose that cl"-(a ') > 0 for some 

a' € A , then there wou~d exist some n and i such that c}-1 (a~) > 0 o By 

construction c~ is non-negative and 

Similarly we may conclude that df is identically 0 on B if 

sd~ (b)dAB = 0. 

Hence 

The extended Nash transformation may now be defined for X E ~ A and 

y €" 2_ B by 

, ).l1(X) + ~X c_,....(a)d ~A 
fl1 (X) = j A c,_,.(a)d~A 1 + 

and 

, }J.'2 (Y) + J y d~(b)d~ B 
P,2 (Y) = 

SB ~(b)dAB 1 + 

, 
It is immediate that ,)J.. 1 E: 

, ~·~ 

and ).1. 2 E OS The transformation 

T: Clxi:B ~ etx£ is obtainded by setting 

P r o p o s i t i o n • Let G = <. A.B.k > be any game such that 

k satisfies the above stated regularity assumption and let 1-. be any 

mixed extension o .;;;;T.:.,;;h..;;,;en...__<_ p- 1 , f 2 "> is an eguilibrigm pair for r if 

and only if )A- 1 x p. 2 is a fixed point for T • 

P r o o f : I. Let I.. r 1 'f 2 > be an equilibri urn point for r 
This means that 
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m~ K( A 1 ',u. 2) = K( r 1' f- 2) 
\ 

It follows at once from the definitions of c~ and d~ that c~(a) = 0 

for all a E A and d/l(b) = 0 for all b E B • But then fA{ = p,1 and 

f.A-2 = )12 , i.e. p. 1 x JL 2 is a fixed point for T • 

II. To prove the converse we first observe that there are sets X E ~A and 

YE _2B such that JA-1(X) > O, f 2(Y) ":> 0 and K(}J- 1 ,~ 2 ) ~ K(a,p. 2) 

for all a € X and K( f- 1, f- 2 ) ~ K( ft1,b) for all b €: Y • If this 

were not the case we would e.g. have K(p.- 1,p.2 ) < K(a, p. 2) for almost all 

a € A (with respect to f 1 ) ~ hence 

' 

a contradiction. 

Using now the fact that 
f-1 X P· 2 is a fixed point for T we have 

t~ 1 (X) = fi1(X)/(1 + 
r 
) c t>" (a)dA A) 

and 

}J-2(Y) = /f2(Y)/(1 + r d~ (b)d A B) 
j . 

But fA-1 (X) > 0 and p2 (Y) > 0 , thus J cf"' (a)d~ A = 0 and 

J d j-l (b) d ,.., B = 0 , from which we conclude that both c r- and d f are 

identically 0 • Hence from the definitions of c fA' and d f"' we obtain 

the inequalities, valid for all a £ A ~~d b € B , 

K( f1' t~ 2) "? K(a, fl2) 
l 

and 
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Integrating with respect to arbitrary measures ~ 1 ~ e.l and 

this gives 

i.e. <}-1 'fl2 > is an equilibrium point for r 
This completes the proof. 

To conclude this section we shall make some remarks on the pay-off 

function k • 

In the topological case there is another reasonable candidate for the 

averaging measure ~A, viz. a measure which is strictly positive on non-

empty open sets. (The Lebesgue measure is one such example.) Such measures 

exist in every locally compact and s e p a r a b 1 e space: If { ai 1 
is a countable dense subset define ~A (X) = ~ l:- , X E LA , where the 

21 

sum is taken over those i such that a. € X • As 
l 

is non-negative, 

the continuity of c~ implies that cf is identically 0 on A if 

i cr (a)d~A = 0 (see Halmos ((3)) , Ch. X). 

However, it may be of interest to remark that not every compact space 

admits a measure '/-. (on the Borel sets) which is strictly positive on 

non-empty open sets. To prove this let A be a non-denumerable discrete 
0 

space and A the one-point compactification. 

is open, hence we assume that 

For each a E A , 
0 

( = 

~€A- A , need not be positive.) If there is no count­a 

able subset K of A such that 2 :X a = 1 , then there is a least 
aEK 

p o s i t i v e number t 0 E. [ 0, 11 such that ~ X a S S 0 , for 
a€.K 

all countable 

in A - K , hence 
0 

will be > ~ c.o ' 

If L. xa= lo aE K 

X > 0 , and adding 
aw 

for some K , we pick an 

X to the sum the result 
a' 

9 
a 

a contradiction. Thus """ X < '> "-- a '"'a for all K • 
a~K 
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But this is also impossible: Pick a sequence of positive reals 8n f C, 0 • 

For each n let K be a countable subset of A such that Z )( > z - f. • 
n aE. K a o n 

n 

Then the sum over K = UK will be c n ~ Z~o From this we may conclude that 

~ ( i, aS ) can be strictly positive for at most a countable subset of A0 , 

i.e. no Borel measure exists on the compact space A giving each non-empty 

open set positive measure. 

One could also try to approach this problem by way of product measures 

as each compact space is embeddable in a product of intervals [o, 1] . And, 

in fact, if A is sufficiently 1ithickn in the product space, i.e. if 0 n ft. 

contains an open set from the base for each open 0 in the product space, 

then a suitable AA exists. But this is a somewhat restrictive conditio~, 

and as the problem of relativizing measures is rather complicated, we leave 

the matter here and in the sequel stick to our non-topological regularity 

condition on the pay-off function k • 

III. TOPOLOGIES ON THE SPACES OF STRATEGIES 

The set M of all bounded !J -measures on (.Ax B, 2:) is a 

linear space. The subset et X (B is not convex, but it iS easy to ex-

tend T to the set of all probability measures, e , on <A x B, .2_ ) 

and e is a convex subset of 56 The extension T : e -~ (~x dj 

is obtained by setting for each ~ E (~ 

= J , , 

f1 X f 2 ' 

where 

ly, i.e. 

and tJ- 2 are the projections on 

f 1 (X) = i" (X x B) , X E L A , and 

and then compose with the map 

previous section. 

ev and as ' respective-

~ 2(Y) = JJ-,(Ax Y), YE~B, 

~ 1 X r 2 as defined in the 



- 11 -

Our task is now to set the stage for an application of the Schauder-

Tychonoff fixed point theorem, ((1)) , p. 456, by searching for some 

topology on 8{) ( ) ~A which i makes dJ into a locally convex linear 

space such that (ii) ~ will be compact and (iii) T continuous. 

Then T will have a fixed point, necessarily in the set et, x cf6 • 

A most natural topology, taking into regard the definition of 
, 

~1 and 

f"2 ' would be obtained by imbedding e (and ~ ) into a product of 

real lines by using the set of linear maps f : f ..-..) fA. (X) , X G. Z.. • 
It is immediate that 4 (f) = < f( r-)) imbeds e as a convex sub­

set of a compact set in a locally convex linear topological space. Hence 

the first thing would be to show that f3, is closed. 

However, f5!, is not in general closed as the following example shows: 

and let 2: A and 

~ B be the sets of all subsets of A and B , respectively. Then e 
essentially reduces to the set of all probability measures on A • We shall 

construct a " in the closure of e, 
ing ~ ) which is not (J -additive. 

(with respect to the above imbedd-

It is easy to show that each ~E e is a finitely additive measure 

on (A, ~A) • Let F be some ultrafilter refining the Frechet filter on 

A • Define ~ by ~(X) = 1 if X € F and 0 otherwise. A is 

finitely additive but not lj'" -additive: 

.L :\ < -\a."\- ) = o .. 
lt. 

Let X1 , ••• , Xn E ~ A and assume that x1 , ••• , Xk e F , 

Xk+1' ••• , Xn it F • As F has the finite intersection property, there is 
, 

some point a0 t X1 n .... f)Xk n Xk+1 n 
defined by the condition )A ( 1_ a0 ~ ) = 1 • 

at x1, ••• , xn for any % > 0 ; thus 

•.. n x 
n • Let fA € e 

approximates ~ 

• 

be 
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It is therefore necessary to impose restrictions on our games G and 

r in order to obtain equilibrium points. Thus we now assume that A and 

B are compact spaces and k continuous. For 2:A and ~B we take the 

Baire sets in A and B , respectively. (In this case not every one-point 

set need belong to the ~-algebras~ but the reasoning above remains valid: 

e.g. to show that K( fa' f 2) = S k(a, b)d JA 2 one extends )J.. a to its 

uniquely associated regular Borel measure and evaluate the integral with 

respect to this measure. And as we have an extension, we obtain the correct 

value.) 

It is well known that the space of all finite signed Baire measures is 

the dual of C(A x B) , the set of continuous functions on A x B • Further 

~ is a convex, compact subset of this space in the topology induced by 

the maps }4 ~ ]J.-(f) = l fd/A , f E C(A x B) • Hence in order to apply 

the Schauder-Tychonoff fixed point theorem, it now remains to verify that 

is continuous in the i 1vagueww topology. 

In order to carry out this verification it will prove convenient to 

modify the definition of T somewhat by setting for each f E C(A) and 

g E C(B) 

= 

= 

, , 
Here and ~ 2 must initially be conceived to be positive linear 

functionals, but by the well known duality already referred to,they corres-
, , , 

pond to uniquely defined measures 
f1 

and 
f.2 

such that }J 1 (f) = 

J f(a)df 1 

, f g(b)df; 
, , 

and f 2(g) = As ?1(1)=1 and f2( 1) = 1 
2 

Jl; E a , 
we have and )J-. 2 ElB 

The proof of the proposition of section II goes through with small 



- 13 -

modifications. In proving the sufficiency we now e.g. obtain a compact 

Baire set X such that }l., (X) > 0 and c)'-(a) = 0 for all a E X 

Let then f be a decreasing sequence of continuous functions converging 
n 

pointwise to the characteristic function of X (see Halmos ((3)) , Ch. X). 

Observe that f •c n p.. ~ 0 , hence going to the limit we have 

and the proof is completed as above. 

We may now state the following result on the existence of good strategies. 

T h e o r e m • Let A and B be compact spaces and k a continuous 

real-valued fm~ction on A x B • Let r = f..~ , (B ,K > be the mixed 

extension of the game G = <. A,B,k > obtained by letting e,.t, and <?.> 

be the sets of probability measures on the Baire set in A and B , respec-

ti vely o .;;T:.:h.;;;en;.;;...._r_....;r:.;.la;;;;s:;.....;;an:.:.....;;:e.::~.gm=·l;:;;.:;i~b:.:::r.;;:;i;.::::um::::...p~:;;,;a;;;:;i::.::r;,..::,. 

It remains to show that T is continuous, i.e. we must show that 

is continuous for all f E. C(A x B) • It suffices 
, 

to show that fJ. 1(f), f E C(A) , and f-l 
are continuous: If this is proved, then }l. ---?--

, , 
}l1 (f) 0 )! 2(g) is continuous, hence also all the maps 

n n , , 
But the set of maps 2 f.g. , f. E. C(A) fl ~ ( /A1 X ~ 2)(~1 figi) • . 1 ~ ~ ~ 

~= 

and g. E C(B) , is 1.l..i.'1iformly dense in C(A x B) by virtue of the Stone­
l , , 

Weierstrass theorem. Thus the continuity of )A ~ ;t 1 x JA- 2(f) for 

an arbitrary f E C(A x B) follows by the inequality: 
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, 
The continuity of and fA· ---? fN 2 (g) is proved in 

exactly the same way, hence we treat only the first map. From the defini-
, 

tion of ]J. 1 (f) it follows that we must verify that the maps ~-:,}A 1 (f) , 

}1·-). s f(a)cf' (a)dAA and fl ~ ~ cr (a)d.A A are continuous. This 

readily reduced to show that the map }A. ~ )J- 1 x p.. 2 is continuous, -

which is straight forward - , and that the family of maps )A ~ c p.. (a) , 

a E A , is equicontinuous. 

To verify this last assertion we need the compactness of A x B and the 

continuity of k : We first note that for all S. > 0 there exists a 

finite covering u1, ••• , Urn of A and points a. E U. 
l l 

such that 

for all b E B , provided a E U. • We also 
l 

note that the map ~ ~ K(a, r 2 ) = f k(a,b)d P 2 is continuous, a. is 

here a fixed parameter. Haking then use of the inequality 

we may conclude that the family of maps )J.. ~ K(a, f- 2 ) , a € A , is 

equicontinuous, because for each £ > 0 there is a f i n i t e num-

ber of points a. for which we need to have the continuity of the map 
l 

}J. ~ K(ai' f- 2 ) • By considering the inequality 

we easily obtain that the maps f ---1- c f- (a) , a € A , are equicontinuous. 

This completes the proof. 
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